WorldWideScience

Sample records for alkali halide crystal

  1. Dislocation unpinning model of acoustic emission from alkali halide crystals

    B P Chandra; Anubha S Gour; Vivek K Chandra; Yuvraj Patil

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant $_{\\text{s}}$ for surface annihilation of dislocations and the pinning time $_{\\text{p}}$ of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  2. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    Rodriguez M, R.; Perez S, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Vazquez P, G.; Riveros, H. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Gonzalez M, P., E-mail: mijangos@cifus.uson.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl{sub x}KBr{sub 1-x} and KBr{sub x}RbBr{sub 1-x}. (Author)

  3. Possibility of elastico-mechanoluminescence dosimetry using alkali halides and other crystals

    The elastico-mechanoluminescence (EML) intensity of X or γ-irradiated alkali halide crystals can be used in radiation dosimetry. The EML intensity of X or γ-irradiated alkali halide crystals increases linearly with the strain of the crystals, and when the crosshead of the testing machine deforming an X or γ-irradiated crystal is stopped, then the EML intensity decreases with time. The semilog plot of the EML intensity versus (t − tc) (where tc is the time where the crosshead of the testing machine is stopped) indicates that, in the post-deformation region, the EML intensity initially decreases exponentially at a fast rate and later on it decreases exponentially at a slow rate. The EML intensity increases linearly with the density of the F-centres in the crystals. This fact indicates that elastico-ML can suitably be used for the radiation dosimetry. The EML spectra of X or γ-irradiated alkali halide crystals are similar to their thermoluminescence spectra. Based on the detrapping of electrons during the mechanical interaction between the dislocation segments and F-centres, an expression is derived, which indicates that the EML intensity should increase linearly with the density of F-centres in the crystals. The expression derived for the decay of EML indicates that the decay time for the fast decrease of EML should gives the pinning time of dislocation segments (lifetime of interacting F-centres), and the decay time for the slow decrease of EML intensity should gives the lifetime of electrons in the shallow traps. As the elastic deformation is non-destructive phenomenon and the EML intensity depends on the radiation dosage given to the alkali halide crystals, similar to the thermoluminescence and photo-stimulated luminescence, the EML of alkali halide crystals and other crystals may be used for the radiation dosimetry. In EML dosimetry, the same crystal can be used number of times because the elastic deformation does not cause permanent deformation in the

  4. Study on growth of ternary alkali lead halide crystals for IR lasers

    Král, Robert

    Berlin : Polyprint GmbH, 2011, s. 146-147. [International Workshop on Crystal Growth Technology/5./. Berlin (DE), 26.06.2011-30.06.2011] R&D Projects: GA AV ČR KJB200100901 Institutional research plan: CEZ:AV0Z10100521 Keywords : interface s * vertical Bridgman method * ternary alkali lead halides * solid state lasers Subject RIV: BM - Solid Matter Physics ; Magnetism https://iwcgt5.ikz-berlin.de/index.php?id=18

  5. Mechanoluminescence produced during cleavage of γ-irradiated alkali halide crystals

    When g-irradiated alkali halide crystals are cleaved, then in their mechanoluminescence (ML) intensity versus time curve, two peak intensities Im1 and Im2 are observed at time tm1 and tm2 respectively. The ML intensity both beyond tm1 and tm2 decrease exponentially. It is shown that ML provides a new technique for determining the pinning time of dislocations and lifetime of the electrons in dislocation band. (author)

  6. Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure

    Ray, U., E-mail: ray_ugrasen@yahoo.co [Department of Physics, Bhaktapur Multiple Campus, Tribhuvan University, Kathmandu (Nepal)

    2010-08-01

    The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C{sub 123}) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.

  7. Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure

    The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C123) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.

  8. Correlation between deformation bleaching and mechanoluminescence in coloured alkali halide crystals

    B P Chandra; M Ramrakhiani; P Sahu; A M Rastogi

    2000-02-01

    The present paper reports the correlation between deformation bleaching of coloration and mechanoluminescence (ML) in coloured alkali halide crystals. When the -centre electrons captured by moving dislocations are picked up by holes, deep traps and other compatible traps, then deformation bleaching occurs. At the same time, radiative recombination of dislocation captured electrons with the holes gives rise to the mechanoluminescence. Expressions are derived for the strain dependence of the density of colour centres in deformed crystals and also for the number of colour centres bleached. So far as strain, temperature, density of colour centres, a and volume dependence are concerned, there exists a correlation between the deformation bleaching and ML in coloured alkali halide crystals. From the strain dependence of the density of colour centres in deformed crystals, the value of coefficient of deformation bleaching is determined and it is found to be 1.93 and 2.00 for KCl and KBr crystals, respectively. The value of $(D + \\mathcal{X})$ is determined from the strain dependence of the ML intensity and it is found to be 2.6 and 3.7 for KCl and KBr crystals, respectively. This gives the value of coefficient of deformation generated compatible traps $\\mathcal{X}$ to be 0.67 and 1.7 for KCl and KBr crystals, respectively.

  9. Rapid yet accurate first principle based predictions of alkali halide crystal phases using alchemical perturbation

    Solovyeva, Alisa

    2016-01-01

    We assess the predictive power of alchemical perturbations for estimating fundamental properties in ionic crystals. Using density functional theory we have calculated formation energies, lattice constants, and bulk moduli for all sixteen iso-valence-electronic combinations of pure pristine alkali halides involving elements $A \\in \\{$Na, K, Rb, Cs$\\}$ and $X \\in \\{$F, Cl, Br, I$\\}$. For rock salt, zincblende and cesium chloride symmetry, alchemical Hellmann-Feynman derivatives, evaluated along lattice scans of sixteen reference crystals, have been obtained for all respective 16$\\times$15 combinations of reference and predicted target crystals. Mean absolute errors (MAE) are on par with density functional theory level of accuracy for energies and bulk modulus. Predicted lattice constants are less accurate. NaCl is the best reference salt for alchemical estimates of relative energies (MAE $<$ 40 meV/atom) while alkali fluorides are the worst. By contrast, lattice constants are predicted best using NaF as a re...

  10. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  11. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions

    Mao, Albert H; 10.1063/1.4742068

    2012-01-01

    Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-d...

  12. The Additive Coloration of Alkali Halides

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  13. Luminescent unit computerization to research spectral characteristics of fine film alkali halide crystal

    The fundamental optical absorption of ion crystals characterizes the creation of different free low energetic electronic excitation (the excitons and electron-hole pairs), but their straight registration is not possible because of incommensurable big absorption factor of alkali halide monocrystals. So to registration the spectrums of alkali halide monocrystal very fine layers are necessary. We have received fine films of Nal and KCl in system of KCl-Nal-KCl, KCl-KI-KCl on the base of universal vacuum post VUP-4, VUP-5 by thermal evaporation. A unique spectral unit has been created For this on the basic the SDL-2 complex. Complex consists of radiator, systems of condensers, monochromators MDR-12 and MDR-23, receivers of radiation, controller by unit. Connect and control of monochromators by means of IBM-compatible computer has been created. Kinematics schemes of monochromators provide consequent removing on output slot of monochromatic radiation in operating range of each diffraction lattice and indication its wavelength. The tumbling diffraction lattices is done the crossbar engines SHDR-711. For this special plate of control and block of reinforcement for crossbar engines in monochromators MDR-12 and MDR-23 are designed and constructed. Created controller of monochromators consists of double cascade preamplifier on transistors n-p-n type (815G) and logical scheme, constructed on summers and K555 series triggers. The preamplifier is used for reinforcement of signal to available amplifier on transistors KT837D. The logical scheme reduces the number of used categories of bidirectional port and enables unhooking the feeding to the windings of crossbar engine at conservation of previous combination of signals. The connection controller of monochromators is done through controller of port of computer with use the parallel interface. For installing computerized system of collection and data processing is provided marketed by means of modern object-oriented programming

  14. Possible configuration of two-knot auto-localized exciton in strainless and deformed alkali halide crystals

    In the paper molecular component of two-knot auto-localized exciton (TALE) occupying centrosymmetric state in alkali halide crystal cubic lattice with local D2h symmetry is considered. In is suggested that the symmetry lowering of forming small radius auto-localized exciton (ALE) is realizing in order configuration transformation by the scenario: multi-knot continual ALE (with Oh symmetry)→six-halide ALE (with Oh symmetry)→TALE (with Oh symmetry) or by the scenario Oh→D2h. Then for TALE with local D2h symmetry normal molecular ion shifts are considered as well

  15. Ab Initio Calculation of the Lattice Distortions induced by Substitutional Ag- and Cu- Impurities in Alkali Halide Crystals

    Aguado, Andrés; López, José M.; Alonso, Julio A.

    2000-01-01

    An ab initio study of the doping of alkali halide crystals (AX: A = Li, Na, K, Rb; X = F, Cl, Br, I) by ns2 anions (Ag- and Cu-) is presented. Large active clusters with 179 ions embedded in the surrounding crystalline lattice are considered in order to describe properly the lattice relaxation induced by the introduction of substitutional impurities. In all the cases considered, the lattice distortions imply the concerted movement of several shells of neighbors. The shell displacements are sm...

  16. Theoretical analysis of the kinetics of low-temperature defect recombination in alkali halide crystals

    Kuzovkov, V. N.; Popov, A. I.; Kotomin, E. A.; Moskina, A. M.; Vasilchenko, E.; Lushchik, A.

    2016-07-01

    We analyzed carefully the experimental kinetics of the low-temperature diffusion-controlled F, H center recombination in a series of irradiated alkali halides and extracted the migration energies and pre-exponential parameters for the hole H centers. The migration energy for the complementary electronic F centers in NaCl was obtained from the colloid formation kinetics observed above room temperature. The obtained parameters were compared with data available from the literature.

  17. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional cHF and show that there exists one value of cHF (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material

  18. Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals

    A theoretical study is made on the mobile interstitial and mobile electron models of mechano-induced luminescence in coloured alkali halide crystals. Equations derived indicate that the mechanoluminescence intensity should depend on several factors like strain rate, applied stress, temperature, density of F-centres and volume of crystal. The equations also involve the efficiency and decay time of mechanoluminescence. Results of mobile interstitial and mobile electron models are compared with the experimental observations, which indicated that the latter is more suitable as compared to the former. From the temperature dependence of ML, the energy gaps between the dislocation band and ground state of F-centre is calculated which are 0.08, 0.072 and 0.09 eV for KCl, KBr and NaCl crystals, respectively. The theory predicts that the decay of ML intensity is related to the process of stress relaxation in crystals. (author). 33 refs., 5 figs., 1 tab

  19. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author)

  20. Optical surface breakdown of alkali halide crystals by microsecond pulses from a wide-aperture CO2 laser

    A study was made of the dynamics of temporal and spatial changes in the spectral characteristics of plasmas. A three-stage mechanism of the damage to surfaces of alkali halide crystals by microsecond pulses from a TEA CO2 laser was proposed: breakdown initiation (at a distance of 3-5 mm from the surface with a time delay up to 1 μs relative to the leading edge of a laser pulse), evaporation (after a further delay of 3-5 μs), and interaction of the adsorbates with a plasma jet and with the laser radiation, as well as heating and cracking of a crystal by the UV plasma radiation. (interaction of laser radiation with matter. laser plasma)

  1. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X1Σ+→a'3Σ+ transitions of the CN- molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN- concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author)

  2. Theory of the late stage of radiolysis of alkali halides

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocation loops formed in alkali halides during earlier stages of irradiation. We present a theory based on a new mechanism of dislocation climb, which involves the production of Vt centers (self-trapped ...

  3. Thermodynamic properties of Alkali Halides

    The method of moments of [1], developed by the authors in [2] for strongly and harmonic crystals with f.c.c. structure is used here to investigate the main thermodynamic properties of the potassium halides. Their analytic expressions as functions of temperature are obtained and the comparison between the theoretical results and the experimental data is made. (author). 22 refs., 5 tabs

  4. Alkali metal and alkali earth metal gadolinium halide scintillators

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  5. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  6. Influence of small dozes ultra-violet radiation on motion of dislocation in alkali-halide crystals

    Victor; A.; Feodorov; Tatjana.; N.; Plushnikova; Andrey; V.; Chivanov; Margarita; V.Chemerkina; Roman; A.; Kirillov.

    2005-01-01

    The purpose of this work was research into influence of ultra-violet radiation on size of run of regional and screw dislocations in beams of dislocation sockets, formed at indentation surface of alkali-halide crystals. In experiments it was used crystals NaCl, with the quantitative maintenance of impurity 10-2 -10-3weight%, the wave length of UV-radiation λ=250 nanometers, the sizes of samples 10mm× 20mm× 2mm,temperature of samples was constant T=290 K.It is established that indentation and the simultaneous irradiation of samples a ultraviolet is increases size of run of head dispositions in dislocation sockets..It is marked, that influence UV-radiation nonequivalence for various times of an exposition. At small times (till 5 minutes) the size of run grows. The length of beams increases on ~ 50 %. At the further increase in time of influence of a ultraviolet the length of beams is reduced till the sizes corresponding stressing without an irradiation (Figs. 1, 2, 3). The effect is observed on dislocation beams of regional and screw orientations and most expressed at small loadings (in our experiments-10 grams) (Fig. 3).Observable effects are explained from positions dislocation-exciton interactions. At UV-radiation exciton cooperates with the charged step on a disposition, causing movement of a step along a disposition on one internuclear distance. Due to this interaction overcoming by a disposition of a grid of stoppers is facilitated.Big times of endurance cause a relaxation of pressure directly in a print that provides convertible movement of dispositions in area of a print and as consequence, reduction of length of beams of dislocation sockets.

  7. Theory of the late stage of radiolysis of alkali halides

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocati

  8. Temperature dependence of pulse-induced mechanoluminescence excitation in coloured alkali halide crystals

    Namita Rajput; S Tiwari; B P Chandra

    2004-12-01

    In practice, the relative efficiencies of different crystals are often determined under identical conditions of temperature and excitation. If the temperature of a crystal is increased or decreased with respect to room temperature, luminescence efficiency may get increased or decreased according to the composition of the crystal. When coloured crystals of NaCl, NaBr, KCl and KBr are excited by pulse-induced excitation at different temperatures, the mechanoluminescence (ML) intensity increases with temperature. The ML intensity of first peak, ml, second peak, _m2 and the total ML intensity, T, initially increase with temperature and then tend to attain an optimum value for a particular temperature of crystals. The ratio, m2/ml, is found to increase with increasing temperature of the crystals. The expression derived on the basis of rate equations, are able to explain the temperature dependence of ML intensity on several parameters.

  9. Solid-solution hardening in kbr-kcl alkali halide single crystals

    Temperature and concentration dependences of the critical resolved shear stress (CRSS) of KBr-KCI solid- solution crystals containing 8 to 41 mol% KCI in the temperature range 77 to 230 K have been analysed within the frame work of the KPN mode of plastic flow in solid- solution crystals. It is found that CRSS tow decreases with the increase in temperature T in accord with the model relation In tow= A -BT, where A and B are positive constants. The CRSS tow at a given temperature depends on solute concentration c as tow alpha c/sup row/, where exponent p has a value between 0.5 and 1 depending on the temperature at which deformation is carried out. The model parameter W/sub o/, i.e. binding energy between the edge-dislocation segment involved in the unit activation process and the solute atoms close to it ( T --+ OK), increases with solute concentration c monotonically upto a critical value Cm = 35 mol% KCI, as predicted by the model. However, W/sub o/ decreases with increase in c beyond cm, which indicates somewhat ordered distribution of solute in the host lattice of concentrated solid-solutions with c > cm. (author)

  10. Large resonance enhanced second order susceptibilities in alkali halide crystals due to FA color centers

    Model calculation of second order susceptibilities for FA color centers in wide band gap materials is reported. The second order optical nonlinearity in KCL:Li crystals due to FA color centers evaluated theoretically. The density matrix formalism is employed and the equation of motion is solved by second order perturbation to evaluate the nonlinear optical susceptibility for second harmonic generation as well as frequency mixing. It is found that the system shows large resonance-enhanced second order susceptibilities (≅10-16 mV-1) for color center concentration of ≅1023 m-3. A scheme of phase matching in terms of anomalous dispersion of the centers and coherent length are discussed (Author)

  11. Study on influence of growth conditions on position and shape of crystal/melt interface of alkali lead halide crystals at Bridgman growth

    Král, Robert

    2012-01-01

    Roč. 360, S1 (2012), s. 162-166. ISSN 0022-0248. [5th International Workshop on Crystal Growth Technology (IWCGT). Berlin, 26.06.2011-30.06.2011] R&D Projects: GA AV ČR KJB200100901 Institutional research plan: CEZ:AV0Z10100521 Keywords : Interface s * morphological stability * segregation * Bridgman technique * halides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.552, year: 2012

  12. Thermoluminescence of alkali halides and its implications

    Gartia, R. K.; Rey, L.; Tejkumar Singh, Th.; Basanta Singh, Th.

    2012-03-01

    Trapping levels present in some alkali halides namely NaCl, KCl, KBr, and KI are determined by deconvolution of the thermoluminescence (TL) curves. Unlike most of the studies undertaken over the last few decades, we have presented a comprehensive picture of the phenomenon of TL as an analytical technique capable of revealing the position of the trapping levels present in the materials. We show that for all practical purposes, TL can be described involving only the three key trapping parameters, namely, the activation energy (E), the frequency factor (s), and the order of kinetics (b) even for complex glow curves having a number of TL peaks. Finally, based on these, we logically infer the importance of TL in development and characterization of materials used in dosimetry, dating and scintillation.

