WorldWideScience

Sample records for alkali-resistant denox catalysts

  1. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  2. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  3. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  4. Alkali resistant Cu/zeolite deNOx catalysts for flue gas cleaning in biomass fired applications

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2011-01-01

    to investigate the redox and acidic properties of the catalysts. The poisoning resistivity seems to be due to a combination of high surface area and strong acidity of the Cu/zeolite catalysts. The catalysts might be attractive alternatives to conventional catalysts for deNOx of flue gases from biomass fired...... power plants and other stationary industrial installations....

  5. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    The present thesis entitled Alternative deNOx Catalysts and technologies revolves around the topic of removal of nitrogen oxides. Nitrogen oxides, NOx, are unwanted byproducts formed during combustion (e.g. in engines or power plants). If emitted to the atmosphere, they are involved...... in the formation of acid rain and photochemical smog. Some basic concepts and reactions regarding the formation and removal of NOx are presented in chapter 1 and 2. Two approaches are undertaken in the present work to reduce the emission of NOx: by means of catalytic removal, and by NO absorption in ionic liquids....... The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N2. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts...

  6. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  7. Heteropoly acid promoted V2O5/TiO2 catalysts for NO abatement with ammonia in alkali containing flue gases

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2011-01-01

    V2O5/TiO2 and heteropoly acid promoted V2O5/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD and NH3-TPD. The influence of the calcination temperature from 400 to 700 1C on crystallinity and acidic properties was studied and compared with the activity for the selective...... catalytic reduction (SCR) of NO with ammonia. The SCR activity of heteropoly acid promoted catalysts was found to be much higher than for unpromoted catalysts. The stability of heteropoly acid promoted catalysts is dependent on calcination temperature and there is a gradual decrease in SCR activity...... and acidity with increase in calcination temperatures. Furthermore, the heteropoly acid promoted V2O5/TiO2 catalysts showed excellent alkali deactivation resistance and might therefore be alternative deNOx catalysts in biomass fired power plants....

  8. Tungstated zirconia as promising carrier for DeNOx catalysts with improved resistance towards alkali poisoning

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Kustov, Arkadii; Rasmussen, Søren Birk

    2006-01-01

    Use of biomass as an alternative to fossil fuels has achieved increasing interest since it is considered neutral regarding CO2 accumulation in the atmosphere. The by far most energy-efficient use of solid bio-resources in energy production is combustion in combined biomass and coal or oilfired...... of new alternative catalysts that are more resistant towards poisoning with potassium. Vanadia-based catalysts supported on traditional and tungstated zirconia has been prepared and tested in selective catalytic reduction of NO with ammonia. All prepared catalysts were characterized using N2-BET, XRD......, and NH3-TPD methods. The influence of calcination temperature of zirconia modified with tungsten oxide on the textural characteristics, acidity and catalytic performance was studied. The resistance of the catalysts towards model poisoning with potassium was found to depend dramatically...

  9. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  10. DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions

    Science.gov (United States)

    Stachurska, Patrycja; Kuterasiński, Łukasz; Dziedzicka, Anna; Górecka, Sylwia; Chmielarz, Lucjan; Łojewska, Joanna; Sitarz, Maciej

    2018-01-01

    Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes—classical ion exchange and the ultrasound modified ion-exchange method—were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C. PMID:29301370

  11. Alkali resistant Fe-zeolite catalysts for SCR of NO with NH3 in flue gases

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2011-01-01

    . The effect of potassium doping on the acidic and redox properties of the Fe-zeolite catalysts were studied. The prepared catalysts showed high surface area and surface acidity. This is essential for increased alkali resistivity in comparison with conventional metal oxide supports like, e.g. TiO2 and ZrO2......, towards e.g. potassium salts in flue gases from biomass fired power plants. These properties allowed both undoped and potassium doped Fe-zeolite catalysts to posses high activity during the selective catalytic reduction (SCR) of NO with NH3. The extent of deactivation of the Fe-zeolite catalysts...

  12. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  13. Alternative alkali resistant deNO{sub x} technologies

    Energy Technology Data Exchange (ETDEWEB)

    Buus Kristensen, S.; Due-Hansen, J.; Putluru, S.S.R.; Kunov-Kruse, A.; Fehrmann, R.; Degn Jensen, A.

    2011-04-15

    The aim of the project is to identify, make and test possible alkali resistant deNO{sub x} catalysts for use in biomass, waste or fossil fuelled power plants, where the flue gas typically has a high level of potassium compounds, which rapidly de-activate the traditional V{sub 2}O{sub 5}/TiO{sub 2} catalyst. Furthermore, new technologies are investigated based on a protective coating of the catalyst elements and selective reversible absorption of NO{sub x} with ionic liquids. Several promising alternative deNO{sub x} catalyst types have been made during the project: 1) V, Fe, CU based nano-TiO{sub 2} and nano-TiO{sub 2}-SO{sub 4}{sup 2-} catalysts; 2) V/ZrO{sub 2}-SO{sub 2}- and V/ZrO{sub 2}-CeO{sub 2} catalysts; V, Fe, Cu based Zeolite catalysts; 4) V, Fe, Cu based Heteropoly acid catalysts. Several of these are promising alternatives to the state-of the art industrial reference catalyst. All catalysts prepared in the present project exhibit higher to much higher alkali resistance compared to the commercial reference. Furthermore, two catalysts, i.e. 20 wt% V{sub 2}O-3-TiO{sub 2} nano-catalyst and the 4 wt% CuO-Mordenite zeolite based catalyst have also a higher initial SCR activity compared to the commercial one before alkali poisoning. Thus, those two catalysts might be attractive for SCR deNO{sub x} purposes even under ''normal'' fuel conditions in power plants and elsewhere making them strong candidates for further development. These efforts regarding all the promising catalysts will be pursued after this project has expired through a one year Proof of Concept project granted by the Danish Agency for Science, Technology and Innovation. Also the severe rate of deactivation due to alkali poisons can be avoided by coating the vanadium catalyst with Mg. Overall, the protective coating of SCR catalysts developed in the project seems promising and a patent application has been filed for this technology. Finally, a completely different approach to

  14. Use of Biomass as a Sustainable and Green Fuel with Alkali-Resistant DeNOx Catalysts based on Sulfated or Tungstated Zirconia

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Fehrmann, Rasmus; Christensen, Claus H.

    poisons is the use of supports with highly acidic properties, which would interact stronger with potassium than the vanadium species. Among those, sulfated and tungstated zirconica appears very attractive, since their surface acidity can be tuned in a wide range by varying the preparation procedure, WOX......, sulfated, and tungstated zirconia were prepared and tested. The influence of potassium additives on the acidity and activity was studied and the results were compared with traditional V2O5-WO3/TiO2 catalyst. Resistance of the catalysts towards poisoning with potassium was found to depend dramatically...... on the crystallinity and surface acidity of the support used. Better resistance of the samples based on sulfated and tungstated zirconia seems to be connected with the fact that a significant part of the potassium on the surface of the catalyst preferentially interact with strong acid sites of the support thus...

  15. Alternative alkali resistant deNO{sub x} technologies. Appendix 1

    Energy Technology Data Exchange (ETDEWEB)

    Putluru, S.S.R.; Degn Jensen, A.

    2011-07-01

    The increased use of biomass as fuel has created some new challenges to establish SCR flue gas treatment technology. One of these challenges comes from biomass complex chemical composition, which includes potassium shown to have a negative impact on the SCR catalyst. Studies have shown that potassium deactivates SCR catalyst and reduces its ability to reduce NO to N{sub 2}. An attempt was made to protect the SCR catalyst from alkali poisoning by the imposition of a coating on the catalyst surface. Various compounds were coated on a commercial catalyst supplied by Haldor Topsoee A/S and tested for alkali poisoning resistance. These materials were broadly divided as metal oxides, zeolites and other materials. The coated catalysts were exposed to potassium chloride aerosols at 350 deg. C for 650-1200 h. SCR activity, SEM and EDX measurements were performed to analyze the coated catalysts resistance to potassium poisoning. Coated catalysts (Mg, Mg containing compounds and Zeolites) showed appreciable alkali resistivity compared to the uncoated reference catalyst. Coated catalysts showed high potassium concentration at the surface of the coating and low potassium concentration across the cross section when compared to the uncoated reference catalyst. Thus, it is assumed that the coating layer accumulates the potassium at the surface and prevents to penetrate through the catalyst. The overall assessment is that it is possible to protect an SCR catalyst from potassium poisoning by the imposition of coating layer. (Author)

  16. Alkali resistant Ni-loaded yolk-shell catalysts for direct internal reforming in molten carbonate fuel cells

    Science.gov (United States)

    Jang, Won-Jun; Hong, Young Jun; Kim, Hak-Min; Shim, Jae-Oh; Roh, Hyun-Seog; Kang, Yun Chan

    2017-06-01

    A facile and scalable spray pyrolysis process is applied to synthesize multi-shelled Ni-loaded yolk-shell catalysts on various supports (Al2O3, CeO2, ZrO2, and La(OH)3). The prepared catalysts are applied to direct internal reforming (DIR) in a molten carbonate fuel cell (MCFC). Even on exposure to alkali hydroxide vapors, the Ni-loaded yolk-shell catalysts remain highly active for DIR-MCFCs. The Ni@Al2O3 microspheres show the highest conversion (92%) of CH4 and the best stability among the prepared Ni-loaded yolk-shell catalysts. Although the initial CH4 conversion of the Ni@ZrO2 microspheres is higher than that of the Ni@CeO2 microspheres, the Ni@CeO2 microspheres are more stable. The catalytic performance is strongly dependent on the surface area and acidity and also partly dependent on the reducibility. The acidic nature of Al2O3 combined with its high surface area and yolk-shell structure enhances the adsorption of CH4 and resistance against alkali poisoning, resulting in efficient DIR-MCFC reactions.

  17. Process for catalytic flue gas denoxing

    International Nuclear Information System (INIS)

    Woldhuis, A.; Goudriaan, F.; Groeneveld, M.; Samson, R.

    1991-01-01

    With the increasing concern for the environment, stringency of legislation and industry's awareness of its own environmental responsibility, the demand for the reduction of emission levels of nitrogen oxides is becoming increasingly urgent. This paper reports that Shell has developed a low temperature catalytic deNOx system for deep removal of nitrogen oxides, which includes a low-pressure-drop reactor. This process is able to achieve over 90% removal of nitrogen oxides and therefore can be expected to meet legislation requirements for the coming years. The development of a low-temperature catalyst makes it possible to operate at temperatures as low as 120 degrees C, compared to 300-400 degrees C for the conventional honeycomb and plate-type catalysts. This allows an add-on construction, which is most often a more economical solution than the retrofits in the hot section required with conventional deNOx catalysts. The Lateral Flow Reactor (LFR), which is used for dust-free flue gas applications, and the Parallel Passage Reactor (PPR) for dust-containing flue gas applications, have been developed to work with pressure drops below 10 mbar

  18. The enhanced resistance to K deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by the modification with P

    Science.gov (United States)

    Li, Ming-yuan; Guo, Rui-tang; Hu, Chang-xing; Sun, Peng; Pan, Wei-guo; Liu, Shu-ming; Sun, Xiao; Liu, Shuai-wei; Liu, Jian

    2018-04-01

    The deactivation of SCR catalyst caused by K species contained in the fly ash would suppress its DeNOx performance. In this study, it was manifested that the modification of Ce/TiO2 catalyst with P could enhance its K tolerance. To understand the promotion mechanism, the fresh and poisoned catalyst samples were subjected to the characterization techniques including BET, XRD, XPS, H2-TPR, NH3-TPD and in situ DRIFT. The results elucidated that the introduction of P species could increase the reducibility of Ce species and generate more surface chemisorbed oxygen, along with the strengthened surface acidity for NH3 adsorption. It seemed that the NH3-SCR reaction mechanism over Ce/TiO2 catalyst was a combination of L-H mechanism (reason for its good K resistance.

  19. Uniformly active phase loaded selective catalytic reduction catalysts (V_2O_5/TNTs) with superior alkaline resistance performance

    International Nuclear Information System (INIS)

    Wang, Haiqiang; Wang, Penglu; Chen, Xiongbo; Wu, Zhongbiao

    2017-01-01

    Highlights: • VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3. • Ion-exchange reaction occurs between VOSO_4 and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO_4-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH_4VO_3 and VOSO_4) were used to synthesize deNO_x catalysts. The results showed that VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V"5"+/V"4"+ redox cycles and superior oxygen mobility were achieved. Besides, VOSO_4-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V_2O_5/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  20. Alkali promotion effect in Fischer-Tropsch cobalt-alumina catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Tsapkina, M.V.; Davydov, P.E.; Kazantsev, R.V. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; Belousova, O.S.; Lapidus, A.L. [Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Promoting Co-alumina Fischer-Tropsch synthesis catalysts with alkali and alkaline-earth metals was studied. XRD, oxygen titration and CO chemisorption were used for the characterization of the catalysts. The best results in terms of catalyst selectivity and long-chain alkanes content in synthesized products were obtained with K-promoted catalyst. Catalytic performance strongly depends on K:Co atomic ratio as well as preparation procedure. Effect of K loading on selectivities is non-linear with extreme point at K:Co=0.01. Significant increase in C{sub 5+} selectivity of K-promoted catalyst may be explained as a result of strong CO adsorption on the catalyst surface, as was confirmed in CO chemisorption experiments. (orig.)

  1. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3......) catalysts reported in the literature in the examined temperature range of 200-400 degrees C. The catalysts showed very high resistivity towards potassium poisoning maintaining a 15-30 times higher activity than the equally poisoned industrial reference catalyst, upon impregnation by 280 mu mole potassium....../g of catalyst. (C) 2011 Elsevier Inc. All rights reserved....

  2. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  3. Oxidative coupling of methane over alkali-promoted simple molybdate catalysts

    International Nuclear Information System (INIS)

    Discoll, S.A.; Zhang, L.; Ozkan, U.S.

    1992-01-01

    The study of various metal oxides and alkali promoted metal oxide catalysts has received much interest in recent years after the earlier reports of ethylene synthesis through oxidative coupling of methane, and of achieving high selectivities over a Li/MgO catalyst under methane and oxygen cofeed conditions. The addition of promoter ions to several oxide catalysts has been studied to determine the effect of the promoter ion on catalytic activity and selectivity. The authors' work has focused on the use of alkali promoters for a simple molybdate catalyst. MnMoO 4 . A study of Na, Li, K, Mg, Ba, Mn, Co, Fe, Cu, Zn, and Ni molybdates by Kiwi et al showed that with the exception of NiMoO 4 , the molybdates were stable for long periods of time under reaction conditions for oxidative coupling. At a conversion level of about 60%, selectivities ranged from 9.8% to 16.6%. The MnMoO 4 and K 2 MnMoO 4 molybdates were the least selective catalysts. Another molybdate, PbMoO 4 , was studied by Baerns et al., with 19% selectivity to C 2 hydrocarbons at 1% conversion. An 11.4% conversion to form aldehyde was also reported. In this paper the authors report the characterization and catalytic behavior of MnMoO 4 catalysts promoted with either Li, Na, or K in oxidative coupling of methane

  4. The stability evaluation of lime mud as transesterification catalyst in resisting CO2 and H2O for biodiesel production

    International Nuclear Information System (INIS)

    Li, Hui; Niu, Sheng-li; Lu, Chun-mei; Cheng, Shi-qing

    2015-01-01

    Highlights: • Lime mud (LM) is pretreated with calcination, hydration and desiccation. • The alkali solubility is the amount of alkali compounds dissolved in methanol. • The soluble alkali amount in LM700-H is higher than that of CaO–H. • LM700 possesses a stronger capability than CaO in resisting H 2 O and CO 2 . - Abstract: The most outstanding property of the heterogeneous transesterification catalysts is recyclable, but their catalytic activity may be depressed for the absorption of moisture (H 2 O) and carbon dioxide (CO 2 ) in air, especially for the basic ones. Lime mud (LM) is effective in catalyzing transesterification, yet its property in resisting H 2 O and CO 2 is indistinct, which should be emphasized. In this study, the LM based transesterification catalyst is prepared through calcinations. Then, it is hydrated and desiccated to simulate the contamination by H 2 O and CO 2 . Further, the fresh and the contaminated catalysts are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Hammette indicator, Brunauer–Emmett–Teller (BET) surface area and soluble alkali examination, to reveal the mechanism of LM in resisting H 2 O and CO 2 . Meanwhile, the analytical grade calcium oxide (CaO) is chosen for comparison. Finally, to comprehensively investigate the influences of H 2 O and CO 2 on LM in catalyzing transesterification, the factors of the catalyst addition percentage, molar ratio of methanol to oil and transesterification temperature are evaluated

  5. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  6. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  7. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  8. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations.

    Science.gov (United States)

    Hwang, Hyewon; Lee, Jae Hoon; Choi, In-Gyu; Choi, Joon Weon

    2018-01-29

    Hydrothermal liquefaction (HTL) of lignocellulosic biomass has been widely investigated for the production of renewable and alternative bio-crude oil. In this study, catalytic hydrothermal processing of two biomasses (larch and Mongolian oak) was performed using different K 2 CO 3 concentrations (0, 0.1, 0.5, 1.0 wt% of solvent) to improve fuel yield and properties. HTL oil, hydrochar, water-soluble fraction (WSF) and gas were characterized, and carbon balance was investigated. As a result, the maximum yield of HTL oil, 27.7 wt% (Mongolian oak) and 25.7 wt% (larch), and the highest carbon conversion ratio was obtained with 0.5 wt% of catalyst. The high catalyst concentration also resulted in an increase in higher heating values up to 31.9 MJ/kg. In addition, the amount of organic compounds in HTL oil also increased, specifically for lignin-derived compounds including catechol and hydroquinone which can be derived from secondary hydrolysis of lignin. On the other hand, formation of hydrochar was suppressed with the addition of alkali catalyst and the yield dramatically decreased from 30.7-40.8 wt.% to 20.0-21.8 wt.%. Furthermore, it was revealed that WSF had low organic carbon content less than 3.4% and high potassium content mostly derived from alkali catalyst, indicating that it may be reusable with simple purification. This work suggests that the addition of the proper amount of alkali catalyst can improve the production efficiency and quality of bio-crude oil, and another potential of WSF to be recyclable in further work.

  9. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    Science.gov (United States)

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  10. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method

    Directory of Open Access Journals (Sweden)

    Majid Mohadesi

    2014-03-01

    Full Text Available Biodiesel fuel is considered as an alternative to diesel fuel. This fuel is produced through transesterification reactions of vegetable oils or animal fat by alcohols in the presence of different catalysts. Recent studies on this process have shown that, basic heterogeneous catalysts have a higher performance than other catalysts. In this study different alkali earth metal oxides (CaO, MgO and BaO doped SiO2 were used as catalyst for the biodiesel production process. These catalysts were synthesis by using the sol-gel method. A transesterification reaction was studied after 8h by mixing corn oil, methanol (methanol to oil molar ratio of 16:1, and 6 wt. % catalyst (based on oil at 60oC and 600rpm. Catalyst loading was studied for different catalysts ranging in amounts from 40, 60 to 80%. The purity and yield of the produced biodiesel for 60% CaO/SiO2 was higher than other catalysts and at 97.3% and 82.1%, respectively.

  11. Heteropoly acid promoted catalyst for SCR of NOx with ammonia

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases...... comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen...

  12. Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyong-Hwan [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea); Kim, Jin [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea)]|[Department of Advanced Chemicals Graduate School, Chonnam National University, Gwangju 500-757 (Korea); Lee, Ki-Young [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea)]|[Department of Applied Chemical Engineering and The Research Institute for Catalysis, Chonnam National University, Gwangju 500-757 (Korea)

    2009-01-15

    Duck tallow was employed as a feedstock for the production of biodiesel by transesterification with methanol. The content of fatty acid methyl ester (FAME) was evaluated on various alkali catalysts during transesterification. The composition and chemical properties of the FAME were investigated in the raw duck tallow and the biodiesel products. The major constituent in the biodiesel product was oleic acid. The FAME content was 97% on KOH catalyst in the reaction. It was acceptable for the limit of European biodiesel qualities for BD100. Acid value, density, and kinematic viscosity of the biodiesel products also came up to the biodiesel qualities. (author)

  13. Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors.

    Science.gov (United States)

    Tang, Qianqiu; Wang, Wenqiang; Wang, Gengchao

    2016-10-05

    Research on stretchable energy-storage devices has been motivated by elastic electronics, and considerable research efforts have been devoted to the development of stretchable electrodes. However, stretchable electrolytes, another critical component in stretchable devices, have earned quite little attention, especially the alkali-resistant ones. Here, we reported a novel stretchable alkali-resistant electrolyte made of a polyolefin elastomer porous membrane supported potassium hydroxide-potassium polyacrylate (POE@KOH-PAAK). The as-prepared electrolyte shows a negligible plastic deformation even after 1000 stretching cycles at a strain of 150% as well as a high conductivity of 0.14 S cm -1 . It also exhibits excellent alkali resistance, which shows no obvious degradation of the mechanical performance after immersion in 2 M KOH for up to 2 weeks. To demonstrate its good properties, a high-performance stretchable supercapacitor is assembled using a carbon-nanotube-film-supported NiCo 2 O 4 (CNT@NiCo 2 O 4 ) as the cathode and Fe 2 O 3 (CNT@Fe 2 O 3 ) as the anode, proving great application promise of the stretchable alkali-resistant electrolyte in stretchable energy-storage devices.

  14. Alkali/TX sub 2 catalysts for CO/H sub 2 conversion to C sub 1 -C sub 4 alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R. G.; Bastian, R.

    1990-01-01

    The objective of this research is to investigate and develop novel catalysts for the conversion of coal-derived synthesis gas into C{sub 1}-C{sub 4} alcohols by a highly selective process. Therefore, the variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO {le}1 synthesis gas for a series of A/TX{sub 2} compounds, where A is a surface alkali dopant, T is a transition metal, and X ia a S, Se, or Te, will be determined. This quarter, a fresh batch of MoS{sub 2} was synthesized, and new Cs/MoS{sub 2} catalysts were prepared by alkali doping and were tested to demonstrate that the preparation and testing procedures were reproducible by different personnel. Preparations of RuS{sub 2} and Cs/RuS{sub 2} catalysts were initiated, and the preparations and testing of these catalysts will be described in the next quarterly report. 2 refs., 1 fig., 1 tab.

  15. Numerical simulation of flow in De-NOx catalyst honeycomb with NOx reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, K.; Makino, H. [Electric Power Industry, Kanagawa (Japan). Energy Engineering Research Lab.; Kurose, R.; Komori, S. [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2013-07-01

    The effect of flow behavior in a De-NOx honeycomb with NOx reduction reaction is investigated by direct numerical simulation (DNS). As the inlet flow, fully developed turbulent or laminar flow is given. The results show that the surface reaction is strongly affected by inner flow behavior. The surface reaction rate for the turbulent flow is higher than that for the laminar flow. This is due to the difference of inner flow behavior that the diffusion of NOx in the vicinity of the wall is dominated only by molecular diffusion for the laminar flow, whereas it is enhanced by turbulent motions for the turbulent flow. Moreover, surface reaction is suppressed towards downstream even though inlet flow is turbulent. This is due to the flow transition from turbulent to laminar.

  16. Decalcification resistance of alkali-activated slag

    Energy Technology Data Exchange (ETDEWEB)

    Komljenovic, Miroslav M., E-mail: miroslav.komljenovic@imsi.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Bascarevic, Zvezdana, E-mail: zvezdana@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Marjanovic, Natasa, E-mail: natasa@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Nikolic, Violeta, E-mail: violeta@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer The effects of decalcification on properties of alkali-activated slag were studied. Black-Right-Pointing-Pointer Decalcification was performed by concentrated NH{sub 4}NO{sub 3} solution (accelerated test). Black-Right-Pointing-Pointer Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Black-Right-Pointing-Pointer Decalcification led to strength decrease and noticeable structural changes. Black-Right-Pointing-Pointer Alkali-activated slag showed significantly higher resistance to decalcification. - Abstract: This paper analyses the effects of decalcification in concentrated 6 M NH{sub 4}NO{sub 3} solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si {approx}0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification.

  17. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  18. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Supercritical water gasification of landfill leachate for hydrogen production in the presence and absence of alkali catalyst.

    Science.gov (United States)

    Weijin, Gong; Binbin, Li; Qingyu, Wang; Zuohua, Huang; Liang, Zhao

    2018-03-01

    Gasification of landfill leachate in supercritical water using batch-type reactor is investigated. Alkali such as NaOH, KOH, K 2 CO 3 , Na 2 CO 3 is used as catalyst. The effect of temperature (380-500 °C), retention time (5-25 min), landfill leachate concentration (1595 mg L -1 -15,225 mg L -1 ), catalyst adding amount (1-10 wt%) on hydrogen mole fraction, hydrogen yield, carbon gasification rate, COD, TOC, TN removal efficiency are investigated. The results showed that gaseous products mainly contained hydrogen, methane, carbon dioxide and carbon monoxide without addition of catalyst. However, the main gaseous products are hydrogen and methane with addition of NaOH, KOH, K 2 CO 3 , Na 2 CO 3 . In the absence of alkali catalyst, the effect of temperature on landfill leachate gasification is positive. Hydrogen mole fraction, hydrogen yield, carbon gasification ratio increase with temperature, which maximum value being 55.6%, 107.15 mol kg -1 , 71.96% is obtained at 500 °C, respectively. Higher raw landfill leachate concentration leads to lower hydrogen production and carbon gasification rate. The suitable retention time is suggested to be 15 min for higher hydrogen production and carbon gasification rate. COD, TOC and TN removal efficiency also increase with increase of temperature, decrease of landfill leachate concentration. In the presence of catalyst, the hydrogen production is obviously promoted by addition of alkali catalyst. the effect of catalysts on hydrogen production is in the following order: NaOH > KOH > Na 2 CO 3  > K 2 CO 3 . The maximum hydrogen mole fraction and hydrogen yield being 74.40%, 70.05 mol kg -1 is obtained with adding amount of 5 wt% NaOH at 450 °C, 28 MPa, 15 min. Copyright © 2017. Published by Elsevier Ltd.

  20. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  1. Influence of curing conditions on durability of alkali-resistant glass ...

    Indian Academy of Sciences (India)

    Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in ...

  2. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model......The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  3. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin; Li, Zhikao; Nourdine, Mohamed; Shahid, Salman; Takanabe, Kazuhiro

    2014-01-01

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH

  4. An Active Alkali-Exchanged Faujasite Catalyst for p-Xylene Production via the One-Pot Diels-Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene.

    Science.gov (United States)

    Rohling, Roderigh Y; Uslamin, Evgeny; Zijlstra, Bart; Tranca, Ionut C; Filot, Ivo A W; Hensen, Emiel J M; Pidko, Evgeny A

    2018-02-02

    The one-pot Diels-Alder cycloaddition (DAC)/dehydration (D) tandem reaction between 2,5-dimethylfuran and ethylene is a potent pathway toward biomass-derived p -xylene. In this work, we present a cheap and active low-silica potassium-exchanged faujasite (KY, Si/Al = 2.6) catalyst. Catalyst optimization was guided by a computational study of the DAC/D reaction mechanism over different alkali-exchanged faujasites using periodic density functional theory calculations complemented by microkinetic modeling. Two types of faujasite models were compared, i.e., a high-silica alkali-exchanged faujasite model representing isolated active cation sites and a low-silica alkali-exchanged faujasite in which the reaction involves several cations in the proximity. The mechanistic study points to a significant synergetic cooperative effect of the ensemble of cations in the faujasite supercage on the DAC/D reaction. Alignment of the reactants by their interactions with the cationic sites and stabilization of reaction intermediates contribute to the high catalytic performance. Experiments confirmed the prediction that KY is the most active catalyst among low-silica alkali-exchanged faujasites. This work is an example of how the catalytic reactivity of zeolites depends on multiple interactions between the zeolite and reagents.

  5. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  6. Corrosion resistance of metals and alloys in molten alkalies

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Dmitruk, B.F.; Minets, L.A.

    1979-01-01

    Literature data on the corrosion of non-ferrous and noble metals, iron and steels in the molten alkalis and mixtures of their base are presented. It is shown that zirconium, niobium and tantalum are characterized by high corrosion stability in the molten NaOH. Additions of NaOH and KOH to the alkali chloride melts result in a 1000 time decrease of zirconium corrosion rate at 850 deg. The data testify to the characteristic passivating properties of OH - ions; Mo and W do not possess an ability to selfpassivation in hydroxide melts. Corrosion resistance of carbon and chromium-nickel steels in hydroxide melts depends considerably on the temperature, electrolyte composition and atmosphere over them. At the temperatures up to 600 deg C chromium-nickel steel is corrosion resistant in the molten alkali only in the inert atmosphere. Corrosion rate of chromium-nickel alloy is the lower the less chromium and the more nickel it contains. For the small installations the 4Kh18N25S2 and Kh23N28M3D3T steels can be recommended

  7. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Birk; Kustov, Arkadii

    Municipal waste flue gas was previously found to deactivate the Pt-based CO oxidation catalyst severely. In the specific case studied, siloxanes were found to cause the deactivation. An on-site method for complete regeneration of the catalyst activity was found without shutdown of the flue gas...... stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest here, is the effect of hydrogen gas on the performance of the deNOx + SCR catalytic process...

  8. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  9. Session 6: Liquid-phase chloro-benzene hydrogenolysis over alkali-doped zirconia supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aramendia, M.A.; Borau, V.; Jimenez, C.; Marinas, A.; Marinas, J.M.; Moreno, J.M.; Ruiz, J.R.; Urbano, F.J. [University of Cordoba. Marie Curie Building, Dept. of Organic Chemistry (Spain)

    2004-07-01

    Chlorinated hydrocarbons constitute one of the most important kind of organic pollutants due to their environmental impact and noxious effects. Catalytic hydro-dehalogenation is now emerging as a promising non-destructive alternative technology whereby the chlorinated waste is converted to products with a commercial value. It is simple, safe, effective, and it ensures, in many instances, the regeneration of the initial raw material. One of the main problems of catalytic hydro-dehalogenation arise from the deactivating effect of the hydrogen halide released as by product. This can be surpassed by, for example, adding a base, such as NaOH, or modification of the catalyst in order to neutralize the hydrogen halide released. In conclusion, the alkali modification of the zirconia supported catalysts did not enhance the catalytic activity in comparison to the undoped Pd/ZrO{sub 2}. Moreover, the lithium doped catalyst exhibits very poor results in initial rate and final chloro-benzene conversion. This could be related to the reduction in BET surface area caused by the doping together with a lower enhancement of the surface basicity of the doped catalysts. (authors)

  10. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  11. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  12. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    Science.gov (United States)

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  13. Research on test of alkali-resistant glass fibre enhanced seawater coral aggregate concrete

    Science.gov (United States)

    Liu, Leiyang; Wang, Xingquan

    2017-12-01

    It is proposed in the 13th five-year plan that reefs of the south China sea should be constructed. In the paper, an innovative thinking was proposed for the first time in order to realize local material acquisition in island construction and life dependence on sea, namely alkali-resistant glass fibre is mixed in coralaggregate concrete as reinforcing material. The glass fibre is characterized by low price, low hardness, good dispersibility and convenient construction. Reliable guarantee is provided for widely applying the material in future projects. In the paper, an orthogonal test method is firstly applied to determine the mix proportion of grade C50 coral aggregate concrete. Then, the design plan ofmix proportion of alkali-resistant glass fibre enhanced seawater coral aggregate concrete is determined. Finally, the influence law of alkali-resistant glass fibre dosageon tensile compressiveflexture strength of seawatercoralaggregate concrete is made clear.

  14. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst conversion...

  15. Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2015-01-01

    Full Text Available The corrosion resistance of steel in alkali-activated slag (AAS mortar was evaluated by a monitoring of the galvanic current and half-cell potential with time against a chloride-contaminated environment. For chloride transport, rapid chloride penetration test was performed, and chloride binding capacity of AAS was evaluated at a given chloride. The mortar/paste specimens were manufactured with ground granulated blast-furnace slag, instead of Portland cement, and alkali activators were added in mixing water, including Ca(OH2, KOH and NaOH, to activate hydration process. As a result, it was found that the corrosion behavior was strongly dependent on the type of alkali activator: the AAS containing the Ca(OH2 activator was the most passive in monitoring of the galvanic corrosion and half-cell potential, while KOH, and NaOH activators indicated a similar level of corrosion to Portland cement mortar (control. Despite a lower binding of chloride ions in the paste, the AAS had quite a higher resistance to chloride transport in rapid chloride penetration, presumably due to the lower level of capillary pores, which was ensured by the pore distribution of AAS mortar in mercury intrusion porosimetry.

  16. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H 2 ) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H 2 /CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H 2 /CO=0.67 and 2.0 NL/g-cat/h with C 5 + selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron

  17. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.

    2015-11-01

    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  18. Filter bag De-NOx system with powder type catalysts at low temperature

    International Nuclear Information System (INIS)

    Kim, Byung-Hwan; Kim, Jeong-Heon; Kang, Pil-Sun; Yoo, Seung-Kwan; Yoon, Kyoon-Duk

    2010-01-01

    Combustion of carbon source materials (MSW, RDF, sludge, coal etc.) leads to the emission of harmful gaseous pollutants such as SO x , NO x , mercury, particulate matter, and dioxins etc. In particular, the emission of nitrogen oxides (NO x ) from the solid waste incinerator remains a serious air pollution problem. The previous research concerns have focused mainly on NO x reduction of stationary sources at high temperature SCR or SNCR process. Selective catalytic reduction (SCR) with NH 3 is the most widespread system used to control NO x emissions. However, this process suffers from several disadvantages due to the use of thermo fragile honeycomb type module and high temperature (about 300 degree Celsius) operation which consumes additional heating energy. To overcome this hurdle, filter bag De-NO x system with powder type catalysts at low temperature (less than 200 degree Celsius) has been under investigation in recent years and looks interesting because neither additional heat nor honeycomb type modules are required. Filter bag and powder type catalysts are cheap and effective materials to remove NO x at low temperature. In this study, the selective catalytic reduction of NO x was carried out on a filter support reactor with 300 mesh powder type catalysts at low temperature. The experiments were performed by powder type MnO x and V 2 O 5 / TiO 2 catalyst at low temperature ranging between 130 and 250 degree Celsius. Also, the effect of SO 2 and H 2 O on the NO conversion was investigated under our test conditions. The powder type catalysts were characterized by X-ray photoelectron spectrum (XPS) for measuring the state of oxygen on the catalyst surface and X-ray diffraction (XRD). It was observed that NO conversion of the powder type V 2 O 5 / TiO 2 catalyst was 85 % at 200 degree Celsius under presence of oxygen and that of MnO x was 50 % at the same condition. From these results, the powder type V 2 O 5 / TiO 2 catalyst showed an excellent performance on the

  19. Alternative SILP-SCR Catalysts based on Guanidinium Chromates

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Riisager, Anders; Ståhl, Kenny

    There is an increasing global concern about human caused emissions of pollutants like sulfur and nitrogen oxides to the atmosphere leading to, e.g. smog and acid rain damaging to the human health and the environment. Selective catalytic reduction (SCR) of NOx with ammonia as reductant is the most...... duct. There is therefore a demand for alkali-resistant SCR catalysts more flexible regarding temperature of operation and position in the duct. Supported ionic liquid phase (SILP) catalysts with 1,1,3,3-Tetramethylguanidinium (TMGH+) and a chromium oxide anion supported on anatase have exhibited...

  20. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  1. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, the introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest in this study is the effect of hydrogen gas on the performance of the selective catalytic...... reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three...... different concentrations of H2 (0-2%) in a 8% O2/N2 mixture, where the SCR activity was measured before and after the hydrogen treatment. The results show that the activity of the SCR catalyst is only negligible affected during exposure to the H2/O2 gas and in all cases it returned reversibly to the initial...

  2. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  3. Preparation of Cyclic Urethanes from Amino Alcohols and Carbon Dioxide Using Ionic Liquid Catalysts with Alkali Metal Promoters

    OpenAIRE

    Masahiko Arai; Hisanori Senboku; Hiroshi Kanamaru; Shin-ichiro Fujita

    2006-01-01

    Several ionic liquids were applied as catalysts for the synthesis of cyclic urethanes from amino alcohols and pressurized CO2 in the presence of alkali metal compounds as promoters. A comparative study was made for the catalytic performance using different ionic liquids, substrates, promoters, and pressures. The optimum catalytic system was BMIM-Br promoted by K2CO3, which, for 1-amino-2-propanol, produced cyclic urethane in 40% yield with a smaller yield of substituted cyclic ...

  4. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  5. Physico-Chemical and Structural Properties of DeNOx and SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen Grenville; Oehlers, Cord; Nielsen, Kurt

    1996-01-01

    Commercial catalysts for NOx removal and SO2 oxidation and their model systems have been investigated by spectroscopic, thermal, electrochemical and X-ray methods. Structural information on the vanadium complexes and compounds as well as physico-chemical properties for catalyst model systems have...

