WorldWideScience

Sample records for alkoxides

  1. Bi--Sr--Ca--Cu--O superconducting films fabricated using metal alkoxides

    International Nuclear Information System (INIS)

    Katayama, S.; Sekine, M.

    1991-01-01

    Superconducting films in the Bi--Sr--Ca--Cu--O systems were made using metal alkoxides. To prepare a dip-coating solution using a mixed alkoxide solution, insoluble Cu and Bi alkoxides were dissolved by modification with 2-dimethylaminoethanol and formation of a double alkoxide, respectively. Formation of the double alkoxides of Bi with Ca or Sr was confirmed using FT-IR and 1 H-NMR. Bi--Sr--Ca--Cu--O films on yttria-stabilized ZrO 2 and single crystal MgO(100) substrates were made using this solution. The films were closely oriented along the c-axis perpendicular to the substrate. The film on MgO(100) fired at 850 degree C for 48 h showed two resistance drops around 115 and 85 K, corresponding to the high-T c and low-T c phases, respectively, and zero resistance at 72 K

  2. Preparation of oxide materials from metal alkoxides

    International Nuclear Information System (INIS)

    Turevskaya, E.P.; Turova, N.Ya.; Yanovskaya, M.I.

    2000-01-01

    The results of studies on the sol-gel technologies on the basis of alkoxides are presented. The synthesis and properties of titanates zirconates, niobates, tantalates, vanadates and solid solutions on the basis of Mo, W and Bi oxides, iron oxides and high-temperature superconductors are presented. The most important aspects, determining the choice of optimal conditions for preparation of oxides of concrete compositions with required properties are pointed out. Accomplishment of the whole chain of studies made it possible to synthesize a broad range of metal alkoxides and study their properties and also carry out large-scale studies on preparation of various oxides and materials on the basis thereof, using the source base of the sol-gel method [ru

  3. Direct synthesis of some significant metal alkoxides

    International Nuclear Information System (INIS)

    Emilio, Gule Buyu

    1998-11-01

    Investigations were carried out with an attempt to study direct synthesis of metal alkoxides from elemental metals and appropriate alcohols. These were done by reacting representative metals of group I, II, III 7 IV (which are Na, Mg, Al and Sn respectively) directly with dry ethanol and dry isopropanol. The products were then analysed by infrared spectrophotometer to meter to identify metal alkoxides formed. Ethanol was found to have more acidic character in reactions with these metals than isopropanol, thus its reactions with the metals were faster. Reduction in the acidic character of isopropanol, a secondary alcohol, could be due to the existence off more alkyl groups in the molecule which displays +1 inductive effect. For the same alcohol the metals reactions were found to decrease with increase in electronegativity of the metals. Sodium being the least electronegative metal reacted fasted while tin the more electronegative metal reacted slowest. Mg, Al and Sn required a catalyst,, mercury (II) chloride and heat in order to initiate and drive the reactions completion. The alkoxides formed were found to be soluble to a certain extent in the tow alcohols and the order of solubility is such that Sn≥ Al ≥ Mg ≥ Na.(Author)

  4. The use of metal alkoxides in the preparation of ceramic powders

    International Nuclear Information System (INIS)

    Chetcuti, A.M.; Woolfrey, J.L.

    1982-01-01

    The production of fine, chemically homogeneous and highly reactive powder is particularly desirable where the synthesis and fabrication of multicomponent ceramic systems, such as SYNROC, are concerned. To produce good sinterable material, a preparation technique that allows intimate mixing of all reacting species is desirable. Traditional routes for preparing fine powders have involved ball-milling metal oxides and spray-drying or flash-drying the resulting oxide slurries. The hydrolysis of metal alkoxides has been investigated as a technique to produce fine powders. The preparation of SYNROC B powder from alkoxides involves hydrolysing a mixture of titanium and zirconium alkoxides. The precipitated product is then blended with Al 3 + , Ba 2 + and Ca 2 + nitrate solution

  5. Metal alkoxides as starting materials for hydrolysis processes

    International Nuclear Information System (INIS)

    Mukhtar, Omaima Awad

    1999-12-01

    In this thesis the preparation of some metal alkoxides and their hydrolysis products were studied. The characteristic of each prepared alkoxides and their hydrolyzates were determined. Tetra ethoxysilane was prepared by the elemental route (the reaction of silicon powder with liquid ethanol) in the presence of tin ethoxide as a catalyst. The use of tin alkoxide is considered one of the most developed ways used recently in chemistry, compared to the usage of acids and bases as catalyst previously. It had been confirmed by the usage of (infrared) IR spectroscopy, the structure of the prepared material. Also tin isopropoxide had been prepared and hydrolyzed. Ethoxides of aluminium, magnesium and tin had been prepared by the elemental route. The gelation product had been analyzed. tetraethoxysilane had been also prepared by the halosilane route. Isopropoxide of each aluminium, magnesium and tin had been synthesized, hydrolyzed, allowed to gel and analyzed by IR (infrared) spectroscopy and gas-liquid chromatography. However, results obtained indicated that tin ethoxide is an effective catalyst in the direct synthesis of tetraethoxysilane from silicon powder and liquid ethanol. Gas-liquid chromatography, infra-red (IR) analysis showed that the final reaction product was tetraethoxysilane. (Author)

  6. Mass spectrometry in the characterization of reactive metal alkoxides.

    Science.gov (United States)

    Peruzzo, Valentina; Chiurato, Matteo Andrea; Favaro, Monica; Tomasin, Patrizia

    2018-01-01

    Metal alkoxides are metal-organic compounds characterized by the presence of MOC bonds (M = metal). Their chemistry seems to be, in principle, relatively simple but the number of possible reactant species arising as a consequence of their behavior is very remarkable. The physico-chemical properties of metal alkoxides are determined by many different parameters, the most important ones being the electronegativity of the metal, the ramification of the ligand, and the acidity of the corresponding alcohol. Their reactivity makes them suitable and versatile candidates for many applications, including homogeneous catalysis, synthesis of new ceramic materials through the sol-gel process and, recently, also for Cultural Heritage. Metal alkoxides are characterized by a strong tendency to give clusters and/or oligomers through oxo-bridges. Mass spectrometry has been successfully employed for the characterization of metal alkoxides in the gas-phase. Electron ionization (EI) allowed the assessment of the molecular weight and of the most relevant decomposition pathways giving information on the relative bond strength of differently substituted molecules. On the other hand, information on the reactivity in solution of these molecules have been obtained by electrospray ionization (ESI)-matrix assisted laser desorption ionization (MALDI) experiments performed on their reaction products. These data were relevant to investigate the sol-gel process. In this review, these aspects are described and the results obtained are critically evaluated. © 2016 Wiley Periodicals, Inc. Mass Spec Rev. © 2016 Wiley Periodicals, Inc.

  7. Synthesis and properties of bimetallic aluminium alkoxides

    International Nuclear Information System (INIS)

    Vyshinskaya, K.I.; Vasil'ev, G.A.; Vishnyakova, T.A.

    1997-01-01

    A single stage method of aluminium bimetallic alkoxide synthesis, which consists in activated aluminium reaction with metal salts in the relevant alcohols, has been developed. Properties of the compounds prepared are described

  8. Standard molar enthalpies of formation of sodium alkoxides

    International Nuclear Information System (INIS)

    Chandran, K.; Srinivasan, T.G.; Gopalan, A.; Ganesan, V.

    2007-01-01

    The molar enthalpies of solution of sodium in methanol, ethanol, and n-propanol and of sodium alkoxides in their corresponding alcohols were measured at T=298.15K using an isoperibol solution calorimeter. From these results and other auxiliary data, the standard molar enthalpies of formation, Δ f H m o (RONa,cr) of sodium methoxide, sodium ethoxide, and sodium n-propoxide were calculated and found to be {(-366.21+/-1.38) (-413.39+/-1.45), and (-441.57+/-1.18)}kJ.mol -1 , respectively. A linear correlation has been found between Δ f H m o (RONa)andΔ f H m o (ROH) for R=n-alkyl, enabling the prediction of data for other sodium alkoxides

  9. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    Science.gov (United States)

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  10. Morphology control for highly efficient organic–inorganic bulk heterojunction solar cell based on Ti-alkoxide

    International Nuclear Information System (INIS)

    Kato, Takehito; Hagiwara, Naoki; Suzuki, Eiji; Nasu, Yuki; Izawa, Satoru; Tanaka, Kouichi; Kato, Ariyuki

    2016-01-01

    The number of publications concerned with typical bulk-heterojunction solar cells that use fullerene derivatives and inorganic materials as electron acceptors has grown very rapidly. In this work, we focus on Ti-alkoxides as electron acceptors in the photoactive layers of fullerene-free bulk-heterojunction solar cells. We show that it is possible to control the morphology by adjusting the molecular structure and size of the Ti-alkoxides. The short-circuit current density (J_s_c) increased to 191 μA/cm"2 from 25 μA/cm"2 with a maximum, when the phase-separation structure was continuously formed to within about 20 nm below the exciton diffusion length by using either titanium(IV) ethoxide or isopropoxide as an electron acceptor. Within a thickness of 30 nm, the photoactive layer is not influenced by the electron transfer ability; thus, we demonstrate that the charge-separation efficiency is equivalent to that of a fullerene system. - Highlights: • An organic–inorganic bulk-heterojunction photoactive layer was used. • Electron donor was a semiconducting polymer and electron acceptor was Ti-alkoxide. • Demonstration of morphology control by Ti-alkoxide molecules. • Determination of Jsc value by the phase-separation structure in an ultra-thin film. • Charge-separation efficiency of Ti-alkoxide system equivalent to fullerene system.

  11. Enthalpies of formation of europium alkoxides: What lessons can be drawn from them

    International Nuclear Information System (INIS)

    Branco, Joaquim B.; Carretas, José M.; Epple, Matthias; Cruz, Adelaide; Pires de Matos, A.; Leal, João Paulo

    2014-01-01

    Highlights: • First time measurement of europium(II) alkoxides enthalpy of formation. • Calculation of alkoxides thermochemical radii and M–O distances in this environment. • Comparison of experimental EXAFS distance with the calculated ones. • Hints on the type of bond existing in these compounds. • Correlation of bond type and possible use as catalysts. - Abstract: The synthesis and characterization of two europium alkoxides, Eu(OCH 3 ) 2 and Eu(OC 2 H 5 ) 2 , were described. For the first time the enthalpies of formation of divalent lanthanide alkoxides were determined by using reaction-solution calorimetry. The values obtained are Δ f H 0 [Eu(OCH 3 ) 2 ,cr] = −850.5 ± 5.0 kJ/mol and Δ f H 0 [Eu(OC 2 H 5 ) 2 ,cr] = −902.5 ± 5.5 kJ/mol, respectively. Since these compounds have a large use as catalysts or catalysts precursors, the first step of the reaction of them with CO 2 was addressed, which permits to have an idea of the kind of bond involved in those compounds. Moreover, insertion of CO 2 in the europium oxygen bond and formation of metal carboxylate complexes, is in both cases presumably bidentate

  12. Anchoring of alkyl chain molecules on oxide surface using silicon alkoxide

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Ayumi, E-mail: narita.ayumi@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan); Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Yaita, Tsuyoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan)

    2012-01-01

    Chemical states of the interfaces between octadecyl-triethoxy-silane (ODTS) molecules and sapphire surface were measured by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) using synchrotron soft X-rays. The nearly self-assembled monolayer of ODTS was formed on the sapphire surface. For XPS and NEXAFS measurements, it was elucidated that the chemical bond between silicon alkoxide in ODTS and the surface was formed, and the alkane chain of ODTS locates upper side on the surface. As a result, it was elucidated that the silicon alkoxide is a good anchor for the immobilization of organic molecules on oxides.

  13. Preparation of oxide glasses from metal alkoxides by sol-gel method

    Science.gov (United States)

    Kamiya, K.; Yoko, T.; Sakka, S.

    1987-01-01

    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  14. Methods for treating a metathesis feedstock with metal alkoxides

    Science.gov (United States)

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe; Champagne, Timothy M.; Ung, Thay A.

    2018-04-17

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  15. The preparation of lithium aluminate by the hydrolysis of lithium and aluminum alkoxides

    International Nuclear Information System (INIS)

    Turner, C.W.; Clatworthy, B.C.; Gin, A.Y.H.

    1987-10-01

    Lithium aluminate was prepared by heating the hydrolysis products from various combinations of lithium and aluminum alkoxides under an atmosphere of nitrogen. The product was β-LiA1O 2 when aluminum iso-propoxide was a starting material, whereas γ-LiA1O 2 was the product for preparations starting with aluminum n-butoxide. The results were independent of the choice of lithium alkoxide. The hydrolysis of aluminum sec-butoxide with a solution of LiOH led to the γ phase as well. The temperature at which the γ phase developed depended upon the conditions of the hydrolysis reaction and was observed at a temperature as low as 550 degrees Celcius

  16. Electrochemical reactions at sacrificial electrodes : Part VI. Synthesis of cadmium alkoxides and their coordination compounds

    International Nuclear Information System (INIS)

    Banait, J.S.; Singh, Baljit

    1991-01-01

    Cadmium alkoxides [Cd(OR) 2 ; R=methyl, ethyl, n-propyl, n-butyl and n-amyl], have been synthesised by the electrolysis of alcohols at a cadmium anode. These alkoxides do not form coordination compounds when refluxed with the ligands like 2,2'-bipyridine, 1,10-phenanthroline, dimethylsulphoxide and acetone. However, coordination compounds with the general formula, Cd(OR) 2 .L, have been prepared when the solutions of these ligands in alcohols are electrolysed at a cadmium anode. The products have been characterised by elemental analyses and IR data. Current efficiencies of all these systems are quite high. (author). 21 refs., 2 tabs

  17. Zr alkoxide chain effect on the sol-gel synthesis of lithium metazirconate

    International Nuclear Information System (INIS)

    Pfeiffer, Heriberto; Bosch, Pedro; Bulbulian, Silvia

    2003-01-01

    Lithium metazirconate (Li 2 ZrO 3 ) was synthesized by the sol-gel method, using four different Zr alkoxides: zirconium ethoxide, zirconium iso-propoxide, zirconium propoxide and zirconium butoxide. The syntheses were made under two different catalytic regimes, acid and basic. The resulting powders were mixtures of Li 2 ZrO 3 and ZrO 2 . The best yield of Li 2 ZrO 3 (100%) was obtained when the sol-gel reaction was developed with lithium methoxide and zirconium ethoxide under acid catalysis regime. This study establishes that, for base-catalyzed reactions the ZrO 2 formation decreases when the alkyl-chain increases in the alkoxides. By contrast, for acid-catalyzed reactions the ZrO 2 formation increases as the alkyl-chain increases. Finally, when Zr propoxide and Zr iso-propoxide were used, the Li 2 ZrO 3 amounts were different due to steric effects

  18. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  19. Surprisingly facile CO2 insertion into cobalt alkoxide bonds: A theoretical investigation

    Directory of Open Access Journals (Sweden)

    Willem K. Offermans

    2015-07-01

    Full Text Available Exploiting carbon dioxide as co-monomer with epoxides in the production of polycarbonates is economically highly attractive. More effective catalysts for this reaction are intensively being sought. To promote better understanding of the catalytic pathways, this study uses density functional theory calculations to elucidate the reaction step of CO2 insertion into cobalt(III–alkoxide bonds, which is also the central step of metal catalysed carboxylation reactions. It was found that CO2 insertion into the cobalt(III–alkoxide bond of [(2-hydroxyethoxyCoIII(salen(L] complexes (salen = N,N”-bis(salicyliden-1,6-diaminophenyl is exothermic, whereby the exothermicity depends on the trans-ligand L. The more electron-donating this ligand is, the more exothermic the insertion step is. Interestingly, we found that the activation barrier decreases with increasing exothermicity of the CO2 insertion. Hereby, a linear Brønsted–Evans–Polanyi relationship was found between the activation energy and the reaction energy.

  20. Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization.

    Science.gov (United States)

    Papendorf, Benjamin; Nonnenmacher, Katharina; Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf

    2011-04-04

    The present study focuses on the synthesis and ceramization of novel hafnium-alkoxide-modified silazanes as well as on their microstructure evolution at high temperatures. The synthesis of hafnia-modified polymer-derived SiCN ceramic nanocomposites is performed via chemical modification of a polysilazane and of a cyclotrisilazane, followed by cross-linking and pyrolysis in argon atmosphere. Spectroscopic investigation (i.e., NMR, FTIR, and Raman) shows that the hafnium alkoxide reacts with the N-H groups of the cyclotrisilazane; in the case of polysilazane, reactions of N-H as well as Si-H groups with the alkoxide are observed. Consequently, scanning and transmission electron microscopy studies reveal that the ceramic nanocomposites obtained from cyclotrisilazane and polysilazane exhibited markedly different microstructures, which is a result of the different reaction pathways of the hafnium alkoxide with cyclotrisilazane and with polysilazane. Furthermore, the two prepared ceramic nanocomposites are unexpectedly found to exhibit extremely different high-temperature behavior with respect to decomposition and crystallization; this essential difference is found to be related to the different distribution of hafnium throughout the ceramic network in the two samples. Thus, the homogeneous distribution of hafnium observed in the polysilazane-derived ceramic leads to an enhanced thermal stability with respect to decomposition, whereas the local enrichment of hafnium within the matrix of the cyclotrisilazane-based sample induces a pronounced decomposition upon annealing at high temperatures. The results indicate that the chemistry and architecture of the precursor has a crucial effect on the microstructure of the resulting ceramic material and consequently on its high-temperature behavior. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterisation of a new alkoxide sol-gel hydroxyapatite

    International Nuclear Information System (INIS)

    Green, D.D.; Kannangara, G.S.K.; Milev, A.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) coatings have been used to promote bone growth and fixation towards implant surfaces to encourage faster recovery times for the recipient. Current coating processing techniques, capable of producing thin HAp layers are pulsed-laser deposition and sputtering (high-temperature processing). Other technologies are in vitro methods, electrodeposition and sol-gel, due to the fact that these techniques utilise lower processing temperatures they avoid structural instabilities of HAp at elevated temperatures. The term sol-gel encompasses any process of producing ceramic materials (single and mixed oxides, as well as non-oxides e.g. nitrides) from solutions. The sol-gel process was first identified by Ebelman, and has been used to produce ceramic powders, coatings, and bulk materials including glasses. The implementation of a sol-gel methodology enables increased stoichiometry and homogeneity, while having the ability to coat complex shapes. Sol-gel hydroxyapatite reported by Chai et al. employed tri ethyl phosphite [ P(OEt) 3 ] as the staring phosphorus alkoxide precursor, whereby it was established that in order to obtain monophasic hydroxyapatite upon firing there must be a 24 hour ripening period. The ripening period was determined to be an equilibrium step whereby the equilibrium intermediate phase lied in favour of a diethyl phosphite arrangement (species) within the sol. Therefore, the work here under taken was to produce hydroxyapatite using diethyl phosphite [HOP(OEt) 2 ] as a starting alkoxide precursor with a final aim to reduce or eliminate the ageing period as observed by Chai et al in P(OEt) 3 solutions

  2. Synthesis and Characterization of Fluoro- and Chlorobimetallic Alkoxides as Precursors for Luminescent Metal Oxide Materials via Sol-Gel Technique

    Institute of Scientific and Technical Information of China (English)

    ATHAR, Taimur; SEOK, Sang II; KWON, Jeong Oh

    2007-01-01

    Heterobimetallic alkoxides are broadly recognized as versatile precursors for luminescence materials, and efforts are being made to develop novel routes by applying the concept of geometrical molecular design, for their synthesis and to design a single source precursor suited to photoluminescent materials. Novel and new series of bimetallic alkoxides has been prepared by metathesis route. They exhibit a lower sensitivity towards hydrolysis and so they are easier to handle as compared to other alkoxides. All the compounds were characterized by elemental analysis, FT-IR and multinuclear NMR spectroscopies. FT-IR revealed that the molecular structure of these metal spectroscopy provided useful information about chemical shifts for better understanding the likely structure based on interactions with their coordinate metals. The mass spectra show similar types of fragmentation pattern.SEM-EDS analyses showed consistency with the formulation. XRD patterns show an enhanced homogeneity at high temperature. TGA measurements show that thermal decomposition occured in steps that depended entirely on the chemical compositions and the synthesis routes. SEM observation reveals that the morphology and particle size strongly depend on synthesis routes for their precursors.

  3. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2010-01-01

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 o C by the chlorides route, whereas alkoxide precursors needed firing over 900 o C and nitrates even over 1100 o C. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 o C with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  4. Applications versus properties of Mg–Al layered double hydroxides provided by their syntheses methods: Alkoxide and alkoxide-free sol–gel syntheses and hydrothermal precipitation

    KAUST Repository

    Chubar, Natalia

    2013-12-01

    A tremendous number of studies have examined layered double hydroxides (LDH) for their technological applications in the ion exchange removal of toxic ions, recovery of valuable substances, catalysis, CO2 capture, as a layered host for storage/delivery of biologically active molecules, additives to plastics and building materials, and other functions. Numerous publications always conclude that the materials (prepared, as a rule, using the oldest synthesis method) are very promising for each investigated application; however, the main chemical industries producing these materials advertise them mainly (or only) as plastic additives. The authors performed extensive research using many of the appropriate methods to compare the structure, surface and adsorptive properties of three Mg-Al LHDs produced by advanced synthesis methods. One industrial sample (by Sasol, Germany) prepared by the alkoxide sol-gel method and two novel Mg-Al LDHs synthesised in-house by alkoxide-free sol-gel and hydrothermal precipitation approaches were investigated. Reasons for the very different adsorptive selectivity of the three LDHs towards arsenate, selenate, phosphate, arsenite and selenite have been provided, highlighting the role of speciation of the interlayer carbonate, aluminium, magnesium, interlayer hydration and moisture content in the adsorptive selectivity towards each toxic anion. This work is the first report presenting the regularities of the LDHs structure, surface and anion exchange properties as a function of their syntheses method. It establishes the links to potential technological applications of each investigated LDH and explains the necessary properties required to make the technological application cost-effective and efficient. The paper might accelerate industrial applications of these advanced materials. © 2013 Elsevier B.V.

  5. Tailoring of transition metal alkoxides via complexation for the synthesis of hybrid organic-inorganic sols and gels

    International Nuclear Information System (INIS)

    Sanchez, C.; In, M.; Toledano, P.; Griesmar, P.

    1992-01-01

    This paper reports that the chemical control of hydrolysis-condensation reactions of transition metal alkoxides can be performed through the modification of the transition metal coordination sphere by using strong complexing ligands (SCL). Complexing organic groups can be bonded to the transition metal oxide network in two different ways, as network modifiers or network formers. Different illustrations of the role of complexing ligands on Ti(IV) and Zr(IV) alkoxides are presented. As a network modifier, SCL act as termination agents for condensation reactions allowing a control of particle growth. The complexing ligands being located at the periphery of the oxo core open many opportunities for colloid surface protection. SCL carrying organofunctional groups which exhibit non linear optical (NLO) properties have also been used as probes to study sol-gel transformations. SCL functionalized with organic polymerizable functions act as network formers

  6. Preparation and characterization of uranium alkoxides through oxidation of uranium metal

    International Nuclear Information System (INIS)

    Gordon, P.L.; Sauer, N.N.; Burns, C.J.; Watkin, J.G.; Van Der Sluys, W.G.

    1993-01-01

    Currently the authors are investigating the preparation of halide-containing uranium alkoxides by simultaneous halogen and alcohol oxidation of uranium metal. They recently reported the formation of U 2 I 4 (O-i-Pr) 4 (HO-i-Pr) 2 which upon addition of excess isopropanol forms UI 2 (O-i-Pr) 2 (HO-i-Pr) 2 . They report further characterization and reactivity for this monomeric species. Attempts to prepare similar complexes are being made using chlorine gas in the presence of other alcohols. They describe this ongoing research

  7. Alcohol-free alkoxide process for containing nuclear waste

    Science.gov (United States)

    Pope, James M.; Lahoda, Edward J.

    1984-01-01

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  8. Reaction of cerium dioxide with alkali metal alkoxides

    International Nuclear Information System (INIS)

    Sato, Nobuaki; Fujino, Takeo

    1992-01-01

    The gas-solid reaction process using volatile alkali metal alkoxides has many advantages in producing the uranates (plutonates) which are expected to improve the dissolution behavior of the fuel into nitric acid. In this work, the reactions of CeO 2 , which was used as a non-radioactive stand-in of PuO 2 , with MOBu t (M = Li, K) under several conditions were examined. In the case of the M y Ce 1-y O 2-x synthesized by an aqueous method, the lattice parameter was slightly increased with increasing M concentration, y, up to 0.20. When the LiOBu t vapor reacted with CeO 2 , a new fluorite phase having a = 5.4935 A, y = 0.044, x = 0.30 was formed over 973 K. A similar compound (a = 5.4797 A, y = 0.035, x = 0.22) was observed by the reaction of CeO 2 with KOBu t . (author)

  9. Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Vettori, Irene; Ruiz-Agudo, Encarnacion

    2016-05-24

    Nanolimes are alcohol dispersions of Ca(OH)2 nanoparticles used in the conservation of cultural heritage. Although it was believed that Ca(OH)2 particles were inert when dispersed in short-chain alcohols, it has been recently shown that they can undergo transformation into calcium alkoxides. Little is known, however, about the mechanism and kinetics of such a phase transformation as well as its effect on the performance of nanolimes. Here we show that Ca(OH)2 particles formed after lime slaking react with ethanol and isopropanol and partially transform (fractional conversion, α up to 0.08) into calcium ethoxide and isopropoxide, respectively. The transformation shows Arrhenius behavior, with apparent activation energy Ea of 29 ± 4 and 37 ± 6 kJ mol(-1) for Ca-ethoxide and Ca-isopropoxide conversion, respectively. High resolution transmission electron microscopy analyses of reactant and product phases show that the alkoxides replace the crystalline structure of Ca(OH)2 along specific [hkl] directions, preserving the external hexagonal (platelike) morphology of the parent phase. Textural and kinetic results reveal that this pseudomorphic replacement involves a 3D diffusion-controlled deceleratory advancement of the reaction front. The results are consistent with an interface-coupled dissolution-precipitation replacement mechanism. Analysis of the carbonation of Ca(OH)2 particles with different degree of conversion into Ca-ethoxide (α up to 0.08) and Ca-isopropoxide (α up to 0.04) exposed to air (20 °C, 80% relative humidity) reveals that Ca-alkoxides significantly reduce the rate of transformation into cementing CaCO3 and induce the formation of metastable vaterite, as opposed to stable calcite which forms in untransformed Ca(OH)2 samples. Similar effects are obtained when a commercial nanolime partially transformed into Ca-ethoxide is subjected to carbonation. Such effects may hamper/delay the strengthening or consolidation effects of nanolimes, thus having

  10. Multinuclear solid-state high-resolution and C-13 -{Al-27} double-resonance magic-angle spinning NMR studies on aluminum alkoxides

    NARCIS (Netherlands)

    Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.

    2006-01-01

    A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum

  11. Gallium hydride complexes stabilised by multidentate alkoxide ligands: precursors to thin films of Ga2O3 at low temperatures.

    Science.gov (United States)

    Pugh, David; Bloor, Leanne G; Parkin, Ivan P; Carmalt, Claire J

    2012-05-07

    The donor-functionalised alkoxides {Me(3-x)N(CH(2)CH(2)O)(x)} (L(x); x = 1, 2) have been used to form gallium hydride complexes [{GaH(2)(L(1))}(2)] and [{GaH(L(2))}(2)] that are stable and isolable at room temperature. Along with a heteroleptic gallium tris(alkoxide) complex [Ga(L(1))(3)] and the dimeric complex [{GaMe(L(2))}(2)], these compounds have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted chemical vapour deposition (AACVD) with toluene as solvent. The resulting films were mostly transparent, indicating low levels of carbon contamination, and they were also mainly amorphous. However, [Ga(L(1))(3)] did contain visibly crystalline material deposited at a substrate temperature of 450 °C, by far the lowest ever observed for the CVD of gallium oxide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of Structurally–Related Alkoxide, Amine, and Thiolate–Ligated MII (M= Fe, Co) Complexes: the Influence of Thiolates on the Properties of Biologically Relevant Metal Complexes

    Science.gov (United States)

    Brines, Lisa M.; Villar-Acevedo, Gloria; Kitagawa, Terutaka; Swartz, Rodney D.; Lugo-Mas, Priscilla; Kaminsky, Werner; Benedict, Jason B.; Kovacs, Julie A.

    2009-01-01

    Mechanistic pathways of metalloenzymes are controlled by the metal ion’s electronic and magnetic properties, which are tuned by the coordinated ligands. The functional advantage gained by incorporating cysteinates into the active site of non-heme iron enzymes such as superoxide reductase (SOR) is not entirely understood. Herein we compare the structural and redox properties of a series of structurally–related thiolate, alkoxide, and amine–ligated Fe(II) complexes in order to determine how the thiolate influences properties critical to function. Thiolates are shown to reduce metal ion Lewis acidity relative to alkoxides and amines, and have a strong trans influence thereby helping to maintain an open coordination site. Comparison of the redox potentials of the structurally analogous compounds described herein indicates that alkoxide ligands favor the higher-valent Fe3+ oxidation state, amine ligands favor the reduced Fe2+ oxidation state, and thiolates fall somewhere in between. These properties provide a functional advantange for substrate reducing enzymes in that they provide a site at the metal ion for substrate to bind, and a moderate potential that facilitates both substrate reduction, and regeneration of the catalytically active reduced state. Redox potentials for structurally–related Co(II) complexes are shown to be cathodically–shifted relative to their Fe(II) analogues, making them ineffective reducing agents for substrates such as superoxide. PMID:21731109

  13. Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride

    International Nuclear Information System (INIS)

    Ochi, Mitsukazu; Nii, Daisuke; Harada, Miyuki

    2011-01-01

    Highlights: → Novel epoxy/zirconia hybrid materials were synthesized via in situ polymerization using zirconium alkoxide coordinated with acid anhydride. → The half-ester compound of acid anhydride desorbed from zirconium played as curing agent of epoxy resin. → The zirconia was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale by synchronizing the epoxy curing and sol-gel reactions. → The refractive indices of the hybrid materials significantly improved with an increase in the zirconia content. - Abstract: Novel epoxy/zirconia hybrid materials were synthesized using a bisphenol A epoxy resin (diglycidyl ether of bisphenol A; DGEBA), zirconium(IV)-n-propoxide (ZTNP), and hexahydrophthalic anhydride (HHPA) via in situ polymerization. HHPA played two roles in this system: it acted as a modifier to control the hydrolysis and condensation reactions of zirconium alkoxide and also as a curing agent - the half-ester compound of HHPA desorbed from zirconium reacted with the epoxy resin to form the epoxy network. As a result, both the sol-gel reaction and epoxy curing occurred simultaneously in a homogeneous solution, and organic-inorganic hybrid materials were readily obtained. Further, the zirconia produced by the in situ polymerization was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale; thus, hybrid materials that exhibited excellent optical transparency were obtained. Furthermore, the heat resistance of the hybrid materials could be improved by hybridization with zirconia. And, the refractive indices of the hybrid materials significantly improved with an increase in the zirconia content.

  14. Alkoxide-based precursors for direct drawing of metal oxide micro- and nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Taette, Tanel; Hussainov, Medhat; Paalo, Madis; Part, Marko; Talviste, Rasmus; Kiisk, Valter; Maendar, Hugo; Pohako, Kaija; Reivelt, Kaido; Lohmus, Ants [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Pehk, Tonis [National Institute of Chemical and Biological Physics, Akadeemia tee 23, Tallinn 12618 (Estonia); Natali, Marco [ICIS-CNR, Corso Stati Uniti 4, Padova 35127 (Italy); Gurauskis, Jonas [Instituto de Ciencia de Materiales de Aragon C.S.I.C., University of Zaragoza Fac. De Ciencias, c/Pedro Cerbuna 12, Zaragoza 50009 (Spain); Maeeorg, Uno, E-mail: tanelt@fi.tartu.ee [Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411 (Estonia)

    2011-06-15

    The invention of electrospinning has solved the problem of producing micro- and nanoscaled metal oxide fibres in bulk quantities. However, until now no methods have been available for preparing a single nanofibre of a metal oxide. In this work, the direct drawing method was successfully applied to produce metal oxide (SnO{sub 2}, TiO{sub 2}, ZrO{sub 2}, HfO{sub 2} and CeO{sub 2}) fibres with a high aspect ratio (up to 10 000) and a diameter as small as 200 nm. The sol-gel processing includes consumption of precursors obtained from alkoxides by aqueous or non-aqueous polymerization. Shear thinning of the precursors enables pulling a material into a fibre. This rheological behaviour can be explained by sliding of particles owing to external forces. Transmission (propagation) of light along microscaled fibres and their excellent surface morphology suggest that metal oxide nanofibres can be directly drawn from sol precursors for use in integrated photonic systems.

  15. Nitrile hydration by thiolate- and alkoxide-ligated Co-NHase analogues. Isolation of Co(III)-amidate and Co(III)-iminol intermediates.

    Science.gov (United States)

    Swartz, Rodney D; Coggins, Michael K; Kaminsky, Werner; Kovacs, Julie A

    2011-03-23

    Nitrile hydratases (NHases) are thiolate-ligated Fe(III)- or Co(III)-containing enzymes, which convert nitriles to the corresponding amide under mild conditions. Proposed NHase mechanisms involve M(III)-NCR, M(III)-OH, M(III)-iminol, and M(III)-amide intermediates. There have been no reported crystallographically characterized examples of these key intermediates. Spectroscopic and kinetic data support the involvement of a M(III)-NCR intermediate. A H-bonding network facilitates this enzymatic reaction. Herein we describe two biomimetic Co(III)-NHase analogues that hydrate MeCN, and four crystallographically characterized NHase intermediate analogues, [Co(III)(S(Me2)N(4)(tren))(MeCN)](2+) (1), [Co(III)(S(Me2)N(4)(tren))(OH)](+) (3), [Co(III)(S(Me2)N(4)(tren))(NHC(O)CH(3))](+) (2), and [Co(III)(O(Me2)N(4)(tren))(NHC(OH)CH(3))](2+) (5). Iminol-bound 5 represents the first example of a Co(III)-iminol compound in any ligand environment. Kinetic parameters (k(1)(298 K) = 2.98(5) M(-1) s(-1), ΔH(‡) = 12.65(3) kcal/mol, ΔS(‡) = -14(7) e.u.) for nitrile hydration by 1 are reported, and the activation energy E(a) = 13.2 kcal/mol is compared with that (E(a) = 5.5 kcal/mol) of the NHase enzyme. A mechanism involving initial exchange of the bound MeCN for OH- is ruled out by the fact that nitrile exchange from 1 (k(ex)(300 K) = 7.3(1) × 10(-3) s(-1)) is 2 orders of magnitude slower than nitrile hydration, and that hydroxide bound 3 does not promote nitrile hydration. Reactivity of an analogue that incorporates an alkoxide as a mimic of the highly conserved NHase serine residue shows that this moiety facilitates nitrile hydration under milder conditions. Hydrogen-bonding to the alkoxide stabilizes a Co(III)-iminol intermediate. Comparison of the thiolate versus alkoxide intermediate structures shows that C≡N bond activation and C═O bond formation proceed further along the reaction coordinate when a thiolate is incorporated into the coordination sphere.

  16. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, Sandra Raquel; Longhi, Marielen; Zini, Lucas Pandolphi [Universidade de Caxias do Sul (CCET/UCS), Caxias do Sul, RS (Brazil). Centro de Ciências Exatas e Tecnologia; Beltrami, Lilian Vanessa Rossa; Boniatti, Rosiana; Cardoso, Henrique Ribeiro Piaggio; Vega, Maria Rita Ortega; Malfatti, Célia de Fraga, E-mail: lvrossa@yahoo.com.br [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Pesquisa em Corrosão

    2017-07-01

    Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl) methacrylate (TMSPMA), tetraethoxysilane (TEOS) and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG) plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA), X-ray diffraction (XRD) nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR). The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior. (author)

  17. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Directory of Open Access Journals (Sweden)

    Sandra Raquel Kunst

    Full Text Available Abstract Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl methacrylate (TMSPMA, tetraethoxysilane (TEOS and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA, X-ray diffraction (XRD nuclear magnetic resonance spectroscopy (NMR and Fourier transform infrared spectroscopy (FT-IR. The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior.

  18. Radiophase development in hot-pressed alkoxide-derived titanate ceramics for nuclear waste stabilization

    International Nuclear Information System (INIS)

    Dickson, F.J.; Mitamura, H.; White, T.J.

    1989-01-01

    This paper reports phase development as a function of hot-pressing temperature studied in alkoxide-derived titanate-based ceramics doped with a 10 wt% loading of a sodium-rich (NAR) and a sodium-poor (NAP) simulated high-level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot-pressing temperatures between 890 degrees and 920 degrees C. After hot-pressing at 1100 degrees C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite-type, perovskite, alloy, and reduced rutile (Magneli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (≤50 degrees C), beginning at 870 degrees and 850 degrees C for NAP and NAR, respectively, although full densification was not achieved below 1100 degrees C. Both waste forms exhibited comparable microstructure and aqueous durability

  19. Precise Steric Control over 2D versus 3D Self-Assembly of Antimony(III) Alkoxide Cages through Strong Secondary Bonding Interactions.

    Science.gov (United States)

    Moaven, Shiva; Yu, Jingze; Yasin, Jason; Unruh, Daniel K; Cozzolino, Anthony F

    2017-07-17

    Antimony(III) alkoxide cages were designed as building blocks for predictable supramolecular self-assembly. Supramolecular synthons featuring two Sb···O secondary bonding interactions (SBIs), each SBI stronger than 30 kJ/mol, were used to drive the formation of the supramolecular architectures. Judicious choice of pendant groups provided predictable control over the formation of self-assembled 3D columnar helices, which crystallized with hollow morphologies, or a self-assembled 2D bilayer. The Sb-O stretching frequency provides a spectroscopic signature of Sb···O SBI formation.

  20. Process Development in the Preparation and Characterization of Silicon Alkoxide From Rice Husk

    International Nuclear Information System (INIS)

    Khin San Win; Toe Shein; Nyunt Wynn

    2011-12-01

    The preparation and characterization of silicon alkoxide (silicon isopropoxide) from rice husk char has been studied. In the investigation, four kinds of Myanmar paddies were chemically assayed. Analyses showed the silicon contend varies from 73-92% . Based on the silicon content, the process development in the production of silicon isopropoxide was carried out. In the process development, silicon isopropoxide with a yield of 44.21% was achieved by the direct reaction of isopropanol in situ by silicon tetrachloride, which was directly produced by the chlorination of rice husk char at the high temperature range of 900-1100 C. The novelity of the process was that, silicon isopropoxide was achieved in situ and not by using the old process, where generally isopropanol was reacted with silicon tetrachloride. The physiochemical properties of silicon isopropoxide was confirmed by conventional and modern techniques. In the investigation, the starting materials, silica in the reaction products were characterized, identified and confirmed by modren techniques. Silicon isopropoxide can be a sources of pore silica whereby silicon of 97-99% of purity can be achieved.

  1. Preparation and properties of superconducting Bi-Sr-Ca-Cu-O materials by the alkoxide process

    International Nuclear Information System (INIS)

    Uchikawa, Fusaoki; Kobayashi, Toshio; Usami, Ryo; Yoshizaki, Kiyoshi

    1989-01-01

    Homogeneous starting solutions were synthesized using Bi, Sr, Ca and Cu alkoxides. Powders, thick films and gel fibers were prepared respectively by controlling hydrolysis using the same solutions. The synthesized powder had a homogeneous particle size. The fired powder showed a good crystallization property. The thick film coated on MgO substrate using the synthesized sol solution had a smooth surface and a uniformity of each metal elements. The film showed the c-axis orientation and was shown to have the zero resistance temperature of 90 K and the critical current density of 180 A/cm 2 at 77 K. The fiber drawn from the viscous gel solution showed a comparatively large shrinkage with hear treatment. The fired fiber was brittle and had a low strength. It was also found for the fired fiber that zero resistance temperature was 70 K and the critical current density was 90 A/cm 2 at 77 K

  2. Preparation of Bragg mirrors on silica optical fibers and inner walls of silica capillaries by employing the sol-gel method, and titanium and silicon alkoxides

    Czech Academy of Sciences Publication Activity Database

    Bartoň, Ivo; Matějec, Vlastimil; Mrázek, Jan; Podrazký, Ondřej; Matoušek, J.

    2017-01-01

    Roč. 81, č. 3 (2017), s. 867-879 ISSN 0928-0707 R&D Projects: GA ČR GA16-10019S Grant - others:AV ČR(CZ) SAV-16-17 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Multilayered coatings * Silica and titania layersSilica and titania layers * Alkoxide sol–gel method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 1.575, year: 2016

  3. Preparation of YBa2Cu3O7-x superconducting solutions and films from alkoxide-based precursors using sol-gel method and investigation of their chemical reaction mechanisms

    International Nuclear Information System (INIS)

    Mutlu, Ibrahim Halil; Acun, Hediye; Celik, Erdal; Turkmen, Hasan

    2007-01-01

    In the development of coated superconductors sol-gel technique has been widely used as an effective processing method, especially in making long-length wires and tapes. However, one drawback associated with the deposition of YBa 2 Cu 3 O 7-x and Gd 2 O 3 buffer layer on Ni tape is the adhesion characteristic at interfaces YBCO-Gd 2 O 3 and Gd 2 O 3 -NiO and NiO-Ni substrate. In this paper, two strategies for adhesion enhancement of multilayered ceramic oxide coatings on Ni substrate were proposed: (1) formation of chemical bonds through surface condensation reactions, and development of ceramic networks through diffusion of alkoxide precursors. The current research has focused on the fabrication and adhesion of YBCO coatings on buffered Ni substrate using nine solutions prepared from Y, Ba and Cu alkoxides, solvent and chelating agent. Only two of YBCO solutions were successfully obtained while the rest of them were unsuccessful. Among these solutions we scrutinized chemical reaction mechanisms of a successful and an unsuccessful solution for comparison. How the chemical bonds and solubility were affected by the acids, base and solvents used in the solutions was demonstrated. It was shown that pH of the solution, homogeneity of the solution and gelation, steric affect of the chemicals in sol-gel solutions are significant issues to obtain high quality superconducting YBCO thin films. In addition, X-ray diffraction (XRD) was used to analyze phase structure of YBCO and compare results of chemical reactions obtained by a chemdraw programme. Scanning electron microscope (SEM) studies was carried out to examine microstructures of YBCO films produced from alkoxide precursors, solvent, chelating agent and modifying liquid chemical materials such as triethanolamine or ammonium hydroxide. It was found to be YBCO, Gd 2 O 3 , NiO and Ni phases in YBCO/Gd 2 O 3 /Ni sample from XRD analysis. That the solution prepared by using triethanolamine provided the best film quality and

  4. RuO2-TiO2 mixed oxides prepared from the hydrolysis of the metal alkoxides

    International Nuclear Information System (INIS)

    Osman, Julian R.; Crayston, Joe A.; Pratt, Allin; Richens, David T.

    2008-01-01

    The hydrolysis of ruthenium alkoxide/titanium tetraethoxide mixtures to gels and powders containing 30-40 mol% Ru was investigated. Basic or neutral conditions led to powders consisting of 2-10 nm diameter crystalline RuO 2 nanoparticles embedded in a matrix of crystalline (anatase) and amorphous TiO 2 . Acid hydrolysis conditions gave gels containing smaller, amorphous RuO 2 nanoparticles (1-3 nm). In all samples the RuO 2 nanoparticles tended to clump into aggregates up to 0.5 μm across. Acid or neutral hydrolysis of ruthenium ethoxide gave samples which displayed lower surface Ru:Ti ratios as measured by XPS compared to the bulk (XRF), and also contained more low-valent Ru (as measured by XRF), probably due to incomplete hydrolysis of the precursors. These samples also contained more Ru metal after calcination (XRD). Calcination (450 deg. C) was accompanied by Ru-promoted combustion of organic material and led to crystalline (anatase) TiO 2 and Ti x Ru 1-x O 2 solid solution (rutile phase)

  5. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-01-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  6. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  7. Effect of Ligand Field Tuning on the SMM Behavior for Three Related Alkoxide-Bridged Dysprosium Dimers.

