WorldWideScience

Sample records for alkaline flooding

  1. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  2. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  3. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  4. Surfactant-enhanced alkaline flooding for light oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1996-05-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12. 0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are discussed.

  5. Surfactant-enhanced alkaline flooding for light oil recovery. Final report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1995-12-01

    In this report, the authors present the results of their experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are summarized.

  6. Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism

    Science.gov (United States)

    Owen-Smith, T. M.; Ashwal, L. D.; Torsvik, T. H.; Ganerød, M.; Nebel, O.; Webb, S. J.; Werner, S. C.

    2013-12-01

    Silhouette and North Islands in the Seychelles represent an alkaline plutonic-volcanic complex, dated at 63 to 63.5 Ma by U-Pb zircon and 40Ar/39Ar methods. This magmatism coincides with the final stages of the cataclysmic Deccan Traps continental flood volcanism in India (67 to 63 Ma), and thus a causal link has been suggested. Recent reconstructions have placed the Seychelles islands adjacent to the Laxmi Ridge and at the western margin of the Réunion mantle plume at the time of formation of the complex. Here we present geochemical evidence in support of the notion that the Seychelles alkaline magmatism was initiated by the peripheral activity of the Réunion mantle plume and is thus part of the Deccan magmatic event. Positive εNd (0.59 to 3.76) and εHf (0.82 to 6.79) and initial Sr of 0.703507 to 0.705643 at 65 Ma indicate derivation of the Seychelles alkaline magmas from a Réunion-like mantle source with an additional minor enriched component, suggesting entrainment of sub-continental lithospheric mantle. The similarity in trace element composition between the Seychelles suite and Deccan alkaline felsic and mafic rocks provides additional evidence for a common mantle source for the Seychelles and Deccan magmatism. Furthermore, we demonstrate the role of fractional crystallisation in the evolution of the alkaline suite. Modelling using major elements suggests that fractional crystallisation and varying degrees of accumulation of olivine, plagioclase, ilmenite, clinopyroxene, alkali feldspar and apatite can describe the spectrum of rock types, from gabbro, through syenite, to granite.

  7. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  8. Effect of clay content in rock on oil extraction under alkaline seam conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vezirov, D Sh; Gorbunov, A T; Kasimov, Sh A; Kashchavtsev, V E; Tairov, N D

    1978-01-01

    When oil beds are flooded with alkaline solutions, the alkaline concentration in the solution can be significantly reduced as a result of the interaction between clay and alkali. Large losses of alkali in the bed can render the flooding method ineffective. Experimental studies were conducted on porous media containing up to 25% clay at a constant permeability of 1 D in order to determine the oil extraction indices for clay-containing rock. Constant permeability is maintained by using clays, marshalite, and quartz sand in various proportions. Oil having a viscosity of 99.17 sP, and containing a large amount of surfactants, including 1.1% naphthenic acid, was extracted by fresh water and a 0.25% solution of NaOH. The extraction of oil by fresh water and NaOH solution from quartz sand indicated the advantage of using alkaline solutions. The extraction coefficient increased by 11% with the use of this method. As clay is added to the sand, the extraction coefficient decreases, and is reduced to 12.7% when the clay content reaches 25%. Nevertheless, a comparison of data obtained for quartz sand with fresh water on a porous medium containing 25% clay with an alkaline solution, indicates that the extraction coefficient is just 1.5% lower even in the presence of such a large amount of clay. Consequently, alkaline flooding should still be given preference over the usual methods under specific conditions and where the rock has a comparatively large amount of clay, in view of all the basic factors that influence the extraction process. The results obtained can be used for selecting alkaline concentration in evaluating the efficiency of flooding oil beds with alkaline solutions. 2 figures, 2 tables.

  9. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of

  10. ENHANCED OIL RECOVERY USING LOCAL ALKALINE

    African Journals Online (AJOL)

    user

    the discovery of new oil producing fields and the ever increasing ... followed by water flooding is between 35 to 50% of the ... involved and lack of scale up and is considered among ... carbonate alkaline chemical reacts with certain types of ... reservoirs because of the profusion of calcium and the ... damage the formation.

  11. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  12. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  13. Asymmetric membranes for destabilization of oil droplets in produced water from alkaline-surfactant-polymer (ASP) flooding

    Science.gov (United States)

    Ramlee, Azierah; Chiam, Chel-Ken; Sarbatly, Rosalam

    2018-05-01

    This work presents a study of destabilization of oil droplets in the produced water from alkaline-surfactant-polymer (ASP) flooding by using four types of laboratory-fabricated polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were fabricated via immersion precipitation method with ethanol (0 - 30 %, v/v) as the coagulant. The membranes with the effective area of 17.35 cm2 were tested with synthesized ASP solution as the feed in cross-flow microfiltration process. The ASP feed solution initially contained the oil droplets with radius ranged from 40 to 100 nm and the mean radius was 61 nm. Results have shown that the concentration of the ethanol in the coagulation bath affects the formation of the membrane structure and the corresponding porosity, while no significance influence on the membrane thickness. Coalescence of the oil droplets was occurred when the ASP solution permeated through the asymmetric PVDF membranes. Through the coalescence process, the oil droplets were destabilized where the radius of the oil droplets in the permeates increased to 1.5-4 µm with the corresponding mean radius ranged from 2.4 to 2.7 µm.

  14. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  15. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    Energy Technology Data Exchange (ETDEWEB)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses

  16. An Experimental Study of Alkali-surfactant-polymer Flooding through Glass Micromodels Including Dead-end Pores

    Directory of Open Access Journals (Sweden)

    Mohsen Esmaeili

    2013-07-01

    Full Text Available Chemical flooding, especially alkaline/surfactant/polymer flooding, is of increasing interest due to the world increasing oil demand. This work shows the aspects of using alkaline/surfactant/polymer as an enhanced oil recovery method in the porous media having a high dead-end pore frequency with various dead-end pore parameters (such as opening, depth, aspect ratio, and orientation. Using glass micromodels makes it possible to manipulate and analyze the pore parameters and watch through the porous media precisely. The results show that polyacrylamide almost always enhances oil production recovery factor (up to 14% in comparison with brine injection in this kind of porous media. Except at low concentrations of polyacrylamide and sodium carbonate, sodium dodecyl sulfonate improves oil recovery (even 15% in the case of high polyacrylamide concentration and low sodium carbonate concentration. Increasing alkaline concentration reduces recovery factor except at low concentrations of polyacrylamide and high concentrations of surfactant.

  17. Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA

    Science.gov (United States)

    Cravotta, C.A.

    2007-01-01

    This report evaluates the results of a continuous 4.5-day laboratory aeration experiment and the first year of passive, aerobic treatment of abandoned mine drainage (AMD) from a typical flooded underground anthracite mine in eastern Pennsylvania, USA. During 1991-2006, the AMD source, locally known as the Otto Discharge, had flows from 20 to 270 L/s (median 92 L/s) and water quality that was consistently suboxic (median 0.9 mg/L O2) and circumneutral (pH ??? 6.0; net alkalinity >10) with moderate concentrations of dissolved iron and manganese and low concentrations of dissolved aluminum (medians of 11, 2.2, and aeration experiment demonstrated rapid oxidation of ferrous iron (Fe 2+) without supplemental alkalinity; the initial Fe2+ concentration of 16.4 mg/L decreased to less than 0.5 mg/L within 24 h; pH values increased rapidly from 5.8 to 7.2, ultimately attaining a steady-state value of 7.5. The increased pH coincided with a rapid decrease in the partial pressure of carbon dioxide (PCO2) from an initial value of 10 -1.1atm to a steady-state value of 10-3.1atm. From these results, a staged aerobic treatment system was conceptualized consisting of a 2 m deep pond with innovative aeration and recirculation to promote rapid oxidation of Fe2+, two 0.3 m deep wetlands to facilitate iron solids removal, and a supplemental oxic limestone drain for dissolved manganese and trace-metal removal. The system was constructed, but without the aeration mechanism, and began operation in June 2005. During the first 12 months of operation, estimated detention times in the treatment system ranged from 9 to 38 h. However, in contrast with 80-100% removal of Fe2+ over similar elapsed times during the laboratory aeration experiment, the treatment system typically removed less than 35% of the influent Fe2+. Although concentrations of dissolved CO2 decreased progressively within the treatment system, the PCO2 values for treated effluent remained elevated (10-2.4 to 10-1.7atm). The

  18. Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA

    Science.gov (United States)

    Cravotta, C.A.

    2007-01-01

    This report evaluates the results of a continuous 4.5-day laboratory aeration experiment and the first year of passive, aerobic treatment of abandoned mine drainage (AMD) from a typical flooded underground anthracite mine in eastern Pennsylvania, USA. During 1991-2006, the AMD source, locally known as the Otto Discharge, had flows from 20 to 270 L/s (median 92 L/s) and water quality that was consistently suboxic (median 0.9 mg/L O2) and circumneutral (pH ??? 6.0; net alkalinity >10) with moderate concentrations of dissolved iron and manganese and low concentrations of dissolved aluminum (medians of 11, 2.2, and treatment system was conceptualized consisting of a 2 m deep pond with innovative aeration and recirculation to promote rapid oxidation of Fe2+, two 0.3 m deep wetlands to facilitate iron solids removal, and a supplemental oxic limestone drain for dissolved manganese and trace-metal removal. The system was constructed, but without the aeration mechanism, and began operation in June 2005. During the first 12 months of operation, estimated detention times in the treatment system ranged from 9 to 38 h. However, in contrast with 80-100% removal of Fe2+ over similar elapsed times during the laboratory aeration experiment, the treatment system typically removed less than 35% of the influent Fe2+. Although concentrations of dissolved CO2 decreased progressively within the treatment system, the PCO2 values for treated effluent remained elevated (10-2.4 to 10-1.7atm). The elevated PCO 2 maintained the pH within the system at values less than 7 and hence slowed the rate of Fe2+ oxidation compared to the aeration experiment. Kinetic models of Fe2+ oxidation that consider effects of pH and dissolved O2 were incorporated in the geochemical computer program PHREEQC to evaluate the effects of detention time, pH, and other variables on Fe2+ oxidation and removal rates. These models and the laboratory aeration experiment indicate that performance of this and other aerobic

  19. Systematic Phase Behaviour Study and Foam Stability Analysis for Optimal Alkaline/Surfactant/Foam Enhanced Oil Recovery

    NARCIS (Netherlands)

    Hosseini Nasab, S.M.; Zitha, P.L.J.

    2015-01-01

    Alkaline-Surfactant-Foam (ASF) flooding is a recently introduced enhanced oil recovery (EOR) method. This paper presents laboratory study of this ASF to better understand its mechanisms. The focus is on the interaction of ASF chemical agents with oil and in the presence and absence of naphthenic

  20. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  1. Alkaline Waterflooding Demonstration Project, Ranger Zone, Long Beach Unit, Wilmington Field, California. Fourth annual report, June 1979-May 1980. Volume 3. Appendices II-XVII

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, J.D.

    1981-03-01

    Volume 3 contains Appendices II through XVII: mixing instructions for sodium orthosilicate; oil displacement studies using THUMS C-331 crude oil and extracted reservoir core material from well B-110; clay mineral analysis of B-827-A cores; sieve analysis of 4 Fo sand samples from B-110-IA and 4 Fo sand samples from B-827-A; core record; delayed secondary caustic consumption tests; long-term alkaline consumption in reservoir sands; demulsification study for THUMS Long Beach Company, Island White; operating plans and instructions for DOE injection demonstration project, alkaline injection; caustic pilot-produced water test graphs; well test irregularities (6/1/79-5/31/80); alkaline flood pump changes (6/1/79-5/31/80); monthly DOE pilot chemical waterflood injection reports (preflush injection, alkaline-salt injection, and alkaline injection without salt); and caustic safety procedures-alkaline chemicals.

  2. Recurrent Early Cretaceous, Indo-Madagascar (89-86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu-Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance

    Science.gov (United States)

    Sheth, Hetu; Pande, Kanchan; Vijayan, Anjali; Sharma, Kamal Kant; Cucciniello, Ciro

    2017-07-01

    The Sarnu-Dandali alkaline complex in Rajasthan, northwestern India, is considered to represent early, pre-flood basalt magmatism in the Deccan Traps province, based on a single 40Ar/39Ar age of 68.57 Ma. Rhyolites found in the complex are considered to be 750 Ma Malani basement. Our new 40Ar/39Ar ages of 88.9-86.8 Ma (for syenites, nephelinite, phonolite and rhyolite) and 66.3 ± 0.4 Ma (2σ, melanephelinite) provide clear evidence that whereas the complex has Deccan-age (66 Ma) components, it is dominantly an older (by 20 million years) alkaline complex, with rhyolites included. Basalt is also known to underlie the Early Cretaceous Sarnu Sandstone. Sarnu-Dandali is thus a periodically rejuvenated alkaline igneous centre, active twice in the Late Cretaceous and also earlier. Many such centres with recurrent continental alkaline magmatism (sometimes over hundreds of millions of years) are known worldwide. The 88.9-86.8 Ma 40Ar/39Ar ages for Sarnu-Dandali rocks fully overlap with those for the Indo-Madagascar flood basalt province formed during continental breakup between India (plus Seychelles) and Madagascar. Recent 40Ar/39Ar work on the Mundwara alkaline complex in Rajasthan, 120 km southeast of Sarnu-Dandali, has also shown polychronous emplacement (over ≥ 45 million years), and 84-80 Ma ages obtained from Mundwara also arguably represent post-breakup stages of the Indo-Madagascar flood basalt volcanism. Remnants of the Indo-Madagascar province are known from several localities in southern India but hitherto unknown from northwestern India 2000 km away. Additional equivalents buried under the vast Deccan Traps are highly likely.

  3. Phosphorus Dynamics in Long-Term Flooded, Drained, and Reflooded Soils

    Directory of Open Access Journals (Sweden)

    Juan Tian

    2017-07-01

    Full Text Available In flooded areas, soils are often exposed to standing water and subsequent drainage, thus over fertilization can release excess phosphorus (P into surface water and groundwater. To investigate P release and transformation processes in flooded alkaline soils, wheat-growing soil and vegetable-growing soil were selected. We flooded-drained-reflooded two soils for 35 d, then drained the soils, and 10 d later reflooded the soils for 17 d. Dissolved reactive phosphorus (DRP, soil inorganic P fractions, Olsen P, pH, and Eh in floodwater and pore water were analyzed. The wheat-growing soil had significantly higher floodwater DRP concentrations than vegetable-growing soil, and floodwater DRP in both soils decreased with the number of flooding days. During the reflooding period, DRP in overlying floodwater from both soils was less than 0.87 mg/L, which was 3–25 times less than that during the flooding period. Regardless of flooding or reflooding, pore water DRP decreased with flooding days. The highest concentration of pore water DRP observed at a 5-cm depth. Under the effect of fertilizing and flooding, the risk of vertical P movement in 10–50 cm was enhanced. P diffusion occurred from the top to the bottom of the soils. After flooding, Al-P increased in both soils, and Fe-P, O-P, Ca2-P decreased, while Fe-P, Al-P, and O-P increased after reflooding, When Olsen P in the vegetable-growing soil exceeded 180.7 mg/kg and Olsen P in the wheat-growing soil exceeded 40.8 mg/kg, the concentration of DRP in pore water increased significantly. Our results showed that changes in floodwater and pore water DRP concentrations, soil inorganic P fractions, and Olsen P are significantly affected by fertilizing and flooding; therefore, careful fertilizer management should be employed on flooded soils to avoid excess P loss.

  4. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  5. Identification of flood-rich and flood-poor periods in flood series

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2015-04-01

    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  6. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    Science.gov (United States)

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  7. Chemical weathering outputs from the flood plain of the Ganga

    Science.gov (United States)

    Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat

    2018-03-01

    flood plain are best calculated by mass balance of the Na, K, Ca, Mg, Sr, SO4 and 87Sr/86Sr compositions of the inputs, comprising the flood plain tributaries, Himalayan rivers and southern rivers, with the chemical discharge in the Ganga at Farakka. The calculated fluxes from the flood plain for Na, K, Ca and Mg are within error of those estimated from changes in sediment chemistry across the flood plain (Lupker et al., 2012, Geochemica Cosmochimica Acta). Flood plain weathering supplies between 41 and 63% of the major cation and Sr fluxes and 58% of the alkalinity flux carried by the Ganga at Farakka which compares with 24% supplied by Himalayan rivers and 18% by the southern tributaries.

  8. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  9. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Ye Weimin; Zheng Zhenji; Chen Bao; Chen Yonggui

    2011-01-01

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  10. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    Kaasa, B.; Oestvold, T.

    1996-01-01

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  11. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  12. Development of flood index by characterisation of flood hydrographs

    Science.gov (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  13. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    Science.gov (United States)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  14. Experimental Study of Enhancing Oil Recovery with Weak Base Alkaline/Surfactant/Polymer

    Directory of Open Access Journals (Sweden)

    Dandan Yin

    2017-01-01

    Full Text Available Na2CO3 was used together with surfactant and polymer to form the Alkaline/Surfactant/Polymer (ASP flooding system. Interfacial tension (IFT and emulsification of Dagang oil and chemical solutions were studied in the paper. The experiment results show that the ASP system can form super-low interfacial tension with crude oil and emulsified phase. The stability of the emulsion is enhanced by the Na2CO3, surfactant, and the soap generated at oil/water contact. Six core flooding experiments are conducted in order to investigate the influence of Na2CO3 concentration on oil recovery. The results show the maximum oil recovery can be obtained with 0.3 wt% surfactant, 0.6 wt% Na2CO3, and 2000 mg/L polymer. In a heterogeneous reservoir, the ASP flooding could not enhance the oil recovery by reducing IFT until it reaches the critical viscosity, which indicates expanding the sweep volume is the premise for reducing IFT to enhance oil recovery. Reducing or removing the alkali from ASP system to achieve high viscosity will reduce oil recovery because of the declination of oil displacement efficiency. Weak base ASP alkali can ensure that the whole system with sufficient viscosity can start the medium and low permeability layers and enhance oil recovery even if the IFT only reaches 10−2 mN/m.

  15. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    Science.gov (United States)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  16. Application of Flood Nomograph for Flood Forecasting in Urban Areas

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee

    2018-01-01

    Full Text Available Imperviousness has increased due to urbanization, as has the frequency of extreme rainfall events by climate change. Various countermeasures, such as structural and nonstructural measures, are required to prepare for these effects. Flood forecasting is a representative nonstructural measure. Flood forecasting techniques have been developed for the prevention of repetitive flood damage in urban areas. It is difficult to apply some flood forecasting techniques using training processes because training needs to be applied at every usage. The other flood forecasting techniques that use rainfall data predicted by radar are not appropriate for small areas, such as single drainage basins. In this study, a new flood forecasting technique is suggested to reduce flood damage in urban areas. The flood nomograph consists of the first flooding nodes in rainfall runoff simulations with synthetic rainfall data at each duration. When selecting the first flooding node, the initial amount of synthetic rainfall is 1 mm, which increases in 1 mm increments until flooding occurs. The advantage of this flood forecasting technique is its simple application using real-time rainfall data. This technique can be used to prepare a preemptive response in the process of urban flood management.

  17. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    Science.gov (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  18. Exploitation of Documented Historical Floods for Achieving Better Flood Defense

    Directory of Open Access Journals (Sweden)

    Slobodan Kolaković

    2016-01-01

    Full Text Available Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach, involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods has been exploited in this study. The short presentation of the catchment of the Tisza River in this paper is followed by the overview of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of different extreme flood scenarios and to establish the Base Flood Elevation. The calibration has shown that the coefficient of friction in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the expected maximum water levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again. The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.

  19. Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

    OpenAIRE

    Chia Lin Chan; Yi Ju Yang; Chih Chin Yang

    2011-01-01

    Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall freque...

  20. Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances

    Science.gov (United States)

    Sung, Kyungmin; Jeong, Hanseok; Sangwan, Nikhil; Yu, David J.

    2018-04-01

    A community capacity to cope with flood hazards, or community flood resilience, emerges from the interplay of hydrological and social processes. This interplay can be significantly influenced by the flood control strategy adopted by a society, i.e., how a society sets its desired flood protection level and strives to achieve this goal. And this interplay can be further complicated by rising land-sea level differences, seasonal water level fluctuations, and economic change. But not much research has been done on how various forms of flood control strategies affect human-flood interactions under these disturbances and therefore flood resilience in the long run. The current study is an effort to address these issues by developing a conceptual model of human-flood interaction mediated by flood control strategies. Our model extends the existing model of Yu et al. (2017), who investigated the flood resilience of a community-based flood protection system in coastal Bangladesh. The major extensions made in this study are inclusions of various forms of flood control strategies (both adaptive and nonadaptive ones), the challenge of rising land-sea level differences, and various high tide level scenarios generated from modifying the statistical variances and averages. Our results show that adaptive forms of flood control strategies tend to outperform nonadaptive ones for maintaining the model community's flood protection system. Adaptive strategies that dynamically adjust target flood protection levels through close monitoring of flood damages and social memories of flood risk can help the model community deal with various disturbances.

  1. Public perception of flood risks, flood forecasting and mitigation

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2005-01-01

    Full Text Available A multidisciplinary and integrated approach to the flood mitigation decision making process should provide the best response of society in a flood hazard situation including preparation works and post hazard mitigation. In Slovenia, there is a great lack of data on social aspects and public response to flood mitigation measures and information management. In this paper, two studies of flood perception in the Slovenian town Celje are represented. During its history, Celje was often exposed to floods, the most recent serious floods being in 1990 and in 1998, with a hundred and fifty return period and more than ten year return period, respectively. Two surveys were conducted in 1997 and 2003, with 157 participants from different areas of the town in the first, and 208 in the second study, aiming at finding the general attitude toward the floods. The surveys revealed that floods present a serious threat in the eyes of the inhabitants, and that the perception of threat depends, to a certain degree, on the place of residence. The surveys also highlighted, among the other measures, solidarity and the importance of insurance against floods.

  2. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  3. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  4. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  5. The Alkaline Diet: Is There Evidence That an Alkaline ph Diet Benefits Health?

    International Nuclear Information System (INIS)

    Schwalfenberg, G.K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pub med was searched looking for articles on ph, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine

  6. Mapping flood hazards under uncertainty through probabilistic flood inundation maps

    Science.gov (United States)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.

    2017-12-01

    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  7. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.

    2013-01-01

    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  8. Citizen involvement in flood risk governance: flood groups and networks

    Directory of Open Access Journals (Sweden)

    Twigger-Ross Clare

    2016-01-01

    Full Text Available Over the past decade has been a policy shift withinUK flood risk management towards localism with an emphasis on communities taking ownership of flood risk. There is also an increased focus on resilience and, more specifically, on community resilience to flooding. This paper draws on research carried out for UK Department for Environment Food and Rural Affairs to evaluate the Flood Resilience Community Pathfinder (FRCP scheme in England. Resilience is conceptualised as multidimensional and linked to exisiting capacities within a community. Creating resilience to flooding is an ongoing process of adaptation, learning from past events and preparing for future risks. This paper focusses on the development of formal and informal institutions to support improved flood risk management: institutional resilience capacity. It includes new institutions: e.g. flood groups, as well as activities that help to build inter- and intra- institutional resilience capacity e.g. community flood planning. The pathfinder scheme consisted of 13 projects across England led by local authorities aimed at developing community resilience to flood risk between 2013 – 2015. This paper discusses the nature and structure of flood groups, the process of their development, and the extent of their linkages with formal institutions, drawing out the barriers and facilitators to developing institutional resilience at the local level.

  9. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Santaquiteria, C., E-mail: ruiz.cs@ietcc.csic.es [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain); Skibsted, J. [Instrument Centre for Solid-State NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Fernandez-Jimenez, A.; Palomo, A. [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain)

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  10. Flood-rich and flood-poor periods in Spain in 1942-2009

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2016-04-01

    Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Mediero et al. (2015) studied flood trends by using the longest streamflow records available in Europe. They found a decreasing trend in the Atlantic, Continental and Scandinavian regions. More specifically, Mediero et al. (2014) found a general decreasing trend in flood series in Spain in the period 1959-2009. Trends in flood series are usually detected by the Mann-Kendall test applied to a given period. However, the result of the Mann-Kendall test can change in terms of the starting and ending year of the series. Flood oscillations can occur and flood-rich and flood-poor periods could condition the results, especially when they are located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to the longest series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. A flood-rich period in 1950-1970 and a flood-poor period in 1970-1990 are identified in most of the selected sites. The generalised decreasing trend in flood series found by Mediero et al. (2014) could be explained by a flood-rich period placed at the beginning of the series and a flood-poor period located at the end of the series. References: Mediero, L., Kjeldsen, T.R., Macdonald, N., Kohnova, S., Merz, B., Vorogushyn, S., Wilson, D., Alburquerque, T., Blöschl, G., Bogdanowicz, E., Castellarin, A., Hall, J., Kobold, M., Kriauciuniene, J., Lang, M., Madsen, H., Onuşluel Gül, G., Perdigão, R.A.P., Roald, L.A., Salinas, J.L., Toumazis, A.D., Veijalainen, N., Óðinn Þórarinsson. Identification of coherent flood

  11. Recent advances in flood forecasting and flood risk assessment

    Directory of Open Access Journals (Sweden)

    G. Arduino

    2005-01-01

    Full Text Available Recent large floods in Europe have led to increased interest in research and development of flood forecasting systems. Some of these events have been provoked by some of the wettest rainfall periods on record which has led to speculation that such extremes are attributable in some measure to anthropogenic global warming and represent the beginning of a period of higher flood frequency. Whilst current trends in extreme event statistics will be difficult to discern, conclusively, there has been a substantial increase in the frequency of high floods in the 20th century for basins greater than 2x105 km2. There is also increasing that anthropogenic forcing of climate change may lead to an increased probability of extreme precipitation and, hence, of flooding. There is, therefore, major emphasis on the improvement of operational flood forecasting systems in Europe, with significant European Community spending on research and development on prototype forecasting systems and flood risk management projects. This Special Issue synthesises the most relevant scientific and technological results presented at the International Conference on Flood Forecasting in Europe held in Rotterdam from 3-5 March 2003. During that meeting 150 scientists, forecasters and stakeholders from four continents assembled to present their work and current operational best practice and to discuss future directions of scientific and technological efforts in flood prediction and prevention. The papers presented at the conference fall into seven themes, as follows.

  12. Rethinking the relationship between flood risk perception and flood management.

    Science.gov (United States)

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    Science.gov (United States)

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly. © 2015 Society for Risk Analysis.

  14. Molecular epidemiology of Vibrio cholerae associated with flood in Brahamputra River valley, Assam, India.

    Science.gov (United States)

    Bhuyan, Soubhagya K; Vairale, Mohan G; Arya, Neha; Yadav, Priti; Veer, Vijay; Singh, Lokendra; Yadava, Pramod K; Kumar, Pramod

    2016-06-01

    Cholera is often caused when drinking water is contaminated through environmental sources. In recent years, the drastic cholera epidemics in Odisha (2007) and Haiti (2010) were associated with natural disasters (flood and Earthquake). Almost every year the state of Assam India witnesses flood in Brahamputra River valley during reversal of wind system (monsoon). This is often followed by outbreak of diarrheal diseases including cholera. Beside the incidence of cholera outbreaks, there is lack of experimental evidence for prevalence of the bacterium in aquatic environment and its association with cholera during/after flood in the state. A molecular surveillance during 2012-14 was carried out to study prevalence, strain differentiation, and clonality of Vibrio cholerae in inland aquatic reservoirs flooded by Brahamputra River in Assam. Water samples were collected, filtered, enriched in alkaline peptone water followed by selective culturing on thiosulfate bile salt sucrose agar. Environmental isolates were identified as V. cholerae, based on biochemical assays followed by sero-grouping and detailed molecular characterization. The incidence of the presence of the bacterium in potable water sources was higher after flood. Except one O1 isolate, all of the strains were broadly grouped under non-O1/non-O139 whereas some of them did have cholera toxin (CT). Surprisingly, we have noticed Haitian ctxB in two non-O1/non-O139 strains. MLST analyses based on pyrH, recA and rpoA genes revealed clonality in the environmental strains. The isolates showed varying degree of antimicrobial resistance including tetracycline and ciprofloxacin. The strains harbored the genetic elements SXT constins and integrons responsible for multidrug resistance. Genetic characterization is useful as phenotypic characters alone have proven to be unsatisfactory for strain discrimination. An assurance to safe drinking water, sanitation and monitoring of the aquatic reservoirs is of utmost importance for

  15. May flood-poor periods be more dangerous than flood-rich periods?

    Science.gov (United States)

    Salinas, Jose Luis; Di Baldassarre, Giuliano; Viglione, Alberto; Kuil, Linda; Bloeschl, Guenter

    2014-05-01

    River floods are among the most devastating natural hazards experienced by populations that, since the earliest recorded civilisations, have settled in floodplains because they offer favourable conditions for trade, agriculture, and economic development. The occurrence of a flood may cause loss of lives and tremendous economic damages and, therefore, is rightly seen as a very negative event by the communities involved. Occurrence of many floods in a row is, of course, even more frustrating and is rightly considered a unbearable calamity. Unfortunately, the occurrence of many floods in a limited number of consecutive years is not unusual. In many places in the world, it has been observed that extreme floods do not arrive randomly but cluster in time into flood-poor and flood-rich periods consistent with the Hurst effect. If this is the case, when are the people more in danger? When should people be more scared? In flood-poor or flood-rich periods? In this work, a Socio-Hydrology model (Di Baldassarre et al., 2013; Viglione et al., 2014) is used to show that, maybe counter-intuitively, flood-poor periods may be more dangerous than flood-rich periods. The model is a conceptualisation of a hypothetical setting of a city at a river where a community evolves, making choices between flood management options on the floodplain. The most important feedbacks between the economic, political, technological and hydrological processes of the evolution of that community are represented in the model. In particular, the model also accounts in a dynamic way for the evolution of the the community awareness to flood risk. Occurrence of floods tends to increase peoples' recognition that their property is in an area that is potentially at risk of flooding, both at the scales of individuals and communities, which is one of the main reasons why flood coping actions are taken. It is shown through examples that frequent flood events may result in moderate damages because they ensure that the

  16. Swiss Re Global Flood Hazard Zones: Know your flood risk

    Science.gov (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  17. Alkalinity of the Mediterranean Sea

    OpenAIRE

    Schneider, Anke; Wallace, Douglas W.R.; Körtzinger, Arne

    2007-01-01

    Total alkalinity (AT) was measured during the Meteor 51/2 cruise, crossing the Mediterranean Sea from west to east. AT concentrations were high (∼2600 μmol kg−1) and alkalinity-salinity-correlations had negative intercepts. These results are explained by evaporation coupled with high freshwater AT inputs into coastal areas. Salinity adjustment of AT revealed excess alkalinity throughout the water column compared to mid-basin surface waters. Since Mediterranean waters are supersaturated with r...

  18. Effectiveness of the squeezing out and final squeezing out of petroleum of an increased viscosity by alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Begnazarov, T.

    1979-01-01

    The remaining petroleum in the flooded zone is determined by the ratio of viscosity forces to the forces of the surface tension, which are expressed by the coefficient Ka. With this, for each kind of porous medium, there exists a natural cricial value Ka. For the purpose of studying the effect of the given parameters on the value of the remaining petroleum, experiments were carried out on artificial specimens. In the tests, using petroleum of the Mishkin deposit, the surface tension on the boundary of the petroleum with the distilled water and alkaline solutions were respectively equal to 37.1 and 1.33 dynes per centimeter. The experiments showed, that the squeezing out of the petroleum with water or alkaline solutions leads to similar results. This means, that the composite parameter Ka does not affect the value of the remaining petroleum saturation. The effectiveness of the final squeezing out of the petroleum of increased viscosity was also studied. These experiments were carried out in two variations of the injection of the squeezed out agent: in the first variation, the petroleum was squeezed out with water in the first stage, and in the second stage it was squeezed out by an alkaline solution, and in the subsequent stages, a change in the squeezing out agent took place. By finishing the first stage, the attained values of the coefficients of the squeezing out were practically similar (0.72). In the second stage, the final squeezing out of the petroleum with a solution of alkaline, provided a major effect.

  19. Floods

    Science.gov (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  20. Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure

    Science.gov (United States)

    Tsai, C.; Yeh, J. J. J.

    2017-12-01

    A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.

  1. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-01-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from

  2. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-01-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, creates a growing need for accurate and timely flood maps. This research focussed on creating flood maps using user generated content from Twitter. Twitter data has

  3. Improving Global Flood Forecasting using Satellite Detected Flood Extent

    NARCIS (Netherlands)

    Revilla Romero, B.

    2016-01-01

    Flooding is a natural global phenomenon but in many cases is exacerbated by human activity. Although flooding generally affects humans in a negative way, bringing death, suffering, and economic impacts, it also has potentially beneficial effects. Early flood warning and forecasting systems, as well

  4. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    Science.gov (United States)

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  6. Flood Label for buildings : a tool for more flood-resilient cities

    NARCIS (Netherlands)

    Hartmann, T.; Scheibel, Marc

    2016-01-01

    River floods are among the most expensive natural disasters in Europe. Traditional flood protection methods are not sufficient anymore. It is widely acknowledged in the scholarly debate and in practice of flood risk management that traditional flood protection measures such as dikes need to be

  7. Flooding in imagination vs flooding in vivo: A comparison with agoraphobics

    NARCIS (Netherlands)

    Emmelkamp, Paul M.G.; Wessels, Hemmy

    In this investigation of agoraphobic patients, 3 different flooding procedures were compared: (1) prolonged exposure in vivo, (2) flooding in the imagination by a ‘live’ therapist and (3) a combination of flooding in the imagination and flooding in vivo. After an intermediate-test all clients were

  8. Determination of Acidity and Alkalinity of Food Materials

    OpenAIRE

    三浦,芳助; 福永,祐子; 瀧川,裕里子; 津田,真美; 渡辺,陽子; 瀨山,一正

    2006-01-01

    The acidity and alkalinity of food materials in various menus was determined to clarify the influence of food on physiological functions. Menus mainly containing alkaline food materials (alkaline menu) and acid ones (acid menu) were compared. Determination of acidity and alkalinity was performed for each food material in the alkaline menu and acid menu, and acidity and alkalinity of one meal and a day's one were estimated. 1. Most of food materials in acid menu were assessed to be...

  9. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity.

    Science.gov (United States)

    Nacke, Heiko; Schöning, Ingo; Schindler, Malte; Schrumpf, Marion; Daniel, Rolf; Nicol, Graeme W; Prosser, James I

    2017-11-01

    Coastal areas worldwide are challenged by climate change-associated increases in sea level and storm surge quantities that potentially lead to more frequent flooding of soil ecosystems. Currently, little is known of the effects of inundation events on microorganisms controlling nitrification in these ecosystems. The goal of this study was to investigate the impact of seawater flooding on the abundance, community composition and salinity tolerance of soil ammonia oxidisers. Topsoil was sampled from three islands flooded at different frequencies by the Wadden Sea. Archaeal ammonia oxidiser amoA genes were more abundant than their betaproteobacterial counterparts, and the distribution of archaeal and bacterial ammonia oxidiser amoA and 16S rRNA gene sequences significantly differed between the islands. The findings indicate selection of ammonia oxidiser phylotypes with greater tolerance to high salinity and slightly alkaline pH (e.g. Nitrosopumilus representatives) in frequently flooded soils. A cluster phylogenetically related to gammaproteobacterial ammonia oxidisers was detected in all samples analysed in this survey. Nevertheless, no gammaprotebacterial amoA genes could be amplified via PCR and only betaproteobacterial ammonia oxidisers were detected in enrichment cultures. A slurry-based experiment demonstrated the tolerance of both bacterial and archaeal ammonia oxidisers to a wide range of salinities (e.g. Wadden Sea water salinity) in soil naturally exposed to seawater at a high frequency. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Alkaline earth metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The beryllium ion has a relatively small ionic radius. As a consequence of this small size, its hydrolysis reactions begin to occur at a relatively low pH. To determine the stability and solubility constants, however, the Gibbs energy of the beryllium ion is required. In aqueous solution calcium, like the other alkaline earth metals, only exists as a divalent cation. The size of the alkaline earth cations increases with increasing atomic number, and the calcium ion is bigger than the magnesium ion. The hydrolysis of barium(II) is weaker than that of strontium(II) and also occurs in quite alkaline pH solutions, and similarly, only the species barium hydroxide has been detected. There is only a single experimental study on the hydrolysis of radium. As with the stability constant trend, it would be expected that the enthalpy of radium would be lower than that of barium due to the larger ionic radius.

  11. Flooding and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  12. Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability

    Directory of Open Access Journals (Sweden)

    Hyomin Kim

    2016-01-01

    Full Text Available Countermeasures to urban flooding should consider long-term perspectives, because climate change impacts are unpredictable and complex. Urban green spaces have emerged as a potential option to reduce urban flood risks, and their effectiveness has been highlighted in notable urban water management studies. In this study, flooded areas in Seoul, Korea, were divided into four flooded area types by cluster analysis based on topographic and physical characteristics and verified using discriminant analysis. After division by flooded area type, logistic regression analysis was performed to determine how the flooding probability changes with variations in green space area. Type 1 included regions where flooding occurred in a drainage basin that had a flood risk management infrastructure (FRMI. In Type 2, the slope was steep; the TWI (Topographic Wetness Index was relatively low; and soil drainage was favorable. Type 3 represented the gentlest sloping areas, and these were associated with the highest TWI values. In addition, these areas had the worst soil drainage. Type 4 had moderate slopes, imperfect soil drainage and lower than average TWI values. We found that green spaces exerted a considerable influence on urban flooding probabilities in Seoul, and flooding probabilities could be reduced by over 50% depending on the green space area and the locations where green spaces were introduced. Increasing the area of green spaces was the most effective method of decreasing flooding probability in Type 3 areas. In Type 2 areas, the maximum hourly precipitation affected the flooding probability significantly, and the flooding probability in these areas was high despite the extensive green space area. These findings can contribute towards establishing guidelines for urban spatial planning to respond to urban flooding.

  13. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  14. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  15. Floods and climate: emerging perspectives for flood risk assessment and management

    DEFF Research Database (Denmark)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, Karsten

    2014-01-01

    context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical......, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand......Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction...

  16. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    Science.gov (United States)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  17. Flood Resilient Systems and their Application for Flood Resilient Planning

    Science.gov (United States)

    Manojlovic, N.; Gabalda, V.; Antanaskovic, D.; Gershovich, I.; Pasche, E.

    2012-04-01

    Following the paradigm shift in flood management from traditional to more integrated approaches, and considering the uncertainties of future development due to drivers such as climate change, one of the main emerging tasks of flood managers becomes the development of (flood) resilient cities. It can be achieved by application of non-structural - flood resilience measures, summarised in the 4As: assistance, alleviation, awareness and avoidance (FIAC, 2007). As a part of this strategy, the key aspect of development of resilient cities - resilient built environment can be reached by efficient application of Flood Resilience Technology (FReT) and its meaningful combination into flood resilient systems (FRS). FRS are given as [an interconnecting network of FReT which facilitates resilience (including both restorative and adaptive capacity) to flooding, addressing physical and social systems and considering different flood typologies] (SMARTeST, http://www.floodresilience.eu/). Applying the system approach (e.g. Zevenbergen, 2008), FRS can be developed at different scales from the building to the city level. Still, a matter of research is a method to define and systematise different FRS crossing those scales. Further, the decision on which resilient system is to be applied for the given conditions and given scale is a complex task, calling for utilisation of decision support tools. This process of decision-making should follow the steps of flood risk assessment (1) and development of a flood resilience plan (2) (Manojlovic et al, 2009). The key problem in (2) is how to match the input parameters that describe physical&social system and flood typology to the appropriate flood resilient system. Additionally, an open issue is how to integrate the advances in FReT and findings on its efficiency into decision support tools. This paper presents a way to define, systematise and make decisions on FRS at different scales of an urban system developed within the 7th FP Project

  18. Effectiveness of flood damage mitigation measures: Empirical evidence from French flood disasters

    NARCIS (Netherlands)

    Poussin, J.K.; Botzen, W.J.W.; Aerts, J.C.J.H.