  13. Method of Gaussian quadrature in the calculation of optical absorption and magnetic circular dichroism spectra of s2 ions in alkali halide crystals: application to KBr:In+

    The problem of calculating the lineshape functon for optical absorption and magnetic circular dichroism due to ionic impurities with the ns2 outer electron configuraton, incorporated substitutionally in alkali halide crystals, has been reformulated. The complete energy matrix has been diagonalized directly. Integration over the interaction mode coordinates of E sub(g) and T sub(2g) symmetry has been carried out numerically using Gaussian quadrature formulae; the interaction with the A sub(1g) mode has been taken into account by the usual convolution procedure. The method has been applied to KBr:In+. The calculated lineshape functions for optical absorption at temperatures ranging from 4 to 300 K and, for MCD at 5 K, are in good agreement with the experimentally determined lineshapes. Moreover, the theory accounts very well for the observed variation of the effective g tensor for the A band with temperature. The calculated values for the moments of the absorption and MCD lineshape functions are in reasonably satisfactory agreement with those deduced from the observed spectra. (author)

  14. Graphitic cage transformation by electron-beam-induced catalysis with alkali-halide nanocrystals

    Fujita, Jun-ichi; Tachi, Masashi; Ito, Naoto; Murakami, Katsuhisa; Takeguchi, Masaki

    2016-05-01

    We found that alkali-halide nanocrystals, such as KCl and NaCl, have strong catalytic capability to form graphitic carbon cages from amorphous carbon shells under electron beam irradiation. In addition to the electron beam irradiation strongly inducing the decomposition of alkali-halide nanocrystals, graphene fragments were formed and linked together to form the final product of thin graphitic carbon cages after the evaporation of alkali-halide nanocrystals. The required electron dose was approximately 1 to 20 C/cm2 at 120 keV at room temperature, which was about two orders of magnitude smaller than that required for conventional beam-induced graphitization. The “knock-on” effect of primary electrons strongly induced the decomposition of the alkali-halide crystal inside the amorphous carbon shell. However, the strong ionic cohesion quickly reformed the crystal into thin layers inside the amorphous shell. The bond excitation induced by the electron beam irradiation seemed to enhance strongly the graphitization at the interface between the outer amorphous carbon shell and the inner alkali-halide crystal.

  15. A new polarizable force field for alkali and halide ions

    We developed transferable potentials for alkali and halide ions which are consistent with our recent model of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. Following the approach used for the water potential, we applied Gaussian charge distributions, exponential repulsion, and r−6 attraction. One of the two charges of the ions is fixed to the center of the particle, while the other is connected to this charge by a harmonic spring to express polarization. Polarizability is taken from quantum chemical calculations. The repulsion between different species is expressed by the combining rule of Kong [J. Chem. Phys. 59, 2464 (1972)]. Our primary target was the hydration free energy of ions which is correct within the error of calculations. We calculated water-ion clusters up to 6 water molecules, and, as a crosscheck, we determined the density and internal energy of alkali-halide crystals at ambient conditions with acceptable accuracy. The structure of hydrated ions was also discussed

  16. Laser-synchrotron studies of the dynamics of UV-photon-stimulated desorption in alkali halides

    Laser-synchrotron studies of neutral alkali emission from alkali halide crystals are yielding new insights into the dynamics of energy absorption, energy localization and bond-breaking in photon-stimulated desorption. The ground-state neutral desorption is triggered by the thermal diffusion of photon-induced electronic defects; however, the excited-state neutral alkalis are formed in a surface-specific process on an extremely short time scale. In addition, there is new evidence for a surface overlayer which retards substrate desorption, thus suggesting a new approach to the optical damage problem at ultraviolet wavelengths. 8 references

  17. Laser-synchrotron studies of the dynamics of UV-photon-stimulated desorption in alkali halides

    Laser-synchrotron studies of neutral alkali emission from alkali halide crystals are yielding new insights into the dynamics of energy absorption, energy localization and bond-breaking in photon-stimulated desorption. The ground-state neutral desorption is triggered by thermal diffusion of photon-induced electronic defects; however, the excited-state neutral alkalis are formed in a surface-specific process on an extremely short time scale. In addition, there is new evidence for a surface overlayer which retards substrate desorption, thus suggesting a new approach to the optical damage problem at ultraviolet wavelengths

  18. A new mechanism for radiation damage processes in alkali halides

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution o

  19. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  20. Alkali halide microstructured optical fiber for X-ray detection

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed

  1. Volcanic Origin of Alkali Halides on Io

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  2. A new mechanism for radiation damage processes in alkali halides

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution of all experimentally observed extended defects: metal colloids, gas bubbles, and vacancy voids. Voids are shown to arise and grow large due to the reaction between F and VF centers at the surface o...

  3. A new mechanism for radiation damage processes in alkali halides

    Dubinko, V. I.; Turkin, A. A.; Vainshtein, D. I.; den Hartog, H. W.

    1999-12-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution of all experimentally observed extended defects: metal colloids, gas bubbles, and vacancy voids. Voids are shown to arise and grow large due to the reaction between F and VF centers at the surface of halogen bubbles. Voids can ignite a back reaction between the radiolytic products resulting in decomposition of the irradiated material.

  4. Analysis and modeling of alkali halide aqueous solutions

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems that are...... very soluble in water, for example, up to more than 30 mol kg-1. Phase behaviors for the systems are analyzed at concentrations of salt up to the solubility in water at temperatures between 273 and 373 K by comparing calculated results with available experimental data and available models....

  5. Games people play with interstitials (in alkali halides)

    A survey is given of the various ways in which interstitial halogen atoms produced by ionising radiation can be trapped in alkali halides. First, the fundamental interstitial halogen atom center, the H-center, is discussed. Then, interstitial centers trapped by, or in the neighbourhood of, various impurities are presented. Particular attention is given to trapping by the following impurities: foreign halogen ions, foreign alkali ions or pairs of both. The discussion is limited to a description of the production and the models of these H-type centers and little is said about their sometimes interesting physical properties. A few speculations are offered why certain interstitial centers have not yet been observed. The models of a few paramagnetic diinterstitial centers are also presented

  6. Structure and Bonding in Small Neutral Alkali-Halide Clusters

    Aguado, A; López, J M; Alonso, J A

    1997-01-01

    The structural and bonding properties of small neutral alkali-halide clusters (AX)n, with n less than or equal to 10, A=Li, Na, K, Rb and X=F, Cl, Br, I, are studied using the ab initio Perturbed Ion (aiPI) model and a restricted structural relaxation criterion. A trend of competition between rock-salt and hexagonal ring-like isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C/r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rock-salt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n= 4, 6 and 9, and these are universal since they occur for all alkali-halides and do not depend on the specific ground state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n (n=3-7) and (AX)_3 clusters, an...

  7. Why Are Alkali Halide Solid Surfaces Not Wetted By Their Own Melt?

    Zykova-Timan, T.; Ceresoli, D.; Tartaglino, U.; Tosatti, E.

    2005-01-01

    Alkali halide (100) crystal surfaces are anomalous, being very poorly wetted by their own melt at the triple point. We present extensive simulations for NaCl, followed by calculations of the solid-vapor, solid-liquid, and liquid-vapor free energies showing that solid NaCl(100) is a nonmelting surface, and that its full behavior can quantitatively be accounted for within a simple Born-Meyer-Huggins-Fumi-Tosi model potential. The incomplete wetting is traced to the conspiracy of three factors: ...

  8. Modeling and investigation of heavy oxide and alkali-halide scintillators for potential use in neutron and gamma detection systems

    Cadiente, Jeremy S.

    2015-01-01

    Approved for public release; distribution is unlimited Heavy inorganic oxide and alkali-halide crystals, which previous experimental research has indicated to have fast neutron detection efficiencies well over 40%, were investigated for potential use as highly efficient gamma-neutron radiation detectors. The Monte Carlo N-Particle radiation transport code (MCNP) was used to characterize the radiation interactions in a candidate set of crystals, including Bismuth Germanate (BGO), Lead Tungs...

  9. Theory of freezing of alkali halides and binary alloys

    Using the basic equations of classical statistical mechanics relating the singlet densities rho1 and rho2 of a binary system to the three partial direct correlation functions csub(ij), a theory of freezing is developed. Though the theory is set up for arbitrary concentration, we focus on the freezing of the alkali halides. In particular, we show that periodic solutions of the equations for rho1 and rho2 can coexist with homogeneous solutions. The difference in free energy between periodic and homogeneous phases is built up in terms of (i) the volume difference and (ii) the Fourier components of rho1, rho2 and csub(ij). To lowest order, it is stressed that the freezing transition is determined by the charge-charge structure factor at the principal peak and by the compressibility. (author)

  10. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    Brendel' , V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  11. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    Brendel', V. M.; Bukin, V. V.; Garnov, Sergei V.; Bagdasarov, V. Kh; Denisov, N. N.; Garanin, Sergey G.; Terekhin, V. A.; Trutnev, Yurii A.

    2012-12-01

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation.

  12. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  13. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  14. Famed Bulgarian physicists. I. St. Petroff's Goettingen research of the photostimulated interconversions of color centers in alkali halides: the discovery of the photostimulated aggregation

    Georgiev, Mladen

    2008-01-01

    This essay tells briefly of the life and work of one of the most successful scientists originating from a Balkan settlement whose name and popularity have greatly exceeded its realm. The word is of a discovery during WWII of the photostimulated aggregation of the F centers (else alkali atoms) dissolved from the vapor into an alkali halide crystal. Using optical absorption techniques while a grantee of Humboldt's Foundation in Goettingen, Germany between 1943-1944, he found new absorption band...

  15. A two-accelerator facility and its use for radiation damage studies in alkali halides

    An experimental system is described in which heavy ions, of energies 50-100 MeV, and light ions of energies 0.5-2 MeV, may be transported alternately from different accelerators into a common scattering chamber. The beam-transport and scattering-chamber details are described, the latter being designed to make in-beam studies of different modes of radiation damage in the target material. Experimental studies are described of simultaneous detection of back-scattered helium ions, X-rays and optical absorption in single-crystal alkali halide samples, done during continuous irradiation by a 1 MeV He beam; also back-scattered protons following intermittent irradiation by a 60 MeV oxygen beam. Analysis of the relative damage by these two beams is discussed in relation to a damage mechanism due to Pooley

  16. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel

    2009-08-11

    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  17. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author)

  18. A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes

    Jafeen, M. J. M.; Careem, M.A.; Skaarup, Steen

    2014-01-01

    difference. In highly concentrated aqueous electrolytes, the mass of the PPy/DBS film at the end of each redox cycle is found to drift, which can be controlled by changing the concentration of the electrolyte. The PPy/DBS films were also cycled at different scan rates in various alkali halide aqueous...

  19. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    Balzer, Frank; Sun, Rong; Parisi, Jürgen;

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  20. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu+ and Ag+ and the heavy-metal ions In+ and Tl+ was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  1. Surface tension of molten alkali metal halides as a function of ion sizes

    The analysis of the experimental data on the surface tension of the liquid/vapor interphase boundary of the molten alkali metal halides MX (M Li-Cs, X = F-I) near the melting temperature, accounting for the cation and anion dimensional differences, is presented. The main attention is focused at the manifestation of the effects of the interphase boundary of the effects of the interphase boundary thickness and twofold electric layer. It is shown, that the experimental data on the whole MX series may be represented in the form of the electrocapillary curve on the graph of the surface tension dependence on the degree of the halides dimensional asymmetry

  2. Excess-electron and excess-hole states of charged alkali halide clusters

    Honea, Eric C.; Homer, Margie L.; Whetten, R. L.

    1990-12-01

    Charged alkali halide clusters from a He-cooled laser vaporization source have been used to investigate two distinct cluster states corresponding to the excess-electron and excess-hole states of the crystal. The production method is UV-laser vaporization of an alkali metal rod into a halogen-containing He flow stream, resulting in variable cluster composition and cooling sufficient to stabilize weakly bound forms. Detection of charged clusters is accomplished without subsequent ionization by pulsed-field time-of-flight mass spectrometry of the skimmed cluster beam. Three types of positively charged sodium fluoride cluster are observed, each corresponding to a distinct physical situation: NanF+n-1 (purely ionic form), Nann+1F+n-1 (excess-electron form), and NanF+n (excess-hole form). The purely ionic clusters exhibit an abundance pattern similar to that observed in sputtering and fragmentation experiments and are explained by the stability of completed cubic microlattice structures. The excess-electron clusters, in contrast, exhibit very strong abundance maxima at n = 13 and 22, corresponding to the all-odd series (2n + 1 = jxkxl;j,k,l odd). Their high relative stability is explained by the ease of Na(0) loss except when the excess electron localizes in a lattice site to complete a cuboid structure. These may correspond to the internal F-center state predicted earlier. A localized electron model incorporating structural simulation results as account for the observed pattern. The excess-hole clusters, which had been proposed as intermediates in the ionization-induced fragmentation of neutral AHCs, exhibit a smaller variation in stability, indicating that the hole might not be well localized.

  3. Famed Bulgarian physicists. I. St. Petroff's Goettingen research of the photostimulated interconversions of color centers in alkali halides: the discovery of the photostimulated aggregation

    Georgiev, Mladen

    2008-01-01

    This essay tells briefly of the life and work of one of the most successful scientists originating from a Balkan settlement whose name and popularity have greatly exceeded its realm. The word is of a discovery during WWII of the photostimulated aggregation of the F centers (else alkali atoms) dissolved from the vapor into an alkali halide crystal. Using optical absorption techniques while a grantee of Humboldt's Foundation in Goettingen, Germany between 1943-1944, he found new absorption bands pertaining to small-size F center aggregates and followed their interconversions. A primary photochemical solid state reaction was evidenced for the first time leading to nanoscale products.

  4. Reactions between cold methyl halide molecules and alkali-metal atoms

    Lutz, Jesse J

    2013-01-01

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  5. Reactions between cold methyl halide molecules and alkali-metal atoms

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow

  6. Correlations for calculating the surface tension and enthalpies of sublimation of alkali halides

    The capability of a new model on predicting the surface tension of molten alkali halides is described. A relationship, with a simple form of calculation, exists between the surface tension (γ) at the melting point, molar volume (V), inter-nuclear distance (D) and the enthalpy of sublimation (Es). The basic idea results from the assumption that all the parameters are constants that are usually easy to acquire. Moreover, two previous models (Furth and Schytil equations) were also checked and applied for calculating surface tension of molten salts. The three formulas have been examined for 20 salts and showed remarkable agreement between calculated and experimental data with a difference of less than 10% for most of the salts studied. The heats of sublimation of alkali halides were, theoretically, calculated and compared to literature values.

  7. Temperature Dependence of Interatomic Separation and Bulk Modulus for Alkali Halides

    Liu, Quan

    2016-07-01

    The values of interatomic separation r with the change of temperature T for seven alkali halides have been investigated with the help of an isobaric equation of state. The calculated results are used to predict the values of bulk modulus at different temperatures. The results are compared with the available experimental data and other theoretical results and are further discussed in view of recent research in the field of high temperature physics.

  8. Trap spectroscopy in alkali halides at synchronous measurements of exoelectron emission and luminescence by fractional glow technique. [X radiation

    Tale, I. (Latvijskij Gosudarstvennyj Univ., Riga (USSR)); Kortov, V.; Popov, V. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1982-12-16

    A fractional heating technique in spectroscopy of electron traps in the conditions of synchronous registration of exoemission and luminescence is used for the first time. LiF and KCl:Tl monocrystals excited by X-rays are investigated. Based on the equality of the TSE and TSL activation energy and frequency factors, the identity of traps giving rise to the appearance of these peaks in the temperature intervals of the hole and electron trap devastation is found. The important role of the bulk charge appearing at X-ray irradiation in the TSE of dielectrics is proved experimentally. The TSE from the bulk traps in alkali halides is shown to be an emission of 'hot electrons' which is insensitive to the value of the crystal electron affinity.

  9. Experimental studies of photon-surface interaction dynamics in the alkali halides

    We describe recent measurements which have provided, in unprecedented detail, insights into the electronic mechanisms through which energy carried into a material by photon irradiation is absorbed, localized and rechanneled to produce desorption, surface modification, erosion and damage. The specific object of these studies has been desorption induced by electronic transition in alkali halide crystals, with particular emphasis on the dynamics of changes in the surface and near-surface regions. In our experiments, the irradiating ultraviolet photons are provided by a synchrotron storage ring, and the dynamical information about desorption products is obtained from optical measurements of the quantum states, yields and velocity distributions of neutral ground-state and excited-state atoms ejected from the surface of the irradiating material. These studies have shown that the dominant exit channels in photon-induced particle emission are those producing ground-state and excited-state neutral atoms. Using dynamical information about these desorbing neutral species, obtained, for example, by laser-induced fluorescence and laser Doppler spectroscopy, we are generating an increasingly comprehensive picture of the dynamics of electronic energy flow into and out of pure crystalline surfaces in these prototypical dielectrics. We are also beginning to be able to relate desorption dynamics to specific materials properties, and to discriminate between pure surface and near-surface effects in these materials. Applications of these techniques to the problem of photon-induced surface damage and to analysis of surface dynamics in dielectric materials are discussed, and the relationships between these nearly ideal model materials and the non-crystalline, covalently bonded materials more typical of real optical elements are pointed out. 19 refs., 13 figs

  10. Mass and orientation effects in dissociative collisions between rare gas atoms and alkali halide molecules

    The collision induced dissociation of alkali halide molecules to ion pairs upon impact with hyperthermal rare gas atoms has been investigated using the crossed molecular beam method. Relative total cross sections for the dissociation of CsI, CsBr, RbI, and KI to ion pairs upon collision with xenon and krypton have been measured over a relative collision energy range from threshold to 10 and 8 eV, respectively. In addition, complete angular and energy distributions of both dissociated ions from Xe+CsI, CsBr, and RbI collisions and from Kr+CsI and CsBr collisions have been obtained at several collision energies within the above energy range. Mass, collision orientation, and energy dependence effects observed throughout this work define two limiting case dissociation mechanisms for the Xe(Kr)+MX→Xe(Kr)+M++X- processes. The dominant dissociation configuration consists of the rare gas atom incident on the light atom end of the alkali halide molecule in a near collinear collision. The less preferred dissociation mechanism results when the rare gas atom is incident in a near collinear configuration on the heavy atom end of the alkali halide molecule. Experimental measurements of the percentage of energy transfer from the relative kinetic energy between Xe(Kr) and MX to the relative motion of M+--X- range as high as 95%; these percentage energy transfers correlate well with the predictions of an impulsive collision model. Three-dimensional classical trajectory calculations using realistic interaction potentials have been performed and they verify the dynamical interpretation suggested by the experiments

  11. Physics and Nanofriction of Alkali Halide Solid Surfaces at the Melting Point

    Zykova-Timan, T.; Ceresoli, D.; Tartaglino, U.; Tosatti, E.