    Science.gov (United States)

    Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K

    2016-01-04

    The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.

  8. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Science.gov (United States)

    Kim, Young-Soon; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-01

    Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y2O3 dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm2 area. After Y2O3 deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO3 (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y2O3 and GdBCO/LMO/MgO/Y2O3 stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y2O3 multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  9. Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries

    International Nuclear Information System (INIS)

    Mosa, J.; Aparicio, M.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M.

    2014-01-01

    Rechargeable thin-film batteries have recently become the topic of widespread research for use as efficient energy storage devices. Spinel Li 4 Ti 5 O 12 has been considered as one of the most prospective anode materials for Li-ion batteries because of its excellent reversibility and long cycle life. We report here the sol–gel synthesis and coating preparation of spinel thin-film Li 4 Ti 5 O 12 electrodes for Li-ion microbatteries using lithium ethoxide produced in situ that reacts with titanium alkoxide to produce the precursor solution without particle precipitation. This synthesis procedure reduces the thermal treatment to obtain a pure phase at only 700 °C and 15 minutes. The physical and structural characterization of the 300 nm Li 4 Ti 5 O 12 coatings shows a very homogeneous distribution of elements and a pure spinel phase. Galvanostatic discharge-charge tests indicate maximum discharge capacities of 152 mA h g −1 when the material is treated at 700 °C for 15 minutes

  10. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon, E-mail: kyscjb@i-sunam.com; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-15

    Highlights: • Economical method for crack-free amorphous yttria layer deposition by dip coating. • Simpler process for planar yttria film as a diffusion barrier and nucleation layer. • Easy control over the film properties with better characteristics. • Easy control over the thickness of the deposited films. • A feasible process that can be easily adopted by HTSCC industries. - Abstract: Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y{sub 2}O{sub 3} dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm{sup 2} area. After Y{sub 2}O{sub 3} deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO{sub 3} (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y{sub 2}O{sub 3} and GdBCO/LMO/MgO/Y{sub 2}O{sub 3} stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y{sub 2}O{sub 3} multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  11. Quantifying the Sigma and Pi interactions between U(V) f orbitals and halide, alkyl, alkoxide, amide and ketimide ligands

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lukens, Wayne W.; Edelstein, Norman M.; Magnani, Nicola; Hayton, Trevor W.; Fortier, Skye; Seaman, Lani A.

    2013-06-20

    f Orbital bonding in actinide and lanthanide complexes is critical to their behavior in a variety of areas from separations to magnetic properties. Octahedral f1 hexahalide complexes have been extensively used to study f orbital bonding due to their simple electronic structure and extensive spectroscopic characterization. The recent expansion of this family to include alkyl, alkoxide, amide, and ketimide ligands presents the opportunity to extend this study to a wider variety of ligands. To better understand f orbital bonding in these complexes, the existing molecular orbital (MO) model was refined to include the effect of covalency on spin orbit coupling in addition to its effect on orbital angular momentum (orbital reduction). The new MO model as well as the existing MO model and the crystal field (CF) model were applied to the octahedral f1 complexes to determine the covalency and strengths of the ? and ? bonds formed by the f orbitals. When covalency is significant, MO models more precisely determined the strengths of the bonds derived from the f orbitals; however, when covalency was small, the CF model was better than either MO model. The covalency determined using the new MO model is in better agreement with both experiment and theory than that predicted by the existing MO model. The results emphasize the role played by the orbital energy in determining the strength and covalency of bonds formed by the f orbitals.

  12. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    Energy Technology Data Exchange (ETDEWEB)

    B.G. Potter, Jr.

    2010-10-15

    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  13. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  14. Sol-gel antireflective coating on plastics

    Science.gov (United States)

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  15. One-Pot Catalytic Enantio- and Diastereoselective Syntheses of anti-, syn-cis-Disubstituted, and syn-Vinyl Cyclopropyl Alcohols

    Science.gov (United States)

    Kim, Hun Young; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C–C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65–85% yield, 76–93% ee, and >19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et3N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one-pot in 60–82% yield, 89–99% ee, and ≥10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42–70% yield, 88–97% ee, and >19:1 dr. These one-pot procedures enable the synthesis of a

  16. Self-assembled SnO2 micro- and nanosphere-based gas sensor thick films from an alkoxide-derived high purity aqueous colloid precursor

    Science.gov (United States)

    Kelp, G.; Tätte, T.; Pikker, S.; Mändar, H.; Rozhin, A. G.; Rauwel, P.; Vanetsev, A. S.; Gerst, A.; Merisalu, M.; Mäeorg, U.; Natali, M.; Persson, I.; Kessler, V. G.

    2016-03-01

    Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300 °C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400 °C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.Tin oxide is considered to be one of the

  17. Recovery of boric acid from nuclear waste

    International Nuclear Information System (INIS)

    Lahoda, E.J.

    1985-01-01

    Disclosed is a process for separating and recovering boric acid from water containing solids which include boric acid and radionuclides. In the first step, the water is separated from the solids by evaporation of the water at a temperature under 130 0 F In the second step, an alcohol selected from the group consisting of methanol, ethanol, propanol, isopropanol, and mixtures thereof is added to the remaining solids in the amount of at least 1.4 times that stoichiometrically required to react with the boric acid to form boron alkoxide and water to about 100 mole % in excess of stoichiometric. In the third step, the boron alkoxide is separated from the remaining solids by evaporation of the boron alkoxide. In the fourth step, water is added to the volatilized boron alkoxide to form boric acid and an alcohol. And finally, the alcohol is separated from the boric acid by evaporating the alcohol

  18. Amphiphilic phase-transforming catalysts for transesterification of triglycerides

    Science.gov (United States)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be

  19. Preparation of silica-based hybrid materials by gamma irradiation

    International Nuclear Information System (INIS)

    Gomes, S.R.; Margaca, F.M.A.; Miranda Salvado, I.M.; Ferreira, L.M.; Falcao, A.N.

    2006-01-01

    Gamma-ray irradiation is well known to promote the crosslinking of polymer chains. The method is now used by the authors to prepare hybrid materials from a mixture of polymer and metallic alkoxides of silicium and zirconium that are usually obtained via the sol-gel process. Macroscopically homogeneous and transparent hybrid materials have been obtained by γ-irradiation of polydimethylsiloxane (PDMS), tetraethylorthosilicate (TEOS) and zirconium propoxide (PrZr). The influence of several parameters has been studied. The dose rate was found to have no significant impact in the prepared material. The polymer molecular weight was also observed not to play any special role. It was found that all irradiated samples consist of a polymer gel matrix. In the case where both alkoxides are present there are inorganic oxide regions linked to the PDMS network. However when one of the alkoxides is absent there is no formation of inorganic oxide regions linked to the polymer matrix, there being only a few individual derived molecules of the other alkoxide linked to the polymer

  20. Synthesis and characterization of a family of structurally characterized dysprosium alkoxides for improved fatigue-resistance characteristics of PDyZT thin films.

    Science.gov (United States)

    Boyle, Timothy J; Bunge, Scott D; Clem, Paul G; Richardson, Jacob; Dawley, Jeffrey T; Ottley, Leigh Anna M; Rodriguez, Mark A; Tuttle, Bruce A; Avilucea, Gabriel R; Tissot, Ralph G

    2005-03-07

    Using either an ammoniacal route, the reaction between DyCl3, Na0, and HOR in liquid ammonia, or preferentially reacting Dy(N(SiMe3)2)3 with HOR in a solvent, we isolated a family of dysprosium alkoxides as [Dy(mu-ONep)2(ONep)]4 (1), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(THF)]2(mu-ONep) (2), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(py)]2(mu-ONep) (3), [Dy3(mu3-OBut)2(mu-OBut3(OBut)4(HOBut)2] (4), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(THF)2] (5), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(py)2] (6), (DMP)Dy(mu-DMP)4[Dy(DMP)2(NH3)]2 (7), [Dy(eta6-DMP)(DMP)2]2 (8), Dy(DMP)3(THF)3 (9), Dy(DMP)3(py)3 (10), Dy(DIP)3(NH3)2 (11), [Dy(eta6-DIP)(DIP)2]2 (12), Dy(DIP)3(THF)2 (13), Dy(DIP)3(py)3 (14), Dy(DBP)3(NH3) (15), Dy(DBP)3 (16), Dy(DBP)3(THF) (17), Dy(DBP)3(py)2 (18), [Dy(mu-TPS)(TPS2]2 (19), Dy(TPS)3(THF)3 (20), and Dy(TPS)3(py)3 (21), where ONep = OCH2CMe3, OBut) = OCMe3, DMP = OC6H3(Me)(2)-2,6, DIP = OC6H3(CHMe2)(2)-2,6, DBP = OC6H3(CMe3)(2)-2,6, TPS = OSi(C6H5)3, tol = toluene, THF = tetrahydrofuran, and py = pyridine. We were not able to obtain X-ray quality crystals of compounds 2, 8, and 9. The structures observed and data collected for the Dy compounds are consistent with those reported for its other congeners. A number of these precursors were used as Dy dopants in Pb(Zr0.3Ti0.7)O3 (PZT 30/70) thin films, with compound 12 yielding the highest-quality films. The resulting Pb0.94Dy0.04(Zr0.3Ti0.7)O3 [PDyZT (4/30/70)] had similar properties to PZT (30/70), but showed substantial resistance to polarization reversal fatigue.

  1. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol–gel generated Mg–Al–CO 3 layered double hydroxide with very labile interlayer anions

    KAUST Repository

    Chubar, Natalia

    2014-01-01

    © the Partner Organisations 2014. Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these materials should be produced using methods other than direct co-precipitation. Mg-Al-CO3LDH produced using an alkoxide-free sol-gel synthesis showed exceptional removal properties for aqueous selenium species. Se K-edge EXAFS/XANES and FTIR studies (supporting the data by XRD patterns) were performed to explain the unusual adsorptive performance of Mg-Al LDH by revealing the molecular-level mechanism of HSeO3 -, SeO4 2-and {HSeO3 -+ SeO4 2-} uptake at pH 5, 7 and 8.5. The role of inner-sphere complexation (exhibited by inorganic adsorbents with good performance) in adsorption of both selenium aqueous species was not confirmed. However, Mg-Al LDH fully met the other expectations regarding the involvement of the interlayer anions. The interlayer carbonate (due to its favorable speciation and generous HT hydration) gave a "second breath" to selenite sorption and was the only mechanism that controlled the removal of Se(vi). Because inner sphere complexation was the leading mechanism for selenite removal, ion exchange via surface OH-and interlayer CO3 2-species was the only mechanism for selenate removal; both of these species were easily bound to Mg-Al LDH (on its surface and gently parked into the interlayer forming a multilayer without violation of the structure of Mg-Al-CO3LDH). This work provides the first theoretical explanation of why it is more difficult to sorb selenate than selenite and which material should be used for this purpose. This journal is

  2. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol–gel generated Mg–Al–CO 3 layered double hydroxide with very labile interlayer anions

    KAUST Repository

    Chubar, Natalia

    2014-08-08

    © the Partner Organisations 2014. Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these materials should be produced using methods other than direct co-precipitation. Mg-Al-CO3LDH produced using an alkoxide-free sol-gel synthesis showed exceptional removal properties for aqueous selenium species. Se K-edge EXAFS/XANES and FTIR studies (supporting the data by XRD patterns) were performed to explain the unusual adsorptive performance of Mg-Al LDH by revealing the molecular-level mechanism of HSeO3 -, SeO4 2-and {HSeO3 -+ SeO4 2-} uptake at pH 5, 7 and 8.5. The role of inner-sphere complexation (exhibited by inorganic adsorbents with good performance) in adsorption of both selenium aqueous species was not confirmed. However, Mg-Al LDH fully met the other expectations regarding the involvement of the interlayer anions. The interlayer carbonate (due to its favorable speciation and generous HT hydration) gave a "second breath" to selenite sorption and was the only mechanism that controlled the removal of Se(vi). Because inner sphere complexation was the leading mechanism for selenite removal, ion exchange via surface OH-and interlayer CO3 2-species was the only mechanism for selenate removal; both of these species were easily bound to Mg-Al LDH (on its surface and gently parked into the interlayer forming a multilayer without violation of the structure of Mg-Al-CO3LDH). This work provides the first theoretical explanation of why it is more difficult to sorb selenate than selenite and which material should be used for this purpose. This journal is

  3. Lithium/magnesium oxide catalyst and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, J.H.; Hinson, P.G.

    1991-07-16

    This patent describes a method for preparing a catalyst which is effective for converting methane to ethane and ethylene. It comprises mixing a solution of a magnesium alkoxide in an alcohol with a solution containing a source of lithium in an alcohol, to obtain a ratio of magnesium metal to lithium metal; hydrolyzing the magnesium alkoxide in the solution to form a gel; and calcining the gel to form a catalyst which is effective for converting methane to ethane and ethylene.

  4. Synthesis of Titania-Silica Materials by Sol-Gel

    Directory of Open Access Journals (Sweden)

    Rubia F. S. Lenza

    2002-10-01

    Full Text Available In this work TiO2-SiO2 glasses containing as much as 20 mol % of TiO2 were prepared via sol-gel process using titanium and silicon alkoxides, in the presence of chlorine, in the form of titanium tetrachloride or HCl. The gels were heat-treated until 800 °C. X-ray diffraction and Fourier transform infrared spectroscopy were used to understand the structural properties of TiO2-SiO2 oxides calcined at different temperatures and to evaluate the homogeneity of these materials. The degree of the compactness of the silica network is inferred from the frequency of the asymmetric stretching vibrations of Si-O-Si bonds. Formation of Si-O-Ti bridges, as monitored by the intensity of characteristic 945 cm-1 ¾ 960 cm-1 vibration, is particularly prominent if the method of basic two-step prehydrolysis of silicon alkoxide, addition of titanium alkoxide and completion of hydrolysis was used.

  5. O2 Activation and Double C-H Oxidation by a Mononuclear Manganese(II) Complex.

    Science.gov (United States)

    Deville, Claire; Padamati, Sandeep K; Sundberg, Jonas; McKee, Vickie; Browne, Wesley R; McKenzie, Christine J

    2016-01-11

    A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The synthesis, structure and reactivity of iron-bismuth complexes : Potential Molecular Precursors for Multiferroic BiFeO3

    OpenAIRE

    Wójcik, Katarzyna

    2009-01-01

    The thesis presented here is focused on the synthesis of iron-bismuth alkoxides and siloxides as precursors for multiferroic BiFeO3 systems. Spectrum of novel cyclopentadienyl substituted iron-bismuth complexes of the general type [{Cpy(CO)2Fe}BiX2], as potential precursors for cyclopentadienyl iron-bismuth alkoxides or siloxides [{Cpy(CO)2Fe}Bi(OR)2] (R-OtBu, OSiMe2tBu), were obtained and characterised. The use of wide range of cyclopentadienyl rings in the iron carbonyl compounds allowed fo...

  7. Sol-gel preparation of ion-conducting ceramics for use in thin films

    International Nuclear Information System (INIS)

    Steinhauser, M.I.

    1992-12-01

    A metal alkoxide sol-gel solution suitable for depositing a thin film of La 0.6 Sr 0.4 CoO 3 on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed

  8. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Low temperature bonding of silicon wafers was achieved using sol-gel technology. The initial sol-gel chemistry of the coating solution was found to influence the mechanical properties of the resulting bonds. More precisely, the influence of parameters such as the alkoxide concentration, water-to-alkoxide molar ratio, pH, and solution aging on the final bond morphologies and interfacial fracture energy was studied. The thickness and density of the sol-gel coating were characterised using ellipsometry. The corresponding bonded specimens were investigated using attenuated total reflectance Fourier transformed infrared spectroscopy to monitor their chemical composition, infrared imaging to control bond integrity, and cross-sectional transmission electron microscopy to study their microstructure. Their interfacial fracture energy was measured using microindentation. An optimum water-to-alkoxide molar ratio of 10 and hydrolysis water at pH = 2 were found. Such conditions led to relatively dense films (> 90%), resulting in bonds with a fracture energy of 3.5 J/m 2 , significantly higher than those obtained using classical hydrophilic bonding (typically 1.5-2.5 J/m 2 ). Ageing of the coating solution was found to decrease the bond strength

  9. Solvothermal crystallization of nanocrystals of metal oxides

    International Nuclear Information System (INIS)

    Furukawa, S; Amino, H; Iwamoto, S; Inoue, M

    2008-01-01

    Solvothermal crystallization of the hydroxide gels obtained by hydrolysis of alkoxides (Zr, Ta, Nb, ln, Sn, Ti and Al) was examined. Nanocrystals having high surface areas (S BET > 170 m 2 g -1 ) were obtained except for the product derived from indium isopropoxide. The effect of water in organic solvent upon the crystallinity of the product was investigated. The increase in the activity of water by using high concentration of alkoxide or intentional addition of water to the solvothermal medium led to crystal growth of the products. In contrast, decrease in activity of water by adding ethylene glycol before solvothermal treatment caused a decrease in crystallinity of the product

  10. Solvothermal crystallization of nanocrystals of metal oxides

    Science.gov (United States)

    Furukawa, S.; Amino, H.; Iwamoto, S.; Inoue, M.

    2008-07-01

    Solvothermal crystallization of the hydroxide gels obtained by hydrolysis of alkoxides (Zr, Ta, Nb, ln, Sn, Ti and Al) was examined. Nanocrystals having high surface areas (SBET > 170 m2 g-1) were obtained except for the product derived from indium isopropoxide. The effect of water in organic solvent upon the crystallinity of the product was investigated. The increase in the activity of water by using high concentration of alkoxide or intentional addition of water to the solvothermal medium led to crystal growth of the products. In contrast, decrease in activity of water by adding ethylene glycol before solvothermal treatment caused a decrease in crystallinity of the product.

  11. Synthesis and characterization of sodium alkoxides

    Indian Academy of Sciences (India)

    Unknown

    technique and IR spectroscopy. The elemental ... for maintenance or disposal, need to be cleaned free of sodium for the ... scenario on sodium removal using different alcohols are ... ethoxide and sodium n-propoxide by KBr pellet method.

  12. Particulate Sol-Gel Synthesis and Characterization of LiMO2 (M=Ni, Ni(0.75)Co(0.25) Using the Thermal and Mass Spectrometry Analyses Work-Station

    National Research Council Canada - National Science Library

    Chang, Chun-Chieh

    2000-01-01

    .... Four different processes: (a)rotary evaporation (b)gelation (c)spray drying and (d)spray decomposition have been developed and studied using inorganic and organometallic precursors other than metal alkoxides...

  13. Synthesis and studies of Y-Ba-Cu-O high temperature superconductor prepared by sol-gel method

    International Nuclear Information System (INIS)

    Grigoryan, S.G.; Manukyan, A.L.; Hayrapetyan, A.G.; Arzumanyan, A.M.; Rashidyan, L.H.; Mkrtichyan, N.Y.; Mkrtchyan, A.A.; Kurginyan, K.A.; Trozyan, A.H.; Vardanyan, R.S.

    2004-01-01

    The method of preparation of Y-Ba-Cu-O high temperature superconducting materials by sol-gel processing technique both for powders and thin films are described. All these methods are based on using yttrium alkoxides as precursors, which are not ready available reagents, besides the majority of these methods use copper alkoxides, which show low solubility in organic solvents, moreover they are very sensitive to hydrolysis in air. The new method of preparation of Y-Ba-Cu-O ceramic materials by sol-gel processing technique based on new and convenient precursors stable in air, having high compatibility with each other is offered. Basic scientific and technological issues related to the synthesis of bulk materials, their structure and electrical conductivity are discussed

  14. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  15. Fulltext PDF

    Indian Academy of Sciences (India)

    Surface characterization of sol–gel derived indium tin oxide films on ... Synthesis and characterization of sodium alkoxides. 173 ... electron beam evaporated MgO thin films. 513 ... Surface plasmon effect in nanocrystalline copper/DLC com-.

  16. The Production of Nanoparticulate Ceria Using Reverse Micelle Sol-Gel Techniques

    Czech Academy of Sciences Publication Activity Database

    Mason, S.; Holliman, P.; Kalaji, M.; Klusoň, Petr

    2009-01-01

    Roč. 19, č. 21 (2009), s. 3517-3522 ISSN 0959-9428 Institutional research plan: CEZ:AV0Z40720504 Keywords : ceria * reverse micelles * alkoxide Subject RIV: CC - Organic Chemistry Impact factor: 4.795, year: 2009

  17. Alkoxide-induced nucleophilic trifluoromethylation using diethyl trifluoromethylphosphonate

    Czech Academy of Sciences Publication Activity Database

    Cherkupally, Prabhakar; Beier, Petr

    2010-01-01

    Roč. 51, č. 2 (2010), s. 252-255 ISSN 0040-4039 R&D Projects: GA ČR GP203/08/P310 Institutional research plan: CEZ:AV0Z40550506 Keywords : trifluoromethylation * phosphonate * nucleophilic addition Subject RIV: CC - Organic Chemistry Impact factor: 2.618, year: 2010

  18. New Hybrid Route to Biomimetic Synthesis

    National Research Council Canada - National Science Library

    Morse, Daniel

    2003-01-01

    ... for the structure-directing polymerization of titanium dioxide from the appropriate water-stable alkoxide precursor. This result dramatically extends our initial development of the new field we called "Silicon Biotechnology" to an even broader "Functional Inorganic Materials Biotechnology."

  19. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  20. The renaissance of non-aqueous uranium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liddle, Stephen T. [School of Chemistry, University of Nottingham (United Kingdom)

    2015-07-20

    Prior to the year 2000, non-aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small-molecule activation, and magnetism have been reported. This review (1) introduces the reader to some of the specialist theories of the area, (2) covers all-important starting materials, (3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, (4) describes advances in the area of single-molecule magnetism, and (5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  2. New Fellows and Honorary Fellow

    Indian Academy of Sciences (India)

    Elected: 1974 Section: Chemistry ... Date of death: 11 July 2004. Specialization: Inorganic & Organometallic Chemistry, Metal Alkoxides and Sol-Gel Chemistry ... The 29th Mid-year meeting of the Academy will be held from 29–30 June 2018 ...

  3. Thin films of ErNbO.sub.4./sub. and YbNbO.sub.4./sub. prepared by sol–gel

    Czech Academy of Sciences Publication Activity Database

    Jakeš, V.; Rubešová, K.; Hlásek, T.; Polák, V.; Oswald, Jiří; Nádherný, L.

    2016-01-01

    Roč. 78, č. 3 (2016), s. 600-605 ISSN 0928-0707 Institutional support: RVO:68378271 Keywords : rare earth niobate * lithium niobate * doping * metal alkoxide * spin coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.575, year: 2016

  4. 2. Home 3. Journals 4. Bulletin of Materials Science 5. Volume 37 6 ...

    Indian Academy of Sciences (India)

    Administrator

    Aggregation kinetics. Influence of chelation ratio of metal alkoxides on aging of ... (a-CNTs) by a novel route and their oxidation resistance properties. 1397 ..... Chemical shift of U L3 edges in different uranium compounds obtained by X-ray ...

  5. Comparison of the properties of simulated synroc synthesized by sol-gel and a novel co - precipitation method

    International Nuclear Information System (INIS)

    Potdar, H.S.; Vijayanand, S.; Khaja Mohaideen, K.; Joy, P.A.; Raja Madhavan, R.; Kutty, K.V.G.; Ambashta, R.D.; Wattal, P.K.

    2009-01-01

    Synroc is a multiphase dense titanate based ceramic designed for the incorporation of high-level waste (HLW) from the reprocessing of spent nuclear fuel. Synroc or synthetic rock consists of four main titanate phases - zirconolite (CaZrTi 2 O 7 ), hollandite (BaAlO 2 Ti 6 O 16 ), perovskite (CaTiO 3 ) and rutile (TiO 2 ), with the matrix composition as shown in Table 1. It is known that these phases have the capacity to incorporate most of the elements into their crystal structures which are present in the HLW derived from the reprocessing of spent nuclear fuel from power reactors. Synroc is considered as the most effective and durable means of immobilising various forms of high-level radioactive wastes for disposal. Synroc is also considered as a low-risk, tailored waste form, offering higher waste loading and over all cost savings. Simulated synroc precursor powders are typically produced by advanced wet chemical methods such as alkoxide hydrolysis and sol-gel routes. These routes were developed to produce powders with well defined physical and chemical characteristics such as correct chemical composition, high degree of homogeneity, reactivity and readily densifiable material to 99% of theoretical density during hot isostatic pressing. However, the reported alkoxide hydrolysis and hydroxide routes suffer from several disadvantages such as use of large quantities of organic solvents and their disposal as effluent, difficulty in maintaining exact chemical composition, use of costly alkoxide precursors which are moisture sensitive and require critical processing conditions to control their rate of hydrolysis, etc. In the present work we report a comparative study the characteristics of synroc-C (14% waste loading) powders and sintered pellets synthesized by the known alkoxide hydrolysis method and a simple chemical co-precipitation route developed by us. The advantages of the co-precipitation route are its simplicity, ease of handling and utilization of cheaper raw

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Multi-walled carbon nanotubes (MWCNTs)/TiO2 composites were synthesized by sol–gel technique using titanium (IV) -butoxide (TNB), titanium (IV) isopropoxide (TIP) and titanium (IV) propoxide (TPP) as different titanium alkoxide precursors. The as-prepared composites were comprehensively characterized by BET ...

  7. Precursor type affecting surface properties and catalytic activity of sulfated zirconia

    Directory of Open Access Journals (Sweden)

    Zarubica Aleksandra R.

    2007-01-01

    Full Text Available Zirconium-hydroxide precursor samples are synthesized from Zr-hydroxide, Zr-nitrate, and Zr-alkoxide, by precipitation/impregnation, as well as by a modified sol-gel method. Precursor samples are further sulphated for the intended SO4 2- content of 4 wt.%, and calcined at 500-700oC. Differences in precursors’ origin and calcination temperature induce the incorporation of SO4 2- groups into ZrO2 matrices by various mechanisms. As a result, different amounts of residual sulphates are coupled with other structural, as well as surface properties, resulting in various catalytic activities of sulphated zirconia samples. Catalyst activity and selectivity are a complex synergistic function of tetragonal phase fraction, sulphates contents, textural and surface characteristics. Superior activity of SZ of alkoxide origin can be explained by a beneficial effect of meso-pores owing to a better accommodation of coke deposits.

  8. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    Science.gov (United States)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  9. Supported Single-Site Ti(IV) on a Metal–Organic Framework for the Hydroboration of Carbonyl Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiyuan [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Liu, Dong [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Camacho-Bunquin, Jeffrey [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Zhang, Guanghui [Department; Yang, Dali [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; López-Encarnación, Juan M. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Department; Xu, Yunjie [Department; Ferrandon, Magali S. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Niklas, Jens [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Poluektov, Oleg G. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Jellinek, Julius [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Lei, Aiwen [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Bunel, Emilio E. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Delferro, Massimiliano [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

    2017-10-10

    ABSTRACT: A stable and structurally well-defined titanium alkoxide catalyst supported on a metal-organic-framework (MOF) of UiO-67 topology (ANL1-Ti(OiPr)2) was synthesized and fully characterized by a variety of analytical and spectroscopic techniques, including BET, TGA, PXRD, XAS, DRIFT, SEM, and DFT computations. The Ti-functionalized MOF was demonstrated active for the catalytic hydroboration of a wide range of aldehydes and ketones with HBpin as the boron source. Compared to traditional homogeneous and supported hydroboration catalysts, ANL1-Ti(OiPr)2 is completely recyclable and reusable, making it a promising hydroboration catalyst alternative for green and sustainable chemical synthesis. DFT calculations suggest that the catalytic hydroboration proceeds via a (1) hydride transfer between the active Ti-hydride species and a carbonyl moiety (rate determining step), and (2) alkoxide transfer (intramolecular σ-bond metathesis) to generate the boronate ester product.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4. Preparation of titanium diboride powders from titanium alkoxide ... The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations of TTIP solution, ...

  11. Interfacial Effects and Organization of Inorganic-Organic Composite Solids.

    Science.gov (United States)

    1998-05-20

    alkoxide are examined by liquid state 29Si nuclear magnetic resonance)NMR) spectroscopy. The morphology of the coating is dependent upon chemical...Lopez, Univ de Malaga, Dept d* Quimica Inorganica, CnatalograAa It Mineralogia Malaga, SPAIN; Deborah Jones, Univ de Montpellier II, Lab dei

  12. Specific processes and scrambling in the dehydrogenation of ethane and the degenerate hydrogen exchange in the gas-phase ion chemistry of the Ni(C,H3,O)+/C2H6 couple

    Czech Academy of Sciences Publication Activity Database

    Schlangen, M.; Schwarz, H.; Schröder, Detlef

    2007-01-01

    Roč. 90, č. 5 (2007), s. 847-853 ISSN 0018-019X Institutional research plan: CEZ:AV0Z40550506 Keywords : alkoxides * C-H activation * gas-phase investigations * mass spectrometry * nicel Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.515, year: 2007

  13. Redesign of a Grignard-Based Active Pharmaceutical Ingredient (API) Batch Synthesis to a Flow Process for the Preparation of Melitracen HCl

    DEFF Research Database (Denmark)

    Pedersen, Michael J.; Skovby, Tommy; Mealy, Michael J.

    2018-01-01

    A Grignard-based batch process, for the preparation of Melitracen HCl, has been redesigned to fit a continuous reactor system. The Grignard addition is carried out at room temperature, with subsequent hydrolysis of the magnesium alkoxide intermediate followed by dehydration of the resulting alcoh...

  14. The performance of Ti-MCM-41 in aqueous media and after mechanical treatment studied by in situ XANES, UV/Vis and test reactions

    DEFF Research Database (Denmark)

    Hagen, Anke; Schueler, K.; Roessner, F.

    2002-01-01

    The influence of water on the epoxidation of cyclohexene with H2O2 and tert-butyl hydroperoxide (tbhp) on Ti-MCM-41 molecular sieves prepared by post-synthetic modification of the support with titanium alkoxides was investigated. The catalytic performance depends on the hydrophilicity/hydrophobic...

  15. 3,6-bis-(2-pyridyl)-pyridazine as supramolecular (CO)initiator for DL-lactide polymerization

    NARCIS (Netherlands)

    Hoogenboom, R.; Schubert, U.S.

    2003-01-01

    The synthesis of a new hydroxy functionalized dipyridylpyridazine by a Diels-Alder reaction between 5-hexyn-1-ol and dipyridyltetrazine was reported. An aluminum alkoxide was generated in situ from this functional ligand to initiate the controlled ring opening polymn. of of DL-lactide resulting in a

  16. Sol-gel derived antireflective coatings for silicon

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C J; Harrington, M S

    1981-08-01

    The preparation of TiO2-SiO2 AR coatings, containing from 30 to 95 mol % TiO2, from alkoxide precursor solutions (titanium tetraethoxide and silicon tetraethoxide) by a sol-gel process is presented. The preparation of the solutions is described, which involves the separate partial hydrolysis of one or both alkoxides prior to their mixing (Yoldas, 1980). The solutions are applied to polished, circular (1 and 2 in. diameter) silicon wafers by a spinning process. The coated wafers are successively heated in air at each of the following temperatures: 200, 300, 350, 400, and 450 C, and optical measurements are performed on them after each heat treatment. The durability of 90 and 95% TiO2 coatings is evaluated in both acidic and basic environments, and reflectivity, film thickness, and refractive index are measured as a function of exposure time. It is shown that sol-gel films applied at 400 C reveal broad regions of antireflectance compared to other titanium-based films.

  17. Enzyme-like catalysis via ternary complex mechanism: alkoxy-bridged dinuclear cobalt complex mediates chemoselective O-esterification over N-amidation.

    Science.gov (United States)

    Hayashi, Yukiko; Santoro, Stefano; Azuma, Yuki; Himo, Fahmi; Ohshima, Takashi; Mashima, Kazushi

    2013-04-24

    Hydroxy group-selective acylation in the presence of more nucleophilic amines was achieved using acetates of first-row late transition metals, such as Mn, Fe, Co, Cu, and Zn. Among them, cobalt(II) acetate was the best catalyst in terms of reactivity and selectivity. The combination of an octanuclear cobalt carboxylate cluster [Co4(OCOR)6O]2 (2a: R = CF3, 2b: R = CH3, 2c: R = (t)Bu) with nitrogen-containing ligands, such as 2,2'-bipyridine, provided an efficient catalytic system for transesterification, in which an alkoxide-bridged dinuclear complex, Co2(OCO(t)Bu)2(bpy)2(μ2-OCH2-C6H4-4-CH3)2 (10), was successfully isolated as a key intermediate. Kinetic studies and density functional theory calculations revealed Michaelis-Menten behavior of the complex 10 through an ordered ternary complex mechanism similar to dinuclear metallo-enzymes, suggesting the formation of alkoxides followed by coordination of the ester.

  18. Seltenerdmetall-Alkoxide auf Periodisch Mesoporösem Silica

    OpenAIRE

    Schnitzlbaumer, Malaika Diana

    2008-01-01

    Seit den ersten Berichten der Firma Mobil zu strukturell geordneten mesoporösen Silica-Materialien aus dem Jahre 1991 hat sich das Studium dieser neuen Stoffklasse als facettenreicher Forschungszweig der modernen Materialwissenschaft etabliert. Unterschiedliche Porentopologien sowie die in weiten Grenzen variierbaren Parameter wie spezifische Oberfläche, Porenvolumen und Porendurchmesser implizieren eine vielfältige Oberflächen- bzw. Intraporenchemie. Die eingeschränkte hydrothermale Stabilit...

  19. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    Science.gov (United States)

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites

  20. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature.

  1. Concerning the Deactivation of Cobalt(III)-Based Porphyrin and Salen Catalysts in Epoxide/CO 2 Copolymerization

    KAUST Repository

    Xia, Wei

    2015-02-05

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Functioning as active catalysts for propylene oxide (PO) and carbon dioxide copolymerization, cobalt(III)-based salen and porphyrin complexes have drawn great attention owing to their readily modifiable nature and promising catalytic behavior, such as high selectivity for the copolymer formation and good regioselectivity with respect to the polymer microstructure. Both cobalt(III)-salen and porphyrin catalysts have been found to undergo reduction reactions to their corresponding catalytically inactive cobalt(II) species in the presence of propylene oxide, as evidenced by UV/Vis and NMR spectroscopies and X-ray crystallography (for cobalt(II)-salen). Further investigations on a TPPCoCl (TPP=tetraphenylporphyrin) and NaOMe system reveal that such a catalyst reduction is attributed to the presence of alkoxide anions. Kinetic studies of the redox reaction of TPPCoCl with NaOMe suggests a pseudo-first order in cobalt(III)-porphyrin. The addition of a co-catalyst, namely bis(triphenylphosphine)iminium chloride (PPNCl), into the reaction system of cobalt(III)-salen/porphyrin and PO shows no direct stabilizing effect. However, the results of PO/CO2 copolymerization by cobalt(III)-salen/porphyrin with PPNCl suggest a suppressed catalyst reduction. This phenomenon is explained by a rapid transformation of the alkoxide into the carbonate chain end in the course of the polymer formation, greatly shortening the lifetime of the autoreducible PO-ring-opening intermediates, cobalt(III)-salen/porphyrin alkoxides. CO2 saves: The deactivation of cobalt(III)-porphyrin and salen catalysts in propylene oxide/carbon dioxide copolymerization is systematically investigated, revealing a proposed mechanism for the catalyst reduction (see scheme).

  2. Concerning the Deactivation of Cobalt(III)-Based Porphyrin and Salen Catalysts in Epoxide/CO 2 Copolymerization

    KAUST Repository

    Xia, Wei; Salmeia, Khalifah A.; Vagin, Sergei I.; Rieger, Bernhard

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Functioning as active catalysts for propylene oxide (PO) and carbon dioxide copolymerization, cobalt(III)-based salen and porphyrin complexes have drawn great attention owing to their readily modifiable nature and promising catalytic behavior, such as high selectivity for the copolymer formation and good regioselectivity with respect to the polymer microstructure. Both cobalt(III)-salen and porphyrin catalysts have been found to undergo reduction reactions to their corresponding catalytically inactive cobalt(II) species in the presence of propylene oxide, as evidenced by UV/Vis and NMR spectroscopies and X-ray crystallography (for cobalt(II)-salen). Further investigations on a TPPCoCl (TPP=tetraphenylporphyrin) and NaOMe system reveal that such a catalyst reduction is attributed to the presence of alkoxide anions. Kinetic studies of the redox reaction of TPPCoCl with NaOMe suggests a pseudo-first order in cobalt(III)-porphyrin. The addition of a co-catalyst, namely bis(triphenylphosphine)iminium chloride (PPNCl), into the reaction system of cobalt(III)-salen/porphyrin and PO shows no direct stabilizing effect. However, the results of PO/CO2 copolymerization by cobalt(III)-salen/porphyrin with PPNCl suggest a suppressed catalyst reduction. This phenomenon is explained by a rapid transformation of the alkoxide into the carbonate chain end in the course of the polymer formation, greatly shortening the lifetime of the autoreducible PO-ring-opening intermediates, cobalt(III)-salen/porphyrin alkoxides. CO2 saves: The deactivation of cobalt(III)-porphyrin and salen catalysts in propylene oxide/carbon dioxide copolymerization is systematically investigated, revealing a proposed mechanism for the catalyst reduction (see scheme).

  3. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    DEFF Research Database (Denmark)

    Gadea, Christophe; Marani, Debora; Esposito, Vincenzo

    2017-01-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolami...

  4. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature. The binder plays ...

  5. Aqueous metal–organic solutions for YSZ thin film inkjet deposition

    DEFF Research Database (Denmark)

    Gadea, Christophe; Hanniet, Q.; Lesch, A.

    2017-01-01

    Inkjet printing of 8% Y2O3-stabilized ZrO2 (YSZ) thin films is achieved by designing a novel water-based reactive ink for Drop-on-Demand (DoD) inkjet printing. The ink formulation is based on a novel chemical strategy that consists of a combination of metal oxide precursors (zirconium alkoxide...

  6. Chemistry of the pyrazolidines. 26. Alkylation of 4-benzyliden-1-phenyl-3,5-dioxopyrazolidines

    International Nuclear Information System (INIS)

    Moldarev, B.L.; Aronzon, M.E.; Adanin, V.M.; Zyakun, A.M.

    1986-01-01

    The reaction of 4-benzyliden-1-phenyl-3,5-dioxopyrazolidines with alkyl halides in the presence of sodium alkoxide gave 1-phenyl-2-alkyl-4-benzyliden- and 1-phenyl-2,4-dialkyl-4-(α-alkoxybenzyl)-3,4-dioxopyrazolines. The structures of these compounds were confirmed by UV, IR, and PMR spectroscopy, and by mass-spectrometry

  7. Anticorrosives, encapsulates, catalytic supports and other novel ...

    Indian Academy of Sciences (India)

    protection to the metal surface. Thus, performance of ... or partially react with the hydrolysis products of the metal alkoxides in ... (TEOS) (Aldrich Chem., 97 %), CO2-free triple distilled water ... was done in a Nicolet 510 spectrometer, with an Ar laser by using ... MPR–AA matrix of our material, a strong interaction is observed ...

  8. Synthesis of 1D, 2D, and 3D ZnO Polycrystalline Nanostructures Using the Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Tseng

    2012-01-01

    Full Text Available This study employed various polyol solvents to synthesize zinc oxide polycrystalline nanostructures in the form of fibers (1D, rhombic flakes (2D, and spheres (3D. The synthetic process primarily involved the use of zinc acetate dihydrate in polyol solutions, which were used to derive precursors of zinc alkoxides. Following hydrolysis at 160°C, the zinc alkoxide particles self-assembled into polycrystalline nanostructures with different morphologies. Following calcination at 500°C for 1 h, polycrystalline ZnO with good crystallinity was obtained. FE-SEM explored variations in surface morphology; XRD was used to analyze the crystalline structures and crystallinity of the products, which were confirmed as ZnO wurtzite structures. FE-TEM verified that the ZnO nanostructures were polycrystalline. Furthermore, we employed TGA/DSC to observe the phase transition. According to the results of property analyses, we proposed models of the relevant formation mechanisms. Finally, various ZnO structures were applied in the degradation of methylene blue to compare their photocatalytic efficiency.

  9. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    Energy Technology Data Exchange (ETDEWEB)

    Umalas, Madis [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Hussainova, Irina, E-mail: irina.hussainova@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); ITMO University, Kronverksky 49, St. Petersburg, 197101 (Russian Federation); Reedo, Valter [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Young, Der-Liang [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); Cura, Erkin; Hannula, Simo-Pekka [Department of Materials Science and Engineering, Aalto University, School of Chemical Technology, POB 16200, Aalto, 00076 (Finland); Lõhmus, Rünno [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Lõhmus, Ants [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia)

    2015-03-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC{sub 2} was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC{sub 2} solid solution by spark plasma sintering. • Sintered ZrTiC{sub 2} have good mechanical properties.

  10. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / Study on a new production process of functional thin films suitable for recycling and its application to colored glasses (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / recycle ni tekishita kinosei usumaku no shinki seizoho to chakushoku glass eno oyo ni kansuru kenkyu kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the fiscal 1997 result. Using organic pigment and dye, the basic composition of sol-gel colored coating liquid for glass bottles and sheets was selected to clarify characteristics of gel films. Moreover, chemical modification and optical sensitivity of metallic alkoxide were studied to obtain a trially produced colored glass bottle use coating liquid. As to sheet glass, strength of the gel film is low, which requires further improvement. In relation to optical sensitive gel films, the reaction of various metallic alkoxides and {beta}-diketones was discussed to clarify chemical reactivity with utltaviolet rays. Trial design was also conducted of the coating equipment. The paper examined by literature the present status of recycling systems of colored glass bottles and the technical development in European countries. The problem is a method to wash colored bottles for sterilization. To make colored films durable, it is necessary to form films by organic-inorganic hybrid thin films. Also discussed was a possibility of changing the washing method by administrative guidance. 27 refs., 62 figs., 42 tabs.

  11. On the improvement of mechanical properties of monolithic silica aerogels (for transparent insulating material); Silica aerogel (tomei dannetsu zairyo) kyodo no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tajiri, K; Igarashi, K; Tanemura, S [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    1997-11-25

    Study was made on improvement of the strength of silica aerogel as transparent insulating material. Silica aerogel is a low-density porous material with high heat insulation and transparency. To develop a insulating material with high transparency, monolithic silica aerogel was studied. For direct use of it for windows, its strength improvement was attempted. The aerogel was prepared by supercritical drying (alcohol or CO2) of silica wet gel obtained by hydrolysis and condensation of silicon alkoxide solution. To prepare the aerogel bonded on plate glass for strength improvement, the aerogel was bonded to alkoxide by exposing active silanol radical through F-etching of plate glass surface. However, to obtain the practical large-area bonded aerogel, shrinkage control of the aerogel in supercritical drying was necessary. Addition of Laponite into a silica network for strength improvement by polymer increased the bending strength by 50%. Although some reduction of its transparency was observed because of clouding, its heat insulation was stable. Further strength improvement is necessary for its practical use. 5 figs., 1 tab.

  12. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    International Nuclear Information System (INIS)

    Umalas, Madis; Hussainova, Irina; Reedo, Valter; Young, Der-Liang; Cura, Erkin; Hannula, Simo-Pekka; Lõhmus, Rünno; Lõhmus, Ants

    2015-01-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC 2 was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC 2 solid solution by spark plasma sintering. • Sintered ZrTiC 2 have good mechanical properties

  13. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    International Nuclear Information System (INIS)

    Carrillo C, A.; Osuna A, J. G.

    2011-01-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  14. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, A.; Osuna A, J. G., E-mail: acc.carrillo@gmail.com [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza y Jose Cardenas Valdes, 25000 Saltillo, Coahuila (Mexico)

    2011-07-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  15. The influence of p H and UV visible absorption on hydrolysis stage and gel behavior of glasses synthesized by sol-gel

    International Nuclear Information System (INIS)

    Khosravi Saghezchi, M.; Sarpoolaky, H.; Heshmatpour, F.