    2015-01-01

    Recent destructive flood events and projected increases in flood risks as a result of climate change in many regions around the world demonstrate the importance of improving flood risk management. Flood-proofing of buildings is often advocated as an effective strategy for limiting damage caused by

  19. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    Science.gov (United States)

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  20. Flood Risk Management in Iowa through an Integrated Flood Information System

    Science.gov (United States)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  1. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    Science.gov (United States)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  2. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions

  3. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Science.gov (United States)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  4. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.

    2015-01-01

    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  5. The index-flood and the GRADEX methods combination for flood frequency analysis.

    Science.gov (United States)

    Fuentes, Diana; Di Baldassarre, Giuliano; Quesada, Beatriz; Xu, Chong-Yu; Halldin, Sven; Beven, Keith

    2017-04-01

    Flood frequency analysis is used in many applications, including flood risk management, design of hydraulic structures, and urban planning. However, such analysis requires of long series of observed discharge data which are often not available in many basins around the world. In this study, we tested the usefulness of combining regional discharge and local precipitation data to estimate the event flood volume frequency curve for 63 catchments in Mexico, Central America and the Caribbean. This was achieved by combining two existing flood frequency analysis methods, the regionalization index-flood approach with the GRADEX method. For up to 10-years return period, similar shape of the scaled flood frequency curve for catchments with similar flood behaviour was assumed from the index-flood approach. For return periods larger than 10-years the probability distribution of rainfall and discharge volumes were assumed to be asymptotically and exponential-type functions with the same scale parameter from the GRADEX method. Results showed that if the mean annual flood (MAF), used as index-flood, is known, the index-flood approach performed well for up to 10 years return periods, resulting in 25% mean relative error in prediction. For larger return periods the prediction capability decreased but could be improved by the use of the GRADEX method. As the MAF is unknown at ungauged and short-period measured basins, we tested predicting the MAF using catchments climate-physical characteristics, and discharge statistics, the latter when observations were available for only 8 years. Only the use of discharge statistics resulted in acceptable predictions.

  6. Improving flood risk mapping in Italy: the FloodRisk open-source software

    Science.gov (United States)

    Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru

    2017-04-01

    Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood

  7. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    Science.gov (United States)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  8. Floods and climate: emerging perspectives for flood risk assessment and management

    NARCIS (Netherlands)

    Merz, B.; Aerts, J.C.J.H.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; Delgado, J.M.; Gocht, M.; Guzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H. -H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P.J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-01-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of

  9. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    Science.gov (United States)

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  10. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  11. After the flood is before the next flood - post event review of the Central European Floods of June 2013. Insights, recommendations and next steps for future flood prevention

    Science.gov (United States)

    Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian

    2015-04-01

    In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk

  12. Urban flood return period assessment through rainfall-flood response modelling

    DEFF Research Database (Denmark)

    Murla, Damian; Thorndahl, Søren Liedtke

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS......), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g.DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may...... cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized...

  13. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Directory of Open Access Journals (Sweden)

    A. Luke

    2018-04-01

    Full Text Available Flood hazard mapping in the United States (US is deeply tied to the National Flood Insurance Program (NFIP. Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1 legends that frame flood intensity both qualitatively and quantitatively, and (2 flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1 standing water depths following the flood, (2 the erosive potential of flowing water, and (3 pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating

  14. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-01-01

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  15. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  16. A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries

    Directory of Open Access Journals (Sweden)

    J. Hall

    2015-06-01

    Full Text Available The current work addresses one of the key building blocks towards an improved understanding of flood processes and associated changes in flood characteristics and regimes in Europe: the development of a comprehensive, extensive European flood database. The presented work results from ongoing cross-border research collaborations initiated with data collection and joint interpretation in mind. A detailed account of the current state, characteristics and spatial and temporal coverage of the European Flood Database, is presented. At this stage, the hydrological data collection is still growing and consists at this time of annual maximum and daily mean discharge series, from over 7000 hydrometric stations of various data series lengths. Moreover, the database currently comprises data from over 50 different data sources. The time series have been obtained from different national and regional data sources in a collaborative effort of a joint European flood research agreement based on the exchange of data, models and expertise, and from existing international data collections and open source websites. These ongoing efforts are contributing to advancing the understanding of regional flood processes beyond individual country boundaries and to a more coherent flood research in Europe.

  17. Floods in Colorado

    Science.gov (United States)

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    The first records of floods in Colorado antedated the settlement of the State by about 30 years. These were records of floods on the Arkansas and Republican Rivers in 1826. Other floods noted by traders, hunters and emigrants, some of whom were on their way to the Far West, occurred in 1844 on the Arkansas River, and by inference on the South Platte River. Other early floods were those on the Purgatoire, the Lower Arkansas, and the San Juan Rivers about 1859. The most serious flood since settlement began was that on the Arkansas River during June 1921, which caused the loss of about 100 lives and an estimated property loss of $19,000,000. Many floods of lesser magnitude have occurred, and some of these have caused loss of life and very considerable property damage. Topography is the chief factor in determining the location of storms and resulting floods. These occur most frequently on the eastern slope of the Front Range. In the mountains farther west precipitation is insufficient to cause floods except during periods of melting snow, in June. In the southwestern part of the State, where precipitation during periods of melting snow is insufficient to cause floods, the severest floods yet experienced resulted from heavy rains in September 1909 and October 1911. In the eastern foothills region, usually below an altitude of about 7,500 feet and extending for a distance of about 50 miles east of the mountains, is a zone subject to rainfalls of great intensity known as cloudbursts. These cloudbursts are of short duration and are confined to very small areas. At times the intensity is so great as to make breathing difficult for those exposed to a storm. The areas of intense rainfall are so small that Weather Bureau precipitation stations have not been located in them. Local residents, being cloudburst conscious, frequently measure the rainfall in receptacles in their yards, and such records constitute the only source of information regarding the intensity. A flood

  18. Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk

    Directory of Open Access Journals (Sweden)

    McEwen Lindsey

    2016-01-01

    Full Text Available Shifts to devolved flood risk management in the UK pose questions about how the changing role of floodplain residents in community-led adaptation planning can be supported and strengthened. This paper shares insights from an interdisciplinary research project that has proposed the concept of ‘sustainable flood memory’ in the context of effective flood risk management. The research aimed to increase understanding of whether and how flood memories from the UK Summer 2007 extreme floods provide a platform for developing lay knowledges and flood resilience. The project investigated what factors link flood memory and lay knowledges of flooding, and how these connect and disconnect during and after flood events. In particular, and relation to flood governance directions, we sought to explore how such memories might play a part in individual and community resilience. The research presented here explores some key themes drawn from semi-structured interviews with floodplain residents with recent flood experiences in contrasting demographic and physical settings in the lower River Severn catchment. These include changing practices in making flood memories and materialising flood knowledge and the roles of active remembering and active forgetting.

  19. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  20. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    IAS Admin

    CLASSROOM. 285. RESONANCE | March 2016. Qualitative Carbohydrate Analysis using Alkaline. Potassium Ferricyanide. Keywords. Alkaline potassium ferricyanide, qualitative ... Carbohydrates form a distinct class of organic compounds often .... Laboratory Techniques: A contemporary Approach, W B Saunders Com-.

  1. Adaptation to flood risk: Results of international paired flood event studies

    NARCIS (Netherlands)

    Kreibich, Heidi; Di Baldassarre, G.; Vorogushyn, Sergiy; Aerts, J.C.J.H.; Apel, H.; Aronica, G.T.; Arnbjerg-Nielsen, K.; Bouwer, L.; Bubeck, P.; Caloiero, Tommaso; Chinh, Do. T.; Cortès, Maria; Gain, A.K.; Giampá, Vincenzo; Kuhlicke, C; Kundzewicz, Z.W.; Carmen Llasat, M; Mård, Johanna; Matczak, Piotr; Mazzoleni, Maurizio; Molinari, Daniela; Dung, N.V.; Petrucci, Olga; Schröter, Kai; Slager, Kymo; Thieken, A.H.; Ward, P.J.; Merz, B.

    2017-01-01

    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in

  2. Tectonic significance of dykes in the Sarnu-Dandali alkaline complex, Rajasthan, northwestern Deccan Traps

    Directory of Open Access Journals (Sweden)

    Anjali Vijayan

    2016-09-01

    Full Text Available Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual case studies. The Sarnu-Dandali alkaline complex, near the northwestern limit of the Deccan Traps continental flood basalt province, contains mafic to felsic alkaline volcano-plutonic rocks and carbonatites. The complex is situated near the northern end of the 600 km long, NNW–SSE-trending Barmer-Cambay rift. Mafic enclave swarms in the syenites suggest synplutonic mafic dykes injected into a largely liquid felsic magma chamber. Later coherent dykes in the complex, of all compositions and sizes, dominantly strike NNW–SSE, parallel to the Barmer-Cambay rift. The rift formed during two distinct episodes of extension, NW–SE in the early Cretaceous and NE–SW in the late Cretaceous. Control of the southern Indian Dharwar structural fabric on the rift trend, as speculated previously, is untenable, whereas the regional Precambrian basement trends (Aravalli and Malani run NE–SW and NNE–SSW. We therefore suggest that the small-scale Sarnu-Dandali dykes and the much larger-scale Barmer-Cambay rift were not controlled by basement structure, but related to contemporaneous, late Cretaceous regional ENE–WSW extension, for which there is varied independent evidence.

  3. Prehistoric floods on the Tennessee River—Assessing the use of stratigraphic records of past floods for improved flood-frequency analysis

    Science.gov (United States)

    Harden, Tessa M.; O'Connor, Jim E.

    2017-06-14

    Stratigraphic analysis, coupled with geochronologic techniques, indicates that a rich history of large Tennessee River floods is preserved in the Tennessee River Gorge area. Deposits of flood sediment from the 1867 peak discharge of record (460,000 cubic feet per second at Chattanooga, Tennessee) are preserved at many locations throughout the study area at sites with flood-sediment accumulation. Small exposures at two boulder overhangs reveal evidence of three to four other floods similar in size, or larger, than the 1867 flood in the last 3,000 years—one possibly as much or more than 50 percent larger. Records of floods also are preserved in stratigraphic sections at the mouth of the gorge at Williams Island and near Eaves Ferry, about 70 river miles upstream of the gorge. These stratigraphic records may extend as far back as about 9,000 years ago, giving a long history of Tennessee River floods. Although more evidence is needed to confirm these findings, a more in-depth comprehensive paleoflood study is feasible for the Tennessee River.

  4. Floods in Serbia in the 1999-2009 period: Hydrological analysis and flood protection measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2010-01-01

    Full Text Available The review on greatest floods recorded in Vojvodina and central Serbia within the period from 1999 to 2009 is given in this paper. For 13 hydrological stations, that recorded the greatest floods for the present period, probability of occurrence of these floods has been accomplished. Based on analysis of time series of discharge and water level maximum, performed by applying probability theory and mathematical statistics, and calculated theoretical probability distribution function of floods, probability of occurrence of flood has been obtained. Most often the best agreement with the empirical distribution function had a Log-Pearson III, Pearson III distribution. These results can be used for dimensioning of hydro-technical objects for flood protection. The most significant causes for floods recorded in this period were melting of snow and intensive rainfall. In this paper the current situation of flood protection and future development of flood protection measures were also presented. .

  5. Increased river alkalinization in the Eastern U.S.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  6. Spatial coherence of flood-rich and flood-poor periods across Germany

    Science.gov (United States)

    Merz, Bruno; Dung, Nguyen Viet; Apel, Heiko; Gerlitz, Lars; Schröter, Kai; Steirou, Eva; Vorogushyn, Sergiy

    2018-04-01

    Despite its societal relevance, the question whether fluctuations in flood occurrence or magnitude are coherent in space has hardly been addressed in quantitative terms. We investigate this question for Germany by analysing fluctuations in annual maximum series (AMS) values at 68 discharge gauges for the common time period 1932-2005. We find remarkable spatial coherence across Germany given its different flood regimes. For example, there is a tendency that flood-rich/-poor years in sub-catchments of the Rhine basin, which are dominated by winter floods, coincide with flood-rich/-poor years in the southern sub-catchments of the Danube basin, which have their dominant flood season in summer. Our findings indicate that coherence is caused rather by persistence in catchment wetness than by persistent periods of higher/lower event precipitation. Further, we propose to differentiate between event-type and non-event-type coherence. There are quite a number of hydrological years with considerable non-event-type coherence, i.e. AMS values of the 68 gauges are spread out through the year but in the same magnitude range. Years with extreme flooding tend to be of event-type and non-coherent, i.e. there is at least one precipitation event that affects many catchments to various degree. Although spatial coherence is a remarkable phenomenon, and large-scale flooding across Germany can lead to severe situations, extreme magnitudes across the whole country within one event or within one year were not observed in the investigated period.

  7. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides.

    Science.gov (United States)

    Miao, Ling-Feng; Yang, Fan; Han, Chun-Yu; Pu, Yu-Jin; Ding, Yang; Zhang, Li-Jia

    2017-05-31

    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of physiological traits in trees subjected to medium and severe winter flooding stresses, suggesting that males and females of P. deltoides were winter flooding tolerant, and insensitive to winter flooding duration. Males were more tolerant to winter flooding stress in terms of photosynthesis and chlorophyll fluorescence than females. Females displayed greater oxidative damage due to flooding stress than males. Males developed more efficient antioxidant enzymatic systems to control reactive oxygen species. Both sexes had similarly strong post-flooding recovery capabilities in terms of plant growth, and physiological and ultrastructural parameters. However, Males had better recovery capabilities in terms of pigment content. These results increase the understanding of poplars's adaptation to winter flooding stress. They also elucidate sex-specific differences in response to flooding stress during the dormant season, and during post-flooding recovery periods.

  8. Return period assessment of urban pluvial floods through modelling of rainfall–flood response

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Thorndahl, Søren Liedtke; Rasmussen, Michael Robdrup

    2018-01-01

    Intense rainfall in urban areas can often generate severe flood impacts. Consequently, it is crucial to design systems to minimize potential flood damages. Traditional, simple design of urban drainage systems assumes agreement between rainfall return period and its consequent flood return period......; however, this does not always apply. Hydraulic infrastructures found in urban drainage systems can increase system heterogeneity and perturb the impact of severe rainfall response. In this study, a surface flood return period assessment was carried out at Lystrup (Denmark), which has received the impact...... of flooding in recent years. A 35 years' rainfall dataset together with a coupled 1D/2D surface and network model was used to analyse and assess flood return period response. Results show an ambiguous relation between rainfall and flood return periods indicating that linear rainfall–runoff relationships will...

  9. Flood Risk Management in the People’s Republic of China: Learning to Live with Flood Risk

    OpenAIRE

    Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB)

    2012-01-01

    This publication presents a shift in the People’s Republic of China from flood control depending on structural measures to integrated flood management using both structural and non-structural measures. The core of the new concept of integrated flood management is flood risk management. Flood risk management is based on an analysis of flood hazard, exposure to flood hazard, and vulnerability of people and property to danger. It is recommended that people learn to live with flood risks, gaining...

  10. Mine flooding and barrier pillar hydrology in the Pittsburgh basin

    International Nuclear Information System (INIS)

    Leavitt, B.R.

    1999-01-01

    Pennsylvania began requiring barrier pillars between mines as early as 1930. The Ashley formula, resulting from a early commission on the problem, requires 20 feet of coal plus a thickness of coal equal to four times the seam height plus an additional thickness of coal equal to one tenth of the overburden thickness, or the maximum potential hydraulic head. For a 6-foot thick coal seam under 400 feet of cover, the barrier would be 20+24+40=84 feet. The Ashley formula is intended to protect coal miners from a catastrophic failure of a barrier pillar which has a high head of water impounded behind it. The paper gives several examples of flooded and unflooded mines and the performance of their barrier pillars with respect to acid mine drainage. It is concluded that for all practical purposes, barrier pillars designed with the Ashley formula are able to hydrologically isolate mines from one another. This hydrologic isolation promotes the inundation of closed mines. Inundation effectively stops acid formation, thus, fully inundated mines do not represent a perpetual source of acid mine drainage. Infiltrating ground water improves the mine water chemistry resulting in a net alkaline discharge which has greatly lowered iron concentrations. The best locations for acid mine drainage treatment plants is at the lowest surface elevation above the mine with mine flooded to near that elevation

  11. Influence of spreading urbanization in flood areas on flood damage in Slovenia

    International Nuclear Information System (INIS)

    Komac, B; Zorn, M; Natek, K

    2008-01-01

    Damage caused by natural disasters in Slovenia is frequently linked to the ignoring of natural factors in spatial planning. Historically, the construction of buildings and settlements avoided dangerous flood areas, but later we see increasing construction in dangerous areas. During the floods in 1990, the most affected buildings were located on ill-considered locations, and the majority was built in more recent times. A similar situation occurred during the floods of September 2007. Comparing the effects of these floods, we determined that damage was always greater due to the urbanization of flood areas. This process furthermore increasingly limits the 'manoeuvring space' for water management authorities, who due to the torrential nature of Slovenia's rivers can not ensure the required level of safety from flooding for unsuitably located settlements and infrastructure. Every year, the Environmental Agency of the Republic of Slovenia issues more than one thousand permits for interventions in areas that affect the water regime, and through decrees the government allows construction in riparian zones, which is supposedly forbidden by the Law on Water. If we do not take measures with more suitable policies for spatial planning, we will no long have the possibility in future to reduce the negative consequences of floods. Given that torrential floods strike certain Slovene regions every three years on average and that larger floods occur at least once a decade, it is senseless to lay the blame on climate change.

  12. FloodProBE: technologies for improved safety of the built environment in relation to flood events

    International Nuclear Information System (INIS)

    Ree, C.C.D.F. van; Van, M.A.; Heilemann, K.; Morris, M.W.; Royet, P.; Zevenbergen, C.

    2011-01-01

    The FloodProBE project started as a FP7 research project in November 2009. Floods, together with wind related storms, are considered the major natural hazard in the EU in terms of risk to people and assets. In order to adapt urban areas (in river and coastal zones) to prevent flooding or to be better prepared for floods, decision makers need to determine how to upgrade flood defences and increasing flood resilience of protected buildings and critical infrastructure (power supplies, communications, water, transport, etc.) and assess the expected risk reduction from these measures. The aim of the FloodProBE-project is to improve knowledge on flood resilience and flood protection performance for balancing investments in flood risk management in urban areas. To this end, technologies, methods and tools for assessment purposes and for the adaptation of new and existing buildings and critical infrastructure are developed, tested and disseminated. Three priority areas are addressed by FloodProBE. These are: (i) vulnerability of critical infrastructure and high-density value assets including direct and indirect damage, (ii) the assessment and reliability of urban flood defences including the use of geophysical methods and remote sensing techniques and (iii) concepts and technologies for upgrading weak links in flood defences as well as construction technologies for flood proofing buildings and infrastructure networks to increase the flood resilience of the urban system. The primary impact of FloodProBE in advancing knowledge in these areas is an increase in the cost-effectiveness (i.e. performance) of new and existing flood protection structures and flood resilience measures.

  13. Flood Finder: Mobile-based automated water level estimation and mapping during floods

    International Nuclear Information System (INIS)

    Pongsiriyaporn, B; Jariyavajee, C; Laoharawee, N; Narkthong, N; Pitichat, T; Goldin, S E

    2014-01-01

    Every year, Southeast Asia faces numerous flooding disasters, resulting in very high human and economic loss. Responding to a sudden flood is difficult due to the lack of accurate and up-to- date information about the incoming water status. We have developed a mobile application called Flood Finder to solve this problem. Flood Finder allows smartphone users to measure, share and search for water level information at specified locations. The application uses image processing to compute the water level from a photo taken by users. The photo must be of a known reference object with a standard size. These water levels are more reliable and consistent than human estimates since they are derived from an algorithmic measuring function. Flood Finder uploads water level readings to the server, where they can be searched and mapped by other users via the mobile phone app or standard browsers. Given the widespread availability of smartphones in Asia, Flood Finder can provide more accurate and up-to-date information for better preparation for a flood disaster as well as life safety and property protection

  14. Estimation of Internal Flooding Frequency for Screening Analysis of Flooding PSA

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Jun Eon

    2005-01-01

    The purpose of this paper is to estimate the internal frequency for the quantitative screening analysis of the flooding PSA (Probabilistic Safety Assessment) with the appropriate data and estimation method. In the case of the existing flood PSA for domestic NPPs (Nuclear Power Plant), the screening analysis was performed firstly and then detailed analysis was performed for the area not screened out. For the quantitative screening analysis, the plant area based flood frequency by MLE (Maximum Likelihood Estimation) method was used, while the component based flood frequency is used for the detailed analysis. The existing quantitative screening analysis for domestic NPPs have used data from all LWRs (Light Water Reactor), namely PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) for the internal flood frequency of the auxiliary building and turbine building. However, in the case of the primary auxiliary building, the applicability of the data from all LWRs needs to be examined carefully because of the significant difference in equipments between the PWR and BWR structure. NUREG/CR-5750 suggested the Bayesian update method with Jeffrey's noninformative prior to estimate the initiating event frequency for the flood. It, however, did not describe any procedure of the flood PSA. Recently, Fleming and Lydell suggested the internal flooding frequency in the unit of the plant operation year-pipe length (in meter) by pipe size of each specific system which is susceptible to the flooding such as the service water system and the circulating water system. They used the failure rate, the rupture conditional probability given the failure to estimate the internal flooding frequency, and the Bayesian update to reduce uncertainties. To perform the quantitative screening analysis with the method, it requires pipe length by each pipe size of the specific system per each divided area to change the concept of the component based frequency to the concept of the plant area

  15. Amplification of flood frequencies with local sea level rise and emerging flood regimes

    Science.gov (United States)

    Buchanan, Maya K.; Oppenheimer, Michael; Kopp, Robert E.

    2017-06-01

    The amplification of flood frequencies by sea level rise (SLR) is expected to become one of the most economically damaging impacts of climate change for many coastal locations. Understanding the magnitude and pattern by which the frequency of current flood levels increase is important for developing more resilient coastal settlements, particularly since flood risk management (e.g. infrastructure, insurance, communications) is often tied to estimates of flood return periods. The Intergovernmental Panel on Climate Change’s Fifth Assessment Report characterized the multiplication factor by which the frequency of flooding of a given height increases (referred to here as an amplification factor; AF). However, this characterization neither rigorously considered uncertainty in SLR nor distinguished between the amplification of different flooding levels (such as the 10% versus 0.2% annual chance floods); therefore, it may be seriously misleading. Because both historical flood frequency and projected SLR are uncertain, we combine joint probability distributions of the two to calculate AFs and their uncertainties over time. Under probabilistic relative sea level projections, while maintaining storm frequency fixed, we estimate a median 40-fold increase (ranging from 1- to 1314-fold) in the expected annual number of local 100-year floods for tide-gauge locations along the contiguous US coastline by 2050. While some places can expect disproportionate amplification of higher frequency events and thus primarily a greater number of historically precedented floods, others face amplification of lower frequency events and thus a particularly fast growing risk of historically unprecedented flooding. For example, with 50 cm of SLR, the 10%, 1%, and 0.2% annual chance floods are expected respectively to recur 108, 335, and 814 times as often in Seattle, but 148, 16, and 4 times as often in Charleston, SC.

  16. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  17. Impacts of repetitive floods and satisfaction with flood relief efforts: A case study of the flood-prone districts in Thailand’s Ayutthaya province

    Directory of Open Access Journals (Sweden)

    Nawhath Thanvisitthpon

    2017-01-01

    Full Text Available This research investigates the impacts of the repetitive flooding on the inhabitants of the four flood-prone districts in Thailand’s central province of Ayutthaya: Pranakorn Si Ayutthaya, Sena, Bang Ban, and Pak Hai. In addition, the residents’ satisfaction levels with the flood relief efforts and operations of the local authorities were examined and analyzed. The research revealed that most local residents have adapted to co-exist with the repetitive floods, an example of which is the elevation of the houses a few meters above the ground where the living quarter is on the upper level. The findings also indicated that the repetitive flooding incurred substantial post-flood repair costs, in light of the low income-earning capabilities of the locals. However, the flood-recovery financial aids was incommensurate with the actual expenditures, contributing to the lowest average satisfaction score among the inhabitants with regard to the adequacy of the post-flood repair and restoration financial aid. Furthermore, the research identified the differences between districts on the satisfaction with the flood relief efforts. The disparity could be attributed to the extent of coordination and participation of the local residents and their local leaders in the flood-related measures.

  18. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Science.gov (United States)

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  19. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    Science.gov (United States)

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  20. Urban pluvial flood prediction

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer

    2016-01-01

    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numerically both...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0–2 h lead time, and numerical weather models with lead times up to 24 h are used as inputs...... to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on a small town Lystrup in Denmark, which has been flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps...

  1. FLOOD MENACE IN KADUNA METROPOLIS: IMPACTS ...

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    damage, causes of flooding, human response to flooding and severity of ... from moving out. Source of ... Man responds to flood hazards through adjustment, flood abatement ... action to minimize or ameliorate flood hazards; flood abatement.

  2. Urban flood return period assessment through rainfall-flood response modelling

    Science.gov (United States)

    Murla Tuyls, Damian; Thorndahl, Søren

    2017-04-01

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g. DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized catchment area of 440ha and 10.400inhab. located in Jutland (Denmark), which has received the impact of several pluvial flooding in the last recent years. A historical rainfall dataset from the last 35 years from two different rain gauges located at 2 and 10 km from the study area has been provided by the Danish Wastewater Pollution Committee and the Danish Meteorological Institute (DMI). The most extreme 25 rainfall events have been selected through a two-step multi-criteria procedure, ensuring an adequate variability of rainfall, from extreme high peak storms with a short duration to moderate rainfall with longer duration. In addition, a coupled 1D/2D surface and network UDS model of the catchment area developed in an integrated MIKE URBAN and MIKE Flood model (DHI 2014), considering both permeable and impermeable areas, in combination with a DTM (2x2m res.) has been used to study and assess in detail flood RP. Results show an ambiguous relation between rainfall RP and flood response. Local flood levels, flood area and volume RP estimates should therefore not be neglected in

  3. Characterization of remarkable floods in France, a transdisciplinary approach applied on generalized floods of January 1910

    Science.gov (United States)

    Boudou, Martin; Lang, Michel; Vinet, Freddy; Coeur, Denis

    2014-05-01

    The 2007 Flood Directive promotes the integration and valorization of historical and significant floods in flood risk management (Flood Directive Text, chapter II, and article 4). Taking into account extreme past floods analysis seems necessary in the mitigation process of vulnerability face to flooding risk. In France, this aspect of the Directive was carried out through the elaboration of Preliminary Flood Risk Assessment (PFRA) and the establishment of a 2000 floods list. From this first list, a sample of 176 floods, considered as remarkable has been selected. These floods were compiled in discussion with local authorities in charge of flood management (Lang et al., 2012) and have to be integrated in priority in local risk management policies. However, a consideration emerges about this classification: how a remarkable flood can be defined? According which criteria can it be considered as remarkable? To answer these questions, a methodology has been established by building an evaluation grid of remarkable floods in France. The primary objective of this grid is to analyze the remarkable flood's characteristics (hydrological and meteorological characteristics, sociological- political and economic impacts), and secondly to propose a classification of significant floods selected in the 2011 PFRA. To elaborate this evaluation grid, several issues had to be taken into account. First, the objective is to allow the comparison of events from various periods. These temporal disparities include the integration of various kinds of data and point out the importance of historical hydrology. It is possible to evaluate accurately the characteristics of recent floods by interpreting quantitative data (for example hydrological records. However, for floods that occurred before the 1960's it is necessary resorting to qualitative information such as written sources is necessary (Coeur, Lang, 2008). In a second part the evaluation grid requires equitable criteria in order not to

  4. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    OpenAIRE

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of individuals to undertake flood risk mitigation measures, as well as the public's demand for flood protection, and therefore provide useful insights for flood risk management. This study empirically exa...

  5. High-resolution flood modeling of urban areas using MSN_Flood

    Directory of Open Access Journals (Sweden)

    Michael Hartnett

    2017-07-01

    Full Text Available Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme, MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region. Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.

  6. Interpreting the impact of flood forecasts by combining policy analysis studies and flood defence

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available Flood forecasting is necessary to save lives and reduce damages. Reducing damages is important to save livelihoods and to reduce the recovery time. Flood alerts should contain expected time of the event, location and extent of the event. A flood alert is not only one message but part of a rehearsed flow of information using multiple canals. First people have to accept the fact that there might be a threat and what the threat is about. People need a reference to understand the situation and be aware of possible measures they can take to assure their own safety and reduce damages. Information to the general public has to be consistent with the information used by emergency services and has to be very clear about consequences and context of possible measures (as shelter in place or preventive evacuation. Emergency services should monitor how the public is responding to adapt their communication en operation during a crisis. Flood warnings and emergency services are often coordinated by different government organisations. This is an extra handicap for having consistent information out on time for people to use. In an information based society, where everyone has twitter, email and a camera, public organisations may have to trust the public more and send out the correct information as it comes in. In the Netherlands Rijkswaterstaat, the National Water Authority and the National Public Works Department, is responsible for or involved in forecasting in case of floods, policy studies on flood risk, policy studies on maintenance, assessment and design of flood defences, elaborating rules and regulations for flood defences, advice on crisis management to the national government and for maintaining the main infrastructure in the Netherlands (high ways and water ways. The Water Management Center in the Netherlands (WMCN has developed a number of models to provide flood forecasts. WMCN is run for and by all managers of flood defences and is hosted by

  7. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved.......Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  8. Iowa Flood Information System

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  9. Design flood hydrographs from the relationship between flood peak and volume

    Directory of Open Access Journals (Sweden)

    L. Mediero

    2010-12-01

    Full Text Available Hydrological frequency analyses are usually focused on flood peaks. Flood volumes and durations have not been studied as extensively, although there are many practical situations, such as when designing a dam, in which the full hydrograph is of interest. A flood hydrograph may be described by a multivariate function of the peak, volume and duration. Most standard bivariate and trivariate functions do not produce univariate three-parameter functions as marginal distributions, however, three-parameter functions are required to fit highly skewed data, such as flood peak and flood volume series. In this paper, the relationship between flood peak and hydrograph volume is analysed to overcome this problem. A Monte Carlo experiment was conducted to generate an ensemble of hydrographs that maintain the statistical properties of marginal distributions of the peaks, volumes and durations. This ensemble can be applied to determine the Design Flood Hydrograph (DFH for a reservoir, which is not a unique hydrograph, but rather a curve in the peak-volume space. All hydrographs on that curve have the same return period, which can be understood as the inverse of the probability to exceed a certain water level in the reservoir in any given year. The procedure can also be applied to design the length of the spillway crest in terms of the risk of exceeding a given water level in the reservoir.

  10. Flood action plans

    International Nuclear Information System (INIS)

    Slopek, R.J.

    1995-01-01

    Safe operating procedures developed by TransAlta Utilities for dealing with flooding, resulting from upstream dam failures or extreme rainfalls, were presented. Several operating curves developed by Monenco AGRA were described, among them the No Overtopping Curve (NOC), the Safe Filling Curve (SFC), the No Spill Curve (NSC) and the Guaranteed Fill Curve (GFC). The concept of an operational comfort zone was developed and defined. A flood action plan for all operating staff was created as a guide in case of a flooding incident. Staging of a flood action plan workshop was described. Dam break scenarios pertinent to the Bow River were developed for subsequent incorporation into a Flood Action Plan Manual. Evaluation of the technical presentations made during workshops were found them to have been effective in providing operating staff with a better understanding of the procedures that they would perform in an emergency. 8 figs

  11. The development of flood map in Malaysia

    Science.gov (United States)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto

    2017-11-01

    In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to

  12. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  13. Use of documentary sources on past flood events for flood risk management and land planning

    Science.gov (United States)

    Cœur, Denis; Lang, Michel

    2008-09-01

    The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.

  14. Evaluation of Flooding Risk and Engineering Protection Against Floods for Ulan-Ude

    Science.gov (United States)

    Borisova, T. A.

    2017-11-01

    The report presents the results of the study on analysis and risk assessment in relation to floods for Ulan-Ude and provides the developed recommendations of the activities for engineering protection of the population and economic installations. The current situation is reviewed and the results of the site survey are shown to identify the challenges and areas of negative water influence along with the existing security system. The report presents a summary of floods and index risk assessment. The articles describes the scope of eventual flooding, underflooding and enumerates the economic installations inside the urban areas’ research-based zones of flooding at the rated levels of water to identify the likeliness of exceedance. The assessment of damage from flood equal to 1% is shown.

  15. Net alkalinity and net acidity 1: Theoretical considerations

    International Nuclear Information System (INIS)

    Kirby, Carl S.; Cravotta, Charles A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO 2 , and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined 'CO 2 -acidity' is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO 2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass-action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mgL -1 as CaCO 3 (based on pH and analytical concentrations of dissolved Fe II , Fe III , Mn, and Al in mgL -1 ):acidity calculated =50{1000(10 -pH )+[2(Fe II )+3(Fe III )]/56+2(Mn) /55+3(Al)/27}underestimates contributions from HSO 4 - and H + , but overestimates the acidity due to Fe 3+ and Al 3+ . However, these errors tend to approximately cancel each other. It is demonstrated that 'net alkalinity' is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the

  16. Net alkalinity and net acidity 1: Theoretical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  17. Review of the flood risk management system in Germany after the major flood in 2013

    Directory of Open Access Journals (Sweden)

    Annegret H. Thieken

    2016-06-01

    Full Text Available Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1 an increased consideration of flood hazards in spatial planning and urban development, (2 comprehensive property-level mitigation and preparedness measures, (3 more effective flood warnings and improved coordination of disaster response, and (4 a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.

  18. Towards a Flood Severity Index

    Science.gov (United States)

    Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.

    2017-12-01

    Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio

  19. Constructing risks – Internalisation of flood risks in the flood risk management plan

    NARCIS (Netherlands)

    Roos, Matthijs; Hartmann, T.; Spit, T.J.M.; Johann, Georg

    Traditional flood protection methods have focused efforts on different measures to keep water out of floodplains. However, the European Flood Directive challenges this paradigm (Hartmann and Driessen, 2013). Accordingly, flood risk management plans should incorporate measures brought about by

  20. Legitimizing differentiated flood protection levels

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo

    2016-01-01

    The European flood risk management plan is a new instrument introduced by the Floods Directive. It introduces a spatial turn and a scenario approach in flood risk management, ultimately leading to differentiated flood protection levels on a catchment basis. This challenges the traditional sources of

  1. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  2. Flood risk management in Flanders: from flood risk objectives to appropriate measures through state assessment

    Directory of Open Access Journals (Sweden)

    Verbeke Sven

    2016-01-01

    Full Text Available In compliance with the EU Flood Directive to reduce flood risk, flood risk management objectives are indispensable for the delineation of necessary measures. In Flanders, flood risk management objectives are part of the environmental objectives which are judicially integrated by the Decree on Integrated Water Policy. Appropriate objectives were derived by supporting studies and extensive consultation on a local, regional and policy level. Under a general flood risk objective sub-objectives are formulated for different aspects: water management and safety, shipping, ecology, and water supply. By developing a risk matrix, it is possible to assess the current state of flood risk and to judge where action is needed to decrease the risk. Three different states of flood risk are distinguished: a acceptable risk, where no action is needed, b intermediate risk where the risk should be reduced by cost efficient actions, and c unacceptable risk, where action is necessary. For each particular aspect, the severity of the consequences of flooding is assessed by quantifiable indicators, such as economic risk, people at risk and ecological flood tolerance. The framework also allows evaluating the effects of the implemented measures and the autonomous development such as climate change and land use change. This approach gives a quantifiable assessment of state, and enables a prioritization of flood risk measures for the reduction of flood risk in a cost efficient and sustainable way.

  3. How useful are Swiss flood insurance data for flood vulnerability assessments?

    Science.gov (United States)

    Röthlisberger, Veronika; Bernet, Daniel; Zischg, Andreas; Keiler, Margreth

    2015-04-01

    The databases of Swiss flood insurance companies build a valuable but to date rarely used source of information on physical flood vulnerability. Detailed insights into the Swiss flood insurance system are crucial for using the full potential of the different databases for research on flood vulnerability. Insurance against floods in Switzerland is a federal system, the modalities are manly regulated on cantonal level. However there are some common principles that apply throughout Switzerland. First of all coverage against floods (and other particular natural hazards) is an integral part of every fire insurance policy for buildings or contents. This coupling of insurance as well as the statutory obligation to insure buildings in most of the cantons and movables in some of the cantons lead to a very high penetration. Second, in case of damage, the reinstatement costs (value as new) are compensated and third there are no (or little) deductible and co-pay. High penetration and the fact that the compensations represent a large share of the direct, tangible losses of the individual policy holders make the databases of the flood insurance companies a comprehensive and therefore valuable data source for flood vulnerability research. Insurance companies not only store electronically data about losses (typically date, amount of claims payment, cause of damage, identity of the insured object or policyholder) but also about insured objects. For insured objects the (insured) value and the details on the policy and its holder are the main feature to record. On buildings the insurance companies usually computerize additional information such as location, volume, year of construction or purpose of use. For the 19 (of total 26) cantons with a cantonal monopoly insurer the data of these insurance establishments have the additional value to represent (almost) the entire building stock of the respective canton. Spatial referenced insurance data can be used for many aspects of

  4. Increased liver alkaline phosphatase and aminotransferase ...

    African Journals Online (AJOL)

    The effect of daily, oral administration of ethanolic extract of Khaya senegalensis stem bark (2mg/kg body weight) for 18days on the alkaline phosphatase, aspartate and alanine aminotransferase activities of rat liver and serum were investigated. Compared with the control, the activities of liver alkaline phosphatase (ALP), ...

  5. Mitigating flood exposure

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  6. Why are decisions in flood disaster management so poorly supported by information from flood models?

    NARCIS (Netherlands)

    Leskens, Anne; Brugnach, Marcela Fabiana; Hoekstra, Arjen Ysbert; Schuurmans, W.