    2006-01-01

    Alkali halide (100) surfaces are anomalously poorly wetted by their own melt at the triple point. We carried out simulations for NaCl(100) within a simple (BMHFT) model potential. Calculations of the solid-vapor, solid-liquid and liquid-vapor free energies showed that solid NaCl(100) is a nonmelting surface, and that the incomplete wetting can be traced to the conspiracy of three factors: surface anharmonicities stabilizing the solid surface; a large density jump causing bad liquid-solid adhe...

  12. Thermoluminescence in alkali halides irradiated at 80K

    The thermoluminescence, the thermally stimulated currents and the thermal stability of the F centres induced in pure NaCl and KC1 crystals by X irradiation at 80K have been studied in detail, in the range between 80 and 300K. The thermoluminescent processes induced by illumination at 80K with F light in samples previously irradiated at room temperature has also been studied. It has been clearly observed the existence of thermoluminescent processes due to electrons and holes thermally released from traps, in which the F centres are not involved. The existence of hole-F centre recombination has not been observed. There are several thermoluminescent processes in both materials which are scribed to the recombination of F centres with mobile interstitial halogen atoms thermally released from traps, which are likely monovalent impurities in this temperature interval. The light emitting stage in these processes is originated by the formation of self trapped excitons. (Author) 66 refs

  13. Off-center impurity in alkali halides: reorientation, electric polarization and pairing to F center. III. Numerical calculations

    Baldacchini, G; Grassano, U M; Scacco, A; Petrova, P; Mladenova, M; Ivanovich, M; Georgiev, M

    2007-01-01

    We carried out numerical calculations by an extended-Hueckel program in order to check the analytical results reported in the preceding Part I and Part II. We typically consider alkali halide clusters composed of some tens of constituent atoms to calculate electronic energies under static conditions or versus the displacements of particular atoms. Among other things, the off-center displacement of substitutional Li+ impurity in most alkali halides is evidenced. The trigonometric profile of the rotational barriers is also confirmed for KCl.

  14. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  15. Study on growth of lead halides single crystals for solid-state lasers in mid-IR

    Král, Robert; Cihlář, Antonín

    Bratislava: N, 2009 - (Koman, M.; Mikloš, D.), s. 38-39 ISBN 978-80-89088-81-2. [Development of Materials Science in Research and Education - DMS -RE 2009 /19./. Závažná Poruba (SK), 31.08.2009-04.09.2009] R&D Projects: GA AV ČR KJB200100901 Institutional research plan: CEZ:AV0Z10100521 Keywords : ternary alkali lead halides * crystal growth * Bridgman method * laser mid-IR Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Two-electron F' centers in alkali halides: a saddle point approach. I. General and semicontinuum analyses

    Georgiev, Mladen

    2006-01-01

    The F' center in an alkali halide forms when an anion vacancy traps two electrons which is the prerequisite of a diatomic molecule. Indeed, the center may displace left or right along in a (110) plane, due to its coupling to the B_{1u} vibrational mode of polarization respectively. On jumping from the initial position to the final position the F' center passes through a saddle point which configuration is molecule-like being conformed by two neighboring semi-vacancies along . Each semi-vaca...

  17. Nonradiative DKR processes: revisiting the theory. IV. On the controversy over a polaron state bound to an F center in alkali halides

    Georgiev, Mladen

    2007-01-01

    We are commenting on an earlier hypothesis of polaron states bound to F centers in alkali halides. These states increasing the effective size of the color centers, they play an active role in concentration-dependent phenomena, such as the observed quenching of F center luminescence. Our record shows only one related study on NaBr and NaI which has also been aimed at checking the bound polaron hypothesis. Further studies of the concentration quenching in other alkali halide hosts whould eventu...

  18. Photography: enhancing sensitivity by silver-halide crystal doping

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHIeff of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHItheor=1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO2- as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO2·- radical so formed transfers an electron to another silver cation, so that the PHIeff limit may be of 2Ag0 per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination

  19. Photography: enhancing sensitivity by silver-halide crystal doping

    Belloni, Jacqueline

    2003-06-01

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHI{sub eff} of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHI{sub theor}=1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO{sub 2}{sup -} as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO{sub 2}{sup {center_dot}}{sup -} radical so formed transfers an electron to another silver cation, so that the PHI{sub eff} limit may be of 2Ag{sup 0} per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination.

  20. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations.

    Mester, Zoltan; Panagiotopoulos, Athanassios Z

    2015-07-28

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic

  1. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  2. Dependences of molar volumes in solids, partial molal and hydrated ionic volumes of alkali halides on covalent and ionic radii and the golden ratio

    Heyrovská, Raji

    2007-01-01

    Roč. 436, č. 1-3 (2007), s. 287-293. ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040702 Keywords : alkali halides * ionic hydration * golden ratio Subject RIV: BO - Biophysics Impact factor: 2.207, year: 2007

  3. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    Bakr, Osman M.

    2016-02-18

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  4. Sensitivity of alkali halide scintillating calorimeters with particle identification to investigate the DAMA dark matter detection claim

    Nadeau, Patrick; Di Stefano, P C F; Lanfranchi, J -C; Roth, S; von Sivers, M; Yavin, Itay

    2014-01-01

    Scintillating calorimeters are cryogenic detectors combining a measurement of scintillation with one of phonons to provide particle identification. In view of developing alkali halide devices of this type able to check the DAMA/LIBRA claim for the observation of dark matter, we have simulated detector performances to determine their sensitivity by two methods with little model-dependence. We conclude that if performance of the phonon channel can be brought in line with those of other materials, an exposure of 10 kg-days would suffice to check the DAMA/LIBRA claim in standard astrophysical scenarios. Additionally, a fairly modest array of 5 kg with background rejection would be able to directly check the DAMA/LIBRA modulation result in 2 years.

  5. Effect of replacing calcium oxide with calcium halide on crystallization and some physical properties of calcium vanadium phosphate glass ceramics

    The effect of halide ions on density, electrical, magnetic and crystallization kinetics for (20X-50P2O5-30V2O5) mole% has been investigated, where X=CaO, CaF2, CaCl2 and CaBr2. Halide ions reduce the glass transition temperature, crystallization temperature and activation energy of crystallization. Density, electrical conductivity and magnetic susceptibility increase while molar volume, glass thermal stability and interatomic distance between transition metal ions decrease as the halide ions replace the oxygen ions in these glasses. -- Research Highlights: → Replacing oxygen ions by halide ions decreases glass transition temperature and thermal stability. → Replacing oxygen ions by halide ions increases electrical conductivity and decreases activation energy. → Replacing oxygen ions by halide ions enhances the tendency of glass ceramic and decreases the crystallization activation energy.

  6. Effect of replacing calcium oxide with calcium halide on crystallization and some physical properties of calcium vanadium phosphate glass ceramics

    Assem, E.E., E-mail: e_assem_2000@sci.kfs.edu.e [Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh (Egypt)

    2011-02-01

    The effect of halide ions on density, electrical, magnetic and crystallization kinetics for (20X-50P{sub 2}O{sub 5}-30V{sub 2}O{sub 5}) mole% has been investigated, where X=CaO, CaF{sub 2}, CaCl{sub 2} and CaBr{sub 2}. Halide ions reduce the glass transition temperature, crystallization temperature and activation energy of crystallization. Density, electrical conductivity and magnetic susceptibility increase while molar volume, glass thermal stability and interatomic distance between transition metal ions decrease as the halide ions replace the oxygen ions in these glasses. -- Research Highlights: {yields} Replacing oxygen ions by halide ions decreases glass transition temperature and thermal stability. {yields} Replacing oxygen ions by halide ions increases electrical conductivity and decreases activation energy. {yields} Replacing oxygen ions by halide ions enhances the tendency of glass ceramic and decreases the crystallization activation energy.

  7. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  8. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  9. Ion partitioning at the liquid/vapor interface of a multicomponent alkali halide solution: A model for aqueous sea salt aerosols

    Ghosal, S.; Brown, M. A.; Bluhm, H.; Krisch, M. J.; Salmeron, M.; Jungwirth, Pavel; Hemminger, J. C.

    2008-01-01

    Roč. 112, č. 48 (2008), s. 12378-12384. ISSN 1089-5639 R&D Projects: GA ČR GA203/07/1006; GA MŠk LC512 Grant ostatní: NSF(US) CHE0431312 Institutional research plan: CEZ:AV0Z40550506 Keywords : photoelectron spectroscopy * molecular dynamics * water surface * alkali halides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008

  10. Alkali atoms, dimers, exciplexes and clusters in 4He crystals

    this effect to the formation of an entangled diatomic bubble state. The doped region of the He crystal has a bluish color that originates from Mie scattering by alkali clusters, the size distribution of which can be inferred from the extinction spectrum. When the doped He crystal is molten by lowering the He pressure, the doped (column-shaped) region remains solid at pressures, where pure He is superfluid. We present experimental support for our hypothesis that this new form of solid He is an amorphous or crystalline ionic structure formed by snowballs (nanoscopic solid He structures formed around positive ions) and electron bubbles. (author)

  11. Electrohydrodynamic emission of positive and negative ions from alkali-metal halide melts

    The characteristics of electrohydrodynamic (EHD) emission of positive and negative ions from melts of alkali-metal metals are presented. The angular current density is 3-4 μA/sr with emission currents of 0.1-0.5 μA. The salt EHD sources which have been developed yield stable currents of K+, Rb+, Cs+, F-, Cl-, and I- ions for several tens of hours. 10 refs., 4 figs., 1 tab

  12. Tunable Crystal-to-Crystal Phase Transition in a Cadmium Halide Chain Polymer

    Ulli Englert

    2011-07-01

    Full Text Available The chain polymer [{Cd(μ-X2py2}1∞] (X = Cl, Br; py = pyridine undergoes a fully reversible phase transition between a monoclinic low-temperature and an orthorhombic high-temperature phase. The transformation can be directly monitored in single crystals and can be confirmed for the bulk by powder diffraction. The transition temperature can be adjusted by tuning the composition of the mixed-halide phase: Transition temperatures between 175 K up to the decomposition of the material at ca. 350 K are accessible. Elemental analysis, ion chromatography and site occupancy refinements from single-crystal X-ray diffraction agree with respect to the stoichiometric composition of the samples.

  13. Photostimulated luminescence in alkali halides induced by excitation with ionizing radiation

    The photostimulated luminescence (PSL) phenomenon induced in copper-doped sodium chloride (NaCl : Cu) and europium-doped potassium chloride (KCl : Eu) phosphor crystals by excitation with ionizing radiation such as X-rays is studied. The emission mechanism of the PSL in both phosphor crystals is discussed in terms of the recombination of electrons optically stimulated from the radiation-induced F centers with the luminescence centers such as Cu2+ in NaCl and Eu3+ ions in KCl. The potentiality of both phosphor crystals as a material for two-dimensional X-ray imaging sensors utilizing the PSL phenomenon is also discussed. ((orig.))

  14. Coloration of cadmium halide crystals due to reactor irradiation at low temperature

    The optical absorption spectra and ESR spectra of cadmium halide crystals were measured after the reactor irradiation at low temperature to study the coloration. The irradiated neutron dose was about 5 x 1017 n/cm2. In the measurement of ESR spectra, the crystal was rotated around the v-axis (the two-fold axis) in the magnetic field of fixed direction. The optical absorption spectra showed that the Cd3+ center was generated. From the analysis of the angular dependence of ESR spectra, the centers of C(2h) symmetry and the centers of D(3d) symmetry were considered to be generated. The models of these centers were considered, and the angular dependence was analyzed. It can be concluded from the present experiment that the coloration of cadmium halide crystals is recognized as the results of the reactor irradiation at low temperature. (Kato, T.)

  15. Effect of halides addition on the ligand field of chromium in alkali borate glasses

    Hassan, M.A., E-mail: moukhtar_hassan@yahoo.com

    2013-10-15

    Highlights: •The 10 KM–64.7 B{sub 2}O{sub 3}–25 Na{sub 2}O–0.3 Cr{sub 2}O{sub 3} (M = Cl, Br and I) glassy system was prepared by a quenching method. •Optical basicity, ligand field theory optical band gap energy, refractive index, ESR and IR were studied. •The electronegativity plays an important role in deforming the crystal field around the transition metal ions. •The crystal-field sites of KCl or KBr sample are very strong compared to the very weak one in the KI sample. -- Abstract: Borate oxide glass system of composition 10 KM–64.7 B{sub 2}O{sub 3}–25 Na{sub 2}O–0.3 Cr{sub 2}O{sub 3} (M = Cl, Br and I) was prepared by conventional melt quenching technique. The amorphous nature of the investigated glasses was checked by the X-ray diffraction (XRD) technique. The optical basicity of the system has been calculated, and was found to increase by going from KCl to KBr and to KI. Optical absorption spectra were recorded in the UV–visible range. Through a careful analysis of the data, the ligand field parameters (crystal field strength Dq, Racah parameters B and nephelauxetic functions h) and the optical parameters (optical band gap, Urbach tail band width, and refractive index) have been estimated. The obtained results reveal a strong correlation between that ligand field parameters and the type of halogen atom; the crystal-field strength of KCl or KBr samples are very pronounced but it is rather weak in the KI sample. Electron spin resonance (ESR) has been used to probe the valency of the Chromium ions. The resulting ESR parameters revealed that chromium ions are predominantly in the trivalent state with traces of hexavalent state. Using Infrared spectroscopy (IR) information on the boron structural units has been obtained. The N{sub 4} ratio increases by replacing the KCl by KBr or KI, and it was found that the tetrahedral coordination of Cr{sup +} ions becomes preferential in the host glasses with increasing the optical basicity.

  16. Effect of homologous impurities on primary radiation defect accumulation in alkali halides

    To clarify the mechanism of the effect of anion and cation homologous impurities on the primary radiation-induced defect accumulation, the transient absorption of H and F centers was studied in KCl and KBr crystals. Pulse electron accelerator technique was used. Pure and doped crystals were investigated. It was obtained that the cation homologue Na in the concentration range from 0 to 0.5 m. % in 10-8-10-6 s post-irradiation time has no effect on the defect accumulation efficiency at low temperature and increases the latter at high temperature. At large post-irradiation time and at high temperatures the rise of efficiency at low Na concentration and decrease of it at high Na concentrations were observed. The conclusion was made that Na does not affect the generation process. The anion homologous impurities (I and Br) lead to a significant increase of the accumulation efficiency due to the formation of more stable F-H pair at self-trapped exciton decay on anion impurities compared with that formed in perfect lattice. Some assumptions are advanced to explain the effect

  17. Thermoluminescence in alkali halides irradiated at 80K; Termoluminiscencia en haluros alcalinos irradiados a 80K

    Jimenez de Castro, M.

    1978-07-01

    The thermoluminescence, the thermally stimulated currents and the thermal stability of the F centres induced in pure NaCl and KC1 crystals by X irradiation at 80K have been studied in detail, In the range between 80 and 300K. The thermoluminescent processes induced by illumination at 80K with F light in samples previously irradiated at room temperature has also been studied. It has been clearly observed the existence of thermoluminescent processes due to electrons and holes thermally released from traps, in which the F centres are not involved. The existence of hole-F centre recombination has not been observed. There are several thermoluminescent processes in both materials which are scribed to the recombination of F centres with mobile interstitial halogen atoms thermally released from traps, which are likely monovalent impurities in this temperature interval. The light emitting stage in these processes is originated by the formation of self trapped excitons. (Author) 66 refs.

  18. Differential calorimeter and temperature controller for stored energy measurements in irradiated alkali halides

    The design and performance of a simple temperature-controlled differential calorimeter are presented. This system allows to measure radiation-induced stored energy in insulators, above room temperature with a differential thermal analysis method. With platelets of KC1 single crystals, the base lines obtained for T2 T1 (with T2: irradiated sample temperature and T1: reference sample temperature) show a smooth drift less of 0,2 degree centigree in the interval from 25 to 400 degree centigree. The discrepancy between two consecutive base lines is less than ± 0,02 degree centigree which implies a calorimeter sensitivity of about ±0,004 cal/g. This sensitivity allows to measure stored energy release in samples with a color center concentration low enough to be directly measured with a spectrophotometer so that a search for correlations among the features of the stored energy spectrum and the color center annealing can be made. (Author) 13 refs

  19. Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces

    Laurent Nony

    2012-03-01

    Full Text Available We investigated the adsorption of 4-methoxy-4′-(3-sulfonatopropylstilbazolium (MSPS on different ionic (001 crystal surfaces by means of noncontact atomic force microscopy. MSPS is a zwitterionic molecule with a strong electric dipole moment. When deposited onto the substrates at room temperature, MSPS diffuses to step edges and defect sites and forms disordered assemblies of molecules. Subsequent annealing induces two different processes: First, at high coverage, the molecules assemble into a well-organized quadratic lattice, which is perfectly aligned with the directions of the substrate surface (i.e., rows of equal charges and which produces a Moiré pattern due to coincidences with the substrate lattice constant. Second, at low coverage, we observe step edges decorated with MSPS molecules that run along the direction. These polar steps most probably minimize the surface energy as they counterbalance the molecular dipole by presenting oppositely charged ions on the rearranged step edge.

  20. Intrinsic femtosecond charge generation dynamics in a single crystal organometal halide perovskite

    Valverde-Chávez, David A.; Ponseca Jr., Carlito; Stoumpos, Constantinos; Yartsev, Arkady; Kanatzidis, Mercouri G.; Sundström, Villy; Cooke, David G.

    2015-01-01

    Hybrid metal-organic perovskite solar cells have astounded the solar cell community with their rapid rise in efficiency over the past three years. Despite this success, the basic processes governing the photogeneration of free charges, particularly their dynamics and efficiency, remain unknown. Here we use ultrabroadband pulses of THz frequency light to see the intrinsic photophysical properties of single crystal lead halide perovskite just femtoseconds after a photon is first absorbed. Our s...