  6. Resin catalysts and method of preparation

    Science.gov (United States)

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  7. More active and sulfur resistant bimetallic Pd-Ni catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica, E-mail: mquiroga@fiq.unl.edu.ar [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ-UNL, CONICET), Santa Fe (Argentina)

    2018-02-15

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfide compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the presence of different Pd species: Pd{sup δ-}, Pd{sup 0} and Pd{sup δ+}. In the case of the Ni containing catalysts, Ni{sup 0} and NiO species were also detected. These palladium and nickel species would be responsible of the variation of activity and sulfur resistance of the catalysts. NiClPd catalysts had a higher resistance to deactivation by sulfur poisoning. This was associated to a higher concentration of Pd{sup η+}Cl{sub x}O{sub y} species that would prevent the adsorption of thiophene by both steric and electronic effects. It could also be due to the lower concentration of Pd{sup 0} and Ni{sup 0} on these catalysts, as compared to those shown by the PdNiCl catalysts. Both the Pd{sup 0} and Ni{sup 0} species are more prone to poisoning because of their higher electronic availability. (author)

  8. Alternative catalysts and technologies for NOx removal from biomass- and wastefired plants

    DEFF Research Database (Denmark)

    Schill, Leonhard

    removed with the selective catalytic reduction (SCR) using a vanadia-tungsta-titania (VWT) catalyst and ammonia (NH3) as reductant. For application in coal- and gas-red power plants this technology is mature. However, when ring biomass the ue gas contains potassium in large amounts which deactivates....... The deNOx activity over Ag/Al2O3 used in ethanol-SCR is practically as much reduced as in the NH3-SCR case over the traditional VWT catalyst. Furthermore, poisoning with potassium leads to unselective oxidation of the hydrocarbons instead of NO reduction and SO2 concentrations as low as 20 ppm can....... At 150 C, in the presence of 10 % H2O, the catalyst under patenting matches the activity of the commercial VWT one at 220 C. However, ue gases at the tail-end position can contain up to 20 % H2O, increasing the temperature of activity parity to 180 C. Furthermore, the catalyst is also sensitive to SO2...

  9. Study on the poisoning effect-of non-vanadium catalysts by potassium

    Science.gov (United States)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  10. Combinatorial computational chemistry approach to the design of metal catalysts for deNOx

    International Nuclear Information System (INIS)

    Endou, Akira; Jung, Changho; Kusagaya, Tomonori; Kubo, Momoji; Selvam, Parasuraman; Miyamoto, Akira

    2004-01-01

    Combinatorial chemistry is an efficient technique for the synthesis and screening of a large number of compounds. Recently, we introduced the combinatorial approach to computational chemistry for catalyst design and proposed a new method called ''combinatorial computational chemistry''. In the present study, we have applied this combinatorial computational chemistry approach to the design of precious metal catalysts for deNO x . As the first step of the screening of the metal catalysts, we studied Rh, Pd, Ag, Ir, Pt, and Au clusters regarding the adsorption properties towards NO molecule. It was demonstrated that the energetically most stable adsorption state of NO on Ir model cluster, which was irrespective of both the shape and number of atoms including the model clusters

  11. A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-09-27

    Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO 2 utilizing pinacolborane at r.t. and 1 atm CO 2 , with the combination of [Ru(CNC Bn )(CO) 2 (H)][PF 6 ] and KOCO 2 t Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.

  12. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Godiksen, Anita

    2016-01-01

    characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR, Raman, FTIR and EPR spectroscopy to investigate the properties of the catalysts. XRPD, Raman and FTIR showed that promotion with 15 wt.% HPA does not cause V2O5 to be present in crystalline form, also at a loading of 5 wt.% V2O5. Hence, use of HPAs does......The influence of varying the V2O5 content (3–6 wt.%) was studied for the selective catalytic reduction (SCR) of nitrogen oxides by ammonia on heteropoly acid (HPA)- and tungsten oxide (WO3)-promoted V2O5/TiO2 catalysts. The SCR activity and alkali deactivation resistance of HPA-promoted V2O5/TiO2...... catalysts was found to be much higher than for WO3-promoted catalysts. By increasing the vanadium content from 3 to 5 wt.% the catalysts displayed a two fold increase in activity at 225 °C and retained their initial activity after alkali doping at a molar K/V ratio of 0.181. Furthermore, the catalysts were...

  13. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  14. Modeling the Formation of N2O and NO2 in the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Miller, James A.; Glarborg, Peter

    1996-01-01

    A chemical kinetic model is formulated that satisfactorily predicts the NO removed and the N2O and NO2 produced by the Thermal De-NOx process over a wide range of temperatures and initial oxygen concentrations....

  15. Tin-containing silicates: Alkali salts improve methyl lactate yield from sugars

    DEFF Research Database (Denmark)

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian Mårup

    2015-01-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the cat......This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation...

  16. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  17. Theoretical investigation of dinitrosyl complexes in Cu-zeolites as intermediates in deNOx process

    Czech Academy of Sciences Publication Activity Database

    Pulido, Maria Angeles; Nachtigall, Petr

    2009-01-01

    Roč. 11, č. 9 (2009), s. 1447-1458 ISSN 1463-9076 R&D Projects: GA ČR GA203/06/0324; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : zeolites * deNOx * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.116, year: 2009

  18. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  19. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  20. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  1. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  2. On-line alkali monitoring - Part 1

    International Nuclear Information System (INIS)

    Andersson, Christer; Ljung, P.; Woxlin, H.

    1997-02-01

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  3. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  4. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    Science.gov (United States)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  5. The physical chemistry and materials science behind sinter-resistant catalysts.

    Science.gov (United States)

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  6. Long time experience with deactivation and regeneration of DENOX catalysts and evaluation with the Internet database LEONID; Langzeiterfahrung mit der Deaktivierung und Regeneration von DENOX-Katalysatoren sowie Auswertung mit der Internet-Datenbank LEONID

    Energy Technology Data Exchange (ETDEWEB)

    Brandenstein, J.; Dieckmann, H.J.; Gutberlet, H. [E.ON Engineering GmbH, Gelsenkirchen (Germany)

    2008-07-01

    The paper gives an overview over the long-term catalyst deactivation and the main reasons for catalyst aging. The chemical composition of de-activated catalysts provides information on the optimum catalyst regeneration process. The long-term deactivation behaviour of regenerated catalysts is compared to new catalysts. All characteristic catalyst features are listed in an online 'LEONID'-database, developed by E.ON Engineering. The database provides the basis for long-term catalyst management of all connected SCR systems. (orig.)

  7. Alkali promotion of N-2 dissociation over Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using self-consistent density functional calculations, we show that adsorbed Na and Cs lower the barrier for dissociation of N2 on Ru(0001). Since N2 dissociation is a crucial step in the ammonia synthesis reaction, we explain in this way the experimental observation that alkali metals promote th...... the ammonia synthesis reaction over Ru catalysts. We also show that the origin of this effect is predominantly a direct electrostatic attraction between the adsorbed alkali atoms and the dissociating molecule....

  8. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  9. Optimisation of Ag loading and alumina characteristics to give sulphur-tolerant Ag/Al2O3 catalyst for H2-assisted NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Fogel, Sebastian; Doronkin, Dmitry E.; Gabrielsson, Pär

    2012-01-01

    A series of Ag/Al2O3 catalysts with different alumina precursors and different Ag loadings were tested for H2 assisted NH3-SCR of NO. The catalysts were characterised (BET, XRD, NH3-TPD, ICP-OES, TEM and UV–vis spectroscopy) and tested as fresh catalyst, during long-term cycling tests with SO2 pr....... A higher Ag loading will affect the state of Ag by increasing the ratio of Ag-clusters and particles to highly dispersed Ag ions. SO2-poisoned Ag-clusters and particles can be regenerated by the high temperature treatment in the deNOx feed, highly dispersed Ag ions cannot....

  10. Analysis and study on the performance variation of SCR DeNOx catalyst of Coal-Fired Boilers

    International Nuclear Information System (INIS)

    Jianxing, Ren; Fangqin, Li; Jiang, Wu; Qingrong, Liu; Yongwen, Yang; Zhongzhu, Qiu

    2010-01-01

    Nitrogen oxides (NO x ) are one kind of harmful substances from the burning process of fossil fuel and air at high temperature. NO x emissions cause serious pollution on atmospheric environment. In this paper, coal-fired utility boilers were chosen as the object, NO x formation mechanism and control were studied, and SCR deNO x technology was used to control NO x emissions from coal-fired boilers. Analyzed the relationship between deNO x efficiency and characteristics of SCR DeNO x catalyst. Through analysis, affecting SCR DeNO x catalyst failure factors, change law of catalytic properties and technical measures to extend the service life of the catalyst were gotten. (author)

  11. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  12. Stability and resistance of nickel catalysts for hydrodeoxygenation

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Gardini, Diego; de Carvalho, Hudson W. P.

    2014-01-01

    The long term stability and resistance toward carbon deposition, sulfur, chlorine, and potassium of Ni/ZrO2 as a catalyst for the hydrodeoxygenation (HDO) of guaiacol in 1-octanol (as a model compound system for bio-oil) has been investigated at 250 degrees C and 100 bar in a trickle bed reactor...

  13. Ethanol-selective catalytic reduction of NO by Ag/Al2O3 catalysts: Activity and deactivation by alkali salts

    DEFF Research Database (Denmark)

    Schill, Leonhard; Putluru, Siva Sankar Reddy; Jacobsen, Casper Funk

    2012-01-01

    Ag/Al2O3 catalysts with and without potassium doping were prepared by incipient wetness impregnation and characterized by N2 physisorption, XRPD, NH3-TPD and SEM. The influence of the Ag content from 1 to 5 wt.% was investigated for the selective catalytic reduction (SCR) of NO with ethanol. The 3...... wt.% Ag/Al2O3 catalyst was found to be the most active and CO2 selective over a wide temperature window (300–500 ◦C). Addition of 500 ppm of H2 has a mild promotional effect on the activity while SO2 has a strong negative influence on the SCR activity. Furthermore, the Ag/Al2O3 ethanol-SCR catalyst......3 ethanol-SCR catalyst compared to the conventional NH3-SCR catalyst. The still low potassium resistance, in combination with the high sensitivity to SO2, seems not to make these catalysts a real option for biomass fired boilers....

  14. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  15. [Raman spectra of endospores of Bacillus subtilis by alkali stress].

    Science.gov (United States)

    Dong, Rong; Lu, Ming-qian; Li, Feng; Shi, Gui-yu; Huang, Shu-shi

    2013-09-01

    To research the lethal mechanism of spores stressed by alkali, laser tweezers Raman spectroscopy (LTRS) combined with principal components analysis (PCA) was used to study the physiological process of single spore with alkali stress. The results showed that both spores and germinated spores had tolerance with alkali in a certain range, but the ability of spores was obviously lower than that of spores due to the release of their Ca2+ -DPA which plays a key role in spores resistance as well as spores resistance to many stresses; A small amount of Ca2+ -DPA of spores was observed to release after alkali stress, however, the behavior of release was different with the normal Ca2+ -DPA release behavior induced by L-alanine; The data before and after alkali stress of the spores and g. spores with PCA reflected that alkali mainly injured the membrane of spores, and alkali could be easily enter into the inner structure of spores to damage the structure of protein backbone and injure the nucleic acid of spores. We show that the alkali could result in the small amount of Ca2+ -DPA released by destroying the member channel of spores.

  16. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  17. Two Iron Complexes as Homogeneous and Heterogeneous Catalysts for the Chemical Fixation of Carbon Dioxide.

    Science.gov (United States)

    Karan, Chandan Kumar; Bhattacharjee, Manish

    2018-04-16

    Two new bimetallic iron-alkali metal complexes of amino acid (serine)-based reduced Schiff base ligand were synthesized and structurally characterized. Their efficacy as catalysts for the chemical fixation of carbon dioxide was explored. The heterogeneous version of the catalytic reaction was developed by the immobilization of these homogeneous bimetallic iron-alkali metal complexes in an anion-exchange resin. The resin-bound complexes can be used as recyclable catalysts up to six cycles.

  18. CHARACTERIZATION OF COMMERCIALLY AVAILABLE ALKALI RESISTANT GLASS FIBER FOR CONCRETE REINFORCEMENT AND CHEMICAL DURABILITY COMPARISON WITH SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS SYSTEM GLASSES

    Directory of Open Access Journals (Sweden)

    Göktuğ GÜNKAYA

    2012-12-01

    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  19. On-line alkali monitoring - Part 1; Kontinuerlig alkalimaetning - Etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Ljung, P; Woxlin, H

    1997-02-01

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  20. Alkali Influence on Synthesis of Solid Electrolyte Based on Alkali Nitrate-Alumina

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Purnama, S.; Purwanto, P.

    2008-01-01

    Research of solid electrolyte based on alumina with addition of alkali materials of barium nitrate, calcium nitrate, sodium nitrate and lithium nitrate has been done. Aluminium hydroxide and alkali nitrate were mixed in mole ratio of 1 : 1 in water media and pyrolyzed at 300 o C for 1 hour Pyrolysis result were then mixed with alumina in mole ratio of 1 : 1, compacted and heated at 600 o C for 3 hours. To characterize the sample, XRD (X-Ray Diffractometers) and LCR meter (impedance, capacitance, and resistance) were used for analysis the phase and conductivity properties. The result showed formation of alkali-aluminate in which Li-base have the highest room temperature conductivity of 3.1290 x 10 -5 S.cm -1 , while Ba-base have the lowest conductivity of 5.7266 x 10 -8 S.cm -1 . (author)

  1. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    catalyst with Rh was studied and the results are summarized in Chapter 6. Chapter 7 presents a comparison between the Co-Pt and Co-Rh systems. Finally, we evaluate the results of this study and general conclusions with suggestions for the design of an optimal deNOx catalyst. refs

  2. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  3. Perovskite catalysts for oxidative coupling

    Science.gov (United States)

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  4. In situ formation of coal gasification catalysts from low cost alkali metal salts

    Science.gov (United States)

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  5. Engineered Sulfur‐Resistant Catalyst System with an Assisted Regeneration Strategy for Lean‐Burn Methane Combustion

    Science.gov (United States)

    Kallinen, Kauko; Maunula, Teuvo; Suvanto, Mika

    2018-01-01

    Abstract Catalytic combustion of methane, the main component of natural gas, is a challenge under lean‐burn conditions and at low temperatures owing to sulfur poisoning of the Pd‐rich catalyst. This paper introduces a more sulfur‐resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production. PMID:29780434

  6. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    Science.gov (United States)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied

  7. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-01-08

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature-programmed reduction, and BET analysis demonstrates that the excellent performance of this catalyst is ascribed to the synergy of various parameters, including metal-nanoparticle size, metal-support interaction, catalyst structure, ensemble size, and alloy effects.

  8. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  9. The effect of promoters on the electronic structure of ruthenium catalysts supported on carbon

    International Nuclear Information System (INIS)

    Guraya, Monica; Sprenger, Susanne; Rarog-Pilecka, Wioletta; Szmigiel, Dariusz; Kowalczyk, Zbigniew; Muhler, Martin

    2004-01-01

    Alkali- and earth-alkali-promoted ruthenium catalysts supported on graphitized carbon were investigated by means of X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) in order to study the effect of promoters on the electronic structure of this metal-support system. Samples were measured as prepared and after thorough reduction in hydrogen. The C 1s spectra of reduced alkali-promoted catalysts showed a shift towards higher binding energies and an asymmetric broadening. Neither non-promoted nor Ba-promoted Ru/C samples exhibited such a behaviour after similar treatments. The most important feature in the UP spectra of the reduced alkali-promoted catalysts was the appearance of a well defined Fermi edge absent in the semimetal-like electronic structure of graphite. No significant effects appeared in the case of non-promoted or Ba-promoted catalysts. The increase in the density of occupied states at the Fermi energy indicates a shift of this level into the conduction band, due to a charge transfer from the promoter to the support. This interpretation also provides an explanation for the observed higher C 1s binding energy and asymmetric broadening, due to the off-set introduced in the binding energy scale and the increasing probability of inelastic excitations near the Fermi level. In addition to photoelectron spectroscopy, low energy ion scattering (ISS) was used to obtain information about the localisation of the promoters. Based on the mild sputtering effect during prolonged series of spectra, it was possible to conclude that potassium covers both the carbon support and the Ru metal particles

  10. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Science.gov (United States)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  11. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    Directory of Open Access Journals (Sweden)

    Faris A J Al-Doghachi

    Full Text Available A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.

  12. A general strategy for the in situ decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts.

    Science.gov (United States)

    Cai, Sixiang; Liu, Jie; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2017-05-04

    Owing to their advantages of strong mechanical stability, plasticity, thermal conductivity and mass transfer ability, metal foam or meshes are considered promising monolith supports for de-NO x application. In this work, we developed a facile method for the decoration of porous Mn-Co bi-metal oxides on Fe meshes. The block-like structure was derived from in situ coating, and simultaneous nucleation and growth of the Mn-Co hydroxide precursor, while the porous Mn-Co oxides were formed via the calcination process. Moreover, the decoration of the high-purity Co 2 MnO 4 spinel could lead to enhanced reducibility and adsorption behaviors, which are crucial to the catalytic process. Of note is the fact that the Fe mesh used in the synthesis procedure could be substituted by various metal supports including Ti mesh, Cu foam and Ni foam. Driven by the above motivations, metal supports decorated with Mn-Co oxides were evaluated as monolith de-NO x catalysts for the first time. Inspiringly, these catalysts demonstrate outstanding low-temperature catalytic activity, desirable stability and excellent H 2 O resistance. This work might open up a new path for the design and development of high performance de-NO x monolith catalysts.

  13. Storage of Nitrous Oxide (NOx in Diesel Engine Exhaust Gas using Alumina-Based Catalysts: Preparation, Characterization, and Testing

    Directory of Open Access Journals (Sweden)

    A. Alsobaai

    2017-03-01

    Full Text Available This work investigated the nitrous oxide (NOx storage process using alumina-based catalysts (K2 O/Al2 O3 , CaO/Al2 O3,  and BaO/Al2 O3 . The feed was a synthetic exhaust gas containing 1,000 ppm of nitrogen monoxide (NO, 1,000 ppm i-C4 H10 , and an 8% O2  and N2  balance. The catalyst was carried out at temperatures between 250–450°C and a contact time of 20 minutes. It was found that NOx was effectively adsorbed in the presence of oxygen. The NOx storage capacity of K2 O/Al2 O3 was higher than that of BaO/Al2 O3.  The NOx storage capacity for K2 O/Al2 O3  decreased with increasing temperature and achieved a maximum at 250°C. Potassium loading higher than 15% in the catalyst negatively affected the morphological properties. The combination of Ba and K loading in the catalyst led to an improvement in the catalytic activity compared to its single metal catalysts. As a conclusion, mixed metal oxide was a potential catalyst for de-NOx process in meeting the stringent diesel engine exhaust emissions regulations. The catalysts were characterized by a number of techniques and measurements, such as X-ray diffraction (XRD, electron affinity (EA, a scanning electron microscope (SEM, Brunner-Emmett-Teller (BET to measure surface area, and pore volume and pore size distribution assessments.

  14. MORE ACTIVE AND SULFUR RESISTANT BIMETALLIC Pd-Ni CATALYSTS

    OpenAIRE

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica

    2018-01-01

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfided compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the pr...

  15. Heterogeneous studies in pulping of wood: Modelling mass transfer of alkali

    OpenAIRE

    Simão, João P. F.; Egas, Ana P. V.; Carvalho, M. Graça; Baptista, Cristina M. S. G.; Castro, José Almiro A. M.

    2008-01-01

    In this paper a heterogeneous lumped parameter model is proposed to describe the mass transfer of effective alkali during the kraft pulping of wood. This model, based on the spatial mean of the concentration profile of effective alkali along the chip thickness, enables the estimation of the effective diffusion coefficient that characterizes the internal resistance to mass transfer and the contribution of the external resistance to mass transfer which has often been neglected. http://www.sc...

  16. Alkali-resistant low-temperature atomic-layer-deposited oxides for optical fiber sensor overlays

    Science.gov (United States)

    Kosiel, K.; Dominik, M.; Ściślewska, I.; Kalisz, M.; Guziewicz, M.; Gołaszewska, K.; Niedziółka-Jonsson, J.; Bock, W. J.; Śmietana, M.

    2018-04-01

    This paper presents an investigation of properties of selected metallic oxides deposited at a low temperature (100 °C) by atomic layer deposition (ALD) technique, relating to their applicability as thin overlays for optical fiber sensors resistant in alkaline environments. Hafnium oxide (Hf x O y with y/x approx. 2.70), tantalum oxide (Ta x O y with y/x approx. 2.75) and zirconium oxide (Zr x O y with y/x approx. 2.07), which deposition was based, respectively, on tetrakis(ethylmethyl)hafnium, tantalum pentachloride and tetrakis(ethylmethyl)zirconium with deionized water, were tested as thin layers on planar Si (100) and glass substrates. Growth per cycle (GPC) in the ALD processes was 0.133-0.150 nm/cycle. Run-to-run GPC reproducibility of the ALD processes was best for Hf x O y (0.145 ± 0.001 nm/cycle) and the poorest for Ta x O y (0.133 ± 0.003 nm/cycle). Refractive indices n of the layers were 2.00-2.10 (at the wavelength λ = 632 nm), with negligible k value (at λ for 240-930 nm). The oxides examined by x-ray diffractometry proved to be amorphous, with only small addition of crystalline phases for the Zr x O y . The surfaces of the oxides had grainy but smooth topographies with root-mean square roughness ˜0.5 nm (at 10 × 10 μm2 area) according to atomic force microscopy. Ellipsometric measurements, by contrast, suggest rougher surfaces for the Zr x O y layers. The surfaces were also slightly rougher on the glass-based samples than on the Si-based ones. Nanohardness and Young modules were 4.90-8.64 GPa and 83.7-104.4 GPa, respectively. The tests of scratch resistance revealed better tribological properties for the Hf x O y and the Ta x O y than for the Zr x O y . The surfaces were hydrophilic, with wetting angles of 52.5°-62.9°. The planar oxides on Si, being resistive even to concentrated alkali (pH 14), proved to be significantly more alkali-resistive than Al2O3. The Ta x O y overlay was deposited on long-period grating sensor induced in optical

  17. Using response surface methodology in optimisation of biodiesel production via alkali catalysed transesterification of waste cooking oil

    CSIR Research Space (South Africa)

    Naidoo, R

    2016-03-01

    Full Text Available The report focuses on optimisation of alkali catalysis as a process for producing biodiesel from waste cooking oils. Biodiesel production parameters that were optimised were methanol to oil ratio, catalyst concentration, reaction temperature...

  18. Persistent deNOx Ability of CaAl2O4:(Eu, Nd/TiO2-xNy Luminescent Photocatalyst

    Directory of Open Access Journals (Sweden)

    Li Huihui

    2011-01-01

    Full Text Available Abstract CaAl2O4:(Eu, Nd/TiO2-xNy composite luminescent photocatalyst was successfully synthesized by a simple planetary ball milling process. Improvement of photocatalytic deNOx ability of TiO2-xNy, together with the persistent photocatalytic activity for the decomposition of NO after turning off the light were realized, by coupling TiO2-xNy with long afterglow phosphor, CaAl2O4:(Eu, Nd. The novel persistent photocatalytic behavior was related to the overlap between the absorption wavelength of TiO2-xNy and the emission wavelength of the CaAl2O4:(Eu, Nd. It was found that CaAl2O4:(Eu, Nd/TiO2-xNy composites provided the luminescence to persist photocatalytic reaction for more than 3 h after turning off the light. Graphical Abstract CaAl2O4:(Eu, Nd/TiO2-xNy composite luminescent photocatalyst with persistent deNOx activity after turning off the light was successfully synthesized by a simple planetary ball milling process. The novel persistent photocatalytic behavior was related to the overlap between the absorption wavelength of TiO2-xNy and the emission wavelength of the CaAl2O4:(Eu, Nd. Additional file 1 Click here for file

  19. Process and catalysts for hydrocarbon conversion. [high antiknock motor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-14

    High anti-knock motor fuel is produced from hydrocarbons by subjecting it at an elevated temperature to contact with a calcined mixture of hydrated silica, hydrated alumina, and hydrated zirconia, substantially free from alkali metal compounds. The catalyst may be prepared by precipitating silica gel by the acidification of an aqueous solution of an alkali metal silicate, intimately mixing hydrated alumina and hydrated zirconia therewith, drying, purifying the composite to substantially remove alkali metal compounds, again drying, forming the dried material into particles, and finally calcining. The resultant conversion products may be fractionated to produce gasoline, hydrocarbon oil above gasoling boiling point range, and a gaseous fraction of olefins which are polymerized into gasoline boiling range polymers.

  20. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  1. Recent progress in rechargeable alkali metalâair batteries

    OpenAIRE

    Xin Zhang; Xin-Gai Wang; Zhaojun Xie; Zhen Zhou

    2016-01-01

    Rechargeable alkali metalâair batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metalâair batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metalâair batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this ...

  2. Superconductivity and electrical resistivity in alkali metal doped ...

    Indian Academy of Sciences (India)

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to ...

  3. Alkali metal protective garment and composite material

    Science.gov (United States)

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  4. An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar

    OpenAIRE

    Funke, Henrik L.; Gelbrich, Sandra; Kroll, Lothar

    2016-01-01

    This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) and aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 mol/l revealed the best compromise betwee...

  5. Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions

    Science.gov (United States)

    Shi, Jin-jie; Ming, Jing; Liu, Xin

    2017-10-01

    In this study, two types of reinforcing steels (conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions (ordinary Portland cement (OPC) extract and alkali-activated slag (AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various NaCl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.

  6. Concrete alkali-silica reaction and nuclear radiation damage

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2008-01-01

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca 2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  7. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  8. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    International Nuclear Information System (INIS)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-01-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [es

  9. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    Science.gov (United States)

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. High sintering resistance of size-selected platinum cluster catalysts by suppressed ostwald ripening

    DEFF Research Database (Denmark)

    Wettergren, Kristina; Schweinberger, Florian F.; Deiana, Davide

    2014-01-01

    on different supports exhibit remarkable intrinsic sintering resistance even under reaction conditions. The observed stability is related to suppression of Ostwald ripening by elimination of its main driving force via size-selection. This study thus constitutes a general blueprint for the rational design...... of sintering resistant catalyst systems and for efficient experimental strategies to determine sintering mechanisms. Moreover, this is the first systematic experimental investigation of sintering processes in nanoparticle systems with an initially perfectly monomodal size distribution under ambient conditions....

  11. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction.

    Science.gov (United States)

    Connor, Gannon P; Holland, Patrick L

    2017-05-15

    The Haber-Bosch process is a major contributor to fixed nitrogen that supports the world's nutritional needs and is one of the largest-scale industrial processes known. It has also served as a testing ground for chemists' understanding of surface chemistry. Thus, it is significant that the most thoroughly developed catalysts for N 2 reduction use potassium as an electronic promoter. In this review, we discuss the literature on alkali metal cations as promoters for N 2 reduction, in the context of the growing knowledge about cooperative interactions between N 2 , transition metals, and alkali metals in coordination compounds. Because the structures and properties are easier to characterize in these compounds, they give useful information on alkali metal interactions with N 2 . Here, we review a variety of interactions, with emphasis on recent work on iron complexes by the authors. Finally, we draw conclusions about the nature of these interactions and areas for future research.

  12. Emerging catalytic technologies related to the denoxing of waste gases from thermal power stations

    International Nuclear Information System (INIS)

    Busca, G.

    2002-01-01

    The emerging catalytic technologies related to the DeNOxing of waste gases from thermal power stations are briefly discussed. In the case of the Selective Catalytic Reduction of NO x with hydrocarbons new zeolite-based or metal oxide catalytic systems are under development, whose stability and performances approach more and more those needed for a commercial process. The processes for the low temperature Selective Catalytic Reduction of NO x with ammonia are apparently promising allowing a possible application in a tail-end process configuration, at least after a total abatement of SO x . The processes of combined abatement of NO x and dioxins are already applied industrially. Also the Selective Oxidation of ammonia slip to nitrogen is already proposed as commercial process. In both last cases, however, few information is available in the open literature [it

  13. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    Science.gov (United States)

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  14. Graphite-based detectors of alkali metals for nuclear power plants

    International Nuclear Information System (INIS)

    Kalandarishvili, A.G.; Kuchukhidze, V.A.; Sordiya, T.D.; Shartava, Sh.Sh.; Stepennov, B.S.

    1993-01-01

    The coolants most commonly used in today's fast reactors are alkali metals or their alloys. A major problem in nuclear plant design is leakproofing of the liquid-metal cooling system, and many leak detection methods and safety specifications have been developed as a result. Whatever the safety standards adopted for nuclear plants in different countries, they all rely on the basic fact that control of the contamination and radiation hazards involved requires reliable monitoring equipment. Results are presented of trials with some leak detectors for the alkali-metal circuits of nuclear reactors. The principal component affecting the detector performance is the sensing element. In the detectors graphite was employed, whose laminar structure enables it to absorb efficiently alkali-metal vapors at high temperatures (320--500 K). This produces a continuous series of alkali-metal-graphite solid solutions with distinct electrical, thermal, and other physical properties. The principle of operation of the detectors resides in the characteristic reactions of the metal-graphite system. One detector type uses the change of electrical conductivity of the graphite-film sensor when it is exposed to alkali-metal vapor. In order to minimize the effect of temperature on the resistance the authors prepared composite layers of graphite intercalated with a donor impurity (cesium or barium), and a graphite-nickel material. The addition of a small percentage of cesium, barium, or nickel produces a material whose temperature coefficient of resistance is nearly zero. Used as a sensing element, such a material can eliminate the need for thermostatic control of the detector

  15. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong; Anjum, Dalaver; Zhu, Haibo; Saih, Youssef; Laveille, Paco; D'Souza, Lawrence; Basset, Jean-Marie

    2015-01-01

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature

  16. One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination.

    Science.gov (United States)

    Shinde, Sandip S; Patil, Sunil N

    2014-12-07

    The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.

  17. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  18. Uniformly active phase loaded selective catalytic reduction catalysts (V{sub 2}O{sub 5}/TNTs) with superior alkaline resistance performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiqiang; Wang, Penglu [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China); Chen, Xiongbo [South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China)

    2017-02-15

    Highlights: • VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}. • Ion-exchange reaction occurs between VOSO{sub 4} and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO{sub 4}-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH{sub 4}VO{sub 3} and VOSO{sub 4}) were used to synthesize deNO{sub x} catalysts. The results showed that VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V{sup 5+}/V{sup 4+} redox cycles and superior oxygen mobility were achieved. Besides, VOSO{sub 4}-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V{sub 2}O{sub 5}/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  19. On the origin of the mixed alkali effect on indentation in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, J. C.

    2014-01-01

    The compositional scaling of Vickers hardness (Hv) in mixed alkali oxide glasses manifests itself as a positive deviation from linearity as a function of the network modifier/modifier ratio, with a maximum deviation at the ratio of 1:1. In this work, we investigate the link between the indentation...... deformation processes (elastic deformation, plastic deformation, and densification) and Hv in two mixed sodium–potassium silicate glass series. We show that the mixed alkali effect in Hv originates from the nonlinear scaling of the resistance to plastic deformation. We thus confirm a direct relation between...... the resistance to plastic flow and Hv in mixed modifier glasses. Furthermore, we find that the mixed alkali effect also manifests itself as a positive deviation from linearity in the compositional scaling of density for glasses with high alumina content. This trend could be linked to a compaction of the network...

  20. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  1. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    Science.gov (United States)

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  2. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  3. Effects space velocity and gas velocity on DeNOx catalyst with HC reductant; HC tenka NOx kangen shokubai no kukan sokudo oyobi gas ryusoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, K.; Tsujimura, K.

    1995-04-20

    Discussions were given on the hydrocarbon added reduction catalyst method to reduce NOx in diesel engine exhaust gas. An experiment was carried out with actual exhaust gas from a diesel engine by using a copper ion exchanged zeolite catalyst that has been coated on a honeycomb type substrate, and using propylene as a reductant. When the catalyst volume was changed with the exhaust gas space velocity kept constant, the NOx conversion ratio decreased as the catalyst length is decreased, and the activity shifted to the lower temperature side. The NOx reduction efficiency increased if the faster the gas flow velocity. On the other hand, if the gas flow velocity is slow, the NOx reduction can be carried out with relatively small amount of the reductant. When the catalyst volume was changed with the passing gas amount kept constant, the NOx conversion ratio decreased largely if the catalyst length is decreased. Further, the NOx reduction characteristics shift to the higher temperature side. In the catalyst length direction, the NOx reduction activity shows a relatively uniform action. However, a detailed observation reveals that the reaction heat in the catalyst is transmitted to the wake improving the activity, hence the further down the flow, the NOx conversion ratio gets higher in efficiency. 5 refs., 5 figs., 3 tabs.

  4. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Changjiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Hu, Youdong [Department of Geriatrics, The Affiliated Huai' an Hospital of Xuzhou Medical College, Huai' an 223003 (China); Hou, Yu; Liu, Tao; Lin, Yuebin; Ye, Wei; Hou, Yanhua; Gong, Tao [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2017-01-01

    In recent years, magnesium alloys are attracting more and more attention as a kind of biodegradable metallic biomaterials, however, their uncontrollable biodegradation speed in vivo and the limited surface biocompatibility hinder their clinical applications. In the present study, with the aim of improving the corrosion resistance and biocompatibility, the magnesium alloy (AZ31B) surface was modified by alkali heating treatment followed by the self-assembly of 3-aminopropyltrimethoxysilane (APTMS). Subsequently, poly (ethylene glycol) (PEG) and fibronectin or fibronectin/heparin complex were sequentially immobilized on the modified surface. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that the above molecules were successfully immobilized on the magnesium alloy surface. An excellent hydrophilic surface was obtained after the alkali heating treatment while the hydrophilicity decreased to some degree after the self-assembly of APTMS, the surface hydrophilicity was gradually improved again after the immobilization of PEG, fibronectin or fibronectin/heparin complex. The corrosion resistance of the control magnesium alloy was significantly improved by the alkali heating treatment. The self-assembly of APTMS and the following immobilization of PEG further enhanced the corrosion resistance of the substrates, however, the grafting of fibronectin or fibronectin/heparin complex slightly lowered the corrosion resistance. As compared to the pristine magnesium alloy, the samples modified by the immobilization of PEG and fibronectin/heparin complex presented better blood compatibility according to the results of hemolysis assay and platelet adhesion as well as the activated partial thromboplastin time (APTT). In addition, the modified substrates had better cytocompatibility to endothelial cells due to the improved anticorrosion and the introduction of fibronectin. The substrates

  5. Preparation and characterization of CuO catalyst for the thermolysis treatment of distillery wastewater.

    Science.gov (United States)

    Sharma, Deepak; Prajapati, Abhinesh Kumar; Choudhary, Rumi; Kaushal, Rajesh Kumar; Pal, Dharm; Sawarkar, Ashish N

    2017-08-16

    CuO catalyst was prepared from copper sulfate by alkali precipitation method followed by drying and calcination. Characterization of CuO catalyst using X-ray diffraction, Brunauer-Emmett-Teller, and Barrett-Joyner-Halenda surface area analysis envisaged the effectiveness of CuO as a catalyst for the treatment of biodigester effluent (BDE) emanated from distilleries. The catalytic thermolysis is an efficient advance treatment method for distillery biodigester effluent (BDE). CT treatment of BDE was carried out in a 0.5 dm 3 thermolytic batch reactor using CuO as a catalyst at different pH (1-9), temperatures (80-110°C), and catalyst loadings (1-4 kg/m 3 ). With CuO catalyst, a temperature of 110°C, catalyst loading of 4 kg/m 3 , and pH of 2 was found to be optimal, providing a maximum reduction in chemical oxygen demand of 65%. The settling characteristics at different temperatures of CT-treated sludge were also presented.

  6. Deactivation of SCR catalysts by potassium: A study of potential alkali barrier materials

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Castellino, Francesco

    2017-01-01

    The use of coatings in order to protect vanadia based SCR catalysts against potassium poisoning has been studied by lab- and pilot-scale experiments. Three-layer pellets, consisting of a layer ofa potential coating material situated between layers of fresh and potassium poisoned SCR catalyst, were...... the coating process. Potassium had to some extent penetrated the MgO coat, and SEM analysis revealed it to be rather thick and fragile. Despite these observations, the coating did protect the SCR catalyst against potassium poisoning to some degree, leaving promise of further optimization....... used to test the ability of the barrier layer to block the diffusion of potassium across the pellet. Of MgO, sepiolite and Hollandite manganese oxide, MgO was the most effective potassium barrier, and no potassium was detected in the MgO layer upon exposure to SCR conditions for 7 days. Two monoliths...