    2014-01-01

    Flood simulation models can provide practitioners of Flood Disaster Management with sophisticated estimates of floods. Despite the advantages that flood simulation modeling may provide, experiences have proven that these models are of limited use. Until now, this problem has mainly been investigated

  7. Sample preparation in alkaline media

    International Nuclear Information System (INIS)

    Nobrega, Joaquim A.; Santos, Mirian C.; Sousa, Rafael A. de; Cadore, Solange; Barnes, Ramon M.; Tatro, Mark

    2006-01-01

    The use of tetramethylammonium hydroxide, tertiary amines and strongly alkaline reagents for sample treatment involving extraction and digestion procedures is discussed in this review. The preparation of slurries is also discussed. Based on literature data, alkaline media offer a good alternative for sample preparation involving an appreciable group of analytes in different types of samples. These reagents are also successfully employed in tailored speciation procedures wherein there is a critical dependence on maintenance of chemical forms. The effects of these reagents on measurements performed using spectroanalytical techniques are discussed. Several undesirable effects on transport and atomization processes necessitate use of the method of standard additions to obtain accurate results. It is also evident that alkaline media can improve the performance of techniques such as inductively coupled plasma mass spectrometry and accessories, such as autosamplers coupled to graphite furnace atomic absorption spectrometers

  8. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done

  9. Case studies of extended model-based flood forecasting: prediction of dike strength and flood impacts

    Science.gov (United States)

    Stuparu, Dana; Bachmann, Daniel; Bogaard, Tom; Twigt, Daniel; Verkade, Jan; de Bruijn, Karin; de Leeuw, Annemargreet

    2017-04-01

    Flood forecasts, warning and emergency response are important components in flood risk management. Most flood forecasting systems use models to translate weather predictions to forecasted discharges or water levels. However, this information is often not sufficient for real time decisions. A sound understanding of the reliability of embankments and flood dynamics is needed to react timely and reduce the negative effects of the flood. Where are the weak points in the dike system? When, how much and where the water will flow? When and where is the greatest impact expected? Model-based flood impact forecasting tries to answer these questions by adding new dimensions to the existing forecasting systems by providing forecasted information about: (a) the dike strength during the event (reliability), (b) the flood extent in case of an overflow or a dike failure (flood spread) and (c) the assets at risk (impacts). This work presents three study-cases in which such a set-up is applied. Special features are highlighted. Forecasting of dike strength. The first study-case focusses on the forecast of dike strength in the Netherlands for the river Rhine branches Waal, Nederrijn and IJssel. A so-called reliability transformation is used to translate the predicted water levels at selected dike sections into failure probabilities during a flood event. The reliability of a dike section is defined by fragility curves - a summary of the dike strength conditional to the water level. The reliability information enhances the emergency management and inspections of embankments. Ensemble forecasting. The second study-case shows the setup of a flood impact forecasting system in Dumfries, Scotland. The existing forecasting system is extended with a 2D flood spreading model in combination with the Delft-FIAT impact model. Ensemble forecasts are used to make use of the uncertainty in the precipitation forecasts, which is useful to quantify the certainty of a forecasted flood event. From global

  10. Multi-dimensional perspectives of flood risk - using a participatory framework to develop new approaches to flood risk communication

    Science.gov (United States)

    Rollason, Edward; Bracken, Louise; Hardy, Richard; Large, Andy

    2017-04-01

    Flooding is a major hazard across Europe which, since, 1998 has caused over €52 million in damages and displaced over half a million people. Climate change is predicted to increase the risks posed by flooding in the future. The 2007 EU Flood Directive cemented the use of flood risk maps as a central tool in understanding and communicating flood risk. Following recent flooding in England, an urgent need to integrate people living at risk from flooding into flood management approaches, encouraging flood resilience and the up-take of resilient activities has been acknowledged. The effective communication of flood risk information plays a major role in allowing those at risk to make effective decisions about flood risk and increase their resilience, however, there are emerging concerns over the effectiveness of current approaches. The research presented explores current approaches to flood risk communication in England and the effectiveness of these methods in encouraging resilient actions before and during flooding events. The research also investigates how flood risk communications could be undertaken more effectively, using a novel participatory framework to integrate the perspectives of those living at risk. The research uses co-production between local communities and researchers in the environmental sciences, using a participatory framework to bring together local knowledge of flood risk and flood communications. Using a local competency group, the research explores what those living at risk from flooding want from flood communications in order to develop new approaches to help those at risk understand and respond to floods. Suggestions for practice are refined by the communities to co-produce recommendations. The research finds that current approaches to real-time flood risk communication fail to forecast the significance of predicted floods, whilst flood maps lack detailed information about how floods occur, or use scientific terminology which people at risk

  11. Flood management: prediction of microbial contamination in large-scale floods in urban environments.

    Science.gov (United States)

    Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip

    2011-07-01

    With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities

  12. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  13. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    Science.gov (United States)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  14. Flood-proof motors

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Marcus [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  15. Flood-proof motors

    International Nuclear Information System (INIS)

    Schmitt, Marcus

    2013-01-01

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  16. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  17. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Gomaa, O.M.; EI Shafey, H.M.

    2009-01-01

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  18. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    Science.gov (United States)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  19. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  20. Alkaline resistant ceramics; Alkalimotstaandskraftiga keramer

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Stig-Bjoern [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-02-01

    Despite durability in several environments, ceramics and refractories can not endure alkaline environments at high temperature. An example of such an environment is when burning biofuel in modern heat and power plants in which the demand for increasing efficiency results in higher combustion temperatures and content of alkaline substances in the flue gas. Some experiences of these environments has been gained from such vastly different equipment as regenerator chambers in the glass industry and MHD-generators. The grains of a ceramic material are usually bonded together by a glassy phase which despite it frequently being a minor constituent render the materials properties and limits its use at elevated temperature. The damage is usually caused by alkaline containing low-melting phases and the decrease of the viscosity of the bonding glass phase which is caused by the alkaline. The surfaces which are exposed to the flue gas in a modern power plant are not only exposed to the high temperature but also a corroding and eroding, particle containing, gas flow of high velocity. The use of conventional refractory products is limited to 1300-1350 deg C. Higher strength and fracture toughness as well as durability against gases, slag and melts at temperatures exceeding 1700 deg C are expected of the materials of the future. Continuous transport of corrosive compounds to the surface and corrosion products from the surface as well as a suitable environment for the corrosion to occur in are prerequisites for extensive corrosion to come about. The highest corrosion rate is therefore found in a temperature interval between the dew point and the melting point of the alkaline-constituent containing compound. It is therefore important that the corrosion resistance is sufficient in the environment in which alkaline containing melts or slag may appear. In environments such as these, even under normal circumstances durable ceramics, such as alumina and silicon carbide, are attacked

  1. Health impacts of floods.

    Science.gov (United States)

    Du, Weiwei; FitzGerald, Gerard Joseph; Clark, Michele; Hou, Xiang-Yu

    2010-01-01

    Floods are the most common hazard to cause disasters and have led to extensive morbidity and mortality throughout the world. The impact of floods on the human community is related directly to the location and topography of the area, as well as human demographics and characteristics of the built environment. The aim of this study is to identify the health impacts of disasters and the underlying causes of health impacts associated with floods. A conceptual framework is developed that may assist with the development of a rational and comprehensive approach to prevention, mitigation, and management. This study involved an extensive literature review that located >500 references, which were analyzed to identify common themes, findings, and expert views. The findings then were distilled into common themes. The health impacts of floods are wide ranging, and depend on a number of factors. However, the health impacts of a particular flood are specific to the particular context. The immediate health impacts of floods include drowning, injuries, hypothermia, and animal bites. Health risks also are associated with the evacuation of patients, loss of health workers, and loss of health infrastructure including essential drugs and supplies. In the medium-term, infected wounds, complications of injury, poisoning, poor mental health, communicable diseases, and starvation are indirect effects of flooding. In the long-term, chronic disease, disability, poor mental health, and poverty-related diseases including malnutrition are the potential legacy. This article proposes a structured approach to the classification of the health impacts of floods and a conceptual framework that demonstrates the relationships between floods and the direct and indirect health consequences.

  2. Flood Mitigation and Response: Comparing the Great Midwest Floods of 1993 and 2008

    Science.gov (United States)

    2010-12-01

    Robert Holmes and Heidi Koontz , “Two 500-Year Floods Within 15 Years—What are the Odds?,” http://64.233.167.104/custom?q...implies a 1-in- 100 (or 1 percent) chance a flood of that magnitude will occur in a given year. Robert Holmes and Heidi Koontz , “Two 500-Year Floods...Fact Sheet 2004-3024 (U.S. Geological Survey: May2004). 92 ______ and Koontz , Heidi. “Two 500-Year Floods Within 15 Years—What are the Odds

  3. GIS Support for Flood Rescue

    DEFF Research Database (Denmark)

    Liang, Gengsheng; Mioc, Darka; Anton, François

    2007-01-01

    Under flood events, the ground traffic is blocked in and around the flooded area due to damages to roads and bridges. The traditional transportation network may not always help people to make a right decision for evacuation. In order to provide dynamic road information needed for flood rescue, we...... to retrieve the shortest and safest route in Fredericton road network during flood event. It enables users to make a timely decision for flood rescue. We are using Oracle Spatial to deal with emergency situations that can be applied to other constrained network applications as well....... developed an adaptive web-based transportation network application using Oracle technology. Moreover, the geographic relationships between the road network and flood areas are taken into account. The overlay between the road network and flood polygons is computed on the fly. This application allows users...

  4. Assessment of flood Response Characteristics to Urbanization and extreme flood events-Typhoons at Cheongju, Chungbuk

    Science.gov (United States)

    Chang, HyungJoon; Lee, Hyosang; Hwang, Myunggyu; Jang, Sukhwan

    2016-04-01

    The changes of land use influence on the flood characteristics, which depend on rainfall runoff procedures in the catchment. This study assesses the changes of flood characteristics due to land use changes between 1997 and 2012. The catchment model (HEC-HMS) is calibrated with flood events of 1990's and 2000's respectively, then the design rainfall of 100, 200, 500year return period are applied to this model, which represent the catchment in 1990's and 2000's, to assess the flood peaks. Then the extreme flood events (i.e., 6 typhoon events) are applied to assess the flood responses. The results of comparison between 1990's and 2000's show that the flood peak and level of 2000's are increasing and time to peak of 2000's is decreasing comparing to those of 1990's :3% to 78% increase in flood peak, 3% in flood level and 10.2% to 16% decrease in time to peak in 100year return period flood. It is due to decreasing of the farmland area (2.18%), mountainous area (8.88%), and increasing of the urbanization of the area (5.86%). This study also estimates the responses to extreme flood events. The results of 2000's show that the increasing of the flood peak and time to peak comparing to 1990's. It indicates that the extreme rainfall is more responsible at unurbanized catchment ( 2000's), which resulting with a 11% increasing of the peak volume. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  5. “Expect More Floods In 2013”: An analysis of flood preparedness in ...

    African Journals Online (AJOL)

    In 2013, the Nigerian Meteorological Agency (NIMET) issued a prediction of heavy rainfall with consequent flooding in some major cities of Nigeria particularly Ibadan. In light of the country's previous flood experiences, citizens and government were promptly alerted and advised to be fully prepared for imminent floods.

  6. Acidity and alkalinity in mine drainage: Theoretical considerations

    Science.gov (United States)

    Kirby, Carl S.; Cravotta,, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a

  7. Flooding correlations in narrow channel

    International Nuclear Information System (INIS)

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  8. Flood Hazard Area

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  9. Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  10. Base Flood Elevation

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  11. Flood control design requirements and flood evaluation methods of inland nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Ailing; Wang Ping; Zhu Jingxing

    2011-01-01

    Effect of flooding is one of the key safety factors and environmental factors in inland nuclear power plant sitting. Up to now, the rule of law and standard systems are established for the selection of nuclear power plant location and flood control requirements in China. In this paper flood control standards of China and other countries are introduced. Several inland nuclear power plants are taken as examples to thoroughly discuss the related flood evaluation methods. The suggestions are also put forward in the paper. (authors)

  12. Flood analyses for Department of Energy Y-12, ORNL and K-25 Plants. Flood analyses in support of flood emergency planning

    International Nuclear Information System (INIS)

    1995-05-01

    The study involved defining the flood potential and local rainfall depth and duration data for the Department of Energy's (DOE) Y-12, Oak Ridge National Laboratory (ORNL), and K-25 plants. All three plants are subject to flooding from the Clinch River. In addition, the Y-12 plant is subject to flooding from East Fork Poplar and Bear Creeks, the ORNL plant from Whiteoak Creek and Melton Branch, and the K-25 plant from Poplar Creek. Determination of flood levels included consideration of both rainfall events and postulated failures of Norris and Melton Hill Dams in seismic events

  13. Neutralization of acidic pit lakes with biological methods complement the flooding with neutral surface water: strategies and sustainability; Neutralisation saurer Tagebauseen durch biologische Methoden als Ergaenzung zur Fremdflutung: Strategien und Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Nixdorf, B.; Deneke, R. [Brandenburgische Technische Universitaet Cottbus (Germany). Institut fuer Boden, Wasser, Luft; Buettcher, H.; Uhlmann, W. [Institut fuer Wasser und Boden Dr. Uhlmann, Dresden (Germany)

    2004-07-01

    The aim of this project is to investigate the mechanisms of biogenic alkalinity production in highly acidic surface waters in the post-mining landscape and to develop alternative or additional strategies to overcome acidity by the use of basic biological processes. Current approaches such as flooding with neutral surface water, extensive liming and technical treatments are not suitable for many lakes because of limited water supply and special water chemistry in mining lakes. Therefore, basic research is needed in order to develop ecotechnological measures for the multitude of small and medium sized highly acidic mining lakes. Future treatments are designed to combine water supply and biological measures with the management of water quality by use of in-lake microbial processes (bacteria, phytoplankton). Research focuses on alkalinity response of aquatic ecosystems on nutrient enrichment, their catchment areas and the use of 'Constructed Wetlands' and will be generalized by application of hydrogeochemical models for alkalinity production. (orig.)

  14. Fault tree analysis for urban flooding

    NARCIS (Netherlands)

    Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.; Van Gelder, P.H.A.J.M.

    2008-01-01

    Traditional methods to evaluate flood risk mostly focus on storm events as the main cause of flooding. Fault tree analysis is a technique that is able to model all potential causes of flooding and to quantify both the overall probability of flooding and the contributions of all causes of flooding to

  15. Flood-resilient waterfront development in New York City: bridging flood insurance, building codes, and flood zoning.

    Science.gov (United States)

    Aerts, Jeroen C J H; Botzen, W J Wouter

    2011-06-01

    Waterfronts are attractive areas for many-often competing-uses in New York City (NYC) and are seen as multifunctional locations for economic, environmental, and social activities on the interface between land and water. The NYC waterfront plays a crucial role as a first line of flood defense and in managing flood risk and protecting the city from future climate change and sea-level rise. The city of New York has embarked on a climate adaptation program (PlaNYC) outlining the policies needed to anticipate the impacts of climate change. As part of this policy, the Department of City Planning has recently prepared Vision 2020: New York City Comprehensive Waterfront Plan for the over 500 miles of NYC waterfront (NYC-DCP, 2011). An integral part of the vision is to improve resilience to climate change and sea-level rise. This study seeks to provide guidance for advancing the goals of NYC Vision 2020 by assessing how flood insurance, flood zoning, and building code policies can contribute to waterfront development that is more resilient to climate change. © 2011 New York Academy of Sciences.

  16. Forecast-based Integrated Flood Detection System for Emergency Response and Disaster Risk Reduction (Flood-FINDER)

    Science.gov (United States)

    Arcorace, Mauro; Silvestro, Francesco; Rudari, Roberto; Boni, Giorgio; Dell'Oro, Luca; Bjorgo, Einar

    2016-04-01

    Most flood prone areas in the globe are mainly located in developing countries where making communities more flood resilient is a priority. Despite different flood forecasting initiatives are now available from academia and research centers, what is often missing is the connection between the timely hazard detection and the community response to warnings. In order to bridge the gap between science and decision makers, UN agencies play a key role on the dissemination of information in the field and on capacity-building to local governments. In this context, having a reliable global early warning system in the UN would concretely improve existing in house capacities for Humanitarian Response and the Disaster Risk Reduction. For those reasons, UNITAR-UNOSAT has developed together with USGS and CIMA Foundation a Global Flood EWS called "Flood-FINDER". The Flood-FINDER system is a modelling chain which includes meteorological, hydrological and hydraulic models that are accurately linked to enable the production of warnings and forecast inundation scenarios up to three weeks in advance. The system is forced with global satellite derived precipitation products and Numerical Weather Prediction outputs. The modelling chain is based on the "Continuum" hydrological model and risk assessments produced for GAR2015. In combination with existing hydraulically reconditioned SRTM data and 1D hydraulic models, flood scenarios are derived at multiple scales and resolutions. Climate and flood data are shared through a Web GIS integrated platform. First validation of the modelling chain has been conducted through a flood hindcasting test case, over the Chao Phraya river basin in Thailand, using multi temporal satellite-based analysis derived for the exceptional flood event of 2011. In terms of humanitarian relief operations, the EO-based services of flood mapping in rush mode generally suffer from delays caused by the time required for their activation, programming, acquisitions and

  17. Applying the Flood Vulnerability Index as a Knowledge base for flood risk assessment

    NARCIS (Netherlands)

    Balica, S-F.

    2012-01-01

    Floods are one of the most common and widely distributed natural risks to life and property worldwide. An important part of modern flood risk management is to evaluate vulnerability to floods. This evaluation can be done only by using a parametric approach. Worldwide there is a need to enhance our

  18. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling

    Directory of Open Access Journals (Sweden)

    Jingxuan Zhu

    2018-05-01

    Full Text Available In many countries, industrialization has led to rapid urbanization. Increased frequency of urban flooding is one consequence of the expansion of urban areas which can seriously affect the productivity and livelihoods of urban residents. Therefore, it is of vital importance to study the effects of rainfall and urban flooding on traffic congestion and driver behavior. In this study, a comprehensive method to analyze the influence of urban flooding on traffic congestion was developed. First, a flood simulation was conducted to predict the spatiotemporal distribution of flooding based on Storm Water Management Model (SWMM and TELAMAC-2D. Second, an agent-based model (ABM was used to simulate driver behavior during a period of urban flooding, and a car-following model was established. Finally, in order to study the mechanisms behind how urban flooding affects traffic congestion, the impact of flooding on urban traffic was investigated based on a case study of the urban area of Lishui, China, covering an area of 4.4 km2. It was found that for most events, two-hour rainfall has a certain impact on traffic congestion over a five-hour period, with the greatest impact during the hour following the cessation of the rain. Furthermore, the effects of rainfall with 10- and 20-year return periods were found to be similar and small, whereas the effects with a 50-year return period were obvious. Based on a combined analysis of hydrology and transportation, the proposed methods and conclusions could help to reduce traffic congestion during flood seasons, to facilitate early warning and risk management of urban flooding, and to assist users in making informed decisions regarding travel.

  19. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    Science.gov (United States)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  20. Estimating design flood and HEC-RAS modelling approach for flood analysis in Bojonegoro city

    Science.gov (United States)

    Prastica, R. M. S.; Maitri, C.; Hermawan, A.; Nugroho, P. C.; Sutjiningsih, D.; Anggraheni, E.

    2018-03-01

    Bojonegoro faces flood every year with less advanced prevention development. Bojonegoro city development could not peak because the flood results material losses. It affects every sectors in Bojonegoro: education, politics, economy, social, and infrastructure development. This research aims to analyse and to ensure that river capacity has high probability to be the main factor of flood in Bojonegoro. Flood discharge analysis uses Nakayasu synthetic unit hydrograph for period of 5 years, 10 years, 25 years, 50 years, and 100 years. They would be compared to the water maximum capacity that could be loaded by downstream part of Bengawan Solo River in Bojonegoro. According to analysis result, Bengawan Solo River in Bojonegoro could not able to load flood discharges. Another method used is HEC-RAS analysis. The conclusion that shown by HEC-RAS analysis has the same view. It could be observed that flood water loading is more than full bank capacity elevation in the river. To conclude, the main factor that should be noticed by government to solve flood problem is river capacity.

  1. Flood Water Segmentation from Crowdsourced Images

    Science.gov (United States)

    Nguyen, J. K.; Minsker, B. S.

    2017-12-01

    In the United States, 176 people were killed by flooding in 2015. Along with the loss of human lives is the economic cost which is estimated to be $4.5 billion per flood event. Urban flooding has become a recent concern due to the increase in population, urbanization, and global warming. As more and more people are moving into towns and cities with infrastructure incapable of coping with floods, there is a need for more scalable solutions for urban flood management.The proliferation of camera-equipped mobile devices have led to a new source of information for flood research. In-situ photographs captured by people provide information at the local level that remotely sensed images fail to capture. Applications of crowdsourced images to flood research required understanding the content of the image without the need for user input. This paper addresses the problem of how to automatically segment a flooded and non-flooded region in crowdsourced images. Previous works require two images taken at similar angle and perspective of the location when it is flooded and when it is not flooded. We examine three different algorithms from the computer vision literature that are able to perform segmentation using a single flood image without these assumptions. The performance of each algorithm is evaluated on a collection of labeled crowdsourced flood images. We show that it is possible to achieve a segmentation accuracy of 80% using just a single image.

  2. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  3. Flood Hazards - A National Threat

    Science.gov (United States)

    ,

    2006-01-01

    In the late summer of 2005, the remarkable flooding brought by Hurricane Katrina, which caused more than $200 billion in losses, constituted the costliest natural disaster in U.S. history. However, even in typical years, flooding causes billions of dollars in damage and threatens lives and property in every State. Natural processes, such as hurricanes, weather systems, and snowmelt, can cause floods. Failure of levees and dams and inadequate drainage in urban areas can also result in flooding. On average, floods kill about 140 people each year and cause $6 billion in property damage. Although loss of life to floods during the past half-century has declined, mostly because of improved warning systems, economic losses have continued to rise due to increased urbanization and coastal development.

  4. Probabilistic Flood Defence Assessment Tools

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available The WTI2017 project is responsible for the development of flood defence assessment tools for the 3600 km of Dutch primary flood defences, dikes/levees, dunes and hydraulic structures. These tools are necessary, as per January 1st 2017, the new flood risk management policy for the Netherlands will be implemented. Then, the seven decades old design practice (maximum water level methodology of 1958 and two decades old safety standards (and maximum hydraulic load methodology of 1996 will formally be replaced by a more risked based approach for the national policy in flood risk management. The formal flood defence assessment is an important part of this new policy, especially for flood defence managers, since national and regional funding for reinforcement is based on this assessment. This new flood defence policy is based on a maximum allowable probability of flooding. For this, a maximum acceptable individual risk was determined at 1/100 000 per year, this is the probability of life loss of for every protected area in the Netherlands. Safety standards of flood defences were then determined based on this acceptable individual risk. The results were adjusted based on information from cost -benefit analysis, societal risk and large scale societal disruption due to the failure of critical infrastructure e.g. power stations. The resulting riskbased flood defence safety standards range from a 300 to a 100 000 year return period for failure. Two policy studies, WV21 (Safety from floods in the 21st century and VNK-2 (the National Flood Risk in 2010 provided the essential information to determine the new risk based safety standards for flood defences. The WTI2017 project will provide the safety assessment tools based on these new standards and is thus an essential element for the implementation of this policy change. A major issue to be tackled was the development of user-friendly tools, as the new assessment is to be carried out by personnel of the

  5. Numerical simulation of flood barriers

    Science.gov (United States)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  6. Measuring flood footprint of a regional economy - A case study for the UK flooding

    Science.gov (United States)

    Guan, D.

    2013-12-01

    Analysis of the urban economy and society is central to understanding the broad impacts of flooding and to identify cost-effective adaptation and mitigation measures. Assessments of the flooding impacts on cities have traditionally focused on the initial impact on people and assets. These initial estimates (so-called ';direct damage') are useful both in understanding the immediate implications of damage, and in marshalling the pools of capital and supplies required for re-building after an event. Since different economies as well as societies are coupled, especially under the current economic crisis, any small-scale damage may be multiplied and cascaded throughout wider economic systems and social networks. The direct and indirect damage is currently not evaluated well and could be captured by quantification of what we call the flood footprint. Flooding in one location can impact the whole UK economy. Neglecting these knock-on costs (i.e. the true footprint of the flood) means we might be ignoring the economic benefits and beneficiaries of flood risk management interventions. In 2007, for example, floods cost the economy about £3.2 bn directly, but the wider effect might actually add another 50% to 250% to that. Flood footprint is a measure of the exclusive total socioeconomic impact that is directly and indirectly caused by a flood event to the flooding region and wider economic systems and social networks. We adopt the UK 2012 flooding. An input-output basic dynamic inequalities (BDI) model is used to assess the impact of the floodings on the level of a Yorkshire economy, accounting for interactions between industries through demand and supply of intermediate consumption goods with a circular flow. After the disaster the economy will be unbalanced. The recovery process finishes when the economy is completely balance, i.e., when labour production capacity equals demands and production and all the variables reach pre-disaster levels. The analysis is carried out

  7. Geochemistry and flooding as determining factors of plant species composition in Dutch winter-flooded riverine grasslands

    NARCIS (Netherlands)

    Beumer, V.; Wirdum, G. van; Beltman, B.; Griffioen, J.; Grootjans, A.P.; Verhoeven, J.T.A.

    2008-01-01

    Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been

  8. Promoting adaptive flood risk management: the role and potential of flood recovery mechanisms

    Directory of Open Access Journals (Sweden)

    Priest Sally J

    2016-01-01

    Full Text Available There is a high potential for recovery mechanisms to be used to incentivise the uptake of flood mitigation and loss reduction measures, undertake adaptation and promote community resilience. Indeed, creating a resilient response to flooding requires flood risk management approaches to be aligned and it needs to be ensured that recovery mechanisms to not provide disincentives for individuals and business to take proactive action to reduce risk. However, the degree to which it is desirable and effective for insurers and governments providing compensation to promote resilience and risk reduction depends upon how the cover or compensation is organised and the premiums which are charged. A review of international flood recovery mechanisms has been undertaken to identify firstly the types of schemes that exist and their characteristics. Analysis of existing instruments highlights that there are various potential approaches to encourage or require the uptake of flood mitigation and also discourage the construction of new development in high flood risk. However despite the presence of these instruments, those organising recovery mechanisms could be doing much more to incentivise increased resilience.

  9. Flood rich periods, flood poor periods and the need to look beyond instrumental records

    Science.gov (United States)

    Lane, S. N.

    2009-04-01

    For many, the later 20th Century and early 21st Century has become synonymous with a growing experience of flood risk. Scientists, politicians and the media have ascribed this to changing climate and there are good hypothetical reasons for human-induced climate change to be impacting upon the magnitude and frequency of extreme weather events. In this paper, I will interrogate this claim more carefully, using the UK's instrumental records of river flow, most of which begin after 1960, but a smaller number of which extend back into the 19th Century. Those records that extent back to the 19th Century suggest that major flood events tend to cluster into periods that are relatively flood rich and relatively flood poor, most notably in larger drainage basins: i.e. there is a clear scale issue. The timing (inset, duration, termination) of these periods varies systematically by region although there is a marked flood poor period for much of the UK during the late 1960s, 1970s and 1980s. It follows that at least some of the current experience of flooding, including why it has taken so many policy-makers and flood victims by surprise, may reflect a transition from a flood poor to a flood rich period, exacerbated by possible climate change impacts. These results point to the need to rethink how we think through what drives flood risk. First, it points to the need to look at some of the fundamental oscillations in core atmospheric drivers, such as the North Atlantic Multidecadal Oscillation, in explaining what drives flood risk. Consideration of precipitation, as opposed to river flow, is more advanced in this respect, and those of us working in rivers need to engage much more thoughtfully with atmospheric scientists. Second, it points to the severe inadequacies in using records of only a few decades duration. Even where these are pooled across adjacent sub-catchments, there is likely to be a severe bias in the estimation of flood return periods when we look at instrumental

  10. A free and open source QGIS plugin for flood risk analysis: FloodRisk

    Science.gov (United States)

    Albano, Raffaele; Sole, Aurelia; Mancusi, Leonardo

    2016-04-01

    An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to increase the resilience of European economies and societies, the improvement of risk assessment and management has been pursued in the last years. This results in a wide range of flood analysis models of different complexities with substantial differences in underlying components needed for its implementation, as geographical, hydrological and social differences demand specific approaches in the different countries. At present, it is emerging the need of promote the creation of open, transparent, reliable and extensible tools for a comprehensive, context-specific and applicable flood risk analysis. In this context, the free and open-source Quantum GIS (QGIS) plugin "FloodRisk" is a good starting point to address this objective. The vision of the developers of this free and open source software (FOSS) is to combine the main features of state-of-the-art science, collaboration, transparency and interoperability in an initiative to assess and communicate flood risk worldwide and to assist authorities to facilitate the quality and fairness of flood risk management at multiple scales. Among the scientific community, this type of activity can be labelled as "participatory research", intended as adopting a set of techniques that "are interactive and collaborative" and reproducible, "providing a meaningful research experience that both promotes learning and generates knowledge and research data through a process of guided discovery"' (Albano et al., 2015). Moreover, this FOSS geospatial approach can lowering the financial barriers to understanding risks at national and sub-national levels through a spatio-temporal domain and can provide better and more complete

  11. On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions

    Directory of Open Access Journals (Sweden)

    Beatriz Revilla-Romero

    2015-11-01

    Full Text Available Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision-making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using 10 major flood events recorded over 2012–2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS and the Global Flood Awareness System (GloFAS. Furthermore, we compared the GFDS flood maps with those from NASA’s two Moderate Resolution Imaging Spectroradiometer (MODIS sensors. Results reveal that: (1 general agreement was found between the GFDS and MODIS flood detection systems, (2 large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and (3 the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large-scale flood monitoring tools.

  12. Reconstruction of the 1945 Wieringermeer Flood

    Science.gov (United States)

    Hoes, O. A. C.; Hut, R. W.; van de Giesen, N. C.; Boomgaard, M.

    2013-03-01

    The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. Such reference data can either be historic data, or can be obtained from controlled experiments. The inundation of the Wieringermeer polder in the Netherlands in April 1945 is one of the few examples for which sufficient historical information is available. The objective of this article is to compare the flood simulation with flood data from 1945. The context, the breach growth process and the flood propagation are explained. Key findings for current flood risk management addresses the importance of the drainage canal network during the inundation of a polder, and the uncertainty that follows from not knowing the breach growth parameters. This case study shows that historical floods provide valuable data for the validation of models and reveal lessons that are applicable in current day flood risk management.

  13. The Aqueduct Global Flood Analyzer

    Science.gov (United States)

    Iceland, Charles

    2015-04-01

    As population growth and economic growth take place, and as climate change accelerates, many regions across the globe are finding themselves increasingly vulnerable to flooding. A recent OECD study of the exposure of the world's large port cities to coastal flooding found that 40 million people were exposed to a 1 in 100 year coastal flood event in 2005, and the total value of exposed assets was about US 3,000 billion, or 5% of global GDP. By the 2070s, those numbers were estimated to increase to 150 million people and US 35,000 billion, or roughly 9% of projected global GDP. Impoverished people in developing countries are particularly at risk because they often live in flood-prone areas and lack the resources to respond. WRI and its Dutch partners - Deltares, IVM-VU University Amsterdam, Utrecht University, and PBL Netherlands Environmental Assessment Agency - are in the initial stages of developing a robust set of river flood and coastal storm surge risk measures that show the extent of flooding under a variety of scenarios (both current and future), together with the projected human and economic impacts of these flood scenarios. These flood risk data and information will be accessible via an online, easy-to-use Aqueduct Global Flood Analyzer. We will also investigate the viability, benefits, and costs of a wide array of flood risk reduction measures that could be implemented in a variety of geographic and socio-economic settings. Together, the activities we propose have the potential for saving hundreds of thousands of lives and strengthening the resiliency and security of many millions more, especially those who are most vulnerable. Mr. Iceland will present Version 1.0 of the Aqueduct Global Flood Analyzer and provide a preview of additional elements of the Analyzer to be released in the coming years.

  14. Alkaline pretreatment of Mexican pine residues for bioethanol ...

    African Journals Online (AJOL)

    Alkaline pretreatment of Mexican pine residues for bioethanol production. ... Keywords: Lignocellulosic biomass, alkaline pretreatment, enzymatic hydrolysis, fermentable sugars, fermentation. African Journal of Biotechnology Vol. 12(31), pp.

  15. Estimating flood discharge using witness movies in post-flood hydrological surveys

    Science.gov (United States)

    Le Coz, Jérôme; Hauet, Alexandre; Le Boursicaud, Raphaël; Pénard, Lionel; Bonnifait, Laurent; Dramais, Guillaume; Thollet, Fabien; Braud, Isabelle

    2015-04-01

    The estimation of streamflow rates based on post-flood surveys is of paramount importance for the investigation of extreme hydrological events. Major uncertainties usually arise from the absence of information on the flow velocities and from the limited spatio-temporal resolution of such surveys. Nowadays, after each flood occuring in populated areas home movies taken from bridges, river banks or even drones are shared by witnesses through Internet platforms like YouTube. Provided that some topography data and additional information are collected, image-based velocimetry techniques can be applied to some of these movie materials, in order to estimate flood discharges. As a contribution to recent post-flood surveys conducted in France, we developed and applied a method for estimating velocities and discharges based on the Large Scale Particle Image Velocimetry (LSPIV) technique. Since the seminal work of Fujita et al. (1998), LSPIV applications to river flows were reported by a number of authors and LSPIV can now be considered a mature technique. However, its application to non-professional movies taken by flood witnesses remains challenging and required some practical developments. The different steps to apply LSPIV analysis to a flood home movie are as follows: (i) select a video of interest; (ii) contact the author for agreement and extra information; (iii) conduct a field topography campaign to georeference Ground Control Points (GCPs), water level and cross-sectional profiles; (iv) preprocess the video before LSPIV analysis: correct lens distortion, align the images, etc.; (v) orthorectify the images to correct perspective effects and know the physical size of pixels; (vi) proceed with the LSPIV analysis to compute the surface velocity field; and (vii) compute discharge according to a user-defined velocity coefficient. Two case studies in French mountainous rivers during extreme floods are presented. The movies were collected on YouTube and field topography

  16. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2017-04-01

    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  17. Operational flood forecasting, warning and response for multi-scale flood risks in developing cities

    NARCIS (Netherlands)

    Rogelis Prada, M.C.

    2016-01-01

    Flood early warning systems are recognized as one of the most effective flood risk management instruments when correctly embedded in comprehensive flood risk management strategies and policies. Many efforts around the world are being put in place to advance the components that determine the

  18. Geomorphic changes caused by the 2011 flood at selected sites along the lower Missouri River and comparison to historical floods: Chapter H in 2011 floods of the central United States

    Science.gov (United States)

    Juracek, Kyle E.

    2014-01-01

    An analysis of recent and historical U.S. Geological Survey streamgage information was used to assess geomorphic changes caused by the 2011 flood, in comparison to selected historical floods, at three streamgage sites along the lower Missouri River—Sioux City, Iowa; Omaha, Nebraska; and Kansas City, Missouri. Channel-width change was not evident at the three streamgage sites following the 2011 flood and likely was inhibited by bank stabilization. Pronounced changes in channel-bed elevation were indicated. At Sioux City and Omaha, the geomorphic effects of the 2011 flood were similar in terms of the magnitude of channelbed scour and recovery. At both sites, the 2011 flood caused pronounced scour (about 3 feet) of the channel bed; however, at Omaha, most of the channel-bed scour occurred after the flood had receded. More than 1 year after the flood, the channel bed had only partially recovered (about 1 foot) at both sites. Pronounced scour (about 3 feet at Sioux City and about 1.5 feet at Omaha) also was caused by the 1952 flood, which had a substantially larger peak discharge but was much shorter in duration at both sites. Again, at Omaha, most of the channel- bed scour occurred after the flood had receded. At Sioux City, substantial recovery of the channel bed (about 2.5 feet) was documented 1 year after the 1952 flood. Recovery to the pre-flood elevation was complete by April 1954. The greater recovery following the 1952 flood, compared to the 2011 flood, likely was related to a more abundant sediment supply because the flood predated the completion of most of the main-stem dam, channelization, and bank stabilization projects. At Omaha, following the 1952 flood, the channel bed never fully recovered to its pre-flood elevation. The geomorphic effect of the 2011 flood at Kansas City was fill (about 1 foot) on the channel bed followed by relative stability. The 1952 flood, which had a substantially larger peak discharge but was much shorter in duration, caused

  19. Alkaline rocks and the occurrence of uranium

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Toens, P.D.

    1980-10-01

    Many alkaline complexes contain uranium and other minerals in low concentrations and are regarded as constituting valuable potential reserves. Certain complex metallurgical problems, however, remain to be solved. Alkaline rocks occur in a number of forms and environments and it is noted that they are generated during periods of geological quiescence emplaced mainly in stable aseismic areas. Many occur along the extensions of oceanic transform faults beneath the continental crust and the application of this concept to areas not currently known to host alkaline complexes may prove useful in identifying potential target areas for prospecting operations [af

  20. Application of alkaline waterflooding to a high acidity crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Sayyouh, M.H. (King Sand Univ., Riyadh (SA). Petroleum Engineering Dept.); Abdel-Waly, A.; Osman, A. (Cairo Univ. (EG). Petroleum Engineering Dept.); Awara, A.Z. (Geisum Oil Company, Cairo (EG))

    The enhanced recovery of a high acidity crude oil (South Geisum crude) by alkaline solutions is studied. Acidity, interfacial tension, and contact angle, were investigated. Displacement tests were carried out to study the effect of alkaline slug concentration, slug size, oil alkali type, temperature and viscosity on recovery. The interfacial tension between crude oil and formation water decreases with increasing alkaline concentration until a minimum, after which it increases again. Contact angle measurements indicated oil-wetting conditions that increase by the addition of alkaline solutions. At the early stages of displacement, oil recovery increases with increasing alkaline concentration until a maximum at 4% by weight NaOH concentration. Also, at such early stages, an excessive increase in alkaline concentration results in lower oil recovery. On the other hand, after the injection of many pore volumes of water, oil recovery is almost the same regardless of the alkaline concentration. Oil recovery increases with increasing alkaline slug size until a maximum at 15% PV. Sodium hydroxide slugs produce more oil recovery than sodium carbonate slugs. Oil recovery increases with increasing temperature (from 25 to 55{sup 0}C) and decreasing oil viscosity.

  1. Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France

    Directory of Open Access Journals (Sweden)

    J. F. Breilh

    2013-06-01

    Full Text Available This study aims to assess the performance of raster-based flood modeling methods on a wide diversity of coastal marshes. These methods are applied to the flooding associated with the storm Xynthia, which severely hit the western coast of France in February 2010. Static and semi-dynamic methods are assessed using a combination of LiDAR data, post-storm delineation of flooded areas and sea levels originating from both tide gauge measurements and storm surge modeling. Static methods are applied to 27 marshes showing a wide geomorphological diversity. It appears that these methods are suitable for marshes with a small distance between the coastline and the landward boundary of the marsh, which causes these marshes to flood rapidly. On the contrary, these methods overpredict flooded areas for large marshes where the distance between the coastline and the landward boundary of the marsh is large, because the flooding cannot be considered as instantaneous. In this case, semi-dynamic methods based on surge overflowing volume calculations can improve the flooding prediction significantly. This study suggests that static and semi-dynamic flood modeling methods can be attractive and quickly deployed to rapidly produce predictive flood maps of vulnerable areas under certain conditions, particularly for small distances between the coastline and the landward boundary of the low-lying coastal area.

  2. Effect of catchment properties and flood generation regime on copula selection for bivariate flood frequency analysis

    Science.gov (United States)

    Filipova, Valeriya; Lawrence, Deborah; Klempe, Harald

    2018-02-01

    Applying copula-based bivariate flood frequency analysis is advantageous because the results provide information on both the flood peak and volume. More data are, however, required for such an analysis, and it is often the case that only data series with a limited record length are available. To overcome this issue of limited record length, data regarding climatic and geomorphological properties can be used to complement statistical methods. In this paper, we present a study of 27 catchments located throughout Norway, in which we assess whether catchment properties, flood generation processes and flood regime have an effect on the correlation between flood peak and volume and, in turn, on the selection of copulas. To achieve this, the annual maximum flood events were first classified into events generated primarily by rainfall, snowmelt or a combination of these. The catchments were then classified into flood regime, depending on the predominant flood generation process producing the annual maximum flood events. A contingency table and Fisher's exact test were used to determine the factors that affect the selection of copulas in the study area. The results show that the two-parameter copulas BB1 and BB7 are more commonly selected in catchments with high steepness, high mean annual runoff and rainfall flood regime. These findings suggest that in these types of catchments, the dependence structure between flood peak and volume is more complex and cannot be modeled effectively using a one-parameter copula. The results illustrate that by relating copula types to flood regime and catchment properties, additional information can be supplied for selecting copulas in catchments with limited data.