  1. New halides of neodymium and their crystal structures

    The crystal structures of the peritectic phases NdClsub(2.27) (t-phase) and NdClsub(2.37) (rh-phase) were determined. The structure of the rh-phase was solved, from the t-phase only the elementary cell could be determined because no single crystals of sufficient quality were obtained. Jutting out feature of the rh-phase which has to be formulated as Nd14Cl32O is a polyeder cluster of 6 quadratic antiprisms the inner cubo octahedric cavity of which is occupied by an oxygen atom. The linkage of these polyeder cluster ensues only under each other along the triple axis of the rhomboedric system over 3 upper and 3 lower common borders each. Therewith for the first time a superlattice of the fluorite-type was found in which this unit exclusively occurs. The type of linkage of polyeder clusters causes the occurrence of an exceptional polyeder around the twovalent Nd ions which can be looked at as a zwitter polyeder of icosahedron and cube and therefore coordinates tenfold the twovalent neodymium. The strict order of chemically and crystallografically clearly differentiated cations is expressed by a hexagonal-rhomboedric superstructure of the fluorite-aristotyp with a doubled c-axis. The phase diagram of the system Nd-NdBr3 was determined and a structure proposition was worked out for the first Vernier phase in there with n=4 of the series Lnsub(n)Xsub(2n+1). (SPI)

  2. Photofragmentation of metal halides

    The author deals with photodissociation of molecules of alkali halides. It is shown that the total absorption cross section consists of two contributions arising from transitions to excited states of total electronic angular momentum Ω=0+ and Ω=1. From the inversion of the absorption continua potential energy curves of the excited states can be constructed in the Franck-Condon region. It is found that for all alkali halides the 0+ state is higher in energy than the Ω=1 state. Extensive studies are reported on three thallium halides, TlI, TlBr and TlCl at various wavelengths covering the near ultraviolet region. (Auth.)

  3. A different view of structure-making and structure-breaking in alkali halide aqueous solutions through x-ray absorption spectroscopy.

    Waluyo, Iradwikanari; Nordlund, Dennis; Bergmann, Uwe; Schlesinger, Daniel; Pettersson, Lars G M; Nilsson, Anders

    2014-06-28

    X-ray absorption spectroscopy measured in transmission mode was used to study the effect of alkali and halide ions on the hydrogen-bonding (H-bonding) network of water. Cl(-) and Br(-) are shown to have insignificant effect on the structure of water while I(-) locally weakens the H-bonding, as indicated by a sharp increase of the main-edge feature in the x-ray absorption spectra. All alkali cations act as structure-breakers in water, weakening the H-bonding network. The spectral changes are similar to spectra of high density ices where the 2nd shell has collapsed due to a break-down of the tetrahedral structures, although here, around the ions, the breakdown of the local tetrahedrality is rather due to non-directional H-bonding to the larger anions. In addition, results from temperature-dependent x-ray Raman scattering measurements of NaCl solution confirm the H-bond breaking effect of Na(+) and the effect on the liquid as similar to an increase in temperature. PMID:24985653

  4. Mass spectrometry of oligopeptides in the presence of large amounts of alkali halides using desorption/ionization induced by neutral cluster impact.

    Portz, André; Baur, Markus; Gebhardt, Christoph R; Dürr, Michael

    2016-06-01

    Oligopeptides in the presence of large amounts of salt were desorbed and ionized using desorption/ionization induced by neutral clusters (DINeC) for further analysis by means of mass spectrometry (MS). Using oligopeptides in alkali halide solutions as a model system, DINeC was shown to yield clear and fragmentation free mass spectra of the biomolecules even from environments with a large excess of salt. The results were traced back to a phase separation between salt and biomolecules during sample preparation. The ratio between alkali metal complexes [M+A](+) and bare biomolecules [M+H](+) was controlled using different preparation schemes. DINeC was applied to the products of a tryptic digest of bovine serum albumin in the presence of sodium chloride; the results of a mass fingerprint analysis did not show a major difference for the spectra with and without salt in the original solution. The metal-ion/peptide interaction was further investigated by means of tandem-MS. PMID:26825286

  5. Metallotropic liquid crystals formed by surfactant templating of molten metal halides.

    Martin, James D; Keary, Cristin L; Thornton, Todd A; Novotnak, Mark P; Knutson, Jeremey W; Folmer, Jacob C W

    2006-04-01

    Liquid crystals consist of anisotropic molecular units, and most are organic molecules. Materials incorporating metals into anisotropic molecules, described as metallomesogens, have been prepared. Anisotropic structures such as one-dimensional chains and two-dimensional layers are frequently observed in solid-state inorganic materials, however, little is understood about structural organization in melts of such materials. Achieving liquid-crystalline behaviour in inorganic fluids should be possible if the anisotropic structure can be retained or designed into the molten phase. We demonstrated the ability to engineer zeolite-type structures into metal halide glasses and liquids. In this work we have engineered lamellar, cubic and hexagonal liquid-crystalline structure in metal-halide melts by controlling the volume fraction and nature of the inorganic block (up to 80 mol%) with respect to alkylammonium surfactants. The high metal content of these liquid-crystalline systems significantly advances the field of metallomesogens, which seeks to combine magnetic, electronic, optical, redox and catalytic properties common to inorganic materials with the fluid properties of liquid crystals. PMID:16547520

  6. Growth of high quality mercurous halide single crystals by physical vapor transport method for AOM and radiation detection applications

    Amarasinghe, Priyanthi M.; Kim, Joo-Soo; Chen, Henry; Trivedi, Sudhir; Qadri, Syed B.; Soos, Jolanta; Diestler, Mark; Zhang, Dajie; Gupta, Neelam; Jensen, Janet L.; Jensen, James

    2016-09-01

    Single crystals of mercurous halide were grown by physical vapor transport method (PVT). The orientation and the crystalline quality of the grown crystals were determined using high resolution x-ray diffraction (HRXRD) technique. The full width at half maximum (FWHM) of the grown mercurous bromide crystals was measured to be 0.13 degrees for (004) reflection, which is the best that has been achieved so far for PVT grown mercurous halide single crystals. The extended defects of the crystals were also analyzed using high resolution x-ray diffraction topography. Preliminary studies were carried out to evaluate the performance of the crystals on acousto-optic modulator (AOM) and gamma-ray detector applications. The results indicate the grown mercurous halide crystals are excellent materials for acousto-optic modulator device fabrication. The diffraction efficiencies of the fabricated AOM device with 1152 and 1523 nm wavelength lasers polarizing parallel to the acoustic wave were found to be 35% and 28%, respectively. The results also indicate the grown crystals are a promising material for gamma-ray detector application with a very high energy resolution of 1.86% FWHM.

  7. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction

  8. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  9. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  10. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii.

    Søren Brander

    Full Text Available The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3 and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ~0.5-2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (K(M but to pH dependence of catalytic turnover: The k(cat of B. clausii cotA was 1 s⁻¹ at pH 6 and 5 s⁻¹ at pH 8 in contrast to 6 s⁻¹ at pH 6 and 2 s⁻¹ at pH 8 for of B. subtilis cotA. Overall, k(cat/K(M was 10-fold higher for B. subtilis cotA at pH(opt. While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500-700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ~20 minutes half-life at 80°C, less than the ~50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH~8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization.

  11. Quasicharacteristic radiation of relativistic electrons at orientation motion in lithium halides crystals along charged planes and axes

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.

    2016-07-01

    The paper deals with the investigation of the orientation motion of relativistic electrons in charged (111) planes and charged [110] axes of lithium halides ionic crystals of LiF, LiCl, LiBr and LiI. On the basis of these investigations the spectra of quasicharacteristic radiation for the electron beams with various Lorentz-factors both in planar and axial cases have been calculated numerically.

  12. Reaction rate approach to dipolar relaxation in alkali halides: Adiabaticity versus classical, activated-tunneling, and quantal dipoles

    Medrano, C; Georgiev, M.

    2007-01-01

    This paper is aimed at presenting a simple vibronic model for describing the dipolar reorientation in crystals by means of reaction rate theory. The Hamiltonian of an isolated dipole is simplified so as to render the problem solvable. Depending on the crossover splitting the dipoles may reorientate adiabatically with a high electron-transfer expectancy or exhibit low reorientation rates due to low expectancy. An important quantity to distinguish between adiabatic dipoles behaving classically ...

  13. Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells.

    Zhou, Yuanyuan; Yang, Mengjin; Game, Onkar S; Wu, Wenwen; Kwun, Joonsuh; Strauss, Martin A; Yan, Yanfa; Huang, Jinsong; Zhu, Kai; Padture, Nitin P

    2016-01-27

    Wide-bandgap perovskite solar cells (PSCs) based on organolead (I, Br)-mixed halide perovskites (e.g., MAPbI2Br and MAPbIBr2 perovskite with bandgaps of 1.77 and 2.05 eV, respectively) are considered as promising low-cost alternatives for application in tandem or multijunction photovoltaics (PVs). Here, we demonstrate that manipulating the crystallization behavior of (I, Br)-mixed halide perovskites in antisolvent bath is critical for the formation of smooth, dense thin films of these perovskites. Since the growth of perovskite grains from a precursor solution tends to be more rapid with increasing Br content, further enhancement in the nucleation rate becomes necessary for the effective decoupling of the nucleation and the crystal-growth stages in Br-rich perovskites. This is enabled by introducing simple stirring during antisolvent-bathing, which induces enhanced advection transport of the extracted precursor-solvent into the bath environment. Consequently, wide-bandgap planar PSCs fabricated using these high quality mixed-halide perovskite thin films, Br-rich MAPbIBr2, in particular, show enhanced PV performance. PMID:26726763

  14. Study of growth conditions influence on shape and position of crystal/melt interface during crystal growth of ternary halides by vertical bridgman method

    Cihlář, Antonín; Král, Robert

    Bratislava: Slovak Expert Group of Solid State Chemistry and Physics , 2011 - (Koman, M.; Jorík, V.), 32-33 ISBN 978-80-8134-002-4. [Joint Seminar – Development of materials science in research and education (DMRSE)/21.th./. Kežmarské Žlaby (SK), 29.08.2011-02.09.2011] R&D Projects: GA AV ČR KJB200100901 Institutional research plan: CEZ:AV0Z10100521 Keywords : crystal growth * growth conditions * vertical Bridgman method * crystal melt interface * ternary halid Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Electrolytic systems and methods for making metal halides and refining metals

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  16. Preparation of cerium halide solvate complexes

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  17. Structural systematic and crystal chemistry of novel borates with REE, Pb, Sr, and alkali metals

    Crystal structures of novel borates with REE, Pb, Sr and alkali metals were analyzed using classical fundamental buildings blocks approach. It is demonstrated that hexa-, penta-, tetra-, tri- and diborates subdivisions in systematic are real families of structures with the common peculiarities. According to the symmetrical way and the degree of FBB condensation structural-generic rows exist in every of subdivisions. Mega- or polyborates subdivision is valid for the structures with the different types of simplest FBB. In all new complex borates it is possible to separate FBB of equal or different types which are presented in isolated form or are connected into chains, layers or frameworks, and to find unexpected correlation between structures. The possibility to recognize and to visualize in this approach the polarity or non-polarity of the structural units and correspondingly the polarity or nonpolarity of the structures in the whole is very important for the conclusion on structure-properties relation. (orig.)

  18. Radiation processes in crystal solid solutions

    Gladyshev, Gennadi

    2012-01-01

    This is a monograph explaining processes occurring in two classes of crystal solids (metal alloys and doped alkali halide) under irradiation by various types of radiation (alpha, beta, gamma, X-radiations, ions). This e-book is a useful reference for advanced readers interested in the physics of radiation and solid state physics.

  19. Stability diagrams for complexes in molten mixtures of halide salts

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudo-potential radii of Zunger and Cohen. As a third alternative we also consider a classification based on Pettifor's phenomenological chemical scale of the elements. The alternative structural classification schemes that are developed from these elemental properties are very successful in distinguishing molten mixtures in which the available experimental evidence indicates stability of ''complexes'', i.e. long-lived fourfold coordination of polyvalent metal ions. (author). 55 refs, 3 figs

  20. Preparation and Single-Crystal X-Ray Structures of Four Related Mixed-Ligand 4-Methylpyridine Indium Halide Complexes

    Hepp, Aloysius F.; Clark, Eric B.; Schupp, John D.; Williams, Jennifer N.; Duraj, Stan A.; Fanwick, Philip E.

    2013-01-01

    We describe the structures of four related indium complexes obtained during synthesis of solid-state materials precursors. Indium adducts of halides and 4-methylpyridine, InX3(pic)3 (X = Cl, Br; pic = 4-methylpyridine) consist of octahedral molecules with meridional (mer) geometry. Crystals of mer-InCl3(pic)3 (1) are triclinic, space group P1(bar) (No. 2), with a = 9.3240(3), b = 13.9580(6), c = 16.7268 (7) A, alpha = 84.323(2), beta = 80.938(2), gamma = 78.274(3)Z = 4, R = 0.035 for 8820 unique reflections. Crystals of mer-InBr3(pic)3 (2) are monoclinic, space group P21/n (No. 14), with a = 15.010(2), b = 19.938(2), c = 16.593(3), beta = 116.44(1)Z = 8, R = 0.053 for 4174 unique reflections. The synthesis and structures of related compounds with phenylsulfide (chloride) (3) and a dimeric complex with bridging hydroxide (bromide) (4) coordination is also described. Crystals of trans-In(SC6H5)Cl2(pic)3 (3) are monoclinic, space group P21/n (No. 14), with a = 9.5265(2), b = 17.8729(6), c = 13.8296(4), beta = 99.7640(15)Z = 4, R = 0.048 for 5511 unique reflections. Crystals of [In(mu-OH)Br2(pic)22 (4) are tetragonal, space group = I41cd (No. 110) with a = 19.8560(4), b = 19.8560(4), c = 25.9528(6), Z = 8, R = 0.039 for 5982 unique reflections.

  1. Purification, crystallization and halide phasing of a Streptococcus agalactiae backbone pilin GBS80 fragment

    Vengadesan, Krishnan; Ma, Xin; Dwivedi, Prabhat; Ton-That, Hung; Narayana, Sthanam V. L

    2010-01-01

    The C-terminal fragment of Streptococcus agalactiae (group B streptococcus) major (backbone) pilin GBS80 was purified and crystallized in two different space groups. Single-wavelength anomalous dispersion (SAD) data collected to 2.0 Å resolution on a iodide (NaI) derivative crystal using the home source were used to obtain initial phases.

  2. Ionic conductivity in gem-quality single-crystal alkali feldspar from the Eifel: temperature, orientation and composition dependence

    El Maanaoui, Hamid; Wilangowski, Fabian; Maheshwari, Aditya; Wiemhöfer, Hans-Dieter; Abart, Rainer; Stolwijk, Nicolaas A.

    2016-05-01

    We measured the ion conductivity of single-crystal alkali feldspar originating from two different locations in the Eifel/Germany, named Volkesfeld and Rockeskyller sanidine and having potassium site fractions C_K of 0.83 and 0.71, respectively. The dc conductivities resulting from electrochemical impedance spectroscopy over the temperature range of 300-900°C show a weak composition dependence but pronounced differences between the b-direction [perp (010)] and c^{*}-direction [perp (001)] of the monoclinic feldspar structure. Conductivity activation energies obtained from the observed linear Arrhenius plots are close to 1.2 eV in all cases, which is closely similar to the activation energies of the ^{22}Na tracer diffusivity in the same crystals. Taking into account literature data on K tracer diffusion and diffusion correlation effects, the present results point to a predominance of the interstitialcy mechanism over the vacancy mechanism in mass and charge transport on the alkali sublattice in potassium-rich alkali feldspar.

  3. The role of oxygen containing impurities in defects formation in cesium halide crystals

    Hud, I.; Garapyn, I.; Pavlyk, B.

    2003-01-01

    The dependence of defect formation efficiency in CsI single crystals both on the type of oxygen containing impurities and the value of the absorbed irradiation dose was studied. Correlative results were obtained under investigation by methods of ionic thermocurrent (ITC), thermostimulated exoemission (TSEE), electrical conductivity and optical spectroscopy. The peculiarities of defect formation in gamma-irradiated CsI-CO3(SO4, OH) and X-irradiated CsI-OH single crystals are discussed.

  4. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth

    Saidaminov, Makhsud I.

    2015-10-20

    Here we show the retrograde solubility of various hybrid perovskites through the correct choice of solvent(s) and report their solubility curves. Retrograde solubility enables to develop inverse temperature crystallization of FAPbX3 (FA = HC(NH2)2+, X = Br−/I−). FAPbI3 crystals exhibit a 1.4 eV bandgap – considerably narrower than their polycrystalline counterparts.

  5. Intensity distributions of reflected surface channeling protons scattered on surfaces of electron-bombarded alkali halide crystals

    Fukazawa, Y., E-mail: yukofu@cc.osaka-kyoiku.ac.jp; Kihara, K.; Iwamoto, K.; Susuki, Y.

    2013-11-15

    We have examined the surface-channeling of 550 keV protons on electron-bombarded KBr(0 0 1) surfaces at grazing incidence. On the surface, electron-stimulated desorption (ESD) resulting from the irradiation of 5 keV electrons changes the surface morphology. In order to investigate the change of the surface morphology, the luminous intensity distributions observed on a fluorescent screen (scattering patterns) of the reflected protons under the surface-channeling conditions are measured. Normalized specular intensity of the protons oscillates, and the results of computer simulations show that the period of the intensity oscillation agrees with the period of layer-by-layer desorption. The measured period of the oscillation is comparable to the simulated one, i.e., the period of the desorption, however, the measured amplitude of the oscillation is weak. This shows that the layer-by-layer desorption of the experimental surface is observed but is not as remarkable as that of the perfect surface introduced in the simulation.

  6. Mechanochemical synthesis in copper(II) halide/pyridine systems: single crystal X-ray diffraction and IR spectroscopic studies.