    2008-01-01

    Lead-containing glass borosilicate was synthesized by Sol-gel technique using metal alkoxide such as tetra ethyleorthosilicate, Al-sec-butoxide and trimethyl borate. The sol containing tetra ethyle ortho silicate converts to gel during drop wise addition of Al-alkoxide while inorganic lead salt was added in the last stage of gelation to prepare the alcogels. The specimens were dried at room temperature to set then heated at 600 d eg C quickly to avoid crystallization preparing a glass containing 63 weight percent lead oxide. The influence of p H on absorption behavior of the sols studied by UV visible technique so the characteristic of the gel, alcogel and xerogel were studied in the different acidic concentrations. The UV spectrums show that the higher the acidity of the hydrolysis stages, the higher the absorbance. The results showed the sample with 63 weight percent lead was found fully amorphous. Microstructure and phase analysis of the glass powders were investigated by X-ray diffraction, X-ray fluorescence and scanning electron microscopy equipped with energy dispersive spectroscopy analysis

  16. Investigation of the two-photon polymerisation of a Zr-based inorganic-organic hybrid material system

    International Nuclear Information System (INIS)

    Bhuian, B.; Winfield, R.J.; O'Brien, S.; Crean, G.M.

    2006-01-01

    Two-photon polymerisation of photo-sensitive materials allows the fabrication of three dimensional micro- and nano-structures for photonic, electronic and micro-system applications. However the usable process window and the applicability of this fabrication technique is significantly determined by the properties of the photo-sensitive material employed. In this study investigation of a custom inorganic-organic hybrid system, cross-linked by a two-photon induced process, is described. The material was produced by sol-gel synthesis using a silicon alkoxide species that also possessed methacrylate functionality. Stabilized zirconium alkoxide precursors were added to the precursor solution in order to reduce drying times and impart enhanced mechanical stability to deposited films. This enabled dry films to be used in the polymerisation process. A structural, optical and mechanical analysis of the optimised sol-gel material is presented. A Ti:sapphire laser with 80 MHz repetition rate, 100 fs pulse duration and 795 nm is used. The influence of both material system and laser processing parameters including: laser power, photo-initiator concentration and zirconium loading, on achievable micro-structure and size is presented

  17. Silica doped with lanthanum sol–gel thin films for corrosion protection

    International Nuclear Information System (INIS)

    Abuín, M.; Serrano, A.; Llopis, J.; García, M.A.; Carmona, N.

    2012-01-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol–gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: ► Silica sol–gel films doped with lanthanum ions were synthesized. ► Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. ► La-acetate is an affordable chemical reactive preferred for the industry. ► Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. ► An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  18. Stoichiometric hydroxyapatite obtained by precipitation and sol gel processes

    Energy Technology Data Exchange (ETDEWEB)

    Guzman V, C.; Pina B, C.; Munguia, N. [IIM-UNAM, A.P. 70-360, 04510 Mexico D.F. (Mexico)]. e-mail: caroguz@servidor.unam.mx

    2005-07-01

    Three methods for obtaining hydroxyapatite (HA) are described. HA is a very interesting ceramic because of its many medical applications. The first two precipitation methods start from calcium and phosphorous compounds, whereas the third method is a sol-gel process that uses alkoxides. The products were characterized and compared. The observed differences are important for practical applications. (Author)

  19. Polymeric-silica-based sols for membrane modification applications: sol-gel synthesis and characterization with SAXS

    NARCIS (Netherlands)

    de Lange, Rob; de Lange, R.S.A.; Hekkink, J.H.A.; Hekkink, J.H.A.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1995-01-01

    Polymeric SiO2 and binary SiO2/TiO2, SiO2/ZrO2 and SiO2/Al2O3 sols, for ceramic membrane modification applications, have been prepared by acid-catalyzed hydrolysis and condensation of alkoxides in alcohol. The sols were characterized with small angle X-ray scattering, using synchrotron radiation.

  20. Catalytic asymmetric Meerwein-Ponndorf-Verley reduction of glyoxylates induced by a chiral N,N'-dioxide/Y(OTf)3 complex.

    Science.gov (United States)

    Wu, Wangbin; Zou, Sijia; Lin, Lili; Ji, Jie; Zhang, Yuheng; Ma, Baiwei; Liu, Xiaohua; Feng, Xiaoming

    2017-03-18

    An asymmetric Meerwein-Ponndorf-Verley (MPV) reduction of glyoxylates was for the first time accomplished via an N,N'-dioxide/Y(OTf) 3 complex with aluminium alkoxide and molecular sieves (MSs) as crucial additives. A variety of optically active α-hydroxyesters were obtained with excellent results. A possible reaction mechanism was proposed based on the experiments.

  1. Preparation of titanium diboride powders from titanium alkoxide and ...

    Indian Academy of Sciences (India)

    Administrator

    Department of Materials and Manufacturing Process, Malek Ashtar University of Technology, Tehran. 15875-1744, Iran ... Titanium diboride is a hard refractory material with a high melting point ... (λ = 1⋅540598 Å) radiation. Morphology of the ...

  2. Hydroxyaromatic compounds of tantalum, tungsten, and the lighter actinides

    International Nuclear Information System (INIS)

    Gfaller, H.

    1980-01-01

    Some hydroxyaromatic compounds of the elements tantalum, tungsten, thorium and uranium were prepared as well as the basic materials for these synthesis processes, i.e. metal halides and metal alkoxides. The hydroxyaromatic compounds were studied by elemental analysis, IR spectroscopy, 1 H-NMR spectroscopy (if soluble in suitable solvents) and, in some cases, by X-ray fine structure analysis. (orig./EF) [de

  3. Sol-gel synthesis and characterization of fine-grained ceramics in the alumina-titania system

    Energy Technology Data Exchange (ETDEWEB)

    Otterstein, E. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany)], E-mail: otterstein@physik1.uni-rostock.de; Karapetyan, G. [Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock (Germany); Nicula, R. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany); Stir, M. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany); National Institute for Materials Physics, 105b Atomistilor Strasse, P.O.B. MG7, 077125 Bucharest-Magurele (Romania); Schick, C. [Institute of Physics, University of Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Burkel, E. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany)

    2008-02-05

    Fine-grained ceramics of the Al{sub 2}O{sub 3}-TiO{sub 2} system were synthesised by reactive sintering of sol-gel precursors (Al- and Ti-alkoxides). The thermal behaviour of the as-prepared xerogels was examined by thermal analysis and X-ray powder diffraction. Preliminary results concerning powder consolidation into bulk ceramic parts using spark plasma sintering (SPS) are discussed.

  4. Silica doped with lanthanum sol-gel thin films for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, M. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Serrano, A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); Llopis, J. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Garcia, M.A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); IMDEA Nanoscience, Fco. Tomas y Valiente 7, 28049 Madrid (Spain); Carmona, N., E-mail: n.carmona@fis.ucm.es [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain)

    2012-06-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol-gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: Black-Right-Pointing-Pointer Silica sol-gel films doped with lanthanum ions were synthesized. Black-Right-Pointing-Pointer Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. Black-Right-Pointing-Pointer La-acetate is an affordable chemical reactive preferred for the industry. Black-Right-Pointing-Pointer Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. Black-Right-Pointing-Pointer An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  5. Spatial and Temporal Control of Chemical Structure for Biofouling Resistant, High Fouling Release Surfaces

    Science.gov (United States)

    2014-06-02

    copolymer of a poly(ethylene glycol) functionalized methacrylate (PEGMA) and a fluoroalkyl acrylate (AF6) prepared by ATRP. The statistical block of...Under an argon atmosphere, benzyl alcohol initiator was added by gas-tight syringe through a 6-mm puresep septum. Potassium alkoxide initiators were...formed by titration of benzyl alcohol with potassium naphthalenide under argon until a green color persisted in solution indicating the

  6. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    Science.gov (United States)

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  7. Microdesigning of Lightweight/High Strength Ceramic Materials

    Science.gov (United States)

    1989-07-31

    Following this trend, we have recently illustrated the effectivc use of a polymethacrylic acid (PMAA) polyclectrolyte with a model system of relatively...an organic surfactant (poly(methacrylic acid ), PMAA) and then the particles were dispersed in water. It was found that the PMAA suffciently slows the...carbonaceous components from the alkoxide hydrolysis route, surfactant from the microemulsion route) and powder dispersion (e.g., solvent, acid /base

  8. Iron on mixed zirconia-titania substrate F-T catalyst

    International Nuclear Information System (INIS)

    Dyer, P.N.; Nordquist, A.F.; Pierantozzi, R.

    1988-01-01

    This patent deals with a Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized

  9. Reakce organolithných sloučenin s alkalickými alkoxidy, 50 let od objevu superbází

    Czech Academy of Sciences Publication Activity Database

    Lochmann, L.; Janata, Miroslav

    2013-01-01

    Roč. 107, č. 10 (2013), s. 777-782 ISSN 0009-2770 R&D Projects: GA ČR GAP106/12/0844 Institutional support: RVO:61389013 Keywords : organic compounds and alkoxides of alkali metals * lithium -heavier alkali metal exchange * superbases Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.196, year: 2013 http://www.chemicke-listy.cz/common/article-vol_107-issue_10-page_777.html

  10. Applications vs properties of Mg-Al Layered Double Hydroxides provided by their syntheses methods: alkoxide and alkoxide-free sol-gel syntheses and hydrothermal precipitation

    NARCIS (Netherlands)

    Chubar, N.; Gerda, V.; Megantari, O.; Mičušík, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J.

    2013-01-01

    A tremendous number of studies have examined layered double hydroxides (LDH) for their technological applications in the ion exchange removal of toxic ions, recovery of valuable substances, catalysis, CO2 capture, as a layered host for storage/delivery of biologically active molecules, additives to

  11. Applications versus properties of Mg–Al layered double hydroxides provided by their syntheses methods: Alkoxide and alkoxide-free sol–gel syntheses and hydrothermal precipitation

    KAUST Repository

    Chubar, Natalia; Gerda, Vasyl; Megantari, Otty; Mičuší k, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques

    2013-01-01

    , magnesium, interlayer hydration and moisture content in the adsorptive selectivity towards each toxic anion. This work is the first report presenting the regularities of the LDHs structure, surface and anion exchange properties as a function

  12. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate.

    Science.gov (United States)

    Heshmat, Mojgan; Privalov, Timofei

    2017-07-06

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrolytic activity of μ-alkoxide/acetato-bridged binuclear Cu(II ...

    Indian Academy of Sciences (India)

    philic attack of the metal-bound hydroxide on the carboxyl of PNPP in the ... oping artificial enzymes with high efficiency under near neutral conditions is a big .... CH–OH); IR(KBr, film)νmax: 3394, 3055, 2896, 1633,. 1579, 1496, 1459, 1277, ...

  14. INTRAMOLECULAR ALKOXIDE-TETHERED PERMETHYLTITANOCENE(III) COMPLEXES - SYNTHESIS AND CRYSTAL STRUCTURE

    Czech Academy of Sciences Publication Activity Database

    Varga, V.; Císařová, I.; Horáček, Michal; Pinkas, Jiří; Kubišta, Jiří; Mach, Karel

    2009-01-01

    Roč. 74, č. 3 (2009), s. 453-468 ISSN 0010-0765 R&D Projects: GA MPO FT-TA3/078; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40400503 Keywords : titanocene * Permethyltitanocene * crystal structure Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.856, year: 2009

  15. Electrical properties of a novel lead alkoxide precursor: Lead glycolate

    International Nuclear Information System (INIS)

    Tangboriboon, Nuchnapa; Pakdeewanishsukho, Kittikhun; Jamieson, Alexander; Sirivat, Anuvat; Wongkasemjit, Sujitra

    2006-01-01

    The reaction of lead acetate trihydrate Pb(CH 3 COO) 2 .3H 2 O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides in one step access to a polymer-like precursor of lead glycolate [-PbOCH 2 CH 2 O-]. On the basis of high-resolution mass spectroscopy, chemical analysis composition, FTIR, 13 C-solid state NMR and TGA, the lead glycolate precursor can be identified as a trimer structure. The FTIR spectrum demonstrates the characteristics of lead glycolate; the peaks at 1086 and 1042 cm -1 can be assigned to the C-O-Pb stretchings. The 13 C-solid state NMR spectrum gives notably only one peak at 68.639 ppm belonging to the ethylene glycol ligand. The phase transformations of lead glycolate and lead acetate trihydrate to lead oxide, their microstructures, and electrical properties were found to vary with increasing temperature. The lead glycolate precursor has superior electrical properties relative to those of lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material for producing electrical and semiconducting ceramics, viz. ferroelectric, anti-ferroelectric, and piezoelectric materials

  16. Microstructural properties of non-supported microporous ceramic membrane top-layers obtained by the sol-gel process

    NARCIS (Netherlands)

    de Lange, Rob; de Lange, R.S.A.; Hekkink, J.H.A.; Hekkink, J.H.A.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1996-01-01

    Dried and calcined non-supported membrane top-layers of SiO2, SiO2/TiO2, SiO2/ZrO2 (10, 20 and 30 mol% TiO2 and ZrO2, respectively) and SiO2/Al2O3 (10 mol% AlO1.5) were prepared using acid catalyzed hydrolysis and condensation of alkoxides in ethanol. The microstructure was determined using nitrogen

  17. Precursor directed synthesis--"molecular" mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures.

    Science.gov (United States)

    Seisenbaeva, Gulaim A; Kessler, Vadim G

    2014-06-21

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.

  18. Basic organometallic chemistry: containing comprehensive bibliography

    National Research Council Canada - National Science Library

    Haiduc, Ionel; Zuckerman, Jerry J

    1985-01-01

    .... Organometallic chemistry is the discipline dealing with compounds containing at least one direct metal-carbon bond. This bond can be simple covalent [as in lead tetraethyl, Pb(C H )J or π-dative [as in ferrocene, Fe(i/ 5 2 5 -C 5 H 5 ) 2 ] or even predominantly ionic [as in ethylsodium, N a + C 2 Hs ]. On this basis, compounds like metal alkoxides, [for example, alu...

  19. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    Science.gov (United States)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  20. Effect of impurities on sintering and conductivity of yttria-stabilized zirconia

    NARCIS (Netherlands)

    Verkerk, M.J.; Winnubst, Aloysius J.A.; Burggraaf, A.J.

    1982-01-01

    The effect of low concentrations of Fe2O3, Al2O3 and Bi2O3 on the sintering behaviour of (ZrO2)0.83 (YO1.5)0.17, made by alkoxide synthesis, has been investigated. The best results are achieved with Bi2O3 as a sinter agent and a relative density of 95% is obtained at 1200 K. The effects of these

  1. Synthesis, Characterization, and Electronic Structure Studies of Cubic Bi1.5ZnTa1.5O7 for Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei

    2015-01-01

    Full Text Available Bi1.5ZnTa1.5O7 (BZT has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA coupled with mass spectrometry (MS, infrared emission spectrometry (IES, X-ray diffraction (XRD, ultraviolet and visible (UV-Vis spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600°C to obtain phase pure BZT powders with high surface area (14.5 m2/g has been determined from the thermal decomposition and phase analyses. The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation. The electronic band structure of the BZT has been investigated using density functional theory (DFT calculations to determine the band gap energy (3.12 eV and to compare it with experimental band gap (3.02 eV at 800°C from optical absorption measurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.

  2. Synthesis engineering of iron oxide raspberry-shaped nanostructures.

    Science.gov (United States)

    Gerber, O; Pichon, B P; Ihiawakrim, D; Florea, I; Moldovan, S; Ersen, O; Begin, D; Grenèche, J-M; Lemonnier, S; Barraud, E; Begin-Colin, S

    2017-01-07

    Magnetic porous nanostructures consisting of oriented aggregates of iron oxide nanocrystals display very interesting properties such as a lower oxidation state of magnetite, and enhanced saturation magnetization in comparison with individual nanoparticles of similar sizes and porosity. However, the formation mechanism of these promising nanostructures is not well understood, which hampers the fine tuning of their magnetic properties, for instance by doping them with other elements. Therefore the formation mechanism of porous raspberry shaped nanostructures (RSNs) synthesized by a one-pot polyol solvothermal method has been investigated in detail from the early stages by using a wide panel of characterization techniques, and especially by performing original in situ HR-TEM studies in temperature. A time-resolved study showed the intermediate formation of an amorphous iron alkoxide phase with a plate-like lamellar structure (PLS). Then, the fine investigation of PLS transformation upon heating up to 500 °C confirmed that the synthesis of RSNs involves two iron precursors: the starting one (hydrated iron chlorides) and the in situ formed iron alkoxide precursor which decomposes with time and heating and contributes to the growth step of nanostructures. Such an understanding of the formation mechanism of RSNs is necessary to envision efficient and rational enhancement of their magnetic properties.

  3. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives

    International Nuclear Information System (INIS)

    Kim, Huikyong; Grugeon, Sylvie; Gachot, Grégory; Armand, Michel; Sannier, Lucas; Laruelle, Stéphane

    2014-01-01

    The ethylene bis-carbonate compounds formation is responsible for the earliest change in electrolyte composition which can be one of the reasons for battery performance decay. In this study, liquid GC/MS technique is used to detect their formation in electrolytes based on solvent mixtures of EC and different linear carbonates (DMC, DEC and EMC), after the first cycle in full cells composed of synthetic graphite powder/commercial positive films. These compounds stem from linear carbonate electrochemical reduction leading to alkoxide compounds and can be quantified using a selective bicyclic boron ester Lewis acid as an electrolyte additive. Moreover, a quantitative study on ethylene bis-carbonate compounds for which the generation profile is different depending on the linear carbonate type, shows that either in batteries or in a simple chemical mixture of electrolyte and lithium alkoxide, their formation stops when it reaches a threshold concentration due to the thermodynamic equilibrium. The overall information is useful for investigating the passivation ability and the dissolution of the Solid Electrolyte Interphase (SEI) that is formed on the negative electrode material. Finally, the passivation property of the SEI freshly formed with four additives - Vinylene Carbonate (VC), Vinyl Ethylene Carbonate (VEC), Fluoro Ethylene Carbonate (FEC) and 1,3-Propane Sultone (1,3-PS)- is studied

  4. Low temperature fabrication of barium titanate hybrid films and their dielectric properties

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Saito, Hirobumi; Kinoshita, Takafumi; Nagao, Daisuke; Konno, Mikio

    2011-01-01

    A method for incorporating BT nano-crystalline into barium titanate (BT) films is proposed for a low temperature fabrication of high dielectric constant films. BT nanoparticles were synthesized by hydrolysis of a BT complex alkoxide in 2-methoxyethanol (ME)/ethanol cosolvent. As the ME volume fraction in the cosolvent (ME fraction) increased from 0 to 100%, the particle and crystal sizes tended to increase from 13.4 to 30.2 nm and from 15.8 to 31.4 nm, respectively, and the particle dispersion in the solution became more improved. The BT particles were mixed with BT complex alkoxide dissolved in an ME/ethanol cosolvent for preparing a precursor solution that was then spin-coated on a Pt substrate and dried at 150 o C. The dielectric constant of the spin-coated BT hybrid film increased with an increase in the volume fraction of the BT particles in the film. The dissipation factor of the hybrid film tended to decrease with an increase in the ME fraction in the precursor solution. The hybrid film fabricated at a BT fraction of 30% and an ME fraction of 25% attained a dielectric constant as high as 94.5 with a surface roughness of 14.0 nm and a dissipation factor of 0.11.

  5. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  6. Nitrile Hydration by Thiolate–and Alkoxide–Ligated Co-NHase Analogues. Isolation of Co(III)-Amidate and Co(III)–Iminol Intermediates

    Science.gov (United States)

    Swartz, Rodney D.; Coggins, Michael K.; Kaminsky, Werner; Kovacs, Julie A.

    2011-01-01

    Nitrile hydratases (NHases) are thiolate–ligated Fe(III)- or Co(III)-containing enzymes, which convert nitriles to the corresponding amide under mild conditions. Proposed NHase mechanisms involve M(III)–NCR, M(III)–OH, M(III)–iminol and M(III)–amide intermediates. Spectroscopic and kinetic data support the involvement of a M(III)–NCR intermediate. A H–bonding network facilitates this enzymatic reaction. There have been no reported crystallographically characterized examples of these key intermediates. Herein we describe two biomimetic Co(III)–NHase analogues that hydrate MeCN. Four key crystallographically characterized NHase intermediate anaologues, [CoIII(SMe2N4(tren))(MeCN)]2+ (1), [CoIII(SMe2N4(tren))(OH)]+ (3), [CoIII(SMe2N4(tren))(NHC(O)CH3)]+ (2), and [CoIII(OMe2N4(tren))(NHC(OH)CH3)]2+ (5) are described. Iminol–bound 5 represents the first example of a Co(III)-iminol compound in any ligand environment. Kinetic parameters (k1(298 K)= 2.98(5) M−1s−1, ΔH‡ = 12.65(3) kcal/mol, ΔS‡ = −14(7) e.u.) for nitrile hydration by 1 are reported, and the activation energy Ea= 13.2 kcal/mol is compared with that (Ea= 5.5 kcal/mol) of the NHase enzyme. A mechanism involving initial exchange of the bound MeCN for OH− is ruled out by the fact that nitrile exchange from 1 (kex(300 K)= 7.3(1) x10−3 s−1) is two orders of magnitude slower than nitrile hydration, and that hydroxide bound 3 does not promote nitrile hydration. Reactivity of an analogue that incorporates an alkoxide as a mimic of the highly conserved NHase serine residue shows that this moiety facilitates nitrile hydration under milder conditions. Hydrogen-bonding to the alkoxide stabilizes a Co(III)-iminol intermediate. Comparison of the thiolate versus alkoxide intermediate structures shows that C≡N bond activation and C=O bond formation proceed further along the reaction coordinate when a thiolate is incorporated into the coordination sphere. PMID:21351789

  7. SYNTHESIS OF STYRENE-BUTADIENE STATISTIC COPOLYMERS CONTAINING MAGNESIUM INITIATOR

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2015-01-01

    Full Text Available The article discusses the use of organomagnesium initiators in the synthesis of styrene-butadiene random copolymer (SBR obtained solution polymerization and their influence on the properties of rubber. Selected organic magnesium dialkyl initiator is combined with a modifier, which is a mixed alkoxide of an alkali and alkaline earth metals, which allows to control the micr ostructure of the diene polymer and its molecular weight characteristics. Alcohol derivatives selected high-boiling alcohols tetra (hydroxypropyl ethylenediamine (lapromol 294 and tetrahydrofurfuryl alcohol (TGFS. Selection of high-boiling alcohols due to the fact that the destruction of alkoxide with aqueous polymer degassing they do not fall into the return solvent and almost fall into the exact water. The metal components of alkoxides are lithium, sodium, potassium, magnesium and calcium. The resulting solutions are stable when stored modifier t hroughout the year even at -40 °C. The scheme of obtaining the new catalyst systems based organomagnesium and alcoxide of alkali and alkaline earth metals, which yields as functionalized SBR with a statistical and a distribution block of butadiene and styrene was developed. The process of copolymerization with styrene to butadiene organomagnesium initiators as using an organolithium compound (n-butyllithium was carried out, and without it. Found that the addition of n-butyllithium in the reaction mixture leads to a sharp increase in the rate of reaction. The results of studies of the effect of composition of the initiator system on the structure of diene polymers. It was revealed that a mixed initiator system affords a high conversion of monomers (to 90 % in 1 hour 1,2-polybutadiene content increased to 60 %. The process of polymerization of only a mixture of organomagnesium initiators and alcoxide of alkali and alkaline earth metals are not actively proceeds, conversion of the monomers reaches to 90 % in 4 hours, the microstructure

  8. Morphology, structure and optical properties of sol-gel ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, T.F.; Teodorescu, V.S.; Blanchin, M.G.; Stoica, T.A.; Gartner, M.; Losurdo, M.; Zaharescu, M

    2003-08-15

    The alkoxidic route and the spinning deposition were used to prepare monolayer sol-gel indium tin oxide (ITO) films. The morphology and crystalline structure were investigated by cross-section transmission electron microscopy (XTEM) and atomic force microscopy (AFM). The ITO sol-gel mono-layer contains three regions of different porosities. The basic crystalline structure is that of the In{sub 2}O{sub 3} lattice. The optical properties have been studied by optical transmission and spectroscopic ellipsometry.

  9. Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.

    Science.gov (United States)

    Maeng, Wan Young; Yoo, Mi

    2015-11-01

    Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.

  10. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Nathan R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carroll, Gerard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Limpens, Rens [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  11. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands.

    Science.gov (United States)

    Carroll, Gerard M; Limpens, Rens; Neale, Nathan R

    2018-05-09

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  12. Preparation of glass-forming materials from granulated blast furnace slag

    Science.gov (United States)

    Alonso, M.; Sáinz, E.; Lopez, F. A.

    1996-10-01

    Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.

  13. Ceramic Translations. Volume 41. Grain Boundaries and Interfacial Phenomena in Electronic Ceramics

    Science.gov (United States)

    1994-01-01

    20H -- H20(S) + 02- reaction. In situ FTIR results from our (nitric acid washed) fresh tetragonal hydrothermally -prepared BaTiO3 (alkoxide-based) sample...solution of cation composition Bi:Pb:Sr:Ca:Cu = 1.65:0.35:1.6:2:3 was made and an oxalate precipitate was formed using oxalic acid . The oxalate was...consuming fossil fuels, for example, possibly leads to a green-house effect, and by-products such as NOx and SOxcause acid rain. Accordingly, for the

  14. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  15. Intramolecular kinetic isotope effect in gas-phase proton-transfer reactions

    International Nuclear Information System (INIS)

    Wellman, K.M.; Victoriano, M.E.; Isolani, P.C.; Riveros, J.M.

    1979-01-01

    The k/sub H//k/sub D/ isotope effects were determined by ICR for the reaction of substituted toluenes with several alkoxides. The results showed a definite trend for k/sub H//k/sub D/ starting as a normal isotope effect for appreciably exothermic reaction (> 3 kcal mol -1 ) and proceeding smoothly toward an inverse isotope effect as the reaction approached thermoneutrality or becomes endothermic. These observations were explained by a reaction which involved a double minima potential with a central energy barrier

  16. Properties of zirconium ceramics and film stabilized by yttrium

    International Nuclear Information System (INIS)

    Korobova, N.

    2004-01-01

    Full text: Unstable zirconium dioxide phase transformation can be eliminated by stabilization of the cubic phase with an addition of a selected alkaline earth or rare-earth oxide. Stabilized ZrO 2 has been widely utilized in various high-temperature refractory applications. These stabilized ZrO 2 -base solid solutions also possess rather unique electrical properties, and as a result have considerable potential as solid electrolytes in galvanic and fuel cells and, possibly, as heating elements in high-temperature furnaces. The complex study of synthesis processes, structure and properties of metal alkoxide organic sols have been developed. These have allowed to create main principles of their formation and to show the practical realization of obtained theoretical and experimental results. The correlation between hydrolysis conditions of (Zr+Y) metal alkoxide sols and synthesis of stable colloid multi-component systems has been established. Systematic research of zirconium and yttrium bi-alkoxide electrophoretic deposition was conducted for the first time. The formation mechanism of electrophoretic deposits has been offered and general scientific principles of the electrophoretic process have been formulated. The model of gel deposits structure was proposed. It has enabled to analyze the main (for example, cluster) effects, which have been exhibited in technological procedure for thin film preparation. The structure investigation of stabilized zirconium dioxide thin films and ceramics has been studied. The researches were based on the comparative analysis of the initial gel microstructure and dried gel by the various drying methods. The new approach for drying of gel electrophoretic deposits was formulated theoretically and experimentally has been proved. The modeling of the aggregate kinetics as a type of 'cluster-cluster' has been proposed like a qualitative description of the process. The data of fractal dimensions of aggregates which have been formed at the

  17. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine.

    Science.gov (United States)

    Harigae, Ryo; Moriyama, Katsuhiko; Togo, Hideo

    2014-03-07

    The reaction of terminal alkynes with n-BuLi, and then with aldehydes, followed by the treatment with molecular iodine, and subsequently hydrazines or hydroxylamine provided the corresponding 3,5-disubstituted pyrazoles or isoxazoles in good yields with high regioselectivity, through the formations of propargyl secondary alkoxides and α-alkynyl ketones. The present reactions are one-pot preparation of 3,5-disubstituted pyrazoles from terminal alkynes, aldehydes, molecular iodine, and hydrazines, and 3,5-disubstituted isoxazoles from terminal alkynes, aldehydes, molecular iodine, and hydroxylamine.

  18. Grain growth control and transparency in spark plasma sintered self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2009-01-01

    Doping alumina particles with aluminum alkoxides allows dense spark plasma sintered (SPSed) materials to be obtained that have a refined grain size compared to pure materials, which is critical for their transparency. An optical model considering pore and grain size distributions has been developed to obtain information about porosity in dense materials. This work suggests that the atomic diffusion mechanisms do not depend on the sintering technique. A reduction in the activation energy by a factor of 2 has been found in SPSed materials.

  19. Phospholyl-uranium complexes

    International Nuclear Information System (INIS)

    Gradoz, Philippe

    1993-01-01

    After having reported a bibliographical study on penta-methylcyclopentadienyl uranium complexes, and a description of the synthesis and radioactivity of uranium (III) and (IV) boron hydrides compounds, this research thesis reports the study of mono and bis-tetramethyl-phospholyl uranium complexes comprising chloride, boron hydride, alkyl and alkoxide ligands. The third part reports the comparison of structures, stabilities and reactions of homologue complexes in penta-methylcyclopentadienyl and tetramethyl-phospholyl series. The last part addresses the synthesis of tris-phospholyl uranium (III) and (IV) complexes. [fr

  20. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes

    International Nuclear Information System (INIS)

    Bini, Rafael A.; Marques, Rodrigo Fernando C.; Santos, Francisco J.; Chaker, Juliano A.; Jafelicci, Miguel

    2012-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of SPIO nanoparticles grafted with three different alkoxysilanes: 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-ethyl-diethoxysilane (APDES) and 3-aminopropyl-diethy-ethoxysilane (APES). SPIO nanoparticles with an average particle diameter of 10 nm were prepared by chemical sonoprecipitation. As confirmed by Fourier transform infrared (FTIR) spectroscopy, silylation of these nanoparticles occurs through a two-step process. Decreasing the number of alkoxide groups reduced the concentration of free amino groups on the SPIO surface ([SPIO-NH 2 ]-APTES>APDES>APES). This phenomenon results from steric contributions and the formation of H-bonded amines provided by the ethyl groups present in the APDES and APES molecules. A simulation of SPIO nanoparticles in a saline physiologic solution shows that the ethyl groups impart larger steric stability onto the ferrofluids, which reduces aggregation. The magnetization (M) versus magnetic field (H) curves show that the synthesized iron oxide nanoparticles display superparamagnetic behavior. The zero-field cooling (ZFC) and field cooling (FC) curves show that the changes in the blocking temperature depend on the alkoxysilane-functionalized particle surface. - Highlights: → Superparamagnetic iron oxide nanoparticles were grafted with different alkoxysilanes. → The decrease of alkoxide group number reduced the concentration of free amino group. → We correlate the influence of the amino and ethyl groups with their colloidal property. → Inter-particles aggregation analyzed by magnetic measurement.

  1. Elaboration and characterisation of yttrium oxide and hafnium oxide powders by the sol-gel process

    International Nuclear Information System (INIS)

    Hours, T.

    1988-01-01

    The two classical sol-gel processes, colloidal and polymeric are studied for the preparation of yttrium oxide and hafnium oxide high performance powders. In the colloidal process, controlled and reproducible conditions for the preparation of yttrium oxide and hafnium oxide sols from salts or alkoxides are developed and the hydrothermal synthesis monodisperse hafnium oxide colloids is studied. The polymeric process is studied with hafnium ethyl-hexylate, hydrolysis kinetics for controlled preparation of sols and gels is investigated. Each step of preparation is detailed and powders obtained are characterized [fr

  2. Continuous Hydrolysis and Liquid–Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Morthensen, Sofie Thage; Lewandowski, Daniel Jacob

    2012-01-01

    Continuous hydrolysis of an active pharmaceutical ingredient intermediate, and subsequent liquid–liquid (L-L) separation of the resulting organic and aqueous phases, have been achieved using a simple PTFE tube reactor connected to a miniscale hydrophobic membrane separator. An alkoxide product......, obtained in continuous mode by a Grignard reaction in THF, reacted with acidic water to produce partially miscible organic and aqueous phases containing Mg salts. Despite the partial THF–water miscibility, the two phases could be separated at total flow rates up to 40 mL/min at different flow ratios, using...

  3. Studies on the Preparation of Magnetic Photocatalysts

    International Nuclear Information System (INIS)

    Watson, S.; Scott, J.; Beydoun, D.; Amal, R.

    2005-01-01

    A crystalline titanium dioxide coating was deposited onto silica insulated magnetite particles to prepare a stable magnetic photocatalyst. The direct deposition of crystalline titanium dioxide was conducted by aging dispersions of insulated magnetite particles in a titanium sol-gel precursor mixture at 60-90 deg. C. The coating process was found to be influenced by pH, alkoxide precursor concentration, aging time and reaction temperature. A mechanism for the formation of the titanium dioxide coating has been proposed. The photocatalytic performance of the prepared particles was found to be related to the preparation conditions

  4. Lewis Base Activation of Silyl Acetals: Iridium-Catalyzed Reductive Horner-Wadsworth-Emmons Olefination.

    Science.gov (United States)

    Dakarapu, Udaya Sree; Bokka, Apparao; Asgari, Parham; Trog, Gabriela; Hua, Yuanda; Nguyen, Hiep H; Rahman, Nawal; Jeon, Junha

    2015-12-04

    A Lewis base promoted deprotonative pronucleophile addition to silyl acetals has been developed and applied to the iridium-catalyzed reductive Horner-Wadsworth-Emmons (HWE) olefination of esters and the chemoselective reduction of the resulting enoates. Lewis base activation of silyl acetals generates putative pentacoordinate silicate acetals, which fragment into aldehydes, silanes, and alkoxides in situ. Subsequent deprotonative metalation of phosphonate esters followed by HWE with aldehydes furnishes enoates. This operationally convenient, mechanistically unique protocol converts the traditionally challenging aryl, alkenyl, and alkynyl esters to homologated enoates at room temperature within a single vessel.

  5. Exploration of the catalytic use of alkali metal bases

    OpenAIRE

    Bao, Wei

    2017-01-01

    This PhD thesis project was concerned with the use of alkali metal amide Brønsted bases and alkali metal alkoxide Lewis bases in (asymmetric) catalysis. The first chapter deals with formal allylic C(sp3)–H bond activation of aromatic and functionalized alkenes for subsequent C–C and C–H bond formations. The second chapter is focused on C(sp3)–Si bond activation of fluorinated pro-nucleophiles in view of C–C bond formations. In the first chapter, a screening of various metal amides...

  6. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    International Nuclear Information System (INIS)

    Wu, Jeffrey C.S.; Tseng, I.-Hsiang; Chang, W.-C.

    2001-01-01

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO 2 was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500 deg. C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO 2 was further hydrogen-reduced at 300 deg. C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO 2 particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO 2 and reduced Cu/TiO 2 range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p 3/2 is 933.4 eV indicating primary Cu 2 O form on the TiO 2 supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO 2 support

  7. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    Science.gov (United States)

    Wu, Jeffrey C. S.; Tseng, I.-Hsiang; Chang, Wan-Chen

    2001-06-01

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO2 was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500°C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO2 was further hydrogen-reduced at 300°C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO2 particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO2 and reduced Cu/TiO2 range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p3/2 is 933.4 eV indicating primary Cu2O form on the TiO2 supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO2 support.

  8. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jeffrey C.S., E-mail: Cswu@ccms.ntu.edu.tw; Tseng, I.-Hsiang; Chang, W.-C. [National Taiwan University, Department of Chemical Engineering (China)

    2001-06-15

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO{sub 2} was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500 deg. C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO{sub 2} was further hydrogen-reduced at 300 deg. C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO{sub 2} particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO{sub 2} and reduced Cu/TiO{sub 2} range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p{sub 3/2} is 933.4 eV indicating primary Cu{sub 2}O form on the TiO{sub 2} supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO{sub 2} support.

  9. Preparation of UO_2 Fine Particle by Hydrolysis of Uranium(IV) Alkoxide

    OpenAIRE

    Satoh, Isamu; Takahashi, Mitsuyuki; Miura, Shigeyuki

    1997-01-01

    Fine particles of uranium(IV) dioxides were obtained by hydrolysis of uranium(IV) ethoxide which was synthesized by reacting uranium tetrachloride with sodium ethoxide. The monodispersed submicrometer particles were confirmed by SEM observation.

  10. Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol–gel method

    International Nuclear Information System (INIS)

    Bahloul, Walid; Mélis, Flavien; Bounor-Legaré, Véronique; Cassagnau, Philippe

    2012-01-01

    Graphical abstract: TEM micrograph of PP/TiO 2 nanocomposite materials (a) in situ PP/TiO 2 and (b) PP/TiO 2 (anatase). Highlights: ► Titanium alkoxide hydrolysis–condensation reactions during polypropylene processing. ► Inorganic domains diameter of around 10 nm. ► Interesting antibacterial activities compared to a dispersion of anatase TiO 2 . - Abstract: Polypropylene/titanium dioxide (PP/TiO 2 ) nanocomposites can be prepared using a novel method based on the hydrolysis–condensation reactions (sol–gel method) of titanium alkoxide inorganic precursors that have been premixed with polypropylene under molten conditions. The resultant nanocomposites were characterised by transmission electronic microscopy (TEM), X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). These techniques showed the formation of the titanium oxi-hydroxide chemical structure (Ti x O y (OH) z ) with a diameter of approximately 10 nm in the polymer matrix. Furthermore, a condensation degree of around 17% was determined using XPS analysis. The antibacterial activity was tested according to the JIS Z 2801:2000 standard with Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in the absence of light. Correlations between the microstructure and the chemical composition of PP/TiO 2 nanocomposites and the antibacterial properties of these nanocomposites were discussed. The structure of titanium oxi-hydroxide derivative particles (Ti x O y (OH) z ) within the polypropylene matrix has been shown to impact strongly on the antibacterial properties in comparison with the results obtained with a dispersion of anatase titanium dioxide into the PP.

  11. Mesoporous titanium dioxide (TiO2) with hierarchically 3D dendrimeric architectures: formation mechanism and highly enhanced photocatalytic activity.

    Science.gov (United States)

    Li, Xiao-Yun; Chen, Li-Hua; Rooke, Joanna Claire; Deng, Zhao; Hu, Zhi-Yi; Wang, Shao-Zhuan; Wang, Li; Li, Yu; Krief, Alain; Su, Bao-Lian

    2013-03-15

    Mesoporous TiO(2) with a hierarchically 3D dendrimeric nanostructure comprised of nanoribbon building units has been synthesized via a spontaneous self-formation process from various titanium alkoxides. These hierarchically 3D dendrimeric architectures can be obtained by a very facile, template-free method, by simply dropping a titanium butoxide precursor into methanol solution. The novel configuration of the mesoporous TiO(2) nanostructure in nanoribbon building units yields a high surface area. The calcined samples show significantly enhanced photocatalytic activity and degradation rates owing to the mesoporosity and their improved crystallinity after calcination. Furthermore, the 3D dendrimeric architectures can be preserved after phase transformation from amorphous TiO(2) to anatase or rutile, which occurs during calcination. In addition, the spontaneous self-formation process of mesoporous TiO(2) with hierarchically 3D dendrimeric architectures from the hydrolysis and condensation reaction of titanium butoxide in methanol has been followed by in situ optical microscopy (OM), revealing the secret on the formation of hierarchically 3D dendrimeric nanostructures. Moreover, mesoporous TiO(2) nanostructures with similar hierarchically 3D dendrimeric architectures can also be obtained using other titanium alkoxides. The porosities and nanostructures of the resultant products were characterized by SEM, TEM, XRD, and N(2) adsorption-desorption measurements. The present work provides a facile and reproducible method for the synthesis of novel mesoporous TiO(2) nanoarchitectures, which in turn could herald the fabrication of more efficient photocatalysts. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  13. Photocatalysis over TiO/sub 2/ supported on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Serpone, N; Borgarello, E; Harris, R; Cahill, P; Borgarello, M; Pelizzetti, E

    1986-10-01

    TiO/sub 2/ has been prepared and simultaneously embedded onto 3-4 mm glass beads by high temperature decomposition of titanium(IV) alkoxides in alcoholic media. The metal oxide acts as a semiconductor upon irradiation with AM1 simulated sunlight as demonstrated by the formation of the methylviologen MV/sup +./ radical in aqueous/methanolic media. The photocatalytic activity of the TiO/sub 2//glass beads material has been assessed by two principal light-driven processes: photoreduction of gold(III), and photodegradation of a chlorinated phenol. The potential utility of this device is discussed. 12 refs.

  14. Surface reactions of oxygen ions--2. Oxidation of alkenes by O/sup -/ on MgO

    Energy Technology Data Exchange (ETDEWEB)

    Aika, K.; Lunsford, J.H.

    1978-08-10

    Ethylene, propylene, 1-butene, and cis-2-butene were adsorbed on magnesium oxide containing O/sup -/ and the product distributions of their temperature-programed desorption compared with those of the desorption of possible intermediates (e.g., acetaldehyde) from untreated magnesium oxide. The results and ESR and IR spectroscopic studies suggested the alkenes reacted initially via hydrogen abstraction to form radicals; the 1-butene radical is oxidized to the alkoxide ion and forms mainly butadiene by a mechanism similar to that previously reported for alkane dehydrogenation; ethylene and propylene radicals form carboxylate ions which yield methane and carbonate ions as the main products.

  15. Assessment of covalent bond formation between coupling agents and wood by FTIR spectroscopy and pull strength tests

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark

    2014-01-01

    In the focus was the question whether metal alkoxide coupling agents – titanium, silane, and zirconium – form covalent bonds to wood and how they improve coating adhesion. In a previous work, a downshift of the lignin infrared (IR) band ∼1600 cm-1 was shown to be consistent with the formation...... of ether linkages between lignin and titanium coupling agent. In the present work, changes were found in the attenuated total reflectance-Fourier transform IR (ATR-FTIR) spectra of lignin and wood mixed with silane, and titanium coupling agents, and to a lesser extent for a zirconium coupling agent...

  16. Reaction of acid esters of methylenebis(phosphonous acid) with carbonyl compounds

    International Nuclear Information System (INIS)

    Novikova, Z.S.; Odinets, I.L.; Lutsenko, I.F.

    1987-01-01

    The reaction of methylenebis(phosphonites) containing two hydrophosphoryl groupings with aliphatic and aromatic aldehydes and ketones in the presence of alkali metal fluorides leads to methylenebis(α-hydroxyalkylphosphinates). The reaction of methylenebis(phosphonites) containing one hydrophosphoryl groupings with carbonyl compounds in the presence of alkali metal fluorides proceeds with the formation of a new type of heterocyclic phosphorus compound, viz., 1,2λ 3 ,4λ 5 -oxadiphospholanes. The reaction of acid esters of methylenebis(phosphonous) acid with carbonyl compounds in the presence of alkali metal alkoxides or a tertiary amine is accompanied by phosphinate-phosphonate rearrangement of the intermediately formed α-hydroxylalkylphosphinates

  17. A utilização de materiais obtidos pelo processo de sol-gel na construção de biossensores The utilization of materials obtained by the sol-gel process in biosensors construction

    Directory of Open Access Journals (Sweden)

    Antonio A. S. Alfaya

    2002-09-01

    Full Text Available The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.

  18. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    International Nuclear Information System (INIS)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-01-01

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties

  19. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  20. Consequences of acid strength for isomerization and elimination catalysis on solid acids.