  7. Characterisation and properties of alkali activated pozzolanic materials

    Science.gov (United States)

    Bordeian, Georgeta Simona

    : density, water absorption, apparent porosity and coefficient of saturation, drying shrinkage, compressive creep, compressive, flexural and tensile splitting strength, dynamic modulus of elasticity, accelerated weathering (freeze-thaw cycle) resistance, fire resistance (temperatures up to 600°C), microstructure, macrostructure and investigation of hydration phases by SEM, ED AX, Digital-mapping and X-ray diffraction.The influence of key parameters e.g. slag content, curing method, water/binder ratio and water glass hardener content on the mechanical properties were determined. Optimisation of the alkali-activation of fly ash materials was achieved by blending this with other pozzolans such as silica fume and slags. Mechanical properties were further improved by using moulding pressures and by thermal treatment. The use of short fibre reinforcements was investigated to overcome microcracking, volumetric deformation and creep in the materials. The free shrinkage and creep of the materials agree with the model developed by Mangat and Azari for fibre reinforced Portland cement composites. Other additives were also investigated to improve workability, frost and water resistance and physical properties of the alkali activated materials. The fundamental relationships between chemical composition, hydration phases,microstructure and engineering properties (strength, durability and stability) of alkali activated materials were investigated. It is clear that strength development is a function of the hydration products developed and these are affected by the mix composition and the curing temperature. The current work found parameters such as the Si/Al ratio, the Ca/Si ratio and the Na20 content to be important. These chemical parameters decide the principal phases in the hydration products formed in alkali activated materials, between calcium silicate hydrate (C-S-H) and zeolite of the form (R[2]0 n Al[2]O[3] x SiO[2] r H[2]O).Overall the thesis shows the great potential of alkali

  8. The Durability and Performance of Short Fibers for a Newly Developed Alkali-Activated Binder

    Directory of Open Access Journals (Sweden)

    Henrik Funke

    2016-03-01

    Full Text Available This study reports the development of a fiber-reinforced alkali-activated binder (FRAAB with an emphasis on the performance and the durability of the fibers in the alkaline alkali-activated binder (AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali-activated with a mixture of sodium hydroxide (2–10 mol/L and an aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1 at ambient temperature. For the reinforcement of the matrix integral fibers of alkali-resistant glass (AR-glass, E-glass, basalt, and carbon with a fiber volume content of 0.5% were used. By the integration of these short fibers, the three-point bending tensile strength of the AAB increased strikingly from 4.6 MPa (no fibers up to 5.7 MPa (carbon after one day. As a result of the investigations of the alkali resistance, the AR-glass and the carbon fibers showed the highest durability of all fibers in the FRAAB-matrix. In contrast to that, the weight loss of E-glass and basalt fibers was significant under the alkaline condition. According to these results, only the AR-glass and the carbon fibers reveal sufficient durability in the alkaline AAB-matrix.

  9. Apparatus and Process for Controlled Nanomanufacturing Using Catalyst Retaining Structures

    Science.gov (United States)

    Nguyen, Cattien (Inventor)

    2013-01-01

    An apparatus and method for the controlled fabrication of nanostructures using catalyst retaining structures is disclosed. The apparatus includes one or more modified force microscopes having a nanotube attached to the tip portion of the microscopes. An electric current is passed from the nanotube to a catalyst layer of a substrate, thereby causing a localized chemical reaction to occur in a resist layer adjacent the catalyst layer. The region of the resist layer where the chemical reaction occurred is etched, thereby exposing a catalyst particle or particles in the catalyst layer surrounded by a wall of unetched resist material. Subsequent chemical vapor deposition causes growth of a nanostructure to occur upward through the wall of unetched resist material having controlled characteristics of height and diameter and, for parallel systems, number density.

  10. Effect of TiB2 Pretreatment on Pt/TiB2 Catalyst Performance

    International Nuclear Information System (INIS)

    Huang, Zhen; Lin, Rui; Fan, Renjie; Fan, Qinbai; Ma, Jianxin

    2014-01-01

    Highlights: • We pretreated Titanium diboride by different acids and alkali. • We synthesis the Pt/as-pretreated TiB 2 catalysts by a colloid route. • We investigated the effects of TiB 2 Pretreatment on Pt/TiB 2 Catalyst Performance. • The BET surface area and defects on the surface have a close relationship with the deposition of Pt nanoparticles. - Abstract: Carbon support corrosion of traditional Pt/C catalyst is one of the major contributors causing poor durability of proton exchange membrane fuel cells (PEMFC). Titanium diboride (TiB 2 ) has high electrical conductivity and considerable chemical stability, which making it as a good candidate for catalyst support in PEMFC. In this work, TiB 2 was pretreated by different acid and alkali. The as-obtained samples were characterized by Ex-situ microscopy (ESM) and X-ray diffraction (XRD). The pore size distribution (PSD) was analyzed by using DFT method. The PSD shows distinct volume in mesopore regions (less than 50 nm). The TiB2 pretreated by H 2 O 2 shows the biggest BET surface area of 57 m 2 g −1 and its PSD focus on mesoporous (1.5-8 nm) region, which resulted to high dispersion and better loading of Pt particles. The Hydrogen oxidization reaction (HOR) and oxygen reduction reaction (ORR) activity was characterized by Rotating Disk Electrode (RDE). The Pt/TiB 2 prepared by H 2 O 2 -pretreated TiB 2 using the colloidal method showed better half-cell electrochemical performance. Facile synthetic for the development of Pt/TiB 2 catalysts was developed

  11. Mechanistic understanding and kinetic studies of highly selective oxidative dehydrogenation of ethane over novel supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Dept. of Chemistry

    2012-07-01

    Ethene is one of the most important feedstocks for chemical industry, nowadays mainly produced via steam cracking. However, oxidative dehydrogenation becomes a more important process route, allowing to produce ethene selectively and at lower temperatures. Supported alkali chloride catalysts are promising materials. However, the ODH mechanism of this class of catalysts is not well investigated so far. The investigation of the reaction mechanism is thus the aim of this contribution. (orig.)

  12. Synthesis of palm biodiesel using sodium methoxide catalyst

    International Nuclear Information System (INIS)

    Azhari; Robiah Yunus; Rasyid, S.A.; Abdullah, L.C.

    2006-01-01

    Synthesis of palm biodiesel (methyl ester) was successfully carried out from refined bleached deodorized palm oil (RBDPO) by transesterification reaction. Two kinds of alkali catalyst were selected for this reaction namely sodium hydroxide (NaOH) and sodium methoxide (NaOCH 3 ), and the effects of operating variables such as molar ratio, reaction temperature and quantity of catalyst were also investigated. The reaction was carried out under atmosphere pressure. The reaction temperature and time were varied between 55 to 70 degree C and 50 to 90 minutes respectively. The methanol to oil molar ratios were also varied at 6:1, 5:1, 4:1 and 3:1 to examine its effect on reaction yield. The reaction conversion was 99% by use of NaOCH 3 as a catalyst. However, with NaOH as catalyst, the conversion was slightly lower compared to using NaOCH 3 . The optimum conditions for NaOCH 3 as catalyst were reaction temperature, 65 degree C; reaction time, 60 minutes; molar ratio, 6:1; and catalyst amount, 1.0% w/w. The kinetics study on transesterification of RBDPO with methanol established that the reaction occurred via two stepwise and irreversible elementary reactions following second order model. A vacuum distillation process was used to reduce the pour point of palm biodiesel. The lowest pour point attainable for palm biodiesel was at 3 degree C. (Author)

  13. The synthesis of higher alcohols using modified Cu/ZnO/Al@#2@#O@#3@# catalysts

    OpenAIRE

    Slaa, J.C.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    This paper gives a review of research work in the synthesis of higher alcohols over catalysts based on Cu/ZnO/Al2O3, emphasizing three main topics: (i) the effect on selectivity of the addition of several compounds to this catalyst, (ii) the effect on selectivity of the reaction conditions used, and (iii) the reaction network leading to the different products found. Although the use of alkali compounds has been studied most extensively, other compounds, for example those containing manganese,...

  14. Influence of alkali metal hydroxides on corrosion of Zr-base alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan

    1996-01-01

    The influence of group-1 alkali hydroxides on different Zr-based alloys have been carried out in static autoclaves at 350 deg C in pressurized water, conditioned in low(0.32 mmol), medium(4.3 mmol) and high(31.5 mmol) equimolar concentration of Li-, Na-, K-, Rb- and Cs-hydroxide. Two types of alloys have been investigated: Zr-Sn-(TRM, Transition metal) and Zr-Sn-Nb-(TRM, Transition metal). From the experiments the cation could be identified as the responsible species for corrosion of Zr alloy in alkalized water. The radius of the cation governs the accelerated corrosion in the pre-transition region of Zr alloy. Incorporation of alkali cation into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significant lower effect for the other bases. Nb containing alloys showed lower corrosion resistance than Zr-Sn-TRM alloys in all alkali solutions. Both types of alloys were corroded significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behavior in the different alkali environments and taking into account the tendency to accelerate the corrosion of Zr alloys, CsOH and KOH are possible alternate alkali for PWR (Pressurized Water Reactor) application. (author)

  15. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    Science.gov (United States)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  16. Effect of catalysts on heterogeneous oxidation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Glazkova, A P; Kazarova, Yu A; Suslov, A V

    1978-01-01

    Analyzes the effects of catalysts on the heterogeneous oxidation of coal in deflagration processes of stoichiometric mixtures. The following substances are studied as catalysts: alkali and alkaline-earth metals, and compounds of copper, lead, chromium, iron, and sulfur. In the first case the catalysts are used in the form of nitrates and the nitrate simultaneously plays the role of an oxidizer. In the second case the catalysts are added to stoichiometric mixtures of ammonium nitrate with carbon. It is shown that during carbon oxidation by nitrates the catalytic efficiency of the metals studied forms the following order: sodium > lead > potassium > barium > aluminium > calcium > magnesium > copper. The calculated and experimental parameters of combustion are given. The problem of dependence of combustion rate on combustion heat, the mechanism of the combustion reaction and the catalytic effects of the additives are discussed. Features of heterogeneous catalysis in the oxidation process of carbon by various oxidizers are analyzed. The investigations on the combustion process are important as the process takes place during explosion of coal dust in underground coal mines and during burning of coal in industrial furnaces. (34 refs.) (In Russian)

  17. PREPARATION AND PROPERTIES OF ALKALI-ACTIVATED CEMENT CONTAINING PHOSPHOROUS SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    Duo You

    2016-03-01

    Full Text Available Phosphorous slag is an industrial waste which potentially pollutes environments. The aim of the present work is to use phosphorous slag as a raw material to produce alkali-activated cement. The influence of mix proportion of phosphorous slag and fly ash, alkali content and modulus of water glass on the properties of alkali-activated phosphorous slag and fly ash cement (AA-PS-FA-C was studied. The results show that AA-PS-FA-C with normal setting performance and desirable mechanical properties can be prepared using water glass as the activator. Changing the fly ash content in the range of 0-40 wt% has only a small influence on the setting time of AA-PS-FA-C. The strengths significantly decrease when the fly ash content exceeds 30 wt%. The carbonation resistance of AA-PS-FA-C is similar to that of ordinary Portland cement (OPC, while the frost resistance is much better. The hardened paste of AA-PS-FA-C is much more compact than OPC paste.

  18. Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements

    International Nuclear Information System (INIS)

    Im, Ji Sun; Yun, Jumi; Kang, Seok Chang; Lee, Sung Kyu; Lee, Young-Seak

    2012-01-01

    Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V 8 C 7 . The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.

  19. Alkali metal and alkali earth metal gadolinium halide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  20. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    Science.gov (United States)

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  1. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Ruhmann, H.; Garzarolli, F.

    1997-01-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs

  2. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y H [Korea Atomic Energy Research Inst., Dae Jun (Korea, Republic of); Ruhmann, H; Garzarolli, F [Siemens-KWU, Power Generation Group, Erlangen (Germany)

    1997-02-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs.

  3. Milk-alkali syndrome

    Science.gov (United States)

    Calcium-alkali syndrome; Cope syndrome; Burnett syndrome; Hypercalcemia; Calcium metabolism disorder ... Milk-alkali syndrome is almost always caused by taking too many calcium supplements, usually in the form of calcium carbonate. Calcium ...

  4. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Soo [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Nanophotonics Center, Korea Institute of Science and Technology, Seoul 02792 South Korea; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Zheng, Jian [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Platero-Prats, Ana E. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Mavrandonakis, Andreas [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Pellizzeri, Steven [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Ferrandon, Magali [Chemical Sciences and Engineering Division, Argonne National Lab, 9700 S. Cass Ave. Argonne IL 60439 USA; Vjunov, Aleksei [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Gallington, Leighanne C. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Webber, Thomas E. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Penn, R. Lee [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Getman, Rachel B. [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Cramer, Christopher J. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Chapman, Karena W. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Fulton, John L. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, Technische Universität München, Lichtenbergstrasse 4 85748 Garching Germany; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Hupp, Joseph T. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Martinson, Alex B. F. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA

    2018-01-02

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

  5. Liquid alkali metals and alkali-based alloys as electron-ion plasmas

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1981-06-01

    The article reviews the theory of thermodynamic and structural properties of liquid alkali metals and alkali-based alloys, within the framework of linear screening theory for the electron-ion interactions. (author)

  6. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  7. Vanadia-silica and vanadia-cesium-silica catalysts for oxidation of SO2

    DEFF Research Database (Denmark)

    Pârvulescu, Vasile I.; Paun, Christina; Pârvulescu, Viorica

    2004-01-01

    %. The samples were impregnated with Cs2SO4 resulting in a Cs:V ratio of 3:1 and then dried and calcined under the same conditions. The catalysts were characterized using several methods: sorption isotherms of N-2 at 77 K, XRD, and XPS. The results of the characterization indicated that during calcination...... catalysts were also performed. The activation of the catalysts and the catalytic behavior were monitored by in situ Raman and EPR spectroscopy. These characterization techniques indicated that the active molten phase contains vanadium oxosulfato complexes similar to the V2O5-M2S2O7 (M = alkali metal......Mesoporous vanadia-silica catalysts have been prepared by three different sol-gel procedures using tetraethylorthosilicate (TEOS), vanadyl acetylacetonate (VAA), or VOCl3 and in some cases quaternary ammonium salts ((CH3)(3)C14H29N+Br- or (C10H21)(4)N+Br-) as surfactants. According to procedure A...

  8. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity† †Electronic supplementary information (ESI) available: Sample description and synthesis details, experimental setup for in situ XAS and FTIR spectroscopy, details on the MCR-ALS method, details on DFT-assisted XANES simulations, details on the determination of N pure by PCA, MCR-ALS results for downsized and upsized component spaces, additional information to support the assignment of theoretical XANES curves, details on EXAFS analysis, details on IR spectral deconvolution. See DOI: 10.1039/c7sc02266b Click here for additional data file.

    Science.gov (United States)

    Martini, A.; Lomachenko, K. A.; Pankin, I. A.; Negri, C.; Berlier, G.; Beato, P.; Falsig, H.; Bordiga, S.; Lamberti, C.

    2017-01-01

    The small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNOx applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition–activity relationships. Herein, we explore by in situ XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility. Advanced multivariate analysis of in situ XANES in combination with DFT-assisted simulation of XANES spectra and multi-component EXAFS fits as well as in situ FTIR spectroscopy of adsorbed N2 allow us to obtain unprecedented quantitative structural information on the complex dynamics during the speciation of Cu-sites inside the framework of the CHA zeolite. PMID:29147509

  9. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst

    Science.gov (United States)

    Liu, Chen; Wang, Weihan; Xu, Yan; Li, Zhenhua; Wang, Baowei; Ma, Xinbin

    2018-05-01

    Two kinds of ZrO2 support with different morphologies were prepared by facile solvothermal method in different solvents. The obtained two supports showed monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2) phase with similar crystalline size. Their supported Mo-based catalysts were prepared by impregnation method and the effect of zirconia morphology on the performance of sulfur-resistant methanation was examined. The results indicated that the MoO3/m-ZrO2 has higher CO conversion than the MoO3/t-ZrO2 catalyst. Characterizations by XRD, Raman, H2-TPR and IR confirmed that the m-ZrO2 is superior to t-ZrO2 for dispersing molybdenum species. In addition, the MoO3/m-ZrO2 catalyst has weaker interaction between support and active Mo speices than the MoO3/t-ZrO2 catalyst, which facilitates to forming active species of nanocrystalline MoS2 layers for sulfur-resistant methanation. The weaker interaction of molybdenum species with m-ZrO2 is related with the more covalent character of the Zrsbnd O bond and more oxygen defective structure of m-ZrO2. A larger number of Lewis acid centers appear on the surface of m-ZrO2, which verified the substantial vacancies on m-ZrO2 exposing coordinately unsaturated Zr3+ and Zr4+ cations. Meanwhile, the less Lewis acid of t-ZrO2 result in stronger interaction between support and molybdenum species and trigger crystalline phase MoO3 and Mosbnd Osbnd Zr linkages.

  10. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  11. Alkali-vapor laser-excimer pumped alkali laser

    International Nuclear Information System (INIS)

    Yue Desheng; Li Wenyu; Wang Hongyan; Yang Zining; Xu Xiaojun

    2012-01-01

    Based on the research internal and overseas, the principle of the excimer pumped alkali laser (XPAL) is explained, and the advantages and disadvantages of the XPAL are analyzed. Taking into consideration the difficulties that the diode pumped alkali laser (DPAL) meets on its development, the ability to solve or avoid these difficulties of XPAL is also analyzed. By summing up the achievements of the XPAL, the possible further prospect is proposed. The XPAL is of possibility to improve the performance of the DPAL. (authors)

  12. Hydrogen adsorption on skeletal rhodium-tantalum electrodes-catalysts

    International Nuclear Information System (INIS)

    Tsinstevich, V.M.; Krejnina, N.M.

    1975-01-01

    Skeleton rhodium-tantalic catalyst electrodes with a tantalum mass percentage of 0 to 100 have been obtained by the methodology of Crupp and others. The hydrogen adsorption is studied through the method of removing the galvano-static and potentiodynamic curves of charging in sulfuric acid and potassium hydroxide. It has been discovered that the maximum adsorption ability relatively to the hydrogen can be observed in an alloy with a 5% tantalum contents. The energetic characteristics of the alloys are higher in alkali than in acid

  13. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  14. Potassium effects on kinetics of propane oxydehydrogenation on vanadia-titania catalyst

    International Nuclear Information System (INIS)

    Grabowski, R.; Samson, K.

    2003-01-01

    Oxidative dehydrogenation of propane (ODH) over V 2 O 5 /TiO 2 and V 2 O 5 /TiO 2 doped with K was carried out by measuring conversions and selectiveness for various feed compositions, contact times and temperatures. The results obtained for both catalysts were interpreted on the basis of the mechanism, in which propene is formed through Eley-Rideal sequence of steps, i.e. without participation of the adsorbed propane species. Kinetic constants (activation energies, pre-exponential factors) for the model of ODH reaction of propane on these catalysts, obtained on the basis of steady-state results, are given. Addition of K to vanadia-titania catalysts leads to decrease of total combustion of propane and consecutive combustion of propene. It has been found that the direct propane total oxidation is 5 - 9 times lower than that of the consecutive propene oxidation and is almost temperature independent for potassium doped catalyst, whereas it quickly decreases with temperature for a non-doped catalyst. Secondly, the addition of K to a vanadia-titania catalyst decreases the activation energies for propene formation (k 1 ), parallel formation of CO x (k 3 ) and reoxidation of the catalyst (k os ). Potassium exhibits a stronger inhibitory effect on the secondary propene combustion, what reflects the lower activity of V 5+ cations modified by the strongly basic alkali oxide species. (author)

  15. Environmental resistance and mechanical performance of basalt and glass fibers

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2010-01-01

    The treated basalt and glass fibers with sodium hydroxide and hydrochloric acid solutions for different times were analyzed, respectively. This paper summarized the mass loss ratio and the strength maintenance ratios of the fibers after treatment. The fibers' surface corrosion morphologies were characterized using scanning electron microscopy and their compositions were detected using energy dispersive X-ray spectroscopy. The acid resistance was much better than the alkali resistance for the basalt fibers. Nevertheless, for the glass fibers the situation is different: the acid resistance was almost the same as the alkali resistance. Among the two types of aqueous environments evaluated, the alkali solution is the most aggressive to the fibers' surface. The possible corrosion mechanisms are revealed.

  16. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  17. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Bastian, R.D.; Flanagan, K.L.

    1989-01-01

    Ruthenium disulfide catalysts have been synthesized, tested, and characterized during this period of research. It was observed that both the undoped and Cs-doped RuS[sub 2] catalysts produced alcohols and lower amounts of hydrocarbons from H[sub 2]/CO = 1.0 synthesis gas at temperatures above 300[degree]C. Calcination and catalytic testing resulted in partial reduction of the RuS[sub 2] to Ru[sup o]. Calcination under H[sub 2]S prevented the partial reduction of the RuS[sub 2] catalyst, but subsequent catalytic testing again resulted in the formation of a quantity of Ru[sup o]. A Cs-doped RuS[sub 2] catalyst was prepared, but it might have had too high of a loading of Cs. Upon testing, a lower activity was observed for the doped catalyst compared with the undoped catalyst, but the alcohol selectivity was the same for the two catalysts.

  18. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    International Nuclear Information System (INIS)

    Lu Duyou; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-01-01

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer

  19. ALKALI FUSION OF ROSETTA ZIRCON

    International Nuclear Information System (INIS)

    DAHER, A.

    2008-01-01

    The decomposition of Rosetta zircon by fusion with different types of alkalis has been investigated. These alkalis include sodium hydroxide, potassium hydroxide and eutectic mixture of both. The influences of the reaction temperature, zircon to alkalis ratio, fusion time and the stirring of the reactant on the fusion reaction have been evaluated. The obtained results favour the decomposition of zircon with the eutectic alkalis mixture by a decomposition efficiency of 96% obtained at 500 0 C after one hour

  20. The Effect of Process Condition and SiO2 as Catalyst for the Density and the Resistivity of the Calcine Coke and Tar Pitch Mixed Pellet as 900 oC Baking Product

    International Nuclear Information System (INIS)

    Tundjung lndrati Y; Imam Dahroni; Kasilani Noor Sayekti

    2002-01-01

    The experiment of the baking condition effect and SiO 2 as catalyst have been done. Graphite turbo static be produced by baking of the mixed pellet ( Calcine Coke, Tar Pitch (32%) and SiO 2 as catalyst). The baking have been done on the inert atmospherics (argon : 2 l/hour) and the heating rate 10 o C/minute. The baking condition and catalyst was affected for density and resistivity. There was little bit density change with densification phenomena. The graphite resistivity was more decrease with the increasing of heating and the longer baking time. The baking condition for produce turbo static graphite with resistivity 2100 Ωμm and density 1.4 gram/cm 3 was 900 o C, 3 hours for baking time and optimal adding catalyst SiO 2 0.5 %. (author)

  1. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation

    Science.gov (United States)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-03-01

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.

  2. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-01-08

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu- based catalysts are not practical for this chemistry due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Utilizing Pt/Cu single atom alloys (SAAs) we examine C-H activation in a number of systems including methyl groups, methane, and butane using a combination of simulations, surface science, and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke resistant C-H activation chemistry with the added economic benefit that the precious metal is diluted at the atomic limit.

  3. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  4. Solid state synthesis, characterization, surface and catalytic properties of Pr2CoO4 and Pr2NiO4 catalyst

    International Nuclear Information System (INIS)

    Sinha, K.K.; Indu, N.K.; Sinha, S.K.; Pankaj, A.K.

    2008-01-01

    Full text: The most interesting non-stoichiometric oxides are found in transition metal and rare earth oxides at higher temperatures. The role of Solid State properties in the catalysis using mixed metal oxide as catalyst have wide applications in fertilizer, Petro-chemical, Pharmaceutical, cosmetic, paint detergents, plastics and food-stuff industries and these are also resistive towards acids and alkalies. The use of catalyst has opened up new process routes or revolutioned the existing process in terms of economics and efficiency and has radically changed the industrial scenario. The use of catalyst is so pervasive today that nearly 70 % of modern chemical processes are based on it at some stage or other and 90% new processes developed are catalytic nature. A series of non-stoichiometric spinel type of oxide catalyst of Praseodymium with cobalt and nickel were synthesized by their oxalates through Solid State reaction technique at different activation temperatures i.e. 600, 700, 800 and 900 deg C. The characterization of catalyst was done by XRD, FTIR and ESR methods. X-ray powder diffraction study shows that catalysts are made up of well grown crystallinities mostly in single phase crystal and system is of orthorhombic structure. FTIR is related to inadequate decomposition of oxalate ion from the Catalyst. The kinetic decomposition of Urea was employed as a model reaction to study the catalytic potentiality of different catalysts. Surface and Catalytic Properties of catalysts were measured. A relation between activation temperature and surface properties like excess surface oxygen (E.S.O.), surface acidity and surface area was observed. A linear relationship between the surface area of the catalyst and the amount of ammonia gas evolved per gm of the sample was observed also. Nickel containing catalysts were found a bit more catalytic active in comparison to cobalt oxide catalysts. Transition metal ions (i.e. Ni 2+ and Co 2+ ions) are mainly responsible for

  5. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    Science.gov (United States)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  6. Alkali metal for ultraviolet band-pass filter

    Science.gov (United States)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  7. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    Science.gov (United States)

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    Science.gov (United States)

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  9. Comparative study on cubic and tetragonal CexZr1-xO2 supported MoO3-catalysts for sulfur-resistant methanation

    Science.gov (United States)

    Liu, Zhaopeng; Xu, Yan; Cheng, Jiaming; Wang, Weihan; Wang, Baowei; Li, Zhenhua; Ma, Xinbin

    2018-03-01

    In this paper, two kinds of CexZr1-xO2 solid solution carriers with different Ce/Zr ratio were prepared by one-step co-precipitation method: the cubic Ce0.8Zr0.2O2 and the tetragonal Ce0.2Zr0.8O2 support. The MoO3/Ce0.8Zr0.2O2 and MoO3/Ce0.2Zr0.8O2 catalysts were prepared by incipient wetness impregnation method for comparative study on sulfur-resistant methanation reaction. The N2 adsorption/desorption, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron (XPS), transmission electron microscopy (TEM), temperature-programmed reduction by hydrogen (H2-TPR) were undertaken to characterize the physico-chemical properties of the samples. The results indicated that the prepared MoO3/CexZr1-xO2 catalysts have a mesoporous structure with high surface area and uniform pore size distribution, achieving good MoO3 dispersion on CexZr1-xO2 supports. As for the catalytic performance of sulfur-resistant methanation, the cubic MoO3/Ce0.8Zr0.2O2 exhibited better than the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst at reaction temperature 400 °C and 450 °C. CO conversion on the cubic MoO3/Ce0.8Zr0.2O2 catalyst was 50.1% at 400 °C and 75.5% at 450 °C, which is respectively 7% and 20% higher than that on the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst. These were mainly attributed to higher content of active MoS2 on the surface of catalyst, the enhanced oxygen mobility, increased Mo-species dispersion as well as the excellent reducibility resulted from the increased amount of the reducible Ce3+ on the cubic MoO3/Ce0.8Zr0.2O2 catalyst.

  10. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    International Nuclear Information System (INIS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    Highlights: ► NiW catalysts supported on TiO 2 nanotubes, titania and alumina. ► The best results are obtained with NiW/TiO 2 nanotubes in hydrodesulfurization (HDS) of thiophene. ► Active phase is Ni-WO x S y . ► Electronic promotion of W by Ti. - Abstract: High surface area TiO 2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid – Ni 3/2 PW 12 O 40 was applied as oxide precursor of the active components. The catalyst was characterized by S BET , XRD, UV–vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  11. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  12. A review of metal recovery from spent petroleum catalysts and ash.

    Science.gov (United States)

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1979-01-01

    The invention describes a method of disposing of alkali metals by forming a solid waste for storage. The method comprises preparing an aqueous disposal solution of at least 55 weight percent alkali metal hydroxide, heating the alkali metal to melting temperature to form a feed solution, and spraying the molten feed solution into the disposal solution. The alkali metal reacts with the water in the disposal solution in a controlled reaction which produces alkali metal hydroxide, hydrogen and heat and thereby forms a solution of alkali metal hydroxides. Water is added to the solution in amounts sufficient to maintain the concentration of alkali metal hydroxides in the solution at 70 to 90 weight percent, and to maintain the temperature of the solution at about the boiling point. Removing and cooling the alkali metal hydroxide solution thereby forms a solid waste for storage. The method is particularly applicable to radioactive alkali metal reactor coolant. (auth)

  14. Intermetallic Competition in the Fragmentation of Trimetallic Au-Zn-Alkali Complexes.

    Science.gov (United States)

    Lang, Johannes; Cayir, Merve; Walg, Simon P; Di Martino-Fumo, Patrick; Thiel, Werner R; Niedner-Schatteburg, Gereon

    2016-02-12

    Cationization is a valuable tool to enable mass spectrometric studies on neutral transition-metal complexes (e.g., homogenous catalysts). However, knowledge of potential impacts on the molecular structure and catalytic reactivity induced by the cationization is indispensable to extract information about the neutral complex. In this study, we cationize a bimetallic complex [AuZnCl3 ] with alkali metal ions (M(+) ) and investigate the charged adducts [AuZnCl3 M](+) by electrospray ionization mass spectrometry (ESI-MS). Infrared multiple photon dissociation (IR-MPD) in combination with density functional theory (DFT) calculations reveal a μ(3) binding motif of all alkali ions to the three chlorido ligands. The cationization induces a reorientation of the organic backbone. Collision-induced dissociation (CID) studies reveal switches of fragmentation channels by the alkali ion and by the CID amplitude. The Li(+) and Na(+) adducts prefer the sole loss of ZnCl2 , whereas the K(+) , Rb(+) , and Cs(+) adducts preferably split off MCl2 ZnCl. Calculated energetics along the fragmentation coordinate profiles allow us to interpret the experimental findings to a level of subtle details. The Zn(2+) cation wins the competition for the nitrogen coordination sites against K(+) , Rb(+) , and Cs(+) , but it loses against Li(+) and Na(+) in a remarkable deviation from a naive hard and soft acids and bases (HSAB) concept. The computations indicate expulsion of MCl2 ZnCl rather than of MCl and ZnCl2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A catalyst for hydrogenating medium-distilled petroleum fractions

    Energy Technology Data Exchange (ETDEWEB)

    Mordanov, M A; Gasanova, Zh I; Isaev, A Ia; Khavkin, V A; Kurganov, V M; Musaeva, S K

    1982-01-01

    The catalyst for hydrogenating medium-distilled petroleum fractions, which contain Cr/sub 2/O/sub 3/ and Ni-concentrate components in the gamma-A1/sub 2/O/sub 3/ transfer agent, also contains, as a Ni-concentrate component, NiO and Re in the following component ratios (by percentage): Cr/sub 2/O/sub 3/ 25-44, NiO 4-25, Re 1-2 and the transfer agent the remainder, in order to improve catalytic resistance to catalyst toxins--nitrous and sulfurous compounds. The resistance of the proposed catalyst to toxins makes it possible to hydrogenate in less stringent conditions (280 degrees, 30 atmospheres) without first hydropurifying the raw material. Here, the catalyst's selectivity reaches 100 percent (aromatic hydrocarbons are absent); the yield of the target fraction is 99 percent.

  16. Alternative deNO{sub x} catalysts and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Due-Hansen, J.

    2010-06-15

    Two approaches are undertaken in the present work to reduce the emission of NO{sub x}: by means of catalytic removal, and by NO absorption in ionic liquids. The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N{sub 2}. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts in the flue gas when biomass is combusted. By co-firing with large amounts of CO{sub 2}-neutral straw or wood (to meet stringent CO{sub 2} emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V{sub 2}O{sub 5}-SO{sub 4}2-ZrO{sub 2}. This work, together with an introduction to the catalytic removal of NO{sub x}, are described in chapter 3. The remainder of the first part is concerned with the catalytic NO{sub x} removal (chapter 4) and it addresses the upscaling of the best catalyst candidate. The catalyst was mixed with the natural binding clay (sepiolite) to upscale the selected catalyst to the monolithic level, suitable for installation in gas stream with high flows, e.g. a flue gas duct of a power plant. A series of catalyst pellets with increasing levels of sepiolite were

  17. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  19. Porous alkali activated materials with slow alkali release dynamic. Role of composition

    International Nuclear Information System (INIS)

    Bumanis, G.; Bajare, D.

    2018-01-01

    Alkali activated materials (AAM) based on calcined metakaolin or illite clay together with waste by-products, such as waste glass or aluminium scrap recycling waste, were tested as value-added materials for pH stabilization in biogas technology where decrease of pH should be avoided. Porous materials with ability to slowly leach alkalis in the water media thus providing continuous control of the pH level were obtained. XRD, FTIR, SEM and titration methods were used to characterize AAM and their leaching properties. It is clear that composition of the material has an important effect on the diffusion of alkali from structure. Namely, higher Si/Al and Na/Al molar ratios may increase pore solution transfer to the leachate. The leaching rate of alkalis from the structure of AAM is high for the first few days, decreasing over time. It was possible to calculate the buffer capacity from the mixture design of AAM. [es

  20. Surface heterogeneity and ionization of Cs promoter in carbon-based ruthenium catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Kotarba, Andrzej; Dmytrzyk, Jaromir; Rarog-Pilecka, Wioletta; Kowalczyk, Zbigniew

    2003-01-01

    Second-generation ammonia synthesis cesium-doped ruthenium catalyst supported on turbostratic carbon was investigated by the species resolved thermal alkali desorption method (SR-TAD). Energetic barriers for cesium ions (2.86 eV), ground state (1.96 eV) and electronically excited atoms (5.76 eV) desorbing from the Cs-Ru/C catalyst were determined. In the case of ruthenium-free Cs/C system, cesium desorbs as ground state atoms only, with an energy barrier of 2.87 eV. The work functions determined by the thermionic emission of electrons from Cs/C and Cs-Ru/C were of the same value (2.9 eV). It was concluded that ruthenium induces heterogeneous distribution of cesium on the catalyst surface. The promoter stability is reduced on low work function areas and its surface ionization on high work function areas opens the ionic desorption channel. The Cs desorption from the catalyst is discussed in terms of the literature data for the cesium/graphite system

  1. The effect of alkaline doped catalysts on the CVD synthesis of carbon nanotubes

    DEFF Research Database (Denmark)

    Nemeth, Krisztian; Nemeth, Zoltan; Fejes, Dora

    2011-01-01

    The aim of this work was to develop new doped catalysts for chemical vapour deposition (CVD) synthesis in order to increase the quantity and quality of carbon nanotubes (CNTs). Doping compounds such as CsBr, CsCl, KBr and KCl were used to reach higher carbon deposit and carbon yield. The amount o...... of the dopant alkali compounds varied from 1 to 5%. As prepared CNTs were characterized by transmission electron microscopy (TEM), X‐ray diffraction (XRD) and Raman microscopy. Results revealed that both carbon yield and deposit could be increased over doped catalysts.......The aim of this work was to develop new doped catalysts for chemical vapour deposition (CVD) synthesis in order to increase the quantity and quality of carbon nanotubes (CNTs). Doping compounds such as CsBr, CsCl, KBr and KCl were used to reach higher carbon deposit and carbon yield. The amount...

  2. Purification of alkali metal nitrates

    Science.gov (United States)

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  3. The chemistry of the liquid alkali metals

    International Nuclear Information System (INIS)

    Addison, C.C.

    1984-01-01

    A study of liquid alkali metals. It encourages comparison with molecular solvents in chapter covering the nature and reactivity of dissolved species, solvation, solubility and electrical conductivity of solutions. It demonstrates lab techniques unique to liquid alkali metals. It discusses large-scale applications from storage batteries to sodium-cooled reactors and future fusion reactors, and associated technological problems. Contents: Some Basic Physical and Chemical Properties; Manipulation of the Liquids; The Chemistry of Purification Methods; Species Formed by Dissolved Elements; Solubilities and Analytical Methods; Alkali Metal Mixtures; Solvation in Liquid Metal; Reactions Between Liquid Alkali Metals and Water; Reactions of Nitrogen with Lithium and the Group II Metals in Liquid Sodium; The Formation, Dissociation and Stability of Heteronuclear Polyatomic Anions; Reactions of the Liquid Alkali Metals and Their Alloys with Simple Alipatic Hydrocarbons; Reactions of the Liquid Alkali Metals with Some Halogen Compounds; Hydrogen, Oxygen and Carbon Meters; Surface Chemistry and Wetting; Corrosion of Transition Metals by the Liquid Alkali Metals; Modern Applications of the Liquid Alkali Metals

  4. Catalyst compositions useful for olefin isomerization and disproportionation

    International Nuclear Information System (INIS)

    Drake, C.A.

    1987-01-01

    A process is described for the double bond isomerization of an aliphatic olefinic hydrocarbon feed which comprises contacting the feed under isomerization conditions with a catalyst prepared by: (a) impregnating an alumina support having a surface area of at least 200 m/sup 2//g and a pore volume of at least 0.45 cm/sup 3//g with: 1 up to 20 wt. % of at least one magnesium compound convertible to the oxide, based on the weight of support and calculated as the metal; 0 up to 5 wt. % of at least one alkali metal compound convertible to the oxide, based on the weight of support and calculated as the metal; and 0 up to 5 wt. % of at least one zirconium compound convertible to the oxide, based on the weight of support and calculated as the metal; and (b) heating the alumina support impregnated in accordance with step (a) in an oxygen-containing atmosphere under conditions suitable to convert at least a portion of the magnesium, alkali metal, and zirconium compounds to the oxide form

  5. Raising distillate selectivity and catalyst life time in Fischer-Tropsch synthesis by using a novel dual-bed reactor

    International Nuclear Information System (INIS)

    Tavasoli, A.; Sadaghiani, K.; Khodadadi, A. A.; Mortazavi, Y.