    Bowmaker, Graham A; Di Nicola, Corrado; Pettinari, Claudio; Skelton, Brian W; Somers, Neil; White, Allan H

    2011-05-14

    Whereas complexes of divalent metal halides (X = Cl, Br, I) with/from pyridine commonly crystallise as trans-[M(py)(4)X(2)]·2py, M on a site of 222 symmetry in space group Ccca, true for CuCl(2) and CuBr(2) in particular, the copper(II) iodide adduct is of the form [Cu(py)(4)I]I·2py, Cu on a site of mm2 symmetry in space group Cmcm, and five-coordinate (square-pyramidal), the same cationic species also being found in 2[Cu(py)(4)I](I(3))·[(py)(2)Cu(μ-I)(2)Cu(py)(2)] (structurally defined). Bromide or N-thiocyanate may be substituted for the unbound iodide ion in the solvated salt, resulting in complexes which crystallize in space group Ccca, but with both anions and the metal atom disordered. In [Cu(py)(4)(I(3))(2)], a pair of long Cu···I contacts approach a square-planar Cu(py)(4) array. Assignments of the ν(CuN) and ν(CuX) (X = Br, I, SCN) bands in the far-IR spectra are made, the latter with the aid of analogous assignments for [Cu(py)(2)X(2)] (X = Cl, Br), which show a dependence of ν(CuX) on the Cu-X bond length that is very similar to that determined previously for copper(i) halide complexes. The structure of the adventitious complex [(trans-)(H(2)O)(py)(4)CuClCu(py)(4)](I(3))(3)·H(2)O is also recorded, with six- and five-coordinate copper atoms; rational synthesis provides [{Cu(py)(4)}(2)(μ-Cl)](I(3))(3)·H(2)O with one water molecule less. In [{Cu(py)(4)Cl}((∞|∞))](I(3))·3py, square pyramidal [Cu(py)(4)Cl](+) cations, assisted by Cl···Cu interactions, stack to give rise to infinite polymeric strings. Several of these compounds were prepared mechanochemically, illustrating the applicability of this method to syntheses involving redox reactions as well as to complex syntheses involving up to five components. The totality of results demonstrates that the [Cu(II)(py)(4)] entity can be stabilized in an unexpectedly diverse range of mononuclear and multinuclear complexes through the presence of lattice pyridine molecules, the bulky triiodide

  7. Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites

    Michele De Bastiani

    2014-08-01

    Full Text Available We have fabricated CH3NH3PbI3−xClx perovskite thin films crystallized in situ on substrates of different natures (e.g., porosity, wettability and investigated their photoluminescence properties. We observe that the crystallization time and thin film structure are strongly influenced by the chemical nature and porosity of the substrate. Moreover, we find that the mesoporous scaffold can tune the emissive properties of the semiconducting compound both in terms of spectral region and dynamics. In particular, perovskite crystallites grown in the nanometre size porous scaffold present a shorter-living and blue-shifted emission with respect to the perovskite crystals which are free to grow without any constraints.

  8. Systematic hardness measurements on single crystals and polycrystalline blanks of cesium halides

    D B Sirdeshmukh; P Geeta Krishna; K G Subhadra

    2002-06-01

    Vickers and knoop hardness measurements were carried out on CsBr and CsI single crystals. Polycrystalline blanks of CsCl, CsBr and CsI were prepared by melting and characterized by X-ray diffraction. Vickers hardness measurements were carried out on these blanks. The hardness values were correlated with the lattice constant and the Schottky defect formation energy.

  9. Oxidation of hydrogen halides to elemental halogens

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  10. Alkali-ions diffusion, mullite formation, and crystals dissolution during sintering of porcelain bodies: Microstructural approach

    Leonelli, C.; Kamseu, E.; Boccaccini, Dino; Sglavo, V.M.; Pellacani, G.C.

    2009-01-01

    The effect of alkali-silicate glassy matrix as replacement for feldspar in soft and hard porcelain compositions was studied. SEM and X-ray diffraction analysis were used to evidence phase evolution. For each composition, the influence of soaking time was evaluated. The difference in chemical comp...

  11. Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I).

    Fu, Yongping; Zhu, Haiming; Stoumpos, Constantinos C; Ding, Qi; Wang, Jue; Kanatzidis, Mercouri G; Zhu, Xiaoyang; Jin, Song

    2016-08-23

    Lead halide perovskite nanowires (NWs) are emerging as a class of inexpensive semiconductors with broad bandgap tunability for optoelectronics, such as tunable NW lasers. Despite exciting progress, the current organic-inorganic hybrid perovskite NW lasers suffer from limited tunable wavelength range and poor material stability. Herein, we report facile solution growth of single-crystal NWs of inorganic perovskite CsPbX3 (X = Br, Cl) and their alloys [CsPb(Br,Cl)3] and a low-temperature vapor-phase halide exchange method to convert CsPbBr3 NWs into perovskite phase CsPb(Br,I)3 alloys and metastable CsPbI3 with well-preserved perovskite crystal lattice and NW morphology. These single crystalline NWs with smooth end facets and subwavelength dimensions are ideal Fabry-Perot cavities for NW lasers. Optically pumped tunable lasing across the entire visible spectrum (420-710 nm) is demonstrated at room temperature from these NWs with low lasing thresholds and high-quality factors. Such highly efficient lasing similar to what can be achieved with organic-inorganic hybrid perovskites indicates that organic cation is not essential for light emission application from these lead halide perovskite materials. Furthermore, the CsPbBr3 NW lasers show stable lasing emission with no measurable degradation after at least 8 h or 7.2 × 10(9) laser shots under continuous illumination, which are substantially more robust than their organic-inorganic counterparts. The Cs-based perovskites offer a stable material platform for tunable NW lasers and other nanoscale optoelectronic devices. PMID:27437566

  12. Magnetoplastic effect in irradiated NaCl and LiF crystals

    Impact of low doses of X-ray radiation on magnetoplastic effect is alkali-halide crystals, consisting in detachment of dislocations from paramagnetic centers under effect of external magnetic field is studied. The measurements of LiF crystals and three types of NaCl crystals, differing in the admixture content were conducted. Dependence of the dislocations medium run on the sample rotation frequency in the magnetic field proved to be especially sensitive to low doses

  13. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF6 single crystals for thermal neutron detector

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF6 (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and α-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu2+ were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under 252Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB3O5 (LBO)

    The recombination processes and lattice defects in crystals of alkali metal borate LiB3O5 (LBO) were studied by the means of the thermally stimulated luminescence (TL) and electron spin resonance (ESR) techniques. The glow curves, the spectra of the LBO recombination luminescence, and the angular variations of ESR-spectra of the O- center in three different planes were measured in the temperature range from 80 to 400 K. The luminescence bands were assigned to the electron (Em=4.0 eV) and hole (Em=4.2 eV) recombination processes. The model of the trapped hole center O- was proposed. The processes responsible for the formation of localised electronic excitations in LBO were discussed and compared with those taking place in other wide-gap oxides

  15. Differential calorimeter and temperature controller for stored energy measurements in irradiated alkali halides; Calorimetro diferencial y controlador de temperatura para medidas de energia almacenada en haluros alcalinos irradiados

    Delgado Martinez, L.

    1977-07-01

    The design and performance of a simple temperature-controlled differential calorimeter are presented. This system allows to measure radiation-induced stored energy in insulators, above room temperature with a differential thermal analysis method. With platelets of KC1 single crystals, the base lines obtained for T{sub 2} T{sub 1} (with T{sub 2}: irradiated sample temperature and T{sub 1}: reference sample temperature) show a smooth drift less of 0,2 degree centigree in the interval from 25 to 400 degree centigree. The discrepancy between two consecutive base lines is less than {+-} 0,02 degree centigree which implies a calorimeter sensitivity of about {+-}0,004 cal/g. This sensitivity allows to measure stored energy release in samples with a color center concentration low enough to be directly measured with a spectrophotometer so that a search for correlations among the features of the stored energy spectrum and the color center annealing can be made. (Author) 13 refs.

  16. Evolution of an alkali basalt-trachyte suite from Jebel Marra volcano, Sudan, through assimilation and fractional crystallization

    The suite of alkali basalts and differentiates (hawaiites, mugearites and trachytes) erupted at Jebel Marra volcano, Sudan, provides an excellent opportunity to examine the differentiation theory of mantle-derived magmas. Crystal fractionation exerts a control on major element compositions although variations in incompatible element and isotopic ratios among the more evolved volcanic rocks require open system behavior. The basement at Jebel and Marra is compositionally unlike the basalts, with much higher 87Sr/86Sr, δ18O and Rb/Nb, together with highly variable Pb isotopic compositions and low 143Nd/144Nd. The strong compositional contrast between crust and magma allows the influence of crustal interaction on magma compositions to be assessed. Simple two-component bulk mixing trends are not observed, but models of simultaneous assimilation and fractional crystallization (AFC) reproduce many of the data trends. It is suggested that contamination takes place at more than one stage, with a change in the composition of the assimilant at different levels, coupled with a change in the rate ratio of assimilation to crystal fractionation. (orig.)

  17. Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudopotential radii or Zunger and Cohen. As a third alternative a classification based on Pettifor's phenomenological chemical scale of the elements is also considered. The alternative structural classification schemes that are developed from these elemental properties are generally successfully in distinguishing molten mixtures in which the available experimental evidence indicates long-lived fourfold coordination of polyvalent metal ions. In addition, Pettifor's chemical scale scheme is useful in sorting out finer details of local coordination in the liquid state. 3 figs., 71 refs

  18. The Antimicrobial Action of Silver Halides in Calcium Phosphate

    Kalniņa, D; Gross, K; Onufrijevs, P.; Daukšta, E; Nikolajeva, V; Stankeviciute, Z; Kareiva, A.

    2015-01-01

    Silver halides represent a yet unexplored avenue for imparting antimicrobial activity to calcium phosphates. Negtively charged silver halide colloids (AgI, AgBr and AgCl) were added to synthesized amorphous calcium phosphate. Concurrent melting of silver halides and crystallization to carbonated apatite at 700 oC increased the silver halide surface area available to bacteria and formed a lower solubility apatite. The effect of the matrix solubility on antimicrobial response could ...

  19. Electrodepositions on Tantalum in Alkali Halide Melts

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  20. Electrodepositions on Tantalum in alkali halide melts

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon in...... a single 4 electron step. By electrolyses at a constant potential of - 1.4 V vs. Pt in a NaCl-KCl-NaF-Na2CO3 melt at 800 °C coherent carbon containing surface layers could be obtained on tantalum substrates, when a CO2 atmosphere was applied. Copyright © 2012 by The Electrochemical Society....

  1. Impurity segregation in zone-refined precursors for crystalline halide scintillators

    Swider, S., E-mail: swider@capesym.com [CapSym, Inc., Natick, MA (United States); Lam, S.; Motakef, S. [CapSym, Inc., Natick, MA (United States); Donohoe, E.; Coers, L.; Taylor, S.; Spencer, S. [SAFC-Hitech, Urbana, IL (United States)

    2015-06-01

    Successful growth of halide scintillator crystals depends on a supply of ultra-high purity (UHP) precursor materials. Metallic interstitials and substitutions may provide traps that quench luminescence. Oxygen impurities can create competing compounds within a matrix, such as oxyhalides, that disrupt crystallinity and nucleate cracks. Using mass spectroscopy and oxygen combustion analysis, we analyzed impurities in SrI{sub 2}, EuI{sub 2}, and YCl{sub 3} precursors before and after zone refining. The data show most alkali and alkali earth impurities segregated easily. However, with the exception of iron, many transition metals were incorporated into the solid. Reliable oxygen measurements proved difficult to achieve. Additional oxygen was measured in nitrates and sulfates, via ion chromatography. Zone refining reduced the overall impurity content, but levels remained above a 10 ppm target.

  2. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts

    Marites A. Guino-o

    2015-06-01

    Full Text Available The asymmetric units for the salts 4-(4-fluorophenyl-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3+·I−, (1, 1-isopropyl-4-(4-methylphenyl-1,2,4-triazol-1-ium iodide, C12H16N3+·I−, (2, 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3+·I−, (3, and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3+·I−, (4, contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3+·Br−·H2O, (5, there is an additional single water molecule. There is a predominant C—H...X(halide interaction for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion interaction between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π–π interactions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.

  3. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties

    2016-01-01

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3+, X = Br– or I–) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(BrxI1–x)3 (0.2 compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  4. Dislocations in SmS single crystals

    Single crystals of SmS with NaCl structure are grown by zone melting in a sealed molybdenum tube. Dislocations introduced during cleaving the crystal are investigated by transmission electron microscopy. The dislocations have Burgers vector of 1/2 and their glide plane is (11-bar0), i.e. the slip system is (11-bar0) as in alkali-halide NaCl-type crystals. The slip seems to be governed by the Peierls mechanism for the screw dislocation. (author)

  5. Ultraviolet laser ablation of halides and oxides

    We compare and contrast recent measurements of the behavior of ions and excited ions desorbed from samples of alkali halides and oxide ferroelectrics by an excimer laser at 308 nm wavelength. At the intensities used in these experiments, the density of local electronic excitation is low in the halides and high in the ferroelectrics, corresponding to two- and one-photon band-to-band transitions, respectively. The observed desorption yields and changes in the sample surfaces are discussed in terms of the density of electronic excitation, the relative strengths of electron-lattice coupling, and the role of thermal relaxation processes in the two materials. (orig.)

  6. Radiation-induced processes and defects in alkali and alkaline-earth borate crystals

    The paper presents the results of a study of the radiation-induced processes and defects in nonlinear optical crystals Li2B4O7 (LTB), LiB3O5 (LBO), CsLiB6O10, KB5O8·4H2O, β-BaB2O4. It was revealed that a pulsed electron beam irradiation at 290 K forms the radiation-induced pairs of the 'vacancy--interstitial atom' defects in the cation sublattice of these crystals. This gives rise to a creation of metastable electronic (interstitial atom) and hole (small-radius polaron near the cation vacancy) centers in high concentrations. Optical hole-transitions from the local level of the trapped hole centers to the valence band states are responsible for the transient optical absorptions (TOA) of borates in the visible and UV spectral ranges. A sublattice of the weakly bound mobile lithium cations in LTB and LBO favors a spatial separation of the radiation-induced pair defects 'hole polaron near Li-vacancy--mobile interstitial Li0 atom'. Their decay rated by the electron-hole nonradiative tunnel recombination determines a peculiar feature of the TOA decay kinetics in LTB and LBO

  7. Dislocation Dynamics in a Crystal Lattice (Peierls-Nabarro) Relief

    Petukhov, B. V.

    2007-01-01

    The theory of the dislocation motion in the periodic potential relief of the crystal lattice (the Peierls-Nabarro barriers) is reviewed. On the basis of the kink mechanism the temperature dependence of the flow stress is described for a wide class of materials. The theory of quantum mechanical dislocation tunnelling through the Peierls-Nabarro barriers is extended and compared with experimental data on the plasticity of alkali halides, BCC and HCP metals at low temperatures. The behavior of t...

  8. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  9. P- T conditions of crystallization and origin of plagioclase-mantled alkali feldspar megacrysts in the Mesozoic granitoids in the Qinling orogen (China)

    Wang, Xiaoxia; Wang, Tao; Haapala, Ilmari; Mao, Jingwen

    2008-07-01

    The Qinling orogen between the North China and South China cratons was intruded at 211-217 Ma by calc-alkaline quartz monzonitic to monzogranitic plutons characterized by I- to A-type geochemistry and in many places contain plagioclase-mantled alkali feldspar megacrysts (rapakivi texture sensu lato). The felsic rocks contain mafic to intermediate magmatic enclaves suggestive of mingling and mixing of mafic and felsic magmas. The P- T conditions of crystallization have been determined for early mineral assemblages (inner parts of alkali feldspar megacrysts and their plagioclase, quartz, amphibole and biotite inclusions) and late assemblages (matrix minerals) of the rapakivi-textured granitoids. Al contents in amphibole from the early and late mineral assemblages yield pressures of 1.2-3.0 and 0.7-3.0 kbar, respectively, and indicate only minor pressure change between the crystallization of the early and late assemblages. Amphibole-plagioclase thermometry gives temperatures mainly of the order of 900 to 1000 °C for both the early and late assemblages indicating nearly isothermal conditions. Feldspar thermometers yield lower temperatures. Relative abundances of minerals and their chemical compositions indicate that the late mineral assemblages tend to be richer in MgO, Na 2O and CaO than the early assemblages. Rapakivi texture is interpreted in this case mainly as a result of compositional changes related to the hybridization between granitic and more mafic magmas. Small release of pressure during crystallization of the magmas may have contributed to the origin of the mantled alkali feldspar megacrysts.

  10. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution

  11. The Silver Halides

    Sahyun, M. R. V.

    1977-01-01

    Illustrates the type of fractional bonding for solid silver halides. Treats the silver halides as electron excess compounds, and develops a model of a localized bonding unit that may be iterated in three dimensions to describe the bulk phase. (MLH)

  12. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices

  13. Application of radioisotopes to studies of crystal imperfections

    Radioisotopes have been used in two important ways in studying imperfections in alkali halide crystals. The zone refining of the compounds has been monitored by addition of tracers, and segregation coefficients have been determined from such measurements. The other application has been to insert small concentrations of impurity ions into alkali halides in order to study the phonon scattering by such impurities or by the vacancies they introduce; these measurements are carried out at very low temperatures where the phonon mean free path is limited by lattice imperfections. The most commonly used radioisotope in this work has been Ca45. This work is reviewed and some current and possible future applications of radioisotopes in this field are mentioned. (author)

  14. Local fields in ionic crystals

    Local fields arising from the electronic distortion in perfect ionic crystals are described in terms of multipolar excitations. Field factors for the alkali halides and chalcogenide ions are found to differ significantly from the Lorentz value of 4π/3, the correction size following an exponential dependence on the difference in ionic radii. Local fields are only slightly modified by these corrections however, and together with the Clausius-Mossotti relation may be regarded as accurate to within 2% if the Lorentz value is adopted. (author)

  15. Effect of an electric field on nucleation and growth of crystals

    Yurov, V. M.; Guchenko, S. A.; Gyngazova, M. S.

    2016-02-01

    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH4Cl and NH4Br crystals was found to be 15 kV/cm, and for NH4I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested.