  3. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?

    Directory of Open Access Journals (Sweden)

    Dries L. T. Hegger

    2016-12-01

    Full Text Available European countries face increasing flood risks because of urbanization, increase of exposure and damage potential, and the effects of climate change. In literature and in practice, it is argued that a diversification of strategies for flood risk management (FRM, including flood risk prevention (through proactive spatial planning, flood defense, flood risk mitigation, flood preparation, and flood recovery, makes countries more flood resilient. Although this thesis is plausible, it should still be empirically scrutinized. We aim to do this. Drawing on existing literature we operationalize the notion of "flood resilience" into three capacities: capacity to resist; capacity to absorb and recover; and capacity to transform and adapt. Based on findings from the EU FP7 project STAR-FLOOD, we explore the degree of diversification of FRM strategies and related flood risk governance arrangements at the national level in Belgium, England, France, the Netherlands, Poland, and Sweden, as well as these countries' achievement in terms of the three capacities. We found that the Netherlands and to a lesser extent Belgium have a strong capacity to resist, France a strong capacity to absorb and recover, and especially England a high capacity to transform and adapt. Having a diverse portfolio of FRM strategies in place may be conducive to high achievements related to the capacities to absorb/recover and to transform and adapt. Hence, we conclude that diversification of FRM strategies contributes to resilience. However, the diversification thesis should be nuanced in the sense that there are different ways to be resilient. First, the three capacities imply different rationales and normative starting points for flood risk governance, the choice between which is inherently political. Second, we found trade-offs between the three capacities, e.g., being resistant seems to lower the possibility to be absorbent. Third, to explain countries' achievements in terms of

  4. Developing a Global Database of Historic Flood Events to Support Machine Learning Flood Prediction in Google Earth Engine

    Science.gov (United States)

    Tellman, B.; Sullivan, J.; Kettner, A.; Brakenridge, G. R.; Slayback, D. A.; Kuhn, C.; Doyle, C.

    2016-12-01

    There is an increasing need to understand flood vulnerability as the societal and economic effects of flooding increases. Risk models from insurance companies and flood models from hydrologists must be calibrated based on flood observations in order to make future predictions that can improve planning and help societies reduce future disasters. Specifically, to improve these models both traditional methods of flood prediction from physically based models as well as data-driven techniques, such as machine learning, require spatial flood observation to validate model outputs and quantify uncertainty. A key dataset that is missing for flood model validation is a global historical geo-database of flood event extents. Currently, the most advanced database of historical flood extent is hosted and maintained at the Dartmouth Flood Observatory (DFO) that has catalogued 4320 floods (1985-2015) but has only mapped 5% of these floods. We are addressing this data gap by mapping the inventory of floods in the DFO database to create a first-of- its-kind, comprehensive, global and historical geospatial database of flood events. To do so, we combine water detection algorithms on MODIS and Landsat 5,7 and 8 imagery in Google Earth Engine to map discrete flood events. The created database will be available in the Earth Engine Catalogue for download by country, region, or time period. This dataset can be leveraged for new data-driven hydrologic modeling using machine learning algorithms in Earth Engine's highly parallelized computing environment, and we will show examples for New York and Senegal.

  5. Assessing ocean alkalinity for carbon sequestration

    Science.gov (United States)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  6. catalysed oxidation of atenolol by alkaline permanganate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0⋅30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry.

  7. Developing a Malaysia flood model

    Science.gov (United States)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina

    2014-05-01

    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  8. Characterising Record Flooding in the United Kingdom

    Science.gov (United States)

    Cox, A.; Bates, P. D.; Smith, J. A.

    2017-12-01

    Though the most notable floods in history have been carefully explained, there remains a lack of literature that explores the nature of record floods as a whole in the United Kingdom. We characterise the seasonality, statistical and spatial distribution, and meteorological causes of peak river flows for 521 gauging stations spread across the British Isles. We use annual maximum data from the National River Flow Archive, catchment descriptors from the Flood Estimation Handbook, and historical records of large floods. What we aim to find is in what ways, if any, the record flood for a station is different from more 'typical' floods. For each station, we calculate two indices: the seasonal anomaly and the flood index. Broadly, the seasonal anomaly is the degree to which a station's record flood happens at a different time of year compared to typical floods at that site, whilst the flood index is a station's record flood discharge divided by the discharge of the 1-in-10-year return period event. We find that while annual maximum peaks are dominated by winter frontal rainfall, record floods are disproportionately caused by summer convective rainfall. This analysis also shows that the larger the seasonal anomaly, the higher the flood index. Additionally, stations across the country have record floods that occur in the summer with no notable spatial pattern, yet the most seasonally anomalous record events are concentrated around the south and west of the British Isles. Catchment descriptors tell us little about the flood index at a particular station, but generally areas with lower mean annual precipitation have a higher flood index. The inclusion of case studies from recent and historical examples of notable floods across the UK supplements our analysis and gives insight into how typical these events are, both statistically and meteorologically. Ultimately, record floods in general happen at relatively unexpected times and with unpredictable magnitudes, which is a

  9. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides

    OpenAIRE

    Ling-Feng Miao; Fan Yang; Chun-Yu Han; Yu-Jin Pu; Yang Ding; Li-Jia Zhang

    2017-01-01

    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of ph...

  10. Application of RUNTA code in flood analyses

    International Nuclear Information System (INIS)

    Perez Martin, F.; Benitez Fonzalez, F.

    1994-01-01

    Flood probability analyses carried out to date indicate the need to evaluate a large number of flood scenarios. This necessity is due to a variety of reasons, the most important of which include: - Large number of potential flood sources - Wide variety of characteristics of flood sources - Large possibility of flood-affected areas becoming inter linked, depending on the location of the potential flood sources - Diversity of flood flows from one flood source, depending on the size of the rupture and mode of operation - Isolation times applicable - Uncertainties in respect of the structural resistance of doors, penetration seals and floors - Applicable degrees of obstruction of floor drainage system Consequently, a tool which carries out the large number of calculations usually required in flood analyses, with speed and flexibility, is considered necessary. The RUNTA Code enables the range of possible scenarios to be calculated numerically, in accordance with all those parameters which, as a result of previous flood analyses, it is necessary to take into account in order to cover all the possible floods associated with each flood area

  11. Adjustable Robust Strategies for Flood Protection

    NARCIS (Netherlands)

    Postek, Krzysztof; den Hertog, Dick; Kind, J.; Pustjens, Chris

    2016-01-01

    Flood protection is of major importance to many flood-prone regions and involves substantial investment and maintenance costs. Modern flood risk management requires often to determine a cost-efficient protection strategy, i.e., one with lowest possible long run cost and satisfying flood protection

  12. Internal flooding analyses results of Slovak NPPs

    International Nuclear Information System (INIS)

    Sopira, Vladimir

    2000-01-01

    The assessment of the flood risk was the objective of the internal flooding analysis for NPPs Bohunice V1, V2 and Mochovce. All important flooding sources were identified. The rooms containing safety important components were analyzed from the point of view of: Integrity of flood boundaries; Capability for drainage; Flood signalisation; Flood localization and liquidation; Vulnerability of safety system component. The redundancies of safety systems are located mostly separately and no flood can endanger more than single train. It can be concluded that NPPs with WWER-440 are very safe against the flooding initiating event

  13. Smoky River coal flood risk mapping study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Canada-Alberta Flood Damage Reduction Program (FDRP) is designed to reduce flood damage by identifying areas susceptible to flooding and by encouraging application of suitable land use planning, zoning, and flood preparedness and proofing. The purpose of this study is to define flood risk and floodway limits along the Smoky River near the former Smoky River Coal (SRC) plant. Alberta Energy has been responsible for the site since the mine and plant closed in 2000. The study describes flooding history, available data, features of the river and valley, calculation of flood levels, and floodway determination, and includes flood risk maps. The HEC-RAS program is used for the calculations. The flood risk area was calculated using the 1:100 year return period flood as the hydrological event. 7 refs., 11 figs., 7 tabs., 3 apps.

  14. Investigations of processes relevant to final storage before, during and after flooding of the Hope salt mine

    International Nuclear Information System (INIS)

    1986-07-01

    Due to the measurement and monitoring program in the partly flooded former Hope salt mine it is possible to obtain considerable new knowledge for the theoretical case of 'access of water or alkaline solution in the post-operation phase' for a final store in a salt deposit. An important part of the Hope research and development project was the selection and testing of suitable measuring equipment, data collection and transmission devices in difficult working conditions. The purpose of this seminar was to introduce the Hope research and development project and the results obtained so far to all the authorities and institutions taking part. 9 lectures recorded separately in data bases were held for this purpose. (orig./PW) [de

  15. Flood risk governance arrangements in Europe

    Science.gov (United States)

    Matczak, P.; Lewandowski, J.; Choryński, A.; Szwed, M.; Kundzewicz, Z. W.

    2015-06-01

    The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements) project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency) of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  16. Flood risk governance arrangements in Europe

    Directory of Open Access Journals (Sweden)

    P. Matczak

    2015-06-01

    Full Text Available The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  17. Tacking Flood Risk from Watersheds using a Natural Flood Risk Management Toolkit

    Science.gov (United States)

    Reaney, S. M.; Pearson, C.; Barber, N.; Fraser, A.

    2017-12-01

    In the UK, flood risk management is moving beyond solely mitigating at the point of impact in towns and key infrastructure to tackle problem at source through a range of landscape based intervention measures. This natural flood risk management (NFM) approach has been trailed within a range of catchments in the UK and is moving towards being adopted as a key part of flood risk management. The approach offers advantages including lower cost and co-benefits for water quality and habitat creation. However, for an agency or group wishing to implement NFM within a catchment, there are two key questions that need to be addressed: Where in the catchment to place the measures? And how many measures are needed to be effective? With this toolkit, these questions are assessed with a two-stage workflow. First, SCIMAP-Flood gives a risk based mapping of likely locations that contribute to the flood peak. This tool uses information on land cover, hydrological connectivity, flood generating rainfall patterns and hydrological travel time distributions to impacted communities. The presented example applies the tool to the River Eden catchment, UK, with 5m grid resolution and hence provide sub-field scale information at the landscape extent. SCIMAP-Flood identifies sub-catchments where physically based catchment hydrological simulation models can be applied to test different NFM based mitigation measures. In this example, the CRUM3 catchment hydrological model has been applied within an uncertainty framework to consider the effectiveness of soil compaction reduction and large woody debris dams within a sub-catchment. It was found that large scale soil aeration to reduce soil compaction levels throughout the catchment is probably the most useful natural flood management measure for this catchment. NFM has potential for wide-spread application and these tools help to ensure that the measures are correctly designed and the scheme performance can be quantitatively assessed and predicted.

  18. Interconnected ponds operation for flood hazard distribution

    Science.gov (United States)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  19. Communicating Flood Risk with Street-Level Data

    Science.gov (United States)

    Sanders, B. F.; Matthew, R.; Houston, D.; Cheung, W. H.; Karlin, B.; Schubert, J.; Gallien, T.; Luke, A.; Contreras, S.; Goodrich, K.; Feldman, D.; Basolo, V.; Serrano, K.; Reyes, A.

    2015-12-01

    Coastal communities around the world face significant and growing flood risks that require an accelerating adaptation response, and fine-resolution urban flood models could serve a pivotal role in enabling communities to meet this need. Such models depict impacts at the level of individual buildings and land parcels or "street level" - the same spatial scale at which individuals are best able to process flood risk information - constituting a powerful tool to help communities build better understandings of flood vulnerabilities and identify cost-effective interventions. To measure understanding of flood risk within a community and the potential impact of street-level models, we carried out a household survey of flood risk awareness in Newport Beach, California, a highly urbanized coastal lowland that presently experiences nuisance flooding from high tides, waves and rainfall and is expected to experience a significant increase in flood frequency and intensity with climate change. Interviews were completed with the aid of a wireless-enabled tablet device that respondents could use to identify areas they understood to be at risk of flooding and to view either a Federal Emergency Management Agency (FEMA) flood map or a more detailed map prepared with a hydrodynamic urban coastal flood model (UCI map) built with grid cells as fine as 3 m resolution and validated with historical flood data. Results indicate differences in the effectiveness of the UCI and FEMA maps at communicating the spatial distribution of flood risk, gender differences in how the maps affect flood understanding, and spatial biases in the perception of flood vulnerabilities.

  20. Assessment of channel changes, model of historical floods, and effects of backwater on flood stage, and flood mitigation alternatives for the Wichita River at Wichita Falls, Texas

    Science.gov (United States)

    Winters, Karl E.; Baldys, Stanley

    2011-01-01

    In cooperation with the City of Wichita Falls, the U.S. Geological Survey assessed channel changes on the Wichita River at Wichita Falls, Texas, and modeled historical floods to investigate possible causes and potential mitigation alternatives to higher flood stages in recent (2007 and 2008) floods. Extreme flooding occurred on the Wichita River on June 30, 2007, inundating 167 homes in Wichita Falls. Although a record flood stage was reached in June 2007, the peak discharge was much less than some historical floods at Wichita Falls. Streamflow and stage data from two gages on the Wichita River and one on Holliday Creek were used to assess the interaction of the two streams. Changes in the Wichita River channel were evaluated using historical aerial and ground photography, comparison of recent and historical cross sections, and comparison of channel roughness coefficients with those from earlier studies. The floods of 2007 and 2008 were modeled using a one-dimensional step-backwater model. Calibrated channel roughness was larger for the 2007 flood compared to the 2008 flood, and the 2007 flood peaked about 4 feet higher than the 2008 flood. Calibration of the 1941 flood yielded a channel roughness coefficient (Manning's n) of 0.030, which represents a fairly clean natural channel. The step-backwater model was also used to evaluate the following potential mitigation alternatives: (1) increasing the capacity of the bypass channel near River Road in Wichita Falls, Texas; (2) removal of obstructions near the Scott Avenue and Martin Luther King Junior Boulevard bridges in Wichita Falls, Texas; (3) widening of aggraded channel banks in the reach between Martin Luther King Junior Boulevard and River Road; and (4) reducing channel bank and overbank roughness. Reductions in water-surface elevations ranged from 0.1 foot to as much as 3.0 feet for the different mitigation alternatives. The effects of implementing a combination of different flood-mitigation alternatives were

  1. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines

    Science.gov (United States)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.

    2016-12-01

    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the

  2. Technetium recovery from high alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  3. Structural master plan of flood mitigation measures

    Directory of Open Access Journals (Sweden)

    A. Heidari

    2009-01-01

    Full Text Available Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  4. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    NARCIS (Netherlands)

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of

  5. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    Science.gov (United States)

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Composite Flood Risk for Virgin Island

    Science.gov (United States)

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  7. Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest

    Science.gov (United States)

    Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.

    2018-04-01

    Sea level rise has already caused more frequent and severe coastal flooding and this trend will likely continue. Flood prediction is an essential part of a coastal city's capacity to adapt to and mitigate this growing problem. Complex coastal urban hydrological systems however, do not always lend themselves easily to physically-based flood prediction approaches. This paper presents a method for using a data-driven approach to estimate flood severity in an urban coastal setting using crowd-sourced data, a non-traditional but growing data source, along with environmental observation data. Two data-driven models, Poisson regression and Random Forest regression, are trained to predict the number of flood reports per storm event as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, groundwater table level, and wind conditions) as input. The method is demonstrated using data from Norfolk, Virginia USA from September 2010 to October 2016. Quality-controlled, crowd-sourced street flooding reports ranging from 1 to 159 per storm event for 45 storm events are used to train and evaluate the models. Random Forest performed better than Poisson regression at predicting the number of flood reports and had a lower false negative rate. From the Random Forest model, total cumulative rainfall was by far the most dominant input variable in predicting flood severity, followed by low tide and lower low tide. These methods serve as a first step toward using data-driven methods for spatially and temporally detailed coastal urban flood prediction.

  8. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    Science.gov (United States)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  9. Validation of individual and aggregate global flood hazard models for two major floods in Africa.

    Science.gov (United States)

    Trigg, M.; Bernhofen, M.; Whyman, C.

    2017-12-01

    A recent intercomparison of global flood hazard models undertaken by the Global Flood Partnership shows that there is an urgent requirement to undertake more validation of the models against flood observations. As part of the intercomparison, the aggregated model dataset resulting from the project was provided as open access data. We compare the individual and aggregated flood extent output from the six global models and test these against two major floods in the African Continent within the last decade, namely severe flooding on the Niger River in Nigeria in 2012, and on the Zambezi River in Mozambique in 2007. We test if aggregating different number and combination of models increases model fit to the observations compared with the individual model outputs. We present results that illustrate some of the challenges of comparing imperfect models with imperfect observations and also that of defining the probability of a real event in order to test standard model output probabilities. Finally, we propose a collective set of open access validation flood events, with associated observational data and descriptions that provide a standard set of tests across different climates and hydraulic conditions.

  10. Crowdsourcing detailed flood data

    Science.gov (United States)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  11. Structural evaluation of multifunctional flood defenses

    NARCIS (Netherlands)

    Voorendt, M.Z.; Kothuis, Baukje; Kok, Matthijs

    2017-01-01

    Flood risk reduction aims to minimize losses in low-lying areas. One of the ways to reduce flood risks is to protect land by means of flood defenses. The Netherlands has a long tradition of flood protection and, therefore, a wide variety of technical reports written

  12. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... Key words: Production, alkaline protease, Bacillus subtilis, animal wastes, enzyme activity. ... Generally, alkaline proteases are produced using submerged fermentation .... biopolymer concentrations were reported to have an influence ... adding nitrogenous compounds stimulate microorganism growth and ...

  13. Flood hazards for nuclear power plants

    International Nuclear Information System (INIS)

    Yen, B.C.

    1988-01-01

    Flooding hazards for nuclear power plants may be caused by various external geophysical events. In this paper the hydrologic hazards from flash floods, river floods and heavy rain at the plant site are considered. Depending on the mode of analysis, two types of hazard evaluation are identified: 1) design hazard which is the probability of flooding over an expected service period, and 2) operational hazard which deals with real-time forecasting of the probability of flooding of an incoming event. Hazard evaluation techniques using flood frequency analysis can only be used for type 1) design hazard. Evaluation techniques using rainfall-runoff simulation or multi-station correlation can be used for both types of hazard prediction. (orig.)

  14. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  15. Floods in a changing climate

    Science.gov (United States)

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  16. Coping with Pluvial Floods by Private Households

    Directory of Open Access Journals (Sweden)

    Viktor Rözer

    2016-07-01

    Full Text Available Pluvial floods have caused severe damage to urban areas in recent years. With a projected increase in extreme precipitation as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. Therefore, further insights, especially on the adverse consequences of pluvial floods and their mitigation, are needed. To gain more knowledge, empirical damage data from three different pluvial flood events in Germany were collected through computer-aided telephone interviews. Pluvial flood awareness as well as flood experience were found to be low before the respective flood events. The level of private precaution increased considerably after all events, but is mainly focused on measures that are easy to implement. Lower inundation depths, smaller potential losses as compared with fluvial floods, as well as the fact that pluvial flooding may occur everywhere, are expected to cause a shift in damage mitigation from precaution to emergency response. However, an effective implementation of emergency measures was constrained by a low dissemination of early warnings in the study areas. Further improvements of early warning systems including dissemination as well as a rise in pluvial flood preparedness are important to reduce future pluvial flood damage.

  17. Flood loss assessment in the Kota Tinggi

    International Nuclear Information System (INIS)

    Tam, T H; Ibrahim, A L; Rahman, M Z A; Mazura, Z

    2014-01-01

    Malaysia is free from several destructive and widespread natural disasters but frequently affected by floods, which caused massive flood damage. In 2006 and 2007, an extreme rainfall occured in many parts of Peninsular Malaysia, which caused severe flooding in several major cities. Kota Tinggi was chosen as study area as it is one the seriously affected area in Johor state. The aim of this study is to estimate potential flood damage to physical elements in Kota Tinggi. The flood damage map contains both qualitative and quantitative information which corresponds to the consequences of flooding. This study only focuses on physical elements. Three different damage functions were adopted to calculate the potential flood damage and flood depth is considered as the main parameter. The adopted functions are United States, the Netherlands and Malaysia. The estimated flood damage for housing using United States, the Netherlands and Malaysia was RM 350/m 2 RM 200/m 2 and RM 100/m 2 respectively. These results successfully showed the average flood damage of physical element. Such important information needed by local authority and government for urban spatial planning and aiming to reduce flood risk

  18. Lessons Learned from Southeast Asian Floods

    Science.gov (United States)

    Osti, R.; Tanaka, S.

    2009-04-01

    At certain scales, flood has always been the lifeline of many people from Southeast Asian countries. People are traditionally accustomed to living with such floods and their livelihood is adjusted accordingly to optimize the benefits from the floods. However, large scale flood occasionally turns into the disaster and causes massive destruction not only in terms of human causalities but also damage to economic, ecological and social harmonies in the region. Although economic growth is prevailing in a relative term, the capacity of people to cope with such extreme events is weakening therefore the flood disaster risk is increasing in time. Recent examples of flood disaster in the region clearly show the increasing severity of disaster impact. This study reveals that there are many factors, which directly or indirectly influence the change. This paper considers the most prominent natural and socio-economic factors and analyzes their trend with respect to flood disasters in each country's context. A regional scale comparative analysis further helps to exchange the know how and to determine what kind of strategy and policy are lacking to manage the floods in a long run. It is also helpful in identifying the critical sectors that should be addressed first to mitigate the potential damage from the floods.

  19. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    Science.gov (United States)

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  20. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    distinct differences in the distribution of species and growth forms among the lakes. The lakes separated into five groups of characteristic species compositions. Alkalinity was the main factor responsible for the species distribution. Lakes of high alkalinity were dominated by vascular plants...... of the elodeid growth form, lakes of intermediate alkalinity contained a variety of elodeids and vascular plants of the isoetid growth form, while lakes of low alkalinity and low pH had several isoetids and bryophytes, but very few elodeids. Alkalinity is a close descriptor of the bicarbonate concentration...

  1. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Science.gov (United States)

    2010-10-01

    ... local flood protection systems no longer provide base flood protection. 65.14 Section 65.14 Emergency... § 65.14 Remapping of areas for which local flood protection systems no longer provide base flood... process of restoring a flood protection system that was: (i) Constructed using Federal funds; (ii...

  2. Comparing flood loss models of different complexity

    Science.gov (United States)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno

    2013-04-01

    Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.

  3. 2011 floods of the central United States

    Science.gov (United States)

    ,

    2013-01-01

    The Central United States experienced record-setting flooding during 2011, with floods that extended from headwater streams in the Rocky Mountains, to transboundary rivers in the upper Midwest and Northern Plains, to the deep and wide sand-bedded lower Mississippi River. The U.S. Geological Survey (USGS), as part of its mission, collected extensive information during and in the aftermath of the 2011 floods to support scientific analysis of the origins and consequences of extreme floods. The information collected for the 2011 floods, combined with decades of past data, enables scientists and engineers from the USGS to provide syntheses and scientific analyses to inform emergency managers, planners, and policy makers about life-safety, economic, and environmental-health issues surrounding flood hazards for the 2011 floods and future floods like it. USGS data, information, and scientific analyses provide context and understanding of the effect of floods on complex societal issues such as ecosystem and human health, flood-plain management, climate-change adaptation, economic security, and the associated policies enacted for mitigation. Among the largest societal questions is "How do we balance agricultural, economic, life-safety, and environmental needs in and along our rivers?" To address this issue, many scientific questions have to be answered including the following: * How do the 2011 weather and flood conditions compare to the past weather and flood conditions and what can we reasonably expect in the future for flood magnitudes?

  4. Drivers of flood damage on event level

    DEFF Research Database (Denmark)

    Kreibich, H.; Aerts, J. C. J. H.; Apel, H.

    2016-01-01

    Flood risk is dynamic and influenced by many processes related to hazard, exposure and vulnerability. Flood damage increased significantly over the past decades, however, resulting overall economic loss per event is an aggregated indicator and it is difficult to attribute causes to this increasing...... trend. Much has been learned about damaging processes during floods at the micro-scale, e.g. building level. However, little is known about the main factors determining the amount of flood damage on event level. Thus, we analyse and compare paired flood events, i.e. consecutive, similar damaging floods...... example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number...

  5. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... A new strain of Bacillus sp. was isolated from alkaline soil, which was able to produce extracellular alkaline ... rice and dates (Khosravi-Darani et al., 2008), protein by- products from lather ..... Pigeon pea waste as a novel ...

  6. Flood loss reduction of private households due to building precautionary measures -- lessons learned from the Elbe flood in August 2002

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2005-01-01

    Full Text Available Building houses in inundation areas is always a risk, since absolute flood protection is impossible. Where settlements already exist, flood damage must be kept as small as possible. Suitable means are precautionary measures such as elevated building configuration or flood adapted use. However, data about the effects of such measures are rare, and consequently, the efficiency of different precautionary measures is unclear. To improve the knowledge about efficient precautionary measures, approximately 1200 private households, which were affected by the 2002 flood at the river Elbe and its tributaries, were interviewed about the flood damage of their buildings and contents as well as about their precautionary measures. The affected households had little flood experience, i.e. only 15% had experienced a flood before. 59% of the households stated that they did not know, that they live in a flood prone area. Thus, people were not well prepared, e.g. just 11% had used and furnished their house in a flood adapted way and only 6% had a flood adapted building structure. Building precautionary measures are mainly effective in areas with frequent small floods. But also during the extreme flood event in 2002 building measures reduced the flood loss. From the six different building precautionary measures under study, flood adapted use and adapted interior fitting were the most effective ones. They reduced the damage ratio for buildings by 46% and 53%, respectively. The damage ratio for contents was reduced by 48% due to flood adapted use and by 53% due to flood adapted interior fitting. The 2002 flood motivated a relatively large number of people to implement private precautionary measures, but still much more could be done. Hence, to further reduce flood losses, people's motivation to invest in precaution should be improved. More information campaigns and financial incentives should be issued to encourage precautionary measures.

  7. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  8. Hydrological simulation of flood transformations in the upper Danube River: Case study of large flood events

    Directory of Open Access Journals (Sweden)

    Mitková Veronika Bačová

    2016-12-01

    Full Text Available The problem of understand natural processes as factors that restrict, limit or even jeopardize the interests of human society is currently of great concern. The natural transformation of flood waves is increasingly affected and disturbed by artificial interventions in river basins. The Danube River basin is an area of high economic and water management importance. Channel training can result in changes in the transformation of flood waves and different hydrographic shapes of flood waves compared with the past. The estimation and evolution of the transformation of historical flood waves under recent river conditions is only possible by model simulations. For this purpose a nonlinear reservoir cascade model was constructed. The NLN-Danube nonlinear reservoir river model was used to simulate the transformation of flood waves in four sections of the Danube River from Kienstock (Austria to Štúrovo (Slovakia under relatively recent river reach conditions. The model was individually calibrated for two extreme events in August 2002 and June 2013. Some floods that occurred on the Danube during the period of 1991–2002 were used for the validation of the model. The model was used to identify changes in the transformational properties of the Danube channel in the selected river reach for some historical summer floods (1899, 1954 1965 and 1975. Finally, a simulation of flood wave propagation of the most destructive Danube flood of the last millennium (August 1501 is discussed.

  9. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    Science.gov (United States)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system

  10. Flood of April 1975 at Williamston, Michigan

    Science.gov (United States)

    Knutilla, R.L.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  11. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  12. Field note from Pakistan floods: Preventing future flood disasters

    Directory of Open Access Journals (Sweden)

    Marcus Oxley

    2011-04-01

    Full Text Available Unusually heavy monsoon rains in Northern Pakistan have caused disproportionate levels of extreme flooding and unprecedented flood losses across the entire Indus River basin. Extensive land use changes and environmental degradation in the uplands and lowlands of the river basin together with the construction of a “built environment” out of balance with the functioning, capacities, scale and limits of the local ecosystems have exposed millions of people to an increased risk of extreme #ooding. The catastrophic nature of the August #ooding provides a unique opportunity to fundamentally change Pakistan’s current socio-economic development path by incorporating disaster risk reduction and climate change measures into the post-disaster recovery process to rebuild a safer, more resilient nation. In January 2005 one hundred and sixty-eight nations adopted the Hyogo Framework for Action (HFA2005-2015 to bring about a “substantial reduction in disaster losses” by 2015. Despite this global initiative a series of major disasters, including the recent flooding in Pakistan, all indicate that we are not on track to achieve the substantial reduction of disaster losses. The following fieldnote considers what can be done to accelerate progress towards implementation of the Hyogo Framework, drawing on insights and lessons learnt from the August flooding to understand how Pakistan and neighbouring countries can prevent a repeat of such catastrophic disasters in future years.

  13. Flood maps in Europe - methods, availability and use

    Science.gov (United States)

    de Moel, H.; van Alphen, J.; Aerts, J. C. J. H.

    2009-03-01

    To support the transition from traditional flood defence strategies to a flood risk management approach at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC) at the end of 2007. One of the major tasks which member states must carry out in order to comply with this Directive is to map flood hazards and risks in their territory, which will form the basis of future flood risk management plans. This paper gives an overview of existing flood mapping practices in 29 countries in Europe and shows what maps are already available and how such maps are used. Roughly half of the countries considered have maps covering as good as their entire territory, and another third have maps covering significant parts of their territory. Only five countries have very limited or no flood maps available yet. Of the different flood maps distinguished, it appears that flood extent maps are the most commonly produced floods maps (in 23 countries), but flood depth maps are also regularly created (in seven countries). Very few countries have developed flood risk maps that include information on the consequences of flooding. The available flood maps are mostly developed by governmental organizations and primarily used for emergency planning, spatial planning, and awareness raising. In spatial planning, flood zones delimited on flood maps mainly serve as guidelines and are not binding. Even in the few countries (e.g. France, Poland) where there is a legal basis to regulate floodplain developments using flood zones, practical problems are often faced which reduce the mitigating effect of such binding legislation. Flood maps, also mainly extent maps, are also created by the insurance industry in Europe and used to determine insurability, differentiate premiums, or to assess long-term financial solvency. Finally, flood maps are also produced by international river commissions. With respect to the EU Flood Directive, many countries already have a good starting point to map

  14. Flood Response System—A Case Study

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Singh

    2017-06-01

    Full Text Available Flood Response System (FRS is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of damage. The inputs to FRS are provided using two components: (1 a semi-automated application developed indigenously, to delineate inundated areas for Near-Real Time Flood Monitoring using Active Microwave Remote Sensing data and (2 a two-dimensional (2D hydrodynamic river model generated outputs for water depth and velocity in flooded areas for an embankment breach scenario. The 2D Hydrodynamic model, CCHE2D (Center for Computational Hydroscience and Engineering Two-Dimensional model, was used to simulate an area of 600 km2 in the flood-prone zone of the Brahmaputra basin. The resultant inundated area from the model was found to be 85% accurate when validated with post-flood optical satellite data.

  15. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  16. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  17. The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods

    Science.gov (United States)

    Blöschl, G.; Nester, T.; Komma, J.; Parajka, J.; Perdigão, R. A. P.

    2013-12-01

    The June 2013 flood in the Upper Danube Basin was one of the largest floods in the past two centuries. An atmospheric blocking situation produced precipitation exceeding 300 mm over four days at the northern rim of the Alps. The high precipitation, along with high antecedent soil moisture, gave rise to extreme flood discharges in a number of tributaries including the Tiroler Ache, Saalach, Salzach and Inn. Runoff coefficients ranged from 0.2 in the Bavarian lowlands to 0.6 in the Alpine areas in Austria. Snowfall at high altitudes (above about 1600 m a.s.l.) reduced the runoff volume produced. Precipitation was distributed over two blocks separated by a few hours, which resulted in a single peak, long-duration flood wave at the Inn and Danube. At the confluence of the Bavarian Danube and the Inn, the small time lag between the two flood waves exacerbated the downstream flood at the Danube. Because of the long duration and less inundation, there was less flood peak attenuation along the Austrian Danube reach than for the August 2002 flood. Maximum flood discharges of the Danube at Vienna were about 11 000 m3 s-1, as compared to 10 300, 9600 and 10 500 m3 s-1 in 2002, 1954 and 1899, respectively. This paper reviews the meteorological and hydrological characteristics of the event as compared to the 2002, 1954 and 1899 floods, and discusses the implications for hydrological research and flood risk management.

  18. Evaluation of some bean lines tolerance to alkaline soil

    Directory of Open Access Journals (Sweden)

    Abeer A. Radi

    2012-01-01

    Full Text Available Introduction: In less arid climates, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. The development and identification of salt-tolerant crop cultivars or lines would complement salt management programs to improve the productivity and yields of salt stressed plants.Materials and methods: This work was to study the evaluation of alkalinity tolerance of some bean lines grown under different levels of sodium carbonate (Na2CO3 to select the most alkalinity tolerant lines versus the most-sensitive ones out of 6 lines of the test plants.Results: The symptoms induced by alkalinity included reduction in root, shoot growth, and leaf area which were more severe in some bean lines. Potassium leakage was severely affected by alkalinity in some lines at all tested levels, while in some others a moderate damage was manifested only at the higher levels. The increase in Na2CO3 level was associated with a gradual fall in chlorophyll a and b biosynthesis of all the test bean lines. However, alkalinity at low and moderate levels had a favorable effect on the biosynthesis of carotenoids in all the test bean lines. The increase in Na2CO3 supply had a considerable stimulatory effect on sodium accumulation, while potassium accumulation fluctuated in organs of bean lines.Conclusion: Assiut 1104 out of all the different lines investigated was found to display the lowest sensitivity to alkalinity stress, while Assiut 12/104 was the most sensitive one.

  19. LiDAR and IFSAR-Based Flood Inundation Model Estimates for Flood-Prone Areas of Afghanistan

    Science.gov (United States)

    Johnson, W. C.; Goldade, M. M.; Kastens, J.; Dobbs, K. E.; Macpherson, G. L.

    2014-12-01

    Extreme flood events are not unusual in semi-arid to hyper-arid regions of the world, and Afghanistan is no exception. Recent flashfloods and flashflood-induced landslides took nearly 100 lives and destroyed or damaged nearly 2000 homes in 12 villages within Guzargah-e-Nur district of Baghlan province in northeastern Afghanistan. With available satellite imagery, flood-water inundation estimation can be accomplished remotely, thereby providing a means to reduce the impact of such flood events by improving shared situational awareness during major flood events. Satellite orbital considerations, weather, cost, data licensing restrictions, and other issues can often complicate the acquisition of appropriately timed imagery. Given the need for tools to supplement imagery where not available, complement imagery when it is available, and bridge the gap between imagery based flood mapping and traditional hydrodynamic modeling approaches, we have developed a topographic floodplain model (FLDPLN), which has been used to identify and map river valley floodplains with elevation data ranging from 90-m SRTM to 1-m LiDAR. Floodplain "depth to flood" (DTF) databases generated by FLDPLN are completely seamless and modular. FLDPLN has been applied in Afghanistan to flood-prone areas along the northern and southern flanks of the Hindu Kush mountain range to generate a continuum of 1-m increment flood-event models up to 10 m in depth. Elevation data used in this application of FLDPLN included high-resolution, drone-acquired LiDAR (~1 m) and IFSAR (5 m; INTERMAP). Validation of the model has been accomplished using the best available satellite-derived flood inundation maps, such as those issued by Unitar's Operational Satellite Applications Programme (UNOSAT). Results provide a quantitative approach to evaluating the potential risk to urban/village infrastructure as well as to irrigation systems, agricultural fields and archaeological sites.

  20. Flood risk assessment in France: comparison of extreme flood estimation methods (EXTRAFLO project, Task 7)

    Science.gov (United States)

    Garavaglia, F.; Paquet, E.; Lang, M.; Renard, B.; Arnaud, P.; Aubert, Y.; Carre, J.

    2013-12-01

    In flood risk assessment the methods can be divided in two families: deterministic methods and probabilistic methods. In the French hydrologic community the probabilistic methods are historically preferred to the deterministic ones. Presently a French research project named EXTRAFLO (RiskNat Program of the French National Research Agency, https://extraflo.cemagref.fr) deals with the design values for extreme rainfall and floods. The object of this project is to carry out a comparison of the main methods used in France for estimating extreme values of rainfall and floods, to obtain a better grasp of their respective fields of application. In this framework we present the results of Task 7 of EXTRAFLO project. Focusing on French watersheds, we compare the main extreme flood estimation methods used in French background: (i) standard flood frequency analysis (Gumbel and GEV distribution), (ii) regional flood frequency analysis (regional Gumbel and GEV distribution), (iii) local and regional flood frequency analysis improved by historical information (Naulet et al., 2005), (iv) simplify probabilistic method based on rainfall information (i.e. Gradex method (CFGB, 1994), Agregee method (Margoum, 1992) and Speed method (Cayla, 1995)), (v) flood frequency analysis by continuous simulation approach and based on rainfall information (i.e. Schadex method (Paquet et al., 2013, Garavaglia et al., 2010), Shyreg method (Lavabre et al., 2003)) and (vi) multifractal approach. The main result of this comparative study is that probabilistic methods based on additional information (i.e. regional, historical and rainfall information) provide better estimations than the standard flood frequency analysis. Another interesting result is that, the differences between the various extreme flood quantile estimations of compared methods increase with return period, staying relatively moderate up to 100-years return levels. Results and discussions are here illustrated throughout with the example

  1. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reserve Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  3. The Estimation Formation Alkaline In The Proses Desalination MSF

    International Nuclear Information System (INIS)

    Latiffah, Siti Nurul

    2000-01-01

    Already to go on estimation phenomena formation alkaline scale of a seawater. In desalination system seawater on MSF to go on scale by a thermal decomposition HCO sub.3- ion and hydrolysis carbonate ion with water on the temperature operation. The varieties alkaline scale in attached on tube surface, while reduced efficiency heat transfer and to raise corrosion attack to structure material is caused all this high cost. Estimation to take please which a sum step by step decomposition ion bicarbonate from then information scale which carbonate and hydroxyl ion. The various scale maximal is alkaline form is a calcium carbonate = 116,5 gram per meter cubic the various sedimentation is alkaline and magnesium hydroxide = 67,57 gram per meter cubic

  4. Analysis of the flood extent extraction model and the natural flood influencing factors: A GIS-based and remote sensing analysis

    International Nuclear Information System (INIS)

    Lawal, D U; Matori, A N; Yusuf, K W; Hashim, A M; Balogun, A L

    2014-01-01

    Serious floods have hit the State of Perlis in 2005, 2010, as well as 2011. Perlis is situated in the northern part of Peninsula Malaysia. The floods caused great damage to properties and human lives. There are various methods used in an attempt to provide the most reliable ways to reduce the flood risk and damage to the optimum level by identifying the flood vulnerable zones. The purpose of this paper is to develop a flood extent extraction model based on Minimum Distance Algorithm and to overlay with the natural flood influencing factors considered herein in order to examine the effect of each factor in flood generation. GIS spatial database was created from a geological map, SPOT satellite image, and the topographical map. An attribute database was equally created from field investigations and historical flood areas reports of the study area. The results show a great correlation between the flood extent extraction model and the flood factors

  5. Production of alkaline protease by Teredinobacter turnirae cells ...

    African Journals Online (AJOL)

    The conditions for immobilizing the new alkaline protease-producing bacteria strain Teredinobacter turnirae by entrapment in calcium alginate gel were investigated. The influence of alginate concentration (20, 25 and 30 g/l) and initial cell loading (ICL) on enzyme production were studied. The production of alkaline ...