    2007-01-01

    In a novel dual bed reactor Fischer-Tropsch synthesis was studied by using two diff rent cobalt catalysts. An alkali-promoted cobalt catalyst was used in the first bed of a fixed-bed reactor followed by a Raiment promoted cobalt catalyst in the second bed. The activity, product selectivity and accelerated deactivation of the system were assessed and compared with a conventional single bed reactor system. The methane selectivity in the dual-bed reactor was about 18.9% less compared to that of the single-bed reactor. The C 5+ selectivity for the dual-bed reactor was 10.9% higher than that of the single-bed reactor. Accelerated deactivation of the catalysts in the dual-bed reactor was 42% lower than that of the single-bed reactor. It was revealed that the amount of catalysts activity recovery after regeneration at 400 d eg C in the dual-bed system is higher than that of the single-bed system

  6. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition.

    Science.gov (United States)

    Lu, Junling; Fu, Baosong; Kung, Mayfair C; Xiao, Guomin; Elam, Jeffrey W; Kung, Harold H; Stair, Peter C

    2012-03-09

    We showed that alumina (Al(2)O(3)) overcoating of supported metal nanoparticles (NPs) effectively reduced deactivation by coking and sintering in high-temperature applications of heterogeneous catalysts. We overcoated palladium NPs with 45 layers of alumina through an atomic layer deposition (ALD) process that alternated exposures of the catalysts to trimethylaluminum and water at 200°C. When these catalysts were used for 1 hour in oxidative dehydrogenation of ethane to ethylene at 650°C, they were found by thermogravimetric analysis to contain less than 6% of the coke formed on the uncoated catalysts. Scanning transmission electron microscopy showed no visible morphology changes after reaction at 675°C for 28 hours. The yield of ethylene was improved on all ALD Al(2)O(3) overcoated Pd catalysts.

  7. Alkali metal hafnium oxide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    2018-05-08

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A2HfO3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  8. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  9. Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides

    Science.gov (United States)

    Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.

    2018-03-01

    Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.

  10. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    International Nuclear Information System (INIS)

    Souza Camargo Junior, S.A. de.

    1982-09-01

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X 1 Σ + →a' 3 Σ + transitions of the CN - molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN - concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author) [pt

  11. Pyrolysis characteristic of kenaf studied with separated tissues, alkali pulp, and alkali li

    Directory of Open Access Journals (Sweden)

    Yasuo Kojima

    2015-12-01

    Full Text Available To estimate the potential of kenaf as a new biomass source, analytical pyrolysis was performed using various kenaf tissues, i.e., alkali lignin and alkali pulp. The distribution of the pyrolysis products from the whole kenaf was similar to that obtained from hardwood, with syringol, 4-vinylsyringol, guaiacol, and 4-vinylguaiacol as the major products. The phenols content in the pyrolysate from the kenaf core was higher than that from the kenaf cuticle, reflecting the higher lignin content of the kenaf core. The ratios of the syringyl and guaiacyl compounds in the pyrolysates from the core and cuticle samples were 2.79 and 6.83, respectively. Levoglucosan was the major pyrolysis product obtained from the kenaf alkali pulp, although glycol aldehyde and acetol were also produced in high yields, as previously observed for other cellulosic materials. Moreover, the pathways for the formation of the major pyrolysis products from alkali lignin and alkali pulp were also described, and new pyrolysis pathways for carbohydrates have been proposed herein. The end groups of carbohydrates bearing hemiacetal groups were subjected to ring opening and then they underwent further reactions, including further thermal degradation or ring reclosing. Variation of the ring-closing position resulted in the production of different compounds, such as furans, furanones, and cyclopentenones.

  12. Structure peculiarities of mixed alkali silicate glasses

    International Nuclear Information System (INIS)

    Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.

    1980-01-01

    The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)

  13. Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts.

    Science.gov (United States)

    Schubert, Miriam; Schubert, Lennart; Thomé, Andreas; Kiewidt, Lars; Rosebrock, Christopher; Thöming, Jorg; Roessner, Frank; Bäumer, Marcus

    2016-09-01

    The application of catalytically coated metallic foams in catalytic processes has a high potential for exothermic catalytic reactions such as CO2 methanation or Fischer-Tropsch synthesis due to good heat conductivity, improved turbulent flow properties and high catalyst efficiencies. But the preparation of homogenous catalyst coats without pore blocking is challenging with conventional wash coating techniques. Here, we report on a stable and additive free colloidal CoAlOOH suspension (sol) for the preparation of catalytically active Co/Al2O3 xerogel catalysts and coatings. Powders with 18wt% Co3O4 prepared from this additive free synthesis route show a catalytic activity in Fischer-Tropsch synthesis and CO2 methanation which is similar to a catalyst prepared by incipient wetness impregnation (IWI) after activating the material under flowing hydrogen at 430°C. Yet, the xerogel catalyst exhibits a much higher thermal stability as compared to the IWI catalyst, as demonstrated in catalytic tests after different heat agings between 430°C and 580°C. It was also found that the addition of polyethylene glycol (PEG) to the sol influences the catalytic properties of the formed xerogels negatively. Only non-reducible cobalt spinels were formed from a CoAlOOH sol with 20wt% PEG. Metallic foams with pores sizes between 450 and 1200μm were coated with the additive free CoAlOOH sol, which resulted in homogenous xerogel layers. First catalytic tests of the coated metal foams (1200μm) showed good performance in CO2 methanation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M.; Ramadan, R.M.

    2005-01-01

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B 2 O 3 . The number of BO 3 and BO 4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  15. Preparation of alveolate hydrophobic catalyst for tritium waste gas treatment

    International Nuclear Information System (INIS)

    Yang, Yong; Peng, Shuming; Wang, Heyi; Du, Yang; Li, Jiamao

    2016-01-01

    Highlights: • The catalyst is hydrophobic, it will not be poisoned by steam in room air at room temperature which is better than Pt-Al 2 O 3 . • At room temperature, the conversion of low concentration of H2 and tritium gas in room air over the catalyst is high. • The air resistance of catalyst is much lower than graininess Pt-Al 2 O 3 . • It is inorganic and will not burn. - Abstract: To prepare a catalyst for the detritiation of waste gases at high flow rates, a heat-resistant hydrophobic zeolitic molecular sieve coating was synthesized on the surface of alveolate cordierite by hydrothermal processing. The alveolate hydrophobic catalyst prepared from the support was essentially waterproof and not easily poisoned by moisture. At room temperature, the conversion of low concentrations of H 2 in humid air over the catalyst was higher than 95% at different space velocities (0–16,000 h −1 ) and different relative humidities. The reaction rate constant of the oxidation of tritium over alveolate hydrophobic catalyst is 0.182 s −1 at 293.3 K–293.7 K and 59%–60% RH, it is much higher than the catalyst of reference honeycomb catalyst.

  16. Cement Type Influence on Alkali-Silica Reaction in Concrete with Crushed Gravel Aggregate

    Science.gov (United States)

    Rutkauskas, A.; Nagrockienė, D.; Skripkiūnas, G.

    2017-10-01

    Alkali-silica reaction is one of the chemical reactions which have a significant influence for durability of concrete. During alkali and silica reaction, silicon located in aggregates of the concrete, reacts with high alkali content. This way in the micropores of concrete is forming hygroscopic gel, which at wet environment, expanding and slowly but strongly destroying concrete structures. The goal of this paper- to determine the influence of cement type on alkali-silica reaction of mortars with crushed gravel. In the study crushed gravel with fraction 4/16 mm was used and four types of cements tested: CEM I 42.5 R; CEM I 42.5 SR; CEM II/A-S 42.5; CEM II/A-V 52.5. This study showed that crushed gravel is low contaminated on reactive particles containing of amorphous silica dioxide. The expansion after 14 days exceed 0.054 %, by RILEM AAR-2 research methodology (testing specimen dimension 40×40×160 mm). Continuing the investigation to 56 days for all specimens occurred alkaline corrosion features: microcracking and the surface plaque of gel. The results showed that the best resistance to alkaline corrosion after 14 days was obtained with cement CEM I 42.5 SR containing ash additive, and after 56 days with cement CEM II/A-V 52.5 containing low alkali content. The highest expansion after 14 and 56 days was obtained with cement CEM I 42.5 R without active mineral additives.

  17. (e, 2e) triple differential cross sections of alkali and alkali earth atoms: Na, K and Mg, Ca

    International Nuclear Information System (INIS)

    Hitawala, U; Purohit, G; Sud, K K

    2008-01-01

    Recently low-energy measurements have been reported for alkali targets Na and K and alkali earth targets Mg and Ca in coplanar symmetric geometry. We report the results of our calculation of triple differential cross section (TDCS) for electron impact single ionization (i.e. (e, 2e) processes) of alkali atoms Na, K and alkali earth atoms Mg, Ca in coplanar symmetric geometry. We have performed the present calculations using the distorted-wave Born approximation (DWBA) formalism at intermediate incident electron energies used in the recently performed experiments. Ionization takes place from the valence shell for all the targets investigated and the outgoing electrons share the excess energy equally. We have also considered the effect of target polarization in our DWBA calculations which may be an important quantity at incident electron energies used in the present investigation. We find that the DWBA formalism is able to reproduce most of the trend of experimental data and may provide a future direction for further investigation of ionization process on alkali and alkali earth metals. It is also observed that the second-order effects are more important to understand the collision dynamics of (e, 2e) processes on alkali earth targets

  18. Construction of thermionic alkali-ion sources

    International Nuclear Information System (INIS)

    Ul Haq, F.

    1986-01-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed. (author)

  19. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  20. Modeling polyolefin deformation resistance in a growing microparticle

    NARCIS (Netherlands)

    Agarwal, U.S.

    2004-01-01

    When polyolefins are produced on heterogeneous catalysts, they encapsulate the catalyst fragments and present diffusional resistance to further monomer transport to the catalyst fragments. In addition, the deposited polymer layer brings in viscoelastic resistance, since it must be deformed to make

  1. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  2. Effects of alkali treatment on the mechanical and thermal properties of Sansevieria trifasciata fiber

    Science.gov (United States)

    Mardiyati, Steven, Rizkiansyah, Raden Reza; Senoaji, A.; Suratman, R.

    2016-04-01

    In this study, Sansevieria trifasciata fibers were treated by NaOH with concentration 1%,3%, and 5wt% at 100°C for 2 hours. Chesson-Datta methods was used to determine the lignocellulose content of raw sansevieria fibers and to investigate effect of alkali treatment on lignin content of the fiber. Mechanical properties and thermal properties of treated and untreated fibers were measured by means of tensile testing machine and thermogravimetric analysis (TGA).The cellulose and lignin contents of raw sansevieria fiber obtained from Chesson-Datta method were 56% and 6% respectively. Mechanical testing of fibers showed the increase of tensile strength from 647 MPa for raw fibers to 902 MPa for 5wt% NaOH treated fibers. TGA result showed the alkali treatment increase the thermal resistance of fibers from 288°C for raw fibers to 307°C for 5% NaOH treated fiber. It was found that alkali treatment affect the mechanical properties and thermal properties of sansevieria fibers.

  3. Studies on the alkali-silica reaction rim in a simplified calcium-alkali-silicate system

    NARCIS (Netherlands)

    Zheng, Kunpeng; Adriaensens, Peter; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work is intended to provide a better understanding about the properties and roles of the reaction rim in an alkali-silica reaction. A simplified calcium-alkali-silicate system was created to simulate the multiple interactions among reactive silica, alkaline solution and portlandite near the

  4. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    International Nuclear Information System (INIS)

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  5. Deactivation of La-Fe-ZSM-5 catalyst for selective catalytic reduction of NO with NH{sup 3}. Field study results

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Gongshin; Yang, Ralph T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Chang, Ramsay; Cardoso, Sylvio [Air Pollution Control, Power Generation, Electric Power Research Institute, Palo Alto, CA 94304-1395 (United States); Smith, Randall A. [Fossil Energy Research Corporation, Laguna Hills, CA 92653 (United States)

    2004-11-08

    Results are summarized for a study on the effects of poisons on the La-Fe-ZSM-5 catalyst activity for the selective catalytic reduction of NO by ammonia. The deactivation of La-Fe-ZSM-5 honeycombs was studied in field tests. A honeycomb catalyst containing 25%La-Fe-ZSM-5 had an overall activity similar to that of a commercial vanadia honeycomb catalyst. Long-term activity test results show that the 25%La-Fe-ZSM-5 catalyst activity decreased to 50% after 300h and 25% after 1769h of on-stream flue gas exposure. The deactivation is correlated to the amounts of poisons deposited on the catalyst. Poisons include alkali and alkaline earth metals, As and Hg. Hg was found to be ion-exchanged from HgCl{sup 2} to form Hg-ZSM-5, and Hg was found to be among the strongest poisons. The poisoning effects of these elements appeared to be additive. Thus, from the chemical analysis of the deactivated catalyst, the deactivation of Fe-ZSM-5 can be predicted.

  6. Separation of Hydridocarbonyltris(triphenylphosphine) Rhodium (I) Catalyst Using Solvent Resistant Nano filtration Membrane

    International Nuclear Information System (INIS)

    Razak, N.S.A.; Hilmi Mukhtar; Maizatul, S. Shaharun; Mohd, F. Taha

    2013-01-01

    An investigation was conducted into the nano filtration of rhodium tris(triphenyl-phosphine) [HRh(CO)(PPh3)3] catalyst used in the hydroformylation of olefins. The large size of the catalyst (>400 Da) - relative to other components of the reaction provides the opportunity for a membrane separation based on retention of the catalyst species while permeating the solvent. The compatibility of the solvent-polyimide membrane (STARMEMTM 122 and STARMEMTM 240) combinations was assessed in terms of the membrane stability in solvent plus non-zero solvent flux at 2.0 MPa. The morphology of the membrane was studied by field emission scanning electron microscopy (FESEM). The solvent flux and membrane rejection of HRh(CO)(PPh3)3 was then determined for the catalyst-solvent-membrane combination in a dead-end pressure cell. Good HRh(CO)(PPh3)3 rejection (>0.93) coupled with good solvent fluxes (>72 L/ m 2 h 1 at 2.0 MPa) were obtained in one of the systems tested. The effect of pressure and catalyst concentration on the solvent flux and catalyst rejection was conducted. Increasing pressure substantially improved both solvent flux and catalyst rejection, while increasing catalyst concentration was found to be beneficial in terms of substantial increases in catalyst rejection without significantly affecting the solvent flux. (author)

  7. Method of handling radioactive alkali metal waste

    Science.gov (United States)

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  8. Method of handling radioactive alkali metal waste

    International Nuclear Information System (INIS)

    Mcpheeters, C.C.; Wolson, R.D.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1

  9. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  10. Thermodynamic properties of alkali borosilicate gasses and metaborates

    International Nuclear Information System (INIS)

    Asano, Mitsuru

    1992-01-01

    Borosilicate glasses are the proposed solidifying material for storing high level radioactive wastes in deep underground strata. Those have low melting point, and can contain relatively large amount of high level radioactive wastes. When borosilicate glasses are used for this purpose, they must be sufficiently stable and highly reliable in the vitrification process, engineered storage and the disposal in deep underground strata. The main vaporizing components from borosilicate glasses are alkali elements and boron. In this report, as for the vaporizing behavior of alkali borosilicate glasses, the research on thermodynamic standpoint carried out by the authors is explained, and the thermodynamic properties of alkali metaborates of monomer and dimer which are the main evaporation gases are reported. The evaporation and the activity of alkali borosilicate glasses, the thermodynamic properties of alkali borosilicate glasses, gaseous alkali metaborates and alkali metaborate system solid solution and so on are described. (K.I.)

  11. Physical and optical studies in mixed alkali borate glasses with three types of alkali ions

    International Nuclear Information System (INIS)

    Samee, M.A.; Awasthi, A.M.; Shripathi, T.; Bale, Shashidhar; Srinivasu, Ch.; Rahman, Syed

    2011-01-01

    Research highlights: → We report, for the first time, the mixed alkali effect in the (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 glasses through optical properties, density and modulated DSC studies. → Optical band gap (E opt ) and Urbach energy (ΔE) have been evaluated. → The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. → The glass stability S is observed to be less which may be important for the present glasses as promising material for non-optical applications. - Abstract: So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 . (0 ≤ x ≤ 40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. The glass stability is observed to be less which may be important for the present glasses as promising material for non-optical applications. We report, for the first time, the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the values of indirect optical band gap (E opt ), direct optical band gap and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The average electronic polarizability of oxide ions α O 2- , optical basicity Λ, and Yamashita-Kurosawa's interaction parameter A have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present Li 2 O-Na 2 O-K 2 O-B 2 O 3 glasses are classified as normal ionic (basic) oxides.

  12. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-01-01

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10 25 /m 3 . The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics

  13. 40 CFR 721.4740 - Alkali metal nitrites.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in the...

  14. Method for the safe disposal of alkali metal

    International Nuclear Information System (INIS)

    Johnson, T.R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam--CO 2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps. 5 claims, 1 figure

  15. Elastic modulus of the alkali-silica reaction rim in a simplified calcium-alkali-silicate system determined by nano-indentation

    NARCIS (Netherlands)

    Zheng, Kunpeng; Lukovic, M.; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work aims at providing a better understanding of the mechanical properties of the reaction rim in the alkali-silica reaction. The elastic modulus of the calcium alkali silicate constituting the reaction rim, which is formed at the interface between alkali silicate and Ca(OH)2 in a

  16. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  17. Hydrothermal performance of catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.; Dumesic, James A.; Pagan-Torres, Yomaira J.

    2018-04-10

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  18. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  19. Alkali-aggregate reactivity (AAR) facts book.

    Science.gov (United States)

    2013-03-01

    This document provides detailed information on alkali-aggregate reactivity (AAR). It primarily discusses alkali-silica reaction (ASR), covering the chemistry, symptoms, test methods, prevention, specifications, diagnosis and prognosis, and mitigation...

  20. Influence of Alkali Treatment on the Surface Area of Aluminium Dross

    Directory of Open Access Journals (Sweden)

    N. S. Ahmad Zauzi

    2016-01-01

    Full Text Available Aluminium dross is an industrial waste from aluminium refining industry and classified as toxic substances. However, the disposal of dross as a waste is a burden to aluminium manufacturer industries due to its negative effects to the ecosystem, surface, and ground water. Therefore the purpose of this study is to evaluate the influence of sodium hydroxide (NaOH on the surface area and pore size of aluminium dross. There were 3 stages in the treatment activities, which were leaching, precipitation, and calcination process. The optimum result from this study was the surface area of aluminium dross increases from 10.1 m2/g up to 80.0 m2/g at 40°C, 1% NaOH, and 15-minute reaction time. Thus, aluminium dross has a potential to be converted into other useful material such as catalyst and absorbent. The benefit of this research is that the hazardous industrial waste can be turned into wealth to be used in other applications such as in catalytic activities and absorber in waste water treatment. Further investigation on the physicochemical of aluminium dross with different acid or alkali should be conducted to get deeper understanding on the aluminium dross as a catalyst-type material.

  1. Alkali depletion and ion-beam mixing in glasses

    International Nuclear Information System (INIS)

    Arnold, G.W.

    1983-01-01

    Ion-implantation-induced alkali depletion in simple alkali-silicate glasses (12M 2 O.88SiO 2 ) has been studied for implantations at room temperature and near 77K. Results are consistent with a mechanism for alkali removal, by heavy ion bombardment, based on radiation-enhanced migration and preferential removal of alkali from the outermost layers. Similar results were obtained for mixed-alkali glasses ((12-x)Cs 2 .O.xM 2 O.88SiO 2 ) where, in addition, a mixed-alkali effect may also be operative. Some preliminary experiments with ion implantation through thin Al films on SiO 2 glass and on a phosphate glass show that inter-diffusion takes place and suggest that this ion-mixing technique may be a useful method for altering the physical properties of glass surfaces

  2. Ionic interactions in alkali-aluminium tetrafluoride clusters

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Cicek, Z.; Karaman, A.; Pastore, G.; Tosi, M.P.

    1999-08-01

    Complex anion structures ((AlF 4 ) - , (AlF 5 ) 2- and (AlF 6 ) 3- ) coexist in liquid mixtures of aluminium trifluoride and alkali fluorides in composition-dependent relative concentrations and are known to interact with the alkali counterions. We present a comparative study of the static and vibrational structures of MAlF 4 molecules (with M = any alkali), with the aim of developing and testing a refined model of the ionic interactions for applications to the Al-M fluoride mixtures. We find that, whereas an edge-bridged coordination is strongly favoured for Li in LiAIF 4 , edge-bridging and face-bridging of the alkali ion become energetically equivalent as one moves from Na to the heavier alkalis. This result is sensitive to the inclusion of alkali polarizability and may be interpreted as implying (for M = K, Rb or Cs) almost free relative rotations of the M + and (AlF 4 ) - partners at temperatures of relevance to experiment. The consistency of such a viewpoint with electron diffraction data on vapours and with Raman spectra on melts is discussed. (author)

  3. Vanadia on sulphated-ZrO2, a promising catalyst for NO abatement with ammonia in alkali containing flue gases

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Kustova, Marina; Fehrmann, Rasmus

    2005-01-01

    in the total acidity is less pronounced in this case. The results of NO SCR with ammonia reveal a noticeable shift of the maximum catalytic activity towards higher temperatures in going from the conventional catalyst to vanadia supported on sulphated zirconia. The loading of the catalysts with potassium leads...

  4. Experimental investigation of attrition resistance of zeolite catalysts in two particle gas-solid-solid fluidization system

    International Nuclear Information System (INIS)

    Nawaz, Z.; Ziaoping, T.; Shu, Q.; Wei, F.; Naveed, S.

    2010-01-01

    In the study of mechanical degradation of 34 ZSM-5 and SAPO catalysts, using the gas jet attrition - ASTM standard fluidized bed test (D-5757), the effect of particle size and its quantitative analysis in co-fluidization environment was investigated on the air jet index (AJI) basis. In gas-solid-solid fluidized bed reactors (GSS-FBR), two different sized particles were fluidized under isothermal conditions. In case of ZSM-5 and SAPO-34, significant attrition resistance was observed, which was attributed to small pore size and specific structural strength of the mobile framework image (MFI) and chabasite (CHA) structures, respectively. The optimum AJI for SAPO-34 and ZSM-5 (of particle size 0.2 mm) in GSS-fluidization system was observed to be 0.0118 and 0.0062, respectively. In co-fluidization, deviations from Gwyn relationship were observed due to change in impact of collision. Therefore, zeolites are recommended as suitable catalysts or catalytic supports (for doping of expensive metals) and for commercial use in GSS-FBR. (author)

  5. Dehydration of alcohols over oxide catalysts: γ-eliminations -- stereospecificity and selectivity

    International Nuclear Information System (INIS)

    Siddhan, S.; Narayanan, K.

    1979-01-01

    The effect of alkali impregnation on alumina catalysts has been investigated by a physicochemical study of pure and modified alumina catalyst samples. The stereospecificity and selectivity of dehyration reactions, as well as the incidence of γ-elimination, have been studied by passing suitable substrates over catalyst samples. There was a change in the acidity-basicity balance in the sodium-impregnated alumina samples vis a vis pure alumina, while the surface area virtually remained constant. A higher propensity for γ-elimination was noticed with increases in basicity of the catalyst. 1-Olefin formation was found to be larger in more basic alumina- and thoria-catalyzed dehydration reactions. Thoria was strikingly unique in its capacity to dehydrate only alcohols, which have at least one β-hydrogen atom. Neopentyl alcohol could not be dehydrated even under drastic conditions. The modes of elimination in the case of alumina and thoria have been shown to be anti and syn, respectively, from the results of the dehydration studies with threo-3-methyl-2-pentanol. Studies of alcohols with proper β-substituents revealed that the cis preference is not universal in all catalytic eliminations but, in fact, depends on the mode of elimination. While cis-preference was noticed in alumina-catalyzed anti eliminations, trans-olefin was formed to a major amount in thoria-catalyzed syn-elimination processes. 9 figures, 13 tables

  6. Effect of glassy carbon properties on the electrochemical deposition of platinum nano-catalyst and its activity for methanol oxidation

    Directory of Open Access Journals (Sweden)

    SANJA TERZIC

    2007-02-01

    Full Text Available The effects of the properties of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on glassy carbon (GC/Pt for methanol oxidation in alkaline and acidic solutions were studied. Platinum was potentiostatically deposited on two glassy carbon samples, thermally treated at different temperatures, which were either polished or anodicaly polarised in acid (GCOX-AC/Pt and in alkali (GCOX-AL/Pt. Anodic polarisation of glassy carbon, either in alkaline or acidic solution, enhances the activity of both types of GC/Pt electrodes for methanol oxidation. The activity of the catalysts follows the change in the properties of the glassy carbon support upon anodic treatment. The specific activity of the GCOX-AL/Pt electrode for this reaction in alkali is increased only a few times in comparison with the activity of the GC/Pt one. On the other hand, the specific activity of the GCOX-AC/Pt electrode for methanol oxidation in acid is about one order of magnitude higher than that of the GC/Pt electrode. The role of the substrate on the properties of catalyst is discussed in detail.

  7. Alkali-activated slag mortars reinforced with ar glassfibre. Performance and properties

    Directory of Open Access Journals (Sweden)

    Amat, T.

    2006-09-01

    Full Text Available In light of the practical problem posed by the high drying shrinkage rate exhibited by alkali-activated slag (AAS,due to these materials exhibited a high drying shrinkage the present study analyzes the behaviour of alkali-activated slag mortars reinforced with alkali-resistant (AR glass fiber especially designed to reduce drying shrink aging cementitious systems. To this end, both alkali-activated slag and reference Portland cement mortars were prepared, with and without AR fiber (in dosages ranging from 0 to 1.1% by weight of the binder. These mortars were subjected to the following tests: drying shrinkage,mechanical strength after 2, 7 and 28 days, toughness,and high temperature. The microstructure of the materials was also studied by SEM/EDX techniques. At a percentage of 0.22%, AR fiber was found to induce a significant reduction (over 20% in drying shrinkage, without detracting from the fine resistance strength, of alkali activated slag mortar. Moreover, plain activated slag mortars recovered 20% of their initial mechanical strength after exposure to high temperatures, and ins specimens reinforced with glass fiber at a rate of 0.22%,recovery climbed to 50%.El principal problema tecnológico de los cementos de escoria activada alcalinamente (AAS es su elevada retracción al secado. Por ello, en el presente trabajo se estudia el comportamiento de morteros de escoria activada alcalinamente reforzados con fibras de vidrio alcali-resistentes (AR, especialmente diseñadas para reducir la retracción al secado en sistema cementantes. Para ello se prepararon morteros de escoria activada alcalinamente y de cemento Portland como material de referencia. El porcentaje de fibra AR en los morteros varió entre 0-1,1% en peso de ligante. Los morteros preparados fueron sometidos a los siguientes ensayos:retracción al secado, resistencias mecánicas a 2, 7 y 28 días,ensayos de tenacidad, resistencia al impacto y comportamiento resistente frente a altas

  8. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  9. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  10. Controlled in-situ dissolution of an alkali metal

    Science.gov (United States)

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  11. Influence of fillers on the alkali activated chamotte

    Science.gov (United States)

    Dembovska, L.; Bumanis, G.; Vitola, L.; Bajare, D.

    2017-10-01

    Alkali-activated materials (AAM) exhibit remarkable high-temperature resistance which makes them perspective materials for high-temperature applications, for instance as fire protecting and insulating materials in industrial furnaces. Series of experiments were carried out to develop optimum mix proportions of AAM based on chamotte with quartz sand (Q), olivine sand (OL) and firebrick sawing residues (K26) as fillers. Aluminium scrap recycling waste was considered as a pore forming agent and 6M NaOH alkali activation solution has been used. Lightweight porous AAM have been obtained with density in range from 600 to 880 kg/m3 and compressive strength from 0.8 to 2.7 MPa. The XRD and high temperature optical microscopy was used to characterize the performance of AAM. The mechanical, physical and structural properties of the AAM were determined after the exposure to elevated temperatures at 800 and 1000°C. The results indicate that most promising results for AAM were with K26 filler where strength increase was observed while Q and OL filler reduced mechanical properties due to structure deterioration caused by expansive nature of selected filler.

  12. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production.

    Science.gov (United States)

    Volli, Vikranth; Purkait, M K

    2015-10-30

    This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Recent Developments of Electrochemical Promotion of Catalysis in the Techniques of DeNOx

    Directory of Open Access Journals (Sweden)

    Xiaolong Tang

    2013-01-01

    Full Text Available Electrochemical promotion of catalysis reactions (EPOC is one of the most significant discoveries in the field of catalytic and environmental protection. The work presented in this paper focuses on the aspects of reaction mechanism, influencing factors, and recent positive results. It has been shown with more than 80 different catalytic systems that the catalytic activity and selectivity of conductive catalysts deposited on solid electrolytes can be altered in the last 30 years. The active ingredient of catalyst can be activated by applying constant voltage or constant current to the catalysts/electrolyte interface. The effect of EPOC can improve greatly the conversion rate of NOx. And it can also improve the lifetime of catalyst by inhibiting its poisoning.

  14. Effect of alkali ion on relaxation properties of binary alkali-borate glasses

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1992-01-01

    Method of relaxation spectrometry were used to analyze the data on internal friction spectra of lithium, sodium, potassium and rubidium alkali-borate glasses in wide range of temperatures and frequencies. The nature of two relaxation processes was clarified: β m -process, related with mobility of alkaline metal cations, and α-process (vitrification), conditioned by system transformation from viscous-flow to vitreous state. It is shown that atomic-molecular mechanism of vitrification process changes when passing from vitreous B 2 O 3 to alkali-borate glasses

  15. Charge transfer in gold--alkali-metal systems

    International Nuclear Information System (INIS)

    Watson, R.E.; Weinert, M.

    1994-01-01

    Based on conventional electronegativity arguments, gold--alkali-metal compounds are expected to be among the most ''ionic'' of metallic compounds. The concepts of ionicity and charge transfer are difficult to quantify. However, the changes in bonding in the 50/50 Au--alkali-metal systems between the elemental metals and the compounds are so severe that observations can readily be made concerning their character. The results, as obtained from self-consistent electronic-structure calculations, lead to the apparently odd observation that the electron density at the alkali-metal sites in the compound increases significantly and this involves high l componennts in the charge density. This increase, however, can be attributed to Au-like orbitals spatially overlapping the alkali-metal sites. In a chemical sense, it is reasonable to consider the alkali-metal transferring charge to these Au orbitals. While normally the difference in heats of formation between muffin-tin and full-potential calculations for transition-metal--transition-metal and transition-metal--main-group (e.g., Al) compounds having high site symmetry are small, for the gold--alkali-metal systems, the changes in bonding in the compounds cause differences of ∼0.5 eV/atom between the two classes of potential. Any serious estimate of the electronic structure in these systems must account for these aspherical bonding charges. The origin of the semiconducting behavior of the heavy-alkali-metal Au compounds is shown to arise from a combination of the Au-Au separations and the ionic character of the compounds; the light-alkali-metal Au compounds, with their smaller Au-Au separations, do not have a semiconducting gap. Core-level shifts and isomer shifts are also briefly discussed

  16. Porcelain tiles using nepheline as alternative source of alkalis

    International Nuclear Information System (INIS)

    Cruz, C.M. da; Oliveira, D.C. de; Faustino, L.M.; Maestrelli, S.C.; Roveri, C.D.

    2016-01-01

    Porcelain tiles present good aesthetical properties, low water absorption and high mechanical and chemical attack resistance. The feldspar, one of its raw materials, is responsible form diminishing porosity and enhance mechanical resistance. It is normally imported, making the production more expensive. In this paper, it was studied the substitution of feldspar by nepheline under the rheological point of view, determining the optimum amount of deffloculant and the maximum concentration of solids of the suspensions. The results showed similar rheological behaviour, with a small reduction on the maximum concentration of solids as the proportion of nepheline increases. The pieces made with nepheline are darker than the ones made of feldspar; however, the magnetic separation results in lighter pieces. The formulations with nepheline as alkalis source presented a high increase of the density after heating. (author)

  17. INOVAÇÃO TECNOLÓGICA DeNOX: UMA CONTRIBUIÇÃO PARA MITIGAÇÃO DOS GASES DE EFEITO ESTUFA / TECHNOLOGICAL INNOVATION DeNOX: A CONTRIBUTION FOR MITIGATION OF GREENHOUSE GAS

    Directory of Open Access Journals (Sweden)

    Vera Lucia Chaves ALONSO

    2012-11-01

    Full Text Available A adoção de inovação tecnológica sustentável é uma estratégia de valor considerável à competitividade organizacional que toda empresa deveria considerar, haja vista que as  necessidades presentes não devem  comprometer  a capacidade de  satisfação  das gerações futuras  para que possam evoluir. (COMISSÃO BRUNDTLAND, 1987.  Aliadas a isso, somam-se também a ética e a transparência para o gerenciamento dos negócios das organizações no contexto em que elas estão inseridas. Nesse sentido, a indústria química com um faturamento líquido em 2010 de US$ 130,2 bilhões, tem também uma forte representatividade no impacto ambiental. Entretanto, essa mesma indústria vem investindo em pesquisas e no desenvolvimento de tecnologias mais limpas para a mitigação dos GEES. Associada à redução do NOx,  um gás formado durante  o processo produtivo sob  altas temperaturas, esse estudo tem por objetivo apresentar alguns aspectos da tecnologia DeNOx utilizada no processo produtivo, bem como  apresentar os possíveis benefícios tanto ambientais como econômicos. A partir da adoção dessa nova tecnologia, foi realizado um estudo de caso em uma industria química situada  em Guaratinguetá, interior do Estado de São Paulo.

  18. Formation of lysinoalanine in egg white under alkali treatment.

    Science.gov (United States)

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. © 2016 Poultry Science Association Inc.

  19. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi; Cheng, Shaoan; Zhang, Xiaoyuan; Li, Xiao-yan; Logan, Bruce E.

    2011-01-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously

  20. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    Science.gov (United States)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  1. Calcium silicate hydrate: Crystallisation and alkali sorption

    International Nuclear Information System (INIS)

    Hong, S.

    2000-01-01

    Homogeneous single C-S-H gels has been prepared for the investigation of alkali binding potential and crystallisation. A distribution coefficient, R d , was introduced to express the partition of alkali between solid and aqueous phases at 25 deg. C. R d is independent of alkali hydroxide concentration and depends only on Ca:Si ratio over wide ranges of alkali concentration. The trend of numerical values of R d indicates that alkali bonding into the solid improves as its Ca:Si ratio decreases. Reversibility is demonstrated, indicating a possibility of constant R d value of the material. Al has been introduced to form C-A-S-H gels and their alkali sorption properties also determined. Al substituted into C-S-H markedly increases R d , indicating enhancement of alkali binding. However, the dependence of R d on alkali concentration is non-ideal with composition. A two-site model for bonding is presented. Crystallisation both under saturated steam and 1 bar vapour pressure has been investigated. It has been shown that heat treatment by saturated steam causes crystallisation of gels. The principal minerals obtained were (i) C-S-H gel and Ca(OH) 2 at -55 deg. C, (ii) 1.1 nm tobermorite, jennite and afwillite at 85 -130 deg. C, and (iii) xonotlite, foshagite and hillebrandite at 150-180 deg. C. Properties of crystalline C-S-H were also reported for reversible phase transformation, pH conditioning ability, seeding effect and solubility. At 1 bar pressure, crystallisation is slower than in saturated steam due to lower water activity. Tobermorite-like nanodomains develop during reaction at low Ca/Si ratios. In some Ca-rich compositions, Ca(OH) 2 is exsolved and occurs as nano-sized crystallites. (author)

  2. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  3. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    Science.gov (United States)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  4. NOx Reduction Technology in Diesel Engine Exhaust by the Plasmatron

    International Nuclear Information System (INIS)

    Joa, Sang Beom

    2008-02-01

    completeness of the partial fuel oxidation reaction up to 100%. Nitrogen was found to be the most effective gas for the synthesis gas production by a plasmatron. The preliminary experiments of introducing the reformation products into a diesel engine resulted in ∼25% NOx cut in the exhaust gas flow. A simulation experiment with the pure hydrogen addition to the inlet of a diesel engine showed that both components of the synthesis gas H 2 and CO fed into the engine play significant role in cutting NOx content in the engine's emission. The selective catalytic reduction (SCR) with propylene and decane as reductants in the presence of excess air over (Fe, Co-Pt)/ZSM-5 catalyst was conducted to remove NOx from Diesel exhaust gases. The SO 2 effect and deactivation test over above catalyst were also executed. ZSM-5 supported Co, Pt, Fe mixed oxide catalyst showed about 80% of conversion in the presence of NO. However, the activity was decreased when the catalyst was wash coated onto the ceramic monolith. We found that the deNOx activity over the catalyst was strongly depended on the amount of reductant. Therefore, the amount reductant and how to feed the reductant into the system should be considered as important factors to remove NOx. In order to develop the high removal NOx activity at low temperature and maintain the stable activity at the real exhaust gases condition, metallosilicate and Pt/ZSM-5 catalysts have been used. In case of metallosilicate catalyst, the deNOx activity was low at the oxidation atmospheric condition. When the Pt was ion-exchanged with ZSM-5, the H-form of ZSM-5 catalyst showed high deNOx activity. The effect of reductant type on deNOx activity exhibited that the olefin system provided more higher activity than octane system. The methane conversion observed in the presence of NO and excess O 2 over alumina supported Pt catalyst. In order to improve the activity and durability, the Co metal ion was added. The result showed that the Co-Pt catalyst gave

  5. A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash

    International Nuclear Information System (INIS)

    Rashad, Alaa M.