  16. Framework solids based on copper(II) halides (Cl/Br) and methylene-bridged bis(1-hydroxybenzotriazole): synthesis, crystal structures, magneto-structural correlation, and density functional theory (DFT) studies.

    Sasmal, Ashok; Shit, Shyamapada; Rizzoli, Corrado; Wang, Hongfeng; Desplanches, Cédric; Mitra, Samiran

    2012-10-01

    A methylene-bridged 1-hydroxybenzotriazole derived ligand L [L = 1, 3-bis(benzotriazol-1-yl)-1,3-dioxapropane] has been synthesized and characterized by spectroscopic and structural methods. Reaction of L with two different copper(II) halides [CuX(2); X = Br, Cl] in an identical condition yields two different compounds of similar compositions, {[Cu(μ-Br)(Br)(μ-L)](2)}(n)·2nH(2)O (1) and {[Cu(μ-Cl)(Cl)(μ-L)](2)}(n)·2nH(2)O (2), both being characterized by various physicochemical techniques. Single crystal X-ray studies reveal that they appear as 2D coordination polymers with similar bridging fashion of L. Low temperature magnetic susceptibility measurements reveal antiferromagnetic and ferromagnetic behaviors for 1 and 2 with magnetic coupling constants J = -15.2 and +1.7 cm(-1), which are in a reasonable agreement with their calculated values (J = -9.79 and +0.68 cm(-1) respectively, for 1 and 2). The role of bridging halides in the structure and magnetic properties of the complexes are investigated, and a possible magneto-structural correlation has been established. Influence of spin density of bridging halides on the magnitude of coupling constants has been discussed with the help of density functional theory (DFT) calculations. PMID:22974283

  17. Theoretical and experimental study of the Stark effect in the ground state of alkali atoms in helium crystals

    Ulzega, Simone; Weis, Antoine

    2007-01-01

    This thesis work describes a detailed study of the Stark interaction in the ground state of cesium atoms trapped in a solid helium matrix. The motivation for the investigation of electric field effects on alkali species implanted in solid helium is related to the original main goal of our experimental activities, i.e., the measurement of a permanent atomic electric dipole moment (EDM). The existence of an atomic EDM simultaneously violates the discrete symmetries of time reversal (T) and pari...

  18. Polynuclear technetium halide clusters

    Development of chemistry of polynuclear technetium halide clusters in works devoted to synthesis, structure and investigation of their chemical and physical properties is considered. The role of academician V.I. Spitsyn as an initiator of investigation of polynuclear technetium halide clusters in the Institute of Physical Chemistry of Academy of Science of USSR is noted. Reactions and stability of cluster halides, their molecular and electronic structures are analyzed. Prospects of development of polynuclear technetium halide clusters chemistry as a direction being on the junction of cluster chemistry and theory of metal-metal multiple bonds are appreciated

  19. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Synthesis, characterization and computational studies of zinc(ii)-halide complexes with a bidentate Schiff base ligand (2,5-MeO-ba).sub.2./sub.En: the crystal structure of (2,5-MeO-ba).sub.2./sub.En

    Khalaji, A.D.; Mighani, H.; Gholinejad, M.; Grivani, G.; Jalali Akerdi, S.; Fejfarová, Karla; Dušek, Michal

    2013-01-01

    Roč. 54, č. 4 (2013), s. 766-773. ISSN 0022-4766 Institutional research plan: CEZ:AV0Z10100521 Keywords : zinc(II) halides * Schiff base * crystal structure * density functional theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.501, year: 2013

  1. Space-dependent self-diffusion processes in molten copper halides: a molecular dynamics study

    Alcaraz Sendra, Olga; Trullàs Simó, Joaquim

    2001-01-01

    This work is concerned with single ion dynamics in molten copper halides (CuI and CuCl) which exhibit fast ionic conduction before melting. The self-dynamic structure factor of the two ionic species in each melt have been calculated by molecular dynamics simulations and the corresponding effective wavelength-dependent self-diffusion coefficients have been studied. The results have been compared with those obtained for molten alkali halides (KCl and RbCl).

  2. Atomistic simulation of ion solvation in water explains surface preference of halides

    Caleman, C.; Hub, J. S.; van Maaren, P.; van der Spoel, D

    2011-01-01

    Water is a demanding partner. It strongly attracts ions, yet some halide anions—chloride, bromide, and iodide—are expelled to the air/water interface. This has important implications for chemistry in the atmosphere, including the ozone cycle. We present a quantitative analysis of the energetics of ion solvation based on molecular simulations of all stable alkali and halide ions in water droplets. The potentials of mean force for Cl-, Br-, and I- have shallow minima near the surface. We demons...

  3. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  4. Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells

    Wang, Mao; Shi, Chengwu; Zhang, Jincheng; Wu, Ni; Ying, Chao

    2015-11-01

    In this paper, the influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl2 powder into PbI2 solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH3NH3PbI3-xClx thin film by the precursor solution with the mixture of 0.80 M PbI2 and 0.20 M PbCl2 exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm-2 and a fill factor of 0.69.

  5. Excitonic ionizations of the electron centres in caesium iodide crystal and exoemission of electrons

    In the wide-band-gap alkali halide crystals recombination of defects may result in formation of the excitons, which can ionize an electron F-centre; thus the phenomenon of exoelectron emission takes place. According to this excitonic model, the energy spectrum and mean energy of CsI exoelectrons were attained. The results of theoretical evaluation are compared with experimental and the reasons suggested for the explanation of the observed difference are discussed. The conclusion based on the peculiarities of exoemission from CsI and CsBr crystals, was done

  6. Excitonic ionizations of the electron centres in caesium iodide crystal and exoemission of electrons

    Galiy, P.V. [Faculty of Electronics, Lviv National University 50 Dragomanov Str., Lviv 79005 (Ukraine); Mel' nyk, O.Ya. [Faculty of Electronics, Lviv National University 50 Dragomanov Str., Lviv 79005 (Ukraine)]. E-mail: moyafis@yahoo.com; Tsvetkova, O.V. [Faculty of Electronics, Lviv National University 50 Dragomanov Str., Lviv 79005 (Ukraine)

    2005-04-15

    In the wide-band-gap alkali halide crystals recombination of defects may result in formation of the excitons, which can ionize an electron F-centre; thus the phenomenon of exoelectron emission takes place. According to this excitonic model, the energy spectrum and mean energy of CsI exoelectrons were attained. The results of theoretical evaluation are compared with experimental and the reasons suggested for the explanation of the observed difference are discussed. The conclusion based on the peculiarities of exoemission from CsI and CsBr crystals, was done.

  7. Crystal-structural study of zirconium chelates with alkali metals of composition A2[Zr(Nta)2]·xH2O (A=Li, Na, K, Rb, Cs or CH3H6)

    Some zirconium complexes with nitrile triacetate and with alkali metal in the external sphere were studied crystalostructurally. Packing of complexes and extra-sphere cations was studied. Plane or slightly corrugated anion layers of two essentially different types arranged according to the principle of trigonal and square grids represent the standard element of crystal structure. Water molecules are located both in anion and cation layers. CN and coordination polyhedron of cations are different even in case of stereotype nature of reasons of their location in the interlayer space. In Cs-, Rb- and K- compounds polyhedrons of alkali metal form specific doubled chains. These compounds are not isomorphous ones and are characterized by a specific way of water molecule location. Structure of sodium compound differs fundamentally from other ones. Ionic conductivity may be expected in crystals. 4 refs., 6 figs., 2 tabs

  8. Optical break-down in alkali-haloed single crystals by laser focused radiation: the stage of local thermal explosion

    Based on the results of experimental studying the pore formation kinetics and morphology in KCl single crystals under conditions of optical break-down by laser focused radiation were studied. It was shown that with observed parameters of the seats of energetic bursts and the dynamics of their formation, the optical break-down is similar to a powerful point explosion. In the heated area, a shock wave is generated. Having the velocity more than by an order exceeding the acoustic speed, the shock wave comes to the single crystal boundary earlier than other lattice disturbances and initiates formation of crowdions and their movement along atomic close-packed rows parallel to <110> type directions in both sublattices. From the condition of self-consistency between the flows of generated crowdions initiated by the supersonic shock wave and ones passing into unstressed crystal, it follows that the crowdion velocity would be also supersonic that was earlier predicted (A.M. Kosevich and L.S. Kovalyov). An assumption on possible participation of cumulative effect in the process has been made

  9. Lead (II) selenite halides Pb3(SeO3)2X2 (X = Br, I): Synthesis and crystal structure

    Two lead selenite halides, Pb3(SeO3)2Br2 and Pb3(SeO3)2I2, have been prepared by solid-phase synthesis and structurally characterized. These compounds are isotypic and can be considered 3D with a microporous framework composed of lead polyhedra (distorted Archimedean antiprisms formed by oxygen and halogen atoms). The framework contains channels oriented in the [010] direction. These channels contain selenium atoms, which are bound with framework oxygen atoms belonging to different lead polyhedra.

  10. Vitrification of IFR and MSBR halide salt reprocessing wastes

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  11. Process for oxidation of hydrogen halides to elemental halogens

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  12. Transport and deposition of halide in alkali metal-stainless steel systems, (IV). Measurement of sodium iodide solubility in sodium with major constituents of stainless steel and oxide in sodium

    Solubility of sodium iodide in sodium is measured separately (a) with concentrations of major constituents leached from stainless steel in sodium and (b) with controlled concentration of oxide in sodium by the use of stainless steel capsule. The capsules loaded with 20 g sodium and 0.1-0.3 g powder of additives are heated at their upper part in a furnace and cooled at their bottom on brass plates. (a) After a given period of run for sodium iodide equilibration, the distribution of the iodide and constituents is fixed in solidified sodium by quenching the capsules. Sodium samples taken from the sectioned capsule tube are submitted to sodium dissolution by steam for determining the iodide and to vacuum distillation for determining the constituents. The iodide solubility appears to be in a reverse correlation with concentrations of iron and nickel and to be insensitive to change in those of chromium, manganese and silicon. (b) After a given period of run for sodium oxide equilibration, the sodium is solidified by quenching the capsule. Deposits on the capsule bottom is removed by sectioning the capsule tube and crystals of sodium iodide are introduced to the sectioned capsule on which an end plug is seal-welded. The capsule is again set under the large temperature gradient for a period of run for iodide equilibration. After fixing the iodide distribution in solidified sodium by the quenching, sodium samples are taken from the sectioned capsule tube and submitted to the sodium dissolution by steam for determining iodide in sodium. The iodide solubility data obtained from the present measurement are observed to be scarcely affected by the oxide concentration. (author)

  13. Intra-zoned luminescence in alkali earth metal carbonates

    Full text: The fundamental plasma luminescence of wide band alkali halide crystals has been found out by Vaisburd et al. This broadband luminescence with very short duration of attenuation (∼10-12 s) arises at an irradiations of crystals with electronic beam powerful pulses of nanosecond duration. It is related to radiating 'hot' electrons and holes in a conductivity zone and in a valent zone, accordingly and in later time began to refer to as an intra-zoned luminescence. The data set on revealing features of display of an intra-zoned luminescence in different classes of crystals now proceeds. We investigated a fast luminescence at excitation with pulse electrons (3 nanoseconds) in crystals CaCO3, SrCO3, BaCO3 and MgCO3. In spectra all investigated carbonates it is possible to allocate two areas: area concerning high intensity of a fast luminescence (from 2 eV down 3 eV) and area of low intensity (is higher 4 eV) with slow recession at increase in photon energy. Thus it is typical, that in area concerning high intensity at rise in temperature from 80 up to 300 K a sample intensity of luminescence falls down, whereas in area is higher 5 eV with rise in temperature of a sample increase of intensity is observed. This broadband fast (is shorter than the time sanction of the equipment) should be connected a luminescence poorly dependent on temperature and a modular status of a sample with intra zoned transitions This luminescence reaches from 2 eV down to 7 eV but as for carbonates while is absent the reliable data on structure of a valent zone, division of an intra-zoned luminescence into electronic and hole components is not obviously possible on the basis of spectra of a fast luminescence. The nature of other luminescence processes arising at excitation with pulse electrons is discussed

  14. Synthesis and crystal structure of alkali metal uranium sulfides, Li2US3 and Na2US3

    New mixed uranium sulfides, A2US3 (A=Li,Na), in which uranium is in a tetravalent state, have been synthesized. In the disordered state, the compounds are written as A(A1/3,U2/3)S2 which have a hexagonal (R anti 3m) structure the same as the lanthanide homologue, ALnS2 (Ln=trivalent lanthanides). In the ordered state, the compounds take on a monoclinic (C2/m) structure in which the atom arrangement is very close to the above hexagonal structure. The partial ordering is realized by the coexistence of the two phases. The lattice parameters of hexagonal Li2US3 are a=3.898 and c=18.391 A, while those of monoclinic Li2US3 are a=6.747, b=11.679, c=6.537 A and β=110.2 . The lattice parameters of hexagonal Na2US3 are a=4.036 and c=19.780 A. Those of monoclinic Na2US3 are a=6.990, b=12.105, c=6.992 A and β=109.5 . The molar ratios of the hexagonal and monoclinic phases are 52.2:47.8 for Li2US3 and 68.0:32.0 for Na2US3, respectively. The atom parameters of uranium and sulfur were obtained by Rietveld calculation of the observed X-ray peaks. The atom separations are discussed in relation to the crystal radii of the component ions. (orig.)

  15. Preparation and characterization of cadmium(II) halide complexes with N-substituted glycines, and the crystal structures of dichloro(N-methylglycine)cadmium(II) and diaquadichloro(N,N-dimethylglycine)cadmium(II)

    Yamada, Junichi; Hashimoto, Haruki; Inomata, Yoshie; Takeuchi, Toshio [Jochi Univ., Tokyo (Japan). Faculty of Science and Technology

    1994-12-01

    Eight cadmium(II) halide complexes with N-methylglycine (sarcosine, Hsar), N,N-dimethylglycine (Hdmgly), and N,N,N-trimethylglycine (betaine, Hbet) have been prepared and characterized by using their infrared absorption spectra and thermal analyses. In addition, the crystal and molecular structures of [CdCl{sub 2}(Hsar)] (1) and [CdCl{sub 2}(Hdmgly)(H{sub 2}O){sub 2}] (2) were determined by a single-crystal X-ray diffraction method. The crystal data for these two complexes are as follows: Complex (1): monoclinic, space group P2{sub 1}/n, a=7.960(2), b=13.844(1), c=6.917(1) A, {beta}=92.42(2)deg, Z=4. Complex (2): monoclinic, space group P2{sub 1}/a, a=7.696(2), b=21.854(4), c=6.253(2) A, {beta}=103.69(2)deg, Z=4. These structures were solved by the heavy-atom method and refined by full-matrix least-square methods to final R values of 0.043 for 2533 reflections about 1 and 0.068 for 3615 reflections about 2, respectively. For 1 the structure consists of a one-dimensional polymer bridged by two chlorine atoms. The cadmium atom is hexa-coordinated, being ligated with two oxygen atoms of a carboxyl group and four chlorine atoms. For 2 the cadmium atom is in a distorted octahedral geometry, ligated by a carboxylato oxygen atom, two water molecules, and three chlorine atoms, in which one is terminal and the other two are bridging cadmium atoms to make a polymer. (author).

  16. Characteristics of the fast electron emission produced during the cleavage of crystals

    B P Chandra; N L Patel; S S Rahangdale; R P Patel; V K Patle

    2003-01-01

    The present paper reports the fast electron emission produced during the cleavage of alkali halide crystals and models the dynamics of the process. The mechano-emission arises as a result of the ionization of surface traps at the expense of the energy which is released in the annihilation of the defects which are formed during cleavage. The slow electrons which appear upon the ionization of surface traps are subsequently accelerated in the field of negatively charged segment of the freshly cleaved surface. Considering the basic mechanism of fast electron emission, expressions are derived which are able to explain satisfactorily the temporal, thermal, charge, surface, coloration, water adsorption and other characteristics of the fast electron emission produced during the cleavage of crystals. The decay time of the charges on the newly created surfaces, and the velocity of cracks can be determined from the measurements of fast electron emission produced during the cleavage of crystals. It is shown that two types of diffusing centres are responsible for the charge relaxation and thereby for the emission of fast electrons produced during the cleavage of alkali halide crystals.

  17. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  18. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R+ = Li+, Rb+, Cs+) and alkaline-earth (R2+ = Sr2+, Ba2+) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R+ and R2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na+ or Ca2+ cations in the simplified glass by respectively (Li+, K+, Rb+, Cs+) or (Mg2+, Sr2+, Ba2+) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO4)- entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  19. Stability analysis for complexes in calcium-alkali bromide solutions

    We discuss the dependence of the stability of tetrahedral complexes in molten halide mixtures on the halogen species. This is done by calculating the equilibrium concentration of (CaBr4)2- complexes in calcium-alkali bromide solutions as a function of composition, in comparison with earlier calculations on the calcium-alkali chloride systems. The comparison supports a possible trend of increasing stability from chlorides to bromides, provided that halogen polarizability or chemical bonding contribute appreciably to the binding of a complex. Supporting evidence is noted and further experiments are suggested. (author). 10 refs, 2 figs

  20. High Biomass Specific Methyl Halide Production Rates of Selected Coastal Marsh Plants and its Relationship to Halide Content

    Manley, S. L.; Wang, N.; Cicerone, R. J.