  6. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    Science.gov (United States)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  7. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing the opera......Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing...

  8. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    International Nuclear Information System (INIS)

    Head, J.W.

    1982-01-01

    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  9. Impacts of dyke development in flood prone areas in the Vietnamese Mekong Delta to downstream flood hazard

    Science.gov (United States)

    Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan

  10. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  11. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism

    Science.gov (United States)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine

    2018-05-01

    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field

  12. [Climate changes, floods, and health consequences].

    Science.gov (United States)

    Michelozzi, Paola; de' Donato, Francesca

    2014-02-01

    In the European Region, floods are the most common natural disaster, causing extensive damage and disruption. In Italy, it has been estimated that over 68% of municipalities are at high hydrogeological risk and with the recent intense rainfall events local populations have been facing severe disruptions. The health consequences of floods are wide ranging and are dependent upon the vulnerability of the environment and the local population. Health effects can be a direct or indirect consequence of flooding. The immediate health impacts of floods include drowning, heart attacks, injuries and hypothermia. The indirect effects include, injuries and infections, water-borne infectious disease, mental health problems, respiratory disease and allergies in both the medium and long term after a flood. Future efforts should be addressed to integrate health preparedness and prevention measures into emergency flood plans and hydrological warning systems.

  13. Carbonated water flooding : Process overview in the frame of co2 flooding

    NARCIS (Netherlands)

    Peksa, A.E.

    2017-01-01

    The main scope of the work related to the physical and dynamical processes associated with the injection of carbonated water in porous media. Carbonated water flooding is an alternative for traditional CO2 flooding. Both methods have the potential to recover any oil left behind after primary and

  14. Flood-ring formation and root development in response to experimental flooding of young Quercus robur trees

    NARCIS (Netherlands)

    Copini, Paul; Ouden, den Jan; Robert, Elisabeth M.R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of

  15. Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM Based Time Series Analyses

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2013-02-01

    Full Text Available Satellite remote sensing is a valuable tool for monitoring flooding. Microwave sensors are especially appropriate instruments, as they allow the differentiation of inundated from non-inundated areas, regardless of levels of solar illumination or frequency of cloud cover in regions experiencing substantial rainy seasons. In the current study we present the longest synthetic aperture radar-based time series of flood and inundation information derived for the Mekong Delta that has been analyzed for this region so far. We employed overall 60 Envisat ASAR Wide Swath Mode data sets at a spatial resolution of 150 meters acquired during the years 2007–2011 to facilitate a thorough understanding of the flood regime in the Mekong Delta. The Mekong Delta in southern Vietnam comprises 13 provinces and is home to 18 million inhabitants. Extreme dry seasons from late December to May and wet seasons from June to December characterize people’s rural life. In this study, we show which areas of the delta are frequently affected by floods and which regions remain dry all year round. Furthermore, we present which areas are flooded at which frequency and elucidate the patterns of flood progression over the course of the rainy season. In this context, we also examine the impact of dykes on floodwater emergence and assess the relationship between retrieved flood occurrence patterns and land use. In addition, the advantages and shortcomings of ENVISAT ASAR-WSM based flood mapping are discussed. The results contribute to a comprehensive understanding of Mekong Delta flood dynamics in an environment where the flow regime is influenced by the Mekong River, overland water-flow, anthropogenic floodwater control, as well as the tides.

  16. The Global Flood Model

    Science.gov (United States)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  17. A Methodology to Define Flood Resilience

    Science.gov (United States)

    Tourbier, J.

    2012-04-01

    Flood resilience has become an internationally used term with an ever-increasing number of entries on the Internet. The SMARTeST Project is looking at approaches to flood resilience through case studies at cities in various countries, including Washington D.C. in the United States. In light of U.S. experiences a methodology is being proposed by the author that is intended to meet ecologic, spatial, structural, social, disaster relief and flood risk aspects. It concludes that: "Flood resilience combines (1) spatial, (2) structural, (3) social, and (4) risk management levels of flood preparedness." Flood resilience should incorporate all four levels, but not necessarily with equal emphasis. Stakeholders can assign priorities within different flood resilience levels and the considerations they contain, dividing 100% emphasis into four levels. This evaluation would be applied to planned and completed projects, considering existing conditions, goals and concepts. We have long known that the "road to market" for the implementation of flood resilience is linked to capacity building of stakeholders. It is a multidisciplinary enterprise, involving the integration of all the above aspects into the decision-making process. Traditional flood management has largely been influenced by what in the UK has been called "Silo Thinking", involving constituent organizations that are responsible for different elements, and are interested only in their defined part of the system. This barrier to innovation also has been called the "entrapment effect". Flood resilience is being defined as (1) SPATIAL FLOOD RESILIENCE implying the management of land by floodplain zoning, urban greening and management to reduce storm runoff through depression storage and by practicing Sustainable Urban Drainage (SUD's), Best Management Practices (BMP's, or Low Impact Development (LID). Ecologic processes and cultural elements are included. (2) STRUCTURAL FLOOD RESILIENCE referring to permanent flood defense

  18. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  19. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5, has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α(8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α(8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK(a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further

  20. Improving Flash Flood Prediction in Multiple Environments

    Science.gov (United States)

    Broxton, P. D.; Troch, P. A.; Schaffner, M.; Unkrich, C.; Goodrich, D.; Wagener, T.; Yatheendradas, S.

    2009-12-01

    Flash flooding is a major concern in many fast responding headwater catchments . There are many efforts to model and to predict these flood events, though it is not currently possible to adequately predict the nature of flash flood events with a single model, and furthermore, many of these efforts do not even consider snow, which can, by itself, or in combination with rainfall events, cause destructive floods. The current research is aimed at broadening the applicability of flash flood modeling. Specifically, we will take a state of the art flash flood model that is designed to work with warm season precipitation in arid environments, the KINematic runoff and EROSion model (KINEROS2), and combine it with a continuous subsurface flow model and an energy balance snow model. This should improve its predictive capacity in humid environments where lateral subsurface flow significantly contributes to streamflow, and it will make possible the prediction of flooding events that involve rain-on-snow or rapid snowmelt. By modeling changes in the hydrologic state of a catchment before a flood begins, we can also better understand the factors or combination of factors that are necessary to produce large floods. Broadening the applicability of an already state of the art flash flood model, such as KINEROS2, is logical because flash floods can occur in all types of environments, and it may lead to better predictions, which are necessary to preserve life and property.

  1. Osteocalcin and bone-specific alkaline phosphatase in Sickle cell ...

    African Journals Online (AJOL)

    specific alkaline phosphatase (b-AP) total protein levels were evaluated as indicators of bone turnover in twenty patients with sickle cell haemoglobinopathies and in twenty normal healthy individuals. The serum bonespecific alkaline phosphatase ...

  2. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  3. Flood mapping with multitemporal MODIS data

    Science.gov (United States)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  4. 44 CFR 78.5 - Flood Mitigation Plan development.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...

  5. 78 FR 52955 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2013-08-27

    ... community that the Deputy Associate Administrator for Mitigation reconsider the changes. The flood hazard...; Internal Agency Docket No. FEMA-B-1349] Changes in Flood Hazard Determinations AGENCY: Federal Emergency... modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or...

  6. Lessons learned from international flood PSAS in Korea

    International Nuclear Information System (INIS)

    Kim, Myungro; Lee, Beomsu; Kang, Sunkoo

    1998-01-01

    Risk due to internal flooding has been one of the major concerns for the design and operation of nuclear power plants. To reduce the risk from internal flooding, two design approaches for flood protection systems, active and passive, can be considered. The approaches to flood protection design are different for each plant design, and they are highly dependent on the plant type. The flood PSA revealed that the potential plant risk due to a flooding event is highly dependent on the flood design. The major design characteristics are 1) the location of systems that utilize sea water and their impact to other safety related systems, and 2) the existence of emergency overflow paths and an emergency sump which can transfer and accommodate flood water to prevent a significant flooding event. To identify and compare the effectiveness and potential vulnerability of various Korean nuclear power plants' flood designs, the flood PSAs have been performed for three plant designs, such as existing Korean PWR plants, CANDU type PHWR plants, and Korean Standard Nuclear Plants. Based on the evaluation, several design changes were recommended. (author)

  7. Probabilistic, meso-scale flood loss modelling

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  8. Flood risk analysis for flood control and sediment transportation in sandy regions: A case study in the Loess Plateau, China

    Science.gov (United States)

    Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai

    2018-05-01

    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  9. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    Science.gov (United States)

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  10. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  11. The August 2002 flood in Salzburg / Austria experience gained and lessons learned from the ``Flood of the century''?

    Science.gov (United States)

    Wiesenegger, H.

    2003-04-01

    On the {12th} of August 2002 a low pressure system moved slowly from northern Italy towards Slovakia. It continuously carried moist air from the Mediterranean towards the northern rim of the Alps with the effect of wide-spread heavy rainfall in Salzburg and other parts of Austria. Daily precipitation amounts of 100 - 160 mm, in some parts even more, as well as rainfall intensities of 5 - 10 mm/h , combined with well saturated soils lead to a rare flood with a return period of 100 years and more. This rare hydrological event not only caused a national catastrophe with damages of several Billion Euro, but also endangered more than 200,000 people, and even killed some. As floods are dangerous, life-threatening, destructive, and certainly amongst the most frequent and costly natural disasters in terms of human hardship as well as economic loss, a great effort, therefore, has to be made to protect people against negative impacts of floods. In order to achieve this objective, various regulations in land use planning (flood maps), constructive measurements (river regulations and technical constructions) as well as flood warning systems, which are not suitable to prevent big floods, but offer in-time-warnings to minimize the loss of human lives, are used in Austria. HYDRIS (Hydrological Information System for flood forecasting in Salzburg), a modular river basin model, developed at Technical University Vienna and operated by the Hydrological Service of Salzburg, was used during the August 2002 flood providing accurate 3 to 4 hour forecasts within 3 % of the real peak discharge of the fast flowing River Salzach. The August {12^th}} flood was in many ways an exceptional, very fast happening event which took many people by surprise. At the gauging station Salzburg / Salzach (catchment area 4425 {km^2}) it took only eighteen hours from mean annual discharge (178 {m3/s}) to the hundred years flood (2300 {m3/s}). The August flood made clear, that there is a strong need for

  12. 46 CFR 62.35-10 - Flooding safety.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...

  13. Local Flood Action Groups: Governance And Resilience

    NARCIS (Netherlands)

    Forrest, Steven; Trell, Elen-Maarja; Woltjer, Johan; Macoun, Milan; Maier, Karel

    2015-01-01

    A diverse range of citizen groups focusing on flood risk management have been identified in several European countries. The paper discusses the role of flood action (citizen) groups in the context of flood resilience and will do this by analysing the UK and its diverse range of flood groups. These

  14. 33 CFR 385.37 - Flood protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood protection. 385.37 Section... DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN Ensuring Protection of... Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent...

  15. Socio-hydrology: conceptualising human-flood interactions

    Directory of Open Access Journals (Sweden)

    G. Di Baldassarre

    2013-08-01

    Full Text Available Over history, humankind has tended to settle near streams because of the role of rivers as transportation corridors and the fertility of riparian areas. However, human settlements in floodplains have been threatened by the risk of flooding. Possible responses have been to resettle away and/or modify the river system by building flood control structures. This has led to a complex web of interactions and feedback mechanisms between hydrological and social processes in settled floodplains. This paper is an attempt to conceptualise these interplays for hypothetical human-flood systems. We develop a simple, dynamic model to represent the interactions and feedback loops between hydrological and social processes. The model is then used to explore the dynamics of the human-flood system and the effect of changing individual characteristics, including external forcing such as technological development. The results show that the conceptual model is able to reproduce reciprocal effects between floods and people as well as the emergence of typical patterns. For instance, when levees are built or raised to protect floodplain areas, their presence not only reduces the frequency of flooding, but also exacerbates high water levels. Then, because of this exacerbation, higher flood protection levels are required by society. As a result, more and more flooding events are avoided, but rare and catastrophic events take place.

  16. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars

    1998-12-31

    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  17. Flood Hazard Mapping by Applying Fuzzy TOPSIS Method

    Science.gov (United States)

    Han, K. Y.; Lee, J. Y.; Keum, H.; Kim, B. J.; Kim, T. H.

    2017-12-01

    There are lots of technical methods to integrate various factors for flood hazard mapping. The purpose of this study is to suggest the methodology of integrated flood hazard mapping using MCDM(Multi Criteria Decision Making). MCDM problems involve a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria. In this study, to apply MCDM to assessing flood risk, maximum flood depth, maximum velocity, and maximum travel time are considered as criterion, and each applied elements are considered as alternatives. The scheme to find the efficient alternative closest to a ideal value is appropriate way to assess flood risk of a lot of element units(alternatives) based on various flood indices. Therefore, TOPSIS which is most commonly used MCDM scheme is adopted to create flood hazard map. The indices for flood hazard mapping(maximum flood depth, maximum velocity, and maximum travel time) have uncertainty concerning simulation results due to various values according to flood scenario and topographical condition. These kind of ambiguity of indices can cause uncertainty of flood hazard map. To consider ambiguity and uncertainty of criterion, fuzzy logic is introduced which is able to handle ambiguous expression. In this paper, we made Flood Hazard Map according to levee breach overflow using the Fuzzy TOPSIS Technique. We confirmed the areas where the highest grade of hazard was recorded through the drawn-up integrated flood hazard map, and then produced flood hazard map can be compared them with those indicated in the existing flood risk maps. Also, we expect that if we can apply the flood hazard map methodology suggested in this paper even to manufacturing the current flood risk maps, we will be able to make a new flood hazard map to even consider the priorities for hazard areas, including more varied and important information than ever before. Keywords : Flood hazard map; levee break analysis; 2D analysis; MCDM; Fuzzy TOPSIS

  18. Application of flood-intensity-duration curve, rainfall-intensity-duration curve and time of concentration to analyze the pattern of storms and their corresponding floods for the natural flood events

    Science.gov (United States)

    Kim, Nam Won; Shin, Mun-Ju; Lee, Jeong Eun

    2016-04-01

    The analysis of storm effects on floods is essential step for designing hydraulic structure and flood plain. There are previous studies for analyzing the relationship between the storm patterns and peak flow, flood volume and durations for various sizes of the catchments, but they are not enough to analyze the natural storm effects on flood responses quantitatively. This study suggests a novel method of quantitative analysis using unique factors extracted from the time series of storms and floods to investigate the relationship between natural storms and their corresponding flood responses. We used a distributed rainfall-runoff model of Grid based Rainfall-runoff Model (GRM) to generate the simulated flow and areal rainfall for 50 catchments in Republic of Korea size from 5.6 km2 to 1584.2 km2, which are including overlapped dependent catchments and non-overlapped independent catchments. The parameters of the GRM model were calibrated to get the good model performances of Nash-Sutcliffe efficiency. Then Flood-Intensity-Duration Curve (FIDC) and Rainfall-Intensity-Duration Curve (RIDC) were generated by Flood-Duration-Frequency and Intensity-Duration-Frequency methods respectively using the time series of hydrographs and hyetographs. Time of concentration developed for the Korea catchments was used as a consistent measure to extract the unique factors from the FIDC and RIDC over the different size of catchments. These unique factors for the storms and floods were analyzed against the different size of catchments to investigate the natural storm effects on floods. This method can be easily used to get the intuition of the natural storm effects with various patterns on flood responses. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  19. Floods and human health: a systematic review.

    Science.gov (United States)

    Alderman, Katarzyna; Turner, Lyle R; Tong, Shilu

    2012-10-15

    Floods are the most common type of disaster globally, responsible for almost 53,000 deaths in the last decade alone (23:1 low- versus high-income countries). This review assessed recent epidemiological evidence on the impacts of floods on human health. Published articles (2004-2011) on the quantitative relationship between floods and health were systematically reviewed. 35 relevant epidemiological studies were identified. Health outcomes were categorized into short- and long-term and were found to depend on the flood characteristics and people's vulnerability. It was found that long-term health effects are currently not well understood. Mortality rates were found to increase by up to 50% in the first year post-flood. After floods, it was found there is an increased risk of disease outbreaks such as hepatitis E, gastrointestinal disease and leptospirosis, particularly in areas with poor hygiene and displaced populations. Psychological distress in survivors (prevalence 8.6% to 53% two years post-flood) can also exacerbate their physical illness. There is a need for effective policies to reduce and prevent flood-related morbidity and mortality. Such steps are contingent upon the improved understanding of potential health impacts of floods. Global trends in urbanization, burden of disease, malnutrition and maternal and child health must be better reflected in flood preparedness and mitigation programs. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Two-dimensional Model of Ciliwung River Flood in DKI Jakarta for Development of the Regional Flood Index Map

    Directory of Open Access Journals (Sweden)

    Adam Formánek

    2013-12-01

    Full Text Available The objective of this study was to present a sophisticated method of developing supporting material for flood control implementation in DKI Jakarta. High flow rates in the Ciliwung River flowing through Jakarta regularly causes extensive flooding in the rainy season. The affected area comprises highly densely populated villages. For developing an efficient early warning system in view of decreasing the vulnerability of the locations a flood index map has to be available. This study analyses the development of a flood risk map of the inundation area based on a two-dimensional modeling using FESWMS. The reference event used for the model was the most recent significant flood in 2007. The resulting solution represents flood characteristics such as inundation area, inundation depth and flow velocity. Model verification was performed by confrontation of the results with survey data. The model solution was overlaid with a street map of Jakarta. Finally, alternatives for flood mitigation measures are discussed.

  1. Alkaline Activator Impact on the Geopolymer Binders

    Science.gov (United States)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  2. Alkaline fuel cell technology in the lead

    International Nuclear Information System (INIS)

    Nor, J.K.

    2004-01-01

    The Alkaline Fuel Cell (AFC) was the first fuel cell successfully put into practice, a century after William Grove patented his 'hydrogen battery' in 1839. The space program provided the necessary momentum, and alkaline fuel cells became the power source for both the U.S. and Russian manned space flight. Astris Energi's mission has been to bring this technology down to earth as inexpensive, rugged fuel cells for everyday applications. The early cells, LABCELL 50 and LABCELL 200 were aimed at deployment in research labs, colleges and universities. They served well in technology demonstration projects such as the 1998 Mini Jeep, 2001 Golf Car and a series of portable and stationary fuel cell generators. The present third generation POWERSTACK MC250 poised for commercialization is being offered to AFC system integrators as a building block of fuel cell systems in numerous portable, stationary and transportation applications. It is also used in Astris' own E7 and E8 alkaline fuel cell generators. Astris alkaline technology leads the way toward economical, plentiful fuel cells. The paper highlights the progress achieved at Astris, improvements of performance, durability and simplicity of use, as well as the current and future thrust in technology development and commercialization. (author)

  3. Assessment of flood risk in Tokyo metropolitan area

    Science.gov (United States)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments

  4. Flood Progression Modelling and Impact Analysis

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Nickerson, B.

    People living in the lower valley of the St. John River, New Brunswick, Canada, frequently experience flooding when the river overflows its banks during spring ice melt and rain. To better prepare the population of New Brunswick for extreme flooding, we developed a new flood prediction model...

  5. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  6. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  7. Seed Priming Improves Agronomic Trait Performance under Flooding and Non-flooding Conditions in Rice with QTL SUB1

    Directory of Open Access Journals (Sweden)

    Ramni Kumar SARKAR

    2012-12-01

    Full Text Available Farmers in South East Asia are adopting rice crop establishment methods from transplanting to direct wet or dry seeding as it requires less labour and time and comparatively less energy than transplanting. In contrast to irrigated condition, in rainfed lowland, direct seeding is a common practice. Early flooding controls weeds but decreases seedling establishment in direct seeded rice. Anaerobic germination is an important trait to counteract damages caused by early flooding. Management options which can help in crop establishment and improve crop growth under flooding might remove the constraints related to direct seeding. The investigation was carried out with two near isogenic lines Swarna and Swarna-Sub1. Swarna-Sub1 is tolerant to submergence whereas Swarna is susceptible. Seed priming was done with water and 2% Jamun (Syzygium cumini leaf extract, and it improved seedling establishment under flooding. Acceleration of growth occurred due to seed pretreatment, which resulted longer seedling and greater accumulation of biomass. Seed priming greatly hastened the activities of total amylase and alcohol dehydrogenase in Swarna-Sub1 than in Swarna. Swarna-Sub1 outperformed Swarna when the plants were cultivated under flooding. Weed biomass decreased significantly under flooding compared to non-flooding conditions. Seed priming had positive effects on yield and yield attributing parameters both under non-flooding and early flooding conditions.

  8. Serum alkaline phosphatase screening for vitamin D deficiency states

    International Nuclear Information System (INIS)

    Shaheen, S.; Barrakzai, Q.

    2012-01-01

    Objective: To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Study Design: Cross-sectional, observational study. Place and Duration of Study: Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Methodology: Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D/sub 3/ levels of greater or equal to 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D/sub 3/ = 20-29 ng/ml), moderate deficiency (vit. D/sub 3/ = 5 - 19 ng/ml) and severe deficiency forms (vit. D/sub 3/ < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D/sub 3/ levels. P-value < 0.05 was considered to be significant. Results: Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 +- 68.14I U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D/sub 3/ levels was r =0.05 (p =0.593). Conclusion: Serum vitamin D/sub 3/ levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency. (author)

  9. Environment Agency England flood warning systems

    Science.gov (United States)

    Strong, Chris; Walters, Mark; Haynes, Elizabeth; Dobson, Peter

    2015-04-01

    Context In England around 5 million homes are at risk of flooding. We invest significantly in flood prevention and management schemes but we can never prevent all flooding. Early alerting systems are fundamental to helping us reduce the impacts of flooding. The Environment Agency has had the responsibility for flood warning since 1996. In 2006 we invested in a new dissemination system that would send direct messages to pre-identified recipients via a range of channels. Since then we have continuously improved the system and service we offer. In 2010 we introduced an 'opt-out' service where we pre-registered landline numbers in flood risk areas, significantly increasing the customer base. The service has performed exceptionally well under intense flood conditions. Over a period of 3 days in December 2013, when England was experiencing an east coast storm surge, the system sent nearly 350,000 telephone messages, 85,000 emails and 70,000 text messages, with a peak call rate of around 37,000 per hour and 100% availability. The Floodline Warnings Direct (FWD) System FWD provides warnings in advance of flooding so that people at risk and responders can take action to minimise the impact of the flood. Warnings are sent via telephone, fax, text message, pager or e-mail to over 1.1 million properties located within flood risk areas in England. Triggers for issuing alerts and warnings include attained and forecast river levels and rainfall in some rapidly responding locations. There are three levels of warning: Flood Alert, Flood Warning and Severe Flood Warning, and a stand down message. The warnings can be updated to include relevant information to help inform those at risk. Working with our current provider Fujitsu, the system is under a programme of continuous improvement including expanding the 'opt-out' service to mobile phone numbers registered to at risk addresses, allowing mobile registration to the system for people 'on the move' and providing access to

  10. Identification and classification of Serbia's historic floods

    Directory of Open Access Journals (Sweden)

    Prohaska Stevan

    2009-01-01

    Full Text Available River flooding in Serbia is a natural phenomenon which largely exceeds the scope of water management and hydraulic engineering, and has considerable impact on the development of Serbian society. Today, the importance and value of areas threatened by floods are among the key considerations of sustainable development. As a result, flood protection techniques and procedures need to be continually refined and updated, following innovations in the fields of science and technology. Knowledge of high flows is key for sizing hydraulic structures and for gauging the cost-effectiveness and safety of the component structures of flood protection systems. However, sizing of hydraulic structures based on computed high flows does not ensure absolute safety; there is a residual flood risk and a risk of structural failure, if a flood exceeds computed levels. In hydrological practice, such floods are often referred to as historic/loads. The goal of this paper is to present a calculation procedure for the objective identification of historic floods, using long, multiple-year series of data on high flows of natural watercourses in Serbia. At its current stage of development, the calculation procedure is based on maximum annual discharges recorded at key monitoring stations of the Hydro-Meteorological Service of Serbia (HMS Serbia. When applied, the procedure results in the identification of specific historic maximum stages/floods (if any at all gauge sites included in the analysis. The probabilistic theory is then applied to assess the statistical significance of each identified historic flood and to classify the historic flood, as appropriate. At the end of the paper, the results of the applied methodology are shown in tabular and graphic form for various Serbian rivers. All identified historic floods are ranked based on their probability of occurrence (i.e., return period.

  11. Elevated Serum Level of Human Alkaline Phosphatase in Obesity

    International Nuclear Information System (INIS)

    Khan, A. R.; Awan, F. R.; Najam, S. S.; Islam, M.; Siddique, T.; Zain, M.

    2015-01-01

    Objective: To investigate a correlation between serum alkaline phosphatase level and body mass index in human subjects. Methods: The comparative cross-sectional study was carried out at the National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan, from April 2012 to June 2013. Blood serum alkaline phosphatase levels were estimated and the subjects were divided into three sub-groups on the basis of their body mass index: normal weight (<25kg/m2), overweight (25-27kg/m2) and obese (>27kg/m2) subjects. The serum samples were used for the estimation of clinically important biochemical parameters, using commercial kits on clinical chemistry analyser. Results: Of the 197 subjects, 97(49 percent) were obese and 100(51 percent) were non-obese. The serum alkaline phosphatase level increased in obese (214±6.4 IU/L) compared to the non-obese subjects (184.5±5 IU/L). Furthermore, a significant linear relationship (r=0.3;p-0.0001) was found between serum alkaline phosphatase and body mass index. Other biochemical variables were not correlated to the body mass index. Conclusion: Over activity and higher amounts of alkaline phosphatase were linked to the development of obesity. (author)

  12. BDHI: a French national database on historical floods

    Directory of Open Access Journals (Sweden)

    Lang Michel

    2016-01-01

    Full Text Available The paper describes the various features of the BDHI database (objects, functions, content. This document database provides document sheets on historical floods from various sources: technical reports from water authorities, scientific accounts (meteorology, hydrology, hydraulics..., post-disaster reports, newspapers or book extracts... It is complemented by fact sheets on flood events, which provide a summary text on significant past floods: location, date and duration, type of flood, extent, probability, adverse consequences A search engine is provided for information search based on time (specific date or period, on location (district, basin, city or thematic topic (document type, flood type, flood magnitude, flood impact.... We conclude by some future challenges in relation to the next cycle of the Floods Directive (2016-2022, with the inventory of past floods which had significant adverse impacts. What are the flood events that need to be integrated (new ones later than 2011 and/or previous floods that had not yet been selected? How can the process of historical data integration be extended at a local scale, with an adequate process of validation? How to promote the use of BDHI database in relation with the development of the culture of risk?

  13. Flood model for Brazil

    Science.gov (United States)

    Palán, Ladislav; Punčochář, Petr

    2017-04-01

    Looking on the impact of flooding from the World-wide perspective, in last 50 years flooding has caused over 460,000 fatalities and caused serious material damage. Combining economic loss from ten costliest flood events (from the same period) returns a loss (in the present value) exceeding 300bn USD. Locally, in Brazil, flood is the most damaging natural peril with alarming increase of events frequencies as 5 out of the 10 biggest flood losses ever recorded have occurred after 2009. The amount of economic and insured losses particularly caused by various flood types was the key driver of the local probabilistic flood model development. Considering the area of Brazil (being 5th biggest country in the World) and the scattered distribution of insured exposure, a domain covered by the model was limited to the entire state of Sao Paolo and 53 additional regions. The model quantifies losses on approx. 90 % of exposure (for regular property lines) of key insurers. Based on detailed exposure analysis, Impact Forecasting has developed this tool using long term local hydrological data series (Agencia Nacional de Aguas) from riverine gauge stations and digital elevation model (Instituto Brasileiro de Geografia e Estatística). To provide most accurate representation of local hydrological behaviour needed for the nature of probabilistic simulation, a hydrological data processing focused on frequency analyses of seasonal peak flows - done by fitting appropriate extreme value statistical distribution and stochastic event set generation consisting of synthetically derived flood events respecting realistic spatial and frequency patterns visible in entire period of hydrological observation. Data were tested for homogeneity, consistency and for any significant breakpoint occurrence in time series so the entire observation or only its subparts were used for further analysis. The realistic spatial patterns of stochastic events are reproduced through the innovative use of d-vine copula

  14. Partial purification and characterization of alkaline proteases from ...

    African Journals Online (AJOL)

    Alkaline proteases from the digestive tract of anchovy were partially purified by ammonium sulfate fractionation, dialysis and Sephadex G-75 gel filtration. The purification fold and yield were 6.23 and 4.49%, respectively. The optimum activities of partially purified alkaline proteases were observed at 60°C and at pH 11.0.

  15. Flood Risk Assessment as a Part of Integrated Flood and Drought Analysis. Case Study: Southern Thailand

    Science.gov (United States)

    Prabnakorn, Saowanit; Suryadi, Fransiscus X.; de Fraiture, Charlotte

    2015-04-01

    Flood and drought are two main meteorological catastrophes that have created adverse consequences to more than 80% of total casualties universally, 50% by flood and 31% by drought. Those natural hazards have the tendency of increasing frequency and degree of severity and it is expected that climate change will exacerbate their occurrences and impacts. In addition, growing population and society interference are the other key factors that pressure on and exacerbate the adverse impacts. Consequently, nowadays, the loss from any disasters becomes less and less acceptable bringing about more people's consciousness on mitigation measures and management strategies and policies. In general, due to the difference in their inherent characteristics and time occurrences flood and drought mitigation and protection have been separately implemented, managed, and supervised by different group of authorities. Therefore, the objective of this research is to develop an integrated mitigation measure or a management policy able to surmount both problems to acceptable levels and is conveniently monitored by the same group of civil servants which will be economical in both short- and long-term. As aforementioned of the distinction of fundamental peculiarities and occurrence, the assessment processes of floods and droughts are separately performed using their own specific techniques. In the first part of the research flood risk assessment is focused in order to delineate the flood prone area. The study area is a river plain in southern Thailand where flooding is influenced by monsoon and depression. The work is mainly concentrated on physically-based computational modeling and an assortment of tools was applied for: data completion, areal rainfall interpolation, statistical distribution, rainfall-runoff analysis and flow model simulation. The outcome from the simulation can be concluded that the flood prone areas susceptible to inundation are along the riparian areas, particularly at the

  16. Upstream Structural Management Measures for an Urban Area Flooding in Turkey and their Consequences on Flood Risk Management

    Science.gov (United States)

    Akyurek, Z.; Bozoglu, B.; Girayhan, T.

    2015-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies

  17. Flood forecasting and warning systems in Pakistan

    International Nuclear Information System (INIS)

    Ali Awan, Shaukat

    2004-01-01

    Meteorologically, there are two situations which may cause three types of floods in Indus Basin in Pakistan: i) Meteorological Situation for Category-I Floods when the seasonal low is a semi permanent weather system situated over south eastern Balochistan, south western Punjab, adjoining parts of Sindh get intensified and causes the moisture from the Arabian Sea to be brought up to upper catchments of Chenab and Jhelum rivers. (ii) Meteorological Situation for Category-11 and Category-111 Floods, which is linked with monsoon low/depression. Such monsoon systems originate in Bay of Bengal region and then move across India in general west/north westerly direction arrive over Rajasthan or any of adjoining states of India. Flood management in Pakistan is multi-functional process involving a number of different organizations. The first step in the process is issuance of flood forecast/warning, which is performed by Pakistan Meteorological Department (PMD) utilizing satellite cloud pictures and quantitative precipitation measurement radar data, in addition to the conventional weather forecasting facilities. For quantitative flood forecasting, hydrological data is obtained through the Provincial Irrigation Department and WAPDA. Furthermore, improved rainfall/runoff and flood routing models have been developed to provide more reliable and explicit flood information to a flood prone population.(Author)

  18. Can we predict the next urban flood?

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer

    2015-01-01

    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numericallyboth...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 hours leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs...... to an integrated flood and drainage systems model with the purpose to investigate the potential for predicting future floods. The system is tested on a small town Lystrup in Denmark, which has been recently flooded. Results show that it is possible to generate detailed flood maps in real-time with high resolution...

  19. A generally applicable sequential alkaline phosphatase immunohistochemical double staining

    NARCIS (Netherlands)

    van der Loos, Chris M.; Teeling, Peter

    2008-01-01

    A universal type of sequential double alkaline phosphatase immunohistochemical staining is described that can be used for formalin-fixed, paraffin-embedded and cryostat tissue sections from human and mouse origin. It consists of two alkaline phosphatase detection systems including enzymatic

  20. A global flash flood forecasting system

    Science.gov (United States)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  1. 46 CFR 28.580 - Unintentional flooding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...

  2. Hydrochemical aspects of the Aue pit flooding

    International Nuclear Information System (INIS)

    Meyer, J.; Jenk, U.; Schuppan, W.; Knappik, R.

    1998-01-01

    WISMUT is conducting controlled flooding of underground mines at the Schlema-Alberoda and Poehla sites. Flooding of the Poehla mine lasted from January 1992 through September 1995. Flooding at the Niederschlema-Alberoda site began in July 1990 and will continue to approximately 2002. In mid-1998 the flood level had reached the - 420 m level which is about 1,400 m above the lowest mine level. Only ground waters with low mineral and pollutant content are used for flooding purposes. Typically, the flooding process results in elevated levels of mineral salts and of uranium, radium, arsenic, iron, and manganese in flooding waters. However, the mobilised part of these contaminants represents only a small fraction of potential concentrations contained in the surrounding rock. Geochemical and hydrochemical conditions at both mines are characterised by the presence of carbonate buffers and by neutral pH and intermediate to low Eh. Decrease due to oxidation of sulphides in the long term is unlikely. Environmentally relevant metals in flooding waters may be dissolved, colloidal, or suspended solids with uranium present as uranyl carbonate complexes. Intensity of mobilisation is primarily a function of kinetic processes. Post flooding conditions at the Poehla subsite exhibit specific hydrochemical phenomena such as extremely reduced SO 4 concentrations and an increase in Ra concentrations over time. Continued flood monitoring will provide the basis for more in-depth interpretation and prognosis of contaminant mobilisation. Current investigations focus on technically feasible in situ control of mine flooding at the Schlema-Alberoda site to reduce contaminant mobilisation. At both sites water treatment plants are either on stream or under construction. (orig.)

  3. Flood maps in Europe – methods, availability and use

    Directory of Open Access Journals (Sweden)

    J. C. J. H. Aerts

    2009-03-01

    Full Text Available To support the transition from traditional flood defence strategies to a flood risk management approach at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC at the end of 2007. One of the major tasks which member states must carry out in order to comply with this Directive is to map flood hazards and risks in their territory, which will form the basis of future flood risk management plans. This paper gives an overview of existing flood mapping practices in 29 countries in Europe and shows what maps are already available and how such maps are used. Roughly half of the countries considered have maps covering as good as their entire territory, and another third have maps covering significant parts of their territory. Only five countries have very limited or no flood maps available yet. Of the different flood maps distinguished, it appears that flood extent maps are the most commonly produced floods maps (in 23 countries, but flood depth maps are also regularly created (in seven countries. Very few countries have developed flood risk maps that include information on the consequences of flooding. The available flood maps are mostly developed by governmental organizations and primarily used for emergency planning, spatial planning, and awareness raising. In spatial planning, flood zones delimited on flood maps mainly serve as guidelines and are not binding. Even in the few countries (e.g. France, Poland where there is a legal basis to regulate floodplain developments using flood zones, practical problems are often faced which reduce the mitigating effect of such binding legislation. Flood maps, also mainly extent maps, are also created by the insurance industry in Europe and used to determine insurability, differentiate premiums, or to assess long-term financial solvency. Finally, flood maps are also produced by international river commissions. With respect to the EU Flood Directive, many countries already have a good starting

  4. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    Science.gov (United States)

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. FEMA DFIRM Flood Hazard Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  6. Evaluation of internal flooding in a BWR

    International Nuclear Information System (INIS)

    Shiu, K.; Papazoglou, I.A.; Sun, Y.H.; Anavim, E.; Ilberg, D.

    1985-01-01

    Flooding inside a nuclear power station is capable of concurrently disabling redundant safety systems. This paper presents the results of a recent review study performed on internally-generated floods inside a boiling water reactor (BWR) reactor building. The study evaluated the flood initiator frequency due to either maintenance or ruptures using Markovian models. A time phased event tree approach was adopted to quantify the core damage frequency based on the flood initiator frequency. It is found in the study that the contribution to the total core damage due to internal flooding events is not insignificant and is comparable to other transient contributors. The findings also indicate that the operator plays an important role in the prevention as well as the mitigation of a flooding event

  7. FEMA 100 year Flood Data

    Data.gov (United States)

    California Natural Resource Agency — The Q3 Flood Data product is a digital representation of certain features of FEMA's Flood Insurance Rate Map (FIRM) product, intended for use with desktop mapping...

  8. Acid transformation of bauxite residue: Conversion of its alkaline characteristics

    OpenAIRE

    Kong, X.; Li, M.; Xue, S.; Hartley, W.; Chen, C.; Wu, C.; Li, X.; Li, Y.

    2016-01-01

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and...

  9. More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2018-05-01

    Flood risks across the Pearl River basin, China, were evaluated using a peak flood flow dataset covering a period of 1951-2014 from 78 stations and historical flood records of the past 1000 years. The generalized extreme value (GEV) model and the kernel estimation method were used to evaluate frequencies and risks of hazardous flood events. Results indicated that (1) no abrupt changes or significant trends could be detected in peak flood flow series at most of the stations, and only 16 out of 78 stations exhibited significant peak flood flow changes with change points around 1990. Peak flood flow in the West River basin increased and significant increasing trends were identified during 1981-2010; decreasing peak flood flow was found in coastal regions and significant trends were observed during 1951-2014 and 1966-2014. (2) The largest three flood events were found to cluster in both space and time. Generally, basin-scale flood hazards can be expected in the West and North River basins. (3) The occurrence rate of floods increased in the middle Pearl River basin but decreased in the lower Pearl River basin. However, hazardous flood events were observed in the middle and lower Pearl River basin, and this is particularly true for the past 100 years. However, precipitation extremes were subject to moderate variations and human activities, such as building of levees, channelization of river systems, and rapid urbanization; these were the factors behind the amplification of floods in the middle and lower Pearl River basin, posing serious challenges for developing measures of mitigation of flood hazards in the lower Pearl River basin, particularly the Pearl River Delta (PRD) region.

  10. Alkaline and non-aqueous proton-conducting pouch-cell batteries

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun

    2018-01-02

    Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.

  11. The use of a flood index to characterise flooding in the north-eastern region of Bangladesh

    Directory of Open Access Journals (Sweden)

    Bhattacharya B.

    2016-01-01

    Full Text Available Flooding in the Haor region in the north-east of Bangladesh is presented in this paper. A haor is a saucershaped depression, which is used during the dry period (Dec to mid-May for agriculture and as a fishery during the wet period (Jun-Nov. Pre-monsoon flooding till mid-May causes agricultural loss. The area is bordering India, and is fed by some flashy Indian catchments. The area is drained mainly by the Surma-Kushiyara river system. The terrain generally is flat and the flashy characteristics die out within a short distance from the border. Limited studies on the region, particularly with the help of numerical models, have been carried out in the past. Therefore, an objective of the current research was to set up numerical models capable of reasonably emulating the physical system. Such models could, for example, associate different gauges to the spatio-temporal variation of hydrodynamic variables and help in carrying out a systemic study on the flood propagation. A 1D2D model, with one-dimensional model for the rivers (based on MIKE 11 from DHI and a two-dimensional model for the haors (based on MIKE 21 from DHI were developed. In order to characterize flooding in the large area a flood index is proposed, which is computed based on the hydrograph characteristics such as the rising curve gradient, flood magnitude ratio and time to peak. The index was used in characterising flooding in the Haor region. In general, two groups of rivers were identified. The study enabled identifying the hot-spots in the study area with risks from flooding.