    2014-01-01

    Highlights: • PVA fiber changed the impact failure mode from brittle pattern to ductile pattern. • Superplasticizer of lignosulphonates-based improved the workability. • Slag in AAFA decreased workability and increased shrinkage and compressive strength. • MK in AAFA improved workability and compressive strength and prolonged setting time. • 5% Gypsum in AAFA increased compressive strength, but FGDG decreased it. - Abstract: The development of new binders, as an alternative to Portland cement (PC), by alkaline activation, is a current researchers interest. Alkali-activated fly ash (AAFA) binder is obtained by a manufacturing process less energy-intensive than PC and involves lower greenhouse gasses emission. Utilizing AAFA system as binder material can limit the consumption of virgin materials (limestone and sand) required in PC manufacture. AAFA belongs to be prospective material in the field of Civil Engineering where it can resist aggressive acids, resist sulfate attacks, resist aggregate alkali reaction, and resist elevated temperatures. Researchers have employed different fibers, chemical admixtures, mineral admixtures, additives and other materials in AAFA system aiming to modify special properties of this system. This paper presents a comprehensive overview of the previous works carried out on using different admixtures and additives in AAFA system

  6. Experimental condition in the preparation of catalysts for Hydro treatment

    International Nuclear Information System (INIS)

    Gomez P, Alvaro

    1998-01-01

    In this work, by means of an exhaustive bibliographical revision and in a methodical way, they seek to settle down, the characteristics of the catalysts for Hydro treatment (HDT) on those that it is necessary to act with the purpose of obtaining more active, selective and resistant catalysts to the deactivation

  7. Milk Alkali and Hydrochlorothiazide: A Case Report

    Directory of Open Access Journals (Sweden)

    Babar Parvez

    2011-01-01

    Full Text Available Hypercalcemia is a relatively common clinical problem in both outpatient and inpatient settings. Primary pathophysiology is the entry of calcium that exceeds its excretion into urine or deposition in bone into circulation. Among a wide array of causes of hypercalcemia, hyperparathyroidism and malignancy are the most common, accounting for greater than 90 percent of cases. Concordantly, there has been a resurgence of milk-alkali syndrome associated with the ingestion of large amounts of calcium and absorbable alkali, making it the third leading cause of hypercalcemia (Beall and Scofield, 1995 and Picolos et al., 2005. This paper centers on a case of over-the-counter calcium and alkali ingestion for acid reflux leading to milk alkali with concordant use of thiazide diuretic for hypertension.

  8. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  9. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: An in situ FTIR study

    Science.gov (United States)

    Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J.; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan

    2018-05-01

    Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH3-SCR or DeNOx) of NO using NH3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO3 solution and NH4F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1 wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH3-SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO3) than in Fe-MCM-56 (HF/NH4F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N2O decomposition, with maximum N2O conversion not higher than 80% and activity window starting at 500 °C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction.

  10. Efficacy of pretreating oil palm fronds with an acid-base mixture catalyst.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Park, Yong-Cheol; Park, Kyungmoon; Kim, Kyoung Heon

    2017-07-01

    Oil palm fronds are abundant but recalcitrant to chemical pretreatment. Herein, an acid-base mixture was applied as a catalyst to efficiently pretreat oil palm fronds. Optimized conditions for the pretreatment were a 0.1M acidic acid-base mixture and 3min ramping to 190°C and 12min holding. The oil palm fronds pretreated and washed with the acid-base mixture exhibited an enzymatic digestibility of 85% by 15 FPU Accellerase 1000/g glucan after 72h hydrolysis, which was significantly higher than the enzymatic digestibilities obtained by acid or alkali pretreatment alone. This could be attributed to the synergistic actions of the acid and base, producing an 87% glucose recovery with 100% and 40.3% removal of xylan and lignin, respectively, from the solids. Therefore, an acid-base mixture can be a feasible catalyst to deconstruct oil palm fronds for sugar production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Alkali aggregate reactivity in concrete structures in western Canada

    International Nuclear Information System (INIS)

    Morgan, D.R.; Empey, D.

    1989-01-01

    In several regions of Canada, particularly parts of Ontario, Quebec and the Maritime Provinces, research, testing and evaluation of aged concrete structures in the field has shown that alkali aggregate reactivity can give rise to pronounced concrete deterioration, particularly in hydraulic structures subjected to saturation or alternate wetting and drying such as locks, dams, canals, etc. Concrete deterioration is mainly caused by alkali-silica reactions and alkali-carbonate reactions, but a third type of deterioration involves slow/late expanding alkali-silicate/silica reactivity. The alkalies NaOH and KOH in the concrete pore solutions are mainly responsible for attack on expansive rocks and minerals in concrete. Methods for evaluating alkali-aggregate reaction potential in aggregates, and field and laboratory methods for detecting deterioration are discussed. Examples of alkali-aggregate reactions in structures is western Canada are detailed, including a water reservoir at Canadian Forces Base Chilliwack in British Columbia, the Oldman River diversion and flume, the Lundbreck Falls Bridge, and the St Mary's Reservoir spillway, all in southern Alberta. Mitigative measures include avoidance of use of suspect aggregates, but if this cannot be avoided it is recommended to keep the total alkalies in the concrete as low as possible and minimize opportunities for saturation of concrete by moisture. 16 refs., 19 figs., 1 tab

  12. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw

    DEFF Research Database (Denmark)

    Zhu, Z.; Toor, Saqib; Rosendahl, Lasse

    2015-01-01

    (thermogravimetric analysis) and GC-MS. The addition of K2CO3 increased the bio-crude yield to 34.85 wt%, and inhibited solid residue formation. Moreover, the bio-crude produced in the presence of a catalyst had better properties, in terms of higher heating value and lower O/C. GC-MS analysis showed that the major...

  13. 57Fe Moessbauer Studies in Mo-Fe Supported Catalysts

    International Nuclear Information System (INIS)

    Castelao-Dias, M.; Costa, B. F. O.; Quinta-Ferreira, R. M.

    2001-01-01

    Industrially, the Mo-Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Moessbauer spectroscopy which proved to be a useful technique in the choice of supported materials

  14. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Christensen, Christina Hviid; Sehested, J.

    2007-01-01

    for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments. A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between...... addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation. The Ru catalyst operates better than all the Ni catalysts...

  15. Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner

    International Nuclear Information System (INIS)

    Sanap, Kiran K.; Varma, S.; Waghmode, S.B.; Bharadwaj, S.R.

    2015-01-01

    Highlights: • Synthesis by electroless deposition method and chemical reduction route. • Particle size of 0.1–0.5 μm & 3.5–5 nm for Pt–Pd/Wg & Pt–Pd/Cord catalysts. • Active for H_2 and O_2 reaction with initial H_2 concentration of 1.5 to 7% in air. • Active in presence of different contaminants like CO_2, CH_4, CO & relative humidity. • Enhanced resistance of Pt–Pd/Cord catalyst towards the poisoning of CO. - Abstract: Hydrogen released in nuclear reactor containment under severe accident scenario poses a threat to containment and hence needs to be regulated by catalytic recombination. Mixed noble metal catalysts with platinum–palladium supported on stainless steel wire gauze and cordierite support have been developed for this purpose. The developed catalysts have been found to be highly efficient for removal of hydrogen concentration in the range of 1.5 to 7.0% v/v in air. Though both the catalysts exhibit similar kinetics for lower hydrogen concentration, cordierite supported catalysts exhibits better kinetic rate at higher hydrogen concentration. The performances of these catalysts in presence of various probable catalytic poison like carbon monoxide and catalytic inhibitors like moisture, carbon dioxide, and hydrocarbons provide data for use of these catalysts under the actual scenario. Compared to stainless steel wire gauze supported catalyst, the cordierite based catalyst are found to exhibit enhanced resistance towards carbon monoxide and limited temperature rise for safer application at higher hydrogen concentrations.

  16. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting under...

  17. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject to...

  18. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    Science.gov (United States)

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  19. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    Science.gov (United States)

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  20. Design of porous nanostructured solid catalysts

    DEFF Research Database (Denmark)

    Abildstrøm, Jacob Oskar

    cells, as a mean to transform chemical as the main technique explained. The chapter will also cover degradation mechanisms of the catalyst employed in PEMFC, such as carbon corrosion and particle agglomeration. Strategies on how to increase resistance towards these degradation mechanisms...

  1. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    Science.gov (United States)

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  2. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  3. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  4. The kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas

    International Nuclear Information System (INIS)

    Khamroev, F.B.

    2016-01-01

    The purpose of the present work is to study the kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas. The experimental equation of steam-carbon methane conversion, heat stability increasing and catalyst efficiency, decreasing of hydrodynamical resistance of catalyst layer were determined.

  5. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    Science.gov (United States)

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-02

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  6. Application of a mixed metal oxide catalyst to a metallic substrate

    Science.gov (United States)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  7. Studies on the hydroprocessing of deashed oil. 9. ; Characterization of the used catalyst in the pilot plant. Deashed oil no suisoka bunkai hanno ni kansuru kenkyu. 9. ; Pilot plant shiyozumi shokubai no characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Hijiriyama, M. (Mitsubishi Kasei Co., Tokyo (Japan)); Kageyama, Y. (Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan))

    1990-11-29

    The secondary hydroprocessing process in the two-stage hydrogenating liquefaction equipment under development at Nippon Brown Coal Liquefaction Company uses a fixed bed system. To elucidate causes of catalyst activity degradation related therewith, catalyst used for about 1000 hours in a S -t/d pilot plant was collected to investigate deposition behavior of cokes and ashed metals and changes in catalyst properties. The catalyst is made of Ca-Ni-Mo/Al2O3, which was recovered from baskets placed in each layer in a reactor, washed in a predetermined manner, dried, and analyzed. In addition, in order to investigate remaining activity, 1-methylnaphthalene was hydrogenated, and deashed oil (DAO) was hydrocracked. The result may be summarized as follows: The major cause for the catalyst activity degradation is deposition of carbonaceous materials and ashed metals on the catalyst; and especially alkali metals (Na and K) were considered to be the major cause for the catalyst deactivation with time. 2 refs., 8 figs.

  8. The utilization of alkali-treated melon husk by broilers.

    Science.gov (United States)

    Abiola, S S; Amalime, A C; Akadiri, K C

    2002-09-01

    The effects of alkali treatment on chemical constituents of melon husk (MH) and performance characteristics of broilers fed alkali-treated MH (ATMH) diets were investigated. The chemical analysis showed that alkali treatment increased the ash content of MH (from 15.70% to 16.86%) and reduced the crude fibre content (from 29.00% to 14.00%). Result of feed intake was superior on 30% alkali diet with a value of 100.14 g/bird/day. Body weight gain decreased with increase in the level of ATMH in the diet. Highest dressing percentage of 66.33% and best meat/bone ratio of 2.57 were obtained on 10% and 20% alkali diets, respectively. Dietary treatments had significant effect (P poultry carcases and chicken meat with favourable shelf life.

  9. Engineering New Catalysts for In-Process Elimination of Tars

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Larry G. [Gas Technology Inst., Des Plaines, IL (United States)

    2012-09-30

    The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposed surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported

  10. A coupled channel study on a binding mechanism of positronic alkali atoms

    International Nuclear Information System (INIS)

    Kubota, Yoshihiro; Kino, Yasushi

    2008-01-01

    In order to investigate the binding mechanism of weakly bound states of positronic alkali atoms, we calculate the energies and wavefunctions using the Gaussian expansion method (GEM) where a positronium (Ps)-alkali ion channel and a positron-alkali atom channel are explicitly introduced. The energies of the bound states are updated using a model potential that reproduces well the observed energy levels of alkali atoms. The binding mechanism of the positronic alkali atom is analyzed by the wavefunctions obtained. The structure of the positronic alkali atom has been regarded as a Ps cluster orbiting the alkali ion, which is described by the Ps-alkali ion channel. We point out that the fraction having the positron-alkali atom configuration is small but plays an indispensable role for the weakly bound system

  11. WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS; A

    International Nuclear Information System (INIS)

    Carl R.F. Lund

    2001-01-01

    This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO(sub 2). During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO(sub 2) partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO(sub 2) partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO(sub 2). Finally, the performance of sulfided CoMo/Al(sub 2)O(sub 3) catalysts under conditions of high CO(sub 2) partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H(sub 2)S that is required in the feed

  12. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  13. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  14. The 4843 Alkali Metal Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  15. Salts of alkali metal anions and process of preparing same

    Science.gov (United States)

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  16. Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat; Zarnegar, Mohammad; Ahmadi, Hamed

    2018-01-02

    The steam gasification of algal biomass (Cladophora glomerata L.) in presence of alkali and alkaline-earth metal compounds catalysts was studied to enhance the yield of syngas and reduce its tar content through cracking and reforming of condensable fractions. The commercial catalysts used include NaOH, KHCO 3 , Na 3 PO 4 and MgO. The gasification runs carried out with a research scale, biomass gasification unit, show that the NaOH has a strong potential for production of hydrogen, along with the added advantages of char converting and tar destruction, allowing enhancement of produced syngas caloric value. When the temperature increased from 700°C to 900°C, the tar content in the gas sharply decreased, while the hydrogen yield increased. Increasing steam/biomass ratio significantly increased hydrogen yield and tar destruction; however, the particle size in the range of 0.5-2.5 mm played a minor role in the process.

  17. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  18. Deactivation of molybdate catalysts by nitrogen bases

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1982-10-01

    Nitrogen bases present in petroleum deactivate the surface of molybdate catalysts. The detrimental effect is attributed either to interactions of the bases with Lewis sites via unpaired electrons on nitrogen or to their ability to remove proton from the surface. The later effect results in a decrease of concentration of Bronsted sites known to be active in catalytic reactions. This enhances rate of coke forming reactions. Resistence of molybdate catalysts to coke formation depends on the form and redistribution of active ingredients on the surface. This can be effected by conditions applied during preparation and pretreatment of the catalysts. Processing parameters used during catalytic hydrotreatment are also important; i.e., the coke formation is slow under conditions ensuring high rate of removal of basic nitrogen containing compounds.

  19. Heterogeneous Catalysts for VOC Oxidation from Red Mud and Bagasse Ash Carbon

    Science.gov (United States)

    Pande, Gaurav

    A range of VOC oxidation catalysts have been prepared in this study from agricultural and industrial waste as the starting point. The aim is to prepare catalysts with non-noble metal oxides as the active catalytic component (iron in red mud). The same active component was also supported on activated carbon obtained from unburned carbon in bagasse ash. Red mud which is an aluminum industry waste and rich in different phases of iron as oxide and hydroxide is used as the source for the catalytically active species. It is our aim to enhance the catalytic performance of red mud which though high in iron concentration has a low surface area and may not have the properties of an ideal catalyst by itself. In one of the attempts to enhance the catalytic performance, we have tried to leach red mud for which we have explored a range of leaching acids for effecting the leaching most efficiently and then precipitated the iron from the leachate as its hydroxide by precipitating with alkali solution followed by drying and calcination to give high surface area metal oxide material. Extensive surface characterization and VOC oxidation catalytic testing were performed for these solids. In a step to further enhance the catalytic activity towards oxidation, copper was introduced by taking another industrial waste from the copper tubing industry viz. the pickling acid. Copper has a more favourable redox potential making it catalytically more effective than iron. To make the mixed metal oxide, red mud leachate was mixed with the pickling acid in a pre-decided ratio before precipitating with alkali solution followed by drying and calcination as was done with the red mud leachate. The results from these experiments are encouraging. The temperature programmed reduction (TPR) of the solids show that the precipitate of red mud leachates show hydrogen uptake peak at a lower temperature than for just the calcined red mud. This could be due to the greatly enhanced surface area of the prepared

  20. Muonium centers in the alkali halides

    International Nuclear Information System (INIS)

    Baumeler, H.; Kiefl, R.F.; Keller, H.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Schneider, J.W.; Savic, I.M.

    1986-01-01

    Muonium centers (Mu) in single crystals and powdered alkali halides have been studied using the high-timing-resolution transverse field μSR technique. Mu has been observed and its hyperfine parameter (HF) determined in every alkali halide. For the rocksalt alkali halides, the HF parameter A μ shows a systematic dependence on the host lattice constant. A comparison of the Mu HF parameter with hydrogen ESR data suggests that the Mu center is the muonic analogue of the interstitial hydrogen H i 0 -center. The rate of Mu diffusion can be deduced from the motional narrowing of the nuclear hyperfine interaction. KBr shows two different Mu states, a low-temperature Mu I -state and a high-temperature Mu II -state. (orig.)

  1. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  2. The effect of alkali treatment of bamboo on the physical and mechanical properties of particleboard made from bamboo - industrial wood particles

    Directory of Open Access Journals (Sweden)

    vahid vaziri

    2018-02-01

    Full Text Available In this study, physical and mechanical properties of single layer particleboard made from bamboo powder (with and without alkali treatment and wood particles were investigated. Bamboo powder (30 mesh particles was treated with 5% hydroxide sodium for 120 minutes. Industrial wood chips from Sanate Choube Shomal Company were used.The variable in this research were the ratio of bamboo powder (with and without alkali treatment to wood chips (at four levels; 0:100, 10:90, 20:80, 30:70. Urea formaldehyde resin used at 10 percent level of dry weight of raw material as well as ammonium chloride was used as a catalyst at 2 percent level of the dry weight of adhesive. Physical and mechanical properties of panels measured according to EN Standard. Mechanical properties of the particleboards made from treated bamboo was superior to the relevant untreated bamboo. Water absorption and thickness swelling after 2 and 24 hours immersion in water decreased with alkali treatment. Mercerization, or treating cellulose fibers in alkaline solution, because of fibrillation, the removal of lignin and hemicellulose enhances the mechanical properties and dimension stability of the particleboard by promoting resin-fiber mechanical interlocking at the interface. Results showed, there was usability of the treated bamboo up to 30 percent for general purpose boards for use in dry conditions.

  3. Alkali-slag cements for the immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Shi, C.; Day, R.L.

    1996-01-01

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH) 2 , Al (OH) 3 and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs + from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes

  4. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    Science.gov (United States)

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  5. Saccharification of gamma-ray and alkali pretreated lignocellulosics

    International Nuclear Information System (INIS)

    Begum, A.; Choudhury, N.

    1988-01-01

    Enzymic saccharification of gamma ray and alkali pretreated sawdust, rice straw, and sugar cane bagasse showed higher release of reducing sugar from pretreated substrates. By gamma ray treatment alone (500 kGy) reducing sugar release of 2.8, 9.2, and 10 g/l was obtained from 7.5% (w/v) sawdust, rice straw, and bagasse and the same substrates showed reducing sugar release of 4.2, 30, and 20 g/l respectively when treated with alkali (0.1 g/g). Combination of gamma ray with alkali treatment further increased the reducing sugar release to 10.2, 33, and 36 g/l from sawdust, rice straw, and bagasse respectively. The effects of gamma ray and alkali treatment on saccharification varied with the nature of the substrate

  6. Preparation of a new Fenton-like catalyst from red mud using molasses wastewater as partial acidifying agent.

    Science.gov (United States)

    Wei, Guangtao; Shao, Luhua; Mo, Jihua; Li, Zhongmin; Zhang, Linye

    2017-06-01

    Using molasses wastewater as partial acidifying agent, a new Fenton-like catalyst (ACRM sm ) was prepared through a simple process of acidification and calcination using red mud as main material. With molasses wastewater, both the free alkali and the chemically bonded alkali in red mud were effectively removed under the action of H 2 SO 4 and molasses wastewater, and the prepared ACRM sm was a near-neutral catalyst. The ACRM sm preparation conditions were as follows: for 3 g of red mud, 9 mL of 0.7 mol/L H 2 SO 4 plus 2 g of molasses wastewater as the acidifying agent, calcination temperature 573 K, and calcination time 1 h. Iron phase of ACRM sm was mainly α-Fe 2 O 3 and trace amount of carbon existed in ACRM sm . The addition of molasses wastewater not only effectively reduced the consumption of H 2 SO 4 in acidification of red mud but also resulted in the generation of carbon and significantly improved the distribution of macropore in prepared ACRM sm . It was found that near-neutral pH of catalyst, generated carbon, and wide distribution of macropore were the main reasons for the high catalytic activity of ACRM sm . The generated carbon and wide distribution of macropore were entirely due to the molasses wastewater added. In degradation of orange II, ACRM sm retained most of its catalytic stability and activity after five recycling times, indicating ACRM sm had an excellent long-term stability in the Fenton-like process. Furthermore, the performance test of settling showed ACRM sm had an excellent settleability. ACRM sm was a safe and green catalytic material used in Fenton-like oxidation for wastewater treatment.

  7. The alkali halide disk technique in infra-red spectrometry : Anomalous behaviour of some samples dispersed in alkali halide disks

    NARCIS (Netherlands)

    Tolk, A.

    1961-01-01

    Some difficulties encountered in the application of the alkali halide disk technique in infra-red spectrometry are discussed. Complications due to interaction of the sample with the alkali halide have been studied experimentally. It was found that the anomalous behaviour of benzoic acid, succinic

  8. Complexes in polyvalent metal - Alkali halide melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-03-01

    Experimental evidence is available in the literature on the local coordination of divalent and trivalent metal ions by halogens in some 140 liquid mixtures of their halides with alkali halides. After brief reference to classification criteria for main types of local coordination, we focus on statistical mechanical models that we are developing for Al-alkali halide mixtures. Specifically, we discuss theoretically the equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in mixtures of AlF 3 and NaF as a function of composition in the NaF-rich region, the effect of the alkali counterion on this equilibrium, the possible role of (AlF 5 ) 2- as an intermediate species in molten cryolite, and the origin of the different complexing behaviours of Al-alkali fluorides and chlorides. We also present a theoretical scenario for processes of structure breaking and electron localization in molten cryolite under addition of sodium metal. (author). 26 refs, 2 tabs

  9. Long term mechanical properties of alkali activated slag

    Science.gov (United States)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  10. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  11. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  12. Mechanical filter for alkali atoms

    CERN Document Server

    Toporkov, D K

    2000-01-01

    A device for separating gases of different mass is discussed. Such a device could be used in a laser-driven spin exchange source of polarized hydrogen atoms to reduce the contamination of alkali atoms. A Monte Carlo simulation has shown that the suggested apparatus based on a commercial turbo pump could reduce by a factor of 10-15 the concentration of the alkali-metal atoms in the hydrogen flow from a laser driven polarized source. This would greatly enhance the effective polarization in hydrogen targets.

  13. The influence of alkali promoters on coadsorbed molecules

    International Nuclear Information System (INIS)

    Umbach, E.

    1986-01-01

    A model has been suggested recently based on the results of an extensive study of the coadsorbate system CO + K on Ru(001). It is introduced and discussed in this article based on previous results and on results obtained very recently for a similar coadsorbate system, CO + K/Ni(111). This model is in competition with a variety of differing or similar ideas and interpretations which are mostly based on similar experimental results. Some of these other models postulate a lying-down, or strongly tilted, molecule in the presence of alkali atoms, at least at low coverages. The CO molecule is usually considered to be attached to the substrate and to be closely coadsorbed to the alkali neighbor(s) but sometimes even a vertical or horizontal adsorption on top of the alkali layer has been suggested. The interaction between alkali and CO has been described as indirect via the substrate or direct by forming a ''π''-bond between adjacent alkalis and CO molecules or even by forming an ionic K/sub x/-CO/sub y/ complex. Some authors prefer a model in which the main (or exclusive) interaction comes from a charge transfer from the donating alkali into the 2π orbital of the coadsorbed CO, thus, enhancing the C- metal and reducing the C-O bond strength

  14. Alkali-heat treatment of a low modulus biomedical Ti-27Nb alloy

    International Nuclear Information System (INIS)

    Zhou, Y; Wang, Y B; Zhang, E W; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C

    2009-01-01

    This study focuses on the surface modification of a near β-type Ti-27 wt.% Nb alloy by alkali-heat treatment. The influence of alkali concentration, alkali-treated time and alkali-treated temperature on the microstructure and constitutional phases of the modified surface is investigated by SEM, XRD and ICP. Immersion experiments in a simulated body fluid (SBF) were carried out to examine the Ca-P phase forming ability of the modified surfaces. The SEM observation and XRD analysis revealed that a sodium titanate layer is formed after alkali-heat treatment. The morphology and Ca-P phase forming of the layer are greatly affected by the surface roughness of the samples, the alkali concentration, the alkali-treated time and alkali-treated temperature. The results of SBF immersion, which are obtained by ICP analysis, indicate that the activated sodium titanate layer prepared by alkali-heat treatment is beneficial to further improving the biocompatibility of the Ti-27 wt.% Nb alloy.

  15. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level. 6 claims

  16. Surface treatment method for hydrogen adsorbing alloy powder and alkali secondary battery fabricated by applying the method; Suiso kyuzo gokin funmatsu no hyomen shori hoho to sorewo tekiyoshite eraeta arukari niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K. [Furukawa Electric Co. Ltd., Tokyo (Japan); Sawa, H. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1997-03-07

    Corrosion of alloy proceeds in the conventional hydrogen absorbing alloy because the composing hydrogen absorbing alloy powder contacts with high concentration alkali electrolyte in the battery. Immersion into alkali aqueous solution and pulverization by metal fluoride compound of the electrode have been practiced to solve the problem, but internal resistance of the battery increases and the charge and discharge properties of the battery are deteriorated. This invention relates to a method in which hydrogen absorbing alloy electrode powder or the hydrogen alloy electrode whose main content is the said powder is contacted with alkali aqueous solution to increase the specific surface area of the hydrogen absorbing alloy powder, followed by its contact with pH3-6 acidic aqueous solution containing fluorine ions. As a result, corrosion resistance of the surface of hydrogen absorbing alloy powder after the treatment against high concentration alkali electrolyte is improved to elongate the cycle life. Salts of LiF, NaF, KF, RbF, and CsF or their hydrogen salts can be used as the supply source of fluorine ions. 3 tabs.

  17. Thermodynamic modelling of alkali-activated slag cements

    International Nuclear Information System (INIS)

    Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.

    2015-01-01

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  18. Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar

    Directory of Open Access Journals (Sweden)

    Keum-Il Song

    2014-01-01

    Full Text Available Alkali-activated ground granulated blast-slag (AAS is the most obvious alternative material for ordinary Portland cement (OPC. However, to use it as a structural material requires the assessment and verification of its durability. The most important factor for a durability evaluation is the degree of carbonation resistance, and AAS is known to show lower performance than OPC. A series of experiments was conducted with a view to investigate the carbonation characteristics of AAS binder. As a consequence, it was found that the major hydration product of AAS was calcium silicate hydrate (CSH, with almost no portlandite, unlike the products of OPC. After carbonation, the CSH of AAS turned into amorphous silica gel which was most likely why the compressive strength of AAS became weaker after carbonation. An increase of the activator dosage leads AAS to react more quickly and produce more CSH, increasing the compaction, compressive strength, and carbonation resistance of the microstructure.

  19. Preparation of a Ni-MgO-Al2O3 catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells

    Science.gov (United States)

    Jang, Won-Jun; Jung, You-Shick; Shim, Jae-Oh; Roh, Hyun-Seog; Yoon, Wang Lai

    2018-02-01

    Steam reforming of methane (SRM) is conducted using a series of Ni-MgO-Al2O3 catalysts for direct internal reforming (DIR) in molten carbonate fuel cells (MCFCs). Ni-MgO-Al2O3 catalysts are prepared by the homogeneous precipitation method with a variety of MgO loading amounts ranging from 3 to 15 wt%. In addition, each precursor concentrations are systemically changed (Ni: 1.2-4.8 mol L-1; Mg: 0.3-1.2 mol L-1; Al: 0.4-1.6 mol L-1) at the optimized composition (10 wt% MgO). The effects of MgO loading and precursor concentration on the catalytic performance and resistance against poisoning of the catalyst by potassium (K) are investigated. The Ni-MgO-Al2O3 catalyst with 10 wt% MgO and the original precursor concentration (Ni: 1.2 mol L-1; Mg: 0.3 mol L-1; Al: 0.4 mol L-1) exhibits the highest CH4 conversion and resistance against K poisoning even at the extremely high gas space velocity (GHSV) of 1,512,000 h-1. Excellent SRM performance of the Ni-MgO-Al2O3 catalyst is attributed to strong metal (Ni) to alumina support interaction (SMSI) when magnesium oxide (MgO) is co-precipitated with the Ni-Al2O3. The enhanced interaction of the Ni with MgO-Al2O3 support is found to protect the active Ni species against K poisoning.

  20. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  1. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation

    Science.gov (United States)

    Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu

    2018-03-01

    This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.

  2. Mineralization dynamics of metakaolin-based alkali-activated cements

    International Nuclear Information System (INIS)

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler J.; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29 Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  3. The solvent extraction of alkali metal ions with β-diketones

    International Nuclear Information System (INIS)

    Munakata, Megumu; Niina, Syozo; Shimoji, Noboru

    1974-01-01

    This work was undertaken to investigate effects of solvent and chelating-agent on the solvent extraction of alkali metal ions by seven β-diketones, acetylacetone (Acac), benzoylacetone (BzA), dipivaloylmethane (DPM), dibenzoylmethane (DBM), thenoyltrifluoloacetone (TTA), benzoyltrifluoroacetone (BFA) and hexafluoroacetylacetone (HFA), and to separate lithium from alkali metals. The extraction of alkali metals increase with increasing donor power of the solvent: i.e., benzene Na>K>Rb>Cs, which is also the order in which the adduct formation of these β-diketone chelates with donor solvents increase. The adduct formations between β-diketone chelates of alkali metals and donor solvents markedly enhance the solubilities of the chelates in solvents and, consequently, the extractabilities of alkali metals with β-diketones. Lithium was extracted with TTA in ether at such a low base concentration that sodium, potassium, rubidium and cesium were hardly extracted, and this enabled to separate lithium from other metals by the use of rubidium hydroxide (0.02 M). An attempt has been made to isolate alkali metal β-diketone chelates and some chelates have been obtained as crystals. The infrared absorption bands arising from C=O and C.=C of TTA shift to lower frequencies in the alkali metal chelates with TTA, and consequently, β-diketones is suggested to coordinate to alkali metal as a bidentate ligand. (JPN)

  4. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis

    Directory of Open Access Journals (Sweden)

    Qin Xiaochun

    2017-11-01

    Full Text Available The main technical requirements of road pavement concrete are high flexural strength and fatigue durability. Adding glass fiber into concrete could greatly increase flexural strength and wearing resistance of concrete. However, glass fiber has the great potential of corrosion during the cement hydration, which will directly affect the long-term performance and strength stability. In this paper, accelerated corrosion experiments have been done to find out the corrosion mechanism and property of alkali-resistant glass fiber in cement mortar. The applicability and practicability of alkaline-resistant glass fiber in road concrete have been illustrated in the analysis of flexural strength changing trend of cement mortar mixed with different proportions of activated additives to protect the corrosion of glass fiber by cement mortar. The results have shown that a 30% addition of fly ash or 10% addition of silica fume to cement matrix could effectively improve the corrosion resistance of alkali-resistant glass fiber. The optimal mixing amount of alkali-resistant glass fiber should be about 1.0 kg/m3 in consideration of ensuring the compressive strength of reinforced concrete in road pavement. The closest-packing method has been adopted in the mixture ratio design of alkali-resistant glass fiber reinforced concrete, not only to reduce the alkalinity of the cement matrix through large amount addition of activated additives but also to greatly enhance the flexural performance of concrete with the split pressure ratio improvement of 12.5–16.7%. The results suggested a prosperous application prospect for alkaline-resistant glass fiber reinforced concrete in road pavement.

  5. ToF-SIMS characterization of robust window material for use in diode pumped alkali lasers

    Science.gov (United States)

    Fletcher, Aaron; Turner, David; Fairchild, Steven; Rice, Christopher; Pitz, Gregory

    2018-03-01

    Developments in diode pumped alkali laser (DPAL) systems have been impeded because of the catastrophic failure of laser windows. The window's failure is caused by localized laser-induced heating of window material. This heating is believed to occur due to increases in absorption on or near the surface of the window. This increase is believed to be caused by either adsorption of carbon-based soot from the collisional gas or by the diffusion of rubidium into the bulk material. The work presented here will focus on the diffusion of Rb into the bulk window materials and will strive to identify a superior material to use as windows. The results of this research indicate that aluminum oxynitride (ALON), sapphire, MgAl2O4 (spinel), and ZrO2 are resistant to alkali-induced changes in optical properties.

  6. The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts

    International Nuclear Information System (INIS)

    Ji, Qinqin

    2017-01-01

    CO 2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO 2 . Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO 2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and good cooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO 2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO 2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO 2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO 2 and H 2 , but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g.kg -1 .h -1 ) of higher alcohols at 350 C and 50 bar. (author) [fr

  7. Restrictive liquid-phase diffusion and reaction in bidispersed catalysts

    International Nuclear Information System (INIS)

    Lee, S.Y.; Seader, J.D.; Tsai, C.H.; Massoth, F.E.

    1991-01-01

    In this paper, the effect of bidispersed pore-size distribution on liquid-phase diffusion and reaction in NiMo/Al 2 O 3 catalysts is investigated by applying two bidispersed-pore-structure models, the random-pore model and a globular-structure model, to extensive experimental data, which were obtained from sorptive diffusion measurements at ambient conditions and catalytic reaction rate measurements on nitrogen-containing compounds. Transport of the molecules in the catalysts was found to be controlled by micropore diffusion, in accordance with the random-pore model, rather than macropore diffusion as predicted by the globular-structure model. A qualitative criterion for micropore-diffusion control is proposed: relatively small macroporosity and high catalyst pellet density. Since most hydrotreating catalysts have high density, diffusion in these types of catalysts may be controlled by micropore diffusion. Accordingly, it is believed in this case that increasing the size of micropores may be more effective to reduce intraparticle diffusion resistance than incorporating macropores alone

  8. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  9. Mineralization dynamics of metakaolin-based alkali-activated cements

    Science.gov (United States)

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  10. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  11. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Alaric C.W. [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Luwei; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Kee Leong, Weng [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Johnson, Brian F.G.; Khimyak, Tetyana [University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW (United Kingdom)

    2007-05-15

    Activity, selectivity, and coking-resistance of a series of Ni{sub x}Co{sub y} (where x,y are the respective metal loadings of 0, 1, 2 or 3 wt.%; x+y=3) bimetallic catalysts supported on CaAl{sub 2}O{sub 4}/Al{sub 2}O{sub 3} have been studied for hydrogen/synthesis gas production via the catalytic partial oxidation (CPO) of methane. Catalysts were characterized by temperature programmed reduction (TPR), transmission electron microscopy (TEM) and X-ray fluorescence multi-element analysis (XRF). Their activity for the partial oxidation of methane to hydrogen and carbon monoxide (at 1 bar, gas hourly space velocity (GHSV) of 144,000cm{sup 3}g{sup -1}h{sup -1} and CH{sub 4}/O{sub 2} molar ratio of 2) was investigated, and coke deposited on the spent catalysts was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA). The activity was found to decrease in the order of Ni{sub 2}Co>Ni{sub 3}>NiCo{sub 2}>>Co{sub 3}, while CO and H{sub 2} selectivities were found to be in the order ofNi{sub 2}Co>Ni{sub 3}{approx}NiCo{sub 2}>Co{sub 3}. Ni{sub 2}Co is also shown to be more resistant to coking as compared to Ni{sub 3}, which is a current catalyst of choice. Results show that not only does Ni{sub 2}Co have the highest activity and selectivity among all the catalysts tested, it is also relatively resistant to coking. This finding would be helpful for catalyst design to achieve high coking resistivity catalysts for hydrogen production from CPO of methane. (author)

  12. In situ alkali-silica reaction observed by x-ray microscopy

    International Nuclear Information System (INIS)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction

  13. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  14. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Technical progress report, March 1989--August 1989

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Bastian, R.D.; Flanagan, K.L.