    2002-12-01

    Salt tolerant coastal marsh plants (halophytes) have previously been shown to be globally significant producers of methyl chloride (MeCl) and methyl bromide (MeBr). While halophytes are known for their high salt content, there are few reports of their halide content. Our studies have attempted to quantify biomass specific methyl halide (MeX) production from these plants and relate it to tissue halide levels. MeCl, MeBr and MeI production rates and tissue chloride, bromide and iodide concentrations from selected coastal marsh plants were measured for nearly a year. Certain halophyte species (i.e. Batis and Frankenia) have very high summer biomass specific production rates for MeX (e.g. Frankenia: 1 ug MeCl /gfwt/hr; 80 ng MeBr/gfwt/hr; 8 ng MeI/gfwt/hr). These rates of MeCl and MeBr production are much higher than those from other coastal marsh plants or seaweeds. Plant halide levels remain high throughout the year, while MeX production peaks at a high level in mid summer falling to low winter rates. This implies a linkage to plant growth. Higher levels of chloride and bromide were seen in the fleshy marsh plants such as Batis (saltwort, approximately 20 percent dry wt chloride, 0.4 percent dry wt bromide) and Salicornia (pickleweed) than in the others such as Frankenia (alkali heath) approx 7 percent dry wt chloride, 0.1 percent dry wt bromide) or Spartina (cordgrass). No such trend was seen for iodide, which ranged from 4 - 10 ppm. Calculations show the daily halide losses from MeX production are far less than the variability in tissue halide content. MeX production removes a small fraction of the total tissue halide from these plants suggesting that MeX production is not a mechanism used by these species to control internal halide levels. Saltwort cell-free extracts incubated with bromide or iodide in the presence of S-adenosyl-L-methionine (SAM) produced the corresponding MeX. MeBr production was inhibited by caffeic acid the substrate of lignin-specific O

  1. Studies on multiphased mixed crystals grown from NaBr and KCl

    Padma, C.M. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002, Tamilnadu (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002, Tamilnadu (India)], E-mail: mahadevan58@yahoo.co.in

    2008-05-01

    We have grown multiphased binary and ternary mixed crystals by the melt method using the miscible alkali halides, viz. NaBr and KCl and physically characterized. Thermal parameters like Debye-Waller factor, Debye temperature, Debye frequency and mean square amplitude of vibration were determined using the X-ray powder diffraction intensity data. DC and AC electrical measurements were carried out by using the parallel plate capacitor method at various temperatures. Activation energies (DC and AC), mean jump frequency, compressibility and mean sound velocity were also determined. The results obtained are reported here.

  2. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Moore, David T.

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  3. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films

  4. Thermoluminescence studies in lead doped KCl and KBr crystals

    Lead is known to enter substitutionally in divalent state when doped in alkali halides. When irradiated at room temperature these lead centers (Pb++) act as traps for electrons knocked off from the halogen ions and become Pb+ and Pb0 (for large doses of irradiation). These changes could be followed in the optical absorption studies. These lead-doped crystals after X-ray irradiation yield a thermoluminescence output smaller than that observed in 'pure' crystals. However, two new glow peaks are observed in additions to those due to F-centers. In KCl : Pb and Kbr : Pb crystals part of the F-center glow preceds the new glow peaks. The new peaks are attributed to the Pb+ and Pb0 centers. The glow peak temperatures and trap depths for these peaks an obtained by total-curve fitting method are reported. (author)

  5. Methods for synthesizing alane without the formation of adducts and free of halides

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  6. Milk-alkali syndrome

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  7. The low temperature electrochemical growth of iron, nickel and other metallic single crystals from halide eutectic fluxes in a temperature gradient

    Chareev, Dmitriy A.

    2015-11-01

    Single crystals of metallic Fe, Ni, Co, Cr, Al, Cu, Ag, Au, Pd, Pt and a few alloys were grown using the AlCl3/KCl and CsCl/NaCl/KCl fluxes for Men+ transport and an inert metallic wire for electron transport in a permanent temperature gradient from 350-600 °C that produced single crystalline samples with dimensions of approximately 2×2×2 mm3. Energy dispersive X-ray spectroscopy established crystal formation of pure metals.

  8. A new route to the syntheses of alkali metal bis(fluorosulfuryl)imides: Crystal structure of LiN(SO2F)2

    Beran, Martin; Příhoda, J.; Žák, Z.; Černík, M.

    2006-01-01

    Roč. 25, č. 6 (2006), s. 1292-1298. ISSN 0277-5387 Institutional research plan: CEZ:AV0Z40310501 Keywords : imido-bis( sulfuric acid ) difluoride * lithium bis(fluorosulfuryl)imide * alkali metal bis(fluorosulfuryl)imides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.843, year: 2006

  9. PREPARATION OF HALIDES OF PLUTONIUM

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  10. Making and Breaking of Lead Halide Perovskites

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  11. Making and Breaking of Lead Halide Perovskites.

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  12. Ultraviolet absorption spectra of mercuric halides.

    Templet, P.; Mcdonald, J. R.; Mcglynn, S. P.; Kendrow, C. H.; Roebber, J. L.; Weiss, K.

    1972-01-01

    The gas phase transitions of the mercuric halides were observed in the UV region by operating at temperatures above 400 K and at vapor pressures on the order of 0.5 mm. Spectral features exhibited by the chloride, bromide, and iodide of mercury correlate energetically with bands previously designated as intermolecular charge transfer transitions. The solution spectra of mercuric iodide and deep color of the crystals (if not due to some solid state interactions) indicate that this molecule may also have longer wavelength transitions.

  13. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  14. On the reaction of tellurium with tungsten halides: synthesis and crystal structure of Te7WOCl5, a compound with a polymer tellurium cation

    The reaction of tellurium with WOCl4 in the presence of a large excess of WCl6 in a sealed evacuated glass ampoule at 150degC yields beside the main product Te8(WCl6)2 a small amount of Te7WOCl5. The crystal structure determination (orthorhombic space group Pcca, lattice parameters at 173 K: a = 2596.5(9) pm, b = 810.0(3) pm, c = 775.7(2) pm) shows that Te7WOCl5 is built of one-dimensional band shaped polymeric tellurium cations, one-dimensional associated pyramidal WOCl4anions and of isolated Cl- anions. Te7WOCl5 can thus be formulated as [Te72+]n [WOCl4-]n (Cl-). The structure is closely related but not isotypic to the bromine containing analogue Te7WOBr5. The difference between the two structures lies in different directions of the polar [WOX4-]n chains (X = Cl, Br). The strongly elongated thermal ellipsoid of one tellurium atom is shown to be caused by thermal vibration by determining the crystal structure of Te7WOCl5 at three different temperatures (223, 173 and 123 K). All displacement parameters of all atoms can be extrapolated to zero for 0 K. (orig.)

  15. Finding New Perovskite Halides via Machine learning

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  16. Finding New Perovskite Halides via Machine learning

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  17. Hall Determination of Atomic Radii of Alkali Metals

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  18. Coprecipitation of alkali metal ions with calcium carbonate

    The coprecipitation of alkali metal ions Li+, Na+, K+ and Rb+ with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+. (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite. (author)

  19. Nickel(II) complexes of N2S2 donor set ligand and halide/pseudohalides: Synthesis, crystal structure, DNA and bovine/human serum albumin interaction

    Animesh Patra; Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2015-11-01

    A series of neutral hexacoordinated nickel(II) complexes of formula [NiII (L)X2] (where L = 3,4-bis(2-pyridylmethylthio)toluene with tetradentate N2S2 donor set and X = chloride (1), azide (2), cyanate (3) and isothiocyanate anion (4)) have been synthesized and isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods along with detailed structural characterization of 1,2 and 3 by single crystal X-ray diffraction analyses. The structural study showed that the nickel(II) ion has a distorted octahedral geometry being chelated by the tetradentate N2S2 ligand and bound to cis- located choride or pseudohalide anions. In dimethylformamide solution the complexes showed quasi-reversible NiII/NiIII redox couples in cyclic voltammograms with E1/2 values of +0.723, +0.749, +0.768 and +0.868 V for 1, 2, 3 and 4, respectively. The study of interaction of the complexes with calf thymus DNA, bovine serum albumin (BSA) and human serum albumin (HSA) using spectroscopic and physicochemical tools clearly indicates that the complexes interact with DNA via groove binding mode.

  20. METHOD OF PREPARING METAL HALIDES

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  1. Electrical measurements on multiphased (NaCl){sub x}(KCl){sub y-x}(KBr){sub 1-y} single crystals

    Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002, Tamil Nadu (India)], E-mail: mahad@sancharnet.in; Jayakumari, K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002, Tamil Nadu (India)

    2008-11-30

    Alkali halide mixed crystals were melt grown from NaCl, KCl and KBr starting materials. DC and AC electrical measurements were carried out on the resulting ternary compositions at temperatures ranging from 308 to 423 K. Activation energies and mean jump frequencies were also estimated. The present study indicates an increase of DC and AC electrical conductivities and dielectric constant with the increase of temperature. Also, it indicates a nonlinear variation of all the electrical parameters (both DC and AC) with the bulk composition, which is explained to be due to the enhanced diffusion of charge carriers along dislocations and grain boundaries.

  2. Efficiency of energy transfer from γ-irradiated ammonium halides in aqueous iodide and nitrate solutions

    It is well known that ammonium halide (NH4X) crystals, on γ-exposure, store energy in the form of primary and secondary radiolytic products. Such crystals on dissolution in aqueous iodide and nitrate solutions result in oxidation of iodide and reduction of nitrate, respectively. The yields of iodine and nitrite are determined by chemical methods under varying conditions of the amount, dose and particle size of the irradiated ammonium halide salts. The maximum values of the efficiency of energy transfer for oxidation and reduction processes for ammonium halide salts correspond to 40% and 10%, respectively. At low doses, an empirical relation proposed between the percent efficiency of energy transfer and the absorbed dose is valid. The concentrations of inherent oxidizing and reducing species initially present are 7.0*1018 and 1.0*1018 per mol of ammonium halide, respectively. (author) 21 refs.; 7 figs.; 2 tabs

  3. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation.

    Stewart, Robert J; Grieco, Christopher; Larsen, Alec V; Maier, Joshua J; Asbury, John B

    2016-04-01

    The electronic properties of organo-halide perovskite absorbers described in the literature have been closely associated with their morphologies and processing conditions. However, the underlying origins of this dependence remain unclear. A combination of inorganic synthesis, surface chemistry, and time-resolved photoluminescence spectroscopy was used to show that charge recombination centers in organo-halide perovskites are almost exclusively localized on the surfaces of the crystals rather than in the bulk. Passivation of these surface defects causes average charge carrier lifetimes in nanocrystalline thin films to approach the bulk limit reported for single-crystal organo-halide perovskites. These findings indicate that the charge carrier lifetimes of perovskites are correlated with their thin-film processing conditions and morphologies through the influence these have on the surface chemistry of the nanocrystals. Therefore, surface passivation may provide a means to decouple the electronic properties of organo-halide perovskites from their thin-film processing conditions and corresponding morphologies. PMID:26966792

  4. Transformation of the luminescent centres in KCl-In crystals under synchrotron radiation

    Gyunsburg, K E; Kochubey, D I; Sedova, Y G

    2000-01-01

    In view of the opportunity to use alkali-halide crystals with indium impurity for the registration of ionising radiation we have studied the influence of a method of impurity doping and mechanical treatment of a crystal on its sensitivity to X-ray. It is shown that the doping of a crystal with In sup 3 sup + reduces the sensitivity of medium. Optical and X-ray spectral experiments have allowed us to conclude that this phenomenon is caused by a change in the impurity centre structure. It is proved experimentally that mechanical crushing results in the transformation of the luminescent centres. This does not allow the effective conversion of the centres under synchrotron radiation.

  5. Thermoluminescence studies in cerium doped NaCl crystals

    Cerium is known to enter substitutionally in trivalent state when doped in alkali halides. Cerium doped NaCl crystals exhibit greatly enhanced thermoluminescence output upon X-irradiation at RT, the intensity of emission being about 10 times that in undoped crystals for similar dosage of irradiation. The cerium doped crystals give upon X-irradiation a very intense glow peak at 145degC with shoulders at 120degC and 210degC. Upon partially bleaching the crystal with F-light, the peak at 120degC becomes prominent probably due to faster bleaching of the glow at 145degC. From further optical bleaching studies, it is concluded that the glow peak at around 120degC is due to cerium centres in the irradiated crystal and the 145degC peak due to F centres. This F centre emission occurs at lower temperature, compared to that in the undoped crystals where it occurs at around 180degC. The spectral emission in the Ce doped crystals is in the blue-green region as compared to the emission in the blue region in undoped crystals. The trap depth and other parameters of the 120degC glow peak are estimated by the total curve fitting method. (author)

  6. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Bretschneider, Simon A.; Jonas Weickert; James A. Dorman; Lukas Schmidt-Mende

    2014-01-01

    The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We...

  7. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Simon A. Bretschneider

    2014-04-01

    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  8. Radiochemical synthesis of pure anhydrous metal halides

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  9. Electronic conduction in molten halides

    Heus, R.J.; Egan, J.J.

    1976-01-01

    Methods of measuring electronic conductivity in molten halides are reviewed. These include increase of total conductivity with addition of metal, polarization techniques, chronopotentiometry, and motion of colored subhalides in a potential gradient. The applicability of the Nernst-Einstein equation and the role of convection are considered. Results are presented for several halide melts. Applications of these results are elucidated, including self-discharge rate of molten salt batteries, measurement of alloy thermodynamics using molten salt electrolytes, and kinetics of tarnishing reactions with formation of liquid films.

  10. Alkali metal ionization detector

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  11. The first pseudo-ternary thiocyanate containing two alkali metals. Synthesis and single-crystal structure of LiK{sub 2}[SCN]{sub 3}

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.

    2016-04-01

    A procedure was empirically developed to prepare the compound LiK{sub 2}[SCN]{sub 3}, which forms colorless, transparent, very fragile, and extremely hygroscopic thin rectangular plates. Its unique crystal structure was determined by single-crystal X-ray diffraction. LiK{sub 2}[SCN]{sub 3} adopts the orthorhombic space group Pna2{sub 1} (no. 33, Z = 4) with the cell parameters a = 1209.32(9), b = 950.85(9), and c = 849.95(6) pm.

  12. Investigation of change regularity of energy states of Mn2+ in halides

    Data on 4E, 4A1 (4G) and 4T1 (4G) energy states of Mn2+ ion in some halides have been obtained and analyzed. With use of the dielectric theory of the chemical bond for complex crystals, several chemical bond parameters were calculated. The change regularity of the energy states of Mn2+ in halides has been studied. The results show that the covalence, the coordination number and the radius of the central ion are the main factors influencing the energy states of Mn2+ ion in halides. The relationships between these factors and the energy state 4T1 (4G), the energy difference ΔE (ΔE=4E, 4A1 (4G)→4T1 (4G)) of Mn2+ ion in halides were established: E=2.0898+0.8618 exp (−F/0.2431); ΔE=0.3201+0.9713⁎F. These relationships allow us to predict the position of energy state 4T1 (4G) and the energy difference ΔE of Mn2+ in halides. This work can be significant for further understanding the luminescent properties of Mn2+ and can be used to develop new Mn2+-doped phosphors. - Highlights: ► Relationship between F and energy state 4T1(4G) of Mn2+ in halides was set up. ► Relationship between F and energy difference ΔE of Mn2+ in halides was set up. ► Site occupation of Mn2+-doped halides with two or more cations can be made clear. ► Energy state 4T1(4G) and emission band of Mn2+ in halides can be predicted.

  13. Fluorescence Properties of Colour Centres Produced by Ultrashort Laser Irradiation in LiF Crystals

    Samad, R. E.; Courrol, L. C.; Gomes, L.; Ranieri, I. M.; Baldochi, S. L.; de Freitas, A. Z.; Vieira, N. D., Jr.

    2010-11-01

    LiF is a nonhygroscopic alkali halide crystal which possesses good optical and physical properties, and can host different species of colour centres at room temperature. Colour centres in LiF present broad absorption and emission bands in the near UV, visible and near IR regions of the spectrum. In this paper we study spectroscopic properties of colour centres produced in LiF by ultrashort laser pulses. The absorption and emission properties of these materials were measured showing that during the irradiation F, F2, F2+, F3+ and F2- colour centres were created in the crystals. A colour centres formation dose-like curve as a function of the ultrashort pulse energy was determined using fluorescence spectroscopy.

  14. Alkali and Halogen Chemistry in Volcanic Gases on Io

    Schaefer, L

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observation...

  15. Correlations between entropy and volume of melting in halide salts

    Melting parameters and transport coefficients in the melt are collated for halides of monovalent, divalent and trivalent metals. A number of systems show a deficit of entropy of melting relative to the linear relationships between entropy change and relative volume change on melting that are found to be approximately obeyed by a majority of halides. These behaviours are discussed on the basis of structural and transport data. The deviating systems are classified into three main classes, namely (i) fast-ion conductors in the high-temperature crystal phase such as AgI, (ii) strongly structured network-like systems such as ZnCl2, and (iii) molecular systems melting into associated molecular liquids such as SbCl3. (author). 35 refs, 1 fig., 3 tabs

  16. Melting and liquid structure of polyvalent metal halides

    A short review is given of recent progress in determining and understanding liquid structure types and melting mechanisms for halides of polyvalent metals. The nature of the preferred local coordination for the polyvalent metal ion in the melt can usually be ascertained from data on liquid mixtures with halogen-donating alkali halides. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure melt determines the character of its short-range and possible medium-range order. A broad classification of structural and melting behaviours can be given on the basis of measured melting parameters and transport coefficients for many compounds, in combination with the available diffraction data on the liquid structure of several compounds. Correlations have been shown to exist with a simple indicator of the nature of the chemical bond and also with appropriate parameters of ionic models, wherever the latter are usefully applicable for semiquantitative calculations of liquid structure. Consequences on the mechanisms for valence electron localization in solutions of metallic elements into strongly structured molten salts are also briefly discussed. (author). 46 refs, 4 figs, 2 tabs

  17. Alkalis and Skin.

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  18. Tris(bipyridineMetal(II-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction

    Alla Dikhtiarenko

    2016-02-01

    Full Text Available A series of 3D oxalate-bridged ruthenium-based coordination polymers with the formula of {[ZII(bpy3][MIRu(C2O43]}n (ZII = Zn2+ (1, Cu2+ (3, 4, Ru2+ (5, 6, Os2+ (7, 8; MI = Li+, Na+; bpy = 2,2’-bipyridine and {[ZnII(bpy3](H2O[LiRu(C2O43]}n (2 has been synthesized at room temperature through a self-assembly reaction in aqueous media and characterized by single-crystal and powder X-ray diffraction, elemental analysis, infrared and diffuse reflectance UV–Vis spectroscopy and thermogravimetric analysis. The crystal structures of all compounds comprise chiral 3D honeycomb-like polymeric nets of the srs-type, which possess triangular anionic cages where [ZII(bpy3]2+ cationic templates are selectively embedded. Structural analysis reveals that the electronic configuration of the cationic guests is affected by electrostatic interaction with the anionic framework. Moreover, the MLCT bands gaps values for 1–8 can be tuned in a rational way by judicious choice of [ZII(bpy3]2+ guests. The 3D host-guest polymeric architectures can be used as self-supported heterogeneous photocatalysts for the reductive splitting of water, exhibiting photocatalytic activity for the evolution of H2 under UV light irradiation.