  12. FEMA DFIRM Base Flood Elevations

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally,...

  13. Base Flood Elevation (BFE) Lines

    Data.gov (United States)

    Department of Homeland Security — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally if...

  14. Risk-trading in flood management: An economic model.

    Science.gov (United States)

    Chang, Chiung Ting

    2017-09-15

    Although flood management is no longer exclusively a topic of engineering, flood mitigation continues to be associated with hard engineering options. Flood adaptation or the capacity to adapt to flood risk, as well as a demand for internalizing externalities caused by flood risk between regions, complicate flood management activities. Even though integrated river basin management has long been recommended to resolve the above issues, it has proven difficult to apply widely, and sometimes even to bring into existence. This article explores how internalization of externalities as well as the realization of integrated river basin management can be encouraged via the use of a market-based approach, namely a flood risk trading program. In addition to maintaining efficiency of optimal resource allocation, a flood risk trading program may also provide a more equitable distribution of benefits by facilitating decentralization. This article employs a graphical analysis to show how flood risk trading can be implemented to encourage mitigation measures that increase infiltration and storage capacity. A theoretical model is presented to demonstrate the economic conditions necessary for flood risk trading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. A method was developed to determine the probabilistic flood hazard curves for SRS facilities. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  16. Urban flood simulation based on the SWMM model

    Directory of Open Access Journals (Sweden)

    L. Jiang

    2015-05-01

    Full Text Available China is the nation with the fastest urbanization in the past decades which has caused serious urban flooding. Flood forecasting is regarded as one of the important flood mitigation methods, and is widely used in catchment flood mitigation, but is not widely used in urban flooding mitigation. This paper, employing the SWMM model, one of the widely used urban flood planning and management models, simulates the urban flooding of Dongguan City in the rapidly urbanized southern China. SWMM is first set up based on the DEM, digital map and underground pipeline network, then parameters are derived based on the properties of the subcatchment and the storm sewer conduits; the parameter sensitivity analysis shows the parameter robustness. The simulated results show that with the 1-year return period precipitation, the studied area will have no flooding, but for the 2-, 5-, 10- and 20-year return period precipitation, the studied area will be inundated. The results show the SWMM model is promising for urban flood forecasting, but as it has no surface runoff routing, the urban flooding could not be forecast precisely.

  17. Social media for disaster response during floods

    Science.gov (United States)

    Eilander, D.; van de Vries, C.; Baart, F.; van Swol, R.; Wagemaker, J.; van Loenen, A.

    2015-12-01

    During floods it is difficult to obtain real-time accurate information about the extent and severity of the hazard. This information is very important for disaster risk reduction management and crisis relief organizations. Currently, real-time information is derived from few sources such as field reports, traffic camera's, satellite images and areal images. However, getting a real-time and accurate picture of the situation on the ground remains difficult. At the same time, people affected by natural hazards increasingly share their observations and their needs through digital media. Unlike conventional monitoring systems, Twitter data contains a relatively large number of real-time ground truth observations representing both physical hazard characteristics and hazard impacts. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at almost 900 tweets per minute during floods in early 2015. Flood events around the world in 2014/2015 yielded large numbers of flood related tweets: from Philippines (85.000) to Pakistan (82.000) to South-Korea (50.000) to Detroit (20.000). The challenge here is to filter out useful content from this cloud of data, validate these observations and convert them to readily usable information. In Jakarta, flood related tweets often contain information about the flood depth. In a pilot we showed that this type of information can be used for real-time mapping of the flood extent by plotting these observations on a Digital Elevation Model. Uncertainties in the observations were taken into account by assigning a probability to each observation indicating its likelihood to be correct based on statistical analysis of the total population of tweets. The resulting flood maps proved to be correct for about 75% of the neighborhoods in Jakarta. Further cross-validation of flood related tweets against (hydro-) meteorological data is to likely improve the skill of the method.

  18. The use of Natural Flood Management to mitigate local flooding in the rural landscape

    Science.gov (United States)

    Wilkinson, Mark; Quinn, Paul; Ghimire, Sohan; Nicholson, Alex; Addy, Steve

    2014-05-01

    The past decade has seen increases in the occurrence of flood events across Europe, putting a growing number of settlements of varying sizes at risk. The issue of flooding in smaller villages is usually not well publicised. In these small communities, the cost of constructing and maintaining traditional flood defences often outweigh the potential benefits, which has led to a growing quest for more cost effective and sustainable approaches. Here we aim to provide such an approach that alongside flood risk reduction, also has multipurpose benefits of sediment control, water quality amelioration, and habitat creation. Natural flood management (NFM) aims to reduce flooding by working with natural features and characteristics to slow down or temporarily store flood waters. NFM measures include dynamic water storage ponds and wetlands, interception bunds, channel restoration and instream wood placement, and increasing soil infiltration through soil management and tree planting. Based on integrated monitoring and modelling studies, we demonstrate the potential to manage runoff locally using NFM in rural systems by effectively managing flow pathways (hill slopes and small channels) and by exploiting floodplains and buffers strips. Case studies from across the UK show that temporary storage ponds (ranging from 300 to 3000m3) and other NFM measures can reduce peak flows in small catchments (5 to 10 km2) by up to 15 to 30 percent. In addition, increasing the overall effective storage capacity by a network of NFM measures was found to be most effective for total reduction of local flood peaks. Hydraulic modelling has shown that the positioning of such features within the catchment, and how they are connected to the main channel, may also affect their effectiveness. Field evidence has shown that these ponds can collect significant accumulations of fine sediment during flood events. On the other hand, measures such as wetlands could also play an important role during low flow

  19. Modeling Compound Flood Hazards in Coastal Embayments

    Science.gov (United States)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the

  20. Combining Satellite Measurements and Numerical Flood Prediction Models to Save Lives and Property from Flooding

    Science.gov (United States)

    Saleh, F.; Garambois, P. A.; Biancamaria, S.

    2017-12-01

    Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.

  1. 2013 FEMA Flood Control Structures

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  2. 2013 FEMA Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  3. FEMA Q3 Flood Data

    Data.gov (United States)

    Kansas Data Access and Support Center — The Q3 Flood Data are derived from the Flood Insurance Rate Maps (FIRMS) published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to...

  4. Flash floods in Catalonia: a recurrent situation

    Science.gov (United States)

    Llasat, M. C.; Lindbergh, S.; Llasat-Botija, M.; Rodríguez, A.; Zaragoza, A.

    2009-09-01

    A database with information about the social impact produced by all the flood events recorded in Catalonia between 1982 and 2007 has been built. Original information comes from the INUNGAMA database (1900-2000) presented by Barnolas and Llasat (2007), the PRESSGAMA database (1982-2007) (Llasat et al., in rev.) and information from different published works (Barriendos et al, 2003; Barriendos and Pomés, 1993). Social impact has been obtained systematically in basis to news press data and, occasionally, in basis to insurance data. Flood events have been classified in ordinary floods, extraordinary floods and catastrophic ones, following the proposal of Llasat et al (2005). However, having in mind the flash floods effects, some new categories concerning casualties and car damages have also been introduced. The spatial and temporal distribution of these flood events has been analysed. Results have been compared with those obtained for the period 1900-2000 (Barnolas and Llasat, 2007) and 1350-2000 (Barrera et al, 2006). In order to better estimate the social impact and vulnerability some indicators have been defined and analyzed for some specific cases and a specific region. Besides the indicators applied in the INUNCAT Plan to obtain a cartography of flood risk in Catalonia, other ones like the number of cars affected or the number of request received by the meteorological service, has been also taken into account. These indicators allow analyzing global and temporal trends as well as characterizing the events. The selected region has been the Maresme, which is a flood prone region with a great density of population and that experiences every year one or more flash floods. The annual number of floods shows a positive trend that cannot be justified by the rainfall trend. Both vulnerability and hazard components have been considered and a discussion about the flood prevention measures is presented. The third part of this work has been centred in the analysis and

  5. Drivers of flood damage on event level

    DEFF Research Database (Denmark)

    Kreibich, H.; Aerts, J. C. J. H.; Apel, H.

    2016-01-01

    example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number......-level mitigation measures, 3) more effective early warning and improved coordination of disaster response and 4) a more targeted maintenance of flood defence systems and their deliberate relocation. Thus, despite higher hydrological severity damage due to the 2013 flood was significantly lower than in 2002. In our...

  6. Collecting data for quantitative research on pluvial flooding

    NARCIS (Netherlands)

    Spekkers, M.H.; Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.

    2011-01-01

    Urban pluvial flood management requires detailed spatial and temporal information on flood characteristics and damaging consequences. There is lack of quantitative field data on pluvial flooding resulting in large uncertainties in urban flood model calculations and ensuing decisions for investments

  7. Discover Floods Educators Guide

    Science.gov (United States)

    Project WET Foundation, 2009

    2009-01-01

    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  8. Effects of sulfur in flooded paddy soils: Implications for iron chemistry and arsenic mobilization

    Science.gov (United States)

    Avancha, S.; Boye, K.

    2013-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (amplified by erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Iron and sulfur both interact strongly with arsenic in paddy soils: iron oxides are strong adsorbents for arsenic in oxic conditions, and sulfur (in the form of sulfide) is a strong adsorbent under anoxic conditions. In the process of reductive dissolution of iron oxides, arsenic, which had been adsorbed to the iron oxides, is released. Therefore, higher levels of reduced iron (ferrous iron) will likely correlate with higher levels of mobilized arsenic. However, the mobilized arsenic may then co-precipitate with or adsorb to iron sulfides, which form under sulfate-reducing conditions and with the aid of certain microbes already present in the soil. In a batch experiment, we investigated how these processes correlate and which has the greatest influence on arsenic mobilization and potential plant availability. The experiment was designed to measure the effects of various sources of sulfur (dried rice straw, charred rice straw, and gypsum) on the iron and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. The two types of rice straw were designed to introduce the same amount of organic sulfur (7.7 μg/g of soil), but different levels of available carbon, since carbon stimulates microbial activity in the soil. In comparison, two different levels of gypsum (calcium sulfate) were used, 7.7 and 34.65 μg/g of soil, to test the effect of directly available inorganic sulfate without carbon addition. The soil was flooded with a buffer solution at pH 7.07 in airtight serum vials and kept as a slurry on a shaker at 25 °C. We measured pH, alkalinity, ferrous iron, ferric iron, sulfide, sulfate, total iron, sulfur, and arsenic in the

  9. Flood Catastrophe Model for Designing Optimal Flood Insurance Program: Estimating Location-Specific Premiums in the Netherlands.

    Science.gov (United States)

    Ermolieva, T; Filatova, T; Ermoliev, Y; Obersteiner, M; de Bruijn, K M; Jeuken, A

    2017-01-01

    As flood risks grow worldwide, a well-designed insurance program engaging various stakeholders becomes a vital instrument in flood risk management. The main challenge concerns the applicability of standard approaches for calculating insurance premiums of rare catastrophic losses. This article focuses on the design of a flood-loss-sharing program involving private insurance based on location-specific exposures. The analysis is guided by a developed integrated catastrophe risk management (ICRM) model consisting of a GIS-based flood model and a stochastic optimization procedure with respect to location-specific risk exposures. To achieve the stability and robustness of the program towards floods with various recurrences, the ICRM uses stochastic optimization procedure, which relies on quantile-related risk functions of a systemic insolvency involving overpayments and underpayments of the stakeholders. Two alternative ways of calculating insurance premiums are compared: the robust derived with the ICRM and the traditional average annual loss approach. The applicability of the proposed model is illustrated in a case study of a Rotterdam area outside the main flood protection system in the Netherlands. Our numerical experiments demonstrate essential advantages of the robust premiums, namely, that they: (1) guarantee the program's solvency under all relevant flood scenarios rather than one average event; (2) establish a tradeoff between the security of the program and the welfare of locations; and (3) decrease the need for other risk transfer and risk reduction measures. © 2016 Society for Risk Analysis.

  10. Water supply and tree growth. Part II. Flooding

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T.

    1982-02-01

    Continuous or periodic flooding of soil with fresh or salt water is a common occurrence. Although flooding rapidly depletes soil oxygen the problem of poor soil aeration also exists in extensive areas of unflooded, fine-textured soils. Compounds that may be phytotoxic and accumulate in flooded soils include ethanol, acetaldehyde, cyanogenic compounds, sulphides, CO/sub 2/, iron, manganese, ethane, propylene, fatty acids, hydroxy and dicarboxylic acids, unsaturated acids, aldehydes, ketones, mercaptans, and ethylene. Flooding affects seed germination, stomatal aperture, photosynthesis, permeability of roots, mineral relations, and growth and survival of trees. Although growth of most trees is reduced by flooding it is sometimes increased in a few flood-tolerant species. Flood tolerance of trees varies widely with species, age of trees, and periodicity, duration, and season of occurrence of flooding. Standing water is much more harmful than moving water. Physiological dysfunctions associated with flooding are complex and variously involve the influence of oxygen deficiency, excess CO/sub 2/, a variety of toxic compounds, and altered hormone metabolism. Flood tolerance involves both morphological and physiological adaptations. Important morphological adaptations include formation of lenticels and root regeneration. Physiological adaptations may reflect avoidance of accumulation of ethanol as well as capacity to oxidize the rhizosphere and to tolerate high CO/sub 2/ concentrations in the soil. Adaptations to flooding by salt water include mechanisms for both salt tolerance and avoidance.

  11. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea

    Science.gov (United States)

    Kim, Eung Seok; Choi, Hyun Il

    2012-01-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  12. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments

    Science.gov (United States)

    Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko

    2018-01-01

    This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to

  13. The spatial turn and the scenario approach in flood risk management—Implementing the European Floods Directive in the Netherlands

    Directory of Open Access Journals (Sweden)

    Leon J. van Ruiten

    2016-10-01

    Full Text Available The European Floods Directive requires member states to prepare flood risk management plans for their river catchments. The first generation of those plans was just developed at the end of 2015; the next revision is due in 2021. The new instrument institutionalizes an ongoing paradigm shift from flood protection to flood risk management in Europe. It implies two major governance challenges: the spatial turn and the scenario approach. This contribution studies the implementation of these two governance challenges in the Netherlands, where the paradigm shift is considered to be advanced. Therefore, the spatial turn and the scenario approach are operationalized. The spatial turn consists of three aspects: space for the river, an integrated approach, and beyond structural measures. The scenario approach introduces the vulnerability of society in flood risk management. It is discussed how the challenges of spatial turn and the scenario approach—and thus the shift towards flood risk management—have an effect on the prevailing modes of governance in water management in the Netherlands. This helps understand the tensions and frictions with implementing the plans, but also illustrates how the European Floods Directive institutionalizes the shift towards flood risk management. The analytical scheme, consists mainly of operationalization, can foster future comparative studies with other countries and over time, to trace the changes in approaches to flood risks in Europe.

  14. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico

    Science.gov (United States)

    Haer, Toon; Botzen, W. J. Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M.; Ward, Philip J.

    2018-06-01

    Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  15. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Science.gov (United States)

    Hagemeier-Klose, M.; Wagner, K.

    2009-04-01

    Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  16. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Directory of Open Access Journals (Sweden)

    M. Hagemeier-Klose

    2009-04-01

    Full Text Available Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey.

    The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  17. The Historical Flood Of July 2008 From Vaser River Basin, Romania. Causes, Effects And Flood Control Actions

    Directory of Open Access Journals (Sweden)

    Sima Andrei

    2015-10-01

    Full Text Available Floods is an experience perceived by society as unexpected, unexplainable and traumatizing and nowadays a threat to humanity more than ever. Among the natural phenomena which negatively affect human activities, floods are the ones which usually have the most significant consequences. The research, evaluations and statistics related to these phenomena do not reveal the drama and serious consequences that come with floods. It was proven that the increase of these extreme hydrological phenomena it is closely related to the anthropic activities from the area. Vaser basin is the most significant sub-basin of Vișeu river basin, contributing with 28% from the total flow of Vișeu river. Having a strong touristic and economic potential, the basin is often threatened by flash floods which usually have devastating effects. During July 2008 there was recorded the most significant flood from the history of hydrometric activity that led to substantial damage and death among locals. The present paper aims to analyze this historical flood, identifying the causes, effects, as well as the methods to control this extreme hydric phenomenon.

  18. Nogales flood detention study

    Science.gov (United States)

    Norman, Laura M.; Levick, Lainie; Guertin, D. Phillip; Callegary, James; Guadarrama, Jesus Quintanar; Anaya, Claudia Zulema Gil; Prichard, Andrea; Gray, Floyd; Castellanos, Edgar; Tepezano, Edgar; Huth, Hans; Vandervoet, Prescott; Rodriguez, Saul; Nunez, Jose; Atwood, Donald; Granillo, Gilberto Patricio Olivero; Ceballos, Francisco Octavio Gastellum

    2010-01-01

    Flooding in Ambos Nogales often exceeds the capacity of the channel and adjacent land areas, endangering many people. The Nogales Wash is being studied to prevent future flood disasters and detention features are being installed in tributaries of the wash. This paper describes the application of the KINEROS2 model and efforts to understand the capacity of these detention features under various flood and urbanization scenarios. Results depict a reduction in peak flow for the 10-year, 1-hour event based on current land use in tributaries with detention features. However, model results also demonstrate that larger storm events and increasing urbanization will put a strain on the features and limit their effectiveness.

  19. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  20. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K. [Russian Academy of Sciences (Russian Federation). Inst. of Physical Chemistry

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  1. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    International Nuclear Information System (INIS)

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes

  2. Flood hazard assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  3. A methodology for flood risk appraisal in Lithuania

    Directory of Open Access Journals (Sweden)

    Kriščiukaitienė Irena

    2015-06-01

    Full Text Available This paper presents a methodology for flood risk mapping as envisaged by the Directive on the Assessment and Management of Flood Risks [Directive 2007/60/EC]. Specifically, we aimed at identifying the types of flood damage that can be estimated given data availability in Lithuania. Furthermore, we present the main sources of data and the associated cost functions. The methodology covers the following main types of flood threats: risk to inhabitants, risk to economic activity, and social risk. A multi-criteria framework for aggregation of different risks is proposed to provide a comprehensive appraisal of flood risk. On the basis of the proposed research, flood risk maps have been prepared for Lithuania. These maps are available for each type of flood risk (i.e. inhabitants, economic losses, social risk as well as for aggregate risk. The results indicate that flood risk management is crucial for western and central Lithuania, whereas other parts of the country are not likely to suffer from significant losses due to flooding.

  4. Elephant Butte Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  5. Evaluating the Effects of Metals on Microorganisms in Flooded Paddy Soils Using the SEM/AVS-Based Approach and Measurements of Exchangeable Metal Concentrations.

    Science.gov (United States)

    Kunito, Takashi; Toya, Hitomi; Sumi, Hirotaka; Ishikawa, Yuichi; Toda, Hideshige; Nagaoka, Kazunari; Saeki, Kazutoshi; Aikawa, Yoshio; Matsumoto, Satoshi

    2017-04-01

    We examined possible adverse effects of heavy metals on microbial activity, biomass, and community composition using the simultaneously extracted metals (SEM)/acid-volatile sulfide (AVS)-based approach and measurements of exchangeable metal concentrations in three paddy soils (wastewater-contaminated soil, mine-contaminated soil, and noncontaminated soil) incubated for 60 days under flooded conditions. Incubation under flooding increased pH and decreased Eh in all samples. AVS increased when Eh decreased to approximately -200 mV for the mine-contaminated and noncontaminated soils, while the wastewater-contaminated soil originally had a high concentration of AVS despite its air-dried condition. Addition of rice straw or alkaline material containing calcium carbonate and gypsum increased AVS levels under flooded conditions. We observed no apparent relationship between soil enzyme activity (β-D-glucosidase and acid phosphatase) and concentrations of SEM, [∑SEM - AVS], and exchangeable metals. Bacterial and fungal community composition, assessed using polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) analysis targeting rRNA genes, was largely influenced by site of collection and incubation time, but metal contamination did not influence community composition. We observed significant negative correlations between biomass C and [∑SEM - AVS] and between biomass C and ∑SEM, suggesting that [∑SEM - AVS] and ∑SEM might reflect the bioavailability of organic matter to microorganisms in these soils.

  6. National Flood Hazard Layer (NFHL)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are...

  7. Re-thinking urban flood management

    DEFF Research Database (Denmark)

    Sörensen, Johanna; Persson, Andreas; Sternudd, Catharina

    2016-01-01

    -term flood risk and harm the riverine ecosystems in urban as well as rural areas. In the present paper, we depart from resilience theory and suggest a concept to improve urban flood resilience. We identify areas where contemporary challenges call for improved collaborative urban flood management. The concept...... emphasizes resiliency and achieved synergy between increased capacity to handle stormwater runoff and improved experiential and functional quality of the urban environments. We identify research needs as well as experiments for improved sustainable and resilient stormwater management namely, flexibility...

  8. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    Science.gov (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  9. Decision Support for Flood Event Prediction and Monitoring

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Liang, Gengsheng

    2007-01-01

    In this paper the development of Web GIS based decision support system for flood events is presented. To improve flood prediction we developed the decision support system for flood prediction and monitoring that integrates hydrological modelling and CARIS GIS. We present the methodology for data...... integration, floodplain delineation, and online map interfaces. Our Web-based GIS model can dynamically display observed and predicted flood extents for decision makers and the general public. The users can access Web-based GIS that models current flood events and displays satellite imagery and digital...... elevation model integrated with flood plain area. The system can show how the flooding prediction based on the output from hydrological modeling for the next 48 hours along the lower Saint John River Valley....

  10. The necessity of flood risk maps on Timis River

    International Nuclear Information System (INIS)

    Aldescu, Geogr Catalin

    2008-01-01

    The paper aims to clarify the necessity of risk reduction in flood prone areas along the Timis River. Different methods to reduce risk in flood prone areas are analyzed as well. According to the EU Flood Directive it is mandatory for the European countries to develop flood maps and flood risk maps. The maps help to assess the vulnerable zones in the floodable (i.e. flood prone) areas. Many European countries have produced maps which identify areas prone to flooding events for specific known return periods. In Romania the flood risk maps have not been yet produced, but the process has been started to be implemented at the national and regional level, therefore the first results will be soon available. Banat Hydrographical Area was affected by severe floods on Timis River in 2000, 2005 and 2006. The 2005 flood was the most devastating one with large economic losses. As a result of these catastrophes the need for generating flood risk maps along the Timis. River was clearly stated. The water management experts can use these maps in order to identify the 'hot spots' in Timis catchment, give the people a better understanding of flood risk issues and help reducing flood risk more efficient in the identified vulnerable areas.

  11. Downflow limestone beds for treatment of net-acidic, oxic, iron-laden drainage from a flooded anthracite mine, Pennsylvania, USA: 2. Laboratory evaluation

    Science.gov (United States)

    Cravotta, C.A.; Ward, S.J.; Hammarstrom, J.M.

    2008-01-01

    Acidic mine drainage (AMD) containing elevated concentrations of dissolved iron and other metals can be neutralized to varying degrees by reactions with limestone in passive treatment systems. We evaluated the chemical and mineralogical characteristics and the effectiveness of calcitic and dolomitic limestone for the neutralization of net-acidic, oxic, iron-laden AMD from a flooded anthracite mine. The calcitic limestone, with CaCO3 and MgCO3 contents of 99.8 and treatment system in 2003 at the Bell Mine, a large source of AMD and baseflow to the Schuylkill River in the Southern Anthracite Coalfield, in east-central Pennsylvania. In the winter of 2002-2003, laboratory neutralization-rate experiments evaluated the evolution of effluent quality during 2 weeks of continuous contact between AMD from the Bell Mine and the crushed calcitic or dolomitic limestone in closed, collapsible containers (cubitainers). The cubitainer tests showed that: (1) net-alkaline effluent could be achieved with detention times greater than 3 h, (2) effluent alkalinities and associated dissolution rates were equivalent for uncoated and Fe(OH)3-coated calcitic limestone, and (3) effluent alkalinities and associated dissolution rates for dolomitic limestone were about half those for calcitic limestone. The dissolution rate data for the cubitainer tests were used with data on the volume of effuent and surface area of limestone in the treatment system at the Bell Mine to evaluate the water-quality data for the first 1.5 years of operation of the treatment system. These rate models supported the interpretation of field results and indicated that treatment benefits were derived mainly from the dissolution of calcitic limestone, despite a greater quantity of dolomitic limestone within the treatment system. The dissolution-rate models were extrapolated on a decadal scale to indicate the expected decreases in the mass of limestone and associated alkalinities resulting from the long-term reaction of

  12. Real-time flood extent maps based on social media

    Science.gov (United States)

    Eilander, Dirk; van Loenen, Arnejan; Roskam, Ruud; Wagemaker, Jurjen

    2015-04-01

    During a flood event it is often difficult to get accurate information about the flood extent and the people affected. This information is very important for disaster risk reduction management and crisis relief organizations. In the post flood phase, information about the flood extent is needed for damage estimation and calibrating hydrodynamic models. Currently, flood extent maps are derived from a few sources such as satellite images, areal images and post-flooding flood marks. However, getting accurate real-time or maximum flood extent maps remains difficult. With the rise of social media, we now have a new source of information with large numbers of observations. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at 8 tweets per second during floods in early 2014. A fair amount of these tweets also contains observations of water depth and location. Our hypothesis is that based on the large numbers of tweets it is possible to generate real-time flood extent maps. In this study we use tweets from the city of Jakarta, Indonesia, to generate these flood extent maps. The data-mining procedure looks for tweets with a mention of 'banjir', the Bahasa Indonesia word for flood. It then removes modified and retweeted messages in order to keep unique tweets only. Since tweets are not always sent directly from the location of observation, the geotag in the tweets is unreliable. We therefore extract location information using mentions of names of neighborhoods and points of interest. Finally, where encountered, a mention of a length measure is extracted as water depth. These tweets containing a location reference and a water level are considered to be flood observations. The strength of this method is that it can easily be extended to other regions and languages. Based on the intensity of tweets in Jakarta during a flood event we can provide a rough estimate of the flood extent. To provide more accurate flood extend

  13. Flood characteristics of the Haor area in Bangladesh

    Science.gov (United States)

    Suman, Asadusjjaman; Bhattacharya, Biswa

    2013-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Bangladesh is a country, which is frequently suffering from flooding. The current research is conducted in the framework of a project, which focuses on the flooding issues in the Haor region in the north-east of Bangladesh. A haor is a saucer-shaped depression, which is used during the dry period (December to mid-May) for agriculture and as a fishery during the wet period (June-November), and thereby presents a very interesting socio-economic perspective of flood risk management. Pre-monsoon flooding till mid-May causes agricultural loss and lot of distress whereas monsoon flooding brings benefits. The area is bordering India, thereby presenting trans-boundary issues as well, and is fed by some flashy Indian catchments. The area is drained mainly through the Surma-Kushiyara river system. The terrain generally is flat and the flashy characteristics die out within a short distance from the border. Limited studies on the region, particularly with the help of numerical models, have been carried out in the past. Therefore, an objective of the current research was to set up numerical models capable of reasonably emulating the physical system. Such models could, for example, associate different gauges to the spatio-temporal variation of hydrodynamic variables and help in carrying out a systemic study on the impact of climate changes. A 1D2D model, with one-dimensional model for the rivers (based on MIKE 11 modelling tool from Danish Hydraulic Institute) and a two

  14. Climate change track in river floods in Europe

    Directory of Open Access Journals (Sweden)

    Z. W. Kundzewicz

    2015-06-01

    Full Text Available A holistic perspective on changing river flood risk in Europe is provided. Economic losses from floods have increased, principally driven by the expanding exposure of assets at risk. Climate change (i.e. observed increase in precipitation intensity, decrease of snowpack and other observed climate changes might already have had an impact on floods. However, no gauge-based evidence had been found for a climate-driven, widespread change in the magnitude/frequency of floods during the last decades. There are strong regional and sub-regional variations in the trends. Moreover, it has not been generally possible to attribute rain-generated peak streamflow trends to anthropogenic climate change. Physical reasoning suggests that projected increases in the frequency and intensity of heavy rainfall would contribute to increases in rain-generated local floods, while less snowmelt flooding and earlier spring peak flows in snowmelt-fed rivers are expected. However, there is low confidence in future changes in flood magnitude and frequency resulting from climate change. The impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes. Discussion of projections of flood hazard in Europe is offered. Attention is drawn to a considerable uncertainty - over the last decade or so, projections of flood hazard in Europe have largely changed.

  15. Simulating Catchment Scale Afforestation for Mitigating Flooding

    Science.gov (United States)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  16. Normalised flood losses in Europe: 1970-2006

    Science.gov (United States)

    Barredo, J. I.

    2009-02-01

    This paper presents an assessment of normalised flood losses in Europe for the period 1970-2006. Normalisation provides an estimate of the losses that would occur if the floods from the past take place under current societal conditions. Economic losses from floods are the result of both societal and climatological factors. Failing to adjust for time-variant socio-economic factors produces loss amounts that are not directly comparable over time, but rather show an ever-growing trend for purely socio-economic reasons. This study has used available information on flood losses from the Emergency Events Database (EM-DAT) and the Natural Hazards Assessment Network (NATHAN). Following the conceptual approach of previous studies, we normalised flood losses by considering the effects of changes in population, wealth, and inflation at the country level. Furthermore, we removed inter-country price differences by adjusting the losses for purchasing power parities (PPP). We assessed normalised flood losses in 31 European countries. These include the member states of the European Union, Norway, Switzerland, Croatia, and the Former Yugoslav Republic of Macedonia. Results show no detectable sign of human-induced climate change in normalised flood losses in Europe. The observed increase in the original flood losses is mostly driven by societal factors.

  17. Impact of a flood disaster on sediment toxicity in a major river system - the Elbe flood 2002 as a case study

    International Nuclear Information System (INIS)

    Oetken, Matthias; Stachel, Burkhard; Pfenninger, Markus; Oehlmann, Joerg

    2005-01-01

    The ecotoxicological implications of a flooding disaster were investigated with the exceptional Elbe flood in August 2002 as an example. Sediment samples were taken shortly after the flood at 37 sites. For toxicity assessment the midge Chironomus riparius (Insecta) and the mudsnail Potamopyrgus antipodarum (Gastropoda) were exposed to the sediment samples for 28 days. For a subset of 19 sampling sites, the contamination level and the biological response of both species were also recorded before the flood in 2000. The direct comparison of biological responses at identical sites revealed significant differences for samples taken before and immediately after the flood. After flood sediments of the river Elbe caused both higher emergence rates in the midge and higher numbers of embryos in the mudsnail. Contrary to expectations the toxicity of the sediments decreased after the flood, probably because of a dilution of toxic substances along the river Elbe and a reduction in bioavailability of pollutants as a result of increasing TOC values after the flood. - The extraordinary Elbe flood in August 2002 did not result in an overall increase of environmental contamination

  18. Frequency and seasonality of flash floods in Slovenia

    Directory of Open Access Journals (Sweden)

    Trobec Tajan

    2017-01-01

    Full Text Available The purpose of this paper is to assess and analyse the dynamics of flash flooding events in Slovenia. The paper examines in particular the frequency of flash floods and their seasonal distribution. The methodology is based on the analysis of historical records and modern flood data. The results of a long-term frequency analysis of 138 flash floods that occurred between 1550 and 2015 are presented. Because of the lack of adequate historical flood data prior to 1950 the main analysis is based on data for the periodbetween1951 and2015, while the analysis of data for the period between1550 and1950 is added as a supplement to the main analysis. Analysis of data for the period after 1950 shows that on average 1.3 flash floods occur each year in Slovenia. The linear trend for the number of flash floods is increasing but is not statistically significant. Despite the fact that the majority of Slovenian rivers have one of the peaks in spring and one of the lows in summer, 90% of flash floods actually occur during meteorological summer or autumn - i.e. between June and November, which shows that discharge regimes and flood regimes are not necessarily related. Because of the lack of flood records from the more distant past as well as the large variability of flash flood events in the last several decades, we cannot provide a definitive answer to the question about possible changes in their frequency and seasonality by relying solely on the detected trends. Nevertheless, considering the results of analysis and future climate change scenarios the frequency of flash floods in Slovenia could increase while the period of flash flood occurrence could be extended.

  19. Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology

    International Nuclear Information System (INIS)

    Czajkowski, Jeffrey; Michel-Kerjan, Erwann; Villarini, Gabriele; Smith, James A

    2013-01-01

    In recent years, the United States has been severely affected by numerous tropical cyclones (TCs) which have caused massive damages. While media attention mainly focuses on coastal losses from storm surge, these TCs have inflicted significant devastation inland as well. Yet, little is known about the relationship between TC-related inland flooding and economic losses. Here we introduce a novel methodology that first successfully characterizes the spatial extent of inland flooding, and then quantifies its relationship with flood insurance claims. Hurricane Ivan in 2004 is used as illustration. We empirically demonstrate in a number of ways that our quantified inland flood magnitude produces a very good representation of the number of inland flood insurance claims experienced. These results highlight the new technological capabilities that can lead to a better risk assessment of inland TC flood. This new capacity will be of tremendous value to a number of public and private sector stakeholders dealing with disaster preparedness. (letter)

  20. Urban sprawl and flooding in southern California

    Science.gov (United States)

    Rantz, S.E.

    1970-01-01

    The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.

  1. Top flooding modeling with MAAP4 code

    International Nuclear Information System (INIS)

    Brunet-Thibault, E.; Marguet, S.

    2006-01-01

    An engineering top flooding model was developed in MAAP4.04d.4, the severe accident code used in EDF, to simulate the thermal-hydraulic phenomena that should take place if emergency core cooling (ECC) water was injected in hot leg during quenching. In the framework of the ISTC (International Science and Technology Centre), a top flooding test was proposed in the PARAMETER facility (Podolsk, Russia). The MAAP calculation of the PARAMETER top flooding test is presented in this paper. A comparison between top and bottom flooding was made on the bundle test geometry. According to this study, top flooding appears to cool quickly and effectively the upper plenum internals. (author)

  2. Scales of Natural Flood Management

    Science.gov (United States)

    Nicholson, Alex; Quinn, Paul; Owen, Gareth; Hetherington, David; Piedra Lara, Miguel; O'Donnell, Greg

    2016-04-01

    The scientific field of Natural flood Management (NFM) is receiving much attention and is now widely seen as a valid solution to sustainably manage flood risk whilst offering significant multiple benefits. However, few examples exist looking at NFM on a large scale (>10km2). Well-implemented NFM has the effect of restoring more natural catchment hydrological and sedimentological processes, which in turn can have significant flood risk and WFD benefits for catchment waterbodies. These catchment scale improvements in-turn allow more 'natural' processes to be returned to rivers and streams, creating a more resilient system. Although certain NFM interventions may appear distant and disconnected from main stem waterbodies, they will undoubtedly be contributing to WFD at the catchment waterbody scale. This paper offers examples of NFM, and explains how they can be maximised through practical design across many scales (from feature up to the whole catchment). New tools to assist in the selection of measures and their location, and to appreciate firstly, the flooding benefit at the local catchment scale and then show a Flood Impact Model that can best reflect the impacts of local changes further downstream. The tools will be discussed in the context of our most recent experiences on NFM projects including river catchments in the north east of England and in Scotland. This work has encouraged a more integrated approach to flood management planning that can use both traditional and novel NFM strategies in an effective and convincing way.

  3. The framing of two major flood episodes in the Irish print news media: Implications for societal adaptation to living with flood risk.

    Science.gov (United States)

    Devitt, Catherine; O'Neill, Eoin

    2017-10-01

    Societal adaptation to flooding is a critical component of contemporary flood policy. Using content analysis, this article identifies how two major flooding episodes (2009 and 2014) are framed in the Irish broadsheet news media. The article considers the extent to which these frames reflect shifts in contemporary flood policy away from protection towards risk management, and the possible implications for adaptation to living with flood risk. Frames help us make sense of the social world, and within the media, framing is an essential tool for communication. Five frames were identified: flood resistance and structural defences, politicisation of flood risk, citizen as risk manager, citizen as victim and emerging trade-offs. These frames suggest that public debates on flood management do not fully reflect shifts in contemporary flood policy, with negative implications for the direction of societal adaptation. Greater discussion is required on the influence of the media on achieving policy objectives.

  4. Flood simulation and verification with IoT sensors

    Science.gov (United States)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Huang, Sue-Wei

    2017-04-01

    2D flood dynamic simulation is a vivid tool to demonstrate the possible expose area that sustain impact of high rise of water level. Along with progress in high resolution digital terrain model, the simulation results are quite convinced yet not proved to be close to what is really happened. Due to the dynamic and uncertain essence, the expose area usually could not be well defined during a flood event. Recent development in IoT sensors bring a low power and long distance communication which help us to collect real time flood depths. With these time series of flood depths at different locations, we are capable of verifying the simulation results corresponding to the flood event. 16 flood gauges with IoT specification as well as two flood events in Annan district, Tainan city, Taiwan are examined in this study. During the event in 11, June, 2016, 12 flood gauges works well and 8 of them provide observation match to simulation.

  5. Validation of a Global Hydrodynamic Flood Inundation Model

    Science.gov (United States)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  6. Predicting Coastal Flood Severity using Random Forest Algorithm

    Science.gov (United States)

    Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.

    2017-12-01

    Coastal floods have become more common recently and are predicted to further increase in frequency and severity due to sea level rise. Predicting floods in coastal cities can be difficult due to the number of environmental and geographic factors which can influence flooding events. Built stormwater infrastructure and irregular urban landscapes add further complexity. This paper demonstrates the use of machine learning algorithms in predicting street flood occurrence in an urban coastal setting. The model is trained and evaluated using data from Norfolk, Virginia USA from September 2010 - October 2016. Rainfall, tide levels, water table levels, and wind conditions are used as input variables. Street flooding reports made by city workers after named and unnamed storm events, ranging from 1-159 reports per event, are the model output. Results show that Random Forest provides predictive power in estimating the number of flood occurrences given a set of environmental conditions with an out-of-bag root mean squared error of 4.3 flood reports and a mean absolute error of 0.82 flood reports. The Random Forest algorithm performed much better than Poisson regression. From the Random Forest model, total daily rainfall was by far the most important factor in flood occurrence prediction, followed by daily low tide and daily higher high tide. The model demonstrated here could be used to predict flood severity based on forecast rainfall and tide conditions and could be further enhanced using more complete street flooding data for model training.

  7. Extreme flood events in the Bolivian Amazon wetlands

    Directory of Open Access Journals (Sweden)

    A. Ovando

    2016-03-01

    Full Text Available Study region: The Amazonian wetlands of Bolivia, known as the Llanos de Moxos, are believed to play a crucial role in regulating the upper Madeira hydrological cycle, the most important southern tributary of the Amazon River. Because the area is vast and sparsely populated, the hydrological functioning of the wetlands is poorly known. Study focus: We analyzed the hydrometeorological configurations that led to the major floods of 2007, 2008 and 2014. These data, together with flood mapping derived from remote sensing images, were used to understand the dynamics of the Llanos during the three flood events. New hydrological insights for the region: The results showed that large floods are the result of the superimposition of flood waves from major sub-basins of the region. As a previous study suggested, the dynamics of the floods are controlled by an exogenous process, created by the flood wave originating in the Andes piedmont that travels through the Mamoré River; and by an endogenous process, which is the runoff originating in the Llanos. Our study showed that the first process is evident only at the initial phase of the floods, and although important for attenuating the rising flood wave, it is of lesser importance compared to the endogenous process. We conclude that the endogenous process controls the magnitude and duration of major floods. Keywords: Flood dynamics, Wetlands, Remote sensing, Llanos de Moxos

  8. The impact of bathymetry input on flood simulations

    Science.gov (United States)

    Khanam, M.; Cohen, S.