    1989-12-31

    Ruthenium disulfide catalysts have been synthesized, tested, and characterized during this period of research. It was observed that both the undoped and Cs-doped RuS{sub 2} catalysts produced alcohols and lower amounts of hydrocarbons from H{sub 2}/CO = 1.0 synthesis gas at temperatures above 300{degree}C. Calcination and catalytic testing resulted in partial reduction of the RuS{sub 2} to Ru{sup o}. Calcination under H{sub 2}S prevented the partial reduction of the RuS{sub 2} catalyst, but subsequent catalytic testing again resulted in the formation of a quantity of Ru{sup o}. A Cs-doped RuS{sub 2} catalyst was prepared, but it might have had too high of a loading of Cs. Upon testing, a lower activity was observed for the doped catalyst compared with the undoped catalyst, but the alcohol selectivity was the same for the two catalysts.

  15. Dehydrogenation of ethane to ethylene via radical pathways enhanced by alkali metal based catalyst in oxysteam condition

    KAUST Repository

    Takanabe, Kazuhiro; Shahid, Salman

    2016-01-01

    The dehydrogenation of ethane to ethylene in the presence of oxygen and water was conducted using Na2WO4/SiO2 catalyst at high temperatures. At 923 K, the conversion rate without water was proportional to ethane pressure and a half order of oxygen

  16. Alkali adsorption on Ni(1 1 1) and their coadsorption with CO and O

    International Nuclear Information System (INIS)

    Politano, A.; Formoso, V.; Chiarello, G.

    2008-01-01

    The adsorption of alkalis (Na, K) on Ni(1 1 1) and their coadsorption with CO and O were studied by high-resolution electron energy loss spectroscopy. Loss measurements of clean alkali adlayers provided the expected behaviour of the alkali-substrate vibration energy as a function of the alkali coverage. This result was achieved by eliminating any trace of CO contamination from the alkali adlayer. As a matter of fact, a significant softening of the alkali-Ni vibration energy was revealed in the alkali + CO coadsorbed phase. Moreover, alkali coadsorption with oxygen caused a weakening of the O-Ni bond and a strengthening of the alkali-Ni bond

  17. An alkali catalyzed trans-esterification of rice bran, cottonseed and waste cooking oil

    Directory of Open Access Journals (Sweden)

    Akhtar Faheem H.

    2014-01-01

    Full Text Available In this research work, biodiesel production by trans-esterification of three raw materials including virgin and used edible oil and non edible oil has been presented. A two step method following acidic and alkali catalyst was used for non edible oil due to the unsuitability of using the straight alkaline-catalyzed trans-esterification of high FFA present in rice bran oil. The acid value after processing for rice bran, cottonseed and waste cooking oil was found to be 0.95, 0.12 and 0.87 respectively. The influence of three variables on percentage yield i.e., methanol to oil molar ratio, reaction temperature and reaction time were studied at this stage. Cottonseed oil, waste cooking oil and rice bran oil showed a maximum yield of 91.7%, 84.1% and 87.1% under optimum conditions. Fuel properties of the three biodiesel satisfied standard biodiesel fuel results.

  18. Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer

    Science.gov (United States)

    Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas

    2018-03-01

    First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.

  19. [Identification and function test of an alkali-tolerant denitrifying bacterium].

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Li, Wei; Chen, Hui; Chen, Tingting; Ghulam, Abbas

    2013-04-04

    We obtained an alkali-tolerant denitrifying bacterium, and determined its denitrifying activity and alkali-tolerance. An alkali-tolerant denitrifying bacterial strain was obtained by isolation and purification. We identified the bacterial strain by morphological observation, physiological test and 16S rRNA analysis. We determined the denitrifying activity and alkali-tolerance by effects of initial nitrate concentration and initial pH on denitrification. An alkali-tolerant denitrifier strain R9 was isolated from the lab-scale high-rate denitrifying reactor, and it was identified as Diaphorobater nitroreducens. The strain R9 grew heterotrophically with methanol as the electron donor and nitrate as the electron acceptor. The nitrate conversion was 93.25% when strain R9 was cultivated for 288 h with initial nitrate concentration 50 mg/L and initial pH 9.0. The denitrification activity could be inhibited at high nitrate concentration with a half inhibition constant of 202.73 mg N/L. Strain R9 showed a good alkali tolerance with the nitrate removal rate at pH 11.0 remained 86% of that at pH 9.0. Strain R9 was identified as Diaphorobater nitroreducens, and it was an alkali-tolerant denitrifying bacterium with optimum pH value of 9.0.

  20. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    International Nuclear Information System (INIS)

    Hinwood, A.L.; Stasinska, A.; Callan, A.C.; Heyworth, J.; Ramalingam, M.; Boyce, M.; McCafferty, P.; Odland, J.Ø.

    2015-01-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  1. Alkali content of fly ash : measuring and testing strategies for compliance.

    Science.gov (United States)

    2015-04-01

    Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence : problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (...

  2. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Volli, Vikranth; Purkait, M.K., E-mail: mihir@iitg.ernet.in

    2015-10-30

    Highlights: • Flyash was utilized for zeolites preparation for transesterification. • Single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio of 1:1.2. • Si/Al ratio of 2 resulted in the formation of zeolite X. • At 5 wt% of catalyst loading conversion was 84.6%. • The biodiesel obtained has a calorific value of 37.5 MJ/Kg. - Abstract: This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12 h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity.

  3. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  4. Non-isovalent alkali metal ''substitution'' in YBa2Cu3O7-y granular ceramics

    International Nuclear Information System (INIS)

    Cloots, R.; Liege Univ.; Rulmont, A.; Pekala, M.; Liege Univ.; Laval, J.Y.; Bougrine, H.; Liege Univ.; Ausloos, M.

    1995-01-01

    The aim of this paper is to study the influence of non-isovalent ''doping'' in YBa 2 Cu 3 O 7-y in particular on its synthesis conditions and on the resistive properties both with and without a magnetic field. We concentrate on the study of possible alkali ions (Na, K, Cs) ''substitution'' at the barium sites. A low temperature sintering process is used in order to induce a reactive liquid phase. The final chemical composition is discussed as a function of the amount of the liquid phase. No alkali ion is substituted. Carbonate layers are present. However, this (lack of) ''substitution'' leads to induced vacancies and improved electrical transport properties which are as good as in highly pure materials. For conciseness the case of Na ''substitution'' only is illustrated. The use of such data in order to probe the microstructure is emphasized. (orig.)

  5. Interaction of alkali metal nitrates with calcium carbonate and kyanite

    International Nuclear Information System (INIS)

    Protsyuk, A.P.; Malakhov, A.I.; Karabanov, V.P.; Lebedeva, L.P.

    1978-01-01

    Thermographic, thermodynamic and X-ray phase studies have been made into the interaction of alkali metal nitrates with calcium carbonate and kyanite. Examined among other things was the effect of water vapor and carbon dioxide on the interaction between alkali metal nitrates and kyanite. The chemical mechanism of the occurring processes has been established. The interaction with calcium carbonates results in the formation of alkali metal carbonates and calcium oxide with liberation of nitrogen oxide and oxygen. The products of the interaction with kyanite are shown to be identical with the compounds forming when alkali metal carbonates are used

  6. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Thermal and electrochemical stability of tungsten carbide catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Materials Engineering, University of British Columbia, Vancouver, BC (Canada); Campbell, S. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC (Canada)

    2007-02-10

    The thermal and electrochemical stability of tungsten carbide (WC), with and without a catalyst dispersed on it, have been investigated to evaluate the potential suitability of the material as an oxidation-resistant catalyst support. Standard techniques currently used to disperse Pt on carbon could not be used to disperse Pt on WC, so an alternative method was developed and used to disperse Pt on both commercially available WC and on carbon for comparison of stability. Electrochemical testing was performed by applying oxidation cycles between +0.6 V and +1.8 V to the support-catalyst material combinations and monitoring the activity of the supported catalyst over 100 oxidation cycles. Comparisons of activity change with cumulative oxidation cycles were made between C and WC supports with comparable loadings of catalyst by weight, solid volume, and powder volume. WC was found to be more thermally and electrochemically stable than currently used carbon support material Vulcan XC-72R. However, further optimization of the particle sizes and dispersion of Pt/WC catalyst/support materials and of comparison standards between new candidate materials and existing carbon-based supports are required. (author)

  8. Electronic and atomic structures of liquid tellurium containing alkali elements

    International Nuclear Information System (INIS)

    Kawakita, Yukinobu; Yao, Makoto; Endo, Hirohisa.

    1997-01-01

    The measurements of electrical conductivity σ, density, EXAFS and neutron scattering were carried out for liquid K-Te and Rb-Te mixtures. The conductivity σ decreases rapidly with alkali concentration and a metal-semiconductor transition occurs at about 10 at.% alkali. It is found that the compositional variation of σ is nearly independent of the alkali species. The Te-Te bond length deduced from EXAFS and neutron scattering measurements is 2.8 A and changes little with alkali concentrations. The average distances from K and Rb atom to Te atoms are 3.6 A and 3.8 A, respectively. Two kinds of relaxation processes are observed in quasielastic neutron scattering for K 20 Te 80 . Upon the addition of alkali the interaction between the neighbouring Te chains, which is responsible for the metallic conduction, weaken considerably. (author)

  9. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  10. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  11. Identification of nitrogen compounds and amides from spent hydroprocessing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H.K.; Gray, M.R. (University of Alberta, Edmonton, AB (Canada). Dept. of Chemical Engineering)

    1991-06-01

    A spent commercial naphtha hydrotreating catalyst was analyzed to identify compounds which had accumulated on the catalyst surface during its active life. The catalyst was extracted with methylene chloride, methanol and pyridine to remove adsorbed organic material, which was rich in nitrogen and oxygen. A series of quinolones were identified in the methanol extract after enrichment with HCl-modified silica gel adsorption and subsequent silica gel chromatography. Tetra- and hexahydroquinolones with alkyl substituents up to C{sub 3} were identified. Similar amides have been identified in asphaltenes, and are very resistant to hydrogenation. Tetrahydroquinolines and piperidines were detected in the pyridine extract. 36 refs., 8 figs., 2 tabs.

  12. Reaction of alkali nitrates with PuO2

    International Nuclear Information System (INIS)

    Yamashita, T.; Ohuchi, K.; Takahashi, K.; Fujino, T.

    1990-01-01

    Improvement of solubility of plutonium dioxide (PuO 2 ) in acid solution is important to establish the nuclear fuel reprocessing technique for uranium-plutonium mixed oxide fuels. If insoluble PuO 2 can be converted into any soluble plutonium compounds, problems arising from the fuel dissolution process will be reduced to a great extent. Alkali metal plutonates and alkaline-earth plutonates are known to have enhanced solubility in mineral acids. However, the reaction conditions to form such plutonates and characterization thereof are not well elucidated. Then the reactivity and reaction conditions to form lithium and sodium plutonates from their nitrates and PuO 2 were studied at temperatures between 500 and 900 degree C and alkali metal to plutonium atom ratios between 0.5 and 6 by means of thermogravimetry as well as X-ray diffraction technique. The reaction behavior of alkali plutonates will be discussed in comparison with corresponding alkali uranates

  13. Transcriptome alteration in a rice introgression line with enhanced alkali tolerance.

    Science.gov (United States)

    Zhang, Yunhong; Lin, Xiuyun; Ou, Xiufang; Hu, Lanjuan; Wang, Jinming; Yang, Chunwu; Wang, Shucai; Liu, Bao

    2013-07-01

    Alkali stress inhibits plant growth and development and thus limits crop productivity. To investigate the possible genetic basis of alkali tolerance in rice, we generated an introgressed rice line (K83) with significantly enhanced tolerance to alkali stress compared to its recipient parental cultivar (Jijing88). By using microarray analysis, we examined the global gene expression profiles of K83 and Jijing88, and found that more than 1200 genes were constitutively and differentially expressed in K83 in comparison to Jijing88 with 572 genes up- and 654 down-regulated. Upon alkali treatment, a total of 347 genes were found up- and 156 down-regulated in K83 compared to 591 and 187, respectively, in Jijing88. Among the up-regulated genes in both K83 and Jijing88, only 34 were constitutively up-regulated in K83, suggesting that both the constitutive differentially expressed genes in K83 and those induced by alkali treatment are most likely responsible for enhanced alkali tolerance. A gene ontology analysis based on all annotated, differentially expressed genes revealed that genes with expression alterations were enriched in pathways involved in metabolic processes, catalytic activity, and transport and transcription factor activities, suggesting that these pathways are associated with alkali stress tolerance in rice. Our results illuminated the novel genetic aspects of alkali tolerance in rice and established a repertory of potential target genes for biotechnological manipulations that can be used to generate alkali-tolerant rice cultivars. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. The alkali-aggregate reaction - concrete microstructure evolution

    International Nuclear Information System (INIS)

    Regourd, M.; Hornain, H.; Poitevin, P.

    1981-01-01

    The alkali-aggregate reaction has been studied by scanning electron microscopy and energy dispersive X-ray analysis, electron probe microanalysis, and X-ray diffraction in concretes containing glass aggregates or hornfels and greywacke aggregates. The surface reaction of the natural aggregates in alkaline solutions has been analysed by X-ray photo-electron spectrometry. The study of concretes with glass aggregates stored at 20 degrees Celcius and 100 percent relative humidity has revealed, irrespective of alkali content and type of cement, the formation of a gel containing SiO 2 , Na 2 O, CaO, MgO and Al 2 O 3 . Under heat and pressure (210 degrees Celcius at MPa for 48 hours), the gel crystallizes and yields silicates not very different from tobermorite found in autoclaved normal concretes but cotaining Na and K in solid solutions. The alkali reaction in two natural aggregate concretes, is also shown by the formation of gels and silicate crystals. The progressive structuring of the gels in silicate crystals is promoted by an increase in temperature. Ettringite and Ca(OH) 2 reinforce the alkali-aggregate reaction which may be looked upon as a hydration reaction, partially of the pozzolanic type

  15. Alkali control of high-grade metamorphism and granitization

    Directory of Open Access Journals (Sweden)

    Oleg G. Safonov

    2014-09-01

    Full Text Available We review petrologic observations of reaction textures from high-grade rocks that suggest the passage of fluids with variable alkali activities. Development of these reaction textures is accompanied by regular compositional variations in plagioclase, pyroxenes, biotite, amphibole and garnet. The textures are interpreted in terms of exchange and net-transfer reactions controlled by the K and Na activities in the fluids. On the regional scale, these reactions operate in granitized, charnockitized, syenitized etc. shear zones within high-grade complexes. Thermodynamic calculations in simple chemical systems show that changes in mineral assemblages, including the transition from the hydrous to the anhydrous ones, may occur at constant pressure and temperature due only to variations in the H2O and the alkali activities. A simple procedure for estimating the activity of the two major alkali oxides, K2O and Na2O, is implemented in the TWQ software. Examples of calculations are presented for well-documented dehydration zones from South Africa, southern India, and Sri Lanka. The calculations have revealed two end-member regimes of alkalis during specific metamorphic processes: rock buffered, which is characteristic for the precursor rocks containing two feldspars, and fluid-buffered for the precursor rocks without K-feldspar. The observed reaction textures and the results of thermodynamic modeling are compared with the results of available experimental studies on the interaction of the alkali chloride and carbonate-bearing fluids with metamorphic rocks at mid-crustal conditions. The experiments show the complex effect of alkali activities in the fluid phase on the mineral assemblages. Both thermodynamic calculations and experiments closely reproduce paragenetic relations theoretically predicted by D.S. Korzhinskii in the 1940s.

  16. Comparative study of diode-pumped alkali vapor laser and exciplex-pumped alkali laser systems and selection principal of parameters

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui

    2017-03-01

    A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.

  17. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzoic acid, alkali...

  18. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    Science.gov (United States)

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Determination of the common and rare alkalies in mineral analysis

    Science.gov (United States)

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  20. Report on the achievements in the Sunshine Project in fiscal 1991 on research and development of coal energy. Studies on coal liquefying catalysts and a method for analyzing liquefied oil; 1991 nendo sekitan ekikayo shokubai oyobi ekikayu bunseikiho no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1991 on research of coal liquefying catalysts and a method for analyzing liquefied oil. Alkalis and alkali earth metals present during coal liquefied oil hydrogenation treatment deteriorate the activity remarkably as an effect of metal deposition from an Mo-based catalyst on the activity deterioration. Discussions were given on hydrogenating decomposition paths for bi-cyclic compounds by using reaction of model substances. Preliminary discussions were given jointly under the Japanese and Canadian technical cooperation on enhancing the quality of co-treated oil in the coal liquefaction, and on catalysts used therein. A 1-t/d PSU circulating solvent was studied to support the NEDO's bituminous coal liquefaction program. Analyses were carried out on acenaphthenes, biphenyls, phenanthrenes, and anthracenes in the oil liquefied from Wandoan coal. Discussions were given on CoMo/Al{sub 2}O{sub 3} on the effects of catalyst concentrations and particle sizes in the coal liquefying reaction. In order to elucidate different non-covalently bonded high-order structures of coal polymer assemblies, chemical treatment was applied to coals under a relatively mild condition (room temperature to 150 degrees C). Chemical structures as a result of the non-covalent bond in the coals were investigated from change due to the treatment in the pyridine extraction characteristics. (NEDO)

  1. Report on the achievements in the Sunshine Project in fiscal 1991 on research and development of coal energy. Studies on coal liquefying catalysts and a method for analyzing liquefied oil; 1991 nendo sekitan ekikayo shokubai oyobi ekikayu bunseikiho no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1991 on research of coal liquefying catalysts and a method for analyzing liquefied oil. Alkalis and alkali earth metals present during coal liquefied oil hydrogenation treatment deteriorate the activity remarkably as an effect of metal deposition from an Mo-based catalyst on the activity deterioration. Discussions were given on hydrogenating decomposition paths for bi-cyclic compounds by using reaction of model substances. Preliminary discussions were given jointly under the Japanese and Canadian technical cooperation on enhancing the quality of co-treated oil in the coal liquefaction, and on catalysts used therein. A 1-t/d PSU circulating solvent was studied to support the NEDO's bituminous coal liquefaction program. Analyses were carried out on acenaphthenes, biphenyls, phenanthrenes, and anthracenes in the oil liquefied from Wandoan coal. Discussions were given on CoMo/Al{sub 2}O{sub 3} on the effects of catalyst concentrations and particle sizes in the coal liquefying reaction. In order to elucidate different non-covalently bonded high-order structures of coal polymer assemblies, chemical treatment was applied to coals under a relatively mild condition (room temperature to 150 degrees C). Chemical structures as a result of the non-covalent bond in the coals were investigated from change due to the treatment in the pyridine extraction characteristics. (NEDO)

  2. Screen-printed electrode for alkali-metal thermoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Shibata, K.; Tsuchida, K.; Kato, A. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1992-06-01

    An alkali-metal thermoelectric converter (AMTEC) is a device for the direct conversion of thermal to electric energy. An AMTEC contains sodium as working fluid and is divided into a high-temperature region (900-1300 K) and a low-temperature region (400-800 K) by [beta]''-alumina solid electrolyte. A high-performance electrode for an AMTEC must have good electrical conductivity, make a strong physical bond with low contact resistance to [beta]''-alumina, be highly permeable to sodium vapour, resist corrosion by sodium and have a low rate of evaporation at the operating temperature of the AMTEC. We have previously investigated the interaction of nitrides and carbides of some transition-metals (groups IV, V and VI) with [beta],[beta]''-alumina or liquid sodium (about 700degC) with the objective of finding a better electrode material for an AMTEC. The results showed that TiN, TiC, NbN and NbC were good candidates for AMTEC electrodes. We also showed that porous TiN film with low resistance can be prepared by the screen-printing method. In the present work the porous NbN film was prepared by the screen-printing method and the performance as the electrode of an AMTEC was examined. For comparison, the performance of TiN and Mo electrodes prepared by the screen-printing method was also examined. (author).

  3. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  4. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum Lines.

    Directory of Open Access Journals (Sweden)

    Guofu Hu

    Full Text Available Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L. is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL], reduced leaf relative water content (RWC, net photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr. An alkali-salt stress tolerance trait index (ASTTI for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64 and two upland lines (Caddo and Blackwell-1 were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.

  5. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    Science.gov (United States)

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.

  6. Comprehensive Utilization of Filter Residue from the Preparation Process of Zeolite-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2016-05-01

    Full Text Available A novel utilization method of filter residue from the preparation process of zeolite-based catalysts was investigated. Y zeolite and a fluid catalytic cracking (FCC catalyst were synthesized from filter residue. Compared to the Y zeolite synthesized by the conventional method, the Y zeolite synthesized from filter residue exhibited better thermal stability. The catalyst possessed wide-pore distribution. In addition, the pore volume, specific surface area, attrition resistance were superior to those of the reference catalyst. The yields of gasoline and light oil increased by 1.93 and 1.48 %, respectively. At the same time, the coke yield decreased by 0.41 %. The catalyst exhibited better gasoline and coke selectivity. The quality of the cracked gasoline had been improved.

  7. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  8. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  9. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660 Section 721.4660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4660 Alcohol, alkali metal sal...

  10. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  11. Influence of Steam Reforming Catalyst Geometry on the Performance of Tubular Reformer – Simulation Calculations

    Directory of Open Access Journals (Sweden)

    Franczyk Ewelina

    2015-06-01

    Full Text Available A proper selection of steam reforming catalyst geometry has a direct effect on the efficiency and economy of hydrogen production from natural gas and is a very important technological and engineering issue in terms of process optimisation. This paper determines the influence of widely used seven-hole grain diameter (ranging from 11 to 21 mm, h/d (height/diameter ratio of catalyst grain and Sh/St (hole surface/total cylinder surface in cross-section ratio (ranging from 0.13 to 0.37 on the gas load of catalyst bed, gas flow resistance, maximum wall temperature and the risk of catalyst coking. Calculations were based on the one-dimensional pseudo-homogeneous model of a steam reforming tubular reactor, with catalyst parameters derived from our investigations. The process analysis shows that it is advantageous, along the whole reformer tube length, to apply catalyst forms of h/d = 1 ratio, relatively large dimensions, possibly high bed porosity and Sh/St ≈ 0.30-0.37 ratio. It enables a considerable process intensification and the processing of more natural gas at the same flow resistance, despite lower bed activity, without catalyst coking risk. Alternatively, plant pressure drop can be reduced maintaining the same gas load, which translates directly into diminishing the operating costs as a result of lowering power consumption for gas compression.

  12. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  13. Autoclave-hardening slag-alkali binder with high water content

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Kozyrin, N.A.; Melikhova, N.I.; Narkevich, N.K.; Ryabov, G.G.

    1987-01-01

    The results of investigations into properties of slag-alkali binder, that may be used for concretes of reactor radiation and thermal shieldings, are presented. These concretes have increased chemical stability and mechanical strength, high content of chemically bound water (approximately 14%), that is not lost under heating up to 550 deg C. Dumping and granulated slags of blast-furnace process, sodium-bicarbonate-alkali fusion cake formed at burning of adipic acid residues, technical sodium hydroxide and sodium liquid glass are used as raw material for slag-alkali binder

  14. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  15. ALKALI-ACTIVATION KINETICS OF PHOSPHORUS SLAG CEMENT USING COMPRESSIVE STRENGTH DATA

    Directory of Open Access Journals (Sweden)

    Hojjatollah Maghsoodloorad

    2015-09-01

    Full Text Available In this research, through compressive strength data, the order and kinetics of alkali-activation of phosphorus slag activated with two compound activators of NaOH + Na2CO3 and Na2CO3 + Ca(OH2, has been evaluated. The kinetics and order of alkali activation is a key factor to forecasting the mechanical behavior of alkali activated cement at different curing time and temperatures without carrying out experimental tests. The apparent activation energy was obtained as 35.6 kJ.mol-1 and 60.7 kJ.mol-1 for the two activators, respectively. Investigations proved that the alkali-activation kinetics of phosphorus slag resembles chemical reactions of second order. Moreover, the order of alkali-activation of phosphorus slag does not depend on the type of activator.

  16. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  17. SHRINKAGE REDUCTION AND CRACK PREVENTION OF ALKALI-ACTIVATED PHOSPHOROUS SLAG CEMENT

    Directory of Open Access Journals (Sweden)

    Yanan Wang

    2016-05-01

    Full Text Available The effects of fly ash, calcium oxide and polypropylene fiber on the physical and mechanical properties, shrinkage and cracking behaviors of alkali-activated phosphorous slag cement (AA-PS-C were studied. The results show that replacing 10-15% phosphorous slag by fly ash and adding calcium oxide as an expansive agent reduce the shrinkage of AA-PS-C. Fly ash will increase the flexural strength, although the compressive strength will be slightly decreased, while the calcium oxide expansive agent coated with aluminum stearate will slightly shorten the setting time and reduce the strength. Adding polypropylene fiber can greatly increase the crack-resistance of AA-PS-C.

  18. Effects of Alkali and Counter Ions in Sn-Beta Catalyzed Carbohydrate Conversion

    DEFF Research Database (Denmark)

    Elliot, Samuel G.; Tolborg, Søren; Madsen, Robert

    2018-01-01

    Alkali ions have been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure and are ......Alkali ions have been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure...... and are herein addressed experimentally through kinetic experiments and isotope tracking. Alkali ions have a differential effect in competing reaction pathways: they promote the rate of carbon-carbon bond breakage of carbohydrate substrates, but decrease the rates of competing dehydration pathways. Further...... addition of alkali inhibits activity of Sn-Beta in all major reaction pathways. The alkali effects on product distributions and on rates of product formation are similar, thus pointing to a kinetic reaction control and to irreversible reaction steps in the main pathways. Additionally, an effect...

  19. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H.; Campbell, S. [Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8 (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada)

    2006-10-27

    The oxidation of carbon catalyst supports causes degradation in catalyst performance in proton exchange membrane fuel cells (PEMFCs). Indium tin oxide (ITO) is considered as a candidate for an alternative catalyst support. The electrochemical stability of ITO was studied by use of a rotating disk electrode (RDE). Oxidation cycles between +0.6 and +1.8V were applied to ITO supporting a Pt catalyst. Cyclic voltammograms (CVs) both before and after the oxidation cycles were obtained for Pt on ITO, Hispec 4000 (a commercially available catalyst), and 40wt.% Pt dispersed in-house on Vulcan XC-72R. Pt on ITO showed significantly better electrochemical stability, as determined by the relative change in electrochemically active surface area after cycling. Hydrogen desorption peaks in the CVs existed even after 100 cycles from 0.6 to 1.8V for Pt on ITO. On the other hand, most of the active surface area was lost after 100 cycles of the Hispec 4000 catalyst. The 40wt.% Pt on Vulcan made in-house also lost most of its active area after only 50 cycles. Pt on ITO was significantly more electrochemically stable than both Hispec 4000 and Pt on Vulcan XC-72R. In this study, it was found that the Pt on ITO had average crystallite sizes of 13nm for Pt and 38nm for ITO. Pt on ITO showed extremely high thermal stability, with only {approx}1wt.% loss of material for ITO versus {approx}57wt.% for Hispec 4000 on heating to 1000{sup o}C. The TEM data show Pt clusters dispersed on small crystalline ITO particles. The SEM data show octahedral shaped ITO particles supporting Pt. (author)

  20. Improvement of sulfur resistance of Pd/Ce-Zr-Al-O catalysts for CO oxidation

    Science.gov (United States)

    Shin, Haebin; Baek, Minsung; Ro, Youngsoo; Song, Changyeol; Lee, Kwan-Young; Song, In Kyu

    2018-01-01

    Two kinds of mesoporous ceria-zirconia-alumina supports were prepared by a single-step epoxide-driven sol-gel method (SGCZA) and by a co-precipitation method (PCZA). Palladium catalysts supported on these materials were then prepared by a wet impregnation method (Pd/SGCZA and Pd/PCZA). The prepared catalysts were applied to the CO oxidation reaction before and after sulfur aging. XRD and N2 adsorption-desorption analyses revealed that these two catalysts retained different physicochemical properties. Pd/SGCZA had higher surface area and larger pore volume than Pd/PCZA before and after sulfur aging. TPR (Temperature-programmed reduction), CO chemisorption, FT-IR, and XPS analyses showed that the catalysts were differently influenced by sulfur species. Pd/SGCZA formed less sulfate and retained higher palladium dispersion than Pd/PCZA after sulfur aging. In the CO oxidation, Pd/PCZA showed better activity than Pd/SGCZA before sulfur aging. However, Pd/SGCZA showed higher CO conversion than Pd/PCZA after sulfur aging. We concluded that Pd/SGCZA was less poisoned by sulfur species than Pd/PCZA.

  1. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    Science.gov (United States)

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  2. Fischer-Tropsch diesel production over calcium-promoted Co/alumina catalyst: Effect of reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    A.R. de la Osa; A. De Lucas; A. Romero; J.L. Valverde; P. Sanchez [University of Castilla-La Mancha, Ciudad Real (Spain). Chemical Engineering Department

    2011-05-15

    The effects of reaction conditions on the Fischer-Tropsch activity and product distribution of an alkali-earth metal promoted cobalt based catalyst were studied. The influence of the promoter on the reducibility and cobalt particle size was studied by different techniques, including N{sub 2} adsorption, X-ray diffraction, temperature-programmed reduction, temperature-programmed desorption and acid-base titrations. Experiments were carried out on a bench-scale fixed bed reactor and catalysts were prepared by incipient wetness impregnation. It was observed that addition of a small amount of calcium oxide as a promoter (0.6 wt.%) improved the cobalt oxide reducibility and reduced the formation of cobalt-aluminate species. A positive correlation between basicity and particle size was observed. In terms of FTS results, CO conversion and C{sub 5}{sup +} selectivity were found to be enhanced by the addition of this promoter. It was important to note that the addition of calcium shifted the distribution to mainly C{sub 16}-C{sub 18} hydrocarbons fraction, which could be greatly considered for a diesel formulation. Furthermore, the variation of the reaction conditions seemed to influence product distribution in a lesser extent than unpromoted catalyst. Also, a displacement of hydrocarbon distribution to higher molecular weight with decreasing space velocity and temperature was observed. Moreover, the addition of calcium to the cobalt based catalyst was found to greatly maintain selectivity to C{sub 5}{sup +} for a wide range of H{sub 2}/CO molar ratios. 60 refs., 10 figs., 5 tabs.

  3. Processing of spent NiMo and CoMo/Al2O3 catalysts via fusion with KHSO4

    International Nuclear Information System (INIS)

    Busnardo, Roberto Giovanini; Busnardo, Natalia Giovanini; Salvato, Gustavo Nascimento; Afonso, Julio Carlos

    2007-01-01

    This work describes a route for processing spent commercial hydrorefining (HDR) catalysts (CoMo and NiMo/Al 2 O 3 ), containing support additives, for recovering active phase and support components. Samples were used as catalysts in diesel hydrotreaters. They had neither been submitted to mechanical stresses nor overheating while under operation. The route is based on fusion of samples with KHSO 4 . Four experimental parameters were optimized: reaction time, sample/flux mass ratio, temperature, and sample physical characteristics (ground/non-ground). After fusion, the solid was dissolved in water (90-100 deg. C); the insoluble matter presented low crystallization. Several phases were identified: silicates, spinel-like compounds and aluminosilicates. Cobalt, nickel, molybdenum and aluminum were recovered by conventional precipitation techniques or selective solvent-extraction procedures, with at least 85 wt.% yield. Final liquid colorless effluents are obtained as neutral solutions of alkali sulfates or chlorides and a water insoluble solid after fusion, which can be either sent to industrial dumps or co-processed. Fusion with KHSO 4 was shown to be applicable to the catalysts of the present study, and the optimized experimental parameters are much less drastic than the conventional pyrometallurgical routes proposed in the literature

  4. Magnetic properties of free alkali and transition metal clusters

    International Nuclear Information System (INIS)

    Heer, W. de; Milani, P.; Chatelain, A.

    1991-01-01

    The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10< N<500) show that the paramagnetic alkali clusters always have a nondeflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossing which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases. (orig.)

  5. Mechanisms of Retinal Damage after Ocular Alkali Burns.

    Science.gov (United States)

    Paschalis, Eleftherios I; Zhou, Chengxin; Lei, Fengyang; Scott, Nathan; Kapoulea, Vassiliki; Robert, Marie-Claude; Vavvas, Demetrios; Dana, Reza; Chodosh, James; Dohlman, Claes H

    2017-06-01

    Alkali burns to the eye constitute a leading cause of worldwide blindness. In recent case series, corneal transplantation revealed unexpected damage to the retina and optic nerve in chemically burned eyes. We investigated the physical, biochemical, and immunological components of retinal injury after alkali burn and explored a novel neuroprotective regimen suitable for prompt administration in emergency departments. Thus, in vivo pH, oxygen, and oxidation reduction measurements were performed in the anterior and posterior segment of mouse and rabbit eyes using implantable microsensors. Tissue inflammation was assessed by immunohistochemistry and flow cytometry. The experiments confirmed that the retinal damage is not mediated by direct effect of the alkali, which is effectively buffered by the anterior segment. Rather, pH, oxygen, and oxidation reduction changes were restricted to the cornea and the anterior chamber, where they caused profound uveal inflammation and release of proinflammatory cytokines. The latter rapidly diffuse to the posterior segment, triggering retinal damage. Tumor necrosis factor-α was identified as a key proinflammatory mediator of retinal ganglion cell death. Blockade, by either monoclonal antibody or tumor necrosis factor receptor gene knockout, reduced inflammation and retinal ganglion cell loss. Intraocular pressure elevation was not observed in experimental alkali burns. These findings illuminate the mechanism by which alkali burns cause retinal damage and may have importance in designing therapies for retinal protection. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas

    Science.gov (United States)

    Gong, Dandan; Li, Shuangshuang; Guo, Shaoxia; Tang, Honggui; Wang, Hong; Liu, Yuan

    2018-03-01

    Sintering of active metal nanoparticles (NPs) and carbon deposition is critical problems for many metal catalysts, such as nickel based catalysts for generating methane from syngas. To improve the resistance to the sintering and carbon deposition, a new scheme was proposed in this work. Lanthanum and cerium co-modified Ni/SiO2 catalysts were synthesized by using perovskite type oxide of La1-xCexNiO3 loaded on SiO2 as the precursor. In a nanocrystallite of La1-xCexNiO3, ions of nickel, lanthanum and cerium are evenly mixed at atomic level and confined in the nanocrystallite, therefore, Ni NPs and the two promoters of La2O3 and CeO2 should be in close contact and highly dispersed on SiO2 after reduction. The catalysts were characterized by using XRD, TEM, BET, H2-TPD, XPS, TG and Raman techniques. Compared with the mono-promoted catalysts, the bi-promoted La0.75Ce0.25NiO3/SiO2 showed much better resistance to carbon deposition, higher resistance to sintering and higher activity for CO methanation, which are attributed to co-eliminating effect of the two promoters for the deposited carbon, confinement of the interacted two promoters for Ni NPs and the higher dispersion of Ni NPs derived from the smaller size of La0.75Ce0.25NiO3.

  7. Peroxidase-catalyzed stabilization of 2,4-dichlorophenol in alkali-extracted soils.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2011-01-01

    Horseradish peroxidase- (HRP) mediated stabilization of phenolic contaminants is a topic of interest due to its potential for remediation of contaminated soils. This study evaluated the sorption of 2,4-dichlorophenol (DCP) and its HRP-mediated stabilization in two alkali-extracted soils. Alkali extraction reduced the soil organic matter (SOM) contents of the geomaterials and enriched the residual SOM with humin C. Sorption of DCP on these sorbents was complete within 1 d. However, most of the sorbed DCP was removed from the geomaterials by water and methanol, suggesting weak solute-sorbent interactions. The addition of HRP resulted in the generation of DCP polymerization products (DPP), which partitioned between the aqueous and solid phases. The DPP phase distribution was rapid and complete within 24 h. Between 70 and 90% of the added DCP was converted to DPP and up to 43% of the initial aqueous phase contaminant was transformed into a residue that was resistant to extraction with methanol. Bound residues of DPP increased with initial aqueous phase solute concentration and remained fairly constant after 7 d of contact. Contaminant stabilization was noted to be high in the humin-mineral geomaterial. Results illustrate that HRP may be effective in stabilizing phenolic contaminants in subsoils that are likely to contain SOM enriched in humin C.

  8. Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers

    Science.gov (United States)

    2009-11-04

    vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation... Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4

  9. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  10. Conduction bands and invariant energy gaps in alkali bromides

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.

  11. Alkali cyanides; destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, J C

    1925-12-02

    The destructive distillation of carbonaceous substances can be accomplished by heating them in a bath of molten alkali and cyanide. Liquid hydrocarbons are produced. The separation of the cyanide from the coke or carbonaceous residues by filtration leaves a substantial quantity of cyanide absorbed by the carbon. A feasible method for removal has been developed by mixing the mixture of cyanide and coke with sodium carbonate or other alkali in the molten state, then treating this substance with nitrogen with or without ammonia to convert most of the carbon to cyanide. The carbonaceous material may be mixed with a liquid hydrocarbon such as petroleum, shale oil, or heavy tar oil, heated, and introduced below the surface of the liquid cyanide which partially decomposes and hydrogenates the coal to increase the yield of hydrocarbons. Dry ammonia may be bubbled through the reaction mixture to effect agitation and to form more cyanide.

  12. Binding of chloride and alkalis in Portland cement systems

    International Nuclear Information System (INIS)

    Nielsen, Erik P.; Herfort, Duncan; Geiker, Mette R.