    Science.gov (United States)

    Macht, Josef; Carr, Robert T; Iglesia, Enrique

    2009-05-13

    We address here the manner in which acid catalysis senses the strength of solid acids. Acid strengths for Keggin polyoxometalate (POM) clusters and zeolites, chosen because of their accurately known structures, are described rigorously by their deprotonation energies (DPE). Mechanistic interpretations of the measured dynamics of alkane isomerization and alkanol dehydration are used to obtain rate and equilibrium constants and energies for intermediates and transition states and to relate them to acid strength. n-Hexane isomerization rates were limited by isomerization of alkoxide intermediates on bifunctional metal-acid mixtures designed to maintain alkane-alkene equilibrium. Isomerization rate constants were normalized by the number of accessible protons, measured by titration with 2,6-di-tert-butylpyridine during catalysis. Equilibrium constants for alkoxides formed by protonation of n-hexene increased slightly with deprotonation energies (DPE), while isomerization rate constants decreased and activation barriers increased with increasing DPE, as also shown for alkanol dehydration reactions. These trends are consistent with thermochemical analyses of the transition states involved in isomerization and elimination steps. For all reactions, barriers increased by less than the concomitant increase in DPE upon changes in composition, because electrostatic stabilization of ion-pairs at the relevant transition states becomes more effective for weaker acids, as a result of their higher charge density at the anionic conjugate base. Alkoxide isomerization barriers were more sensitive to DPE than for elimination from H-bonded alkanols, the step that limits 2-butanol and 1-butanol dehydration rates; the latter two reactions showed similar DPE sensitivities, despite significant differences in their rates and activation barriers, indicating that slower reactions are not necessarily more sensitive to acid strength, but instead reflect the involvement of more unstable organic

  1. Influence of chelation ratio of metal alkoxides on aging of PZT 53/47 ...

    Indian Academy of Sciences (India)

    Administrator

    In this work, we explore the sol–gel-based synthesis route of lead zirconate titanate ..... polydispersity index, as reported by the DLS equipment, must be consistently .... datasets. Statistically equivalent groups (p-value > 0∙05) are highlighted.

  2. Using barium alkoxide for sol-gel-preparation of BaTiO sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, G.; Buerke, H.; Kohl, R.; Tomandl, G. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Werkstoffwissenschaften)

    1989-01-01

    For producing multilayer ceramics there exists a demand for low firing temperatures. This would allow the use of cheaper electrode materials. Pure BaTiO{sub 3} usually sinters in the range of 1350deg C to 1400deg C and shows a coarse-grained microstructure. Therefore the use of sintering aids, like Pb, Bi-compounds, is necessary. Our aim is to synthesize highly sinteractive BaTiO{sub 3} powders to avoid the usage of sintering aids. (orig.).

  3. 50 years of superbases made from organolithium compounds and heavier alkali metal alkoxides

    Czech Academy of Sciences Publication Activity Database

    Lochmann, Lubomír; Janata, Miroslav

    2014-01-01

    Roč. 12, č. 5 (2014), s. 537-548 ISSN 1895-1066 R&D Projects: GA ČR GAP106/12/0844 Institutional support: RVO:61389013 Keywords : superbases * heavier alkali metal compounds * lithium -heavier alkali metal interchange Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.329, year: 2013

  4. Fluorescent Hydrogel Generated Conveniently from a Perylene Tetracarboxylate Derivative of Titanium(IV) Alkoxide.

    Science.gov (United States)

    Zou, Dan-Hong; Wang, Peng; Luo, Wen; Hou, Jin-Le; Zhu, Qin-Yu; Dai, Jie

    2018-02-05

    Organic gelators and metal-coordination frameworks based on perylene derivatives as functional materials have attracted great attention because of their intense fluorescence emission as well as unique electronic and photonic properties. We report here the structures and properties of a luminescent titanium(IV) coordination compound of a perylene tetracarboxylate (PTC) derivative, [Ti 2 (O i Pr) 6 (L 1 )(phen) 2 ] (1), along with its two naphthalene analogues, [Ti 2 (O i Pr) 6 (L 2 )(phen) 2 ] (2) and [Ti 2 (O i Pr) 6 (L 2 )(bpy) 2 ] (3), where L 1 = 3,9-dicarboxylate-(4,10-diisopropanolcarboxylate)perylene, phen = 1,10-phenanthroline, L 2 = 1,5-dicarboxylate-(2,6-diisopropanolcarboxylate)naphthalene, and bpy = 2,2'-bipyridine. Compound 1 is a rare early-transition-metal PTC coordination compound that can be simply prepared in one pot as crystals by a low-heat synthesis. Unlike those of paramagnetic late-transition-metal PTC compounds, compound 1 showed intense fluorescence emission. More remarkably, the crystals of 1 can be turned immediately to a fluorescent hydrogel just through a simple procedure, putting the crystals in water and then treating with ultrasound. No acid catalyst or pH adjustment is needed. Hydrolysis of the titanium isopropanol group in water and π-π interaction of the perylene and phen play important roles in the gelation process. The film prepared from the gel can be used as a visual fluorescence sensor for aromatic amines and phenols, which are hazards for the human and environment.

  5. A simple three step method for selective placement of organic groups in mesoporous silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (B1650KNA) San Martín, Buenos Aires (Argentina); Llave, Ezequiel de la; Williams, Federico J. [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Soler-Illia, Galo J.A.A., E-mail: galo.soler.illia@gmail.com [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Instituto de Nanosistemas, Universidad Nacional de General San Martín, 25 de Mayo y Francia (1650) San Martín, Buenos Aires (Argentina)

    2016-02-01

    Selective functionalization of mesoporous silica thin films was achieved using a three step method. The first step consists in an outer surface functionalization, followed by washing off the structuring agent (second step), leaving the inner surface of the pores free to be functionalized in the third step. This reproducible method permits to anchor a volatile silane group in the outer film surface, and a second type of silane group in the inner surface of the pores. As a concept test we modified the outer surface of a mesoporous silica film with trimethylsilane (–Si–(CH{sub 3}){sub 3}) groups and the inner pore surface with propylamino (–Si–(CH{sub 2}){sub 3}–NH{sub 2}) groups. The obtained silica films were characterized by Environmental Ellipsometric Porosimetry (EEP), EDS, XPS, contact angle and electron microscopy. The selectively functionalized silica (SF) shows an amount of surface amino functions 4.3 times lower than the one-step functionalized (OSF) silica samples. The method presented here can be extended to a combination of silane chlorides and alkoxides as functional groups, opening up a new route toward the synthesis of multifunctional mesoporous thin films with precisely localized organic functions. - Highlights: • Selective functionalization of mesoporous silica thin films was achieved using a three step method. • A volatile silane group is anchored by evaporation on the outer film surface. • A second silane is deposited in the inner surface of the pores by post-grafting. • Contact angle, EDS and XPS measurements show different proportions of amino groups on both surfaces. • This method can be extended to a combination of silane chlorides and alkoxides functional groups.

  6. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    Science.gov (United States)

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  7. Synthesis and characterization of water-soluble SiO{sub 1.5}/TiO{sub 2} hybrid nanoparticles by hydrolytic co-condensation of triethoxysilane containing hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Hideharu [Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)], E-mail: h.mori@yz.yamagata-u.ac.jp; Miyamura, Yasushi [Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Endo, Takeshi [Molecular Engineering Institute, Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2009-05-15

    Novel R-SiO{sub 1.5}/TiO{sub 2} hybrid nanoparticles were synthesized by hydrolytic co-condensation of titanium alkoxides (Ti(OR'){sub 4}, R' = ethyl, isopropyl, and butyl) with a triethoxysilane precursor, R-Si(OCH{sub 2}CH{sub 3}){sub 3}, R = -CH{sub 2}CH{sub 2}CH{sub 2}N(CH{sub 2}CH{sub 2}COOCH{sub 2}CH{sub 2}OH){sub 2}, derived from 2-hydroxyethyl acrylate. Co-condensation of a titanium alkoxide with the triethoxysilane precursor was investigated at different feed ratios, suggesting that water-soluble nanoparticles were obtained only at less than 30% of Ti(OEt){sub 4} molar ratio in the feed. In contrast, the co-condensation of titanium tetraisopropoxide, Ti(O{sup i}Pr){sub 4}, with the triethoxysilane precursor in the presence of acetylacetone proceeded as a homogeneous system until 70% of Ti(O{sup i}Pr){sub 4} molar ratio to afford water-soluble organic-inorganic hybrid nanoparticles containing titania-silica mixed oxides, as confirmed by NMR, FT-IR, elemental and ICP analyses. Scanning force microscopy (SFM) measurements of the product prepared at Ti(O{sup i}Pr){sub 4}/triethoxysilane = 50/50 mol% with acetylacetone indicated the formation of the nanoparticles having relatively narrow size distribution with average particle diameter less than 2.0 nm without aggregation. The refractive index of the hybrid nanoparticle was 1.571. The isolated nanoparticles distributed homogeneously were visualized by transmission electron microscopy (TEM), and the size of the hybrid nanoparticle (1.9 nm) was determined by X-ray diffraction (XRD)

  8. Synthesis and characterization of erbium-doped SiO2 nanoparticles fabricated by using reverse micelle and sol-gel processing

    International Nuclear Information System (INIS)

    Park, Hoyyul; Bae, Dongsik

    2012-01-01

    Erbium-doped SiO 2 nanoparticles have been synthesized using a reverse micelle technique combined with metal-alkoxide hydrolysis and condensation. The sizes and the morphologies of the erbium-doped SiO 2 nanoparticles could be changed by varying the molar ratio of water to surfactant. The sizes and the morphologies of the erbium-doped SiO 2 nanoparticles were examined by using a transmission electron microscope. The average size of synthesized erbium-doped SiO 2 nanoparticles was approximately 20 - 25 nm and that of the erbium particles was 3 - 5 nm. The effects of the synthesis parameters, such as the molar ratio of water to surfactant, are discussed.

  9. Preparation of Pb(Zr0.52Ti0.48)O3 thin films on Pt/RuO2 double electrode by a new sol-gel route

    International Nuclear Information System (INIS)

    Kim, S.; Choi, Y.; Kim, C.; Oh, Y.

    1997-01-01

    Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin film on Pt/RuO 2 double electrode was successfully prepared by using new alkoxide endash alkanolamine, sol-gel method. It was observed that the use of Pt/RuO 2 double electrode reduced leakage current, resulting in a marked improvement in the leakage characteristics and more reliable capacitors. Typical P-E hysteresis behavior was observed even at low applied voltage of 5 V, manifesting greatly improved remanance and coercivity. Fatigue and breakdown characteristic, measured at 5 V, showed stable behavior and no degradation in polarization was observed up to 10 11 cycles.copyright 1997 Materials Research Society

  10. Inorganic-organic nanocomposites for optical coatings

    Science.gov (United States)

    Schmidt, Helmut K.; Krug, Herbert; Sepeur-Zeitz, Bernhard; Geiter, Elisabeth

    1997-10-01

    The fabrication of nanoparticles by the sol-gel process and their use in polymeric or sol-gel-derived inorganic-organic composite matrices opens up interesting possibilities for designing new optical materials. Two different routes have been chosen for preparing optical nanocomposites: The first is the so-called 'in situ route,' where the nanoparticles are synthesized in a liquid mixture from Zr-alkoxides in a polymerizable system and diffractive gratings were produced by embossing uncured film. The second is the 'separate' preparation route, where a sterically stabilized dry nanoboehmite powder was completely redispersed in an epoxy group-containing matrix and hard coatings with optical quality on polycarbonate were prepared.

  11. Rhenium-Promoted C-C Bond-Cleavage Reactions of Internal Propargyl Alcohols.

    Science.gov (United States)

    Lee, Kui Fun; Bai, Wei; Sung, Herman H Y; Williams, Ian D; Lin, Zhenyang; Jia, Guochen

    2018-06-07

    The first examples of C-C bond cleavage reactions of internal propargyl alcohols to give vinylidene complexes are described. Treatment of [Re(dppm) 3 ]I with RC≡CC(OH)R'R'' (R=aryl, alkyl; C(OH)R'R''=C(OH)Ph 2, C(OH)Me 2 , C(OH)HPh, C(OH)H 2 ) produced the vinylidene complexes ReI(=C=CHR)(dppm) 2 with the elimination of C(O)R'R''. Computational studies support that the reactions proceed through a β-alkynyl elimination of alkoxide intermediates Re{OC(R')(R'')C≡CR}(dppm) 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Three-dimensional flowerlike iron oxide nanostructures: Morphology, composition and metal ion removal capability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dan [School of Material Science and Engineering, University of Jinan, 250022 Jinan (China); Yang, Ping, E-mail: mse_yangp@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, 250022 Jinan (China); Huang, Baibiao [State Key Laboratory of Crystal Materials, Shandong University, 250100 Jinan (China)

    2016-01-15

    Graphical abstract: The iron alkoxide precursors are calcined into α-Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4} microstructures with different morphologies by changing calcination atmosphere, reaction time of precursors and calcination temperature simply. The Fe{sub 2}O{sub 3}/Ag hybrid composites prepared through aqueous synthesis and light irradiation. - Highlights: • α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} microstructures with different morphologies were created. • Solvents play an important role for the solvothermal treatment of precursors. • The α-Fe{sub 2}O{sub 3} microstructures show excellent adsorption properties. • Fe{sub 2}O{sub 3}/Ag hybrid composites were prepared to improve their properties. - Abstract: The flower-like precursors of Fe alkoxide constructed by the self-assembly of nanoflakes were prepared. Time-dependent experiments confirmed the formation mechanism of flower-like precursors. After calcination, α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} nanostructures with different morphologies were created. Fe{sub 3}O{sub 4} nanostructures containing blocks with a truncated octahedron structure were obtained under N{sub 2} protection. α-Fe{sub 2}O{sub 3} nanostructures were prepared in an air atmosphere. The values of maximum adsorption capacity of α-Fe{sub 2}O{sub 3} nanostructures for Cr{sup 6+} ions were much higher than that of commercial bulk α-Fe{sub 2}O{sub 3}. Ag NPs were deposited on α-Fe{sub 2}O{sub 3} nanostructures through an aqueous synthesis and light irradiation using L-cysteine as a linker. Such procedure is utilizable for the preparation of the composites of noble metals and magnetic materials.

  13. Modificación superficial de aleaciones de base aluminio (anodizadas y no anodizadas mediante recubrimientos de sílice

    Directory of Open Access Journals (Sweden)

    García-Heras, M.

    2004-04-01

    Full Text Available Transparent and colourless silica coatings were deposited on anodising and non-anodising substrates of aluminium-base alloys (series 6063. Coatings were prepared by soLgel (dipping method from a silica alkoxide and a mixture of both silica alkoxide and silica alkylalkoxide. Preparations were optimised from viscosity, density, surface tension, and contact angle measurements. Densification was carried out at 60 and 120 °C. Reflectance attenuation of coated samples was analysed by UV-VIS-NIR spectroscopy. The results indicated that -10 % of attenuation is reached. Durability and resistance against degradation tests of the metal/coating system were undertaken by immersion into aqueous solutions. Electrochemical impedance measurements and potential corrosion of the metallic substrate for variable times were performed.

    Se han depositado recubrimientos transparentes e incoloros de sílice sobre sustratos anodizados y no anodizados de aleaciones de base aluminio (serie 6063. Los recubrimientos se prepararon por sol-gel (inmersión-extracción a partir de un alcóxido de silicio y de una mezcla de alcóxido y alquilalcóxido de silicio. La optimización de las fonnulaciones se basó en medidas de viscosidad, densidad, tensión superficial y ángulo de contacto. La densificación se llevó a cabo a 60 y 120 °C. La atenuación de la reflectancia luminosa de las muestras recubiertas se analizó por espectroscopia UV-VIS-IRP. Los resultados indicaron que se alcanza casi un 10 % de atenuación. Los ensayos de durabilidad y resistencia a la degradación del sistema metal/recubrimiento se realizaron por inmersión en disoluciones acuosas, aplicando medidas de impedancia electroquímica y del potencial de corrosión del sustrato metálico, para tiempos variables.

  14. A New Role for CO2: Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters

    KAUST Repository

    Varghese, Jobi K.

    2017-08-15

    Conventional anionic ring-opening of polymerization (AROP) of cyclic esters suffers from the nonselective and concomitant attack of the monomer and of the polymer chains by the growing active species, which results in polyester samples with uncontrolled molar masses and broad polydispersity due to the competition between propagation and transesterification reactions. In this report, we describe a new AROP system mediated by a controlled amount of CO2 which prevents transesterification reactions from occurring. Using lithium monomethyl diethylene glycoxide (MEEOLi) as initiator and 1.5 equiv of CO2, ε-caprolactone could be polymerized under truly “living” conditions in dichloromethane (DCM) at 70 °C, as evidenced by the control of molar masses, the narrow polydispersity indexes (Mn up to ∼40 kg/mol, Đ < 1.16), and also successful chain extension experiments. Lithium carbonate used as initiator in the presence of 0.5 equiv of CO2 afforded similar polymerization results. Experiments carried out with other alkoxide salts and solvents demonstrate that CO2 is indispensable as well as lithium and noncoordinating solvents for the suppression of transesterifications. A similar strategy was applied for the AROP of l-lactide (LLA). At −20 °C, LLA could be polymerized under living conditions with undetectable level of transesterification as demonstrated by MALDI-ToF analysis. To account for the polymerization mechanism occurring in the presence of a slight excess of CO2, we resorted to computational studies. It appears that a fast equilibrium takes place between two tetrameric aggregates, one dormant comprising four carbonates (RCO3Li)4, and an active one involving three carbonates and one alkoxide (RCO3Li)3(ROLi). The latter is shown to selectively ring-open cyclic ester without indulging in transesterifications like (ROLi)4 precursors.

  15. A New Role for CO2: Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters

    KAUST Repository

    Varghese, Jobi K.; Goncalves, Theo; Huang, Kuo-Wei; Hadjichristidis, Nikolaos; Gnanou, Yves; Feng, Xiaoshuang

    2017-01-01

    Conventional anionic ring-opening of polymerization (AROP) of cyclic esters suffers from the nonselective and concomitant attack of the monomer and of the polymer chains by the growing active species, which results in polyester samples with uncontrolled molar masses and broad polydispersity due to the competition between propagation and transesterification reactions. In this report, we describe a new AROP system mediated by a controlled amount of CO2 which prevents transesterification reactions from occurring. Using lithium monomethyl diethylene glycoxide (MEEOLi) as initiator and 1.5 equiv of CO2, ε-caprolactone could be polymerized under truly “living” conditions in dichloromethane (DCM) at 70 °C, as evidenced by the control of molar masses, the narrow polydispersity indexes (Mn up to ∼40 kg/mol, Đ < 1.16), and also successful chain extension experiments. Lithium carbonate used as initiator in the presence of 0.5 equiv of CO2 afforded similar polymerization results. Experiments carried out with other alkoxide salts and solvents demonstrate that CO2 is indispensable as well as lithium and noncoordinating solvents for the suppression of transesterifications. A similar strategy was applied for the AROP of l-lactide (LLA). At −20 °C, LLA could be polymerized under living conditions with undetectable level of transesterification as demonstrated by MALDI-ToF analysis. To account for the polymerization mechanism occurring in the presence of a slight excess of CO2, we resorted to computational studies. It appears that a fast equilibrium takes place between two tetrameric aggregates, one dormant comprising four carbonates (RCO3Li)4, and an active one involving three carbonates and one alkoxide (RCO3Li)3(ROLi). The latter is shown to selectively ring-open cyclic ester without indulging in transesterifications like (ROLi)4 precursors.

  16. Electrochemical performances of lithium ion battery using alkoxides of group 13 as electrolyte solvent

    International Nuclear Information System (INIS)

    Kaneko, Fuminari; Masuda, Yuki; Nakayama, Masanobu; Wakihara, Masataka

    2007-01-01

    Tris(methoxy polyethylenglycol) borate ester (B-PEG) and aluminum tris(polyethylenglycoxide) (Al-PEG) were used as electrolyte solvent for lithium ion battery, and the electrochemical property of these electrolytes were investigated. These electrolytes, especially B-PEG, showed poor electrochemical stability, leading to insufficient discharge capacity and rapid degradation with cycling. These observations would be ascribed to the decomposition of electrolyte, causing formation of unstable passive layer on the surface of electrode in lithium ion battery at high voltage. However, significant improvement was observed by the addition of aluminum phosphate (AlPO 4 ) powder into electrolyte solvent. AC impedance technique revealed that the increase of interfacial resistance of electrode/electrolyte during cycling was suppressed by adding AlPO 4 , and this suppression could enhance the cell capabilities. We infer that dissolved AlPO 4 components formed electrochemically stable layer on the surface of electrode

  17. Redox and Lewis acid relay catalysis: a titanocene/zinc catalytic platform in the development of multicomponent coupling reactions.

    Science.gov (United States)

    Gianino, Joseph B; Campos, Catherine A; Lepore, Antonio J; Pinkerton, David M; Ashfeld, Brandon L

    2014-12-19

    A titanocene-catalyzed multicomponent coupling is described herein. Using catalytic titanocene, phosphine, and zinc dust, zinc acetylides can be generated from the corresponding iodoalkynes to affect sequential nucleophilic additions to aromatic aldehydes. The intermediate propargylic alkoxides are trapped in situ with acetic anhydride, which are susceptible to a second nucleophilic displacement upon treatment with a variety of electron-rich species, including acetylides, allyl silanes, electron-rich aromatics, silyl enol ethers, and silyl ketene acetals. Additionally, employing cyclopropane carboxaldehydes led to ring-opened products resulting from iodine incorporation. Taken together, these results form the basis for a new mode of three-component coupling reactions, which allows for rapid access to value added products in a single synthetic operation.

  18. Nanocomposite organomineral hybrid materials. Part 2

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-04-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  19. Nanocomposite organomineral hybrid materials. Part I

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-02-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  20. Nanocomposite organomineral hybrid materials. Part 3

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-06-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  1. Magnetic epoxy nanocomposites reinforced with hierarchical α-Fe2O3 nanoflowers: a study of mechanical properties

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Thumu, Udayabhaskararao

    2017-09-01

    In this work, we presented the potentiality of monodispersed 3D hierarchical α-Fe2O3 nanoflowers (α-Fe2O3) as reinforcement for epoxy polymer. α-Fe2O3 are synthesized through the thermal decomposition of iron alkoxide precursor in ethylene glycol. α-Fe2O3/epoxy nanocomposites (0.1 wt% of α-Fe2O3) show 109%, 59%, 13%, and 15% enhancement in impact (un-notched), impact (notched), flexural and tensile properties, respectively. The uniformly embedded α- Fe2O3 nanoflowers in epoxy polymer not only provide mechanical strength but also induced magnetic nature to the nanocomposite as observed from the Scanning electron microscopy and vibrating sample magnetometer.

  2. Molecular precursors for the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST)

    Energy Technology Data Exchange (ETDEWEB)

    Harmgarth, Nicole; Zoerner, Florian; Engelhardt, Felix; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Liebing, Phil [Laboratorium fuer Anorganische Chemie, ETH Zuerich (Switzerland); Burte, Edmund P.; Silinskas, Mindaugas [Institut fuer Mikro- und Sensorsysteme, Otto-von-Guericke-Universitaet Magdeburg (Germany)

    2017-10-04

    This review provides an overview of the precursor chemistry that has been developed around the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Thin films of GST can be deposited by employing either chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques. In both cases, the success of the layer deposition crucially depends on the proper choice of suitable molecular precursors. Previously reported processes mainly relied on simple alkoxides, alkyls, amides and halides of germanium, antimony, and tellurium. More sophisticated precursor design provided a number of promising new aziridinides and guanidinates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  4. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis.

    Science.gov (United States)

    Twilton, Jack; Christensen, Melodie; DiRocco, Daniel A; Ruck, Rebecca T; Davies, Ian W; MacMillan, David W C

    2018-05-04

    The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C-H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C-H bonds while simultaneously suppressing C-O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C-H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A "catalyst switch" Strategy for the sequential metal-free polymerization of epoxides and cyclic Esters/Carbonate

    KAUST Repository

    Zhao, Junpeng

    2014-06-24

    A "catalyst switch" strategy was used to synthesize well-defined polyether-polyester/polycarbonate block copolymers. Epoxides (ethylene oxide and/or 1,2-butylene oxide) were first polymerized from a monoalcohol in the presence of a strong phosphazene base promoter (t-BuP4). Then an excess of diphenyl phosphate (DPP) was introduced, followed by the addition and polymerization of a cyclic ester (ε-caprolactone or δ-valerolactone) or a cyclic carbonate (trimethylene carbonate), where DPP acted as both the neutralizer of phosphazenium alkoxide (polyether chain end) and the activator of cyclic ester/carbonate. This work has provided a one-pot sequential polymerization method for the metal-free synthesis of block copolymers from monomers which are suited for different types of organic catalysts. © 2014 American Chemical Society.

  6. Synthesis of ultrasmall magnetic iron oxide nanoparticles and study of their colloid and surface chemistry

    International Nuclear Information System (INIS)

    Goloverda, Galina; Jackson, Barry; Kidd, Clayton; Kolesnichenko, Vladimir

    2009-01-01

    Colloidal nanoparticles of Fe 3 O 4 (4 nm) were synthesized by high-temperature hydrolysis of chelated iron (II) and (III) diethylene glycol alkoxide complexes in a solution of the parent alcohol (H 2 DEG) without using capping ligands or surfactants: [Fe(DEG)Cl 2 ] 2- +2[Fe(DEG)Cl 3 ] 2- +2H 2 O+2OH - →Fe 3 O 4 +3H 2 DEG+8Cl - The obtained particles were reacted with different small-molecule polydentate ligands, and the resulting adducts were tested for aqueous colloid formation. Both the carboxyl and α-hydroxyl groups of the hydroxyacids are involved in coordination to the nanoparticles' surface. This coordination provides the major contribution to the stability of the ligand-coated nanoparticles against hydrolysis.

  7. Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors

    Science.gov (United States)

    Moeti, I.; Karikari, E.; Chen, J.

    1998-01-01

    High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.

  8. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  9. A "catalyst switch" Strategy for the sequential metal-free polymerization of epoxides and cyclic Esters/Carbonate

    KAUST Repository

    Zhao, Junpeng; Pahovnik, David; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    A "catalyst switch" strategy was used to synthesize well-defined polyether-polyester/polycarbonate block copolymers. Epoxides (ethylene oxide and/or 1,2-butylene oxide) were first polymerized from a monoalcohol in the presence of a strong phosphazene base promoter (t-BuP4). Then an excess of diphenyl phosphate (DPP) was introduced, followed by the addition and polymerization of a cyclic ester (ε-caprolactone or δ-valerolactone) or a cyclic carbonate (trimethylene carbonate), where DPP acted as both the neutralizer of phosphazenium alkoxide (polyether chain end) and the activator of cyclic ester/carbonate. This work has provided a one-pot sequential polymerization method for the metal-free synthesis of block copolymers from monomers which are suited for different types of organic catalysts. © 2014 American Chemical Society.

  10. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  11. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  12. Towards NHC stabilized alkylgallium alkoxide/aryloxide cations – The advances, the limitations and the challenges

    Czech Academy of Sciences Publication Activity Database

    Dabrowska, A. M.; Hurko, A.; Dranka, M.; Varga, Vojtěch; Urbańczyk, M.; Horegland, P.

    2017-01-01

    Roč. 840, JUL 2017 (2017), s. 63-69 ISSN 0022-328X R&D Projects: GA ČR(CZ) GA14-08531S Institutional support: RVO:61388955 Keywords : carbene * cations * gallium Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.184, year: 2016

  13. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  14. Hierarchical porous TiO{sub 2} thin films by soft and dual templating

    Energy Technology Data Exchange (ETDEWEB)

    Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); University of Liege, Center for Applied Technology in Microscopy (CATmu), B6 Sart Tilman, Liege 4000 (Belgium); Dewalque, Jennifer [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); Cloots, Rudi [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); University of Liege, Center for Applied Technology in Microscopy (CATmu), B6 Sart Tilman, Liege 4000 (Belgium); Vertruyen, Bénédicte; Jonlet, Jonathan; Colson, Pierre [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium)

    2013-07-31

    Hierarchical porous structures, with different pore sizes, including pores larger than 10 nm, constitute an important field of research for many applications such as selective molecule detection, catalysis, dye-sensitized solar cells, nanobiotechnology and nanomedecine. However, increasing the pore size logically results in the decrease of specific surface. There is a need to quantify and predict the resulting porosity and specific surface. We have prepared hierarchical porous TiO{sub 2} thin films either by surfactant templating (soft) or dual surfactant/nanospheres templating (soft/hard). They all show narrow, bimodal distribution of pores. Soft templating route uses a modified sol–gel procedure by adding a swelling agent (polypropylene glycol) to a precursor solution containing Ti alkoxide and block-copolymer surfactant. This scheme leads to very thin films showing high specific surface and bimodal porosity with diameters of 10 nm and 54 nm. Dual templating route combines a precursor solution made of Ti alkoxide and block-copolymer surfactant with polystyrene (PS) nanospheres (diam. 250 nm) in a one-pot simple process. This gives thicker films with a bimodal distribution of pores (8 nm and 165-200 nm). The introduction of PS nanospheres in the surfactant–Ti system does not interfere with the soft templating process and results in a macroporosity with a pore diameter 20–30% smaller than the original beads diameter. The dye loading of hierarchical films is compared to pure surfactant-templated TiO{sub 2} films and shows a relative decrease of 29% for soft templating and 43% for dual templating. The microstructure of bimodal porous films is characterized by several techniques such as transmission and scanning electron microscopy, X-ray diffraction, profilometry and ellipsometry. Finally, a geometrical model is proposed and validated for each system, based on the agreement between calculated specific surfaces and experimental dye loading with N719 dye

  15. Caracterização de filmes finos de Nb2O5 com propriedades eletrocrômicas Caracterization of OF Nb2O5 thin films with electrochromic properties

    Directory of Open Access Journals (Sweden)

    C. O. Avellaneda

    1998-06-01

    Full Text Available The sols for thin electrochromic coatings of Nb2O5 were obtained by synthesis of the niobium butoxide from BuONa and NbCl5. The ~300nm thick films were deposited by dip-coating technique from the alkoxide solution and calcined at 560ºC in O2 atmosphere during 3 hours. The particles size of niobium oxide (V powder (~20mm was obtained from x-ray diffraction using the Scherrer equation. The coatings were characterized by cyclic voltammetry and cronoamperommetry techniques. The spectral variation of the optical transmittance were determined in situ as a function of the cyclical potencial and memory effect. The insertion process of lithium is reversible and change the film color from transparent (T=80% to dark blue (T=20%.

  16. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  17. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replaced by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.

  18. The Effect of Calcination Temperature on the Performance of TiO2 Aggregates-based Dye Solar Cells (DSCs)

    International Nuclear Information System (INIS)

    Siti Nur Azella Zaine; Norani Muti Mohamed; Mohamad Azmi Bustam

    2011-01-01

    In this paper, the effect of calcination temperature on the physicochemical properties of synthesized TiO 2 aggregates and their influence on overall light conversion efficiency of dye solar cell (DSc) were investigated. Samples of TiO 2 aggregates (mean size of 0.45 μm) composing of nano crystallites (10-40 nm) were synthesized through hydrolysis of dilute titanium alkoxide in ethanol. Phase and microstructure of the TiO 2 obtained have been characterized using FESEM, XRD and UV-Vis spectroscopy. I-V characterization shows that TiO 2 aggregates based DSC demonstrated better performance compared to nanoparticles (P-25)-based DSC. The optimum calcination temperature was found to be about 500 degree Celsius with efficiency of 4.456 %, which is 30 % increment compared to P-25-based DSC under the same condition. (author)

  19. Preparation of fullerene/glass composites

    Science.gov (United States)

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  20. Lithium-Assisted Copolymerization of CO 2 /Cyclohexene Oxide: A Novel and Straightforward Route to Polycarbonates and Related Block Copolymers

    KAUST Repository

    Zhang, Dongyue

    2016-03-23

    A facile route toward alternating polycarbonates by anionic copolymerization of carbon dioxide (CO2) and cyclohexene oxide (CHO), using lithium halide or alkoxide as initiators and triisobutylaluminum (TiBA) as activator, is reported. α,ω-Heterobifunctional and α,ω-dihydroxypoly(cyclohexene carbonate)s (PCHC) as well as poly(CHC-co-CHO) copolymers with different carbonate composition could also be easily synthesized by adjusting the amount of TiBA or by adding inert lithium salts. The value of this initiating system also resides in the easy access to PSt-b-PCHC (PSt: polystyrene) and PI-b-PCHC (PI: polyisoprene) block copolymers which can be derived by mere one-pot sequential addition of styrene or dienes first and then of CO2 and CHO under the same experimental conditions. © 2016 American Chemical Society.

  1. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    Science.gov (United States)

    1982-01-01

    Containerless melting of glasses in space for the preparation of ultrapure homogeneous glass for optical waveguides is discussed. The homogenization of the glass using conventional raw materials is normally achieved on Earth either by the gravity induced convection currents or by the mechanical stirring of the melt. Because of the absence of gravity induced convection currents, the homogenization of glass using convectional raw materials is difficult in the space environment. Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation.

  2. Synthesis of a Pseudodisaccharide α-C-Glycosidically Linked to an 8-Alkylated Guanine

    Directory of Open Access Journals (Sweden)

    Jan Duchek

    2013-04-01

    Full Text Available The synthesis of stable guanofosfocin analogues has attracted considerable attention in the past 15 years. Several guanofosfocin analogues mimicking the three constitutional elements of mannose, ribose, and guanine were designed and synthesized. Interest in ether-linked pseudodisaccharides and 8-alkylated guanines is increasing, due to their potential applications in life science. In this article, a novel guanofosfocin analogue 6, an ether-linked pseudodisaccharide connected α-C-glycosidically to an 8-alkylated guanine, was synthesized in a 10-longest linear step sequence from known diol 13, resulting in an overall yield of 26%. The key steps involve the ring-opening of cyclic sulfate 8 by alkoxide generated from 7 and a reductive cyclization of 4-N-acyl-2,4-diamino-5-nitrosopyrimidine 19 to form compound 6.

  3. Blue-Emitting Small Silica Particles Incorporating ZnSe-Based Nanocrystals Prepared by Reverse Micelle Method

    Directory of Open Access Journals (Sweden)

    Masanori Ando

    2007-01-01

    Full Text Available ZnSe-based nanocrystals (ca. 4-5 nm in diameter emitting in blue region (ca. 445 nm were incorporated in spherical small silica particles (20–40 nm in diameter by a reverse micelle method. During the preparation, alkaline solution was used to deposit the hydrolyzed alkoxide on the surface of nanocrystals. It was crucially important for this solution to include Zn2+ ions and surfactant molecules (thioglycolic acid to preserve the spectral properties of the final silica particles. This is because these substances in the solution prevent the surface of nanocrystals from deterioration by dissolution during processing. The resultant silica particles have an emission efficiency of 16% with maintaining the photoluminescent spectral width and peak wavelength of the initial colloidal solution.

  4. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  5. Critical ageing and chemistry of nanocrystalline hydroxyapatite sol-gel solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chai, C.S.; Gross, K.A.; Kannangara, K.; Ben-Nissan, B. [University of Technology, Sydney, NSW (Australia). Department of Chemistry, Materials and Forensic Sciences; Hanley, L. [University of Illinois at Chicago, (United States). Department of Chemistry

    1998-12-31

    In previous work we have demonstrated that using alkoxide precursors, it is possible to produce crystalline hydroxyapatite coatings with potential uses in orthopaedic and dental applications. However, to produce monophasic hydroxyapatite coatings, sols must be aged for a minimum of 24 hours prior to deposition. {sup 31}P NMR has been used to analyse chemical changes occurring in the sol during the ageing process and have revealed that P-O-C bonds present in the precursor material are gradually replaced by P-O-Ca bonds with an accompanying change in oxidation state from P(III) to P(V). Thermal analysis was used to examine hydrolysed gels and showed that sols aged less than 24 hours contain unreacted calcium diethoxide which produces CaO upon heating. These findings have been confirmed by x-ray diffraction. Copyright (1998) Australasian Ceramic Society 16 refs., 4 figs.

  6. Carbynes and carbenes in coordination chemistry: A new class of pentaammine and tetraammine complexes of osmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, L.M.; Sabat, M.; Harman, W.D. (Univ. of Virginia, Charlottesville (United States))

    1993-02-17

    Since their discovery by Fischer and co-workers in 1973, the study of transition-metal carbyne complexes and their role in alkyne metathesis has rapidly developed into a mature field. Although carbyne complexes are known for a diverse set of early- and mid-transition metals, the vast majority of these complexes contain carbon or phosphine [pi]-acids, or bulky alkoxide ligands, which limit the coordination number. We wish to report the first example of a carbyne species, as well as several heteroatom-carbene derivatives, in which the metal fragment, Os[sup II](NH[sub 3])[sub 5], provides a classical octahedral coordination environment. The carbyne [Os(NH[sub 3])[sub 5]([equivalent to]CPh)](OTf)[sub 3] (2) is synthesized in two steps from Os(NH[sub 3])[sub 5](OTf)[sub 3] and benzaledhyde dimethyl acetal.

  7. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  8. Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis

    Directory of Open Access Journals (Sweden)

    Antoine R. M. Dalod

    2017-12-01

    Full Text Available Organic-inorganic hybrid materials are attractive due to the combination of properties from the two distinct types of materials. In this work, transparent titania-polydimethylsiloxane hybrid materials with up to 15.5 vol. % TiO2 content were prepared by an in situ non-aqueous method using titanium (IV isopropoxide and hydroxy-terminated polydimethylsiloxane as precursors. Spectroscopy (Fourier transform infrared, Raman, Ultraviolet-visible, ellipsometry and small-angle X-ray scattering analysis allowed to describe in detail the structure and the optical properties of the nanocomposites. Titanium alkoxide was successfully used as a cross-linker and titania-like nanodomains with an average size of approximately 4 nm were shown to form during the process. The resulting hybrid nanocomposites exhibit high transparency and tunable refractive index from 1.42 up to 1.56, depending on the titania content.

  9. Faraday rotation measurements in maghemite-silica aerogels

    International Nuclear Information System (INIS)

    Taboada, E.; Real, R.P. del; Gich, M.; Roig, A.; Molins, E.

    2006-01-01

    Faraday rotation measurements have been performed on γ-Fe 2 O 3 /SiO 2 nanocomposite aerogels which are light, porous and transparent magnetic materials. The materials have been prepared by sol-gel polymerization of a silicon alkoxide, impregnation of the intermediate silica gel with a ferrous salt and supercritical drying of the gels. During supercritical evacuation of the solvent, spherical nanoparticles of iron oxide, with a mean particle diameter of 8.1±2.0 nm, are formed and are found to be homogenously distributed within the silica matrix. The specific Faraday rotation of the composite was measured at 0.6 T using polarized light of 810 nm, being 29.6 deg./cm. The changes in the plane of polarization of the transmitted light and the magnetization of the material present similar magnetic field dependencies and are characteristic of a superparamagnetic system

  10. Critical ageing and chemistry of nanocrystalline hydroxyapatite sol-gel solutions

    International Nuclear Information System (INIS)

    Chai, C.S.; Gross, K.A.; Kannangara, K.; Ben-Nissan, B.; Hanley, L.

    1998-01-01

    In previous work we have demonstrated that using alkoxide precursors, it is possible to produce crystalline hydroxyapatite coatings with potential uses in orthopaedic and dental applications. However, to produce monophasic hydroxyapatite coatings, sols must be aged for a minimum of 24 hours prior to deposition. 31 P NMR has been used to analyse chemical changes occurring in the sol during the ageing process and have revealed that P-O-C bonds present in the precursor material are gradually replaced by P-O-Ca bonds with an accompanying change in oxidation state from P(III) to P(V). Thermal analysis was used to examine hydrolysed gels and showed that sols aged less than 24 hours contain unreacted calcium diethoxide which produces CaO upon heating. These findings have been confirmed by x-ray diffraction. Copyright (1998) Australasian Ceramic Society

  11. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  12. TiO2 Surface Coating of Mn-Zn Dopped Ferrites Study

    DEFF Research Database (Denmark)

    Solný, Tomáš; Ptacek, Petr; Másilko, Jiří

    2016-01-01

    This study deals with TiO2 coating of powder Mn-Zn ferrite in order to recieve photocatalytic layer on the top of these particles, forming core-shell catalyst. Powder catalysts are of great advance over the world due to the high surface area, considering the kinetics proceeds through heterogenous...... phase boundary catalysis. However their withdrawal from cleaning systems often requires energetically and economically demanding processes such as filtration and ultrafiltration. Since the ferrite is magnetic, the advantage of such formed core-shell photocatalyst is easibility of removing from...... photocatalytic decomposition system using external magnetic field. In this study the surface coating is performed, using Ti alkoxides mixtures with nanosized TiO2 particles and C and Au coating to form film layer of TiO2 on the surface of ferrite. XRD, SEM – EDS analyses are employed to study surface coating....

  13. One-pot synthesis of linear- and three-arm star-tetrablock quarterpolymers via sequential metal-free ring-opening polymerization using a "catalyst switch" strategy

    KAUST Repository

    Zhao, Junpeng; Pahovnik, David; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    A "catalyst switch" strategy has been used to sequentially polymerize four different heterocyclic monomers. In the first step, epoxides (1,2-butylene oxide and ethylene oxide) were successively polymerized from a monohydroxy or trihydroxy initiator in the presence of a strong phosphazene base promoter (t-BuP4). Then, an excess of diphenyl phosphate (DPP) was introduced, followed by addition and polymerization of a cyclic carbonate (trimethylene carbonate) and a cyclic ester (δ-valerolactone or ε-caprolactone). DPP acted as both neutralizer of the phosphazenium alkoxide (polyether chain end) and activator of the cyclic carbonate/ester. Using this method, linear- and star-tetrablock quarterpolymers were prepared in one pot. This work is emphasizing the strength of the previously developed catalyst switch strategy for the facile metal-free synthesis of complex macromolecular architectures. © 2014 Wiley Periodicals, Inc.

  14. One-pot synthesis of linear- and three-arm star-tetrablock quarterpolymers via sequential metal-free ring-opening polymerization using a "catalyst switch" strategy

    KAUST Repository

    Zhao, Junpeng

    2014-08-06

    A "catalyst switch" strategy has been used to sequentially polymerize four different heterocyclic monomers. In the first step, epoxides (1,2-butylene oxide and ethylene oxide) were successively polymerized from a monohydroxy or trihydroxy initiator in the presence of a strong phosphazene base promoter (t-BuP4). Then, an excess of diphenyl phosphate (DPP) was introduced, followed by addition and polymerization of a cyclic carbonate (trimethylene carbonate) and a cyclic ester (δ-valerolactone or ε-caprolactone). DPP acted as both neutralizer of the phosphazenium alkoxide (polyether chain end) and activator of the cyclic carbonate/ester. Using this method, linear- and star-tetrablock quarterpolymers were prepared in one pot. This work is emphasizing the strength of the previously developed catalyst switch strategy for the facile metal-free synthesis of complex macromolecular architectures. © 2014 Wiley Periodicals, Inc.

  15. Synthesis of 11C-methylated inulin as a radiopharmaceutical for imaging brain edema and pulmonary edema

    International Nuclear Information System (INIS)

    Hara, Toshihiko; Iio, Masaaki; Inagaki, Keizo

    1988-01-01

    11 C-methylated inulin, supposedly useful for imaging of brain edema and pulmonary edema, was prepared using cyclotron produced 11 CO 2 . The synthesis consists of the production of 11 C-methyl iodide and its coupling with inulin alkoxide sodium in dimethylsulfoxide as solvent. 11 C labeled inulin was purified by alcohol precipitation. The radiochemical yield of pure 11 C-inulin was 34% of 11 CO 2 30 min after the end of bombardment. The blood clearance and body distribution of 11 C was observed in rabbits after i.v. injection of 11 C-inulin. The blood clearance curve was composed of a sum of three exponential functions. The gamma camera image showed that the 11 C activity in blood moved quickly to kidneys and urine and a small dose of radioactivity remained persistently in edematous tissues, i.e. the edematous lung tissues produced by oleic acid treatment. (orig.)