    2017-12-01

    Flood prediction and mitigation systems are inevitable for improving public safety and community resilience all over the worldwide. Hydraulic simulations of flood events are becoming an increasingly efficient tool for studying and predicting flood events and susceptibility. A consistent limitation of hydraulic simulations of riverine dynamics is the lack of information about river bathymetry as most terrain data record water surface elevation. The impact of this limitation on the accuracy on hydraulic simulations of flood has not been well studies over a large range of flood magnitude and modeling frameworks. Advancing our understanding of this topic is timely given emerging national and global efforts for developing automated flood predictions systems (e.g. NOAA National Water Center). Here we study the response of flood simulation to the incorporation of different bathymetry and floodplain surveillance source. Different hydraulic models are compared, Mike-Flood, a 2D hydrodynamic model, and GSSHA, a hydrology/hydraulics model. We test a hypothesis that the impact of inclusion/exclusion of bathymetry data on hydraulic model results will vary in its magnitude as a function of river size. This will allow researcher and stake holders more accurate predictions of flood events providing useful information that will help local communities in a vulnerable flood zone to mitigate flood hazards. Also, it will help to evaluate the accuracy and efficiency of different modeling frameworks and gage their dependency on detailed bathymetry input data.

  9. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.

    Science.gov (United States)

    Argus, R E; Colmer, T D; Grierson, P F

    2015-06-01

    We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.

  10. Increasing Alkalinity Export from Large Russian Arctic Rivers

    Science.gov (United States)

    Drake, T.; Zhulidov, A. V.; Gurtovaya, T. Y.; Spencer, R. G.

    2017-12-01

    Riverine carbonate alkalinity (HCO3- and CO32-) sourced from chemical weathering of minerals on land represents a significant sink for atmospheric CO2 over geologic timescales. The flux of alkalinity from rivers in the Arctic depends on precipitation, permafrost extent and thaw, groundwater flow paths, and surface vegetation, all of which are changing under a warming climate. Here we show that over the past four decades, the export of alkalinity from the Ob' and Yenisei Rivers has more than doubled. The increase is likely due to a combination of increasing precipitation and permafrost thaw in the watersheds, which lengthens hydrologic flow paths and increases residence time in soils. These trends have broad implications for the rate of carbon sequestration on land and the delivery of buffering capacity to the Arctic Ocean.

  11. Mineral CO2 sequestration in alkaline solid residues

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2004-12-01

    Mineral carbonation is a promising sequestration route for the permanent and safe storage of carbon dioxide. In addition to calcium- or magnesium-containing primary minerals, suitable alkaline solid residues can be used as feedstock. The use of alkaline residues has several advantages, such as their availability close to CO2 sources and their higher reactivity for carbonation than primary minerals. In addition, the environmental quality of residues can potentially be improved by carbonation. In this study, key factors of the mineral CO2 sequestration process are identified, their influence on the carbonation process is examined, and environmental properties of the reaction products with regard to their possible beneficial utilization are investigated. The use of alkaline solid residues forms a potentially attractive alternative for the first mineral sequestration plants

  12. A methodology for urban flood resilience assessment

    Science.gov (United States)

    Lhomme, Serge; Serre, Damien; Diab, Youssef; Laganier, Richard

    2010-05-01

    In Europe, river floods have been increasing in frequency and severity [Szöllösi-Nagy and Zevenbergen, 2005]. Moreover, climate change is expected to exacerbate the frequency and intensity of hydro meteorological disaster [IPCC, 2007]. Despite efforts made to maintain the flood defense assets, we often observe levee failures leading to finally increase flood risk in protected area. Furthermore, flood forecasting models, although benefiting continuous improvements, remain partly inaccurate due to uncertainties arising all along data calculation processes. In the same time, the year 2007 marks a turning point in history: half of the world population now lives in cities (UN-Habitat, 2007). Moreover, the total urban population is expected to double from two to four billion over the next 30 to 35 years (United Nations, 2006). This growing rate is equivalent to the creation of a new city of one million inhabitants every week, and this during the next four decades [Flood resilience Group]. So, this quick urban development coupled with technical failures and climate change have increased flood risk and corresponding challenges to urban flood risk management [Ashley et al., 2007], [Nie et al., 2009]. These circumstances oblige to manage flood risk by integrating new concepts like urban resilience. In recent years, resilience has become a central concept for risk management. This concept has emerged because a more resilient system is less vulnerable to risk and, therefore, more sustainable [Serre et al., 2010]. But urban flood resilience is a concept that has not yet been directly assessed. Therefore, when decision makers decide to use the resilience concept to manage urban flood, they have no tool to help them. That is why this paper proposes a methodology to assess urban flood resilience in order to make this concept operational. Networks affect the well-being of the people and the smooth functioning of services and, more generally, of economical activities. Yet

  13. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  14. 44 CFR 61.17 - Group Flood Insurance Policy.

    Science.gov (United States)

    2010-10-01

    ... U.S.C. 5174) of an Individuals and Households Program (IHP) award for flood damage as a result of... flood-damage losses sustained by the insured property in the course of any subsequent flooding event..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE...

  15. Flood Inundation Modelling in the Kuantan River Basin using 1D-2D Flood Modeller coupled with ASTER-GDEM

    Science.gov (United States)

    Ng, Z. F.; Gisen, J. I.; Akbari, A.

    2018-03-01

    Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.

  16. MODIS-based multi-parametric platform for mapping of flood affected areas. Case study: 2006 Danube extreme flood in Romania

    Directory of Open Access Journals (Sweden)

    Craciunescu Vasile

    2016-12-01

    Full Text Available Flooding remains the most widely distributed natural hazard in Europe, leading to significant economic and social impact. Earth observation data is presently capable of making fundamental contributions towards reducing the detrimental effects of extreme floods. Technological advance makes development of online services able to process high volumes of satellite data without the need of dedicated desktop software licenses possible. The main objective of the case study is to present and evaluate a methodology for mapping of flooded areas based on MODIS satellite images derived indices and using state-of-the-art geospatial web services. The methodology and the developed platform were tested with data for the historical flood event that affected the Danube floodplain in 2006 in Romania. The results proved that, despite the relative coarse resolution, MODIS data is very useful for mapping the development flooded area in large plain floods. Moreover it was shown, that the possibility to adapt and combine the existing global algorithms for flood detection to fit the local conditions is extremely important to obtain accurate results.

  17. Lessons Learned from Missing Flooding Barriers Operating Experience

    International Nuclear Information System (INIS)

    Simic, Z.; Veira, M. P.

    2016-01-01

    Flooding hazard is highly significant for nuclear power plant safety because of its potential for common cause impact on safety related systems, and because operating experience reviews regularly identify flooding as a cause of concern. Source of the flooding could be external (location) or internal (plant design). The amount of flooding water could vary but even small amount might suffice to affect redundant trains of safety related systems for power supply and cooling. The protection from the flooding is related to the design-basis flood level (DBFL) and it consists of three elements: structural, organizational and accessibility. Determination of the DBFL is critical, as Fukushima Daiichi accident terribly proved. However, as the topic of flooding is very broad, the scope of this paper is focused only on the issues related to the missing flood barriers. Structural measures are physically preventing flooding water to reach or damage safety related system, and they could be permanent or temporary. For temporary measures it is important to have necessary material, equipment and organizational capacity for the timely implementation. Maintenance is important for permanent protection and periodical review is important for assuring readiness and feasibility of temporary flooding protection. Final flooding protection element is assured accessibility to safety related systems during the flooding. Appropriate flooding protection is based on the right implementation of design requirements, proper maintenance and periodic reviews. Operating experience is constantly proving how numerous water sources and systems interactions make flooding protection challenging. This paper is presenting recent related operating experience feedback involving equipment, procedures and analysis. Most frequent deficiencies are: inadequate, degraded or missing seals that would allow floodwaters into safety related spaces. Procedures are inadequate typically because they underestimate necessary

  18. The Calculation of Flooding Level using CFX Code

    International Nuclear Information System (INIS)

    Oh, Seo Bin; Kim, Keon Yeop; Lee, Hyung Ho

    2015-01-01

    The plant design should consider internal flooding by postulated pipe ruptures, component failures, actuation of spray systems, and improper system alignment. The flooding causes failure of safety-related equipment and affects the integrity of the structure. The safety-related equipment should be installed above the flood level for protection against flooding effects. Conservative estimates of the flood level are important when a DBA occurs. The flooding level can be calculated simply applying Bernoulli's equation. However, in this study, a realistic calculation is performed with ANSYS CFX code. In calculation with CFX, air-core vortex phenomena, and turbulent flow can be simulated, which cannot be calculated analytically. The flooding level is evaluated by analytical calculation and CFX analysis for an assumed condition. The flood level is calculated as 0.71m and 1.1m analytically and with CFX simulation, respectively. Comparing the analytical calculation and simulation, they are similar, but the analytical calculation is not conservative. There are many factors reducing the drainage capacity such as air-core vortex, intake of air, and turbulent flow. Therefore, in case of flood level evaluation by analytical calculation, a sufficient safety margin should be considered

  19. Alkaline protease production on date waste by an alkalophilic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... After 72 h incubation in a shaker incubator ... different incubation times (0 to 72 h) were investigated. Alkaline .... of alkaline protease (75%) and 24% of total protein is precipitated. ... starches and wheat flour as carbon source on protease production .... JP 395, method of making and detergent composition.

  20. Flood risk management in Italy

    DEFF Research Database (Denmark)

    Mysiak, J.; Testella, F.; Bonaiuto, M.

    2013-01-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina...

  1. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    Science.gov (United States)

    Aksoy, Hafzullah; Sadan Ozgur Kirca, Veysel; Burgan, Halil Ibrahim; Kellecioglu, Dorukhan

    2016-05-01

    Geographic Information Systems (GIS) are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses) wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS) software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  2. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2016-05-01

    Full Text Available Geographic Information Systems (GIS are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  3. Exploring logistics aspects of flood emergency measures

    NARCIS (Netherlands)

    de Leeuw, S.L.J.M.; Vis, I.F.A.; Jonkman, S.N.

    2012-01-01

    Floods are often preceded by warnings such as heavy rain that may make preparatory activities possible in order to prevent flooding from actually happening. However, flood emergency preparedness lacks insight in logistical aspects. This paper develops a framework of logistical aspects of emergency

  4. Exploring Logistics Aspects of Flood Emergency Measures

    NARCIS (Netherlands)

    de Leeuw, Sander; Vis, Iris F. A.; Jonkman, Sebastiaan N.

    Floods are often preceded by warnings such as heavy rain that may make preparatory activities possible in order to prevent flooding from actually happening. However, flood emergency preparedness lacks insight in logistical aspects. This paper develops a framework of logistical aspects of emergency

  5. Probabilistic Flood Mapping using Volunteered Geographical Information

    Science.gov (United States)

    Rivera, S. J.; Girons Lopez, M.; Seibert, J.; Minsker, B. S.

    2016-12-01

    Flood extent maps are widely used by decision makers and first responders to provide critical information that prevents economic impacts and the loss of human lives. These maps are usually obtained from sensory data and/or hydrologic models, which often have limited coverage in space and time. Recent developments in social media and communication technology have created a wealth of near-real-time, user-generated content during flood events in many urban areas, such as flooded locations, pictures of flooding extent and height, etc. These data could improve decision-making and response operations as events unfold. However, the integration of these data sources has been limited due to the need for methods that can extract and translate the data into useful information for decision-making. This study presents an approach that uses volunteer geographic information (VGI) and non-traditional data sources (i.e., Twitter, Flicker, YouTube, and 911 and 311 calls) to generate/update the flood extent maps in areas where no models and/or gauge data are operational. The approach combines Web-crawling and computer vision techniques to gather information about the location, extent, and water height of the flood from unstructured textual data, images, and videos. These estimates are then used to provide an updated flood extent map for areas surrounding the geo-coordinate of the VGI through the application of a Hydro Growing Region Algorithm (HGRA). HGRA combines hydrologic and image segmentation concepts to estimate a probabilistic flooding extent along the corresponding creeks. Results obtained for a case study in Austin, TX (i.e., 2015 Memorial Day flood) were comparable to those obtained by a calibrated hydrologic model and had good spatial correlation with flooding extents estimated by the Federal Emergency Management Agency (FEMA).

  6. Flood impacts on a water distribution network

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  7. Development of method for evaluating estimated inundation area by using river flood analysis based on multiple flood scenarios

    Science.gov (United States)

    Ono, T.; Takahashi, T.

    2017-12-01

    Non-structural mitigation measures such as flood hazard map based on estimated inundation area have been more important because heavy rains exceeding the design rainfall frequently occur in recent years. However, conventional method may lead to an underestimation of the area because assumed locations of dike breach in river flood analysis are limited to the cases exceeding the high-water level. The objective of this study is to consider the uncertainty of estimated inundation area with difference of the location of dike breach in river flood analysis. This study proposed multiple flood scenarios which can set automatically multiple locations of dike breach in river flood analysis. The major premise of adopting this method is not to be able to predict the location of dike breach correctly. The proposed method utilized interval of dike breach which is distance of dike breaches placed next to each other. That is, multiple locations of dike breach were set every interval of dike breach. The 2D shallow water equations was adopted as the governing equation of river flood analysis, and the leap-frog scheme with staggered grid was used. The river flood analysis was verified by applying for the 2015 Kinugawa river flooding, and the proposed multiple flood scenarios was applied for the Akutagawa river in Takatsuki city. As the result of computation in the Akutagawa river, a comparison with each computed maximum inundation depth of dike breaches placed next to each other proved that the proposed method enabled to prevent underestimation of estimated inundation area. Further, the analyses on spatial distribution of inundation class and maximum inundation depth in each of the measurement points also proved that the optimum interval of dike breach which can evaluate the maximum inundation area using the minimum assumed locations of dike breach. In brief, this study found the optimum interval of dike breach in the Akutagawa river, which enabled estimated maximum inundation area

  8. A Socio-hydrological Flood Model for the Elbe

    Science.gov (United States)

    Barendrecht, M.; Viglione, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.; Bloeschl, G.

    2017-12-01

    Long-term feedbacks between humans and floods may lead to complex phenomena such as coping strategies, levee effects, call effects, adaptation effects, and poverty traps. Dynamic coupled human-flood models are a promising tool to represent such phenomena and the feedbacks leading to them. These socio-hydrological models may play an important role in integrated flood risk management when they are applied to real world case studies. They can help develop hypotheses about the phenomena that have been observed in the case study of interest, by describing the interactions between the social and hydrological variables as well as other relevant variables, such as economic, environmental, political or technical, that play a role in the system. We discuss the case of Dresden where the 2002 flood, which was preceded by a period without floods but was less severe, resulted in a higher damage than the 2013 flood, which was preceded by the 2002 flood and a couple of less severe floods. The lower damage in 2013 may be explained by the fact that society has become aware of the flood risk and has adapted to it. Developing and applying a socio-hydrological flood model to the case of Dresden can help discover whether it is possible that the lower damage is caused by an adaptation effect, or if there are other feedbacks that can explain the observed phenomenon.

  9. Serum creatinine and alkaline phosphatase levels are associated with severe chronic periodontitis.

    Science.gov (United States)

    Caúla, A L; Lira-Junior, R; Tinoco, E M B; Fischer, R G

    2015-12-01

    Periodontitis may alter systemic homeostasis and influence creatinine and alkaline phosphatase levels. Therefore, the aim of this study was to evaluate the relationship between severe chronic periodontitis and serum creatinine and alkaline phosphatase levels. One hundred patients were evaluated, 66 with severe chronic periodontitis (test group) and 34 periodontally healthy controls (control group). Medical, demographic and periodontal parameters were registered. Blood sample was collected after an overnight fast and serum creatinine and alkaline phosphatase levels were determined. There were significant differences between test and control groups in ethnicity, gender and educational level (p creatinine level (p creatinine and alkaline phosphatase levels. Severe chronic periodontitis was associated to lower creatinine and higher alkaline phosphatase levels. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    Science.gov (United States)

    2014-07-30

    temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use

  11. High-resolution urban flood modelling - a joint probability approach

    Science.gov (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge

  12. Flooding in counter-current two-phase flow

    International Nuclear Information System (INIS)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding

  13. Flooding in counter-current two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  14. An Agent-Based Model of Evolving Community Flood Risk.

    Science.gov (United States)

    Tonn, Gina L; Guikema, Seth D

    2017-11-17

    Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.

  15. PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments

    Science.gov (United States)

    Schmitz, G. H.; Cullmann, J.

    2008-10-01

    SummaryThe Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and - optionally, if backwater effects have a significant impact on the flow regime - a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) - portraying the rainfall-runoff process - and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF - essentially consisting of the coupled "hydrologic" PoNN and "hydrodynamic" MLFN - to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.

  16. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  17. Historical floods in flood frequency analysis: Is this game worth the candle?

    Science.gov (United States)

    Strupczewski, Witold G.; Kochanek, Krzysztof; Bogdanowicz, Ewa

    2017-11-01

    In flood frequency analysis (FFA) the profit from inclusion of historical information on the largest historical pre-instrumental floods depends primarily on reliability of the information, i.e. the accuracy of magnitude and return period of floods. This study is focused on possible theoretical maximum gain in accuracy of estimates of upper quantiles, that can be obtained by incorporating the largest historical floods of known return periods into the FFA. We assumed a simple case: N years of systematic records of annual maximum flows and either one largest (XM1) or two largest (XM1 and XM2) flood peak flows in a historical M-year long period. The problem is explored by Monte Carlo simulations with the maximum likelihood (ML) method. Both correct and false distributional assumptions are considered. In the first case the two-parameter extreme value models (Gumbel, log-Gumbel, Weibull) with various coefficients of variation serve as parent distributions. In the case of unknown parent distribution, the Weibull distribution was assumed as estimating model and the truncated Gumbel as parent distribution. The return periods of XM1 and XM2 are determined from the parent distribution. The results are then compared with the case, when return periods of XM1 and XM2 are defined by their plotting positions. The results are presented in terms of bias, root mean square error and the probability of overestimation of the quantile with 100-year return period. The results of the research indicate that the maximal profit of inclusion of pre-instrumental foods in the FFA may prove smaller than the cost of reconstruction of historical hydrological information.

  18. Increasing the alkaline protease activity of Bacillus cereus and ...

    African Journals Online (AJOL)

    User

    2011-05-09

    May 9, 2011 ... cereus and Bacillus polymyxa simultaneously with the start of sporulation phase as a ... microbial forms to inactivation by chemical or physical agents. .... alkaline pH, 9, 10 and 11 and the pH of the culture media was optimized with .... incubation temperature for alkaline protease production by Bacillus ...

  19. Multi-temporal clustering of continental floods and associated atmospheric circulations

    Science.gov (United States)

    Liu, Jianyu; Zhang, Yongqiang

    2017-12-01

    Investigating clustering of floods has important social, economic and ecological implications. This study examines the clustering of Australian floods at different temporal scales and its possible physical mechanisms. Flood series with different severities are obtained by peaks-over-threshold (POT) sampling in four flood thresholds. At intra-annual scale, Cox regression and monthly frequency methods are used to examine whether and when the flood clustering exists, respectively. At inter-annual scale, dispersion indices with four-time variation windows are applied to investigate the inter-annual flood clustering and its variation. Furthermore, the Kernel occurrence rate estimate and bootstrap resampling methods are used to identify flood-rich/flood-poor periods. Finally, seasonal variation of horizontal wind at 850 hPa and vertical wind velocity at 500 hPa are used to investigate the possible mechanisms causing the temporal flood clustering. Our results show that: (1) flood occurrences exhibit clustering at intra-annual scale, which are regulated by climate indices representing the impacts of the Pacific and Indian Oceans; (2) the flood-rich months occur from January to March over northern Australia, and from July to September over southwestern and southeastern Australia; (3) stronger inter-annual clustering takes place across southern Australia than northern Australia; and (4) Australian floods are characterised by regional flood-rich and flood-poor periods, with 1987-1992 identified as the flood-rich period across southern Australia, but the flood-poor period across northern Australia, and 2001-2006 being the flood-poor period across most regions of Australia. The intra-annual and inter-annual clustering and temporal variation of flood occurrences are in accordance with the variation of atmospheric circulation. These results provide relevant information for flood management under the influence of climate variability, and, therefore, are helpful for developing

  20. Street floods in Metro Manila and possible solutions.

    Science.gov (United States)

    Lagmay, Alfredo Mahar; Mendoza, Jerico; Cipriano, Fatima; Delmendo, Patricia Anne; Lacsamana, Micah Nieves; Moises, Marc Anthony; Pellejera, Nicanor; Punay, Kenneth Niño; Sabio, Glenn; Santos, Laurize; Serrano, Jonathan; Taniza, Herbert James; Tingin, Neil Eneri

    2017-09-01

    Urban floods from thunderstorms cause severe problems in Metro Manila due to road traffic. Using Light Detection and Ranging (LiDAR)-derived topography, flood simulations and anecdotal reports, the root of surface flood problems in Metro Manila is identified. Majority of flood-prone areas are along the intersection of creeks and streets located in topographic lows. When creeks overflow or when rapidly accumulated street flood does not drain fast enough to the nearest stream channel, the intersecting road also gets flooded. Possible solutions include the elevation of roads or construction of well-designed drainage structures leading to the creeks. Proposed solutions to the flood problem of Metro Manila may avoid paralyzing traffic problems due to short-lived rain events, which according to Japan International Cooperation Agency (JICA) cost the Philippine economy 2.4billionpesos/day. Copyright © 2017. Published by Elsevier B.V.

  1. Flood Risk Characterization for the Eastern United States

    Science.gov (United States)

    Villarini, G.; Smith, J. A.; Ntelekos, A. A.

    2009-04-01

    Tropical cyclones landfalling in the eastern United States pose a major risk for insured property and can lead to extensive damage through storm surge flooding, inland flooding or extreme windspeeds. Current hurricane cat-models do not include calculations of inland flooding from the outer rainfall bands of tropical cyclones but the issue is becoming increasingly important for commercial insurance risk assessment. The results of this study could be used to feed into the next generation of hurricane cat-models and assist in the calculation of damages from inland hurricane flood damage. Annual maximum peak discharge records from more than 400 stations in the eastern United States with at least 75 years of record to examine the role of landfalling tropical cyclones in controlling the upper tail of inland flood risk for the eastern United States. In addition to examining tropical cyclone inland flood risk at specific locations, the spatial extent of extreme flooding from lanfalling tropical cyclones is analyzed. Analyses of temporal trends and abrupt changes in the mean and variance of annual flood peaks are performed. Change-point analysis is performed using the non-parametric Pettitt test. Two non-parametric (Mann-Kendall and Spearman) tests and one parametric (Pearson) test are applied to detect the presence of temporal trends. Flood risk characterization centers on assessments of the spatial variation in "upper tail" properties of annual flood peak distributions. The modeling framework for flood frequency analysis is provided by the Generalized Additive Models for Location Scale and Shape (GAMLSS).

  2. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways

    International Nuclear Information System (INIS)

    Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei

    2016-01-01

    Highlights: • Alkaline ascorbic acid (a.k.a. vitamin C) is capable of reductively degrading NB. • The pH above the pK_a_2 of ascorbic acid increases reductive electron transfer to NB. • The rate equation for the reactions between NB and AA is determined. • NSB, AZOXY, and AZO are identified as intermediates and aniline as a final product. • Alkaline pH is essential for AA remediation of NB contaminated soils. - Abstract: Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO_2"−) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pK_a_2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r = ((0.89 ± 0.11) × 10"−"4 mM"1"−"("a "+ "b") h"−"1) × [NB]"a "= "1"."3"5 "± "0"."1"0[AA]"b "= "0"."8"9 "± "0"."0"1. The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.

  3. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  4. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  5. Flooding characteristics of Goodloe packing

    International Nuclear Information System (INIS)

    Begovich, J.M.; Watson, J.S.

    1976-08-01

    Experimental flooding data for the countercurrent flow of air and water in a 7.62-cm-diam glass column filled with Goodloe packing were compared with a correlation reported by the packing manufacturer. Flooding rates observed in this study were as low as one-half those predicted by the correlation. Rearranging the packing by inverting the column and removing some packing segments yielded results similar to the correlation for liquid-to-gas (L/G) mass flow rate ratios greater than 10, but the experimental flooding curve fell significantly below the correlation at lower L/G ratios. When the column was repacked with new packing, the results were essentially the same as those obtained in the inverted column. Thus, it is believed that a carefully packed column is more likely to yield flooding rates similar to those obtained in the new or inverted columns rather than rates predicted by the original correlation

  6. Consistency of extreme flood estimation approaches

    Science.gov (United States)

    Felder, Guido; Paquet, Emmanuel; Penot, David; Zischg, Andreas; Weingartner, Rolf

    2017-04-01

    Estimations of low-probability flood events are frequently used for the planning of infrastructure as well as for determining the dimensions of flood protection measures. There are several well-established methodical procedures to estimate low-probability floods. However, a global assessment of the consistency of these methods is difficult to achieve, the "true value" of an extreme flood being not observable. Anyway, a detailed comparison performed on a given case study brings useful information about the statistical and hydrological processes involved in different methods. In this study, the following three different approaches for estimating low-probability floods are compared: a purely statistical approach (ordinary extreme value statistics), a statistical approach based on stochastic rainfall-runoff simulation (SCHADEX method), and a deterministic approach (physically based PMF estimation). These methods are tested for two different Swiss catchments. The results and some intermediate variables are used for assessing potential strengths and weaknesses of each method, as well as for evaluating the consistency of these methods.

  7. Loss of life in flood events

    Science.gov (United States)

    Špitalar, Maruša

    2013-04-01

    Natural disasters per se give a negative connotation. They are destructive to material elements in a space, nature itself and represent a threat to peoples' lives and health. Floods, especially flash floods due to its power and happening suddenly cause extensive damage. Hence, they are hard to predict and are characterized with violent movement, lots of lives are lost. Floods are among natural hazards the one causing the highest number of fatalities. Having said that very important aspects are humans' vulnerability, risk perception, their behavior when confronted with hazardous situations and on the other hand issues related to adequate warning signs and canals of communication. It is very important to take into consideration this segments also and not mainly just structural measures. However the aim of this paper is to emphasis mainly the social aspects of floods. It consists of two main parts. First one refers to mans' vulnerability, risk perception when it comes to danger caused by rising waters and how does culture influences peoples' response and reaction to flood causalities. The second part consists of data about detailed information on circumstances of death that have been collected from several different sources from several EU countries. There has been also available information on the age and gender of people who lost lives in flood events. With gender males dominated among death people since tend to risk more in risky situations. There has been also defined a vulnerable age group among flood fatalities. Analysis of circumstance of death enabled us to define risky groups that are very important for flood managers. Further on this is very beneficial also for risk prevention, early warning systems and creating the best canals in order to information about upcoming danger would successfully reach people at hazardous areas and also for the others to avoid them.

  8. Stream Insect Production as a Function of Alkalinity and Detritus Processing

    OpenAIRE

    Osborn, Thomas G.

    1981-01-01

    The study was conducted to determine if aquatic insect production was significantly different between high and low alkalinity mountain streams and if any differences were associated with food availability factors. The major objectives included determining: (1) if annual production differences occur between high and low alkalinity streams; (2) if processing rates of terrestrial detritus differs between high and low alkalinity streams; (3) if detrital processing rates are related to stream inse...

  9. Sequential planning of flood protection infrastructure under limited historic flood record and climate change uncertainty

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Straub, Daniel

    2017-04-01

    Flood protection is often designed to safeguard people and property following regulations and standards, which specify a target design flood protection level, such as the 100-year flood level prescribed in Germany (DWA, 2011). In practice, the magnitude of such an event is only known within a range of uncertainty, which is caused by limited historic records and uncertain climate change impacts, among other factors (Hall & Solomatine, 2008). As more observations and improved climate projections become available in the future, the design flood estimate changes and the capacity of the flood protection may be deemed insufficient at a future point in time. This problem can be mitigated by the implementation of flexible flood protection systems (that can easily be adjusted in the future) and/or by adding an additional reserve to the flood protection, i.e. by applying a safety factor to the design. But how high should such a safety factor be? And how much should the decision maker be willing to pay to make the system flexible, i.e. what is the Value of Flexibility (Špačková & Straub, 2017)? We propose a decision model that identifies cost-optimal decisions on flood protection capacity in the face of uncertainty (Dittes et al. 2017). It considers sequential adjustments of the protection system during its lifetime, taking into account its flexibility. The proposed framework is based on pre-posterior Bayesian decision analysis, using Decision Trees and Markov Decision Processes, and is fully quantitative. It can include a wide range of uncertainty components such as uncertainty associated with limited historic record or uncertain climate or socio-economic change. It is shown that since flexible systems are less costly to adjust when flood estimates are changing, they justify initially lower safety factors. Investigation on the Value of Flexibility (VoF) demonstrates that VoF depends on the type and degree of uncertainty, on the learning effect (i.e. kind and quality of

  10. Toward economic flood loss characterization via hazard simulation

    Science.gov (United States)

    Czajkowski, Jeffrey; Cunha, Luciana K.; Michel-Kerjan, Erwann; Smith, James A.

    2016-08-01

    Among all natural disasters, floods have historically been the primary cause of human and economic losses around the world. Improving flood risk management requires a multi-scale characterization of the hazard and associated losses—the flood loss footprint. But this is typically not available in a precise and timely manner, yet. To overcome this challenge, we propose a novel and multidisciplinary approach which relies on a computationally efficient hydrological model that simulates streamflow for scales ranging from small creeks to large rivers. We adopt a normalized index, the flood peak ratio (FPR), to characterize flood magnitude across multiple spatial scales. The simulated FPR is then shown to be a key statistical driver for associated economic flood losses represented by the number of insurance claims. Importantly, because it is based on a simulation procedure that utilizes generally readily available physically-based data, our flood simulation approach has the potential to be broadly utilized, even for ungauged and poorly gauged basins, thus providing the necessary information for public and private sector actors to effectively reduce flood losses and save lives.

  11. Cyber Surveillance for Flood Disasters

    Directory of Open Access Journals (Sweden)

    Shi-Wei Lo

    2015-01-01

    Full Text Available Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective.

  12. Keurbooms Estuary floods and sedimentation

    Directory of Open Access Journals (Sweden)

    Eckart H. Schumann

    2015-11-01

    Full Text Available The Keurbooms Estuary at Plettenberg Bay lies on a wave-dominated, microtidal coast. It has a dune-topped sandy barrier, or barrier dune, almost 4 km long, with a narrow back-barrier lagoon connected to its source rivers, the Keurbooms and Bitou. The estuary exits to the sea through this barrier dune, and it is the geomorphology and mouth position in relation to floods, which is the subject of this paper. Measurements of rainfall, water level, waves and high- and low-tide water lines were used to analyse the mouth variability over the years 2006–2012. Two major floods occurred during this time, with the first in November 2007 eroding away more than 500 000 m3 of sediment. The new mouth was established at the Lookout Rocks limit – the first time since 1915. The second flood occurred in July 2012 and opened up a new mouth about 1 km to the north-east; high waves also affected the position of the breach. The mouth has a tendency to migrate southwards against the longshore drift, but at any stage this movement can be augmented or reversed. The effectiveness of floods in breaching a new mouth through the barrier dune depends on the flood size and the nature of the exit channel in the back-barrier lagoon. Other factors such as ocean waves, sea level, vegetative state of the dune and duration of the flood are also important and can determine where the breach occurs, and if the new mouth will dominate the old mouth.

  13. Near Real-Time Flood Monitoring and Impact Assessment Systems. Chapter 6; [Case Study: 2011 Flooding in Southeast Asia

    Science.gov (United States)

    Ahamed, Aakash; Bolten, John; Doyle, Colin; Fayne, Jessica

    2016-01-01

    Floods are the costliest natural disaster, causing approximately 6.8 million deaths in the twentieth century alone. Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD. Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries. Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change. Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assess flooding and extend analytical methods to estimate impacted population and infrastructure. Measuring flood extent in situ is generally impractical, time consuming, and can be inaccurate. Remotely sensed imagery acquired from space-borne and airborne sensors provides a viable platform for consistent and rapid wall-to-wall monitoring of large flood events through time. Terabytes of freely available satellite imagery are made available online each day by NASA, ESA, and other international space research institutions. Advances in cloud computing and data storage technologies allow researchers to leverage these satellite data and apply analytical methods at scale. Repeat-survey earth observations help provide insight about how natural phenomena change through time, including the progression and recession of floodwaters. In recent years, cloud-penetrating radar remote sensing techniques (e.g., Synthetic Aperture Radar) and high temporal resolution imagery platforms (e.g., MODIS and its 1-day return period), along with high performance computing infrastructure, have enabled significant advances in software systems that provide flood warning, assessments, and hazard reduction potential. By incorporating social and economic data

  14. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  15. 7 CFR 650.25 - Flood-plain management.

    Science.gov (United States)

    2010-01-01

    ... user how alternative land use decisions may affect the aquatic and terrestial ecosystems, human safety... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...

  16. Continental and global scale flood forecasting systems

    NARCIS (Netherlands)

    Emerton, Rebecca E.; Stephens, Elisabeth M.; Pappenberger, Florian; Pagano, Thomas P.; Weerts, A.H.; Wood, A.; Salamon, Peter; Brown, James D.; Hjerdt, Niclas; Donnelly, Chantal; Baugh, Calum A.; Cloke, Hannah L.

    2016-01-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not

  17. Flood risk analysis procedure for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.

    1982-01-01

    This paper describes a methodology and procedure for determining the impact of floods on nuclear power plant risk. The procedures are based on techniques of fault tree and event tree analysis and use the logic of these techniques to determine the effects of a flood on system failure probability and accident sequence occurrence frequency. The methodology can be applied independently or as an add-on analysis for an existing risk assessment. Each stage of the analysis yields useful results such as the critical flood level, failure flood level, and the flood's contribution to accident sequence occurrence frequency. The results of applications show the effects of floods on the risk from nuclear power plants analyzed in the Reactor Safety Study

  18. Urban flood risk warning under rapid urbanization.

    Science.gov (United States)

    Chen, Yangbo; Zhou, Haolan; Zhang, Hui; Du, Guoming; Zhou, Jinhui

    2015-05-01

    In the past decades, China has observed rapid urbanization, the nation's urban population reached 50% in 2000, and is still in steady increase. Rapid urbanization in China has an adverse impact on urban hydrological processes, particularly in increasing the urban flood risks and causing serious urban flooding losses. Urban flooding also increases health risks such as causing epidemic disease break out, polluting drinking water and damaging the living environment. In the highly urbanized area, non-engineering measurement is the main way for managing urban flood risk, such as flood risk warning. There is no mature method and pilot study for urban flood risk warning, the purpose of this study is to propose the urban flood risk warning method for the rapidly urbanized Chinese cities. This paper first presented an urban flood forecasting model, which produces urban flood inundation index for urban flood risk warning. The model has 5 modules. The drainage system and grid dividing module divides the whole city terrain into drainage systems according to its first-order river system, and delineates the drainage system into grids based on the spatial structure with irregular gridding technique; the precipitation assimilation module assimilates precipitation for every grids which is used as the model input, which could either be the radar based precipitation estimation or interpolated one from rain gauges; runoff production module classifies the surface into pervious and impervious surface, and employs different methods to calculate the runoff respectively; surface runoff routing module routes the surface runoff and determines the inundation index. The routing on surface grid is calculated according to the two dimensional shallow water unsteady flow algorithm, the routing on land channel and special channel is calculated according to the one dimensional unsteady flow algorithm. This paper then proposed the urban flood risk warning method that is called DPSIR model based

  19. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    Science.gov (United States)

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  20. Rapid-response flood mapping during Hurricanes Harvey, Irma and Maria by the Global Flood Partnership (GFP)

    Science.gov (United States)

    Cohen, S.; Alfieri, L.; Brakenridge, G. R.; Coughlan, E.; Galantowicz, J. F.; Hong, Y.; Kettner, A.; Nghiem, S. V.; Prados, A. I.; Rudari, R.; Salamon, P.; Trigg, M.; Weerts, A.

    2017-12-01

    The Global Flood Partnership (GFP; https://gfp.jrc.ec.europa.eu) is a multi-disciplinary group of scientists, operational agencies and flood risk managers focused on developing efficient and effective global flood management tools. Launched in 2014, its aim is to establish a partnership for global flood forecasting, monitoring and impact assessment to strengthen preparedness and response and to reduce global disaster losses. International organizations, the private sector, national authorities, universities and research agencies contribute to the GFP on a voluntary basis and benefit from a global network focused on flood risk reduction. At the onset of Hurricane Harvey, GFP was `activated' using email requests via its mailing service. Soon after, flood inundation maps, based on remote sensing analysis and modeling, were shared by different agencies, institutions, and individuals. These products were disseminated, to varying degrees of effectiveness, to federal, state and local agencies via emails and data-sharing services. This generated a broad data-sharing network which was utilized at the early stages of Hurricane Irma's impact, just two weeks after Harvey. In this presentation, we will describe the extent and chronology of the GFP response to both Hurricanes Harvey, Irma and Maria. We will assess the potential usefulness of this effort for event managers in various types of organizations and discuss future improvements to be implemented.

  1. Economic Assessment of Mitigating Damage of Flood Events : Cost–Benefit Analysis of Flood-Proofing Commercial Buildings in Umbria, Italy

    NARCIS (Netherlands)

    Botzen, W. J.Wouter; Monteiro, Érika; Estrada, Francisco; Pesaro, Giulia; Menoni, Scira

    2017-01-01

    Floods are among the costliest natural disasters worldwide. Integrated flood risk management approaches involving both public and private measures have been proposed to cope with trends in flood risk. These approaches are hampered by a lack of information about the cost-effectiveness of private

  2. Flood disaster and protection measures in Turkey Case Study: May 1998 flood disaster at North Western Black Sea Region of Turkey

    International Nuclear Information System (INIS)

    Gurer, Ibrahim; Ozguier, Hamza

    2004-01-01

    Due to geographical location, geology, and topography, Turkey undergoes three main types of natural disasters related to gravity flows; floods, landslides, and snow avalanches. Flooding is second important natural hazard after earthquakes with 18 floods and 23 deaths per year, on average. During 20-21 May 1998, the rainfall which was equal to about four times of long-term mean annual rainfall total of north western Black Sea geographical region of Turkey affected 35.000 m 2 , damaged 1300 km highway, 600 km roads to the villages, and 60 km railway. After the recession of the flood waters, the field survey done proved that 12 highway bridges, 91 small bridges on village roads and 6900 highway culverts, 13.800 m retaining wall and about 500 houses were severely damaged. During the last five years, with the loans and credits provided by World Bank, a series of flood protection structures were designed and built for the rehabilitation of the region. Mostly concentrating on non-structural flood protection studies, a work programme has been drafted in this framework to develop flood management and to reduce or eliminate long-term risk and damage to people and their property from natural hazards and their effects. In this case study, the factors causing the flood disaster are given, and the flood event is analyzed from hydrologic and morphologic points of view. Also the different types of the flood protection measures are exemplified and the experience gained in controlling the flood damages is presented.(Author)

  3. Extracellular Alkalinization as a Defense Response in Potato Cells.

    Science.gov (United States)

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists ( Phytophthora infestans and Spongospora subterranea ) and fungi ( Verticillium dahliae and Colletotrichum coccodes ). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  4. Flooding Fragility Experiments and Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tahhan, Antonio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Muchmore, Cody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nichols, Larinda [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Bishwo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the work that has been performed on flooding fragility, both the experimental tests being carried out and the probabilistic fragility predictive models being produced in order to use the text results. Flooding experiments involving full-scale doors have commenced in the Portal Evaluation Tank. The goal of these experiments is to develop a full-scale component flooding experiment protocol and to acquire data that can be used to create Bayesian regression models representing the fragility of these components. This work is in support of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluation research and development.