    2005-01-01

    A thermodynamic model for describing the binding of chloride and alkalis in hydrated Portland cement pastes has been developed. The model is based on the phase rule, which for cement pastes in aggressive marine environment predicts multivariant conditions, even at constant temperature and pressure. The effect of the chloride and alkalis has been quantified by experiments on cement pastes prepared from white Portland cements containing 4% and 12% C 3 A, and a grey Portland cement containing 7% C 3 A. One weight percent calcite was added to all cements. The pastes prepared at w/s ratio of 0.70 were stored in solutions of different Cl (CaCl 2 ) and Na (NaOH) concentrations. When equilibrium was reached, the mineralogy of the pastes was investigated by EDS analysis on the SEM. A well-defined distribution of chloride was found between the pore solution, the C-S-H phase, and an AFm solid solution phase consisting of Friedel's salt and monocarbonate. Partition coefficients varied as a function of iron and alkali contents. The lower content of alkalis in WPC results in higher chloride contents in the C-S-H phase. High alkali contents result in higher chloride concentrations in the pore solution

  13. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Science.gov (United States)

    2010-07-01

    ..., alkali and amine salts. 721.2565 Section 721.2565 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  14. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  15. Thermochemical properties of the alkali hydroxides: A review

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Cordfunke, E.H.P.

    1989-01-01

    The formation of volatile alkali hydroxides as a result of high-temperature steam corrosion plays an important role in nuclear technology. For the modeling of the volatilization processes, reliable thermodynamic data are required. In the present paper recent physico-chemical experiments by the authors will be discussed and the thermochemical properties of the alkali hydroxide series will be evaluated. (orig.)

  16. Possible applications of alkali-activated systems in construction

    OpenAIRE

    Boháčová, J.; Staněk, S.; Vavro, M. (Martin)

    2013-01-01

    This paper deals with the possibilities of using alkali-activated systems in construction. This article summarizes the advantages and disadvantages of geopolymer in comparison to Portland cement, summarizes research and practical applications of alkali-activated materials in our country and abroad, and provides an overview of directions where these alternative inorganic binders can be in the future very well applied.

  17. Continuing studies of alkali-aggregate reactions in concrete

    International Nuclear Information System (INIS)

    Gilliot, J.E.; Beddoes, R.J.

    1981-01-01

    Studies are continuing into the nature of the different forms of the alkali-aggregate reaction. No general agreement exists as to the detailed nature of the expansive mechanisms. Alkali is known to react internally with opaline silica because of its microporous nature whereas reaction at the external surface is thought to be relatively more important in the case of quartz. A combination of Fourier shape and surface texture analysis, microscopy and osmotic studies is being used to obtain information on the relative importance of these two forms of alkaline attack on silica. Analytical methods are much more rapid than dimensional change tests and it is hoped that a better understanding of the expansion mechanism will lead to more certain recognition of potentially alkali expansive aggregates

  18. The effects of potassium and rubidium hydroxide on the alkali-silica reaction

    International Nuclear Information System (INIS)

    Shomglin, K.; Turanli, L.; Wenk, H.-R.; Monteiro, P.J.M.; Sposito, G.

    2003-01-01

    Expansion of mortar specimens prepared with an aggregate of mylonite from the Santa Rosa mylonite zone in southern California was studied to investigate the effect of different alkali ions on the alkali-silica reaction in concrete. The expansion tests indicate that mortar has a greater expansion when subjected to a sodium hydroxide bath than in a sodium-potassium-rubidium hydroxide bath. Electron probe microanalysis (EPMA) of mortar bars at early ages show that rubidium ions, used as tracer, were present throughout the sample by the third day of exposure. The analysis also shows a high concentration of rubidium in silica gel from mortar bars exposed to bath solutions containing rubidium. The results suggest that expansion of mortar bars using ASTM C 1260 does not depend on the diffusion of alkali ions. The results indicate that the expansion of alkali-silica gel depends on the type of alkali ions present. Alkali-silica gel containing rubidium shows a lower concentration of calcium, suggesting competition for the same sites

  19. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    OpenAIRE

    Faris M. A.; Abdullah Mohd Mustafa Al Bakri; Ismail Khairul Nizar; Muniandy Ratnasamy; Mahmad Nor Aiman; Putra Jaya Ramadhansyah; Waried Wazien A. Z.

    2016-01-01

    In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF). All hardened alkali activated materia...

  20. Behaviour of gaseous alkali compounds in coal gasification; Kaasumaisten alkaliyhdisteiden kaeyttaeytyminen kivihiilien kaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    In this project the behaviour of alkali compounds emitting from CO{sub 2}/O{sub 2}- and airblown gasification are studied. This research project is closely connected to an EU-project coordinated by the Delft University of Technology (DUT). In that project alkali emissions from a 1.6 MW pilot plant will be measured. The results from those measurements will be compared with the calculations performed in this LIEKKI 2 project. The equilibrium calculations show that the major gaseous alkali compounds emitting from combustion and gasification are chlorides and hydroxides. This applies both to air- and CO{sub 2}/O{sub 2}-blown processes. In all the cases studied the concentration of gaseous alkali compounds is determined mainly by the amount of chlorides. The key parameters, with respect to alkali behaviour, are the temperature of the process and chlorine content of the coal. By cooling the gases down to 600 deg C prior to a ceramic filter the alkali concentration can be kept about at 100 ppbv. In combustion, the addition of calcium carbonate increases the amount of gaseous alkali compounds by decreasing the amount of alkali sulphates. In the case of gasification the importance of limestone is negligible. The difference between air- and CO{sub 2}/O{sub 2}-blown processes, in terms of gaseous alkali emissions, is small. This is because CO{sub 2} concentration of the gas does not have a strong impact on alkali chlorides. Furthermore, the effect of CO{sub 2}/O{sub 2}-ratio of the recirculation process is negligible. (orig.)

  1. Defluidization in fluidized bed gasifiers using high-alkali content fuels

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    samples,agglomeration could be attributed to viscous silicate melts formed from reaction of inorganic alkalineand alkali earth species with silica from the bed particles. A mathematical model that addresses the defluidization behavior of alkali-rich samples was developed based on the experiments performed...... and calcium, which may form viscous melts that adhere on the surface of the colliding bed particles and bind them to form agglomerates. In this paper, studies were made to understand the behavior of inorganic elements (mainly K, Si and Ca) on agglomeration and de-fluidization of alkali rich bed...... in the bench-scale fluidized bed reactor as well as on results from literature. The model was then used topredict the de-fluidization behavior of alkali-rich bed material in a large-scale LTCFB gasifier....

  2. Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells

    Science.gov (United States)

    Ye, Donghao; Gauthier, Eric; Benziger, Jay B.; Pan, Mu

    2014-06-01

    A multi-electrode probe is employed to distinguish the bulk and contact resistances of the catalyst layer (CL) and the gas diffusion layer (GDL) with the bipolar plate (BPP). Resistances are compared for Vulcan carbon catalyst layers (CL), carbon paper and carbon cloth GDL materials, and GDLs with microporous layers (MPL). The Vulcan carbon catalyst layer bulk resistance is 100 times greater than the bulk resistance of carbon paper GDL (Toray TG-H-120). Carbon cloth (CCWP) has bulk and contact resistances twice those of carbon paper. Compression of the GDL decreases the GDL contact resistance, but has little effect on the bulk resistance. Treatment of the GDL with polytetrafluoroethylene (PTFE) increases the contact resistance, but has little effect on the bulk resistance. A microporous layer (MPL) added to the GDL decreases the contact resistance, but has little effect on the bulk resistance. An equivalent circuit model shows that for channels less than 1 mm wide the contact resistance is the major source of electronic resistance and is about 10% of the total ohmic resistance associated with the membrane electrode assembly.

  3. Adsorption of cadmium ions on nickel surface skeleton catalysts and its effect on reaction of cathodic hydrogen evolution

    International Nuclear Information System (INIS)

    Korovin, N.V.; Udris, E.Ya.; Savel'eva, O.N.

    1986-01-01

    Cadmium adsorption from different concentration CdSO 4 solutions on nickel surface skeleton catalysts (Ni ssc ) is studied by recording of polarization and potentiodynamic curves using electron microscopy and X-ray spectrometry. Main regularities of cadmium adsorption on Ni ssc are shown to be similar to those on smooth and skeleton nickel. A conclusion is drawn that increase of catalytic activity in reaction of cathodic hydrogen evolution from alkali solutions of Ni ssc base electrodes after their treatment in solutions containing Cd 2+ ions is due to irreversible desorption of strongly and averagely bound hydrogen from electrode surface at cadmium adsorption on them

  4. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell

    DEFF Research Database (Denmark)

    Chen, Ming; Wang, Meng; Ding, Xianan

    2018-01-01

    .5% respectively, compared with the conventional catalyst layer. Performance improvement is attributed to the fact that the novel catalyst layer structure optimizes the electrolyte membrane/catalyst layer and gas diffusion layer/catalyst layer interfacial structure, which increases the electrochemical reaction......Conventional catalyst layer with a smooth surface exists the larger area of“catalytic dead zone” and reduces the utilization of catalyst. Based on this, a novel catalyst layer structure based surface-patterned Nafion® membrane was designed to achieve more efficient electrochemical reaction...... to prepare the novel catalyst layer, and the effect of pressure on the performance of MEA was investigated. The results suggested that the peak power density of DMFC with optimal novel catalyst layer structure increased by 28.84%, the charge transfer resistances of anode and cathode reduced by 28.8% and 26...

  5. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  6. Control of alkali species in gasification systems: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Turn, S.; Kinoshita, C.; Ishimura, D. Zhou, J.; Hiraki, T.; Masutani, S.

    2000-07-13

    Gas-phase alkali metal compounds contribute to fouling, slagging, corrosion, and agglomeration problems in energy conversion facilities. One mitigation strategy applicable at high temperature is to pass the gas stream through a fixed bed sorbent or getter material, which preferentially absorbs alkali via physical adsorption or chemisorption. This report presents results of an experimental investigation of high-temperature alkali removal from a hot filtered gasifier product gas stream using a packed bed of sorbent material. Two getter materials, activated bauxite and emathlite, were tested at two levels of space time by using two interchangeable reactors of different internal diameters. The effect of getter particle size was also investigated.

  7. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  8. Sputtering/redeposition analysis of alkali-based tungsten composites for limiter/divertor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Krauss, A.R.; Gruen, D.M.; Valentine, M.G.

    1986-07-01

    Composites of porous tungsten infiltrated with alkali metal-bearing alloys have been projected as a means of reducing plasma impurities and sputter erosion in magnetic fusion devices. Self-sustaining alkali metal overlayers have been observed to inhibit erosion of the underlying structural substrate by 2X to 10X. The alkali metal itself, insofar as it sputters as a secondary ion, is trapped at the surface by sheath potential and tangential magnetic fields. Self-regeneration of the alkali metal coating is obtained by thermal and radiation-induced segregation from the bulk

  9. Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Rasmussen, Søren Birk; Fehrmann, Rasmus

    2007-01-01

    Vanadia, copper and iron oxide catalysts supported on conventional TiO2, ZrO2, and sulphated-TiO2 and ZrO2 have been prepared. These catalysts were characterized by elemental analysis, N-2-BET, XRD, and NH3-TPD methods. The influence of potassium oxide additives on the acidity and activity...... of the catalysts with potassium leads to a considerable decrease of their catalytic activity. In the case of the traditional carriers (TiO2, ZrO2), the poisoning of the catalyst with small amounts of potassium oxide (K/metal ratio...

  10. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst.

    Science.gov (United States)

    Dai, Zejun; Wang, Lele; Tang, Hao; Sun, Zhijun; Liu, Wei; Sun, Yi; Su, Sheng; Hu, Song; Wang, Yi; Xu, Kai; Liu, Liang; Ling, Peng; Xiang, Jun

    2018-09-01

    This study investigated heavy metal chemical speciation and leaching behavior from a board-type spent selective catalytic reduction (SCR) catalyst containing high concentrations of vanadium, chromium, nickel, copper, zinc, and lead. A three-step sequential extraction method, standard toxicity characteristic leaching procedure (TCLP), and leaching characteristic tests have been performed. It was found that the mobility of six heavy metals in the spent SCR catalyst was significantly different. The mobility of the six heavy metals exhibited the following order: Ni > Zn > V > Cr > As > Cu. Meanwhile, TCLP test results revealed relatively high Zn and Cr leaching rate of 83.20% and 10.35%, respectively. It was found that leaching rate was positively correlated with available contents (sum of acid soluble, reducible and oxidizable fractions). Leaching characteristics tests indicated that pH substantially affected the leaching of these heavy metals. In particular, the leaching of Cr, Ni, Cu, and Zn was positively influenced by strong acid, while V and As were easily released in the presence of strong acid and strong alkali (pH 11). In terms of kinetics, the leaching of Cr, Ni, Cu, Zn, and As within the spent catalyst was dominated by erosion and dissolution processes, which were rapid reaction processes. V was released in large amounts within 1 h, but its leaching amount sharply decreased with time due to readsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Study on properties of UV-curable films based on alkali-soluble photosensitive polysiloxane urethane acrylate oligomer

    International Nuclear Information System (INIS)

    Sun Fang; Zhang Nan; Du Hongguang; Jiang Shengling

    2011-01-01

    A UV-curable alkali-soluble polysiloxane urethane acrylate (APSUA) for solder mask was designed and synthesized in this work. The effect of composition of APSUA on physical and mechanical properties of UV curing APSUA materials including water resistance, volume shrinkage, hardness, tensile strength, elongation and heat resistance, was investigated in this paper. The results showed that reactive monomers with hydroxyl bonding could increase water absorption of the APSUA. The water absorption of the APSUA decreased with increasing crosslinking yields. The volume shrinkage of the APSUA decreased with increasing APSUA concentrations in the system and the volume shrinkage of investigated APSUA was lower than 6%. Multi-functional monomer and acrylate monomer with rigid structure could improve hardness of APSUA. When functionality of reactive monomer increased the heat resistance of APSUA could enhanced. The APSUA possesses excellent compatibility with most of acrylate monomers. (authors)

  12. Characterizing the structural degradation in a PEMFC cathode catalyst layer : carbon corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.; Stumper, J. [Ballard Power Systems, Burnaby, BC (Canada); Gyenge, E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2009-07-01

    The structural degradation resulting from carbon corrosion of a cathode catalyst layer in a polymer electrolyte membrane fuel cell (PEMFC) was investigated in this study. In order to oxidize the catalyst carbon support, the PEMFC catalyst layer was subjected to a 30 hour accelerated stress test that cycled the cathode potential from 0.1 to 1.5 VRHE at 30 and 150 second intervals. The rate and amount of carbon loss was determined by measuring the carbon dioxide in the exhaust gas. The structural degradation of the catalyst layer was characterized and correlated to the PEMFC performance using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and polarization analyses. This analysis revealed a clear thinning of the cathode catalyst layer and gas diffusion layer carbon sub-layer, and a reduction in the effective platinum surface area due to the carbon support oxidation. The thinned cathode catalyst layer changed the water management, and increased the voltage loss associated with the oxygen mass transport and catalyst layer ohmic resistance. In order to further develop and verify this methodology for other degradation mechanisms, emphasis was placed on EIS measurements.

  13. Ultrafast electron dynamics at alkali/ice structures adsorbed on a metal surface

    International Nuclear Information System (INIS)

    Meyer, Michael

    2011-01-01

    The goal of this work is to study the interaction between excess electrons in water ice structures adsorbed on metal surfaces and other charged or neutral species, like alkali ions, or chemically reactive molecules, like chlorofluorocarbons (CFC), respectively. The excess electrons in the ice can interact with the ions directly or indirectly via the hydrogen bonded water molecules. In both cases the presence of the alkali influences the population, localization, and lifetime of electronic states of excess electrons in the ice adlayer. These properties are of great relevance when considering the highly reactive character of the excess electrons, which can mediate chemical reactions by dissociative electron attachment (DEA). The influence of alkali adsorption on electron solvation and transfer dynamics in ice structures is investigated for two types of adsorption configurations using femtosecond time-resolved two-photon photoelectron spectroscopy. In the first system alkali atoms are coadsorbed on top of a wetting amorphous ice film adsorbed on Cu(111). At temperatures between 60 and 100 K alkali adsorption leads to the formation of positively charged alkali ions at the ice/vacuum interface. The interaction between the alkali ions at the surface and the dipole moments of the surrounding water molecules results in a reorientation of the water molecules. As a consequence new electron trapping sites, i.e. at local potential minima, are formed. Photoinjection of excess electrons into these alkali-ion covered amorphous ice layers, results in the trapping of a solvated electron at an alkali-ion/water complex. In contrast to solvation in pure amorphous ice films, where the electrons are located in the bulk of the ice layer, solvated electrons at alkali-ion/water complexes are located at the ice/vacuum interface. They exhibit lifetimes of several picoseconds and show a fast energetic stabilization. With ongoing solvation, i.e. pump-probe time delay, the electron transfer is

  14. Citrate, malate and alkali content in commonly consumed diet sodas: implications for nephrolithiasis treatment.

    Science.gov (United States)

    Eisner, Brian H; Asplin, John R; Goldfarb, David S; Ahmad, Ardalanejaz; Stoller, Marshall L

    2010-06-01

    Citrate is a known inhibitor of calcium stone formation. Dietary citrate and alkali intake may have an effect on citraturia. Increasing alkali intake also increases urine pH, which can help prevent uric acid stones. We determined citrate, malate and total alkali concentrations in commonly consumed diet sodas to help direct dietary recommendations in patients with hypocitraturic calcium or uric acid nephrolithiasis. Citrate and malate were measured in a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis and in 15 diet sodas. Anions were measured by ion chromatography. The pH of each beverage was measured to allow calculation of the unprotonated anion concentration using the known pK of citric and malic acid. Total alkali equivalents were calculated for each beverage. Statistical analysis was done using Pearson's correlation coefficient. Several sodas contained an amount of citrate equal to or greater than that of alkali and total alkali as a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis (6.30 mEq/l citrate as alkali and 6.30 as total alkali). These sodas were Diet Sunkist Orange, Diet 7Up, Sprite Zero, Diet Canada Dry Ginger Ale, Sierra Mist Free, Diet Orange Crush, Fresca and Diet Mountain Dew. Colas, including Caffeine Free Diet Coke, Coke Zero, Caffeine Free Diet Pepsi and Diet Coke with Lime, had the lowest total alkali (less than 1.0 mEq/l). There was no significant correlation between beverage pH and total alkali content. Several commonly consumed diet sodas contain moderate amounts of citrate as alkali and total alkali. This information is helpful for dietary recommendations in patients with calcium nephrolithiasis, specifically those with hypocitraturia. It may also be useful in patients with low urine pH and uric acid stones. Beverage malate content is also important since malate ingestion increases the total alkali delivered, which in turn augments citraturia and increases urine pH. Copyright

  15. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  16. Language and Style in Zaynab Alkali's The Stillborn | Azuike ...

    African Journals Online (AJOL)

    This paper examines the language and style of Zaynab Alkali's The Stillborn. Alkali's style in The Stillborn lies in her effective deployment of linguo-literary resources to tell the story. The study scrutinizes the nexus of figures of speech and linguistic artifacts, which link the events and characters that populate her novel and ...

  17. Study on rich alumina alkali-activated slag clay minerals cementitious materials for immobilization of radioactive waste

    International Nuclear Information System (INIS)

    Li Yuxiang; Qian Guangren; Yi Facheng; Shi Rongming; Fu Yibei; Li Lihua; Zhang Jun

    1999-01-01

    The composition and some properties of its pastes of rich alumina alkali-activated slag clay minerals (RAAASCM) cementitious materials for immobilization of radioactive waste are studied. Experimental results show that heat activated kaolinite, Xingjiang zeolite, modified attapulgite clay are better constituents of RAAASCM. RAAASCM cementitious materials pastes exhibit high strength, low porosity, fewer harmful pore, and high resistance to sulphate corrosion as well as gamma irradiation. The Sr 2+ , Cs + leaching portion of the simulated radioactive waste forms based on RAAASCM, is low

  18. Preparation Effects on the Performance of Silica-Doped Hydrous Titanium Oxide (HTO:Si)-Supported Pt Catalysts for Lean-Burn NOx Reduction by Hydrocarbons; TOPICAL

    International Nuclear Information System (INIS)

    GARDNER, TIMOTHY J.; MCLAUGHLIN, LINDA I.; MOWERY, DEBORAH L.; SANDOVAL, RONALD S.

    2002-01-01

    This report describes the development of bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported Pt catalysts for lean-burn NOx catalyst applications. The effects of various preparation methods, including both anion and cation exchange, and specifically the effect of Na content on the performance of Pt/HTO:Si catalysts, were evaluated. Pt/HTO:Si catalysts with low Na content ( and lt; 0.5 wt.%) were found to be very active for NOx reduction in simulated lean-burn exhaust environments utilizing propylene as the major reductant species. The activity and performance of these low Na Pt/HTO:Si catalysts were comparable to supported Pt catalysts prepared using conventional oxide or zeolite supports. In ramp down temperature profile test conditions, Pt/HTO:Si catalysts with Na contents in the range of 3-5 wt.% showed a wide temperature window of appreciable NOx conversion relative to low Na Pt/HTO:Si catalysts. Full reactant species analysis using both ramp up and isothermal test conditions with the high Na Pt/HTO:Si catalysts, as well as diffuse reflectance FTIR studies, showed that this phenomenon was related to transient NOx storage effects associated with NaNO(sub 2)/NaNO(sub 3) formation. These nitrite/nitrate species were found to decompose and release NOx at temperatures above 300 C in the reaction environment (ramp up profile). A separate NOx uptake experiment at 275 C in NO/N(sub 2)/O(sub 2) showed that the Na phase was inefficiently utilized for NOx storage. Steady state tests showed that the effect of increased Na content was to delay NOx light-off and to decrease the maximum NOx conversion. Similar results were observed for high K Pt/HTO:Si catalysts, and the effects of high alkali content were found to be independent of the sample preparation technique. Catalyst characterization (BET surface area, H(sub 2) chemisorption, and transmission electron microscopy) was performed to elucidate differences between the HTO- and HTO

  19. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    Science.gov (United States)

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  1. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  2. A procedure for preparing alkali metal hydrides

    International Nuclear Information System (INIS)

    Lemieux, R.U.; Sanford, C.E.; Prescott, J.F.

    1976-01-01

    A plain low cost, procedure for the continuous, low temperature preparation of sodium or potassium hydrides using cheap reagents is presented. Said invention is especially concerned with a process of purifying of a catalytic exchange liquid used for deuterium enrichment, in which an alkali metal hydride is produced as intermediate product. The procedure for producing the sodium and potassium hydrides consists in causing high pressure hydrogen to be absorbed by a mixture of at least a lower monoalkylamine and an alkylamide of an alkali metal from at least one of said amines [fr

  3. Research progress on catalytic denitrification technology in chemical industry

    Science.gov (United States)

    Jin, Yezhi

    2017-12-01

    In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.

  4. Methane partial oxidation over a LaCr0.85Ru0.15O3 catalyst : Characterization, activity tests and kinetic modeling

    NARCIS (Netherlands)

    Melchiori, T.; Di Felice, L.; Mota, N.; Navarro, R.M.; Fierro, J.L.G.; Sint Annaland, van M.; Gallucci, F.

    2014-01-01

    A new LaCr0.85Ru0.15O3 perovskite-type catalyst for CH4 partial oxidation with a high activity and selectivity for syngas with good thermal stability and resistance against coking has been developed. In this paper, the catalyst preparation method, catalyst characterization, results of catalytic

  5. Influence of Co or Ce addition on the NOx storage and sulfur-resistance performance of the lean-burn NOx trap catalyst Pt/K/TiO{sub 2}-ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zou Zhiqiang [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Meng, Ming, E-mail: mengm@tju.edu.cn [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tsubaki, Noritatsu [Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama city, Toyama 930 8555 (Japan); He Junjun; Wang Gang; Li Xingang; Zhou Xiaoyan [Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2009-10-15

    The Pt/K/TiO{sub 2}-ZrO{sub 2} catalysts promoted by Co or Ce were prepared by successive impregnation or mechanically mixing method. The influence of Co or Ce addition on the NOx storage and sulfur-resistance performance of the catalyst was investigated carefully. The techniques of XRD, FT-IR, in-situ DRIFTS, H{sub 2}-TPR and XPS were employed for catalyst characterization. The Co or Ce addition can greatly improve the NOx storage capacity of Pt/K/TiO{sub 2}-ZrO{sub 2} due to the enhanced oxidation ability and the release of more K sites. Ce addition induces higher K/Ti atomic ratio and larger NOx storage capacity as compared with Co addition. After sulfation and regeneration, the promoted catalysts shows more or less decreased NSC than Pt/K/TiO{sub 2}-ZrO{sub 2} due to the formation of more sulfates, especially for the Co-promoted catalysts, which possess better oxidation ability and facilitate the formation of large sulfates. The effect of Ce addition on Pt/K/TiO{sub 2}-ZrO{sub 2} largely depends on the addition mode. The high oxidation ability and the high K/Ti ratio of the mechanically prepared Ce-promoted catalyst make it still possess considerable NOx storage capacity (NSC) of 142 {mu}mol/g after sulfation and regeneration. With the decrease of sulfur content in fuels, the Co- and Ce-promoted catalysts possessing large NOx storage capacity, will be applicable to the purification of lean-burn NOx.

  6. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films ...

  7. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  8. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    Science.gov (United States)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  9. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.

  10. Photoemission spectroscopy study of a multi-alkali photocathode

    CERN Document Server

    Ettema, A R H

    2000-01-01

    In this paper a photoemission study of the highest core levels of the elements and the electron escape barrier (work function) in a multi-alkali photocathode are presented. The core levels indicate that the alkali atoms are in an oxidized state and therefore the compound Na sub 2 KSb can be regarded as an ionic semiconductor. The measured escape barrier of the Cs sub 2 O surface layer is determined as 2.3 eV.

  11. Effects of alkali and steaming on mechanical properties of snake fruit (Salacca) fiber

    Science.gov (United States)

    Darmanto, Seno; Rochardjo, Heru S. B.; Jamasri, Widyorini, Ragil

    2017-01-01

    The aim of this research is to investigate the effect of alkali treatment and steaming on mechanical properties of Snake Fruit frond fiber. The presence of surface impurities and a lot of hydroxyl groups makes natural fiber less compatible for composite materials reinforcement. Efforts to remove the impurities can be done by physical, chemical and mechanical treatments. This paper reports the treatment of Snake Fruit frond single fiber by subjecting it to alkali treatments with 2%- 8% NaOH for 2 - 6 hours at room temperature. The treatment is then followed by steaming at a pressure of 2 bars in 1 hour. Results show that the treatment of alkali and the alkali-steaming combination can increase cellulose percentage. The tensile tests show that this type of treatment in combination resulted in the higher tensile strength compared to untreated fiber. There is a significant increase in tensile strength with increasing alkali percentage. However, the further increase in the percentage of alkali solution will result in decreasing tensile strength. The highest value of tensile strength after treatment was 275 MPa with 6 hours treatment at alkali percentage of 2 %.

  12. Structure of xanthan gum and cell ultrastructure at different times of alkali stress.

    Science.gov (United States)

    Luvielmo, Márcia de Mello; Borges, Caroline Dellinghausen; Toyama, Daniela de Oliveira; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3

    Directory of Open Access Journals (Sweden)

    Jingkun Wu

    2018-01-01

    Full Text Available Bayer red mud was selected, and the NH3-SCR activity was tested in a fixed bed in which the typical flue gas atmosphere was simulated. Combined with XRF, XRD, BET, SEM, TG and NH3-Temperature Programmed Desorption (TPD characterization, the denitration characteristics of Ce-doped red mud catalysts were studied on the basis of alkali-removed red mud. The results showed that typical red mud was a feasible material for denitration catalyst. Acid washing and calcining comprised the best treatment process for raw red mud, which reduced the content of alkaline substances, cleared the catalyst pore and optimized the particle morphology with dispersion. In the temperature range of 300–400 °C, the denitrification efficiency of calcined acid washing of red mud catalyst (ARM was more than 70%. The doping of Ce significantly enhanced NH3 adsorption from weak, medium and strong acid sites, reduced the crystallinity of α-Fe2O3 in ARM, optimized the specific surface area and broadened the active temperature window, which increased the NOx conversion rate by an average of nearly 20% points from 250–350 °C. The denitration efficiency of Ce0.3/ARM at 300 °C was as high as 88%. The optimum conditions for the denitration reaction of the Ce0.3/ARM catalyst were controlled as follows: Gas Hourly Space Velocity (GHSV of 30,000 h−1, O2 volume fraction of 3.5–4% and the NH3/NO molar ratio ([NH3/NO] of 1.0. The presence of SO2 in the feed had an irreversible negative effect on the activity of the Ce0.3/ARM catalyst.

  14. The influence of polycarboxylate-type super-plasticizers on alkali-free liquid concrete accelerators performance

    Science.gov (United States)

    Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng

    2017-04-01

    Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.

  15. [Using a modified remote sensing imagery for interpreting changes in cultivated saline-alkali land].

    Science.gov (United States)

    Gao, Hui; Liu, Hui-tao; Liu, Hong-juan; Liu, Jin-tong

    2015-04-01

    This paper developed a new interpretation symbol system for grading and classifying saline-alkali land, using Huanghua, a cosatal city in Hebei Province as a case. The system was developed by inverting remote sensing images from 1992 to 2011 based on site investigation, plant cover characteristics and features of remote sensing images. Combining this interpretation symbol system with supervising classification method, the information on arable land was obtained for the coastal saline-alkali ecosystem of Huanghua City, and the saline-alkali land area, changes in intensity of salinity-alkalinity and spatial distribution from 1992 to 2011 were analyzed. The results showed that salinization of arable land in Huanghua City alleviated from 1992 to 2011. The severely and moderately saline-alkali land area decreased in 2011 compared with 1992, while the non/slightly saline land area increased. The moderately saline-alkali land in southeast transformed to non/slightly saline-alkaline, while the severely saline-alkali land in west of the city far from the coastal zone became moderately saline-alkaline. The center of gravity (CG) of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in arable land within the saline-alkali ecosystem of Huanghua City were climate, hydrology and human activities.

  16. Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil.

    Science.gov (United States)

    Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J

    2009-07-01

    The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.

  17. Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies

    Science.gov (United States)

    Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.

    2018-06-01

    Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.

  18. Alkali content of fly ash : measuring and testing strategies for compliance : [tech transfer summary].

    Science.gov (United States)

    2015-04-01

    This study investigated the test methods used to determine the : alkali content of fly ash. It also evaluated if high-alkali fly ash : exacerbates alkali-silica reaction in laboratory tests and field : concrete.

  19. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.

  20. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wonseok; Weber, Adam Z.

    2011-01-01

    The cathode catalyst layer within a proton-exchange-membrane fuel cell is the most complex and critical, yet least understood, layer within the cell. The exact method and equations for modeling this layer are still being revised and will be discussed in this paper, including a 0.8 reaction order, existence of Pt oxides, possible non-isopotential agglomerates, and the impact of a film resistance towards oxygen transport. While the former assumptions are relatively straightforward to understand and implement, the latter film resistance is shown to be critically important in explaining increased mass-transport limitations with low Pt-loading catalyst layers. Model results demonstrate agreement with experimental data that the increased oxygen flux and/or diffusion pathway through the film can substantially decrease performance. Also, some scale-up concepts from the agglomerate scale to the more macroscopic porous-electrode scale are discussed and the resulting optimization scenarios investigated.

  1. Nano ZSM-5 type ferrisilicates as novel catalysts for ethylbenzene dehydrogenation in the presence of N 2O

    Science.gov (United States)

    Khatamian, M.; Khandar, A. A.; Haghighi, M.; Ghadiri, M.

    2011-11-01

    Nanosized ZSM-5 type ferrisilicates were successfully prepared using hydrothermal process. Several parameters including gel initiative compositions (Na+ or K+ alkali system), SiO2/Fe2O3 molar ratios and hydrothermal temperature were systematically investigated. The samples were characterized by XRD, TEM, SEM-EDS, BET surface area and ICP techniques. It was found that surface areas and the total pore volume increase with increasing in the SiO2/Fe2O3 molar ratio at Na-FZ ferrisilicates. The catalytic performance of the synthesized catalysts was evaluated in ethylbenzene dehydrogenation to styrene in the presence of N2O or steam at temperatures ranging from 400 °C to 660 °C under atmospheric pressure. The effects of gel initiative compositions, SiO2/Fe2O3 molar ratio as well as the hydrothermal synthesis temperature on the catalytic performance of these catalysts have been addressed. It was shown that styrene yield significantly influenced by altering in the SiO2/Fe2O3 ratio but was not greatly influenced by changes in hydrothermal synthesis temperatures. The comparison between performance of potassium and sodium containing catalysts was shown that the one with potassium has higher yield and selectivity toward styrene production at an optimum temperature of 610 °C.

  2. Porous graphene supported Pt catalysts for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Cheng, Kun; He, Daping; Peng, Tao; Lv, Haifeng; Pan, Mu; Mu, Shichun

    2014-01-01

    Graphene nanosheet (GNS) has a remarkably high ratio of surface area to thickness and intense inter-sheet aggregation, which heavily resist mass diffusion in vertical orientation. Here, we establish a fast-speed mass diffusion passage by creating pores in GNS, and the corresponding Pt catalyst (Pt/rPGO) displays 15.5 times mass diffusion rate than that of the pristine GNS supported Pt catalyst (Pt/rGO). Thus, the Pt/rPGO catalyst exhibits 1.5 times increase in Pt mass activity toward oxygen reduction reaction compared with the Pt/rGO. Significantly, after H 2 thermal treatment, the mass activity of the Pt/rPGO further increases to 1.9 times that of the Pt/rGO, and its electrochemical stability is also greatly improved

  3. Solubility of 1:1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water : 1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2009-01-01

    To increase the available data oil systems containing supercritical water and inorganic compounds, all experimental setup was designed to investigate the solubilities of inorganic compounds Ill supercritical water, In this work, three alkali chloride salts (LiCl, NaCl, KCl) and three alkali nitrate

  4. Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds

    International Nuclear Information System (INIS)

    Fornasari, G.; Trifiro, F.; Vaccari, A.; Prinetto, F.; Ghiotti, G.; Centi, G.

    2002-01-01

    A series of Pt and Pt,Cu supported catalysts were prepared by wet impregnation of Mg-Al supports obtained from hydrotalcite-type (HT) precursor compounds. These novel NO x storage-reduction (NO x SR) catalysts show improved performances in NO x storage than Pt,Ba/alumina NO x SR catalysts at reaction temperatures lower than 200C. These catalysts show also improved resistance to deactivation by SO 2 . The effect is attributed to the formation of well dispersed Mg(Al)O particles which show good NO x storage properties. The promoted low temperature activity is explained by the lower basicity of the Mg(Al)O mixed oxide in comparison to BaO, which induces on one hand a lower inhibition on Pt activity (NO to NO 2 oxidation and/or hydrocarbon oxidation) due to electronic effect, and on the other hand a lower thermal stability of the stored NO x . The presence of Cu slightly inhibits activity at low temperature, although improves activity and resistance to deactivation at 300C. On these catalysts FT-IR characterization evidences the formation of a Pt-Cu alloy after reduction

  5. Alkali Release from Typical Danish Aggregates to Potential ASR Reactive Concrete

    DEFF Research Database (Denmark)

    Thomsen, Hans Christian Brolin; Grelk, Bent; Barbosa, Ricardo Antonio

    Alkali-silica reaction (ASR) in concrete is a well-known deterioration mechanism affecting the long term durability of Danish concrete structures. Deleterious ASR cracking can be significantly reduced or prevented by limiting the total alkali content of concrete under a certain threshold limit......, which in Denmark is recommended to 3 kg/m3 Na2Oeq.. However, this threshold limit does not account for the possible internal contribution of alkali to the concrete pore solution by release from aggregates or external contributions from varies sources. This study indicates that certain Danish aggregates...... are capable of releasing more than 0.46 kg/m3 Na2Oeq. at 13 weeks of exposure in laboratory test which may increase the risk for deleterious cracking due to an increase in alkali content in the concrete....