  16. Optimization of mechanical strength of titania fibers fabricated by direct drawing

    Science.gov (United States)

    Hanschmidt, Kelli; Tätte, Tanel; Hussainova, Irina; Part, Marko; Mändar, Hugo; Roosalu, Kaspar; Chasiotis, Ioannis

    2013-11-01

    Nanostructured polycrystalline titania (TiO2) microfibers were produced by direct drawing from visco-elastic alkoxide precursors. The fiber crystallinity and grain size were shown to depend on post-treatment calcination temperature. Tensile tests with individual fibers showed strong sensitivity of the elastic modulus and the tensile strength to microstructural details of the fibers. The elastic modulus of as-fabricated fibers increased about 10 times after calcination at 700 ∘C, while the strain at failure remained almost the same at ˜1.4 %. The highest tensile strength of more than 800 MPa was exhibited by nanoscale grained fibers with a bimodal grain size distribution consisting of rutile grains embedded into an anatase matrix. This structure is believed to have reduced the critical defect size, and thus increased the tensile strength. The resultant fibers showed properties that were appropriate for reinforcement of different matrixes.

  17. Crystallization of cristobalite from glass phase in mullite ceramics with excess SiO{sub 2} compositions; Sirika kajo muraito seramikkusu chu no garasuso no kesshoka kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takashi; Sugai, Mikio; Nakagawa, Zenbee [Akita University, Akita (Japan). Faculty of Engineering and Resource Science; Sawabe, Yoshinari [Sumitomo Chemical Corp., Ibaraki (Japan). Tsukuba Research Laboratory; Oya, Yutaka [Gifu University, Gifu (Japan). Faculty of Engineering

    1999-09-01

    Crystallization of glass phase to cristobalite was investigated in mullite-glass ceramics with excess SiO{sub 2} compositions (5.3-16.4 mass %), namely, higher than stoichiometric mullite. Starting powders were prepared by alkoxide hydrolysis method. Compact specimens were sintered at 1600 degree C above the eutectic temperature (1587 degree C) for 2 h. Crystallization treatment was carried out at 1500 degree C, below the eutectic temperature, for times from 4 h to 96 h. Crystallization of glass phase proceeded from the surface of the specimen toward its inner part, in linear dependence on the annealing time. At the polished surface of the specimen, crystallization started in large glass pockets and the crystallized area extended spherically toward the inner part. This phenomenon suggests that nucleation occurs at the minimum parts in the elastic energy generated by the volume change involved in the crystallization of glass phase to cristobalite. (author)

  18. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...

  19. Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2015-12-01

    Full Text Available Mesoporous titanium dioxide materials were prepared using a nanocasting technique involving silica SBA-15 as the hard-template. At an optimal loading of titanium precursor, the hexagonal periodic array of pores in SBA-15 was retained. The phases of titanium dioxide could be easily varied by the number of impregnation cycles and the nature of titanium alkoxide employed. Low number of impregnation cycles produced mixed phases of anatase and TiO2(B. The mesoporous TiO2 materials were tested for solar hydrogen production, and the material consisting of 98% anatase and 2% TiO2(B exhibited the highest yield of hydrogen from the photocatalytic splitting of water. The periodicity of the pores was an important factor that influenced the photocatalytic activity. This study indicates that mixed phases of titania containing ordered array of pores can be prepared by using the nanocasting strategy.

  20. Improved modification for the density-functional theory calculation of thermodynamic properties for C-H-O composite compounds.

    Science.gov (United States)

    Liu, Min Hsien; Chen, Cheng; Hong, Yaw Shun

    2005-02-08

    A three-parametric modification equation and the least-squares approach are adopted to calibrating hybrid density-functional theory energies of C(1)-C(10) straight-chain aldehydes, alcohols, and alkoxides to accurate enthalpies of formation DeltaH(f) and Gibbs free energies of formation DeltaG(f), respectively. All calculated energies of the C-H-O composite compounds were obtained based on B3LYP6-311++G(3df,2pd) single-point energies and the related thermal corrections of B3LYP6-31G(d,p) optimized geometries. This investigation revealed that all compounds had 0.05% average absolute relative error (ARE) for the atomization energies, with mean value of absolute error (MAE) of just 2.1 kJ/mol (0.5 kcal/mol) for the DeltaH(f) and 2.4 kJ/mol (0.6 kcal/mol) for the DeltaG(f) of formation.

  1. Stress engineering for the design of morphotropic phase boundary in piezoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomoya, E-mail: ohno@mail.kitami-it.ac.jp [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)

    2015-06-30

    Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.

  2. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    Science.gov (United States)

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tapered Optical Fiber Sensor for Detection of pH in Microscopic Volumes

    Directory of Open Access Journals (Sweden)

    Ondřej PODRAZKÝ

    2014-05-01

    Full Text Available A compact and robust tapered optical fiber microsensor is presented for detection of pH in a range from 5.8 to 7.5 in sub-microliter volumes. The sensor is based on a pH transducer 8- hydroxypyrene-1,3,6-trisulfonic acid trisodium salt immobilized in a xerogel matrix onto the tip of a optical fiber taper with a tip diameter below 20 mm. The sol-gel method and two silicon alkoxides is used for preparing the matrix. A ratio of the fluorescence emission intensities measured at 518 nm after the excitation at 400 and 450 nm is used for evaluating the sensor response to pH. This ratiometric approach enables to reduce effects of ambient light, bleaching of the sensitive layer and geometry of the probe to the fluorescence signal and achieve the resolution of about 0.07 pH units.

  4. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method

    International Nuclear Information System (INIS)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The obtaining of transition metal modified titanium dioxide (TiO 2 ) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  5. Solution chemistry techniques in SYNROC preparation

    International Nuclear Information System (INIS)

    Dosch, R.G.; Lynch, A.W.

    1981-07-01

    Investigations of titanate-based ceramic forms for radioactive waste immobilization are underway at Sandia National Laboratories (SNLA) and at Lawrence Livermore National Laboratory (LLNL). Although the waste forms differ as to overall product composition, the waste-containing phases in both ceramic products have similar crystalline structure types. These include metallic phases along with oxides with structure types of the mineral analogues perovskite, zirconolite, and hollandite. Significant differences also exist in the area of processing. More conventional ceramic processing methods are used at LLNL to produce SYNROC while solution chemistry techniques involving metal alkoxide chemistry and ion exchange have been developed at SNLA to prepare calcium titanate-based waste ceramics. The SNLA techniques were recently modified and applied to producing SYNROC (compositions C and D) as part of an interlaboratory information exchange between SNLA and LLNL. This report describes the methods used in preparing SYNROC including the solution interaction, and hot-pressing methods used to obtain fully dense SYNROC monoliths

  6. Radiosynthesis of [F-18]fluoxetine as a potential radiotracer for serotonin reuptake sites

    International Nuclear Information System (INIS)

    Das, M.K.; Mukherjee, Jogeshwar

    1993-01-01

    Synthesis of 4-nitro-α-bromo-α,α-difluorotoluene was accomplished in two steps starting from 4-nitrobenzaldehyde, with a 30% overall yield. Radiolabeling of 4-nitro-α-bromo-α, α-difluorotoluene with no-carrier-added [ 18 F]fluoride provided 4-nitro-α,α-difluoro-α-[ 18 F] fluorotoluene in 2-4% yields with a specific activity of 2590 GBq/mmol (70 Ci/mmol). The effect of the reaction temperature on the radiochemical yield and specific activity of the radiolabeling reaction was studied. Radiochemical yields increased, whereas specific activity decreased, with increasing temperature. Radiosynthesis of [ 18 F] fluoxetine involved coupling of 4-nitro-α,α-difluoro-α-[ 18 F]fluorotoluene with the sodium alkoxide of (S)-3-(methylamino)-1-phenyl-1-propanol. The overall yield of HPLC purified [ 18 F]fluoxetine was 1-2% (decay-corrected; total radiosynthesis time, 150-180 min). The specific activity of the product was 1480 GBq/mmol (40 Ci/mmol). (Author)

  7. Radiosynthesis of [F-18]fluoxetine as a potential radiotracer for serotonin reuptake sites

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.K.; Mukherjee, Jogeshwar (Chicago Univ., IL (United States). Dept. of Radiology)

    1993-05-01

    Synthesis of 4-nitro-[alpha]-bromo-[alpha],[alpha]-difluorotoluene was accomplished in two steps starting from 4-nitrobenzaldehyde, with a 30% overall yield. Radiolabeling of 4-nitro-[alpha]-bromo-[alpha], [alpha]-difluorotoluene with no-carrier-added [[sup 18]F]fluoride provided 4-nitro-[alpha],[alpha]-difluoro-[alpha]-[[sup 18]F] fluorotoluene in 2-4% yields with a specific activity of 2590 GBq/mmol (70 Ci/mmol). The effect of the reaction temperature on the radiochemical yield and specific activity of the radiolabeling reaction was studied. Radiochemical yields increased, whereas specific activity decreased, with increasing temperature. Radiosynthesis of [[sup 18]F] fluoxetine involved coupling of 4-nitro-[alpha],[alpha]-difluoro-[alpha]-[[sup 18]F]fluorotoluene with the sodium alkoxide of (S)-3-(methylamino)-1-phenyl-1-propanol. The overall yield of HPLC purified [[sup 18]F]fluoxetine was 1-2% (decay-corrected; total radiosynthesis time, 150-180 min). The specific activity of the product was 1480 GBq/mmol (40 Ci/mmol). (Author).

  8. Manganite perovskite ceramics, their precursors and methods for forming

    Science.gov (United States)

    Payne, David Alan; Clothier, Brent Allen

    2015-03-10

    Disclosed are a variety of ceramics having the formula Ln.sub.1-xM.sub.xMnO.sub.3, where 0.Itoreq.x.Itoreq.1 and where Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or Y; M is Ca, Sr, Ba, Cd, or Pb; manganite precursors for preparing the ceramics; a method for preparing the precursors; and a method for transforming the precursors into uniform, defect-free ceramics having magnetoresistance properties. The manganite precursors contain a sol and are derived from the metal alkoxides: Ln(OR).sub.3, M(OR).sub.2 and Mn(OR).sub.2, where R is C.sub.2 to C.sub.6 alkyl or C.sub.3 to C.sub.9 alkoxyalkyl, or C.sub.6 to C.sub.9 aryl. The preferred ceramics are films prepared by a spin coating method and are particularly suited for incorporation into a device such as an integrated circuit device.

  9. Niobia and tantala codoped orthorhombic zirconia ceramics

    International Nuclear Information System (INIS)

    Hoeftberger, M.; Gritzner, G.

    1995-01-01

    During recent studies it was found that codoping of zirconia with niobia and tantala yielded very corrosion resistant, orthorhombic zirconia ceramics. The powders for those novel ceramics were made via the sol-gel technique by hydrolysis of the respective metal propoxides; a method which required dry-box techniques during the preparation of the alkoxides. In these studies the authors investigated the fabrication of precursor material from aqueous solutions. The preparation of aqueous solutions of salts of zirconium, niobium and tantalum is hampered by rapid hydrolysis. Premature hydrolysis of the chlorides and oxichlorides of niobium, tantalum and zirconium can be, however, prevented in aqueous solutions of oxalic acid. Thus the authors investigated the coprecipitation of hydroxides as precursors by reacting oxalic acid solutions of the respective cations with aqueous ammonia. In addition they studied the effects of calcination and of hydrothermal conversion of the hydroxides to oxides on the powder characteristics and on the mechanical properties of the niobia and tantala codoped zirconia ceramics

  10. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  11. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Suegama, P.H. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Sarmento, V.H.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Benedetti, A.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); de Melo, H.G.; Aoki, I.V. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Santilli, C.V., E-mail: santilli@iq.unesp.b [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2010-07-15

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  12. Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method

    International Nuclear Information System (INIS)

    Mariappan, C.R.; Galven, C.; Crosnier-Lopez, M.-P.; Le Berre, F.; Bohnke, O.

    2006-01-01

    The nanostructured NASICON-type LiTi 2 (PO 4 ) 3 (LTP) material has been synthesized by Pechini-type polymerizable complex method. The use of water-soluble ammonium citratoperoxotitanate (IV) metal complex instead of alkoxides as precursor allows to prepare monophase material. Thermal analyses have been carried out on the powder precursor to check the weight loss and synthesis temperature. X-ray powder diffraction analysis (XRD) has been performed on the LTP powder obtained after heating the powder precursor over a temperature range from 550 to 1050 deg. C for 2 h. By varying the molar ratio of citric acid to metal ion (CA/Ti) and citric acid to ethylene glycol (CA/EG), the grain size of the LTP powder could be modified. The formation of small and well-crystalline grains, in the order of 50-125 nm in size, has been determined from the XRD patterns and confirmed by transmission electron microscopy

  13. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    International Nuclear Information System (INIS)

    Suegama, P.H.; Sarmento, V.H.V.; Montemor, M.F.; Benedetti, A.V.; de Melo, H.G.; Aoki, I.V.; Santilli, C.V.

    2010-01-01

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  14. Synthesis of amorphous zirconium oxide with luminescent characteristics

    International Nuclear Information System (INIS)

    Barrera S, M.; Chavez G, M.; Soto E, A.M.; Velasquez O, C.; Garcia S, M.A.; Olvera T, L.; Rivera M, T.

    2004-01-01

    It was prepared zirconium oxide, ZrO 2 , by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C 3 H 7 O) 4 , as precursor and nitric acid, HNO 3 , as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n H2O /n Zr (C 3 H 7 0) 4 , high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO 2 obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO 2 , presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of 90 Sr/ 90 Y and it was thermally stimulated. (Author)

  15. Fabrication of TiO2 Nanotanks Embedded in a Nanoporous Alumina Template

    Directory of Open Access Journals (Sweden)

    C. Massard

    2015-01-01

    Full Text Available The feasibility of surface nanopatterning with TiO2 nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2 gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM. The TiO2 nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM with selected area electron diffraction (SAED were used to investigate the TiO2 structure. The optical properties were studied using UV-Vis spectroscopy.

  16. RBS analysis of electrochromic layers

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.C.; Bell, J.M. [University of Technology, Sydney, NSW (Australia); Kenny, M.J.; Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    Tungsten oxide thin films produced by dip-coating from tungsten alkoxide solutions are of interest for their application in large area switchable windows. The application consists of a layer of electrochromic tungsten oxide (W0{sub 3}) on indium tin oxide (ITO) coated glass in contact with a complementary structure. Electrochromic devices are switchable between states of high and low transparency by the application of a small voltage. The mechanism relies on the dual injection of ions and electrons into the W0{sub 3} layer from adjacent layers in the device. Electrochromic tungsten oxide can be deposited using standard techniques (eg. sputtering and evaporation) but also using sol-gel deposition. Sol-gel processing has an advantage over conventional preparation techniques because of the simplicity of the equipment. The scaling up to large area coatings is also feasible. RBS and forward recoil has been used to obtain profiles for individual elements in the structure of electrochromic films. 3 refs., 3 figs.

  17. RBS analysis of electrochromic layers

    Energy Technology Data Exchange (ETDEWEB)

    Green, D C; Bell, J M [University of Technology, Sydney, NSW (Australia); Kenny, M J; Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    Tungsten oxide thin films produced by dip-coating from tungsten alkoxide solutions are of interest for their application in large area switchable windows. The application consists of a layer of electrochromic tungsten oxide (W0{sub 3}) on indium tin oxide (ITO) coated glass in contact with a complementary structure. Electrochromic devices are switchable between states of high and low transparency by the application of a small voltage. The mechanism relies on the dual injection of ions and electrons into the W0{sub 3} layer from adjacent layers in the device. Electrochromic tungsten oxide can be deposited using standard techniques (eg. sputtering and evaporation) but also using sol-gel deposition. Sol-gel processing has an advantage over conventional preparation techniques because of the simplicity of the equipment. The scaling up to large area coatings is also feasible. RBS and forward recoil has been used to obtain profiles for individual elements in the structure of electrochromic films. 3 refs., 3 figs.

  18. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  19. Photocatalytic activity and RNO dye degradation of nitrogen-doped TiO{sub 2} prepared by ionothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pipi, Angelo; Ruotolo, Luis, E-mail: pluis@ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia Quimica; Byzynski, Gabriela [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil)

    2017-05-15

    This work concerns the preparation a nitrogen-doped TiO{sub 2} by ionothermal synthesis methods and the photocatalytic studies. In this procedure, alkoxide was used as a titanium source, and a deep eutectic mixture of choline chloride and urea (molar ratio 1:2) served as a solvent and source of nitrogen. Different samples were synthesized varying the percentages of the eutectic mixture, titanium butoxide, and water, as well as temperature and reaction time. The catalysts were characterized by X-ray diffraction, Raman spectrometry, scanning electron microscopy, and diffuse reflectance spectroscopy. N-doping was confirmed by X-ray photoelectron spectroscopy. The photocatalytic activity of the N-TiO{sub 2} nanoparticles was evaluated in the oxidation of N,N-dimethyl-4-nitrosoaniline (RNO) dye. The best photocatalytic activity under illumination by UV and visible light was found for the catalysts prepared under reflux in the presence of water, and for the catalysts prepared hydrothermally using intermediate percentages of the nitrogen source (the eutectic mixture). (author)

  20. Synthesis and electrical characterization of Ca2Nd4Ti6O20 ceramics

    Directory of Open Access Journals (Sweden)

    Muhammad Raz

    2016-03-01

    Full Text Available Ca2Nd4Ti6O20, a layered perov skite structured material was synthesized via a chemical (citrate sol-gel route for the first time using nitrates and alkoxide precursors. Phase analysis of a sample sintered at 1625 °C revealed the formation of an orthorhombic (Pbn21 symmetry. The microstructure of the sample after sintering comprised rod-shaped grains of a size of 1.5 to 6.5µm. The room temperature dielectric constant of the sintered sample was 38 at 100 kHz. The remnant polarization (Pr and the coercive field (Ec were about 400 μC/cm2 and 8.4 kV/cm, respectively. Impedance spectroscopy revealed that the capacitance (13.7 pF and activation energy (1.39 eV of the grain boundary was greater than the capacitance (5.7 pF and activation energy (1.13 eV of the grain.

  1. Preparation of silica by sol-gel method using formamide

    Directory of Open Access Journals (Sweden)

    R.F.S. Lenza

    2001-07-01

    Full Text Available In this work we obtained microporous and mesoporous silica gels by sol-gel processing. Tetraethylortosilicate (TEOS was used as precursor. Nitric acid and hydrofluoric acid were used as catalysts. In order to study the affect of formamide as drying additive, we used a molar ratio alkoxide/formamide of 1/1. The performance of formamide in obtaining crack-free gels was evaluated through monolithicity measurements. The structural evolution occurring in the interconnected network of the gels during thermal treatment was monitored by Fourier transform infrared spectroscopy (FTIR, shrinkage and density measurements and nitrogen gas sorption. We noted that in the presence of formamide, the Si-O-Si bonds are stronger and belong to a more cross-linked structure. The samples obtained in the presence of formamide have larger pore volume and its pore structure is in the range of mesoporosity. The samples obtained without additive are microporous. Formamide allowed the preparation of crack-free silica gels stabilized at high temperatures.

  2. FY 1992 Report on results of the research and development of the technologies for forming composite materials. Development of the technologies for creating parts for high-efficiency power generation systems; 1992 nendo fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This project is aimed at development of the technologies for producing ceramic- and metal-based composite materials, and also technologies for superplastic processing by utilizing the phenomenon of superplasticity. The methods studied for development of the ceramic-based composites include casting and powder-utilizing forming at low temperature, and melt forming at high temperature. Those for the metal-based composites include melting at normal and high pressure, powder metallurgy type mechanical alloying and alkoxide methods. The composites studied for development of the superplastic processing are the whisker- and particle-reinforced ones. The composite reinforced with silicon nitride/SiC whiskers is found to be electrophoretically cast to have a bending strength of 497MPa at 1,250 degrees C. The parts of simple shape, e.g., rod and disk, having the target strength are produced by isostatically pressing at normal temperature and high pressure (CIP) and subsequently firing the granules, produced by spray drying the TiC particle/alumina-based slurry. (NEDO)

  3. Sol–gel preparation of well-adhered films and long range ordered inverse opal films of BaTiO{sub 3} and Bi{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Al-Arjan, Wafa S. [Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); King Faisal University, PO Box 380, Al Hofuf (Saudi Arabia); Algaradah, Mohammed M.F. [Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); King Khalid College, Riyadh (Saudi Arabia); Brewer, Jack [Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Hector, Andrew L., E-mail: a.l.hector@soton.ac.uk [Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2016-02-15

    Highlights: • Highly adaptable sols are presented for processing of the electroceramic materials BaTiO{sub 3} and Bi{sub 2}Ti{sub 2}O{sub 7}. • High quality thin films are produced by dip coating with good phase control. • Infiltration of cross-linked polystyrene templates led to high quality inverse opals. - Abstract: Barium and bismuth titanate thin films and well-ordered inverse opal films are produced by dip coating from sols containing titanium alkoxides with acetic acid, acetylacetone, methoxyethanol and water. The inverse opal preparations used crosslinked polystyrene opal templates. Heat treatment in air produced tetragonal BaTiO{sub 3} or mixtures of the hexagonal and tetragonal phases, or phase pure Bi{sub 2}Ti{sub 2}O{sub 7}. Good quality films were obtained with a thickness of 5 μm from a single dipping, and the thickness could be increased by dipping multiple times. Inverse opals were well ordered and exhibited opalescence and photonic stop band effects.

  4. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method; Efeito do vanadio na obtencao de dioxido de titanio pelo Metodo Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A., E-mail: sandrogranado02@gmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The obtaining of transition metal modified titanium dioxide (TiO{sub 2}) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  5. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J., E-mail: brian.riley@pnnl.gov; Lepry, William C.; Crum, Jarrod V.

    2016-01-15

    Chlorosodalite has the general form of Na{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2} and this paper describes experiments conducted to synthesize sodalite with a solution-based approach to immobilize a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. The reactants used were the salt solution, NaAlO{sub 2}, and either Si(OC{sub 2}H{sub 5}){sub 4} or Ge(OC{sub 2}H{sub 5}){sub 4}. Additionally, seven different glass sintering aids (at loadings of 5 mass%) were evaluated as sintering aids for consolidating the as-made powders using a cold-press-and-sinter technique. This process of using alkoxide additives for the Group IV component can be used to produce large quantities of sodalite at near-room temperature as compared to a method where colloidal silica was used as the silica source. However, the small particle sizes inhibited densification during heat treatments.

  6. Anionic polymerization of acrylates. XIV. Synthesis of MMA/acrylate block copolymers initiated with ester-enolate/tert-alkoxide complex

    Czech Academy of Sciences Publication Activity Database

    Vlček, Petr; Čadová, Eva; Kříž, Jaroslav; Látalová, Petra; Janata, Miroslav; Toman, Luděk; Masař, Bohumil

    2005-01-01

    Roč. 46, č. 14 (2005), s. 4991-5000 ISSN 0032-3861 Institutional research plan: CEZ:AV0Z4050913 Keywords : ligated anionic polymerization * (meth)acrylates * block copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.849, year: 2005

  7. The effect of refluxing on the alkoxide-based sodium potassium niobate sol-gel system: Thermal and spectroscopic studies

    Czech Academy of Sciences Publication Activity Database

    Chowdhury, A.; Bould, Jonathan; Londesborough, Michael Geoffrey Stephen; Milne, S.J.

    2011-01-01

    Roč. 184, č. 2 (2011), s. 317-324 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z40320502 Keywords : sol-gel processes * spectroscopy * thermal properties * X-ray diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 2.159, year: 2011

  8. Silicification of wood adopted for barrel production using pure silicon alkoxides in gas phase to avoid microbial colonisation.

    Science.gov (United States)

    Guzzon, Raffaele; Widmann, Giacomo; Bertoldi, Daniela; Nardin, Tiziana; Callone, Emanuela; Nicolini, Giorgio; Larcher, Roberto

    2015-02-01

    The paper presents a new approach, covering wood with silica-based material in order to protect it from spoilage due to microbial colonisation and avoiding the loss of the natural features of the wood. Wood specimens derived from wine barrels were treated with methyltriethoxysilane in gas phase, leading to the deposition of a silica nanofilm on the surface. (29)Si and (13)C solid state Nuclear Magnetic Resonance and Scanning Electron Microscope-Energy Dispersive X-ray analysis observations showed the formation of a silica polymeric film on the wood samples, directly bonding with the wood constituents. Inductively Coupled Plasma-Mass Spectroscopy quantification of Si showed a direct correlation between the treatment time and silica deposition on the surface of the wood. The silica-coated wood counteracted colonisation by the main wine spoilage microorganisms, without altering the migration from wood to wine of 21 simple phenols measured using a HPLC-Electrochemical Coulometric Detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Electrical properties of (1 0 0)-predominant BaTiO3 films derived from alkoxide solutions of two concentrations

    International Nuclear Information System (INIS)

    Guo Yiping; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi; Kato, Kazumi

    2006-01-01

    Lead-free piezoelectric films with thickness larger than 1 μm integrated on silicon substrates have been receiving considerable attention because of environmental concerns and their potential applications in microelectromechanical systems. We demonstrate that, by chemical solution deposition, it is possible to process (1 0 0)-predominant 1 μm BaTiO 3 films on LaNiO 3 /Pt/TiO x /SiO 2 /Si substrates using thinner high-crystallinity columnar BaTiO 3 films as buffer layers. We point out that this kind of buffer layer prepared with a lower concentration solution on the surface of an LaNiO 3 /Pt electrode is effective in enhancing the crystallinity and orientation degree of final BaTiO 3 films prepared with a higher concentration solution. The 1 μm BaTiO 3 films show good dielectric and insulating characteristics against an applied field, and the conduction current shows Schottky emission behavior at modest voltage and space-charge-limited behavior at higher voltage. We also demonstrate that the (1 0 0)-predominant 1 μm BaTiO 3 films have excellent piezoelectric properties: piezoelectric coefficients d 33 higher than 50 pm/V have been determined for the bare films using atomic force microscopy, which are comparable to those of Pb(Zr,Ti)O 3 films. These results indicate that the (1 0 0)-predominant BaTiO 3 films should be promising candidates for microelectromechanical systems applications

  10. Formation of TiO2 domains in Poly (9-vinylcarbazole) thin film by hydrolysis-condensation of a metal alkoxide

    International Nuclear Information System (INIS)

    Barlier, V.; Bounor-Legare, V.; Alcouffe, P.; Boiteux, G.; Davenas, J.

    2007-01-01

    New organic-inorganic hybrid thin films based on Poly (9-vinylcarbazole) (P9VK) and Dioxide titanium (TiO 2 ) bulk-heterojunction were obtained by a hydrolysis-condensation (H-C) process of titanium (IV) isopropoxide in thin film. The TiO 2 distribution in the film was investigated by scanning electron microscopy. The results indicated that homogeneous TiO 2 particles around 100 nm were formed on the surface of the polymer thin film. Photoluminescence spectroscopy has been used to study the charge transfer efficiency in the photoactive layer and results were compared with a simplest elaboration route, the dispersion of TiO 2 anatase in a P9VK solution before spin coating. Results showed that TiO 2 elaborated by H-C exhibits a competitive quenching effect with TiO 2 anatase

  11. The role of ether-functionalized ionic liquids in the sol–gel process: effects on the initial alkoxide hydrolysis steps

    Czech Academy of Sciences Publication Activity Database

    Donato, Ricardo Keitel; Lavorgna, M.; Musto, P.; Donato, Katarzyna Zawada; Jäger, Alessandro; Štěpánek, Petr; Schrekker, H. S.; Matějka, Libor

    2015-01-01

    Roč. 447, 1 June (2015), s. 77-84 ISSN 0021-9797 R&D Projects: GA ČR GAP108/12/1459; GA MŠk(CZ) LH14292 Institutional support: RVO:61389013 Keywords : ether-functionalized ionic liquids * sol–gel silica * multiple hydrogen -bonds Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.782, year: 2015

  12. Masked N-Heterocyclic Carbene-Catalyzed Alkylation of Phenols with Organic Carbonates.

    Science.gov (United States)

    Lui, Matthew Y; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2016-09-08

    An easily prepared masked N-heterocyclic carbene, 1,3-dimethylimidazolium-2-carboxylate (DMI-CO2 ), was investigated as a "green" and inexpensive organocatalyst for the alkylation of phenols. The process made use of various low-toxicity and renewable alkylating agents, such as dimethyl- and diethyl carbonate, in a focused microwave reactor. DMI-CO2 was found to be a very active catalyst and excellent yields of a range of aryl alkyl ethers were obtained under relatively benign conditions. The observed difference in the conversion behavior of phenol methylation, in the presence of either the carbene or 1,8-diazabicycloundec-7-ene (DBU) catalyst, was rationalized on the basis of mechanistic investigations. The primary mode of action for the N-heterocyclic carbene is nucleophilic catalysis. Activation of the dialkyl carbonate electrophile results in concomitant evolution of an organo-soluble alkoxide, which deprotonates the phenolic starting material. In contrast, DBU is initially protonated by the phenol and thus consumed. Subsequent regeneration and participation in nucleophilic catalysis only becomes significant after some phenolate alkylation occurs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huang Hai; Xie Qiuping; Kang Muxing; Zhang Bo; Wu Yulian [Department of Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Zhang Hui; Chen Jin; Zhai Chuanxin; Yang Deren [State Key Lab of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang Biao, E-mail: wuyulian@medmail.com.c, E-mail: yulianwu2003@yahoo.c [Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2009-09-09

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet {beta}-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into {beta}-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  14. MODIFICAÇÃO DE MEMBRANA DE POLIAMIDA VIA SOL-GEL E INCORPORAÇÃO DE COMPOSTO DE EURÓPIO (III LUMINESCENTE

    Directory of Open Access Journals (Sweden)

    Érica A. de Souza

    Full Text Available Over the last decades, the combination of different technologies to search for systems with new properties and features has brought various segments of biological and earth sciences together. Additive manufacturing, known as rapid prototyping, combined with the sol-gel methodology enables the production of novel systems with applications in many scientific fields. In this work, flexible polyamide membranes were obtained by additive manufacturing, functionalized by the sol-gel methodology, and incorporated with the coordination compound between Eu(III and 1,10-phenanthroline. The presence of vibrations at 1100 cm-1 in the FTIR spectrum of the material, which is a band typical of the Si-O-Si group in the alkoxide employed during the process, confirmed the polyamide membrane functionalization. The thermogravimetric curve showed that a residue remained after heating at 700 ºC, which was attributed to SiO2. The membrane was highly luminescent, which confirmed incorporation of the Eu3+ compound into the material and pointed to the possible application of this system as a topical medication for the treatment of skin diseases.

  15. Preparation and tribological properties of inclusion complex of β-cyclodextrin/dialkyl pentasulfide as additive in PEG-600 aqueous solution

    International Nuclear Information System (INIS)

    Guan, Jiju; Xu, Xuefeng; Li, Gan; Peng, Wei

    2014-01-01

    The inclusion complex of β-cyclodextrin (β-CD) and dialkyl pentasulfide (DPS), in which DPS was incorporated into β-CD cavities, was prepared by a co-precipitation method. The tribological properties of the complex used as lubricant additive in PEG 600 aqueous solution were investigated by a four-ball tester. The complex exhibited better tribological properties than β-CD under different loads, and also showed better anti-friction performance than DPS in the latter half of the test duration. The tribological action mechanism of the complex on a steel surface was studied according to the X-ray photoelectron spectroscopy (XPS) analyses. The β-CD molecules of the complexes were decomposed into various molecular fragments and the DPS molecules were released under the friction condition. It revealed that thiolate and ferrous sulfide (FeS) films formed by DPS played a major role, and iron alkoxide and carbon deposition films formed by the friction fragments of β-CD mainly exhibited anti-friction property on FeS-to-FeS interface. The interactions among different films led to the formation of a mixed boundary lubrication film.

  16. Switchable Synthesis of 4,5-Functionalized 1,2,3-Thiadiazoles and 1,2,3-Triazoles from 2-Cyanothioacetamides under Diazo Group Transfer Conditions.

    Science.gov (United States)

    Filimonov, Valeriy O; Dianova, Lidia N; Galata, Kristina A; Beryozkina, Tetyana V; Novikov, Mikhail S; Berseneva, Vera S; Eltsov, Oleg S; Lebedev, Albert T; Slepukhin, Pavel A; Bakulev, Vasiliy A

    2017-04-21

    High yield solvent-base-controlled, transition metal-free synthesis of 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles from 2-cyanothioacetamides and sulfonyl azides is described. Under diazo transfer conditions in the presence of a base in an aprotic solvent 2-cyanothioacetamides operating as C-C-S building blocks produce 5-amino-4-cyano-1,2,3-thiadiazoles exclusively. The use of alkoxide/alcohol system completely switches the reaction course due to the change of one of the reaction centers in the 2-cyanothioacetamide (C-C-N building block) resulting in the formation of 5-sulfonamido-1,2,3-triazole-4-carbothioamide sodium salts as the only products. The latter serve as good precursors for 5-amino-1,2,3-thiadiazole-4-carboximidamides, the products of Cornforth-type rearrangement occurring in neutral protic medium or under acid conditions. According to DFT calculations (B3LYP/6-311+G(d,p)) the rearrangement proceeds via intermediate formation of a diazo compound, and can be catalyzed by acids via the protonation of oxygen atom of the sulfonamide group.

  17. Thermal plasma fabricated lithium niobate-tantalate films on sapphire substrate

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Yoshida, T.; Yamamoto, H.; Terashima, K.

    2003-01-01

    We report the deposition of LiNb 1-x Ta x O 3 (0≤x≤1) films on (001) sapphire substrates in soft vacuum using a radio frequency thermal plasma. The growth rate, crystallinity, c-axis orientation, and surface roughness were examined as functions of substrate temperature, precursor feed rate, and substrate surface condition. The film Nb/Ta ratio was well controlled by using an appropriate uniform mixture of lithium-niobium and lithium-tantalum alkoxide solutions. The epitaxy and crystallinity of the films were much improved when the film growth rate was raised from 20 to 180-380 nm/min, where the films with the (006) rocking curve full width at half maximum values as low as 0.12 deg. -0.2 deg. could be produced. The film roughness could be reduced by using a liquid precursor with higher metal concentrations, achieving the root-mean-square value on the order of 5 nm. The refractive indices of the films are in good correspondence with their composition and crystallinity

  18. Synthesis of nano-sized MgO particle and thin film from diethanolamine-stabilized magnesium-methoxide

    International Nuclear Information System (INIS)

    Jung, Hyun Suk; Lee, J.-K.; Young Kim, J.; Hong, Kug Sun

    2003-01-01

    The effects of diethanolamine (DEA) addition on the crystallization behavior of magnesium methoxide and the stabilization behavior of the Mg-alkoxide were investigated using differential scanning calorimetry, thermogravimetry, X-ray powder diffraction, transmission electron microscopy, and X-ray photoemission spectroscopy. 20 mol% DEA additions to magnesium methoxide showed enhanced stability such that a time-dependent change in the sol was not observed in air. Moreover, the DEA addition enhanced the crystallization process. Crystalline MgO in the 20 mol% of DEA-added magnesium methoxide powder was observed at 300 deg. C for samples processed in O 2 and a high degree of crystallinity was observed at 400 deg. C when processed in O 2 . The enhanced crystallization of Mg-methoxide with added DEA in O 2 is discussed in terms of structural relaxation and heat generation during the ignition of an organic species of DEA. Using a DEA added sol, a MgO thin film with a high degree of crystallinity was prepared at 400 deg. C in O 2

  19. Metal-Free Alternating Copolymerization of CO2with Epoxides: Fulfilling “Green” Synthesis and Activity

    KAUST Repository

    Zhang, Dongyue

    2016-08-16

    Polycarbonates were successfully synthesized for the first time through the anionic copolymerization of epoxides with CO2, under metal-free conditions. Using an approach based on the activation of epoxides by Lewis acids and of CO, by appropriate cations, well-defined alternating copolymers made of CO, and propylene oxide (PO) or cyclohexene oxide (CHO) were indeed obtained. Triethyl borane was the Lewis acid chosen to activate the epoxides, and onium halides or onium alkoxides involving either ammonium, phosphonium, or phosphazenium cations were selected to initiate the copolymerization. In the case of PO, the carbonate content of the poly(propylene carbonate) formed was in the range of 92-99% and turnover numbers (TON) were close to 500; in the case of CHO perfectly alternating poly(cyclohexene carbonate) were obtained and TON values were close to 4000. The advantages of such a copolymerization system are manifold: (i) no need for multistep catalyst/ligand synthesis as in previous works; (ii) no transition metal involved in the copolymer synthesis and therefore no coloration of the samples isolated; and (iii) no necessity for postsynthesis purification.

  20. Partial Oxidation of n-Butane over a Sol-Gel Prepared Vanadium Phosphorous Oxide

    Directory of Open Access Journals (Sweden)

    Juan M. Salazar

    2013-01-01

    Full Text Available Vanadium phosphorous oxide (VPO is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO4∙0.5H2O (the precursor followed by in situ activation to produce (VO2P2O7 (the active phase. This paper discusses an alternative synthesis method based on sol-gel techniques. Vanadium (V triisopropoxide oxide was reacted with ortho-phosphoric acid in an aprotic solvent. The products were dried at high pressure in an autoclave with a controlled excess of solvent. This procedure produced a gel of VOPO4 with interlayer entrapped molecules. The surface area of the obtained materials was between 50 and 120 m2/g. Alcohol produced by the alkoxide hydrolysis reduced the vanadium during the drying step, thus VOPO4 was converted to the precursor. This procedure yielded non-agglomerated platelets, which were dehydrated and evaluated in a butane-air mixture. Catalysts were significantly more selective than the traditionally prepared materials with similar intrinsic activity. It is suggested that the small crystallite size obtained increased their selectivity towards maleic anhydride.

  1. Synthesis and characterisation of the hollandite solid solution Ba1.2-xCsxFe2.4-xTi5.6+xO16 for partitioning and conditioning of radiocaesium

    Science.gov (United States)

    Bailey, Daniel J.; Stennett, Martin C.; Mason, Amber R.; Hyatt, Neil C.

    2018-05-01

    The geological disposal of high level radioactive waste requires careful budgeting of the heat load produced by radiogenic decay. Removal of high-heat generating radionuclides, such as 137Cs, reduces the heat load in the repository allowing the remaining high level waste to be packed closer together therefore reducing demand for repository space and the cost of the disposal of the remaining wastes. Hollandites have been proposed as a possible host matrix for the long-term disposal of Cs separated from HLW raffinate. The incorporation of Cs into the hollandite phase is aided by substitution of cations on the B-site of the hollandite structure, including iron. A range of Cs containing iron hollandites were synthesised via an alkoxide-nitrate route and the structural environment of Fe in the resultant material characterised by Mössbauer and X-ray Absorption Near Edge Spectroscopy. The results of spectroscopic analysis found that Fe was present as octahedrally co-ordinated Fe (III) in all cases and acts as an effective charge compensator over a wide solid solution range.

  2. Synthesis of amorphous zirconium oxide with luminescent characteristics; Sintesis de oxido de circonio amorfo con caracteristicas luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera S, M; Chavez G, M; Soto E, A M; Velasquez O, C; Garcia S, M A; Olvera T, L; Rivera M, T [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    It was prepared zirconium oxide, ZrO{sub 2}, by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C{sub 3}H{sub 7}O){sub 4}, as precursor and nitric acid, HNO{sub 3}, as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n{sub H2O}/n{sub Zr}(C{sub 3}H{sub 7}0){sub 4}, high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO{sub 2} obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO{sub 2}, presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of {sup 90}Sr/{sup 90}Y and it was thermally stimulated. (Author)

  3. Synthesis and luminescence properties of cinnamide based nanohybrid materials containing Eu (II) ions

    Science.gov (United States)

    Kiran Kumar, A. B. V.; Jayasimhadri, M.; Cha, Hyeongrae; Chen, Kuangcai; Lim, Jae-Min; Lee, Yong-Ill

    2011-07-01

    In the present work, the cinnamide based organic-inorganic hybrid luminescent materials were prepared by using sol-gel technique, in which both the components are covalently linked via Si-C bonds. The organic precursor N-(3-(triethoxysilyl)propyl)cinnamide (Cn-Si) was synthesized by (3-aminopropyl) triethoxysilane being reacted with cinnamoyal chloride. Finally, novel hybrid materials were prepared successfully through hydrolysis and polycondensation processes between the alkoxide groups of precursors Cn-Si and tetraethylorthosilane (TEOS) in the presence of europium nitrate. We have characterized thoroughly the prepared samples using FT-IR, thermal analysis (TGA/DTA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and photoluminescence (PL) spectroscopy. The results indicate that these materials exhibit the excellent thermal stability up to 350 °C. The X-ray diffraction patterns confirmed the amorphous nature of the developed materials. The rare-earth doped hybrid materials have exhibited an intense green emission at 530 nm with CIE chromaticity coordinates (0.4801, 0.4669). Whereas, the un-doped one gives some remarkable blue emission properties under UV excitation.

  4. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Huang Hai; Xie Qiuping; Kang Muxing; Zhang Bo; Wu Yulian; Zhang Hui; Chen Jin; Zhai Chuanxin; Yang Deren; Jiang Biao

    2009-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  5. Sol-gel processing of glasses and glass-ceramics for microelectronic packaging

    International Nuclear Information System (INIS)

    Sriram, M.A.; Kumta, P.N.

    1992-01-01

    In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speeds calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glass-ceramic materials have been identified over the years which show good promise as candidate substrate materials. among these borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant. This paper reports that sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, Differential thermal analyses and FTIR have been used to characterize the as-prepared and heat treated gels

  6. Effect of Precursor Concentration of MgO nanostructure by using Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    V.T. Srisuvetha

    2017-04-01

    Full Text Available MgO thin flims have been prepared on substrates by a novel and simple sol-gel method using magnesium nitrate and collusion as starting material.The MgO nano catalyst with good sensor crystallization were obtained after annealing at 100°C Magnesium oxide was prepared by sol-gel method. The method involves the hydrolysis of magnesium alkoxide in the presence of acid or basic catalysts followed by a Oxalic acid reaction. The synthesized solids were characterized by IR spectroscopy X-ray diffraction electron microscopy. Ultraviolet visible absorbance measurement photoluminescence and Raman scattering spectra. X-ray diffraction (XRD characterization showed the formation of smaller particles after sol gel irradiation the structure and morphology of the MgO particles were analyzed byXRD. These articles were used for FTIR spectroscopic measurement and spectra were collected. In EDS we calculated the peak intensity the SEM the images of metal oxide.UV (Ultra Violet refers to adsorption spectroscopy optical properties of assorption, band gap energy.This means if use light in the visible and adjacent ranges.

  7. Microstructure evolution, thermal stability and fractal behavior of water vapor flow assisted in situ growth poly(vinylcarbazole)-titania quantum dots nanocomposites

    Science.gov (United States)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Alvaro W.

    2017-12-01

    Here, we report a novel strategy for the preparation of TiO2 quantum dots fillers prepared from alkoxide precursor via in situ water vapor flow diffusion into poly(N-vinylcarbazole) host. A detailed characterization by means of infrared and Raman spectroscopy, X-ray powder diffraction, small angle X-ray scattering and differential scanning calorimetry is reported. The growth mechanism of both crystallites and particles was mostly governed by the classical coarsening reaction limited growth and the polymer host showed no detectable chemical modifications at the interface or active participation in the growing process. The main relevance of our strategy respect to the typical sol-gel growth in solution is the possibility of the interruption of the reaction by simple stopping the water vapor flow diffusion into the polymer host thus achieving good control in the nanoparticles size. The thermal stability and fractal behavior of our nanocomposites were also studied by differential scanning calorimetry and in situ small angle X-ray scattering versus temperature. Strong correlations between modifications in the fractal behavior and glass transition or fusion processes were observed for these nanocomposites.

  8. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.

    Science.gov (United States)

    Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-05

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

  9. Sol-gel growth of vanadium dioxide

    International Nuclear Information System (INIS)

    Speck, K.R.

    1990-01-01

    This thesis examines the chemical reactivity of vanadium (IV) tetrakis(t-butoxide) as a precursor for the sol-gel synthesis of vanadium dioxide. Hydrolysis and condensation of the alkoxide was studied by FTIR spectroscopy. Chemical modification of the vanadium tetraalkoxide by alcohol interchange was studied using 51 V NMR and FTIR. Vanadium dioxide thin films and powders were made from vanadium tetrakis(t-butoxide) by standard sol-gel techniques. Post-deposition heating under nitrogen was necessary to transform amorphous gels into vanadium dioxide. Crystallization of films and powders was studied by FTIR, DSC, TGA, and XRD. Gel-derived vanadium dioxide films undergo a reversible semiconductor-to-metal phase transition near 68C, exhibiting characteristic resistive and spectral changes. The electrical resistance decreased by two to three orders of magnitude and the infrared transmission sharply dropped as the material was cycled through this thermally induced phase transition. The sol-gel method was also used to make doped vanadium dioxide films. Films were doped with tungsten and molybdenum ions to effectively lower the temperature at which the transition occurs

  10. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.