  5. Flooding Mechanism in Vertical Flow

    International Nuclear Information System (INIS)

    Ronny-Dwi Agussulistyo; Indarto

    2000-01-01

    This research was carried out to investigate the mechanism of flooding ina vertical liquid-gas counter current flow, along two meter length of thetube. The tube use both circular and square tube, a cross section of squaretube was made the same as a cross section of circular tube with one inchdiameter tube. The liquid enters the tube, passes through a porous wall inletand a groove inlet in a distributor and it flows downwards through a liquidoutlet in a collector. The gas is being introduced at the bottom of the tube,it flows upwards through nozzle in the collector. The results of researchshowed that the flooding occurs earlier in the circular tube than in thesquare tube, either uses a porous wall inlet or a groove inlet. In the squaretube , onset of the flooding occurs at the top of the tube, in front ofliquid injection, it is related to the formation of a film wave, just belowthe liquid feed. Whereas in the circular tube, onset of the flooding occursfrom the bottom of the tube, at the liquid outlet, it is related to theexpand of the film wave. However, in the circular tube with the groove inlet,for the higher liquid flow rate, onset of the flooding from the top, like inthe square tube. (author)

  6. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    'A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods.'

  7. COMPARISON OF METHODS FOR ALKALINE PHOSPHATASE AND PEROXIDASE DETECTION IN MILK

    Directory of Open Access Journals (Sweden)

    felipe Nael Seixas

    2014-02-01

    Full Text Available This study evaluated the performance of strips for colorimetric detection of alkaline phosphatase and peroxidase in milk, comparing them with a kit of reagents for alkaline phosphatase and the official methodology for peroxidase. The samples were analyzed at the Laboratory Inspection of Products of Animal Origin, State University of Londrina. For the comparison tests for the detection of alkaline phosphatase four treatments were made by adding different percentages of raw milk (1%, 2%, 5% and 10% in the pasteurized milk, plus two control treatments. Thirty-eight samples triplicate for each treatment were analyzed. To compare the performance of tests for peroxidase 80 pasteurized milk samples were evaluated simultaneously by official methodology and by colorimetric strips. The performance of the alkaline phosphatase were different for the treatments with 1% and 2% of raw milk which had all the strips change color as the reagent kit showed the presence of phosphatase in just 2.63% and 5.26% the cases, respectively for each treatment. The colorimetric strips for alkaline phosphatase are more sensitive for the identification of small quantities compared to the reagent kit. The performance of tests for peroxidase showed no difference. The strips for the detection of peroxidase or alkaline phosphatase were effective and can replace traditional methods.

  8. The European Flood Risk Directive and Ethics

    NARCIS (Netherlands)

    Mostert, E.; Doorn, N.

    2012-01-01

    The European Flood risk directive (2007/60/EC) requires EU Member States to review their system of flood risk management. In doing so, they will have to face ethical issues inherent in flood risk management. This paper discusses three such issues, using examples from the Netherlands. These issues

  9. Uncertainty and Sensitivity of Direct Economic Flood Damages: the FloodRisk Free and Open-Source Software

    Science.gov (United States)

    Albano, R.; Sole, A.; Mancusi, L.; Cantisani, A.; Perrone, A.

    2017-12-01

    The considerable increase of flood damages in the the past decades has shifted in Europe the attention from protection against floods to managing flood risks. In this context, the expected damages assessment represents a crucial information within the overall flood risk management process. The present paper proposes an open source software, called FloodRisk, that is able to operatively support stakeholders in the decision making processes with a what-if approach by carrying out the rapid assessment of the flood consequences, in terms of direct economic damage and loss of human lives. The evaluation of the damage scenarios, trough the use of the GIS software proposed here, is essential for cost-benefit or multi-criteria analysis of risk mitigation alternatives. However, considering that quantitative assessment of flood damages scenarios is characterized by intrinsic uncertainty, a scheme has been developed to identify and quantify the role of the input parameters in the total uncertainty of flood loss model application in urban areas with mild terrain and complex topography. By the concept of parallel models, the contribution of different module and input parameters to the total uncertainty is quantified. The results of the present case study have exhibited a high epistemic uncertainty on the damage estimation module and, in particular, on the type and form of the utilized damage functions, which have been adapted and transferred from different geographic and socio-economic contexts because there aren't depth-damage functions that are specifically developed for Italy. Considering that uncertainty and sensitivity depend considerably on local characteristics, the epistemic uncertainty associated with the risk estimate is reduced by introducing additional information into the risk analysis. In the light of the obtained results, it is evident the need to produce and disseminate (open) data to develop micro-scale vulnerability curves. Moreover, the urgent need to push

  10. Simulation of the 2008 Iowa Flood using HiResFlood-UCI Model with Remote Sensing Data

    Science.gov (United States)

    Nguyen, P.; Thorstensen, A. R.; Hsu, K. L.; AghaKouchak, A.; Sanders, B. F.; Sorooshian, S.

    2014-12-01

    Precipitation is a key forcing variable in hydrological modeling of floods and being able to accurately observe precipitation is extremely important in mitigating flood impacts. The Global Precipitation Measurement (GPM) Mission, launched in Feb 2014 also presents an opportunity for high-quality real-time precipitation data and improved flood warnings. The PERSIANN-CCS developed by the scientists at the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine is one algorithm integrated in the IMERG of PMM/GPM. In this research, the high resolution coupled hydrologic/hydraulic model named HiResFlood-UCI was applied to simulate the historical 2008 Iowa flood in the Cedar River basin. HiResFlood-UCI is a coupling of the NWS's distributed hydrologic model HL-RDHM and the hydraulic model BreZo developed by the Computational Hydraulics Group at the University of California, Irvine. The model was forced with the real-time PERSIANN-CCS and NEXRAD Stage 2 precipitation data. Simulations were evaluated based on 2 criteria: hydrographs within the basin and the areal extent of the flooding. Streamflow hydrographs were compared at 7 USGS gages, and simulated inundation maps were evaluated using USDA AWiFS 56m resolution areal flood imagery. The results show reasonable simulated hydrographs compared to USGS streamflow observations when simulating with PERSIANN-CCS and NEXRAD Stage 2 as forcing inputs. The simulation driven by NEXRAD Stage 2 slightly outperforms the PERSIANN-CCS simulation as the latter marginally underestimated the observed hydrographs. The simulation in both cases shows a good agreement (0.672 and 0.727 CSI for Stage 2 and PERSIANN-CCS simulations respectively) with the AWiFS image over the most impacted area in the Cedar Rapids region. Since the PERSIANN-CCS simulation slightly underestimated the discharge, the probability of detection (0.925) is lower than that of the Stage 2 simulation (0.965). As a trade-off, the false

  11. Ethylene-Mediated Acclimations to Flooding Stress1

    Science.gov (United States)

    Sasidharan, Rashmi; Voesenek, Laurentius A.C.J.

    2015-01-01

    Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations. PMID:25897003

  12. Systematic review of the association between dietary acid load, alkaline water and cancer.

    Science.gov (United States)

    Fenton, Tanis R; Huang, Tian

    2016-06-13

    To evaluate the evidence for a causal relationship between dietary acid/alkaline and alkaline water for the aetiology and treatment of cancer. A systematic review was conducted on published and grey literature separately for randomised intervention and observational studies with either varying acid-base dietary intakes and/or alkaline water with any cancer outcome or for cancer treatment. Incidence of cancer and outcomes of cancer treatment. 8278 citations were identified, and 252 abstracts were reviewed; 1 study met the inclusion criteria and was included in this systematic review. No randomised trials were located. No studies were located that examined dietary acid or alkaline or alkaline water for cancer treatment. The included study was a cohort study with a low risk of bias. This study revealed no association between the diet acid load with bladder cancer (OR=1.15: 95% CI 0.86 to 1.55, p=0.36). No association was found even among long-term smokers (OR=1.72: 95% CI 0.96 to 3.10, p=0.08). Despite the promotion of the alkaline diet and alkaline water by the media and salespeople, there is almost no actual research to either support or disprove these ideas. This systematic review of the literature revealed a lack of evidence for or against diet acid load and/or alkaline water for the initiation or treatment of cancer. Promotion of alkaline diet and alkaline water to the public for cancer prevention or treatment is not justified. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Flood protection diversification to reduce probabilities of extreme losses.

    Science.gov (United States)

    Zhou, Qian; Lambert, James H; Karvetski, Christopher W; Keisler, Jeffrey M; Linkov, Igor

    2012-11-01

    Recent catastrophic losses because of floods require developing resilient approaches to flood risk protection. This article assesses how diversification of a system of coastal protections might decrease the probabilities of extreme flood losses. The study compares the performance of portfolios each consisting of four types of flood protection assets in a large region of dike rings. A parametric analysis suggests conditions in which diversifications of the types of included flood protection assets decrease extreme flood losses. Increased return periods of extreme losses are associated with portfolios where the asset types have low correlations of economic risk. The effort highlights the importance of understanding correlations across asset types in planning for large-scale flood protection. It allows explicit integration of climate change scenarios in developing flood mitigation strategy. © 2012 Society for Risk Analysis.

  14. Large Scale Processes and Extreme Floods in Brazil

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  15. Multi-dimensional flood vulnerability assessment using data envelopment analysis

    Science.gov (United States)

    Zahid, Zalina; Saharizan, Nurul Syuhada; Hamzah, Paezah; Hussin, Siti Aida Sheikh; Khairi, Siti Shaliza Mohd

    2017-11-01

    Malaysia has been greatly impacted by flood during monsoon seasons. Even though flood prone areas are well identified, assessment on the vulnerability of the disaster is lacking. Assessment of flood vulnerability, defined as the potential for loss when a disaster occurs, is addressed in this paper. The focus is on the development of flood vulnerability measurement in 11 states in Peninsular Malaysia using a non-parametric approach of Data Envelopment Analysis. Scores for three dimensions of flood vulnerability (Population Vulnerability, Social Vulnerability and Biophysical) were calculated using secondary data of selected input and output variables across an 11-year period from 2004 to 2014. The results showed that Johor and Pahang were the most vulnerable to flood in terms of Population Vulnerability, followed by Kelantan, the most vulnerable to flood in terms of Social Vulnerability and Kedah, Pahang and Terengganu were the most vulnerable to flood in terms of Biophysical Vulnerability among the eleven states. The results also showed that the state of Johor, Pahang and Kelantan to be most vulnerable across the three dimensions. Flood vulnerability assessment is important as it provides invaluable information that will allow the authority to identify and develop plans for flood mitigation and to reduce the vulnerability of flood at the affected regions.

  16. Observations on the effect of flood on animals

    Science.gov (United States)

    Stickel, L.F.

    1948-01-01

    Summary. The flood plain of the Patuxent River is washed over periodically, and occasionally the entire bottomland is submerged to a depth of several feet. The effects of an unusually severe flood on the populations and home ranges of wood mice (Peromyscus leucopus) and box turtles (Terrapene carolina) were studied by means of collecting the animals before, during, and after the flood. The flood had little or no effect on the size of the populations, and individuals showed remarkable ability to remain within their home ranges despite the flood.

  17. Flood Response System—A Case Study

    OpenAIRE

    Yogesh Kumar Singh; Upasana Dutta; T. S. Murugesh Prabhu; I. Prabu; Jitendra Mhatre; Manoj Khare; Sandeep Srivastava; Subasisha Dutta

    2017-01-01

    Flood Response System (FRS) is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the critica...

  18. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    International Nuclear Information System (INIS)

    Iriya, K.; Fujii, K.; Kubo, H.

    2002-02-01

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  19. Elevated alkalinity and sulfate adversely affect the aquatic macrophyte Lobelia dortmanna

    OpenAIRE

    Pulido, Cristina; Keijsers, Danny J. H.; Lucassen, E. C. H. E. T.; Pedersen, Ole; Roelofs, J. G. M.

    2012-01-01

    The increase in alkalinity and SO4 2- in softwater lakes can negatively affect pristine isoetid population because the increase in alkalinity and SO4 2- can stimulate sediment mineralization and consequently cause anoxia. The consequences of increased sediment mineralization depend on the ability of isoetids such as Lobelia dortmanna to oxidize the rhizosphere via radial O2 loss. To study how alkalinity and SO4 2- affect the isoetid L. dortmanna, and if neg...

  20. Economic optimisation of flood risk management projects

    NARCIS (Netherlands)

    Tsimopoulou, V.

    2015-01-01

    The Netherlands has developed a flood risk management policy based on an economic rationale. After the flood disaster of 1953, when a large area of the south-western part of the country was flooded and more than 1800 people lost their lives, the so-called Delta Committee was installed, whose main

  1. Unstructured mesh adaptivity for urban flooding modelling

    Science.gov (United States)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  2. Impact of stream restoration on flood waves

    Science.gov (United States)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  3. Implications of using on-farm flood flow capture to recharge groundwater and mitigate flood risks along the Kings River, CA.

    Science.gov (United States)

    Bachand, Philip A M; Roy, Sujoy B; Choperena, Joe; Cameron, Don; Horwath, William R

    2014-12-02

    The agriculturally productive San Joaquin Valley faces two severe hydrologic issues: persistent groundwater overdraft and flooding risks. Capturing flood flows for groundwater recharge could help address both of these issues, yet flood flow frequency, duration, and magnitude vary greatly as upstream reservoir releases are affected by snowpack, precipitation type, reservoir volume, and flood risks. This variability makes dedicated, engineered recharge approaches expensive. Our work evaluates leveraging private farmlands in the Kings River Basin to capture flood flows for direct and in lieu recharge, calculates on-farm infiltration rates, assesses logistics, and considers potential water quality issues. The Natural Resources Conservation Service (NRCS) soil series suggested that a cementing layer would hinder recharge. The standard practice of deep ripping fractured the layer, resulting in infiltration rates averaging 2.5 in d(-1) (6 cm d(-1)) throughout the farm. Based on these rates 10 acres are needed to infiltrate 1 cfs (100 m(3) h(-1)) of flood flows. Our conceptual model predicts that salinity and nitrate pulses flush initially to the groundwater but that groundwater quality improves in the long term due to pristine flood flows low in salts or nitrate. Flood flow capture, when integrated with irrigation, is more cost-effective than groundwater pumping.

  4. Rb-Sr age of the Sivamalai alkaline complex, Tamil Nadu

    International Nuclear Information System (INIS)

    Subba Rao, T.V.; Narayana, B.L.; Gopalan, K.

    1994-01-01

    The Sivamalai alkaline complex comprises ferro-, pyroxene- hornblende-and nepheline-syenites. Field relations show that the nepheline syenites followed the emplacement of non-feldspathoidal syenites. Mineralogical data on the syenite suite have been reviewed. The Sivamalai alkaline rocks are not strongly enriched in rare-earth elements like most miaskites. Rb-Sr isotopic analyses of a suite of six samples from the various members of the complex define an isochron corresponding to an age of 623 ± 21 Ma (2σ) and initial Sr ratio of 0.70376 ± 14 (2σ). This is consistent with a model of fractional crystallization of a parent magma derived from an upper mantle source with apparently no isotopic evidence for more than one magma source for the complex. The Sivamalai alkaline complex represents a Pan-African alkaline magmatic event in the southern granulite terrane of peninsular India. (author). 26 refs., 4 figs., 4 tabs

  5. Polders as active element of flood control

    International Nuclear Information System (INIS)

    Zilavy, M.

    2004-01-01

    In this presentation author deals with use of the polders as active element of flood control on the example Kysuca River and Podluzianka River (Slovakia). It was concluded that it is necessary: - dense network of rain gauge stations; - network of water level recorders; revision of design process for hydraulic objects - degree of safety; changes in legislation - permission for construction in flood-plains; maintenance of channel capacity; early flood forecasting - forecasting and warning service; river training works and maintenance; design of retention areas; preparation of retention areas prior to flood propagation

  6. Modeling Wettability Variation during Long-Term Water Flooding

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2015-01-01

    Full Text Available Surface property of rock affects oil recovery during water flooding. Oil-wet polar substances adsorbed on the surface of the rock will gradually be desorbed during water flooding, and original reservoir wettability will change towards water-wet, and the change will reduce the residual oil saturation and improve the oil displacement efficiency. However there is a lack of an accurate description of wettability alternation model during long-term water flooding and it will lead to difficulties in history match and unreliable forecasts using reservoir simulators. This paper summarizes the mechanism of wettability variation and characterizes the adsorption of polar substance during long-term water flooding from injecting water or aquifer and relates the residual oil saturation and relative permeability to the polar substance adsorbed on clay and pore volumes of flooding water. A mathematical model is presented to simulate the long-term water flooding and the model is validated with experimental results. The simulation results of long-term water flooding are also discussed.

  7. Long-term experiences with pluvial flood risk management

    Directory of Open Access Journals (Sweden)

    Fritsch Kathrina

    2016-01-01

    Full Text Available The awareness of pluvial (rain-related flood risk has grown significantly in the past few years but pluvial flooding is not handled with the same intensity throughout Europe. A variety of methods and modelling technologies are used to assess pluvial flood hazard and risk and to develop suggestions for flood mitigation measures. A brief overview of current model approaches is followed by the description of a modelling methodology that has been developed throughout the last 15 years with the focus on processing large scale areas. Experiences from several projects show that only high quality models of whole catchment areas yield results with enough accuracy to gain credibility among stakeholders, planners and the public. As a best practice example shows, the model approach also helps to plan effective decentral flood protection measures. To ensure successful flood risk management, a long-term preservation of flood risk awareness among local authorities and the public is necessary.

  8. Creating Flood Inundation Maps For Lower Sakarya River

    Directory of Open Access Journals (Sweden)

    Osman Sönmez

    2013-06-01

    Full Text Available The Sakarya River Basin in Turkey frequently floods. The allure of riverside settlement and of nutrient-rich riverbank soil has led to extensive residential and agricultural development in flood plains. In this study, the 100 years return period possible flood carrying capacites of last 113 km of the Lower Sakarya Riverbed were investigated, also dam break and risk analyses were performed by applying different scenarios for the floods likely to occur. Flooding scenarios and water depth within the floodplain during these scenarios were calculated with the HEC-RAS software program and results were converted into a map in HEC-GeoRAS,ArcGIS 9x and ArcView 3.2 programs. As a result, it was observed that the Lower Sakarya River is susceptible to flooding. Recent observations of the study area confirm the study findings. This study tries to underscore the importance of taking into account the different scenarios regarding flood prevention and reduction studies.

  9. PURIFICATION AND CHARACTERISATION OF ALKALINE ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    There was no clear decrease in the yield seen in the bands and the loss of enzyme was not observed with the gel analysis. It may ... The native gel results show clear distinct bands for the 3 alkaline phosphotase isoenzymes ..... British Medical.

  10. Geology and petrology of Lages Alkaline District, Santa Catarina State

    International Nuclear Information System (INIS)

    Scheibe, L.F.

    1986-01-01

    A 1:100.000 geological map shows the main outcrops, covering about 50 Km 2 , of the leucocratic alkaline rocks, ultra basic alkaline rocks, carbonatites and volcanic breccias which intruded the Gondwanic sedimentary rocks within a short time interval and characterize the Alkaline District of Lages. Chemical analyses of 33 whole-rock samples confirm the petrographic classification, but the agpaitic indexes, mostly below 1.0, do not reflect the mineralogical variations of the leucocratic alkaline rocks adequately. Partial REE analyses indicate that the light as well as the heavy rare earth contents decrease from the basic to the more evolved rocks, the La/Y ratio remaining approximately constant. Eleven new K/Ar ages from porphyritic nepheline syenites porphyritic phonolites, ultra basic alkaline rocks and pipe-breccias, together with six already available ages, show a major concentration in the range 65 to 75 Ma, with a mode at ca. 70 Ma. But one Rb/Sr whole-rock reference isochron diagram gives an age of 82+-6 Ma for the agpaitic phonolites of the Serra Chapada, which are considered younger than the miaskitic porphyriric nepheline syenites. The 87 Sr/ 86 Sr ratios of 0.705-0.706 are compatible with a sub continental mantelic origin, devoid of crustal contamination. A petrogenetic model based on subtraction diagrams and taking into consideration the geologic, petrographic, mineralogic and petrochemical characteristics of the alkaline rocks of Lages consists of limited partial melting with CO 2 , contribution of the previously metasomatized upper mantle, in a region submitted to decompression. (author)

  11. An operational procedure for rapid flood risk assessment in Europe

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  12. An empirical assessment of which inland floods can be managed.

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A; Hoegh, Andrew B; Angermeier, Paul L

    2016-02-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m(3)/s) but quicker (0.41 days) floods than non-urban watersheds (50 m(3)/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m(3)/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m(3)/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help

  13. An empirical assessment of which inland floods can be managed

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul

    2016-01-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that

  14. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b.

    Science.gov (United States)

    Fang, Hui; Qin, Xiao-Yu; Zhang, Kai-Duan; Nie, Yong; Wu, Xiao-Lei

    2018-04-01

    The six- and seven-subunit Na + /H + antiporters (Mrp) are widely distributed in bacteria. They are reported to be integral for pH homeostasis in alkaliphilic bacteria when adapting to high pH environments. In this study, operons encoding for the six-subunit Na + /H + antiporters were found in the genomes of all studied Dietzia strains, which have different alkaline-resistant abilities. Disruption of the operon in the strain Dietzia sp. DQ12-45-1b which leads to declined growth in presence of hypersaline and alkaline conditions suggested that the six-subunit Na + /H + antiporter played an important role in hypersaline and alkaline resistance. Although the complexes DqMrp from DQ12-45-1b (strain with high alkaline resistance) and DaMrp from D. alimentaria 72 T (strain with low alkaline resistance) displayed Na + (Li + )/H + antiport activities, they functioned optimally at different pH levels (9.0 for DQ12-45-1b and 8.0 for 72 T ). While both antiporters functioned properly to protect Escherichia coli cells from salt shock, only the DqMrp-containing strain survived the high alkaline shock. Furthermore, real-time PCR results showed that the expression of mrpA and mrpD induced only immediately after DQ12-45-1b cells were subjected to the alkaline shock. These results suggested that the expression of DqMrp might be induced by a pH gradient across the cell membrane, and DqMrp mainly functioned at an early stage to respond to the alkaline shock.

  15. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE, Federal Emergency Management Agency (FEMA) - Flood Insurance Rate Maps (FIRM), Published in 2011, 1:1200 (1in=100ft) scale, Polk County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE dataset current as of 2011. Federal Emergency Management Agency (FEMA) - Flood Insurance Rate...

  16. Alkaline Extraction of DNA from Pathogenic Fungi for PCR-RFLP Analysis

    OpenAIRE

    Matsumoto, Masaru; Mishima, Shinobu; Matsuyama, Nobuaki; 松元, 賢; 松山, 宣明

    1997-01-01

    For the preparation of DNA samples from fungal mycelia alkaline extraction method was applied and assessed its usefulness for PCR-RFLP analysis. Using alkaline treatment protocols, 18S ribosomal DNAs (rDNA) derived from fungal genomic DNA of Pyricularia oryzae, P. zingiberi, Rhizoctonia solani and R. oryzae were PCR-amplified and digested with Hha I, Msp I and Hae ill. RFLP analysis with HhaI showed the divergent polymorphism between genus Pyricularia and Rhizoctonia. The alkaline DNA extract...

  17. The 3D Elevation Program—Flood risk management

    Science.gov (United States)

    Carswell, William J.; Lukas, Vicki

    2018-01-25

    Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these

  18. New mechanism under International Flood Initiative toward robustness for flood management in the Asia Pacific region

    Science.gov (United States)

    Murase, M.; Yoshitani, J.; Takeuchi, K.; Koike, T.

    2015-12-01

    Climate change is likely to result in increases in the frequency or intensity of extreme weather events. It is imperative that a good understanding is developed of how climate change affects the events that are reflected in hydrological extremes such as floods and how practitioners in water resources management deal with them. Since there is still major uncertainty as to how the impact of climate change affect actual water resources management, it is important to build robustness into management schemes and communities. Flood management under such variety of uncertainty favors the flexible and adaptive implementation both in top-down and bottom-up approaches. The former uses projections of global or spatially downscaled models to drive resource models and project resource impacts. The latter utilizes policy or planning tools to identify what changes in climate would be most threatening to their long-range operations. Especially for the bottom-up approaches, it is essential to identify the gap between what should be done and what has not been achieved for disaster risks. Indicators or index are appropriate tools to measure such gaps, but they are still in progress to cover the whole world. The International Flood Initiative (IFI), initiated in January 2005 by UNESCO and WMO in close cooperation with UNU and ISDR, IAHS and IAHR, has promoted an integrated approach to flood management to take advantage of floods and use of flood plains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks at national, regional and international levels. The initiative is now preparing for a new mechanism to facilitate the integrated approach for flood management on the ground regionally in the Asia Pacific (IFI-AP) through monitoring, assessment and capacity building.

  19. Investigating Mechanisms of Alkalinization for Reducing Primary Breast Tumor Invasion

    Directory of Open Access Journals (Sweden)

    Ian F. Robey

    2013-01-01

    Full Text Available The extracellular pH (pHe of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs. We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (. Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs. To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (. Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX. The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion.

  20. Is flood defense changing in nature? Shifts in the flood defense strategy in six European countries

    Directory of Open Access Journals (Sweden)

    Mathilde Gralepois

    2016-12-01

    Full Text Available In many countries, flood defense has historically formed the core of flood risk management but this strategy is now evolving with the changing approach to risk management. This paper focuses on the neglected analysis of institutional changes within the flood defense strategies formulated and implemented in six European countries (Belgium, England, France, the Netherlands, Poland, and Sweden. The evolutions within the defense strategy over the last 30 years have been analyzed with the help of three mainstream institutional theories: a policy dynamics-oriented framework, a structure-oriented institutional theory on path dependency, and a policy actors-oriented analysis called the advocacy coalitions framework. We characterize the stability and evolution of the trends that affect the defense strategy in the six countries through four dimensions of a policy arrangement approach: actors, rules, resources, and discourses. We ask whether the strategy itself is changing radically, i.e., toward a discontinuous situation, and whether the processes of change are more incremental or radical. Our findings indicate that in the European countries studied, the position of defense strategy is continuous, as the classical role of flood defense remains dominant. With changing approaches to risk, integrated risk management, climate change, urban growth, participation in governance, and socioeconomic challenges, the flood defense strategy is increasingly under pressure to change. However, these changes can be defined as part of an adaptation of the defense strategy rather than as a real change in the nature of flood risk management.

  1. Sustainability appraisal and flood risk management

    International Nuclear Information System (INIS)

    Carter, Jeremy G.; White, Iain; Richards, Juliet

    2009-01-01

    This research establishes that sustainability appraisal (SA) has a role to play in strengthening spatial plans in the context of flooding issues. Indeed, evidence has been gathered to indicate that tentative steps are being taken in this direction during the SA of English regional spatial plans, which are used as an illustrative case study. In England as in many other countries, appraisal procedures including SA and strategic environmental assessment (SEA) are enshrined in planning law. An opportunity therefore exists to utilise existing and familiar planning tools to embed flooding considerations within spatial plans at an early stage in the planning process. SA (and similar appraisal tools such as SEA) can therefore usefully aid in the implementation of decision making principles and government policy relating to flooding. Moreover, with the threats associated with climate change becoming increasingly apparent, of which increased flood risk is a particular concern in many countries, there is a need develop appropriate adaptation responses. This article emphasizes the role that SA can play in managing future flood risk in this context

  2. Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Zareena Mushtaq

    2015-04-01

    Full Text Available In this study, extracellular alkaline protease was produced from Rhizopus oryzae in submerged fermentation using dairy waste (whey as a substrate. Fermentation kinetics was studied and various parameters were optimized. The strain produced maximum protease at initial medium pH of 6.0 medium depth of 26 mm, inoculum size of 2% at incubation temperature of 35ºC for 168 h of fermentation. Alkaline protease was purified to homogeneity by ammonium sulphate fractionation followed by sephadex G-100 chromatography. The molecular mass of alkaline protease was 69 kDa determined by 10% SDS-PAGE. The optimum pH and temperature of alkaline protease was 9.0 and 40ºC, respectively. Metal profile of the enzyme showed that the enzyme was non-metallic in nature. The Km , Kcat , Vmax and Kcat/Km values of purified protease were 7.0 mg/mL, 3.8 x102S-1, 54.30 µmol/min and 54.28 s-1mg -1.mL respectively, using casein as substrate. The purified alkaline protease had stability with commercial detergents.

  3. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    Science.gov (United States)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  4. FLOOD VULNERABILITY IN BODVA RIVER BASIN IN SLOVAKIA

    Directory of Open Access Journals (Sweden)

    ZELENAKOVA MARTINA

    2015-03-01

    Full Text Available The aim of the paper is to generate a composite map for decision makers using selected factors, mainly of natural character, causing floods. In the analyses, some of the causative factors for flooding in a catchment area are taken into account, such as soil type, precipitation, land use, size of catchment and basin slope. A case study of flood vulnerability identification in the Bodva river basin in eastern Slovakia is employed to illustrate the different approaches. A geographical information system (GIS is integrated with multicriteria analysis (MCA in the paper. The identification of flood vulnerability consists of two basic phases. Firstly, the effective factors causing floods are identified. Secondly several approaches to MCA in a GIS environment are applied and these approaches are evaluated in order to prepared flood vulnerability map.

  5. Flood risk in a changing world - a coupled transdisciplinary modelling framework for flood risk assessment in an Alpine study area

    Science.gov (United States)

    Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine

    2017-04-01

    Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the

  6. The 16 May 2005 Flood in Yosemite National Park--A Glimpse into High-Country Flood Generation in the Sierra Nevada

    Science.gov (United States)

    Dettinger, M.; Lundquist, J.; Cayan, D.; Meyer, J.

    2006-12-01

    On 16 May 2005, a Pacific storm drew warm, wet subtropical air into the Sierra Nevada, causing moderate rains and major flooding. The flood raised Hetch Hetchy and Tenaya Lake levels markedly and inundated large parts of Yosemite Valley, requiring evacuations and raising public-safety concerns in Yosemite National Park. This was the first major flood to be recorded by the high-country hydroclimatic network in the Park. Since 2001, scientists from US Geological Survey, Scripps Institution of Oceanography, California Department of Water Resources, National Park Service, and other institutions have developed the network of over 30 streamflow and 50 air-temperature loggers at altitudes ranging from 3000 m above sea level, and 8 snow-instrumentation sites measuring snow-water contents, snow depths, radiation, soil moisture, and temperatures in air, snow, and soil. The network documented flooding that derived its runoff mostly from high-altitude rainfall on soils already wet due to the onset of snowmelt a few days earlier. Air temperatures during the storm were above freezing up to altitudes of nearly 3000 m, so that rain fell to as high as 3000 m, compared with normal winter snowlines nearer 1500 m. Streams flooded below 3000 m, and above that altitude did not flood or contribute much to the flooding below. Meanwhile, no significant snow-water content changes were measured. Thus this flood resulted from rain-through-snow runoff rather than rain-on-snow melting. In the Park as a whole, about five times more catchment area received rain, rather than snow, during this storm than during typical cool winter storms. Because the flood was more a result of the large area that received rainfall than of melting snow, snowpack reductions that are expected if recent warming trends continue would not have reduced the flood. Instead, the opportunity for warm storms may increase if warming continues, in which case the potential for this kind of flooding will increase.

  7. Statistical analysis of the uncertainty related to flood hazard appraisal

    Science.gov (United States)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  8. Flooding PSA with Plant Specific Operating Experiences of Korean PWRs

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Yull

    2006-01-01

    The purpose of this paper is to update the flooding PSA with Korean plant specific operating experience data and the appropriate estimation method for the flooding frequency to improve the PSA quality. The existing flooding PSA used the NPE (Nuclear Power Experience) database up to 1985 for the flooding frequency. They are all USA plant operating experiences. So an upgraded flooding frequency with Korean specific plant operation experience is required. We also propose a method of only using the PWR (Pressurized Water Reactor) data for the flooding frequency estimation in the case of the flooding area in the primary building even though the existing flooding PSA used both PWR and BWR (Boiled Water Reactor) data for all kinds of plant areas. We evaluate the CDF (Core Damage Frequency) with the modified flooding frequency and compare the results with that of the existing flooding PSA method

  9. DIGITAL FLOOD INSURANCE RATE MAP DATABASE,

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk Information And supporting data used to develop the risk data. The primary risk;...

  10. The "Prediflood" database of historical floods in Catalonia (NE Iberian Peninsula) AD 1035-2013, and its potential applications in flood analysis

    Science.gov (United States)

    Barriendos, M.; Ruiz-Bellet, J. L.; Tuset, J.; Mazón, J.; Balasch, J. C.; Pino, D.; Ayala, J. L.

    2014-12-01

    "Prediflood" is a database of historical floods that occurred in Catalonia (NE Iberian Peninsula), between the 11th century and the 21st century. More than 2700 flood cases are catalogued, and more than 1100 flood events. This database contains information acquired under modern historiographical criteria and it is, therefore, suitable for use in multidisciplinary flood analysis techniques, such as meteorological or hydraulic reconstructions.

  11. Truth or Consequences Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  12. Flash flood forecasting, warning and risk management: the HYDRATE project

    International Nuclear Information System (INIS)

    Borga, M.; Anagnostou, E.N.; Bloeschl, G.; Creutin, J.-D.

    2011-01-01

    Highlights: → We characterize flash flood events in various regions of Europe. → We provide guidance to improve observations and monitoring of flash floods. → Flash floods are associated to orography and are influenced by initial soil moisture conditions. → Models for flash flood forecasting and flash flood hazard assessment are illustrated and discussed. → We examine implications for flood risk policy and discuss recommendations received from end users. - Abstract: The management of flash flood hazards and risks is a critical component of public safety and quality of life. Flash-floods develop at space and time scales that conventional observation systems are not able to monitor for rainfall and river discharge. Consequently, the atmospheric and hydrological generating mechanisms of flash-floods are poorly understood, leading to highly uncertain forecasts of these events. The objective of the HYDRATE project has been to improve the scientific basis of flash flood forecasting by advancing and harmonising a European-wide innovative flash flood observation strategy and developing a coherent set of technologies and tools for effective early warning systems. To this end, the project included actions on the organization of the existing flash flood data patrimony across Europe. The final aim of HYDRATE was to enhance the capability of flash flood forecasting in ungauged basins by exploiting the extended availability of flash flood data and the improved process understanding. This paper provides a review of the work conducted in HYDRATE with a special emphasis on how this body of research can contribute to guide the policy-life cycle concerning flash flood risk management.

  13. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  14. Floods of the Lower Tisza from the late 17th century onwards: frequency, magnitude, seasonality and great flood events

    Science.gov (United States)

    Kiss, Andrea

    2016-04-01

    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred on the lower sections of the Tisza river in Hungary, with special emphasis on the area of Szeged town. The study area is well-represented by contemporary source evidence from the late 17th century onwards, when the town and its broader area was reoccupied from the Ottoman Turkish Empire. Concerning the applied source materials, the main bases of investigation are the administrative (archival) sources such as town council protocols of Szeged and county meeting protocols of Csanád and Csongrád Counties. In these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers as well as town chronicles and other contemporary narratives. In the presentation the main focus is on the analysis of flood-rich flood-poor periods of the last ca. 330 years; moreover, the seasonality distribution as well as the magnitude of Tisza flood events are also discussed. Another important aim of the poster is to provide a short overview, in the form of case studies, on the greatest flood events (e.g. duration, magnitude, damages, multi-annual consequences), and their further impacts on the urban and countryside development as well as on (changes in) flood defence strategies. In this respect, especially two flood events, the great (1815-)1816 and the catastrophic 1879 flood (shortly with causes and consequences) - that practically erased Szeged town from the ground - are presented in more detail.

  15. Unexpected flood loss correlations across Europe

    Science.gov (United States)

    Booth, Naomi; Boyd, Jessica

    2017-04-01

    Floods don't observe country borders, as highlighted by major events across Europe that resulted in heavy economic and insured losses in 1999, 2002, 2009 and 2013. Flood loss correlations between some countries occur along multi-country river systems or between neighbouring nations affected by the same weather systems. However, correlations are not so obvious and whilst flooding in multiple locations across Europe may appear independent, for a re/insurer providing cover across the continent, these unexpected correlations can lead to high loss accumulations. A consistent, continental-scale method that allows quantification and comparison of losses, and identifies correlations in loss between European countries is therefore essential. A probabilistic model for European river flooding was developed that allows estimation of potential losses to pan-European property portfolios. By combining flood hazard and exposure information in a catastrophe modelling platform, we can consider correlations between river basins across Europe rather than being restricted to country boundaries. A key feature of the model is its statistical event set based on extreme value theory. Using historical river flow data, the event set captures spatial and temporal patterns of flooding across Europe and simulates thousands of events representing a full range of possible scenarios. Some known correlations were identified, such as between neighbouring Belgium and Luxembourg where 28% of events that affect either country produce a loss in both. However, our model identified some unexpected correlations including between Austria and Poland, and Poland and France, which are geographically distant. These correlations in flood loss may be missed by traditional methods and are key for re/insurers with risks in multiple countries. The model also identified that 46% of European river flood events affect more than one country. For more extreme events with a return period higher than 200 years, all events

  16. Flood Catastrophe Model for Designing Optimal Flood Insurance Program : Estimating Location-Specific Premiums in the Netherlands

    NARCIS (Netherlands)

    Ermolieva, T.; Filatova, Tatiana; Ermoliev, Y.; Obersteiner, M.; de Bruijn, K.M.; Jeuken, A.

    2017-01-01

    As flood risks grow worldwide, a well-designed insurance program engaging various stakeholders becomes a vital instrument in flood risk management. The main challenge concerns the applicability of standard approaches for calculating insurance premiums of rare catastrophic losses. This article

  17. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.

    Science.gov (United States)

    Khan, Mudassar Nawaz; Sakata, Katsumi; Komatsu, Setsuko

    2015-05-21

    Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three

  18. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chenju, E-mail: cliang@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University 250, Kuo-kuang Road, Taichung 402, Taiwan (China); Lin, Ya-Ting [Department of Environmental Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 320, Taiwan (China); Shiu, Jia-Wei [Department of Environmental Engineering, National Chung Hsing University 250, Kuo-kuang Road, Taichung 402, Taiwan (China)

    2016-01-25

    Highlights: • Alkaline ascorbic acid (a.k.a. vitamin C) is capable of reductively degrading NB. • The pH above the pK{sub a2} of ascorbic acid increases reductive electron transfer to NB. • The rate equation for the reactions between NB and AA is determined. • NSB, AZOXY, and AZO are identified as intermediates and aniline as a final product. • Alkaline pH is essential for AA remediation of NB contaminated soils. - Abstract: Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO{sub 2}{sup −}) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pK{sub a2} of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r = ((0.89 ± 0.11) × 10{sup −4} mM{sup 1−(a} {sup +} {sup b)} h{sup −1}) × [NB]{sup a} {sup =} {sup 1.35} {sup ±} {sup 0.10}[AA]{sup b} {sup =} {sup 0.89} {sup ±} {sup 0.01}. The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.

  19. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    Science.gov (United States)

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  20. Sept 2013 NFHL Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...