  6. An alkali ion source based on graphite intercalation compounds for ion mobility spectrometry

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Hosseini, Zahra S

    2008-01-01

    A variety of alkali cation emitters were developed as the ion source for ion mobility spectrometry. The cation emitters were constructed based on alkali ion graphite intercalation compounds (GICs). The compounds were prepared by fusing alkali salts with ground graphite. In order to produce alkali ions, the compounds were loaded on a filament and heated to red. Reactant ions of the form alk + ions were observed for the alkali salts NaCl, KCl.LiCl, CsCl and SrCl. In addition to Na + ions, K + ions were observed at the beginning of thermionic emission from Na-GIC. This is due to the low ionization potential of potassium that exists in trace amounts in sodium salts. In addition to the potassium ion, Na + was observed in the case of LiCl salt. The Na + and K + peaks originating from impurities totally disappeared after about 40 min. However, the thermionic emission of the main ion of the corresponding salt lasted for several days. No negative ions were observed upon reversing the drift field. Selected organic compounds (methyl isobutyl ketone, dimethyl sulfoxide, acetone and tetrahydrofuran) were also ionized via alkali cation attachment reaction. Distinct ion mobility patterns were observed for different substances using one type of alkali reactant ion. However, the ion mobility pattern for a given substance changed when a different alkali reactant ion was used. Ammonia and amines were not ionized when this source was used

  7. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    /EDS analysis shows that the catalyst surfaces are covered predominantly by coal ash. The potassium is mainly present as silicates and almost no potassium sulphate was found on the deposit layer on the catalysts. It can be concluded that the physical deposition or masking by ash is the main mechanism of the deactivation and the alkali-induced poisoning plays a minor role. The present results support the conclusion of a previous PSO project (Eltra 4108, ''SCR-katalysatordeaktivering og overhederkorrosion'') that co-firing coal and straw, with a straw share up to 10% on an energy basis in pulverized combustion power plants, will not enhance the deactivation of the SCR catalyst. (Author)

  8. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    International Nuclear Information System (INIS)

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g −1 Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S BET ) of 457.92 m 2 g −1 . After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g −1 Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance

  9. The Effects of Biochar on Germination and Growth of Wheat in Different Saline-alkali Soil

    Institute of Scientific and Technical Information of China (English)

    Guijun; WANG; Zhenwen; XU

    2013-01-01

    Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the soil,and affect the growth of the plant.In this research,four different proportion of biochar was added in five different levels of saline-alkali soil for pot culture experiment.The pH of the soil increases as the proportion of biochar increase in same saline-alkali level soil,while the EC decrease as the proportion of biochar increase.The germination rate of wheat seeds varies as the different of soil’s saline-alkali level.Notable among these results is the germination of wheat seeds in the serious saline-alkali soil without biochar added is 0,while in 45%biochar added in serious saline-alkali soil,the germination rate get to as high as 48.9%.Also,biochar improve the growth of wheat seedling,while for mild saline alkali soil and normal soil.Biochar had no obvious effect on the growth of wheat seedling.

  10. Mechanical Behaviour of Soil Improved by Alkali Activated Binders

    Directory of Open Access Journals (Sweden)

    Enza Vitale

    2017-11-01

    Full Text Available The use of alkali activated binders to improve engineering properties of clayey soils is a novel solution, and an alternative to the widely diffused improvement based on the use of traditional binders such as lime and cement. In the paper the alkaline activation of two fly ashes, by-products of coal combustion thermoelectric power plants, has been presented. These alkali activated binders have been mixed with a clayey soil for evaluating the improvement of its mechanical behaviour. One-dimensional compression tests on raw and treated samples have been performed with reference to the effects induced by type of binder, binder contents and curing time. The experimental evidences at volume scale of the treated samples have been directly linked to the chemo-physical evolution of the binders, investigated over curing time by means of X Ray Diffraction. Test results showed a high reactivity of the alkali activated binders promoting the formation of new mineralogical phases responsible for the mechanical improvement of treated soil. The efficiency of alkali activated binders soil treatment has been highlighted by comparison with mechanical performance induced by Portland cement.

  11. Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis.

    Science.gov (United States)

    Puri, V P; Pearce, G R

    1986-04-01

    Sugarcane bagasse and wheat straw were subjected to alkali treatment at 200 degrees C for 5 min and at 3.45 MPa gas pressure (steam and nitrogen), followed by an explosive discharge through a defibrating nozzle, in an attempt to improve the rate and extent of digestibility. The treatment resulted in the solubilization of 40-45% of the components and in the production of a pulp that gave saccharification yields of 80 and 65% in 8 h for bagasse and wheat straw, respectively. By comparison, alkali steaming at 200 degrees C (1.72 MPa) for 5 min gave saccharification yields of only 58 and 52% in 48 h. The increase in temperature from 140 to 200 degrees C resulted in a gradual increase in in vitro organic matter digestibility (IVOMD) for both the substrates. Also, the extent of alkalinity during pretreatment appears to effect the reactivity of the final product towards enzymes. Pretreatment times ranging from 5 to 60 caused a progressive decline in the IVOMD of bagasse and wheat straw by the alkali explosion method and this was accompanied by a progressive decrease in pH values after explosion. In the alkali-steaming method, pretreatment time had no apparent effect with either substrate. An analysis of the alkali-exploded products showed that substantial amounts of hemicellulose and a small proportion of the lignin were solubilized. The percentage crystallinity of the cellulose did not alter in either substrate but there was a substantial reduction in the degree of polymerization. The superiority of the alkali-explosion pretreatment is attributed to the efficacy of fiber separation and disintegration; this increases the surface area and reduces the degree of polymerization.

  12. Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2016-07-01

    Full Text Available Managing the rapidly changing saline-alkali land under cultivation in the coastal areas of China is important not only for mitigating the negative impacts of such land on the environment, but also for ensuring long-term sustainability of agriculture. In this light, setting up rapid monitoring systems to assist decision-making in developing sustainable management plans is therefore an absolute necessity. In this study, we developed a new interpretation system where symbols are used to grade and classify saline-alkali lands in space and time, based on the characteristics of plant cover and features of remote sensing images. The system was used in combination with the maximum likelihood supervised classification to analyze the changes in cultivated lands under saline-alkali conditions in Huanghua City. The analysis revealed changes in the area and spatial distribution of cultivated under saline-alkali conditions in the region. The total area of saline-alkali land was 139,588.8 ha in 1992 and 134,477.5 ha in 2011. Compared with 1992, severely and moderately saline-alkali land areas decreased in 2011. However, non/slightly saline land areas increased over that in 1992. The results showed that the salinization rate of arable lands in Huanghua City decreased from 1992 to 2011. The moderately saline-alkali land southeast of the city transformed into non/slightly saline-alkaline. Then, severely saline-alkali land far from the coastal zone west of the city became moderately saline-alkaline. Spatial changes in cultivated saline-alkali lands in Huanghua City were such that the centers of gravity (CG of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in cultivated lands in the saline-alkali ecosystem included climate, hydrology and human activity. Thus, studies are required to further explore these factors in

  13. Alkali roasting of bomar ilmenite: rare earths recovery and physico-chemical changes

    Directory of Open Access Journals (Sweden)

    Sanchez-Segado Sergio

    2014-11-01

    (FeTiO3 is presented as a process route for integrated beneficiation of the mineral for rutile-rich phase and rare earth oxides; the latter is released as a consequence of physical changes in the ilmenite matrix, during the water leaching after roasting. The oxidative alkali roasting transforms ilmenite mineral into water-insoluble alkali titanate and water-soluble ferrite. After roasting the insoluble alkali titanate is separated from rare-earth oxide mixture in colloidal form and water-soluble ferrite. Further leaching of alkali titanate is carried out with oxalic (0.3M and ascorbic (0.01M acid solution which removes the remaining Fe2+ ions into the leachate and allows precipitation of high-purity synthetic rutile containing more than 95% TiO2. Iron is removed as iron oxalate. The physico-chemical changes occurred during the roasting and leaching processes are reported by comparing the role of alkali on the roasting process and product morphologies formed.

  14. Preparation of sintered foam materials by alkali-activated coal fly ash.

    Science.gov (United States)

    Zhao, Yelong; Ye, Junwei; Lu, Xiaobin; Liu, Mangang; Lin, Yuan; Gong, Weitao; Ning, Guiling

    2010-02-15

    Coal fly ash from coal fired power stations is a potential raw material for the production of ceramic tiles, bricks and blocks. Previous works have demonstrated that coal fly ash consists mainly of glassy spheres that are relatively resistant to reaction. An objective of this research was to investigate the effect of alkali on the preparation process of the foam material. Moreover, the influence of foam dosage on the water absorption, apparent density and compressive strength was evaluated. The experimental results showed that homogenous microstructures of interconnected pores could be obtained by adding 13 wt.% foaming agent at 1050 degrees C, leading to foams presenting water absorption, apparent density and compressive strength values of about 126.5%, 0.414 g/cm(3), 6.76 MPa, respectively.

  15. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; Anjum, Dalaver; Kanoun, Mohammed; Scaranto, Jessica; Hedhili, Mohamed Nejib; Khalid, Syed; Laveille, Paco; D'Souza, Lawrence; Clo, Alain M.; Basset, Jean-Marie

    2015-01-01

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  16. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  17. Mechanism of the alkali degradation of (6-4) photoproduct-containing DNA.

    Science.gov (United States)

    Arichi, Norihito; Inase, Aki; Eto, Sachise; Mizukoshi, Toshimi; Yamamoto, Junpei; Iwai, Shigenori

    2012-03-21

    The (6-4) photoproduct is one of the major damaged bases produced by ultraviolet light in DNA. This lesion is known to be alkali-labile, and strand breaks occur at its sites when UV-irradiated DNA is treated with hot alkali. We have analyzed the product obtained by the alkali treatment of a dinucleoside monophosphate containing the (6-4) photoproduct, by HPLC, NMR spectroscopy, and mass spectrometry. We previously found that the N3-C4 bond of the 5' component was hydrolyzed by a mild alkali treatment, and the present study revealed that the following reaction was the hydrolysis of the glycosidic bond at the 3' component. The sugar moiety of this component was lost, even when a 3'-flanking nucleotide was not present. Glycosidic bond hydrolysis was also observed for a dimer and a trimer containing 5-methyl-2-pyrimidinone, which was used as an analog of the 3' component of the (6-4) photoproduct, and its mechanism was elucidated. Finally, the alkali treatment of a tetramer, d(GT(6-4)TC), yielded 2'-deoxycytidine 5'-monophosphate, while 2'-deoxyguanosine 3'-monophosphate was not detected. This result demonstrated the hydrolysis of the glycosidic bond at the 3' component of the (6-4) photoproduct and the subsequent strand break by β-elimination. It was also shown that the glycosidic bond at the 3' component of the Dewar valence isomer was more alkali-labile than that of the (6-4) photoproduct.

  18. Behaviour of gaseous alkali compounds from coal gasification

    International Nuclear Information System (INIS)

    Nykaenen, J.

    1996-01-01

    In this project the behaviour of alkali compounds has been studied with a chemical equilibrium model. The goal is to evaluate the possibilities to remove the sodium and potassium compounds together with the fly ash particles by using a ceramic honeycomb filter. The studied processes include both CO 2 /O 2 - and air-blown gasification and combustion. The results show that the difference between the processes with flue gas recirculation and air-blown processes is small. This is due to that the equilibrium concentration of the dominant gaseous alkali compound, chloride, is more or less the same in both processes. This research project is closely connected to the EU-project coordinated by the Delft University of Technology (DUT). In that project alkali concentration of the fuel gas from a 1.6 MW pilot plant will be measured. During the next phase of this research the results from DUT will be compared with the results of this presentation. (author)

  19. Advances in catalysts for internal reforming in high temperature fuel cells

    Science.gov (United States)

    Dicks, A. L.

    Catalytic steam reforming of natural gas is an attractive method of producing the hydrogen required by the present generation of fuel cells. The molten carbonate (MCFC) and solid oxide (SOFC) fuel cells operate at high enough temperatures for the endothermic steam reforming reaction to be carried out within the stack. For the MCFC, the conventional anodes have insufficient activity to catalyse the steam reforming of natural gas. For these cells, internal reforming can be achieved only with the addition of a separate catalyst, preferably located in close proximity to the anode. However, in the so-called `Direct Internal Reforming' configuration, attack from alkali in the MCFC may severely limit catalyst lifetime. In the case of the state-of-the-art SOFC, natural gas can be reformed directly on the nickel cermet anode. However, in the SOFC, temperature variations in the cell caused by the reforming reaction may limit the amount of internal reforming that can be allowed in practice. In addition, some external pre-reforming may be desirable to remove high molecular weight hydrocarbons from the fuel gas, which would otherwise crack to produce elemental carbon. Degradation of the SOFC anode may also be a problem when internal reforming is carried out. This has prompted several research groups to investigate the use of alternative anode materials.

  20. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R; Eriksson, T; Lehtonen, P [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  1. Alkali replacement raises urinary citrate excretion in patients with topiramate-induced hypocitraturia.

    Science.gov (United States)

    Jhagroo, R Allan; Wertheim, Margaret L; Penniston, Kristina L

    2016-01-01

    The aims of this study were to assess (1) the magnitude and temporality of decreased urinary citrate excretion in patients just starting topiramate and (2) the effect of alkali replacement on topiramate-induced hypocitraturia. Study 1 was a prospective, non-intervention study in which patients starting topiramate for headache remediation provided pre- and post-topiramate 24 h urine collections for measurement of urine citrate. Study 2 was a clinical comparative effectiveness study in which patients reporting to our stone clinic for kidney stones and who were treated with topiramate were prescribed alkali therapy. Pre- and post-alkali 24 h urinary citrate excretion was compared. Data for 12 and 22 patients (studies 1 and 2 respectively) were evaluated. After starting topiramate, urinary citrate excretion dropped significantly by 30 days (P = 0.016) and 62% of patients had hypocitraturia (citrate alkali, urine citrate increased in stone-forming patients on topiramate (198 ± 120 to 408 ± 274 mg day(-1) ; P = 0.042 for difference). 85% of patients were hypocitraturic on topiramate alone vs. 40% after adding alkali. The increase in urinary citrate was greater in patients provided ≥ 90 mEq potassium citrate. Our study is the first to provide clinical evidence that alkali therapy can raise urinary citrate excretion in patients who form kidney stones while being treated with topiramate. Clinicians should consider alkali therapy for reducing the kidney stone risk of patients benefitting from topiramate treatment for migraine headaches or other conditions. © 2015 The British Pharmacological Society.

  2. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzenesulfonic acid, alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL...

  3. Corrosion of reinforcing bars embedded in alkali-activated slag concrete subjected to chloride attack

    Directory of Open Access Journals (Sweden)

    William Aperador Chaparro

    2012-02-01

    Full Text Available Steel bar embedded in an alkali-activated slag (AAS concrete was tested under complete immersion, in 3.5% NaCl solution by weight of the slag. Ordinary Portland cement (OPC was also tested for comparative purposes and exposed to the same solution. Monitoring of open-circuit potential, polarization resistance measurement and electrochemical impedance spectroscopy (EIS were used to evaluate the corrosion behavior of steel bar. The corrosion resistances of AAS and OPC concretes were performed at 0, 3, 6, 9 and 12 months. Electrochemical measurements shows that AAS concrete presents passive corrosion behavior the first 3 months, after this period of time, it presents corrosion resistance decreased due to the chlorides presence at the steel/AAS interface. For 0 months immersion (28 days of curing the AAS and OPC concretes presented a 10% of corrosion probability. After 3 months of immersion the tested AAS and OPC concretes showed similar behavior, the active potentials in the range from "0.2 to "0.6 V vs. Cu/CuSO4, indicate a 90% probability of corrosion.

  4. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    Science.gov (United States)

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  5. Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-02-01

    Full Text Available The properties of alkali doped poly(2,5-benzimidazole) membrane with different alkali doping level for fuel cell application is reported in this work. The alkali doping level played an important role for the ion conductivity of the membrane. The ion...

  6. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides

    Directory of Open Access Journals (Sweden)

    Xuteng Zhao

    2018-02-01

    Full Text Available A series of Mn-Ce-V-WOx/TiO2 composite oxide catalysts with different molar ratios (active components/TiO2 = 0.1, 0.2, 0.3, 0.6 have been prepared by wet impregnation method and tested in selective catalytic reduction (SCR of NO by NH3 in a wide temperature range. These catalysts were also characterized by X-ray diffraction (XRD, Transmission Electron Microscope (TEM, in situ Fourier Transform infrared spectroscopy (in situ FTIR, H2-Temperature programmed reduction (H2-TPR and X-ray photoelectron spectroscopy (XPS. The results show the catalyst with a molar ratio of active components/TiO2 = 0.2 exhibits highest NO conversion value between 150 °C to 400 °C and good resistance to H2O and SO2 at 250 °C with a gas hourly space velocity (GHSV value of 40,000 h−1. Different oxides are well dispersed and interact with each other. NH3 and NO are strongly adsorbed on the catalyst surface and the adsorption of the reactant gas leads to a redox cycle with the valence state change among the surface oxides. The adsorption of SO2 on Mn4+ and Ce4+ results in good H2O and SO2 resistance of the catalyst, but the effect of Mn and Ce are more than superior water and sulfur resistance. The diversity of valence states of the four active components and their high oxidation-reduction performance are the main reasons for the high NO conversion in this system.

  7. Powder X-ray diffraction study af alkali alanates

    DEFF Research Database (Denmark)

    Cao, Thao; Mosegaard Arnbjerg, Lene; Jensen, Torben René

    Powder X-ray diffraction study of alkali alanates Thao Cao, Lene Arnbjerg, Torben R. Jensen. Center for Materials Crystallography (CMC), Center for Energy Materials (CEM), iNANO and Department of Chemistry, Aarhus University, DK-8000, Denmark. Abstract: To meet the energy demand in the future...... for mobile applications, new materials with high gravimetric and volumetric storage capacity of hydrogen have to be developed. Alkali alanates are promising for hydrogen storage materials. Sodium alanate stores hydrogen reversibly at moderate conditions when catalysed with, e.g. titanium, whereas potassium...

  8. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Chloris virgata, an alkali-tolerant halophyte, was chosen as the test material for our research. The seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and content of organic acids in shoots were analyzed and the results indicated that there was not only a significant increase in total ...

  9. Recent Scientific Progress on Developing Supported Ni Catalysts for Dry (CO2 Reforming of Methane

    Directory of Open Access Journals (Sweden)

    Hyun Ook Seo

    2018-03-01

    Full Text Available Two major green house gases (CO2 and CH4 can be converted into useful synthetic gas (H2 and CO during dry reforming of methane (DRM reaction, and a lot of scientific efforts has been made to develop efficient catalysts for dry reforming of methane (DRM. Noble metal-based catalysts can effectively assist DRM reaction, however they are not economically viable. Alternatively, non-noble based catalysts have been studied so far, and supported Ni catalysts have been considered as a promising candidate for DRM catalyst. Main drawback of Ni catalysts is its catalytic instability under operating conditions of DRM (>700 °C. Recently, it has been demonstrated that the appropriate choice of metal-oxide supports can address this issue since the chemical and physical of metal-oxide supports can prevent coke formation and stabilize the small Ni nanoparticles under harsh conditions of DRM operation. This mini-review covers the recent scientific findings on the development of supported Ni catalysts for DRM reaction, including the synthetic methods of supported Ni nanoparticles with high sintering resistance.

  10. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  11. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-10-01

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  12. Investigation on lithium migration for treating alkali-silica reaction affected concrete

    NARCIS (Netherlands)

    Silva De Souza, L.M.; Polder, R.B.; Copuroglu, O.

    2014-01-01

    Alkali-silica reaction (ASR) is one of the major deterioration mechanisms that affect numerous concrete structures worldwide. During the reaction, hydroxyl and alkali (sodium and potassium ) ions react with certain siliceous compounds in the aggregate, forming a hygroscopic gel. The gel absorbs

  13. Gradient heating protocol for a diode-pumped alkali laser

    Science.gov (United States)

    Cai, He; Wang, You; Han, Juhong; Yu, Hang; Rong, Kepeng; Wang, Shunyan; An, Guofei; Wang, Hongyuan; Zhang, Wei; Wu, Peng; Yu, Qiang

    2018-06-01

    A diode-pumped alkali laser (DPAL) has gained rapid development in the recent years. Until now, the structure with single heater has been widely utilized to adjust the temperature of an alkali vapor cell in most of the literatures about DPALs. However, for an end-pumped DPAL using single heater, most pump energy is absorbed by the gain media near the entrance cell window because of the large absorption cross section of atomic alkali. As a result, the temperature in the pumping area around the entrance window will go up rapidly, especially in a case of high pumping density. The temperature rise would bring about some negative influences such as thermal effects and variations in population density. In addition, light scattering and window contamination aroused by the chemical reaction between the alkali vapor and the buffer gas will also affect the output performance of a DPAL system. To find a solution to these problems, we propose a gradient heating approach in which several heaters are tandem-set along the optical axis to anneal an alkali vapor cell. The temperature at the entrance window is adjusted to be lower than that of the other side. By using this novel scheme, one can not only achieve a homogeneous absorption of the pump energy along the cell axis, but also decrease the possibility of the window damage in a DPAL configuration. The theoretical simulation of the laser output features has been carried out for a configuration of multiple heaters. Additionally, the DPAL output performance under different gradient temperatures is also discussed in this paper. The conclusions might be helpful for development of a high-powered and high-beam-quality DPAL.

  14. Alkali and heavy metals emissions of the PCFB-process

    International Nuclear Information System (INIS)

    Kuivalainen, R.; Eriksson, T.; Koskinen, J.; Lehtonen, P.

    1995-01-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed by A. Ahlstrom Corporation since 1986. As a part of the development, a 10 MV PCFB Test Facility was constructed at Hans Ahlstrom Laboratory in Karhula, Finland in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 'Alkali and heavy metal emissions of the PCFB-process' is part of national LIEKKI 2 research program and it continues the work started under alkali measurement project Y33 in 1994. The objective of the project is to measure vapor phase alkali and heavy metal concentrations in the PCFB flue gas after high-temperature high-pressure particulate filter and to investigate the effects of process conditions and sorbents on alkali release. The measured Na concentrations were between 0,03 and 0,21 ppm(w). The results of K were between 0,01 and 0,08 ppm(w). The accuracy of the results is about +-50 percent at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions at 800-850 deg C are at the same order of magnitude as the guideline emission limits given by gas turbine manufacturers for flue gas at 1000-1200 deg C. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in autumn 1995 in cooperation with laboratories of VTT Energy and Tampere University of Technology. (author)

  15. The direct observation of alkali vapor species in biomass combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  16. Solidification of nitrate solutions with alkali-activated slag and slag–metakaolin cements

    International Nuclear Information System (INIS)

    Rakhimova, Nailia R.; Rakhimov, Ravil Z.; Osin, Yury N.; Naumkina, Natalia I.; Gubaidullina, Alfiya M.; Yakovlev, Grigory I.; Shaybadullina, Arina V.

    2015-01-01

    Highlights: • The effectiveness of an AASC matrix for NaNO 3 solution solidification is stated. • XRD, DTA-TG, and X-ray microtomography experiments were performed. • Crystallization of NaNO 3 reduces the shrinkage of hardened AASC-based waste forms. • Metakaolin shortens the setting time and increases the compressive strength of AASC. - Abstract: The solidification of nitrate solutions with alkali-activated slag (AASC) and slag–metakaolin cements (AASMC) and the resulting setting times, compressive strengths, dimensional stability, water resistance, hydration products, microstructures, and macroporous network structures were evaluated. The influences of the alkali activator concentration, mineral composition of metakaolin, ratio of slag to slag + metakaolin, and concentration of NaNO 3 on the cement performance were all evaluated in detail. The compressive strength of cemented nitrate solutions with AASC and AASMC aged for 28 days was from 13.4 to 42 MPa depending on the NaNO 3 concentration. X-ray diffractometer, differential thermal analyzer, and electron microscope analyses suggested that NaNO 3 crystallizes in cementitious matrices without reacting with the hydration products of AASC and AASMC. X-ray microtomography showed that the solidified NaNO 3 solution with a salt concentration of 700 g/l and AASC had a denser microstructure without shrinkage microcracks, a smaller macropore volume, and smaller macropore sizes than hardened AASC-based paste mixed with water

  17. Metal analyses of ash derived alkalis from banana and plantain ...

    African Journals Online (AJOL)

    The objective of this work was to determine the metal content of plantain and banana peels ash derived alkali and the possibility of using it as alternate and cheap source of alkali in soap industry. This was done by ashing the peels and dissolving it in de-ionised water to achieve the corresponding hydroxides with pH above ...

  18. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  19. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  20. Effect of alkali and heat treatments for bioactivity of TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo young, E-mail: mast6269@nate.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Yu kyoung, E-mail: yk0830@naver.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Park, Il song, E-mail: ilsong@jbnu.ac.kr [Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jin, Guang chun, E-mail: jingc88@126.com [Oral Medical College, Beihua University, Jilin City 132013 (China); Bae, Tae sung, E-mail: bts@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Lee, Min ho, E-mail: mh@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of)

    2014-12-01

    Highlights: • TiO{sub 2} nanotubes formed via anodization were treated by alkali and heat. • The surface roughness was increased after alkali treatment (p < 0.05). • After alkali and heat treatment, the wettability was better than before treatment. • Alkali treated TiO{sub 2} nanotubes were shown higher HAp formation in SBF. • Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO{sub 2} nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO{sub 2} nanotubes (PNA) and alkali and heat-treated TiO{sub 2} nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na{sub 2}TiO{sub 3}) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  1. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  2. Long-range interactions among three alkali-metal atoms

    International Nuclear Information System (INIS)

    Marinescu, M.; Starace, A.F.

    1996-01-01

    The long-range asymptotic form of the interaction potential surface for three neutral alkali-metal atoms in their ground states may be expressed as an expansion in inverse powers of inter-nuclear distances. The first leading powers are proportional to the dispersion coefficients for pairwise atomic interactions. They are followed by a term responsible for a three body dipole interaction. The authors results consist in evaluation of the three body dipole interaction coefficient between three alkali-metal atoms. The generalization to long-range n atom interaction terms will be discussed qualitatively

  3. Exciton emissions in alkali cyanides

    International Nuclear Information System (INIS)

    Weid, J.P. von der.

    1979-10-01

    The emissions of Alkali Cyanides X irradiated at low temperature were measured. In addition to the molecular (Frenkel Type) exciton emissions, another emitting centre was found and tentatively assigned to a charge transfer self trapped exciton. The nature of the molecular exciton emitting state is discussed. (Author) [pt

  4. Assessment of the Alteration of Granitic Rocks and its Influence on Alkalis Release

    Science.gov (United States)

    Ferraz, Ana Rita; Fernandes, Isabel; Soares, Dora; Santos Silva, António; Quinta-Ferreira, Mário

    2017-12-01

    Several concrete structures had shown signs of degradation some years after construction due to internal expansive reactions. Among these reactions there are the alkali-aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). The more common is the ASR which occurs when certain types of reactive silica are present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and feldspars, the latter being the minerals which contain more alkalis in their structure and thus, able to release them in conditions of high alkalinity. Although these aggregates are of slow reaction, some structures where they were applied show evidence of deterioration due to ASR some years or decades after the construction. In the present work, the possible contribution of granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the quarries in what concerns the degree of alteration and/or fracturing, rock samples with different alteration were analysed. The alteration degree was characterized both under optical microscope and image analysis and compared with the results obtained from the chemical tests. It was concluded that natural alteration reduces dramatically the releasable alkalis available in the rocks.

  5. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  6. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  7. Selective catalytic reduction of NOx and N{sub 2}O by NH{sub 3} over Fe-FER; Developpement d'un traitement catalytique combine des NOx et de N{sub 2}O par NH{sub 3} sur Fe-Fer

    Energy Technology Data Exchange (ETDEWEB)

    Kieger, St. [Grande Paroisse, 76 - Grand-Quevilly (France); Navascues, L.; Gry, Ph. [Grande Paroisse, 92 - Paris la Defense (France)

    2001-07-01

    The emission of nitrogen oxides from anthropogenic activities is a major environmental issue. N{sub 2}O is taking part to the global warming and depletion of the stratospheric ozone layer, and NOx to acid rains. At the Kyoto Conference in 1997, the European Union committed itself to reduce by 8% the release of greenhouse gases at the horizon 2010. The selective catalytic reduction (SCR) of NOx by NH{sub 3} is nowadays the main control technology for the emissions from nitric acid plant. Therefore, Grande Paroisse and IRMA have developed a new catalyst (Fe-FER) for the SCR of N{sub 2}O by NH{sub 3}. The catalyst was evaluated in a pilot plant and in the same operating conditions than a DeNOx catalyst. At a space velocity of 9000 to 12000 h{sup -1}, a decomposition of 50% of N{sub 2}O was achieved at 440 deg C. Moreover for the same decomposition level, the temperature could be shifted to 390 deg C by adding ammonia, and the complete reduction of NOx was also observed. This new catalyst is rather bi-functional. Also after months of using, the catalyst did not show major loss of activity nor mechanical strength. (authors)

  8. The Impact of the Source of Alkali on Sludge Batch 3 Melt Rate

    International Nuclear Information System (INIS)

    Smith, M

    2005-01-01

    Previous Savannah River National Laboratory (SRNL) melt rate tests in support of the Defense Waste Processing Facility (DWPF) have indicated that improvements in melt rate can be achieved through an increase in the total alkali of the melter feed. Higher alkali can be attained by the use of an ''underwashed'' sludge, a high alkali frit, or a combination of the two. Although the general trend between melt rate and total alkali (in particular Na 2 O content) has been demonstrated, the question of ''does the source of alkali (SOA) matter?'' still exists. Therefore the purpose of this set of tests was to determine if the source of alkali (frit versus sludge) can impact melt rate. The general test concept was to transition from a Na 2 O-rich frit to a Na 2 O-deficient frit while compensating the Na 2 O content in the sludge to maintain the same overall Na 2 O content in the melter feed. Specifically, the strategy was to vary the amount of alkali in frits and in the sludge batch 3 (SB3) sludge simulant (midpoint or baseline feed was SB3/Frit 418 at 35% waste loading) so that the resultant feeds had the same final glass composition when vitrified. A set of SOA feeds using frits ranging from 0 to 16 weight % Na 2 O (in 4% increments) was first tested in the Melt Rate Furnace (MRF) to determine if indeed there was an impact. The dry-fed MRF tests indicated that if the alkali is too depleted from either the sludge (16% Na 2 O feed) or the frit (the 0% Na 2 O feed), then melt rate was negatively impacted when compared to the baseline SB3/Frit 418 feed currently being processed at DWPF. The MRF melt rates for the 4 and 12% SOA feeds were similar to the baseline SB3/Frit 418 (8% SOA) feed. Due to this finding, a smaller subset of SOA feeds that could be processed in the DWPF (4 and 12% SOA feeds) was then tested in the Slurry-fed Melt Rate Furnace (SMRF). The results from a previous SMRF test with SB3/Frit 418 (Smith et al. 2004) were used as the SMRF melt rate of the baseline

  9. Self-trapped holes in alkali silver halide crystals

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    γ-Ray irradiation at 77 K induces defects in M 2 AgX 3 (M=Rb, K and NH 4 ; X=Br and I) crystals. The irradiation induces self-trapped holes of the form of I 0 in the case of alkali silver iodides, and (halogen) 2 - and (halogen) 0 in the case of ammonium silver halides. The (halogen) 0 is weakly coupled with the nearest alkali metal ion or ammonium ion. It is able to be denoted as RbI + , KI + , NH 4 I + or NH 4 Br + . The directions of hole distribution of (halogen) 2 - and (halogen) 0 were different in each case of the alkali silver iodides, ammonium silver halides and mixed crystal of them. The (halogen) 0 decayed at 160 K in annealing process. The (halogen) 2 - was converted into another form of (halogen) 2 - at 250 K and this decayed at 310 K. A formation of metallic layers was observed on the crystal surface parallel with the c-plane of (NH 4 ) 2 AgI 3 irradiated at room temperature. (author)

  10. The influence of alkali metal impurities on the uranium dioxide hydrofluorination reaction

    International Nuclear Information System (INIS)

    Ponelis, A.A.

    1989-01-01

    The effect alkali metal impurities (sodium and potassium) in the uranium dioxide (UO 2 ) feed material have on the conversion to uraniumtetrafluoride (UF 4 ) was examined. A direct correlation exists between impurity level and sintering with concomitant reduced conversion. The sintering mechanism is attributable to decreased specific surface area. The typical 'die-off' of reaction or conversion can be explained in terms of increased particle growth rather than an arbitray zero porosity function. Hydrofluorination temperatures varied from 250 to 650 degrees C using pellets varying in size from 0.42 mm to 10 mm. Scanning electron microscope photographs show clearly the particle or grain growth in the pellet as well as the increased size with impurity level. A new dimensionless constant, N KP , is defined to facilitate explanation of the reaction as a function of pellet radius. N KP is defined as the ratio of pellet diffusion resistance to particle diffusion resistance of the reacting HF gas. At high values of this number (N KP >40) the conversion is limited to the outer periphery of the pellet while at low values (N KP KP at higher reaction temperatures which means that the particle diffusion resistance increases with increasing impurity level and results in easier sintering of these materials. 53 refs., 206 figs., 94 tabs

  11. Paleodosimetrical properties of sodium alkali feldspars and problems of luminescence dating of sediments

    International Nuclear Information System (INIS)

    Huett, Galina; Jaek, Ivar

    1996-01-01

    Emission spectra of natural alkali feldspars extracted from sediments are studied using a CCD-camera based high sensitivity spectrometer. Applying a semiconductor laser (860± 1 nm), two dominant emission bands, blue (410 nm) and orange (570 nm), are revealed in infrared optically stimulated luminescence (IROSL) spectra for the most of the sediments from Scandinavian sections. Luminescence and dosimetric al properties of the hole traps, the induced orange emission band typical of sodium alkali feldspars are studied. As a result, high light bleach ability but low stability of the dosimetric al information lit sodium alkali feldspars are established. Problems of luminescence dating of sediments based on the mixture of potassium-sodium alkali feldspars are discussed. (author)

  12. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    Science.gov (United States)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  13. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  14. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Alkali production in the mouth and its relationship with certain patient's characteristics

    Directory of Open Access Journals (Sweden)

    Valeria Veiga GORDAN

    2014-12-01

    Full Text Available Objectives To assess the relationships among alkali production, diet, oral health behaviors, and oral hygiene. Methods Data from 52 subjects including demographics, diet, and oral hygiene scores were analyzed against the level of arginine and urea enzymes in plaque and saliva samples. An oral habit survey was completed that included: use of tobacco (TB, alcohol (AH, sugary drinks (SD, and diet. Alkali production through arginine deiminase (ADS and urease activities were measured in smooth-surface supragingival dental plaque and un stimulated saliva samples from all subjects. ADS and urease activities were measured by quantification of the ammonia generated from the incubation of plaque or saliva samples. Spearman correlations were used to compute all associations. Results Participants in the lowest SES (Socio-economic status group had the habit of consuming sugary drinks the most and had the highest rate of tobacco use. Males consumed significantly more alcohol than females. No significant relationship was found between age or gender and alkali production. Higher rates of sugary drink consumption and tobacco use were significantly related to lower alkali production. Conclusion The study showed a relationship between alkali production and oral hygiene, diet, and certain oral health behaviors. Poor oral hygiene was significantly associated with age, lower SES, tobacco use, and alcohol, and sugary drinks consumption. Clinical relevance Certain oral health behaviors have an impact on oral hygiene and on alkali production; it is important to address these factors with patients as a strategy for caries control.

  16. Alkali production in the mouth and its relationship with certain patient's characteristics.

    Science.gov (United States)

    Gordan, Valeria Veiga; McEdward, Deborah Landry; Ottenga, Marc Edward; Garvan, Cynthia Wilson; Harris, Pearl Ann

    2014-01-01

    To assess the relationships among alkali production, diet, oral health behaviors, and oral hygiene. Data from 52 subjects including demographics, diet, and oral hygiene scores were analyzed against the level of arginine and urea enzymes in plaque and saliva samples. An oral habit survey was completed that included: use of tobacco (TB), alcohol (AH), sugary drinks (SD), and diet. Alkali production through arginine deiminase (ADS) and urease activities were measured in smooth-surface supragingival dental plaque and un stimulated saliva samples from all subjects. ADS and urease activities were measured by quantification of the ammonia generated from the incubation of plaque or saliva samples. Spearman correlations were used to compute all associations. Participants in the lowest SES (Socio-economic status) group had the habit of consuming sugary drinks the most and had the highest rate of tobacco use. Males consumed significantly more alcohol than females. No significant relationship was found between age or gender and alkali production. Higher rates of sugary drink consumption and tobacco use were significantly related to lower alkali production. The study showed a relationship between alkali production and oral hygiene, diet, and certain oral health behaviors. Poor oral hygiene was significantly associated with age, lower SES, tobacco use, and alcohol, and sugary drinks consumption. Clinical relevance Certain oral health behaviors have an impact on oral hygiene and on alkali production; it is important to address these factors with patients as a strategy for caries control.

  17. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    International Nuclear Information System (INIS)

    Hernberg, R.; Haeyrinen, V.

    1995-01-01

    The plasma assisted method for continuous measurement of alkali metal concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. Measurements will be performed during 1995 and 1996 at different stages of the research programme. The results are expected to give information about the influence of different process conditions on the generation of alkali metal vapours, the comparison of different methods for alkali measurement and the specific performance of our system. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  18. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liming [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fu, Honggang, E-mail: fuhg@vip.sina.com [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080 (China); Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong [Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080 (China)

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  19. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    Science.gov (United States)

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Is Electronegativity a Useful Descriptor for the 'Pseudo-Alkali-Metal' NH4?

    International Nuclear Information System (INIS)

    Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.

    2011-01-01

    Molecular ions in the form of 'pseudo-atoms' are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the 'pseudo-alkali metal' ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, and reactivity), which can cause deviations from the behaviour expected of a conceptual 'true alkali metal' with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.