    Science.gov (United States)

    Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker

    2018-04-25

    Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    Energy Technology Data Exchange (ETDEWEB)

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectron spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.

  12. A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules.

    Science.gov (United States)

    Tsunehiro, Masaya; Meki, Yuma; Matsuoka, Kanako; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2013-04-15

    A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effect of Diethanolamine on Property of Thin Film TiO2 in Treating Hexavalent Chromium from Aqueous Solution

    International Nuclear Information System (INIS)

    Kajitvichyanukul, Puangrat; Jirapattarasakul, Sudarat

    2006-01-01

    In this research titanium dioxide thin film was synthesized from hydrolysis and condensation process by sol-gel method. Titanium alkoxide was used as initial substrate. The solvent was ethanal and the additive substance was diethanolamine. All substances are mixed altogether in different ratios. To study the effect of diethanolamine on properties of titanium dioxide thin film, various film analysis were performed which included mass weighing, adhesive test, corrosion test using acid and alkali, surface morphology analysis with scanning electron microscope (SEM), thin film structure analysis using X-ray diffraction (XRD), and photo activity by chromium removal test. It was found that diethanolmine enhanced the film strength and improved the adhesive property. The smooth surface was obtained. This thin film showed the effectiveness in chromium removal with high photo activity. Even tough the developed thin film can remove chromium (VI) efficiently, the reaction rate constant (k) was slightly reduced from that using the normal thin film titanium dioxide (without adding diethanolamine). In addition, the reaction time is required little longer to accomplish the chromium (VI) removal with the same performance

  14. A practical technique for the fabrication of highly ordered macroporous structures of inorganic oxides

    International Nuclear Information System (INIS)

    Tang Fengqiu; Uchikoshi, Tetsuo; Sakka, Yoshio

    2006-01-01

    Well-defined macroporous ceramics consisting of SiO 2 , TiO 2 and ZrO 2 have been fabricated via a template-assisted colloidal processing technique. Close-packed polymer spheres were first prepared as a template using centrifugation or gravitational sedimentation, followed by infiltration with alkoxide precursors. The centrifugation should be preferred because it is a less time-consuming process and the materials are better ordered. The removal of the template beads was achieved by calcination of the organic-inorganic hybrids at appropriate temperatures, yielding well-ordered macroporous ceramics. The arrangement of the porous structures could be changing the preparation of the packed polymer templates. Some novel arrangements of macropores were obtained in these macroporous ceramics: a simple square-packed arrangement for SiO 2 , the coexistence of hexagonal close-packed and simple close-packed arrangements for TiO 2 , and face-centered cubic packed arrangement for ZrO 2 . The resulting highly structured ceramics could have applications in areas ranging from quantum electronics to photocatalysis and battery materials

  15. Coupling of biologically active steroids to conjugating arms through ether linkages for use in immunochemistry.

    Science.gov (United States)

    Kohl, Michel J; Lejeune, Robert G

    2002-01-01

    Conjugation of haptens through ether linkages avoids leakage problems in immunoassays, but this procedure is not easily applied to most steroids that bear low reacting hydroxyls. A new technique allowing the ether coupling of biologically active steroids with conjugating arms in mild conditions compatible with thermosensitive protecting groups is presented. In the first step, the solvent (an aromatic hydrocarbon) was dehydrated by azeotropic distillation in a soxhlet apparatus using a cartridge filled with 0.3 nm and 0.4 nm molecular sieves. In this protected medium, a thallium steroid alkoxide was completely formed by reaction of the steroid with thallium ethoxide and by the continuous elimination of ethanol. The halogenated chain was then introduced into the same medium and reacted in the absence of moisture to give the ether. 17beta-Hydroxy and 11alpha-hydroxy derivatives were involved in this reaction. The coupling was effective for all of the compounds tested after 2-36 h of reaction time and at temperatures between 80 and 140 degrees C. The conjugates were at least 95% pure, and yields ranged from 15 to 95%.

  16. Radiation effects in uranium-niobium titanates

    International Nuclear Information System (INIS)

    Lian, J.; Wang, S.X.; Wang, L.M.; Ewing, R.C.

    2000-01-01

    Pyrochlore is an important actinide host phase proposed for the immobilization of high level nuclear wastes and excess weapon plutonium.[1] Synthetic pyrochlore has a great variety of chemical compositions due to the possibility of extensive substitutions in the pyrochlore structure.[2] During the synthesis of pyrochlore, additional complex titanate phases may form in small quantities. The response of these phases to radiation damage must be evaluated because volume expansion of minor phases may cause micro-fracturing. In this work, two complex uranium-niobium titanates, U 3 NbO 9.8 (U-rich titanate) and Nb 3 UO 10 (Nb-rich titanate) were synthesized by the alkoxide/nitrate route at 1300 deg. C under an argon atmosphere. The phase composition and structure were analyzed by EDS, BSE, XRD, EMPA and TEM techniques. An 800 KeVKr 2+ irradiation was performed using the IVEM-Tandem Facility at Argonne National Laboratory in a temperature range from 30 K to 973 K. The radiation effects were observed by in situ TEM

  17. Mechanistic studies aimed at the development of single site metal alkoxide catalysts for the production of polyoxygenates from renewable resources.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Malcolm H. [The Ohio State Univ., Columbus, OH (United States)

    2015-12-15

    The work proposed herein follows on directly from the existing 3 year grant and the request for funding is for 12 months to allow completion of this work and graduation of current students supported by DOE. The three primary projects are as follows. 1.) A comparative study of the reactivity of LMg(OR) (solvent), where L= a β-diiminate or pyrromethene ligand, in the ring-opening of cyclic esters. 2.) The homopolymerization of expoxides, particularly propylene oxide and styrene oxide, and their copolymerizations with carbon dioxide or organic anhydrides to yield polycarbonates or polyesters, respectively. 3.) The development of well-defined bismuth (III) complexes for ring-opening polymerizations that are tolerant of both air and water. In each of these topics special emphasis is placed on developing a detailed mechanistic understanding of the ring-opening event and how this is modified by the employment of specific metal and ligand combinations. This document also provides a report on findings of the past grant period that are not yet in the public domain/published and shows how the proposed work will bring the original project to conclusion.

  18. Estudio de la hidrólisis del trietilborato por espectroscopía infrarroja: evaluación de geles de borosilicato

    Directory of Open Access Journals (Sweden)

    Peña-Alonso, R.

    2007-10-01

    Full Text Available Triethylborate (TEB is a boron alkoxide largely used in the synthesis of sol-gel prepared materials. This method requires the hydrolysis and condensation of the synthesis reagents, usually alkoxides, for obtaining a gel which can be transformed into different materials, such as glasses or ceramics, as a function of the thermal treatment applied. Infrared spectroscopy is one of the routine techniques used in the study of the sol-gel reaction due to the easy handling of the sample and the fast speed of the analysis. In this work, the study of the hydrolysis and condensation reactions of TEB is carried out by studying their vibrational bands located at 893 cm-1, which shows a continuous decrease as the hydrolysis is performed, and 1194 cm-1, which increases with the proceed of the condensation. A proposed calibration line for the quantitative analysis of the hydrolysis extension of TEB in several TEOS-TEB gels evidence that between 20 and 33% of the TEB molecules have not been hydrolysed during the sol-gel reaction for forming such gels.

    El trietilborato (TEB es un alcóxido de boro muy usado en las síntesis de materiales preparados por el método sol-gel. Este método implica la hidrólisis y condensación de los reactivos de síntesis, generalmente alcóxidos, para obtener un gel que posteriormente puede dar lugar a diversos tipos de materiales, tanto cerámicos como vítreos, dependiendo del tratamiento térmico posterior. Una de las técnicas de rutina empleadas en el seguimiento de las reacciones sol-gel es la espectroscopía infrarroja por la facilidad de manipulación de la muestra y rapidez del análisis. En este trabajo se realiza un estudio de las reacciones de hidrólisis y condensación del alcóxido TEB a través del seguimiento de las bandas de absorción situadas a 893 cm-1, que muestra una disminución a medida que avanza la hidrólisis del alcóxido, y 1194 cm-1 que crece con el avance de la condensación. La recta de

  19. Thermochemical Stability and Friction Properties of Soft Organosilica Networks for Solid Lubrication

    Directory of Open Access Journals (Sweden)

    Pablo Gonzalez Rodriguez

    2018-01-01

    Full Text Available In view of their possible application as high temperature solid lubricants, the tribological and thermochemical properties of several organosilica networks were investigated over a range of temperatures between 25 and 580 °C. Organosilica networks, obtained from monomers with terminal and bridging organic groups, were synthesized by a sol-gel process. The influence of carbon content, crosslink density, rotational freedom of incorporated hydrocarbon groups, and network connectivity on the high temperature friction properties of the polymer was studied for condensed materials from silicon alkoxide precursors with terminating organic groups, i.e., methyltrimethoxysilane, propyltrimethoxysilane, diisopropyldimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane and 4-biphenylyltriethoxysilane networks, as well as precursors with organic bridging groups between Si centers, i.e., 1,4-bis(triethoxysilylbenzene and 4,4′-bis(triethoxysilyl-1,1′-biphenyl. Pin-on-disc measurements were performed using all selected solid lubricants. It was found that materials obtained from phenyltrimethoxysilane and cyclohexyltrimethoxysilane precursors showed softening above 120 °C and performed best in terms of friction reduction, reaching friction coefficients as low as 0.01. This value is lower than that of graphite films (0.050 ± 0.005, a common bench mark for solid lubricants.

  20. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M.G.S.

    2008-01-01

    This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach. Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds. The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling

  1. Phase formation of V2O5.xNb2O5 compounds via gels and freeze-dried precursors

    International Nuclear Information System (INIS)

    Langbein, Hubert; Mayer-Uhma, Tobias

    2009-01-01

    An X-ray powder diffraction study of the phase formation in the system V 2 O 5 /Nb 2 O 5 is performed. Freeze-dried ammonium vanadate and ammonium oxalato niobate, alkoxide-derived xerogels and a mixture of active oxides are used as precursors to compare the resulting phase composition. Thermal decomposition of the freeze-dried precursor is monitored with DTA/TG and mass spectrometry. In the quasi-binary system V 2 O 5 -Nb 2 O 5 metastable VNbO 5 , V 4 Nb 18 O 55 , VNb 9 O 25 and solid solutions of V 2 O 5 in TT-Nb 2 O 5 as also thermodynamically stable VNb 9 O 25 exist. The thermal decomposition of freeze-dried vanadate-oxalatoniobate solution allows the synthesis of all these phases in a relative simple manner. Structural relationships between an intermediate phase and the product, or, in the case of solid-state reactions, between one of the starting oxide and the product, favour the desired reaction. Therefore, the structure of a former phase influences or directs the structure of the product similar to a topotactic reaction

  2. Synthesis and characterization of TiC nanopowders via sol-gel and subsequent carbothermal reduction process

    Science.gov (United States)

    Chen, Xu; Fan, Jinglian; Lu, Qiong

    2018-06-01

    TiC nanocrystalline powders were synthesized by in-situ carbothermic reduction of Ti-O-C precursor under vacuum atmosphere. And the Ti-O-C precursor was formed by sol-gel method from titanium butyrate (TBOT) and sucrose. To obtain stable sol, TBOT was directly added into mixed solution which contains water, sucrose, acetic acid (AcOH) and acetylacetone (ACAC). This procedure is more convenient and economical because it avoids the use of alcohol which is used as solvent in most reports of alkoxide hydrolysis sol-gel method. TG-DSC, XRD, FTIR and SEM/TEM were employed to analyze and characterize the product during the entire process. The phase composition and crystalline structure parameters of powders with different C/Ti molar ratio were investigated by Rietveld refinement method, and elemental quantitative analysis of the samples were performed. Furthermore, the optimal parameters of carbothermal reduction were obtained and the grain growth mechanism was demonstrated. The results show that TiC nanocrystalline powders (C/Ti molar ratio is 3.5 in the precursor) were synthesized at 1300 °C for 2 h, which have near standard lattice parameter, well crystallinity and fine average grain size ( 37.4 nm).

  3. Study of an industrial process for the synthesis of high molar mass ethylene oxide-propylene oxide copolymers usable as extrusible electrolyte; Etude d`un procede industriel de synthese de copolymeres oxyde d`ethylene-oxyde de propylene de hautes masses molaires utilisables comme electrolyte extrudable

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Caselles, E. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)

    1996-12-31

    The aim of this work is to develop an industrial process for the synthesis of an extrusible electrolyte polymer for lithium batteries. From literature data and precise specifications the high molar mass EO/OP copolymers synthesis by coordinative catalysis has been studied in order to reach a high productivity and to minimize the treatment steps. Two catalytic systems have been studied: the aluminium alkoxide-based Vandenberg-type catalysis and the calcium alcoholate amides catalysis. The first catalysis performed in solution gives excellent results. Its adaptation to silicon supported catalysis leads to a directly usable polymer in suspension but the productivity falls down and remains to be optimized. The calcium amide catalysis in heptane suspension generates acceptable productivities but also a too high proportion of low molar masses. Various approaches have been studied to minimize this proportion due to the presence of secondary sites that generate a cationic mechanism. The two synthesis ways explored are promising but remain to be optimized in order to increase the productivity of the efficient catalytic site and to reduce the formation of low molar masses generated by parasite catalytic sites. (J.S.) 9 refs.

  4. Study of an industrial process for the synthesis of high molar mass ethylene oxide-propylene oxide copolymers usable as extrusible electrolyte; Etude d`un procede industriel de synthese de copolymeres oxyde d`ethylene-oxyde de propylene de hautes masses molaires utilisables comme electrolyte extrudable

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Caselles, E [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)

    1997-12-31

    The aim of this work is to develop an industrial process for the synthesis of an extrusible electrolyte polymer for lithium batteries. From literature data and precise specifications the high molar mass EO/OP copolymers synthesis by coordinative catalysis has been studied in order to reach a high productivity and to minimize the treatment steps. Two catalytic systems have been studied: the aluminium alkoxide-based Vandenberg-type catalysis and the calcium alcoholate amides catalysis. The first catalysis performed in solution gives excellent results. Its adaptation to silicon supported catalysis leads to a directly usable polymer in suspension but the productivity falls down and remains to be optimized. The calcium amide catalysis in heptane suspension generates acceptable productivities but also a too high proportion of low molar masses. Various approaches have been studied to minimize this proportion due to the presence of secondary sites that generate a cationic mechanism. The two synthesis ways explored are promising but remain to be optimized in order to increase the productivity of the efficient catalytic site and to reduce the formation of low molar masses generated by parasite catalytic sites. (J.S.) 9 refs.

  5. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  6. Electro-Caloric Properties of BT/PZT Multilayer Thin Films Prepared by Sol-Gel Method.

    Science.gov (United States)

    Kwon, Min-Su; Lee, Sung-Gap; Kim, Kyeong-Min

    2018-09-01

    In this study, Barium Titanate (BT)/Lead Zirconate Titanate (PZT) multilayer thin films were fabricated by the spin-coating method on Pt (200 nm)/Ti (10 nm) SiO2 (100 nm)/P-Si (100) substrates using BaTiO3 and Pb(Zr0.90Ti0.10)O3 metal alkoxide solutions. The coating and heating procedure was repeated several times to form the multilayer thin films. All of BT/PZT multilayer thin films show X-ray diffraction patterns typical to a polycrystalline perovskite structure and a uniform and void free grain microstructure. The thickness of the BT and PZT film by one-cycle of drying/sintering was approximately 50 nm and all of the films consisted of fine grains with a flat surface morphology. The electrocaloric properties of BT/PZT thin films were investigated by indirect estimation. The results showed that the temperature change ΔT can be calculated as a function of temperature using Maxwell's relation; the temperature change reaches a maximum value of ~1.85 °C at 135 °C under an applied electric field of 260 kV/cm.

  7. Minute-made and low carbon fingerprint microwave synthesis of high quality templated mesoporous silica

    KAUST Repository

    Chaignon, J.; Bouizi, Y.; Davin, L.; Calin, N.; Albela, B.; Bonneviot, L.

    2015-01-01

    © The Royal Society of Chemistry 2015. Hexagonal mesostructured templated silicas were produced in less than 10 minutes using an ultra-fast microwave assisted hydrothermal synthesis. Typically, 10 g can be prepared at once in a commercial microwave device usually devoted to analytical digestion. Undesired alcohol side-products were avoided using inexpensive water colloidal silica instead of silicon alkoxides as the silicon source. In comparison with classical heating activation, the absence of pore expansion and pore wall thickening even for synthesis temperatures as high as 190 °C evidenced that heat transfer and diffusion of matter had no time to take place. Comparison between the chemically extracted and calcined samples shows that the structure was better stabilized for autoclaving above 150 °C. However, a fast temperature ramping and final temperatures above 180 °C were required to sear structures of the highest quality comparable to that of the best conventional methods. This is rationalized by assuming a sequential flake-by-flake assembly of the pore-wall at the micelle palisade. Notably, tosylate counterions yielded better structural characteristics than bromide counterions and allowed better opportunities for surfactant recycling.

  8. Synthesis and Characterization of Upconversion Fluorescent Yb3+, Er3+ Doped CsY2F7 Nano- and Microcrystals

    Directory of Open Access Journals (Sweden)

    Helmut Schäfer

    2009-01-01

    Full Text Available Cs Y2F7: 78%   Y3+, 20%   Yb3+, 2%   Er3+ nanocrystals with a mean diameter of approximately 8 nm were synthesized at   185°C in the high boiling organic solvent N-(2-hydroxyethyl-ethylenediamine (HEEDA using ammonium fluoride, the rare earth chlorides and a solution of caesium alkoxide of N-(2-hydroxyethyl-ethylenediamine in HEEDA. In parallel with this approach, a microwave assisted synthesis was carried out which forms nanocrystals of the same material, about 50 nm in size, in aqueous solution at 200∘C/8 bar starting from ammonium fluoride, the rare earth chlorides, and caesium fluoride. In case of the nanocrystals, derived from the HEEDA synthesis, TEM images reveal that the particles are separated but have a broad size distribution. Also an occurred heat-treatment of these nanocrystals (600∘C for 45 minutes led to bulk material which shows highly efficient light emission upon continuous wave (CW excitation at 978 nm. Besides the optical properties, the structure and the morphology of the three products were investigated by means of powder XRD and Rietveld method.

  9. Titanium dioxide nanoparticles: synthesis, X-Ray line analysis and chemical composition study

    Energy Technology Data Exchange (ETDEWEB)

    Chenari, Hossein Mahmoudi, E-mail: mahmoudi_hossein@guilan.ac.ir, E-mail: h.mahmoudiph@gmail.com [University of Guilan, Rasht (Iran, Islamic Republic of); Seibel, Christoph; Hauschild, Dirk; Reinert, Friedrich [Karlsruhe Institute of Technology - KIT, Gemeinschaftslabor für Nanoanalytik, Karlsruhe (Germany); Abdollahian, Hossein [Nanotechnology Research Center of Urmia University, Urmia, (Iran, Islamic Republic of)

    2016-11-15

    TiO{sub 2} nanoparticles have been synthesized by the sol-gel method using titanium alkoxide and isopropanol as a precursor. The structural properties and chemical composition of the TiO{sub 2} nanoparticles were studied using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.The X-ray powder diffraction pattern confirms that the particles are mainly composed of the anatase phase with the preferential orientation along [101] direction. The physical parameters such as strain, stress and energy density were investigated from the Williamson- Hall (W-H) plot assuming a uniform deformation model (UDM), and uniform deformation energy density model (UDEDM). The W-H analysis shows an anisotropic nature of the strain in nano powders. The scanning electron microscopy image shows clear TiO{sub 2} nanoparticles with particle sizes varying from 60 to 80nm. The results of mean particle size of TiO{sub 2} nanoparticles show an inter correlation with the W-H analysis and SEM results. Our X-ray photoelectron spectroscopy spectra show that nearly a complete amount of titanium has reacted to TiO{sub 2}. (author)

  10. Impact of Atomic Layer Deposition to NanoPhotonic Structures and Devices: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Rizwan eSaleem

    2014-10-01

    Full Text Available We review the significance of optical thin films by Atomic Layer Deposition (ALD method to fabricate nanophotonic devices and structures. ALD is a versatile technique to deposit functional coatings on reactive surfaces with conformal growth of compound materials, precise thickness control capable of angstrom resolution and coverage of high aspect ratio nanostructures using wide range of materials. ALD has explored great potential in the emerging fields of photonics, plasmonics, nano-biotechnology, and microelectronics. ALD technique uses sequential reactive chemical reactions to saturate a surface with a monolayer by pulsing of a first precursor (metal alkoxides or covalent halides, followed by reaction with second precursor molecules such as water to form the desired compound coatings. The targeted thickness of the desired compound material is controlled by the number of ALD cycles of precursor molecules that ensures the self limiting nature of reactions. The conformal growth and filling of TiO2 and Al2O3 optical material on nanostructures and their resulting optical properties have been described. The low temperature ALD-growth on various replicated sub-wavelength polymeric gratings is discussed.

  11. Anionic polymerization of acrylates. Synthesis of (meth)acrylate di- and triblock copolymers using the Li ester-enolate/tert-alkoxide initiating system

    Czech Academy of Sciences Publication Activity Database

    Vlček, Petr; Otoupalová, Jaroslava; Janata, Miroslav; Látalová, Petra; Kurková, Dana; Toman, Luděk; Masař, Bohumil

    2004-01-01

    Roč. 37, č. 2 (2004), s. 344-351 ISSN 0024-9297 R&D Projects: GA ČR GA203/01/0513; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : ligated anionic polymerization * block copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.898, year: 2004

  12. Effects of parameters of sol-gel process on the phase evolution of sol-gel-derived hydroxyapatite

    International Nuclear Information System (INIS)

    Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad Reza; Chahkandi, Mohammad

    2007-01-01

    It has been established that hydroxyapatite powders can be produced using an alkoxide-based sol-gel technique. Nanocrystalline powders of hydroxyapatite (HA) were prepared from Ca(NO 3 ) 2 .4H 2 O and PO(OC 2 H 5 ) 3 as calcium and phosphorus precursors, respectively, using a sol-gel route. For a number of samples, sol of phosphorus was first hydrolyzed for 24 h with distilled water. The sol temperature, aging time and heat treatment temperature on apatite formation were systematically studied. Increasing the aging time affected the reducing of CaO. Also, increasing the mixed sol solution temperature up to 80 deg. C had a positive effect on the disappearance of impurity phases. With the increase of the calcination temperature >600 deg. C, calcium phosphate impurity phases disappeared. Structural evolution during the synthesis of hydroxyapatite is investigated by using infrared (IR) analysis, X-ray diffraction (XRD), thermal behavior (DTA), and elemental analysis of electron microscopy examination (SEM). X-ray diffraction with the aid of Scherrer and Williamson-Hall equations has been used to characterize the distributions of crystallite size and micro-strain of HA powders .The results indicated that mean crystallite size increased and micro-strain decreased significantly with the rise in firing temperature

  13. Fiscal 1993 report on technological results. R and D on new forming technology of composite materials (Development of innovative technology for producing members for high efficiency power generation); 1993 nendo fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    A forming technology was developed which uses superplasticity of composite materials, i.e., high-functional materials for power generating equipment for example. Activities were conducted in the three areas of (1) ceramic based composite materials, (2) development of metal-based composite forming technology, and (3) comprehensive investigation and adjustment. In (1), with a view to finding a composite forming technology, in which high tenacity materials are obtained by evenly dispersing particles or whiskers as reinforcements in a matrix, a room temperature forming technique using fine particles was exploited, as were a high temperature forming technique using fused bodies and a possibility of manifestation of superplasticity in the prepared composite materials. The materials used were Si{sub 3}N{sub 4} matrix-SiC, Al{sub 2}O{sub 3} matrix-TiC, and glass matrix composite based materials filling ceramics in fine holes of porous glass. In (2), composite forming technologies were examined for such composite materials as Al alloy matrix-SiC particulate-based by a molten metal stirring method, Al alloy matrix-ceramics short fiber-based by a high pressure forging method, Ti alloy matrix-ceramics particulate-based by a mechanical alloying method, and Al alloy matrix-ceramics particulate-based by an alkoxide method/powder metallurgy method. (NEDO)

  14. Structural Evolution and Stability of Sol-Gel Biocatalysts

    International Nuclear Information System (INIS)

    Rodgers, L.E.; Foster, L.J.R.; Holden, P.J.; Knott, R.B.; Bartlett, J.B.

    2005-01-01

    Full text: Immobilisation strategies for catalytic enzymes are important as they allow reuse of the biocatalysts. Sol-gel materials have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme with a known crystal structure. The sol-gel bioencapsulate is produced through the condensation of suitable metal alkoxides in the presence of CALB, yielding materials with controlled pore sizes, volume and surface chemistry. Sol-gel matrices have been shown to prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analysis techniques applied to date. Small angle neutron scattering (SANS) allows such multicomponent systems to be characterised through contrast matching. In the sol-gel bioencapsulate system, at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35 percent. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. The SANS protocol developed here may be applied more generally to bioencapsulates. (authors)

  15. Incorporation of Nanohybrid Films of Silica into Recycled Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    Genoveva Hernández-Padrón

    2015-01-01

    Full Text Available An alternative for the reutilization of polystyrene waste containers consisting in creating a hybrid material made of SiO2 nanoparticles embedded in a matrix of recycled polystyrene (PSR has been developed. Recycled polystyrene functionalized (PSRF was used to influence the morphological and antifog properties by the sol-gel synthesis of nanohybrid silica. To this end, silica nanoparticles were produced from alkoxide precursors in the presence of recycled polystyrene. The functionalization of this polymeric matrix was with the purpose of uniting in situ carboxyl and silanol groups during the sol-gel process. In this way, opaque or transparent solid substrates can be obtained, with each of these endowed with optical conditions that depend on the amount of reactants employed to prepare each nanohybrid specimen. The nanohybrids were labelled as SiO2/PSR (HPSR and SiO2/PSRF (HPSRF and their properties were then compared to those of commercial polystyrene (PS. All the prepared samples were used for coating glass substrates. The hydrophobicity of the resultant coatings was determined through contact angle measurement. The nanohybrid materials were characterized by FT-IR and 1H-NMR techniques. Additionally, TGA and SEM were employed to determine their thermal and textural properties.

  16. An orthogonal ferromagnetically coupled tetracopper(II) 2 x 2 homoleptic grid supported by micro-O4 bridges and its DFT study.

    Science.gov (United States)

    Roy, Somnath; Mandal, Tarak Nath; Barik, Anil Kumar; Pal, Sachindranath; Butcher, Ray J; El Fallah, Mohamed Salah; Tercero, Javier; Kar, Susanta Kumar

    2007-03-28

    A pyrazole based ditopic ligand (PzOAP), prepared by the reaction between 5-methylpyrazole-3-carbohydrazide and methyl ester of imino picolinic acid, reacts with Cu(NO3)2.6H2O to form a self-assembled, ferromagnetically coupled, alkoxide bridged tetranuclear homoleptic Cu(II) square grid-complex [Cu4(PzOAP)4(NO3)2] (NO3)2.4H2O (1) with a central Cu4[micro-O4] core, involving four ligand molecules. In the Cu4[micro-O4] core, out of four copper centers, two copper centers are penta-coordinated and the remaining two are hexa-coordinated. In each case of hexa-coordination, the sixth position is occupied by the nitrate ion. The complex 1 has been characterized structurally and magnetically. Although Cu-O-Cu bridge angles are too large (138-141 degrees) and Cu-Cu distances are short (4.043-4.131 A), suitable for propagation of expected antiferromagnetic exchange interactions within the grid, yet intramolecular ferromagnetic exchange (J = 5.38 cm(-1)) is present with S = 4/2 magnetic ground state. This ferromagnetic interaction is quite obvious from the bridging connections (d(x2-y2)) lying almost orthogonally between the metal centers. The exchange pathways parameters have been evaluated from density functional calculations.

  17. Zirconia sol-gel coatings deposited on 304 stainless steel for chemical protection in acid media

    International Nuclear Information System (INIS)

    Luna, F. Perdomo; Atik, M.; Avaca, Luis A.; Aegerter, M.A.

    1995-01-01

    Zr O 2 thin films were prepared by sol-gel method and using dip-coating technique for deposition on 304 austenitic stainless steel, from sonocatalyzed sols of zirconia alkoxide, isopropanol (Zr(O C 3 H 7 )4/C 3 H 7 OH = 0.5), glacial acetic acid and water (C H 3 CO OH/H 2 O = 0.5). The films were dried at 40 deg C/15 min and thermally treated in the air with a linear variation of 5 deg C/min and two isothermal holdings at 400 deg C during 1 h and afterwards at 800 deg C during several periods of time (up to 20 h). The film thickness ranges between 0.6 and 0.8 μm. Structure and morphology were studied by x-ray diffraction and scanning electron microscopy. The corrosion potential, the corrosion current density, the polarization resistance and the corrosion rate (mpy) in 1,0 N aqueous solution of H 2 SO 4 at room temperature were determined using potentiometric polarization curves with a scanning velocity of 1 mV/s. These films act as a blocking physical layer in the corrosion media and increase the substrate life time in a factor of 7

  18. Survey report for fiscal 1998. Joint research project with researchers related to petroleum substituting energies in the EU countries; 1998 nendo EU shokoku no sekiyu daitai energy kanren kenkyusha tono kyodo kenkyu jigyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    It was intended to invite researchers related to petroleum substituting energies from the EU countries to perform joint researches at research organizations under the auspices of the Agency of Industrial Science and Technology having deep relations with research themes of the invited researchers, to deepen the mutual understanding, and to form efficient cooperative relationship. The intention is also to contribute to research and development of petroleum substituting energies to be used in Japan in the future. The research themes, researchers, their research organizations, and the receiving research organizations are as follows: (1) evaluation of reservoir impedance in high-temperature rock experimental fields by Mr. Ralph Weidler (Germany) at Ruhr University received by the Resource and Environmental Technology Research Institute; (2) changing the particle boundary structure of ceramics by using the alkoxide process by Dr. Ramon Torrecillas (Spain) at Institute Nacional del Carbon received by the Nagoya Industrial Technology Research Institute; (3) research on corrosion in metallic materials for molten carbonate type fuel cells by Dr. Giuseppe Calogero (Italy) at Institute for Transformation and Storage of Energy received by the Osaka Industrial Technology Research Institute; and (4) estimation of behavior of deep geothermal reservoirs with high enthalpy by Dr. Enrico Maranini at Universita' Di Ferrara received by the Geology Survey Center. (NEDO)

  19. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    Science.gov (United States)

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  20. Thermoluminescent dosimetry of beta radiations of 90 Sr/ 90 Y using amorphous ZrO2

    International Nuclear Information System (INIS)

    Rivera M, T.; Olvera T, L.; Azorin N, J.; Barrera R, M.; Soto E, A.M.

    2005-01-01

    In this work the results of studying the thermoluminescent properties (Tl) of the zirconium oxide in its amorphous state (ZrO 2 -a) before beta radiations of 90 Sr/ 90 Y are presented. The amorphous powders of the zirconium oxide were synthesized by means of the sol-gel technique. The sol-gel process using alkoxides like precursors, is an efficient method to prepare a matrix of zirconium oxide by hydrolysis - condensation of the precursor to form chains of Zr-H 3 and Zr-O 2 . One of the advantages of this technique is the obtention of gels at low temperatures with very high purity and homogeneity. The powders were characterized by means of thermal analysis and by X-ray diffraction. The powders of ZrO 2 -a, previously irradiated with beta particles of 90 Sr/ 90 Y, presented a thermoluminescent curve with two peaks at 150 and 257 C. The dissipation of the information of the one ZrO 2 -a was of 40% the first 2 hours remaining constant the information for the following 30 days. The reproducibility of the information was of ± 2.5% in standard deviation. The studied characteristics allow to propose to the amorphous zirconium oxide as thermoluminescent dosemeter for the detection of beta radiation. (Author)

  1. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium on energy research in its 3rd year (Research and development of novel method for manufacturing recycling-compatible functional thin film and its application to coloring of glass); 1999 nendo recycle ni tekishita kinosei usumaku no shinki seizoho to chakushoku glass eno oyo ni kansuru kenkyu kaihatsi seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A thin film is developed which adds new functions to the surface of glass materials. The method is applied to the coloring of glass for the enhancement of recyclability (for example, by coating colorless glass bottles with colorful thin film) and to the functionalization of glass. Studies are conducted about the assessment of coloring-capable thin film basic characteristics, manufacture of liquids for application, and the manufacture of photosensitive gel thin film using chemically modified metal alkoxides. It is found that use of functional pigments reduces the transmissivity of ultraviolet and infrared rays. A method for manufacturing coloring liquids for application to glass bottles and a method of improving film durability using a 3,2-functional silane are established. Ultrafine gold/cuprous oxide powder, azobenzen based pigments, etc., are deposited on porous glass for the formation of a photoresponsive film. Conditions for color application to round glass bottles are optimized by use of an air spray device. Film exfoliation during colored glass bottle transportation is lessoned to a practically acceptable level by modifying the carton pack configuration. A large roll-type applicator is operated to successfully form a homogenous coating on a 1.8m times 1m glass plate. Double glazing capable of light modulation is also manufactured. (NEDO)

  2. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  3. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing.

    Science.gov (United States)

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-02-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.

  4. High dose thermoluminescence dosimetry performance of Sol-gel synthesized TiO{sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Salas J, Ch. J.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Castillo U, D. M.; Flores M, K. [Universidad de Sonora, Departamento de Ciencias Quimico Biologicas, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Castano, V. M., E-mail: castillouzeta@gmail.com [UNAM, Instituto de Fisica, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: TiO{sub 2} is a ceramic material with many applications due to their different crystalline phases (rutile, anatase and brookite). It has attracted attention in several fields because their high mechanical strength, chemical stability and ion-conducting properties. Moreover, in recent years, some research groups gained interest in the thermoluminescence features of TiO{sub 2} concerning their potential use as thermoluminescence dosimeter. In this work, we present experimental results obtained in the first stage of a long-term research project focused in the synthesis of TiO{sub 2} phosphors for dosimetric applications. The thermoluminescent characterization of samples was carried out after being exposed to beta particle irradiation. TiO{sub 2} was prepared by alkoxide sol-gel route using titanium tetrabutoxide as precursor, ethanol, water and ammonia as catalyst. Pellet-shaped samples were annealed at 700 degrees C for 6 h in air atmosphere followed by slow cooling, and then were exposed to radiation doses from 25 to 400 Gy. The glow curves display maxima located at 103 and 238 degrees C when a 5 C/s heating rate is used. From the experimental results here presented, we conclude that TiO{sub 2} is a promising material to develop high dose Tl dosimeters. (Author)

  5. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Brito, Hermi F.

    2011-01-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  6. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f

    2011-07-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  7. Achievement report for fiscal 1998. Research and development on a new manufacturing method for functional thin films suitable for recycling, and their application to colored glasses (the second year); 1998 nendo seika hokokusho. Recycle ni tekishita kinosei usumaku no shinki seizoho to chakushoku glass eno oyo ni kansuru kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A new thin film manufacturing method is established to add a function to glass material surface, as a new material technology which harmonizes with global environment, and is suitable for resource re-utilization and energy conservation. It is intended to develop a leading technology to promote recycling of colored glasses by applying this technical method to colored glasses. Fiscal 1998 has implemented subsequently to fiscal 1997 the following subjects in the three research items composed of a new manufacturing method of functional thin films, application of the functional thin films to colored glasses, and the comprehensive investigative studies: establishment of an industrial manufacturing method for color coating liquid and evaluation of basic characteristics of the colored functional thin films, optimization of element technology for photo-sensitive gel films by means of chemically modifying metallic alkoxide, tests of forming films on glass bottles and plate glasses by using a coating machine installed in fiscal 1997, design and prototype fabrication of a new demonstration coating machine, and analysis on thermal decomposition of the colored thin films. Optimization was performed on the element technology for manufacturing sol-gel functional thin films, and a survey was carried out on recycling systems of colored glasses adopted in Europe. (NEDO)

  8. Synthesis of some pyridine and pyrimidine derivatives via Michael-Addition

    International Nuclear Information System (INIS)

    El-Baih, Fatma E.M.; Al-Rasheed, Hessa H.; Al-Hazimi, Hassan M.

    2006-01-01

    Synthesis of pyridine and pyrimidine analogues 4 and 6-9 were achieved by Michael-addition of compounds containing either active methylene groups like, malononitrile , ethyl cyanoacetate and 1-tetralone or compounds containing active hydrogen atoms like, guanidine in the presence of an oxidizing agent and thiourea to 2-arylmethylidine-1-tetralone and 2-arylmethylidine-6-methoxy-1-tetralone (2) (enones). Addition of malononitrile in piperidine at room temperature to 2-amino-3-cyno-naphtho [1, 2-malonoitrile in sodium alkoxide or sodium hydroxide to 2 gave 4. Cyclization of 3a with acetic anhydride in the presence of conc. H2sO4 gave the naphtha-pyrano[2, 3-d]pyrimidin-8-one (5). Condensation of the pyrimidine thione derivatives 9 with chloroacetic acid gave the 3-oxobenzo[h]thiazoladino[2, 3-b]quinazoline derivatives (10), which were reacted through their active methylene groups with aromatic aldehydes to give the arylidine derivatives 11. These compounds were also prepared in one step by reacting 9 with chloroacetic acid and aromatic aldehydes. Condensation of 9 with 3-bromopropanoic acid gave 4-oxo-benzo[h]1, 3-thiazino[2, 3-b]quinazoline derivatives (12). The structures of the prepared compounds were mainly confirmed on the basis of spectroscopic methods. (author)

  9. Thermoluminescent dosimetry of beta radiations of {sup 90} Sr/ {sup 90} Y using amorphous ZrO{sub 2}; Dosimetria termoluminiscente de radiaciones beta de {sup 90} Sr/ {sup 90} Y usando ZrO{sub 2} amorfo

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T. [CICATA-Legaria, IPN, Legaria Num. 694, 11500 Mexico D.F. (Mexico); Olvera T, L.; Azorin N, J.; Barrera R, M.; Soto E, A.M. [UAM-I, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work the results of studying the thermoluminescent properties (Tl) of the zirconium oxide in its amorphous state (ZrO{sub 2}-a) before beta radiations of {sup 90} Sr/ {sup 90} Y are presented. The amorphous powders of the zirconium oxide were synthesized by means of the sol-gel technique. The sol-gel process using alkoxides like precursors, is an efficient method to prepare a matrix of zirconium oxide by hydrolysis - condensation of the precursor to form chains of Zr-H{sub 3} and Zr-O{sub 2}. One of the advantages of this technique is the obtention of gels at low temperatures with very high purity and homogeneity. The powders were characterized by means of thermal analysis and by X-ray diffraction. The powders of ZrO{sub 2}-a, previously irradiated with beta particles of {sup 90} Sr/{sup 90} Y, presented a thermoluminescent curve with two peaks at 150 and 257 C. The dissipation of the information of the one ZrO{sub 2}-a was of 40% the first 2 hours remaining constant the information for the following 30 days. The reproducibility of the information was of {+-} 2.5% in standard deviation. The studied characteristics allow to propose to the amorphous zirconium oxide as thermoluminescent dosemeter for the detection of beta radiation. (Author)

  10. Sol-Gel Synthesis and Characterization of Cubic Bismuth Zinc Niobium Oxide Nanopowders

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei

    2014-01-01

    Full Text Available Bismuth zinc niobium oxide (BZN was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

  11. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  12. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    Science.gov (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  13. The synthesis of SL-75.212 (Betaxolol) labelled with carbon 14: 1-[4-(2-cyclopropyl methoxyethyl-[1-14C]) phenoxy]-3-isopropyl amino-2-propanol

    International Nuclear Information System (INIS)

    Aubert, F.; Beaucourt, J.P.; Pichat, L.

    1982-01-01

    Carbonation with 14 CO 2 of the Grigard reagent 1 gave 4-benzyloxy [carboxyl- 14 C] benzoic acid: 2 (87 % yield). 2 was successively treated in diethyl ether solution with diazomethane and lithium aluminium hydride giving rise to [7- 14 C] 4 benzyloxybenzyl alcohol 4 (82 % yield). Alcohol 4 was transformed into the corresponding chloride 5 when exposed to thionylchloride in ether. 5 was condensed with NaCN in DMF to give the nitrile 6 which was hydrolysed into the acid 7 isolated in a 75 % overall yield from Ba 14 CO 3 . 7 gave the alcohol 9 by successive treatments with diazomethane and LiAlH 4 in ether. 9 with NaH gave the corresponding alkoxide which when condensed with bromomethylcyclopropane gave the ether 10 purified by silicagel column chromatography and isolated with an overall yield of 71 % from Ba 14 CO 3 . Hydrogenolysis of 10 gave the phenol 11. The epoxide 12 was secured by condensation with epichlorhydrin in presence of NaOH. After purification by silicagel column chromatography 10 was opened with isopropylamine leading to the target compound BETAXOLOL 13 isolated as the hydrochloride. After extensive purification by Sephadex G-10 column chromatography, SL 75.212 [ethyl-1- 14 C] was obtained in an overall yield of 26 % from barium [ 14 C] carbonate and a radiochemical purity better than 99 % (specific activity 57 mCi/mole). (author)

  14. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  15. Guided in Situ Polymerization of MEH-PPV in Mesoporous Titania Photoanodes.

    Science.gov (United States)

    Minar, Norma K; Docampo, Pablo; Fattakhova-Rohlfing, Dina; Bein, Thomas

    2015-05-20

    Incorporation of conjugated polymers into porous metal oxide networks is a challenging task, which is being pursued via many different approaches. We have developed the guided in situ polymerization of poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV) in porous titania films by means of surface functionalization. The controlled polymerization via the Gilch route was induced by an alkoxide base and by increasing the temperature. The selected and specially designed surface-functionalizing linker molecules mimic the monomer or its activated form, respectively. In this way, we drastically enhanced the amount of MEH-PPV incorporated into the porous titania phase compared to nonfunctionalized samples by a factor of 6. Additionally, photovoltaic measurements were performed. The devices show shunting or series resistance limitations, depending on the surface functionalization prior to in situ polymerization of MEH-PPV. We suggest that the reason for this behavior can be found in the orientation of the grown polymer chains with respect to the titania surface. Therefore, the geometry of the anchoring via the linker molecules is relevant for exploiting the full electronic potential of the conjugated polymer in the resulting hybrid composite. This observation will help to design future synthesis methods for new hybrid materials from conjugated polymers and n-type semiconductors to take full advantage of favorable electronic interactions between the two phases.

  16. Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries

    International Nuclear Information System (INIS)

    Ogihara, Nobuhiro; Igarashi, Yoshiyuki; Kamakura, Ayumu; Naoi, Katsuhiko; Kusachi, Yuki; Utsugi, Koji

    2006-01-01

    In order to understand the properties of high-rate capability and cycleability for a disordered carbon negative electrode in LiPF 6 /PC based electrolyte solution, the cell performance tests with various rates and depth of discharges (DODs) has been studied by spectroscopic and electrochemical analyses. From the charge-discharge measurements, a surface carbon-edge redox reaction occurring between a carbonyl (C edge =O) and a lithium alkoxide (C edge -OLi) that delivers a large capacity was found fast and high cycleability at only shallow DOD (2.0-0.4 V). The limited or shallow charge-discharge cycling utilizing such facile and reversible action of the C edge =O/C edge -OLi of the disordered carbon is suited to an application for an negative electrode of asymmetric hybrid capacitors. A deep DOD discharge (2.0-0.0 V) revealed the existence of some complex processes involving a lithium cluster deposition at pores or microvoids as well as a lithium ion intercalation at graphene layers. The cluster deposition at pores was found to be relatively fast and reproducible. The lithium ion intercalation at graphenes and the subsequent cluster deposition at microvoids were found to be slow and degrade the cycleability after 100 cycles because of the accumulation of a thick and low-ion-conductive solid electrolyte interface (SEI) film on surface

  17. H and C NMR investigations of Pb(Zr,Ti)O3 thin-film precursor solutions

    International Nuclear Information System (INIS)

    Assink, R.A.; Schwartz, R.W.

    1993-01-01

    Solvent reactions, ligand substitutions, and the oligomer/polymer backbone structure are important factors in the solution preparation of ceramic films. In this study the authors have used H and C NMR spectroscopy to characterize solvent and ligand effects in precursor solutions used for the deposition of ferroelectric PZT (lead zirconate titanate) thin films. Solutions were prepared by a sequential precursor addition method from carboxylate and alkoxide precursors of the three cations, and the solvent, acetic acid, methanol, and water. The results indicate that acetic acid was a key component in the solution preparation process. As observed previously for single metallic component systems, its presence resulted in esterification reactions, leading in the present case to the formation of methyl, isopropyl, and n-butyl acetates. Second, acetic acid functioned as a chemical modifier, or chelating agent, replacing essentially all of the alkoxy ligands of the original precursors. Since alkoxy replacement appeared to be complete, we may describe the PZT species formed in solution as oxo acetate in nature. Finally, the solvent and ligand behavior of a solution prepared by an inverted mixing order was compared to the behavior of the solution prepared by a sequential precursor addition. The spectra for the two solutions were similar, and only differences in the relative intensities of the ester and alcoholic resonances were observed. 29 refs., 5 figs., 3 tabs

  18. Long-term high-level waste technology. Composite quarterly technical report, January-March 1981

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1981-08-01

    This composite quarterly technical report summarizes work performed at participating sites to immobilize high-level radioactive wastes. The report is structured along the lines of the Work Breakdown Structure adopted for use in the High-Level Waste Management Technology program. These are: (1) program management and support with subtasks of management and budget, environmental and safety assessments, and other support; (2) waste preparation with subtasks of in-situ storage or disposal, waste retrieval, and separation and concentration; (3) waste fixation with subtasks of waste form development and characterization, and process and equipment development; and (4) final handling with subtasks of canister development and characterization and onsite storage or disposal. Some of the highlights are: preliminary event trees defining possible accidents were completed in the safety assessment of continued in-tank storage of high-level waste at Hanford; two low-cost waste forms (tailored concrete and bitumen) were investigated as candidate immobilization forms at the Hanford in-situ disposal studies of high-level waste; in comparative impact tests at the same impact energy per specimen volume, the same mass of respirable sizes was observed at ANL for SRL Frit 131 glass, SYNROC B ceramic, and SYNROC D ceramic; leaching tests were conducted on alkoxide glasses; glass-ceramic, concrete, and SYNROC D; a process design description was written for the tailored ceramic process

  19. Influence of sol-gel parameters on the properties of chemical optodes. Application to on-line analysis of high acidities

    International Nuclear Information System (INIS)

    Bouzon, C.

    2000-01-01

    An optical chemical sensor (optode) has been optimized to control high acidity levels (ranging from 1 to 10 N) of solutions from nuclear fuel reprocessing. The sol-gel process has been used successfully to prepare a porous silica layer doped with an indicator called Chromoxane Cyanine R (CCR). The sensor response represents changes in the absorption properties of the dye according to the acidity. In a first step, the leaching of the dye has been studied according to the sol-gel parameters. An experimental Hadamard matrix has been used to find the most influent parameters. The influent parameters resulting from the first step have been studied using a parametrical optimization based on a Doelhert experimental design. This optimization highlights a quantitative correlation between sensor response and the chemical parameters. Results indicate that the most suitable microporous xerogel films are those prepared using tetramethoxysilane at a pH set below the isoelectric point (lEP) of silica. The two other influent parameters are: water / alkoxide ratio (R) and aging temperature (T a ). The optimized values are R = 4 and T a = 55 C. The lifetime of the sensor tested in a permanent circulation has been increased from several days to over 6 months in a 8 N nitric acid solution. Furthermore, this sensor can be used with hydrochloric and perchloric acids. (author) [fr

  20. Comparison of the Biological Properties of Several Marine Sponge-Derived Sesquiterpenoid Quinones

    Directory of Open Access Journals (Sweden)

    Ping Yin

    2007-07-01

    Full Text Available Eight naturally occurring marine-sponge derived sesquiterpenoid quinones wereevaluated as potential inhibitors of pyruvate phosphate dikinase (PPDK, a C4 plantregulatory enzyme. Of these, the hydroxyquinones ilimaquinone, ethylsmenoquinone andsmenoquinone inhibited PPDK activity with IC50’s (reported with 95% confidenceintervals of 285.4 (256.4 – 317.7, 316.2 (279.2 – 358.1 and 556.0 (505.9 – 611.0 μM,respectively, as well as being phytotoxic to the C4 plant Digitaria ciliaris. The potentialanti-inflammatory activity of these compounds, using bee venom phospholipase A2(PLA2, was also evaluated. Ethylsmenoquinone, smenospongiarine, smenospongidine andilimaquinone inhibited PLA2 activity (% inhibition of 73.2 + 4.8 at 269 μM, 61.5 + 6.1 at242 μM, 41.0 + 0.6 at 224 μM and 36.4 + 8.2 at 279 μM, respectively. SAR analysesindicate that a hydroxyquinone functionality and a short, hydroxide/alkoxide side-chain atC-20 is preferred for inhibition of PPDK activity, and that a larger amine side-chain at C-20 is tolerated for PLA2 inhibitory activity.

  1. Living hybrid materials capable of energy conversion and CO2 assimilation.

    Science.gov (United States)

    Meunier, Christophe F; Rooke, Joanna C; Léonard, Alexandre; Xie, Hao; Su, Bao-Lian

    2010-06-14

    This paper reviews our work on the fabrication of photobiochemical hybrid materials via immobilisation of photosynthetically active entities within silica materials, summarising the viability and productivity of these active entities post encapsulation and evaluating their efficiency as the principal component of a photobioreactor. Immobilisation of thylakoids extracted from spinach leaves as well as whole cells such as A. thaliana, Synechococcus and C. caldarium was carried out in situ using sol-gel methods. In particular, a comprehensive overview is given of the efforts to find the most biocompatible inorganic precursors that can extend the lifetime of the organisms upon encapsulation. The effect of matrix-cell interactions on cell lifetime and the photosynthetic efficiency of the resultant materials are discussed. Precursors based on alkoxides, commonly used in "Chimie Douce" to form porous silica gel, release by-products which are often cytotoxic. However by controlling the formation of gels from aqueous silica precursors and silica nanoparticles acting as "cements" one can significantly enhance the life span of the entrapped organelles and cells. Adapted characteristic techniques have shown survival times of up to 5 months with the photosynthetic production of oxygen recorded as much as 17 weeks post immobilisation. These results constitute a significant advance towards the final goal, long-lasting semi-artificial photobioreactors that can advantageously exploit solar radiation to convert polluting carbon dioxide into useful biofuels, sugars or medical metabolites.

  2. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    Science.gov (United States)

    Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  3. Development of vapor deposited silica sol-gel particles for use as a bioactive materials system.

    Science.gov (United States)

    Snyder, Katherine L; Holmes, Hallie R; VanWagner, Michael J; Hartman, Natalie J; Rajachar, Rupak M

    2013-06-01

    Silica-based sol-gel and bioglass materials are used in a variety of biomedical applications including the surface modification of orthopedic implants and tissue engineering scaffolds. In this work, a simple system for vapor depositing silica sol-gel nano- and micro-particles onto substrates using nebulizer technology has been developed and characterized. Particle morphology, size distribution, and degradation can easily be controlled through key formulation and manufacturing parameters including water:alkoxide molar ratio, pH, deposition time, and substrate character. These particles can be used as a means to rapidly modify substrate surface properties, including surface hydrophobicity (contact angle changes >15°) and roughness (RMS roughness changes of up to 300 nm), creating unique surface topography. Ions (calcium and phosphate) were successfully incorporated into particles, and induced apatitie-like mineral formation upon exposure to simulated body fluid Preosteoblasts (MC3T3) cultured with these particles showed up to twice the adhesivity within 48 h when compared to controls, potentially indicating an increase in cell proliferation, with the effect likely due to both the modified substrate properties as well as the release of silica ions. This novel method has the potential to be used with implants and tissue engineering materials to influence cell behavior including attachment, proliferation, and differentiation via cell-material interactions to promote osteogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  4. Zirconia sol-gel coatings deposited on 304 stainless steel for chemical protection in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Luna, F Perdomo; Atik, M; Avaca, Luis A; Aegerter, M A [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    1996-12-31

    Zr O{sub 2} thin films were prepared by sol-gel method and using dip-coating technique for deposition on 304 austenitic stainless steel, from sonocatalyzed sols of zirconia alkoxide, isopropanol (Zr(O C{sub 3} H{sub 7})4/C{sub 3} H{sub 7} OH = 0.5), glacial acetic acid and water (C H{sub 3} CO OH/H{sub 2} O = 0.5). The films were dried at 40 deg C/15 min and thermally treated in the air with a linear variation of 5 deg C/min and two isothermal holdings at 400 deg C during 1 h and afterwards at 800 deg C during several periods of time (up to 20 h). The film thickness ranges between 0.6 and 0.8 {mu}m. Structure and morphology were studied by x-ray diffraction and scanning electron microscopy. The corrosion potential, the corrosion current density, the polarization resistance and the corrosion rate (mpy) in 1,0 N aqueous solution of H{sub 2} SO{sub 4} at room temperature were determined using potentiometric polarization curves with a scanning velocity of 1 mV/s. These films act as a blocking physical layer in the corrosion media and increase the substrate life time in a factor of 7 16 refs., 3 figs., 1 tab.

  5. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  6. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    International Nuclear Information System (INIS)

    Torres-Torres, C.; García-Cruz, M.L.; Castañeda, L.; Rangel Rojo, R.; Tamayo-Rivera, L.; Maldonado, A.; Avendaño-Alejo, M.

    2012-01-01

    Chromium doped zinc oxide thin solid films were deposited on soda–lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol–gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: ► Enhancement in photoluminescence for chromium doped zinc oxide films is presented. ► A strong and ultrafast optical Kerr effect seems to result from quantum confinement. ► Photoconductive properties for optical and optoelectronic functions were observed.

  7. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  8. Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy

    Science.gov (United States)

    Mogi, Ryo; Inaba, Minoru; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi

    The surface films formed on deposited lithium in electrolyte solutions based on ethylene carbonate (EC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) were analyzed by pyrolysis-gas chromatography-mass spectroscopy (Py-GC-MS). In 1 M LiClO 4/EC, the main component of the surface film was easily hydrolyzed to give ethylene glycol after exposure to air, and hence was considered to have a chemical structure of ROCH 2CH 2OR', of which OR and OR' are OLi or OCO 2Li. Ethylene oxide, acetaldehyde, and 1,4-dioxane were detected in decomposition products, and they were considered to have been formed by pyrolysis of ROCH 2CH 2OR' in the pyrolyzer. The presence of ethanol in decomposition products confirmed that ring cleavage at the CH 2O bonds of EC occurs by one electron reduction. In addition, the presence of methanol implied the cleavage of the CC bond of EC upon reduction. From the surface films formed in 1 M LiClO 4/DEC and /DMC, ethanol and methanol, respectively, were detected, which suggested that corresponding lithium alkoxides and/or lithium alkyl carbonates were the main components. In 1 M LiClO 4/EC+DEC (1:1), EC dominantly decomposed to form the surface film. The surface film formed in 1 M LiPF 6/EC+DEC (1:1) contained a much smaller amount of organic compounds.

  9. Solution Synthesis and Processing of PZT Materials for Neutron Generator Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.A.; Ewsuk, K.G.; Montoya, T.V.; Moore, R.H.; Sipola, D.L.; Tuttle, B.A.; Voigt, J.A.

    1998-12-01

    A new solution synthesis route has been developed for the preparation of lead-based ferroelectric materials (patent filed). The process produces controlled stoichiometry precursor powders by non-aqueous precipitation. For a given ferroelectric material to be prepared, a metal acetate/alkoxide solution containing constituent metal species in the appropriate ratio is mixed with an oxalic acid/n-propanol precipitant solution. An oxalate coprecipitate is instantly fonned upon mixing that quantitatively removes the metals from solution. Most of the process development was focused on the synthesis and processing of niobium-substituted lead zirconate titanate with a Zr-to-Ti ratio of 95:5 (PNZT 95/5) that has an application in neutron generator power supplies. The process was scaled to produce 1.6 kg of the PNZT 95/5 powder using either a sen-ii-batch or a continuous precipitation scheme. Several of the PNZT 95/5 powder lots were processed into ceramic slug form. The slugs in turn were processed into components and characterized. The physical properties and electrical performance (including explosive functional testing of the components met the requirements set for the neutron generator application. Also, it has been demonstrated that the process is highly reproducible with respect to the properties of the powders it produces and the properties of the ceramics prepared from its powders. The work described in this report was funded by Sandia's Laboratory Directed Research and Development Program.

  10. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    International Nuclear Information System (INIS)

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  11. Reactive Precipitation of Anhydrous Alkali Sulfide Nanocrystals with Concomitant Abatement of Hydrogen Sulfide and Cogeneration of Hydrogen.

    Science.gov (United States)

    Li, Xuemin; Zhao, Yangzhi; Brennan, Alice; McCeig, Miranda; Wolden, Colin A; Yang, Yongan

    2017-07-21

    Anhydrous alkali sulfide (M 2 S, M=Li or Na) nanocrystals (NCs) are important materials central to the development of next generation cathodes and solid-state electrolytes for advanced batteries, but not commercially available at present. This work reports an innovative method to directly synthesize M 2 S NCs through alcohol-mediated reactions between alkali metals and hydrogen sulfide (H 2 S). In the first step, the alkali metal is complexed with alcohol in solution, forming metal alkoxide (ROM) and releasing hydrogen (H 2 ). Next, H 2 S is bubbled through the ROM solution, where both chemicals are completely consumed to produce phase-pure M 2 S NC precipitates and regenerate alcohol that can be recycled. The M 2 S NCs morphology may be tuned through the choice of the alcohol and solvent. Both synthetic steps are thermodynamically favorable (ΔG m o <-100 kJ mol -1 ), proceeding rapidly to completion at ambient temperature with almost 100 % atom efficiency. The net result, H 2 S+2 m→M 2 S+H 2 , makes good use of a hazardous chemical (H 2 S) and delivers two value-added products that naturally phase separate for easy recovery. This scalable approach provides an energy-efficient and environmentally benign solution to the production of nanostructured materials required in emerging battery technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development Of HUD Combiner For Automotive Windshield Application

    Science.gov (United States)

    Hattori, Akimasa; Makita, Kensuke; Okabayashi, Shigeru

    1989-12-01

    The head-up display system (HUM) has been developed for the windshield of Nissan Motor's passenger car, '88 model of Silvia (240SX) and '89 model of Maxima. HUD consists of a projector with high brightness VFT and a combiner which is a light-selective reflective film applied on the surface of ' e windshield. The system provides nice display legibility of speed in a three-digit reap at the position more than one meter far from driver's eye even under the bright sunlight. In this report, we present the optical properties and manufacturing process of the advanced combiner. The combiner has to have high transmittance as well as high reflectance so that a driver can see both foreground object and display reading at the same time. The optical design for the combiner is based on the concepts: (a) Visible light transmittance has to be 70% or more in accordance with a legal requirement, and (b) taking both peak wavelengths of Vim' and sensitivity characteristics of human eyes into consideration, 530nm of wave length is chosen as a reflective light. The combiner consists of a dielectric thin layer of Ti02-Si02 system. Its basic structure is decided by simulation with matrix method of the resultant waves. The coating film is applied on the restricted area of the forth surface of laminated windshield by newly developed solgel printing process using a metal alkoxide solution with a relatively long storage life.

  13. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.

    Science.gov (United States)

    Salarian, Mehrnaz; Xu, William Z; Wang, Zhiqiang; Sham, Tsun-Kong; Charpentier, Paul A

    2014-10-08

    Calcium phosphate-based nanocomposites offer a unique solution toward producing scaffolds for orthopedic and dental implants. However, despite attractive bioactivity and biocompatibility, hydroxyapatite (HAp) has been limited in heavy load-bearing applications due to its intrinsically low mechanical strength. In this work, to improve the mechanical properties of HAp, we grew HAp nanoplates from the surface of one-dimensional titania nanorod structures by combining a coprecipitation and sol-gel methodology using supercritical fluid processing with carbon dioxide (scCO2). The effects of metal alkoxide concentration (1.1-1.5 mol/L), reaction temperature (60-80 °C), and pressure (6000-8000 psi) on the morphology, crystallinity, and surface area of the resulting nanostructured composites were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) method. Chemical composition of the products was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure (XANES) analyses. HAp nanoplates and HAp-TiO2 nanocomposites were homogeneously mixed within poly(ε-caprolactone) (PCL) to develop scaffolds with enhanced physical and mechanical properties for bone regeneration. Mechanical behavior analysis demonstrated that the Young's and flexural moduli of the PCL/HAp-TiO2 composites were substantially higher than the PCL/HAp composites. Therefore, this new synthesis methodology in scCO2 holds promise for bone tissue engineering with improved mechanical properties.

  14. Water concentration controlled hydrolysis and crystallization in n-octanol to TiO{sub 2} nanocrystals with size below 10 nm

    Energy Technology Data Exchange (ETDEWEB)

    Wang Meilan [School of Chemical and Biological Science and Engineering, Yantai University, Yantai 264005 (China); He Tao, E-mail: htzy79@yahoo.com.cn [School of Chemical and Biological Science and Engineering, Yantai University, Yantai 264005 (China); Pan Yanfei; Liao Weiping [School of Chemical and Biological Science and Engineering, Yantai University, Yantai 264005 (China); Zhang Shangzhou; Du Wei [School of Environment and Materials Engineering, Yantai University, Yantai 264005 (China)

    2011-11-01

    Highlights: {yields} Controlled hydrolysis of alkoxide was realized by adjusting water concentration. {yields} Carrying out hydrolysis under different water concentration gave hydrolyzed intermediate with different composition. {yields} A precise size control below 10 nm for anatase TiO{sub 2} nanocrystals was realized. - Abstract: Hydrolysis of tetrabutyl titanate (TBT) and crystallization from hydrolyzed intermediates were carried out in a simple ternary system including n-octanol, TBT and water. Anatase TiO{sub 2} nanocrystals (NCS) were prepared with precise size control below 10 nm. The hydrolysis rate at different water concentration (C{sub water}) was evaluated by measuring the induction time before turbidity changing of the synthetic solution. Fourier transform infrared spectrum (FT-IR) and thermogravimetric/differential thermal analysis (TG/DTA) techniques were applied to make clear the composition of hydrolyzed intermediates obtained at different C{sub water}. Powder X-ray diffraction (XRD) technique was used to track the crystallization process of TiO{sub 2} NCS. Transmission electron microscopy (TEM), XRD, FT-IR and TG/DTA techniques were used to characterize the particular properties of NCS. The C{sub water} controlled mechanism responsible for the slow hydrolysis and crystallization were discussed. Since no other organic capping ligands or rapid injecting techniques were used to limit NCS' growth and the solvent n-octanol can be easily separated and reused, this simple synthetic process is of green chemistry and has application potential in large-scale preparation of inorganic NCS.

  15. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  16. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  17. Development of Advanced Materials for Electro-Ceramic Application Final Report CRADA No. TC-1331-96

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olstad, R. [General Atomics, San Diego, CA (United States); McMillan, L. [Symetrix International, Inc., Colorado Springs, CO (United States); Tulupov, A. [Soliton-NTT, Moscow (Russia)

    2017-10-19

    The goal of this project was to further develop and characterize the electrochemical methods originating in Russia for producing ultra high purity organometallic compounds utilized as precursors in the production of high quality electro-ceramic materials. Symetrix planned to use electro-ceramic materials with high dielectric constant for microelectronic memory circuit applications. General Atomics planned to use the barium titanate type ceramics with low loss tangent for producing a high power ferroelectric tuner used to match radio frequency power into their Dill-D fusion machine. Phase I of the project was scheduled to have a large number of organometallic (alkoxides) chemical samples produced using various methods. These would be analyzed by LLNL, Soliton and Symetrix independently to determine the level of chemical impurities thus verifying each other's analysis. The goal was to demonstrate a cost-effective production method, which could be implemented in a large commercial facility to produce high purity organometallic compounds. In addition, various compositions of barium-strontium-titanate ceramics were to be produced and analyzed in order to develop an electroceramic capacitor material having the desired characteristics with respect to dielectric constant, loss tangent, temperature characteristics and non-linear behavior under applied voltage. Upon optimizing the barium titanate material, 50 capacitor preforms would be produced from this material demonstrating the ability to produce, in quantity, the pills ultimately required for the ferroelectric tuner (approx 2000-3000 ceramic pills).

  18. Highly selective synthesis of conjugated dienoic and trienoic esters via alkyne elementometalation–Pd-catalyzed cross-coupling

    Science.gov (United States)

    Wang, Guangwei; Mohan, Swathi; Negishi, Ei-ichi

    2011-01-01

    All four stereoisomers (7–10) of ethyl undeca-2,4-dienoate were prepared in ≥98% isomeric purity by Pd-catalyzed alkenylation (Negishi coupling) using ethyl (E)- and (Z)-β-bromoacrylates. Although the stereoisomeric purity of the 2Z,4E-isomer (8) prepared by Suzuki coupling using conventional alkoxide and carbonate bases was ≤ 95%, as reported earlier, the use of CsF or nBu4NF as a promoter base has now been found to give all of 7–10 in ≥98% selectivity. Other widely known methods reveal considerable limitations. Heck alkenylation was satisfactory for the syntheses of the 2E,4E and 2E,4Z isomers of ≥98% purity, but the purity of the 2Z,4E isomer was ≤ 95%. Mutually complementary Horner–Wadsworth–Emmons and Still–Gennari (SG) olefinations are also of considerably limited scopes. Neither 2E,4Z nor 2Z,4Z isomer is readily prepared in ≥90% selectivity. In addition to (2Z,4E)-dienoic esters, some (2Z,4E,6E)- and (2Z,4E,6Z)-trienoic esters have been prepared in ≥98% selectivity by a newly devised Pd-catalyzed alkenylation–SG olefination tandem process. As models for conjugated higher oligoenoic esters, all eight stereoisomers for ethyl trideca-2,4,6-trienoate (23–30) have been prepared in ≥98% overall selectivity. PMID:21709262

  19. Interim report on task 1.2: near equilibrium processing requirements - attrition milling part 1 of 2 to Lawrence Livermore National for contract b345772

    International Nuclear Information System (INIS)

    Stewart, M W A; Vance, E R; Day, R A; Eddowes, T; Moricca, S

    2000-01-01

    The objective of Task 1.2 has only partly been achieved as the work on Pu/U-formulations and to a significant degree on Th/U-formulations has been performed under grinding/blending conditions that did not replicate plant-like fabrication processes, particularly in the case with the small glovebox attritor. Nevertheless the results do show that actinide-rich particles, not present in specimens made via the alkoxide-route (equilibrium conditions), occur when the grinding process is not efficient enough to ensure that high-fired PuO 2 , ThO 2 and UO 2 particles are below a critical size. Our current perception is that the critical size for specimens sintered at 1350 C for 4 hours is about 5 (micro)m in diameter. The critical size is difficult to estimate, as it is equal to the starting diameter of actinide oxides just visible within brannerite regions. Our larger scale attritor experiments as well as experience with wet and dry ball milling suggests that acceptable mineralogy and microstructure can be obtained by dry milling via attritor and ball mills. This is provided that appropriate attention is paid to the size and density of the grinding media, grinding additives that reduce caking of the powder, and in the case of attritors the grinding speed and pot setup. The ideal products for sintering are free flowing granules of ∼ 100 (micro)m containing constituents ground to about 1 (micro)m to ensure homogeneity and equilibrium mineralogy

  20. Synthesis and characterization of Sn doped TiO{sub 2} photocatalysts: Effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Vázquez, I.; Del Angel, G.; Bertin, V. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); González, F. [Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Vázquez-Zavala, A.; Arrieta, A. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Padilla, J.M. [Universidad Tecnológica del Centro de Veracruz, Área de Tecnología, Av. Universidad Carretera Federal Cuitláhuac-La Tinaja No. 350, Cuitláhuac, Veracruz 94910 (Mexico); Barrera, A. [Universidad de Guadalajara, Centro Universitario de la Ciénega, Av. Universidad, Número 1115, Col. Linda Vista, Apdo. Postal 106, Ocotlán Jal. (Mexico); Ramos-Ramirez, E. [Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato Noria Alta S/N, Col. Noria Alta, Guanajuato, Gto. C.P. 36050 (Mexico)

    2015-09-15

    Abstract: TiO{sub 2} and Sn-doped TiO{sub 2} materials were prepared by sol–gel method using titanium and tin alkoxides at different Sn concentration (0.1 mol%, 0.5 mol%, 1 mol%, 3 mol% and 5 mol%). Samples were characterized by thermo gravimetric analyzer with differential scanning calorimeter (TGA–DSC), X-ray Rietveld refinement, N{sub 2} adsorption (BET), transmission electron microscopy (TEM), UV–vis spectroscopies technology and Raman spectroscopy. Only anatase phase was observed in pure TiO{sub 2}, whereas anatase and brookite were obtained in Sn-doped TiO{sub 2} samples. Sn dopant acts as a promoter in phase transformation of TiO{sub 2}. The Rietveld refinements method was used to determine the relative weight of anatase and brookite, and crystallite size as a function of Sn concentration after calcination of samples at 673 K. It was also demonstrated the incorporation of Sn{sup 4+} into the anatase TiO{sub 2} structure. Sn{sup 4+} inhibits the growth of TiO{sub 2} crystallite size, which leads to an increase of the specific surface area of TiO{sub 2}. From XRD analysis, the solid solution limit of Sn{sup 4+} into TiO{sub 2} is 5 mol% Sn. The photocatalytic activity on Sn{sup 4+} doped TiO{sub 2} was determined for the 2,4-dichlorophenoxyacetic acid reaction. The maximum in activity was attributed to the coexistence of anatase and brookite phases in the appropriate ratio and crystallite size.

  1. Carbonate formation within a nickel dimer: synthesis of a coordinatively unsaturated bis(mu-hydroxo) dinickel complex and its reactivity toward carbon dioxide.

    Science.gov (United States)

    Wikstrom, Jeffrey P; Filatov, Alexander S; Mikhalyova, Elena A; Shatruk, Michael; Foxman, Bruce M; Rybak-Akimova, Elena V

    2010-03-14

    The tridentate aminopyridine ligand bearing a bulky tert-butyl substituent at the amine nitrogen, tert-butyl-dipicolylamine (tBuDPA), occupies three coordination sites in six-coordinate complexes of nickel(ii), leaving the remaining three sites available for additional ligand binding and activation. New crystallographically characterized complexes include two mononuclear species with 1:1 metal:ligand complexation: a trihydrate solvate (1.3H(2)O) and a monohydrate biacetonitrile solvate (1.H(2)O.2CH(3)CN). Complexation in the presence of sodium hydroxide results in a bis(mu-hydroxo) complex (2), the bridging hydroxide anions of which are labile and become displaced by methoxide anions in methanol solvent, affording bis-methoxo-bridged (4). Nickel(II) centers in 2 are five-coordinate and antiferromagnetically coupled (with J = -31.4(5) cm(-1), H = -2JS(1)S(2), in agreement with Ni-O-Ni angle of 103.7 degrees). Bridging hydroxide or alkoxide anions in coordinatively unsaturated dinuclear nickel(II) complexes with tBuDPA react as active nucleophiles. 2 readily performs carbon dioxide fixation, resulting in the formation of a bis(mu-carbonato) tetrameric complex (3), which features a novel binding geometry in the form of an inverted butterfly-type nickel-carbonate core. Temperature-dependent magnetic measurements of tetranuclear carbonato-bridged revealed relatively weak antiferromagnetic coupling (J(1) = -3.1(2) cm(-1)) between the two nickel centers in the core of the cluster, as well as weak antiferromagnetic pairwise interactions (J(2) = J(3) = -4.54(5) cm(-1)) between central and terminal nickel ions.

  2. Hydrocarbon-soluble calcium hydride: a "worker-bee" in calcium chemistry.

    Science.gov (United States)

    Spielmann, Jan; Harder, Sjoerd

    2007-01-01

    The reactivity of the hydrocarbon-soluble calcium hydride complex [{CaH(dipp-nacnac)(thf)}(2)] (1; dipp-nacnac=CH{(CMe)(2,6-iPr(2)C(6)H(3)N)}(2)) with a large variety of substrates has been investigated. Addition of 1 to C=O and C=N functionalities gave easy access to calcium alkoxide and amide complexes. Similarly, reduction of the C[triple chemical bond]N bond in a cyanide or an isocyanide resulted in the first calcium aldimide complexes [Ca{N=C(H)R}(dipp-nacnac)] and [Ca{C(H)=NR}(dipp-nacnac)], respectively. Complexation of 1 with borane or alane Lewis acids gave the borates and alanates as contact ion pairs. In reaction with epoxides, nucleophilic ring-opening is observed as the major reaction. The high reactivity of hydrocarbon-soluble 1 with most functional groups contrasts strongly with that of insoluble CaH(2), which is essentially inert and is used as a common drying agent. Crystal structures of the following products are presented: [{Ca{OC(H)Ph(2)}(dipp-nacnac)}(2)], [{Ca{N=C(H)Ph}(dipp-nacnac)}(2)], [{Ca{C(H)=NC(Me)(2)CH(2)C(Me)(3)}(dipp-nacnac)}(2)], [{Ca{C(H)=NCy}(dipp-nacnac)}(2)], [Ca(dipp-nacnac)(thf)](+)[H(2)BC(8)H(14)](-) and [{Ca(OCy)(dipp-nacnac)}(2)]. The generally smooth and clean conversions of 1 with a variety of substrates and the stability of most intermediates against ligand exchange make 1 a valuable key precursor in the syntheses of a wide variety of beta-diketiminate calcium complexes.

  3. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  4. Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane: A new biocompatible cage like molecule for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen, E-mail: mmohseni@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Messori, Massimo [Dipartimento di Ingegneria ‘Enzo Ferrari’, Università di Modena e Reggio Emilia, Modena (Italy)

    2016-04-01

    Organic–inorganic hybrid materials have shown improved properties to be used as biocompatible coating in biomedical applications. Polyhedral oligomeric silsesquioxane (POSS) containing coatings are among hybrid materials showing promising properties for these applications. In this work an open cage POSS has been reacted with a titanium alkoxide to end cap the POSS molecule with titanium atom to obtain a so called polyhedral oligomeric metalized silsesquioxane (POMS). The synthesized POMS was characterized by FTIR, RAMAN and UV–visible spectroscopy as well as {sup 29}Si NMR and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) techniques. Appearance of peaks at 920 cm{sup −1} in FTIR and 491 cm{sup −1} and 1083 cm{sup −1} in Raman spectra confirmed Si–O–Ti linkage formation. It was also demonstrated that POMS was in a monomeric form. To evaluate the biocompatibility of hybrids films, pristine POSS and synthesized POMS were used in synthesis of a polycarbonate urethane polymer. Results revealed that POMS containing hybrid, not only had notable thermal and mechanical stability compared to POSS containing one, as demonstrated by DSC and DMTA analysis, they also showed controlled surface properties in such a manner that hydrophobicity and biocompatibility were both reachable to give rise to improved cell viability in presence of human umbilical vein endothelial cells (HUVEC) and MRC-5 cells. - Highlight: • Polyhedral Oligomeric Metalized Silsesquioxane (POMS) based on titanium was synthesized. • POMS can improve mechanical properties of polyurethane. • POMS increases hydrophobicity of polyurethane. • POMS is a unique nanocage to enhance biocompatibility of polyurethane.

  5. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  6. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Kroll, Jared O. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Peterson, Jacob A. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Matyáš, Josef [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Olszta, Matthew J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Vienna, John D. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-09-14

    This paper discusses the development of aluminosilicates aerogels as scaffolds for Ag0 nanoparticles used for chemisorption of I2(g). The starting materials for these scaffolds included both Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles are added by soaking the aerogels in AgNO3 followed by drying and flowing under H2/Ar to reduce Ag+ → Ag0. In some cases, samples were soaked in 3-(mercaptopropyl)trimethoxysilane under supercritical CO2 to add –SH tethers to the aerogel surfaces for more effective binding of Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogel, Si was replaced with Ag. The Ag-loading of thiolated versus non-thiolated Na-Al-Si-O aerogels was comparable at ~35 at% whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ~ 7 at% after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were > 0.5 g g-1 showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated Al-Si-O aerogel was 0.31 g g-1. The control of Ag uptake over solution residence time and [AgNO3] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the capacity of iodine chemisorption. Consolidation experimental results are also presented.

  7. Combinatorial Approach for the Discovery of New Scintillating Materials SBIR Phase I Final Report DOE/ER/84310

    International Nuclear Information System (INIS)

    Cronin, J.P.; Agrawal, A.; Tonazzi, J.C.

    2006-01-01

    The combinatorial approach for the discovery of new scintillating materials has been investigated using the wet-chemical (sol-gel) synthesis methods. Known scintillating compounds Lu 2 SiO 5 (LSO) and (LuAl)O 3 (LAO) and solid solutions in the systems of Lu 2 O 3 -Y 2 O 3 --SiO 2 (CeO 2 -doped) (LYSO) and Lu 2 O 3 -Y 2 O 3 --Al 2 O 3 (CeO 2 -doped) (LYAO) were synthesized from sol-gel precursors. Sol-gel precursors were formulated from alkoxides and nitrates and acetates of the cations. Sol-gel solution precursors were formulated for the printing of microdot arrays of different compositions in the above oxide systems. Microdot arrays were successfully printed on C-cut and R-cut sapphire substrates using Biodot printer at Los Alamos National Laboratory (LANL). The microdot arrays were adherent and stable after heat-treating at 1665 C and had an average thickness of around 2 (micro)m. X-ray fluorescence elemental mapping showed the arrays to be of the correct chemical composition. Sintered microdots were found to be highly crystalline by microscopic observation and X-ray diffraction. Scintillation was not clearly detectable by visual observation under UV illumination and by video observation under the scanning electron beam of an SEM. The microdots were either poorly scintillating or not scintillating under the present synthesis and testing conditions. Further improvements in the synthesis and processing of the microdot arrays as well as extensive scintillation testing are needed

  8. A SIFT study of the reactions of H2ONO+ ions with several types of organic molecules

    Science.gov (United States)

    Smith, David; Wang, Tianshu; Spanel, Patrik

    2003-11-01

    A selected ion flow tube (SIFT) study has been carried out of the reactions of hydrated nitrosonium ions, NO+H2O, which theory has equated to protonated nitrous acid ions, H2ONO+. One objective of this study was to investigate if this ion exhibits the properties of both a cluster ion and a protonated acid in their reactions with a variety of organic molecules. The chosen reactant molecules comprise two each of the following types--amines, terpenes, aromatic hydrocarbons, esters, carboxylic acids, ketones, aldehydes and alcohols. The reactant H2ONO+ (NO+H2O) ions are formed in a discharge ion source and injected into helium carrier gas where they are partially vibrationally excited and partially dissociated to NO+ ions. Hence, the reactions of the H2ONO+ ions had to be studies simultaneously with NO+ ions, the reactions of the latter ions readily being studied by selectively injecting NO+ ions into the carrier gas. The results of this study indicate that the H2ONO+ ions undergo a wide variety of reaction processes that depend on the properties of the reactant molecules such as their ionisation energies and proton affinities. These processes include charge transfer with compounds, M, that have low ionisation energies (producing M+), proton transfer with compounds possessing large proton affinities (MH+), hydride ion transfer (M---H+), alkyl radical (M---R+), alkoxide radical transfer (M---OR+), ion-molecule association (NO+H2OM) and ligand switching (NO+M), producing the ions given in parentheses.

  9. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Science.gov (United States)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  10. LaFePdO3 perovskite automotive catalyst having a self-regenerative function

    International Nuclear Information System (INIS)

    Tanaka, Hirohisa; Tan, Isao; Uenishi, Mari; Taniguchi, Masashi; Kimura, Mareo; Nishihata, Yasuo; Mizuki, Jun'ichiro

    2006-01-01

    An automotive gasoline engine is operated close to the stoichiometric air-to-fuel ratio to convert the pollutant emissions simultaneously, accompanying with redox (reduction and oxidation) fluctuations in exhaust-gas composition through adjusting the air-to-fuel ratio. An innovative LaFe 0.95 Pd 0.05 O 3 perovskite catalyst, named 'the intelligent catalyst', has been developed, and which has a new self-regenerative function of the precious metal in the inherent fluctuations of automotive exhaust-gas. The LaFe 0.95 Pd 0.05 O 3 perovskite catalyst, La located at the A-site, was prepared by the alkoxide method. Pd located at the B-site of the perovskite lattice in the oxidative atmosphere, and segregated out to form small metallic particles in the reductive atmosphere. The catalyst retained a predominantly perovskite structure throughout a redox cycle of the exhaust-gas, while the local structure around Pd could be changed in a completely reversible manner. The agglomeration and growth of Pd particles is suppressed, even under the severe environment, as a result of the movement between inside and outside the perovskite lattice. It is revealed that the self-regenerative function of Pd occurs even at 200 deg. C, unexpectedly low temperature, in the LaFe 0.95 Pd 0.05 O 3 catalyst. Since the high catalytic activity is maintained, the great reduction of Pd loading has been achieved. The intelligent catalyst is expected as a new application of the rare earth, and then the technology is expected in the same way in the global standard of the catalyst designing

  11. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-gel generated Mg-Al-CO3 layered double hydroxide with very labile interlayer anions

    NARCIS (Netherlands)

    Chubar, N.

    Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these

  12. Magnetically separable mesoporous Fe{sub 3}O{sub 4}/silica catalysts with very low Fe{sub 3}O{sub 4} content

    Energy Technology Data Exchange (ETDEWEB)

    Grau-Atienza, A.; Serrano, E.; Linares, N. [Molecular Nanotechnology Laboratory, Department of Inorganic Chemistry, University of Alicante, Carretera San Vicente s/n, E-03690 Alicante (Spain); Svedlindh, P. [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Seisenbaeva, G., E-mail: Gulaim.Seisenbaeva@slu.se [Department of Chemistry and Biotechnology, BioCenter SLU, Box 7015, SE-75007 Uppsala (Sweden); García-Martínez, J., E-mail: j.garcia@ua.es [Molecular Nanotechnology Laboratory, Department of Inorganic Chemistry, University of Alicante, Carretera San Vicente s/n, E-03690 Alicante (Spain)

    2016-05-15

    Two magnetically separable Fe{sub 3}O{sub 4}/SiO{sub 2} (aerogel and MSU-X) composites with very low Fe{sub 3}O{sub 4} content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe{sub 3}O{sub 4} nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe{sub 3}O{sub 4} NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe{sub 3}O{sub 4} NPs content (ca. 1 wt%). These novel hybrid Fe{sub 3}O{sub 4}/SiO{sub 2} materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe{sub 3}O{sub 4}/silica aerogel as compared to the Fe{sub 3}O{sub 4} NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe{sub 3}O{sub 4}/SiO{sub 2} systems. - Graphical abstract: Novel magnetically separable mesoporous silica-based composites with very low magnetite content. - Highlights: • An innovative way to prepare magnetically separable composites with <1 wt% NPs. • The Fe{sub 3}O{sub 4}/silica composites are readily magnetized/demagnetized. • The Fe{sub 3}O{sub 4}/silica composites can be easily recovered using an external magnetic field. • Excellent catalytic performance and recyclability despite the low Fe{sub 3}O{sub 4} NPs content.

  13. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    Science.gov (United States)

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  14. Probing the reaction mechanism of IspH protein by x-ray structure analysis

    KAUST Repository

    Gräwert, Tobias

    2009-12-28

    Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) represent the two central intermediates in the biosynthesis of isoprenoids. The recently discovereddeoxyxylulose 5-phosphate pathway generates a mixture of IPP and DMAPP in its final step by reductive dehydroxylation of 1-hydroxy-2-methyl- 2-butenyl 4-diphosphate. This conversion is catalyzed by IspH protein comprising a central iron-sulfur cluster as electron transfer cofactor in the active site. The five crystal structures of IspH in complex with substrate, converted substrate, products and PPi reported in this article provide unique insights into the mechanism of this enzyme. While IspH protein crystallizes with substrate bound to a [4Fe-4S] cluster, crystals of IspH in complex with IPP, DMAPP or inorganic pyrophosphate feature [3Fe-4S] clusters. The IspH:substrate complex reveals a hairpin conformation of the ligand with the C(1) hydroxyl group coordinated to the unique site in a [4Fe-4S] cluster of aconitase type. The resulting alkoxide complex is coupled to a hydrogen-bonding network, which serves as proton reservoir via a Thr167 proton relay. Prolonged x-ray irradiation leads to cleavage of the C(1)-O bond (initiated by reducing photo electrons). The data suggest a reaction mechanism involving a combination of Lewis-acid activation and proton coupled electron transfer. The resulting allyl radical intermediate can acquire a second electron via the iron-sulfur cluster. The reaction may be terminated by the transfer of a proton from the β-phosphate of the substrate to C(1) (affording DMAPP) or C(3) (affording IPP).

  15. Enhancement of seeding for electroless Cu plating of metallic barrier layers by using alkyl self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sung-Te [Department of Electronic Engineering, Hsiuping University of Science and Technology, Dali 412, Taichung, Taiwan (China); Chung, Yu-Cheng [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Fang, Jau-Shiung [Department of Materials Science and Engineering, National Formosa University, Huwei 632, Taiwan (China); Cheng, Yi-Lung [Department of Electrical Engineering, National Chi-Nan University, Puli, Nantou 545, Taiwan (China); Chen, Giin-Shan, E-mail: gschen@fcu.edu.tw [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2017-05-31

    Highlights: • Ta barrier layers are used as model substrates for seeding of electroless plating. • Ta layers seeded with Ta-OH yield seeds with limited density and large size (>10 nm). • Substantial improvement of seeding is obtained with functionalized SAMs. • The mechanism of seeding improvement by functionalized SAMs is clearly clarified. - Abstract: Tethering a self-assembled monolayer (SAM) on ultralow-k (porous) dielectric materials as a seed-trapping layer for electroless Cu plating has been extensively studied. By contrast, literature on direct electroless Cu plating of metallic barrier layers assisted by SAMs is scarce. Therefore, Ta, a crucial component of barrier materials for Cu interconnect metallization, was investigated as a model substrate for a new seeding (Ni catalyst formation) process of electroless Cu plating. Transmission and scanning electron microscopies indicated that catalytic particles formed on Ta films through Ta−OH groups tend to become aggregates with an average size of 14 nm and density of 2 × 10{sup 15} m{sup −2}. By contrast, Ta films with a plasma-functionalized SAM tightly bound catalytic particles without agglomeration, thus yielding a markedly smaller size (3 nm) and higher density (3 × 10{sup 16} m{sup −2}; one order greater than those formed by other novel methods). X-ray photoelectron spectroscopy clearly identified the types of material species and functional groups induced at each step of the seeding process. Moreover, the phase of the catalytic particles, either nickel alkoxide, Ni(OH){sub 2}, or metallic Ni, along with the seed-bonding mechanism, was also unambiguously distinguished. The enhancement of film-formation quality of Cu by the new seeding process was thus demonstrated.

  16. Direct Partial Oxidations Using Molecular Oxygen - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-11-01

    In 2006, Richard A. Kemp (University of New Mexico) and Karen I. Goldberg (University of Washington) formed a team and began to investigate new strategies to accomplish direct selective aerobic oxidations, with a particular emphasis on the epoxidation of propylene and higher olefins. This DOE-BES funded project was renewed twice and concluded after a no-cost extension earlier this year. Multiple novel strategies involving homogeneous catalyst systems were initiated and investigated during the award. Important fundamental understanding and insight concerning requirements for promotion of aerobic olefin epoxidation was generated. During the tenure of this project, new knowledge was generated concerning the synthesis, characterization and aerobic reactivity of metal hydrides and hydroxides. Key results describing synthetic strategies and optimization of the preparation of mononuclear late metal hydrides were published. The team reported the first example of O2 insertion into a Pd-H bond, a reaction which had been proposed in the literature but never previously observed. Our experimental investigation of the mechanism was later followed by computational work, and a description of what is now referred to as the Hydrogen Atom Abstraction (HAA) pathway for this reaction has been widely accepted in the community. After investigation of many other late metal hydrides, both experimentally and computationally, the team put together a chapter that included a description of key contributing factors that allow reaction by the HAA mechanism. A brief sampling of other classic papers from our project include hydrogenolysis reactions of late metal hydroxide and alkoxide complexes, the synthesis of nickel-hydrides, and the involvement of hemilabile ligands in promoting new reaction pathways.

  17. Probing the reaction mechanism of IspH protein by x-ray structure analysis

    KAUST Repository

    Grä wert, Tobias; Span, Ingrid; Eisenreich, Wolfgang; Rohdich, Felix; Eppinger, Jö rg; Bacher, Adelbert; Groll, Michael

    2009-01-01

    Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) represent the two central intermediates in the biosynthesis of isoprenoids. The recently discovereddeoxyxylulose 5-phosphate pathway generates a mixture of IPP and DMAPP in its final step by reductive dehydroxylation of 1-hydroxy-2-methyl- 2-butenyl 4-diphosphate. This conversion is catalyzed by IspH protein comprising a central iron-sulfur cluster as electron transfer cofactor in the active site. The five crystal structures of IspH in complex with substrate, converted substrate, products and PPi reported in this article provide unique insights into the mechanism of this enzyme. While IspH protein crystallizes with substrate bound to a [4Fe-4S] cluster, crystals of IspH in complex with IPP, DMAPP or inorganic pyrophosphate feature [3Fe-4S] clusters. The IspH:substrate complex reveals a hairpin conformation of the ligand with the C(1) hydroxyl group coordinated to the unique site in a [4Fe-4S] cluster of aconitase type. The resulting alkoxide complex is coupled to a hydrogen-bonding network, which serves as proton reservoir via a Thr167 proton relay. Prolonged x-ray irradiation leads to cleavage of the C(1)-O bond (initiated by reducing photo electrons). The data suggest a reaction mechanism involving a combination of Lewis-acid activation and proton coupled electron transfer. The resulting allyl radical intermediate can acquire a second electron via the iron-sulfur cluster. The reaction may be terminated by the transfer of a proton from the β-phosphate of the substrate to C(1) (affording DMAPP) or C(3) (affording IPP).

  18. Functionalization of luminescent YVO{sub 4}:Eu{sup 3+} nanoparticles by sol–gel

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Barbara A.; Ferreira, Natália H.; Oliveira, Pollyanna F.; Faria, Emerson H. de; Tavares, Denise C.; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2015-03-15

    Over the last decades, researchers have explored nanotechnological applications in different areas. The non-hydrolytic and hydrolytic sol–gel routes offer the ideal conditions to obtain materials with distinct compositions and multifunctionality, for use in such diverse areas as nanomedicine and technology. In this work, we used the modified hydrolytic sol–gel route to prepare YVO{sub 4} doped with Eu{sup 3+} ion. The YVO{sub 4}:Eu{sup 3+} nanoparticles were functionalized with 3-chloropropyltriethoxysilane using the hydrolytic sol–gel process; the drug cisplatin was then added to them. The final powder was characterized by thermal analysis, infrared spectroscopy, X-ray diffraction, and photoluminescence. The powder X-ray diffraction patterns of the samples obtained before and after functionalization revealed well defined peaks ascribed to the tetragonal structure of the YVO{sub 4} phase. The thermal analysis curves evidenced mass loss relative to 3-chloropropyltriethoxysilane and cisplatin decomposition. Infrared spectroscopy showed the peaks related to the CH and NH groups vibration modes, confirming YVO{sub 4} functionalization. The excitation and emission spectrum of the Eu{sup 3+} ion did not change upon its doping into the matrix functionalized with 3-chloropropyl and cisplatin. Cytotoxicity tests conducted on normal Chinese hamster (V79 cells) and murine melanoma (B16F10) cells attested that the matrix was not toxic. - Highlights: • Sol–gel methodology was used to obtain luminescent YVO{sub 4}. • Matrix was functionalized by alkoxide. • YVO{sub 4} matrix was not toxic. • YVO{sub 4}:Eu{sup 3+} nanoparticles existed in the cell cytoplasm and nucleus. • YVO{sub 4}:Eu{sup 3+} can function as a fluorescent label and drug delivery system.

  19. Characteristics and properties of nano-LiCoO2 synthesized by pre-organized single source precursors: Li-ion diffusivity, electrochemistry and biological assessment.

    Science.gov (United States)

    Brog, Jean-Pierre; Crochet, Aurélien; Seydoux, Joël; Clift, Martin J D; Baichette, Benoît; Maharajan, Sivarajakumar; Barosova, Hana; Brodard, Pierre; Spodaryk, Mariana; Züttel, Andreas; Rothen-Rutishauser, Barbara; Kwon, Nam Hee; Fromm, Katharina M

    2017-08-22

    LiCoO 2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 °C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO 2 (HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li + ) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. Several new single source precursors containing lithium (Li + ) and cobalt (Co 2+ ) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 °C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our LiCoO 2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO 2 have faster kinetics for Li + insertion/extraction compared to microparticles. Overall, nano-sized LiCoO 2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles.

  20. Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Obdulia Medina-Juárez

    2016-11-01

    Full Text Available Special preparation of Santa Barbara Amorphous (SBA-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO2. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO2 adsorption is only reasonably achieved when the SiO2 surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N2 sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR, and NH3 thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries, present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO2 but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH4 adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO2 one, thus giving proof of their selectivity toward CO2. Although the amount of retained CO2 is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization.

  1. Molybdenum (VI) Bisimidoaryl Phenoxide and Alkoxide Complexes : Molecular Structures of [Mo(NAr)2(OCMe2-2py)(CH2SiMe3)] and [{Mo(NAR)2Me(OMe}2

    NARCIS (Netherlands)

    Koten, G. van; Brandts, J.A.M.; Boersma, J.; Spek, A.L.

    1999-01-01

    The synthesis and characterisation is reported of new, five-coordinate molybdenum(VI) bisimidoaryl complexes [Mo(NAr)2(O-N)(R)] [Ar = C6H3(iPr)2-2,6; O-N = 2-pyridyldiphenylmethoxide (a), 2-pyridyldimethylmethoxide (b), 8-quinolinolate (c); R = Cl, Me, CH2SiMe3] and the corresponding bisalkoxide (a,

  2. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties

    Energy Technology Data Exchange (ETDEWEB)

    Jirák, Zdeněk; Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase, possessing high magnetization, M{sub 10} {sub kOe}(4.5 K) = 63.5 emu g{sup −1}, and Curie temperature, T{sub C} = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO{sub 2} shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles. - Highlights: • Magnetic nanoparticles of perovskite La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase are coated with TiO{sub 2}. • The titania forms a continuous and amorphous shell and provides colloidal stability. • Morphology and surface properties are compared to a silica-coated product. • MRI properties of both the titania- and silica-coated particles are studied at 0.5 T. • The temperature dependence of r{sub 2} is strongly affected by the type of coating.

  3. Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKa's.

    Science.gov (United States)

    Ugur, Ilke; Marion, Antoine; Parant, Stéphane; Jensen, Jan H; Monard, Gerald

    2014-08-25

    In a first step toward the development of an efficient and accurate protocol to estimate amino acids' pKa's in proteins, we present in this work how to reproduce the pKa's of alcohol and thiol based residues (namely tyrosine, serine, and cysteine) in aqueous solution from the knowledge of the experimental pKa's of phenols, alcohols, and thiols. Our protocol is based on the linear relationship between computed atomic charges of the anionic form of the molecules (being either phenolates, alkoxides, or thiolates) and their respective experimental pKa values. It is tested with different environment approaches (gas phase or continuum solvent-based approaches), with five distinct atomic charge models (Mulliken, Löwdin, NPA, Merz-Kollman, and CHelpG), and with nine different DFT functionals combined with 16 different basis sets. Moreover, the capability of semiempirical methods (AM1, RM1, PM3, and PM6) to also predict pKa's of thiols, phenols, and alcohols is analyzed. From our benchmarks, the best combination to reproduce experimental pKa's is to compute NPA atomic charge using the CPCM model at the B3LYP/3-21G and M062X/6-311G levels for alcohols (R(2) = 0.995) and thiols (R(2) = 0.986), respectively. The applicability of the suggested protocol is tested with tyrosine and cysteine amino acids, and precise pKa predictions are obtained. The stability of the amino acid pKa's with respect to geometrical changes is also tested by MM-MD and DFT-MD calculations. Considering its strong accuracy and its high computational efficiency, these pKa prediction calculations using atomic charges indicate a promising method for predicting amino acids' pKa in a protein environment.

  4. Neodymium and uranium borohydride complexes, precursors to cationic derivatives: comparison of 4f and 5f element complexes; Complexes borohydrures du neodyme et de l'uranium, precurseurs de derives cationiques: comparaison de complexes des elements 4f et 5f

    Energy Technology Data Exchange (ETDEWEB)

    Cendrowski-Guillaume, S.M. [Bordeaux-1 Univ., Lab. de Chimie des Polymeres Organiques, CNRS (UMR 5629), ENSCPB, 33 - Pessac (France); Le Gland, G.; Lance, M.; Nierlich, M.; Ephritikhine, M. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules, 91 - Gif sur Yvette (France)

    2002-02-01

    Nd(BH{sub 4}){sub 3}(THF){sub 3}, 1, reacted with KCp{sup *}, KP{sup *} and K{sub 2}COT (Cp{sup *} = {eta}-C{sub 5}Me{sub 5}, P{sup *} = {eta}-PC{sub 4}Me{sub 4}, COT = {eta}-C{sub 8}H{sub 8}) to form (Cp{sup *})Nd(BH{sub 4}){sub 2}(THF){sub 2}, 2, [K(THF)][(P{sup *}){sub 2}Nd(BH{sub 4}){sub 2}], 3 and (COT)Nd(BH{sub 4})(THF){sub 2}, 4a, respectively. The mixed ring complexes (COT)Nd(Cp{sup *})(THF), 6, and [(COT)Nd(P{sup *})(THF)], 7a, the alkoxide [(COT)Nd(OEt)(THF)]{sub 2}, 8, and the thiolates [Na][(COT)Nd-(S{sup t}Bu){sub 2}], 11, and [Na(THF){sub 2}][(COT)Nd((COT)Nd){sub 2}(S{sup t}Bu){sub 3}], 12, were similarly synthesised from 4a by reaction with the alkali metal salt of the respective ligand. Protonolysis of the metal-borohydride bonds in 4a or (COT)U(BH{sub 4}){sub 2}(THF), with NEt{sub 3}HBPh{sub 4} in THF afforded the cations [(COT)Nd(THF){sub 4}][BPh{sub 4}), 5, [(COT)U(BH{sub 4})(THF){sub 2}][BPh{sub 4}], 13, and [(COT)U(HMPA){sub 3}][BPh{sub 4}]{sub 2}, 14. These cations allowed the preparation of (COT)U(P{sup *})(HMPA){sub 2}, 15, [(COT)U(P{sup *})(HMPA){sub 2}][BPh{sub 4}], 16, and [(COT)U(HMPA){sub 3}][BPh{sub 4}], 17. The X-ray crystal structures of [(COT)M(HMPA){sub 3}[BPh{sub 4}], M = Nd, 18, U, 17, have been determined, allowing comparison of Nd(III) and U(III) derivatives. (authors)

  5. Staphylococcal nuclease active-site amino acids: pH dependence of tyrosines and arginines by 13C NMR and correlation with kinetic studies

    International Nuclear Information System (INIS)

    Grissom, C.G.; Markley, J.L.

    1989-01-01

    The pH and temperature dependence of the kinetic parameters of staphylococcal nuclease have been examined with three p-nitrophenyl phosphate containing DNA analogues that vary as to 3'-substituent. With wild-type (Foggi variant) nuclease (nuclease wt) and the substrates thymidine 3'-phosphate 5'-(p-nitrophenyl phosphate) (PNPdTp), thymidine 3'-methylphosphonate 5'-(p-nitrophenyl phosphate) (PNPdTp Me), and thymidine 5'-(p-nitrophenyl phosphate) (PNPdT), k cat remains nearly constant at 13 min -1 . However, k cat /k m with nuclease wt varies considerably. The data suggests that the inflection k cat /K m with pK a at 9.67 arises from ionization of tyrosine-85, which hydrogen bonds to the divalent 3'-phosphomonester of substrates with this substituent. The enthalpy of ionization of both deprotonation steps in the k cat /K m versus pH profile is 5 kcal/mol. 13 C NMR has been used to determine the pK a values of the arginine and tyrosine residues. The results do not rule out arginine as a candidate for the acidic catalyst that protonates the 5'-ribose alkoxide prior to product release. The phenolic hydroxyl carbon of tyrosine-85 has been assigned by comparing the 13 C NMR spectrum of nuclease wt and nuclease Y85F. This correlation between pK a values along with the absence of other candidates indicates that the ionization of tyrosine-85 is the pK a seen in the k cat /K m vs pH profile for substrates with a divalent 3'-phosphomonester. This conclusion is consistent with the proposed role of tyrosine-85 as a hydrogen-bond donor to the 3'-phosphomonoester of substrates poised for exonucleolytic hydrolysis

  6. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mombrú, Dominique [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Romero, Mariano, E-mail: mromero@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Castiglioni, Jorge [Laboratorio de Fisicoquímica de Superficies – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay)

    2017-06-15

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.

  7. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    Science.gov (United States)

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Retention mechanism of Mo in TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}, potential adsorbents for the radionuclides separation; Mecanismo de retencion de Mo en TiO{sub 2} y ZrO{sub 2}-TiO{sub 2}, adsorbentes potenciales para la separacion de radionuclidos

    Energy Technology Data Exchange (ETDEWEB)

    Badillo A, V. E.; Perez H, R.; Lopez R, C.; Vidal M, J., E-mail: veronica.badillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The retention properties of titanium and zirconium oxides are studied; solid adsorbents of high retention capacity for separation by chromatography of radionuclide pairs that are the basis of the so-called radionuclide generators. The titanium and zirconium nano materials obtained with a high retention capacity are prepared by the Sol-gel method using an alkoxide as a precursor. The acid-base properties are studied by potentiometric titrations, obtaining a value of the point of zero charge of 5.6 for TiO{sub 2} and 6.3 for the mixed oxide ZrO{sub 2}-TiO{sub 2}. To study the retention behavior of the {sup 99}Mo/{sup 99m}Tc radionuclide pair in these solids, batch experiments were performed on a 0.9% NaCl electrolyte as a function of the solution ph. The results show that {sup 99m}Tc is not absorbed by solids while {sup 99}Mo shows a high retention affinity for the metal oxides under study. The maximum adsorption of {sup 99}Mo takes place at a ph value close to the zero load point (pH{sub PZC}) (∼ 95% adsorption). This study focuses on the mechanism of molybdenum retention in terms of chemical equilibria between the functional groups of the solid (OH-) and the species of Mo(Vi) in solution. The experimental data of molybdenum retention were analyzed with the FITEQL program using the constant capacitance model and assuming the presence of a single type of sites on the surface of the solids (hydroxyl groups). In Mo(Vi) retention, surface complexes that are formed through a ligand exchange mechanism between molybdate species and hydroxyl ions from the surface of the solid are probably the mechanism responsible for adsorption in the ph range that is studied. (Author)

  9. TECHNIQUE FOR DETERMINATION OF SURFACE FRACTAL DIMENSION AND MORPHOLOGY OF MESOPOROUS TITANIA USING DYNAMIC FLOW ADSORPTION AND ITS CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Silvester Tursiloadi

    2010-06-01

    Full Text Available A technique to determine the surface fractal dimension of mesoporous TiO­2 using a dynamic flow adsorption instrument is described. Fractal dimension is an additional technique to characterize surface morphology. Surface fractal dimension, a quantitative measurement of surface ruggedness, can be determined by adsorbing a homologous series of adsorbates onto an adsorbent sample of mesoporous TiO­2. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60 °C and the solvent was extracted.  Mesoporous TiO­2 consists of anatase nano-particles, about 5nm in diameter, have been obtained. After calcination at 600 °C, the average pore size of the extracted gel, about 20nm in diameter, and the pore volume, about 0.35cm3g-1, and the specific surface area, about 58 m2g-1. Using the N2 adsorption isotherm, the surface fractal dimension, DS, has been estimated according to the Frenkel-Halsey-Hill (FHH theory. The N2 adsorption isotherm for the as-extracted aerogel indicates the mesoporous structure. Two linear regions are found for the FHH plot of the as-extracted aerogel. The estimated surface fractal dimensions are about 2.49 and 2.68. Both of the DS  values indicate rather complex surface morphology. The TEM observation shows that there are amorphous and crystalline particles. Two values of DS may be attributed to these two kinds of particles. The two regions are in near length scales, and the smaller DS, DS =2.49, for the smaller region. This result indicates that there are two kinds of particles, probably amorphous and anatase particles as shown by the TEM observation.     Keywords: surface fractal dimensions, CO2 supercritically extraction, sol-gel, aerogel, titania

  10. Production of nano-crystalline zirconia powders and fabrication of high strength ultra-fine-grained ceramics

    International Nuclear Information System (INIS)

    Rajendran, S.

    1993-01-01

    Hydrous zirconia containing 2 and 2.5 mol% Y 2 O 3 was prepared by a hydroxide co-precipitation method and portions were dispersed in ethanol before drying(P2), milled in ethanol after drying (P3) or after calcination at 550 deg C (P4) or milled in iso-propanal after calcination at 1000 deg C (P5). The crystallisation behaviour and sintering characteristics of the materials were investigated. The calcined as dried powder (P1) has strongly bonded hard aggregates and the material reached a density of only about 80% of theoretical after sintering at 1500 deg C. Powder characteristics and the sinterability of the alcohol treated materials depended on the conditions of processing and heat treatment. The sinter-activity of the powders decreased from P2 to P5. Powder P3 was composed of relatively weakly bonded crystallites and could be sintered at 1400 deg C, while the powders P4 and P5 contained hard agglomerates and required a sintering temperature of 1450 and 1550 deg C respectively to achieve similar density. Powder (P2) had zirconium alkoxide species on the particle surface which decomposed at about 300 deg C. The calcined powder had very weak agglomerates composed of fine, uniform zirconia crystals and/or aggregates and sintered to high density at 1150 deg C. The final ceramic had a very uniform microstructure with an average grain size of about 150nm and exhibited fracture strength as high as 1700 MPa. A detailed account of the formation of aggregates of strongly bonded crystallites during calcination of hydrous zirconia, influence of alcohol in producing soft agglomerates and the sintering characteristics of the powders is reported. 46 refs., 2 tabs., 15 figs

  11. Complexes of groups 3,4, the lanthanides and the actinides containing neutral phophorus donor ligands

    International Nuclear Information System (INIS)

    Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.

    1990-01-01

    Of relevance to this review are complexes of the early transition elements, in particular groups 3 and 4 and the lanthanides and actinides. In this review the authors have attempted to collect all the data up to the end of 1988 for complexed of groups 3 and 4, the lanthanides and the actinides that contain phosphorus donor ligands. The 1989s have seen a renaissance of the use of phosphine donors for the early d elements (groups 3 and 4) and the f elements. Neutral phosphorus donors are defined as primary (PH 2 R), secondary (PH 2 ) or tertiary phosphines (PR 3 ), including complexes of phosphine, PH 3 . Also reviewed are complexes of PF 3 and phosphites, P(OR) 3 . Specifically excluded are phosphido derivates, PR 2 . The ability of a neutral phosphorus donor to bind the metals of groups 3 and 4, the lanthanides and the actinides is now well established. While there are still no examples of lanthanum or actinium phosphine complexes, such derivatives should be accessible at least for lanthanum. series. However, there is no obvious chemical reason to suggest that such derivatives cannot be generated. The phosphine ligands that appear to generate the most stable phosphine-metal interaction are chelating phosphines such as dmpe, trmpe and trimpsi. In addition, the use of the chelate effect in conjunction with a hard ligand such as the amide in - N(SiMe 2 CH 2 PMe 2 ) 2 , or an alkoxide as found in - OC(BU t ) 2 CH 2 PMe 2 , also appears to be effective in anchoring the phosphine donor to the metal. The majority of low oxidation state derivatives of the group 4 elements are stabilized by phosphine donors in contrast with other parts of the transition series where one finds that classic π-acceptor-type ligands such as CO or RNC are utilized. 233 refs

  12. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    Science.gov (United States)

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society

  13. Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.

  14. High-throughput analysis for preparation, processing and analysis of TiO2 coatings on steel by chemical solution deposition

    International Nuclear Information System (INIS)

    Cuadrado Gil, Marcos; Van Driessche, Isabel; Van Gils, Sake; Lommens, Petra; Castelein, Pieter; De Buysser, Klaartje

    2012-01-01

    Highlights: ► High-throughput preparation of TiO 2 aqueous precursors. ► Analysis of stability and surface tension. ► Deposition of TiO 2 coatings. - Abstract: A high-throughput preparation, processing and analysis of titania coatings prepared by chemical solution deposition from water-based precursors at low temperature (≈250 °C) on two different types of steel substrates (Aluzinc® and bright annealed) is presented. The use of the high-throughput equipment allows fast preparation of multiple samples saving time, energy and material; and helps to test the scalability of the process. The process itself includes the use of IR curing for aqueous ceramic precursors and possibilities of using UV irradiation before the final sintering step. The IR curing method permits a much faster curing step compared to normal high temperature treatments in traditional convection devices (i.e., tube furnaces). The formulations, also prepared by high-throughput equipment, are found to be stable in the operational pH range of the substrates (6.5–8.5). Titanium alkoxides itself lack stability in pure water-based environments, but the presence of the different organic complexing agents prevents it from hydrolysis and precipitation reactions. The wetting interaction between the substrates and the various formulations is studied by the determination of the surface free energy of the substrates and the polar and dispersive components of the surface tension of the solutions. The mild temperature program used for preparation of the coatings however does not lead to the formation of pure crystalline material, necessary for the desired photocatalytic and super-hydrophilic behavior of these coatings. Nevertheless, some activity can be reported for these amorphous coatings by monitoring the discoloration of methylene blue in water under UV irradiation.

  15. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J., E-mail: joel.faure@univ-reims.fr [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Drevet, R., E-mail: richard.drevet@univ-reims.fr [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Lemelle, A.; Ben Jaber, N.; Tara, A. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); El Btaouri, H. [Université de Reims Champagne-Ardenne UMR CNRS MEDyC, EA 7369, Campus Moulin de la Housse, 51687 REIMS Cedex 2 (France); Benhayoune, H. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France)

    2015-02-01

    In this paper a new sol–gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol–gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol–gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2 M nitric acid solution or either a 5 mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer–Emmett–Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol–gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4 h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol–gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol–gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol–gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. - Highlights: • Citric acid is employed as a catalyzer of the sol–gel process. • This catalyzer is used at a very low concentration for the hydrolysis reaction. • The chemical composition of the bioglass synthesized by the sol–gel process is optimized. • The properties of two sol–gel bioglasses are compared with those of the commercial

  17. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst

    International Nuclear Information System (INIS)

    Faure, J.; Drevet, R.; Lemelle, A.; Ben Jaber, N.; Tara, A.; El Btaouri, H.; Benhayoune, H.

    2015-01-01

    In this paper a new sol–gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol–gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol–gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2 M nitric acid solution or either a 5 mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer–Emmett–Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol–gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4 h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol–gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol–gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol–gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. - Highlights: • Citric acid is employed as a catalyzer of the sol–gel process. • This catalyzer is used at a very low concentration for the hydrolysis reaction. • The chemical composition of the bioglass synthesized by the sol–gel process is optimized. • The properties of two sol–gel bioglasses are compared with those of the commercial

  18. Modificación química del precursor de titanio para obtener soles estables de silice – titania: Uso de acetilacetona

    Directory of Open Access Journals (Sweden)

    Rodríguez-Páez, J. E.

    2004-02-01

    Full Text Available Sol-gel processing has become a well established technique for producing ceramic powders or glasses. This processing has been utilized to synthesize several interesting systems, e.g. the SiO2 – TiO2 system. A major concern in the stable multicomponent geles is that the hydrolysis and condensation velocities are diferent for each precursor, TEOS and Ti(OBu4 in this work. The chemical control of these reactions is currently performed by adding complexing reagents that react with metal alkoxides at a molecular level, giving rise to new molecular precursors of different structure, reactivity and functionanality. This paper shows that stable TEOS – Ti(OBu4 – H2O sol can be reproducibly prepared in the presence of acetylacetone. We shall then show that the acac behaves as a ligand, directly bonded to the titanium ion. Thus the formation of precipitate is avoided. Infra-red spectroscopy (FTIR and viscosity measures were used to demostrated this behaviour of the system.

    La técnica Sol-Gel se ha utilizado para sintetizar una serie de sistemas multicomponentes, entre ellos SiO2 – TiO2. El mayor problema en la obtención de geles multicomponentes estables es la desigual velocidad de hidrólisis y condensación que presentan los alcóxidos precursores de los cationes de interés. En este trabajo se muestra cómo adicionando acetilacetona, acacH, al sistema TEOS – Ti(OBu4 – H2O se puede obtener un sol estable. Se tomaron diferentes concentraciones de los precursores de silicio y titanio y una sola concentración de acacH. Se utilizó espectroscopia infrarroja, FTIR, para identificar los grupos funcionales presentes en el sistema y además se midió regularmente la viscosidad para determinar cualitativamente el avance de la policondensación del sistema.

  19. Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures

    International Nuclear Information System (INIS)

    Pauly, T.R.; Liu, Y.; Pinnavaia, T.J.; Billinge, S.J.L.; Rieker, T.P.

    1999-01-01

    Three different water-alcohol cosolvent systems were used to assemble mesoporous molecular sieve silicas with wormhole framework structures (previously denoted HMS silicas) from an electrically neutral amine surfactant (Sdegree) and a silicon alkoxide precursor (Idegree). The fundamental particle size and associated textural (interparticle) porosity of the disordered structures were correlated with the solubility of the surfactant in the water-alcohol cosolvents used for the SdegreeIdegree assembly process. Polar cosolvents containing relatively low volume fractions of C n H 2n+1 OH alcohols (n = 1--3) gave heterogeneous surfactant emulsions that assembled intergrown aggregates of small primary particles with high textural pore volumes (designated HMS-HTx). Conversely, three-dimensional, monolithic particles with little or no textural porosity (designated HMS-LTx) were formed from homogeneous surfactant solutions in lower polarity cosolvents. Aluminum substituted AL-HMS-HTx analogues with high textural porosity and improved framework accessibility also were shown to be much more efficient catalysts than AL-HMS-LTx or monolithic forms of hexagonal AL-MCM-41 for the sterically demanding condensed phase alkylation of 2,4-di-tert-butylphenol with cinnamyl alcohol. Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies verified the textural differences between wormhole HMS and electrostatically assembled hexagonal MCM-41 and SBA-3 molecular sieves. Power law fits to the scattering data indicated a surface fractal (D s = 2.76) for HMS-HTx, consistent with rough surfaces. A second power law at lower-q indicated the formation of a mass fractal (D m = 1.83) consistent with branching of small fundamental particles. Hexagonal MCM-41 and SBA-3 silicas, on the other hand, exhibited scattering properties consistent with moderately rough surfaces (D s = 2.35 and 2.22, respectively) and large particle diameters (much g t1 micro m). HMS-LTx silicas

  20. Pure and Y-substituted BaZrO3 ceramics. A possible support material for fabrication of YBa2Cu3O7-x high-Tc superconductors

    International Nuclear Information System (INIS)

    Wang Xiandong.

    1993-01-01

    This thesis concerns the preparation and characterization of cuprate based high-T c superconductors (Y-123 and Bi-2223) and especially development and testing of BaZrO 3 based materials. The formation of YBa 2 Cu 3 O y (Y-123) by a CO 2 -free route involving reaction sintering of stoichiometric mixtures of chemically prepared fine powders of Y 2 BaCuO 5 , BaCuO 2 and CuO have been studied by thermal and XRD analysis. The synthesis and sintering of BaZrO 3 powders prepared by the hydroxide-alkoxide-methanol sol-gel route have been studied. The phase relations in the system BaO-Y 2 O 3 -ZrO 2 have been studied to determine the solid solubility limits for the perovskite phase Ba X Y Y Zr Z O N (X+X+Z=3) at 1500 deg. C. In the binary system Y 2 O 3 -BaZrO 3 the solubility limit was found to be ≅19 mol% Y 2 O 3 , i.e. Ba 0.81 Y 0. 4 2 Zr 0.81 O 3 . along the joint BaYO 2.5 -Ba the boundary was determined to be at BaY 0.21 Zr 0 . 79 O 2.895 . evidence for a new solid solution series between Ba 3 Y 4 O 9 and ZrO 2 are given, and a partial 1500 deg. C phase diagram for the ternary system BaO-Y 2 O 3 -ZrO 2 is presented. The growth of BaZrO 3 single crystals have been attempted both by a laser zone floating technique and flux methods. The compatibility between YBa 2 Cu 3 O 7 -X and BaZrO 3 , Ba X Y Y Zr Z O 3-δ as well as BaHfO 3 have been studied at 950 deg. and 1050 deg. C. The results show the four most promising candidates as support materials for fabrication of YBa 2 Cu 3 O y to be BaHfO 3 , BaY 0.05 Zr 0.95 O 2.975 , , BaZrO 3 and BaY 0.1 Zr 0.9 O 2.95 . (EG)

  1. Protective performances of two anti-graffiti treatments towards sulfite and sulfate formation in SO2 polluted model environment

    International Nuclear Information System (INIS)

    Carmona-Quiroga, Paula Maria; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, Maria Teresa; Martinez-Ramirez, Sagrario

    2010-01-01

    Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ('Protectosil Antigraffiti' marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur

  2. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono

    2008-01-01

    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  3. Microwave characteristics of sol-gel based Ag-doped (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung-Tae; Kim, Cheolbok [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States); Senior, David E. [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States); Department of Electrical and Electronic Engineering, Universidad Tecnológica de Bolívar Cartagena, 130011 Colombia (Colombia); Kim, Dongsu [Packaging Research Center, Korea Electronics Technology Institute, Gyeonggi-do, 463-816 (Korea, Republic of); Yoon, Yong-Kyu, E-mail: ykyoon@ece.ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2014-08-28

    Dielectric Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films with a different concentration of Ag-dopant of 0.5, 1, 1.5, 2, 3, and 5 mol % have been prepared using an alkoxide-based sol-gel method on a Pt(111)/TiO{sub 2}/SiO{sub 2}/Si substrate and their surface morphology and crystallinity have been examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. An on-chip metal-insulator-metal capacitor has been fabricated with the prepared thin film ferroelectric sample. Concentric coplanar electrodes are used for high frequency electrical characterization with a vector network analyzer and a probe station. The SEM images show that increasing Ag doping concentration leads to a decrease in grain size. XRD reveals that the fabricated films show good BST crystallinity for all the concentration while a doping concentration of 5 mol % starts to show an Ag peak, implying a metallic phase. Improved microwave dielectric loss properties of the BST thin films are observed in a low Ag doping level. Especially, BST with an Ag doping concentration of 1 mol % shows the best properties with a dielectric constant of 269.3, a quality factor of 48.1, a tunability at the electric field of 100 kV/cm of 41.2 %, a leakage-current density of 1.045 × 10{sup −7}A/cm{sup 2} at an electric field of 100 kV/cm and a figure of merit (defined by tunability (%) divided by tan δ (%)) of 19.59 under a dc bias voltage of 10 V at 1 GHz. - Highlights: • High quality Ag-doped Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films were derived by the sol-gel method. • Doped Ag replaced the A site ions in the ABO{sub 3} type structure. • Doped Ag helped lower leakage current by filling oxygen vacancies, which is a leakage path. • Microwave characteristics of low dielectric loss and good tunability were confirmed. • Great potential is envisioned for low loss tunable microwave applications.

  4. Protective performances of two anti-graffiti treatments towards sulfite and sulfate formation in SO{sub 2} polluted model environment

    Energy Technology Data Exchange (ETDEWEB)

    Carmona-Quiroga, Paula Maria, E-mail: paulacq@ietcc.csic.es [Eduardo Torroja Institute for Construction Science, Serrano Galvache 4 St, 28033 Madrid (Spain); Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar [Department of Chemistry and Biotechnology, Environmental Inorganic Chemistry, Chalmers University of Technology, S-41296 Goethenburg (Sweden); Blanco-Varela, Maria Teresa; Martinez-Ramirez, Sagrario [Eduardo Torroja Institute for Construction Science, Serrano Galvache 4 St, 28033 Madrid (Spain)

    2010-11-15

    Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO{sub 2} and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ('Protectosil Antigraffiti' marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 {+-} 0.03 ppm of SO{sub 2} and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO{sub 2} and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO{sub 2} capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM

  5. Low temperature sol-gel process for optical coatings based on magnesium fluoride and titanium dioxide; Niedertemperatur Sol-Gel Verfahren fuer optische Schichtsysteme auf Basis von Magnesiumfluorid und Titandioxid

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Hannes

    2009-09-24

    This work deals with the development of a low temperature sol-gel spincoating process for thin films with thicknesses in the nanometer range based on metal oxides and metal fluorides. Optical films such as anti-reflective (AR) or high reflective coatings are of much interest and consist of alternating dielectric layers of low and high refractive index materials. Regarding the general procedure for the metal fluorides a novel nonaqueous sol-gel synthesis starting from metal alkoxides and alcohol-dissolved HF was used. The coatings were dried and calcined at 100 C. The morphology of these films was characterised with REM, TEM and AFM. EDX and XPS were used to identify the chemical composition and ellipsometry and UV-vis spectroscopy to determine the optical properties of the films. This new process allows the preparation of homogeneous magnesium fluoride and titanium dioxide layers with low roughness (R{sub a} {<=} 1,9 nm) on silicon and quartz substrates. The magnesium fluoride layers are partially amorphous or microcrystalline with crystallite sizes from 2 nm to 10 nm. The titanium dioxide layers are predominantly amorphous. The thicknesses of the magnesium fluoride and titanium dioxide single layers were adjustable between 25 nm and 500 nm depending on the number of coating steps and on the concentration of the used sols. The magnesium fluoride layers had a refractive index of n{sub 500} = 1,36 and the titanium dioxide layers a refraction index of n{sub 500} = 2,05. For the first time, an alternating metal fluoride and oxide multilayer system was produced with a low temperature sol-gel method (consisting of magnesium fluoride and titanium dioxide). Based on the determined optical constants of the magnesium fluoride and titanium dioxide single layers, AR and HR multilayer systems were calculated and fabricated. The transmission spectra of the designs and the corresponding multilayer were in good agreement. Similar results were obtained with the reflection spectra

  6. Yttrium silicate as an oxidation protection layer for C/C-SiC materials. Synthesis, electrophoretic deposition and high temperature oxidation; Yttriumsilikat als Oxidationsschutzschicht fuer C/C-SiC-Werkstoffe. Synthese, elektrophoretische Abscheidung und Hochtemperaturoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Brauckmann, Jana

    2012-07-01

    Carbon fibre reinforced carbon composites are promising materials for high temperature applications. They exhibit excellent thermal shock resistance and nearly constant mechanical strength. A serious draw-back of this material is their poor resistivity towards oxidation at temperatures above 400 C. To make use of the very good thermal stability the material needs an outer oxidation protection coating. Silicon carbide has been successfully employed at temperatures up to 1300 C. To increase the application range towards higher temperatures an outer environmental barrier coating is needed. In the present work yttrium silicates were used to complement the silicon carbide coated carbon fibre reinforced carbon material. Both stable compounds in the quasi-binary system Y{sub 2}O{sub 3}-SiO{sub 2}, yttrium orthosilicate (Y{sub 2}SiO{sub 5}) and yttrium pyrosilicate (Y{sub 2}Si{sub 2}O{sub 7}), were separately applied to the test samples via electrophoretic deposition. Suitable suspensions were prepared in butanone with iodine as charging agent to adjust conductivity and particle charge. Galvanostatic deposition obeys a linear growth law for the selected deposition times. Alternatively the feasibility of direct electrophoretic deposition from an yttrium silicate precursor sol was tested. Emphasis was put on the development of a suitable sol-system based on alkoxide precursors. Samples coated either with Y{sub 2}SiO{sub 5} or Y{sub 2}Si{sub 2}O{sub 7} were investigated using thermogravimetric high temperature oxidation in the temperature range from 1450 C to 1650 C, respectively. The coated samples exhibited very good oxidation resistance up to temperatures of 1600 C, while the performance was reduced at 1650 C to a few hours. All samples showed a parabolic mass increase with time indicating a diffusion limited process governing the oxidation kinetics. The cross sections of the samples show a sharp border between the SiO{sub 2} that crystallizes to cristobalite and the

  7. Development of highly porous crystalline titania photocatalysts

    Science.gov (United States)

    Marszewski, Michal

    The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal

  8. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    Science.gov (United States)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures (≤180°C), to give isobutene as the major carbon-containing product. The material generated from the solid-state conversion of (tBuO) 3CrOSi(OtBu)3 (CrOS ss) has an unexpectedly high surface area of 315 m2 g-1 that is slightly reduced to 275 m2 g-1 after calcination at 500°C in O2. The xerogel obtained by the thermolysis of an n-octane solution of (tBuO)3CrOSi(O tBu)3 (CrOSixg) has a surface area of 315 m2 g-1 that is reduced to 205 m2 g-1 upon calcination at 500°C. Powder X-ray diffraction (PXRD) analysis revealed that Cr2O 3 is

  9. Nanoconfinement Effects in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H. [Northwestern Univ., Evanston, IL (United States)

    2016-09-19

    In this investigation, the unique properties that stem from the constrained environment and enforced proximity of functional groups at the active site were demonstrated for a number of systems. The first system is a nanocage structure with silicon-based, atom-thick shells and molecular-size cavities. The shell imparts the expected size exclusion for access to the interior cavity, and the confined space together with the hydrophobic shell strongly influences the stability of charged groups. One consequence is that the interior amine groups in a siloxane nanocage exhibit a shift in their protonation ability that is equivalent to about 4 pH units. In another nanocage structure designed to possess a core-shell structure in which the core periphery is decorated with carboxylic acid groups and the shell interior is populated with silanol groups, the restricted motion of the core results in limiting the stoichiometry of reaction between carboxylic acid and a Co2CO8 complex, which leads to formation and stabilization of Co(I) ions in the nanocage. The second designed catalytic structure is a supported, isolated, Lewis acid Sn-oxide unit derived from a (POSS)-Sn-(POSS) molecular complex (POSS = incompletely condensed silsesquioxane). The Sn center in the (POSS)-Sn-(POSS) complex is present in a tetrahedral coordination, as confirmed by single crystal x-ray crystallography and Sn NMR, and its Lewis acid character is demonstrated with its binding to amines. The retention of the tetrahedral coordination of Sn after heterogenization and mild oxidative treatment is confirmed by characterization using EXAFS, NMR, UV-vis, and DRIFT, and its Lewis acid character is confirmed by stoichiometric binding with pyridine. This Sn-catalyst is active in hydride transfer reactions as a typical solid Lewis acid. In addition, the Sn centers can also create Brønsted acidity with alcohol by binding the alcohol strongly as alkoxide and transferring the hydroxyl H to the

  10. Synthesis and characterizations of novel polymer electrolytes

    Science.gov (United States)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  11. Low Temperature Regolith Bricks for In-Situ Structural Material

    Science.gov (United States)

    Grossman, Kevin; Sakthivel, Tamil S.; Mantovani, James; Seal, Sudipta

    2016-01-01

    Current technology for producing in-situ structural materials on future missions to Mars or the moon relies heavily on energy-intensive sintering processes to produce solid bricks from regolith. This process requires heating the material up to temperatures in excess of 1000 C and results in solid regolith pieces with compressive strengths in the range of 14000 to 28000 psi, but are heavily dependent on the porosity of the final material and are brittle. This method is currently preferred over a low temperature cementation process to prevent consumption of precious water and other non-renewable materials. A high strength structural material with low energy requirements is still needed for future colonization of other planets. To fulfill these requirements, a nano-functionalization process has been developed to produce structural bricks from regolith simulant and shows promising mechanical strength results. Functionalization of granular silicate particles into alkoxides using a simple low temperature chemical process produces a high surface area zeolite particles that are held together via inter-particle oxygen bonding. Addition of water in the resulting zeolite particles produces a sol-gel reaction called "inorganic polymerization" which gives a strong solid material after a curing process at 60 C. The aqueous solution by-product of the reaction is currently being investigated for its reusability; an essential component of any ISRU technology. For this study, two batches of regolith bricks are synthesized from JSC-1A; the first batch from fresh solvents and chemicals, the second batch made from the water solution by-product of the first batch. This is done to determine the feasibility of recycling necessary components of the synthesis process, mainly water. Characterization including BET surface area, SEM, and EDS has been done on the regolith bricks as well as the constituent particles,. The specific surface area of 17.53 sq m/g (average) of the granular regolith

  12. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in

  13. Seguimiento por espectroscopia infrarroja (FT-IR de la copolimerización de TEOS (tetraetilortosilicato y PDMS (polidimetilsiloxano en presencia de tbt (tetrabutiltitanio

    Directory of Open Access Journals (Sweden)

    Téllez, L.

    2004-10-01

    Full Text Available Hybrid materials have been prepared in this work through the reactions of Si and Ti alkoxides (TEOS and TBT, respectively and polydimethil siloxane (PDMS. These reactions have been studied by means of FT-IR spectroscopy during the whole reaction time. The hydrolysis of TEOS molecule has been followed by the 880 cm-1 band, and the self-condensation reactions through the 1180 and 1150 cm-1 bands. Polycondesation reaction between Si-OH groups and PDMS molecules has been followed by the 850 cm-1 band. On the other hand, the hydrolysis reaction of TBT and the self-condensation of Ti-OH groups have been followed by the 1130 and 770-510 cm-1 bands, respectively. Finally the condensation reaction between Si-OH and Ti-OH groups have been studied by the 936 cm-1 band. Results have shown that hydrolysis and condensation reactions are depending on TBT concentration. The formation of Si-O-Si cross-linked structures increases with the TBT concentrations in the reaction. The selfcondensation reaction of Si-OH grups or Ti-OH grous is very reapid forming Si-O-Si and Ti-O-Ti bonds, respectively. However, the Si-O-Ti bonds which are formed during the first moments of reaction are also rapidly broken due to H2O molecules or the reaction medium. The evolution of PDMS linear and cyclic molecules is also studied.

    Se han preparado materiales híbridos por medio de reacciones de hidrólisis y condensación de alcóxidos de Si y Ti (TEOS y TBT, respectivamente y de reacciones de copolimerización de éstos con polidimetilsiloxano (PDMS. Se han estudiado las citadas reacciones mediante espectroscopia FT-IR, desde el mismo comienzo hasta la obtención del material final. La hidrólisis del TEOS así como la autocondensación del os grupos Si-OH generados tanto para formar cadenas entrecruzadas como lineales se han seguido mediante las bandas situadas a 880, 1180 y 1150 cm-1, respectivamente. La policondensación de dichos grupos con PDMS se ha seguido por la banda a

  14. Production d'isobutène de haute pureté par décomposition du MTBE High-Purity Isobutene Production from Mtbe

    Directory of Open Access Journals (Sweden)

    Meunier P. B.

    2006-11-01

    Bronsted acid sites with the participation of basic sites. But some authors note an influence or participation of Lewis acid sites during the dimerization of isobutene on TiO2 or the dehydration of methanol. Dehydration occurring on resins or an oxide catalyst is inhibited by the presence of water. On oxides the alkoxide species with surface CH3O- is revealed to be the adsorbed species. A check must be made of both the preparation and acidity of catalytic formulations to minimize secondary reactions and to produce very pure isobutene.