  19. Fine structures in the optical absorption spectra of photochemical silver in silver halides? A call for further research

    Georgiev, Mladen

    2007-01-01

    A survey is presented of the work done so far to check earlier claims that a fine structure may be observed to occur under certain circumstances in the impurity spectral range of the optical absorption spectra of silver halides following photostimulation in the intrinsic range. This structure, associated with the photochemical formation of silver specks, has been questioned over the years. We now weigh carefully the experimental evidence on the silver halides against a background of similar data on the alkali halides, where competing processes run slower. We come to the conclusion that present day advances in experimental techniques may be quite adequate for providing a solid experimental basis to solve the problem unambiguously.

  20. Mineralogy of silicate inclusions of the Colomera IIE iron and crystallization of Cr-diopside and alkali feldspar from a partial melt

    Takeda, Hiroshi; Hsu, Weibiao; Huss, Gary R.

    2003-06-01

    We studied the mineralogy, mineral chemistry, and compositions of 48 interior silicate inclusions and a large K-rich surface inclusion from the Colomera IIE iron meteorite. Common minerals in the interior silicate inclusions are Cr diopside and Na plagioclase (albite). They are often enclosed by or coexist with albitic glasses with excess silica and minor Fe-Mg components. This mineral assemblage is similar to the "andesitic" material found in the Caddo County IAB iron meteorite for which a partial melt origin has been proposed. The fairly uniform compositions of Cr diopside (Ca 44Mg 46Fe 10) and Na plagioclase (Or 2.5Ab 90.0An 7.5 to Or 3.5Ab 96.1An 0.4) in Colomera interior inclusions and the angular boundaries between minerals and metal suggest that diopside and plagioclase partially crystallized under near-equilibrium conditions from a common melt before emplacement into molten metal. The melt-crystal assemblage has been called "crystal mush." The bulk compositions of the individual composite inclusions form an array between the most diopside-rich inclusion and plagioclase. This is consistent only with a simple mechanical mixing relationship, not a magmatic evolution series. We propose a model in which partly molten metal and crystal mush were mixed together by impact on the IIE parent body. Other models involving impact melting of the chondritic source material followed by growth of diopside and plagioclase do not easily explain near equilibrium growth of diopside and Na plagioclase, followed by rapid cooling. In the K-rich surface inclusion, K feldspar, orthopyroxene, and olivine were found together with diopside for the first time. K feldspar (sanidine, Or 92.7Ab 7.2An 0.1 to Or 87.3Ab 11.0An 1.7) occurs in an irregular veinlike region in contact with large orthopyroxene crystals of nearly uniform composition (Ca 1.3Mg 80.5Fe 17.8 to Ca 3.1Mg 78.1Fe 18.9) and intruding into a relict olivine with deformed-oval shape. Silica and subrounded Cr diopside are

  1. Saucy-Marbet Rearrangements of Alkynyl Halides in the Synthesis of Highly Enantiomerically Enriched Allenyl Halides

    Tang, Yu; Shen, Lichun; Dellaria, Becky J.; Richard P. Hsung

    2008-01-01

    A stereospecific Saucy-Marbet rearrangement of alkynyl halides is described here. These rearrangements provide an entry to highly enantiomerically enriched allenyl bromides and chlorides through excellent chirality transfer and the reservation of optical integrity of alkynyl halides.

  2. Methods of recovering alkali metals

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  3. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector’s self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  4. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector's self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  5. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  6. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    2010-07-01

    ... trialkylamine halides. 721.4095 Section 721.4095 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  7. Spectra of alkali atoms

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  8. Halogen versus halide electronic structure

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  9. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  10. Hydrothermal alkali metal recovery process

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  11. Coordination chemistry of halides and oxohalides of tungsten (6)

    Literature data on the structure of molecular complexes of halides, exo- and dioxohalides of tungsten (6), as well as results of the study of WX6, WOX4 and WO2X2 structures in gaseous phase, crystal state and in solutions of organic solvents, were generalized. The greatest volume of structural studies involved complexes W6 with oxygen-containing ligands. The presence of cis- and trans- effects of aliquotly bound oxygen atoms in complexes of exo- and dioxohalides of tungsten is pointed out

  12. Oscillatory rule in the energy spectrum of traps in KCl and NaI crystals

    Gumenyuk, A F; Stanovyi, O P; Pashchenko, V G; Tomylko, S V

    2010-01-01

    The thermoluminescence (TL) method is used for the investigation of the energy spectrum of traps in KCl and NaI crystals in the temperature range 80-500 K. It is shown that the thermal activation energies of traps in KCl and NaI form one oscillatory series E=hwn with vibrational quantum energies of 0.121 eV in KCl and 0.061 eV in NaI. In this case, the quantum number n assumes half-integer and integer values. Based on the generalized data on the investigated alkali-halide crystals (AHC), we confirmed the earlier proposed model of TL in AHCs. It is assumed that, in addition to the nonradiative H-F recombination, there exists the two-stage recombination of H-centers at anion vacancies resulting in the radiative recombination of a hole at an F-center. The energy of a quantum in the oscillatory rule corresponds to a local vibrational mode of an X2 halide molecule.

  13. Reactive scattering of electronically excited alkali atoms with molecules

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl- repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O2 is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO2 is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed

  14. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  15. The effect of doses, irradiation temperature, and doped impurities in the thermoluminescence response of NaCl crystals

    The interactions between ionizing gamma-radiation and two alkali halide single crystals, NaCl doped with Cd2+ (0.5 mol %) or Mn2+ (0.087 mol %), were analyzed for their possible use as low dose dosimeters. For that purpose, two irradiation temperatures (298 K and 77 K) and different doses at a fix dose rate were studied. The irradiated crystals were analyzed using their thermoluminescence and optical absorption properties. The F-centers formed in these crystals were measured as a function of the dose. The production of irradiation defects in the solid were correlated with the glow curve. Bleaching the F-centers produced a decrease in the peak of the glow curve, suggesting that F centers are intimately involved in the production of the thermoluminescence phenomenon. For the NaCl crystals doped with Cd, the area under the peak observed in the glow curves (associated to very deep traps) changes uniformly in the 1.15–13.8 Gy dose intervals, making this crystal a candidate for use as a dosimeter in low dose intervals. -- Highlights: ► The gamma irradiation of single crystals of NaCl doped with Cd or Mn were studied. ► The bleaching of the F-centers produced a decrease of the peak of the glow curve. ► Crystals of NaCl:Cd can be use as a dosimeter at low radiation doses

  16. Computational screening of mixed metal halide ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich;

    of natural selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides......Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...

  17. Natural Alkali Shifts to the Methanol Business

    2007-01-01

    @@ Inner Mongolia Yuanxing Natural Alkali Co., Ltd. (Natural Alkali SZ: 000683) established in 1997 is a large chemical enterprise with new energy as its leading business and natural gas chemicals and natural alkali chemicals as the supplement business.

  18. Fullerenes doped with metal halides

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  19. PREPARATION OF ALKYL HALIDES VIA ORGANOTELLURIUMS

    チカマツ, キヨフミ; オオツボ, テツオ; オグラ, フミオ; ヤマグチ, ハチロウ; Kiyofumi, CHIKAMATSU; Tetsuo, OTSUBO; Fumio, OGURA; Hachiro, YAMAGUCHI

    1982-01-01

    The conversion of phenyltelluroalkanes to haloalkanes was studied in connection with the homologation of alkyl halides. Similar reactions of 1,1-bis(phenyltelluro)alkanes provided a new synthetic method of aldehydes.

  20. Toxicity of organometal halide perovskite solar cells

    Babayigit, Aslihan; Ethirajan, Anitha; Muller, Marc; Conings, Bert

    2016-03-01

    In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.

  1. Copper Catalyzed Oceanic Methyl Halide Production

    Robin Kim, Jae Yun; Rhew, Robert

    2014-01-01

    Methyl halides are found in all of Earth’s biomes, produced naturally or through manmade means. Their presence in the atmosphere is problematic, as they catalyze depletion of stratospheric ozone. To understand the full environmental impact of these compounds, it is important to identify their chemical cycling processes. Iron increases methyl halide production in soils and oceans, yet copper’s influence remains unknown despite its similar chemical oxidation properties to iron. I experimentally...

  2. Superconductivity in alkali metal intercalated iron selenides.

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  3. Superconductivity in alkali metal intercalated iron selenides

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  4. Double-Diffusive Convection During Growth of Halides and Selenides

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of

  5. Crystal Electrostatic Energy

    Ivanchin, Alexander

    2010-01-01

    It has been shown that to calculate the parameters of the electrostatic field of the ion crystal lattice it sufficient to take into account ions located at a distance of 1-2 lattice spacings. More distant ions make insignificant contribution. As a result, the electrostatic energy of the ion lattice in the alkaline halide crystal produced by both positive and negative ions is in good agreement with experiment when the melting temperature and the shear modulus are calculated. For fcc and bcc metals the ion lattice electrostatic energy is not sufficient to obtain the observed values of these parameters. It is possible to resolve the contradiction if one assumes that the electron density is strongly localized and has a crystal structure described by the lattice delta - function. As a result, positive charges alternate with negative ones as in the alkaline halide crystal. Such delta-like localization of the electron density is known as a model of nearly free electrons.

  6. Upgrading platform using alkali metals

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  7. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Martínez, S.; Acción, F.; Puertas, F.

    1992-01-01

    Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide), employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium) allowed us to determine the Lambe...

  8. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  9. Circular Photogalvanic Effect in Organometal Halide Perovskite CH$_3$NH$_3$PbI$_3$

    Li, Junwen; Haney, Paul M.

    2016-01-01

    We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH$_3$NH$_3$PbI$_3$. For crystal structures which lack inversion symmetry, the calculated photocurrent density is about $10^{-9}$ A/W, comparable to the previously studied quantum well and bulk Rashba systems. Because of the dependence of the circular photogalvanic effect on inversion symmetry breaking, the degree of inversion asymmetry at different depths from the surface can be probed by tuni...

  10. Method for recovering hydrocarbons from molten metal halides

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  11. 40 CFR 721.575 - Substituted alkyl halide.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  12. New hypodiphosphates of the alkali metals: Synthesis, crystal structure and vibrational spectra of the hypodiphosphates(IV) M{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (M=Rb and Cs)

    Wu, Peng [Institut fuer Anorganische und Analytische Chemie der TU Clausthal, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld (Germany); Wiegand, Thomas; Eckert, Hellmut [Institut fuer Physikalische Chemie and Graduate School of Chemistry, Westfaelische Wilhelms-Universitaet Muenster, Corrensstr. 28/30, D-48149 Muenster (Germany); Gjikaj, Mimoza, E-mail: mimoza.gjikaj@tu-clausthal.de [Institut fuer Anorganische und Analytische Chemie der TU Clausthal, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld (Germany)

    2012-10-15

    The new hypodiphosphates(IV) Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (1) and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (2) were synthesized by soft chemistry reactions from aqueous solutions of hypophosphoric acid and the corresponding heavy alkali-metal carbonates. Their crystal structures were determined by single crystal X-ray diffraction. Both compounds crystallize isotypic in the triclinic space group P-1 with one formula unit in the unit cell. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units in staggered conformation for the P{sub 2}O{sub 6} skeleton and the corresponding alkali-metal cations. In the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} ion the hydrogen atoms are in a 'trans-trans' conformation. O{center_dot}H-O hydrogen bonds between the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups consolidate the structures into a three-dimensional network. The FT-Raman and {sup 31}P and {sup 1}H and MAS NMR spectra of the title compounds have been recorded and interpreted, especially with respect to their assignment to the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups. Thermogravimetric data of 2 have been interpreted in terms of a thermal decomposition model. - Graphical Abstract: The layered compounds Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] have been synthesized and investigated. Both crystallize isotypic. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units and the corresponding alkali-metal cations. Highlights: Black-Right-Pointing-Pointer Synthesis and single-crystal structure of new alkali hypodiphosphates. Black-Right-Pointing-Pointer Structures are characterized by [(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})]{sup 2-} units and M

  13. Harmonic dynamical behaviour of thallous halides

    Sarvesh K Tiwari; L J Shukla; K S Upadhyaya

    2010-05-01

    Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.

  14. Electronic structure, optical property and improved stability of mixed halide perovskite CH$_3$NH$_3$Pb(I$_{1-x}$Br$_x$)$_3$ by virtual crystal approximation within DFT

    Jong, Un-Gi; Yu, Chol-Jun; Kim, Nam-Hyok; Ri, Guk-Chol

    2016-01-01

    We investigate the structural, electronic and optical properties of mixed bromide-iodide lead perovskite solar cell CH$_3$NH$_3$Pb(I$_{1-x}$Br$_x$)$_3$ by means of the virtual crystal approximation (VCA) within density functional theory (DFT). Optimizing the atomic positions and lattice parameters increasing the bromide content $x$ from 0.0 to 1.0, we fit the calculated lattice parameter and energy band gap to the linear and quadratic function of Br content, respectively, which are in good ag...

  15. Pathways of birnessite formation in alkali medium

    FENG Xionghan; TAN Wenfeng; LIU Fan; HUANG Qiaoyun; LIU Xiangwen

    2005-01-01

    Birnessite is a common weathering and oxidation product of manganese-bearing rocks. An O2 oxidation procedure of Mn(OH)2 in the alkali medium has been used to synthesize birnessite. Fast and powder X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), energy dispersed X-ray analysis (EDAX), infrared spectroscopy (IR) techniques and chemical composition analysis, Eh-pH equilibrium diagram approaches were employed to investigate the reaction process and pathways of birnessite formation. Results showed that the process of the birnessite formation could be divided into four stages: (1) formation stage for hausmannite and feitknechtite, (2) stage of transformation of hausmannite and feitknechtite to buserite, (3) buserite crystal growing stage, and (4) stage of conversion of buserite into birnessite. Mn(OH)2 was mainly present as amorphous state only for a short initial time of oxidation reaction. In the oxidation process, buserite formed following two pathways by recrystallization after dissolution of the intermediates, and the transformations of the minerals depended on the Eh determined by the dissolved O2 concentration on their surfaces. The results are fundamental in further exploration on the mechanism of birnessite formation in the alkali medium. A great practical significance would also be expected with respect to the areas of material sciences.

  16. Computational screening of mixed metal halide ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich; Vegge, Tejs

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure....... In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles...

  17. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH2)3]CdI3 and [4-ClC6H5NH3]3CdBr5

    The crystal structures of [C(NH2)3]CdI3 (1) and [4-ClC6H5NH3]3CdBr5 (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P21/c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI4] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr6] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three 127I (m = ±1/2 <-> m = ±3/2), five 81Br, and three 35Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd5I16]6- for 1 and [Cd3Br16]10- for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  18. Trace Element Geochemistry of Hannuoba Ultramafic Inclusion—bearing Alkali Basalts

    支霞臣

    1990-01-01

    Presented in this paper are the trace element abundances of 16 samples of Hannuoba ultramafic inclusion-bearing aldali basalts,which were determined by instrumental neutron activation analysis and X-ray fluorescence spectrometry.The Petrogenesis of the alkali basalt suite has been modeled by batch partial melting and and Rayleigh fractional crystallization processes,The geochemical characteristics of the mantle source from where alkali basalts were derived are described in terms of variations in trace element abundances of the alkali basalt suite.

  19. The electronic structure of alkali aurides. A four-component Dirac-Kohn-Sham study.

    Belpassi, Leonardo; Tarantelli, Francesco; Sgamellotti, Antonio; Quiney, Harry M

    2006-04-01

    Spectroscopic constants, including dissociation energies, harmonic and anharmonic vibrational frequencies, and dipole moments, are calculated for the complete alkali auride series (LiAu, NaAu, KAu, RbAu, CsAu). The four-component formulation of relativistic density functional theory has been employed in this study, using the G-spinor basis sets implemented recently in the program BERTHA. The performance of four standard nonrelativistic density functionals employed is investigated by comparing the results with the best available theoretical and experimental data. The present work provides the first theoretical predictions on the molecular properties of RbAu. The intermetallic bond that occurs in the alkali auride series is highly polar and is characterized by a large charge transfer from the alkali metals to gold. The extent of this electron transfer has been investigated using several different charge analysis methods, enabling us to reach some general conclusions on their relative performance. We further report a detailed analysis of the topological properties of relativistic electron density in the bonding region, discussing the features of this approach which characterize the nature of the chemical bond. We have also computed the fully relativistic density for the alkali halides MBr and MI (M = Li, Na, K, Rb, and Cs). The comparative study shows that, on the basis of several topological properties and the variation in bond lengths, the gold atom behaves similarly to a halogen intermediate between Br and I. PMID:16571062

  20. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu2+/Eu3+ ratio in the glass ceramics should be determined and optimize favor of the Eu2+. We also want to distinguish between Eu2+ in the glass matrix and Eu2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF2 host lattice were carried out. (orig.)

  1. Raman scattering and quantum confinement in heavily electron-irradiated alkali halides

    Shtyrkov, E.I.; Klimovitskii, A.; Hartog, H.W. den; Vainshtein, D.I.

    2002-01-01

    In this paper we will study the properties of several unusual Raman scattering peaks in heavily irradiated NaCl with vast amounts of colloidal sodium and chlorine precipitates. It appears that the laser excitation light interacts with both the electronic and vibration systems of the Na colloids, whi

  2. Heteroepitaxial strain in alkali halide thin films: KCl on NaCl

    Baker, J.; Lindgård, Per-Anker

    1999-01-01

    We have pet-formed Monte Carlo simulations of the properties of a NaCl (001) surface covered by full or partial layers of KCl, for coverages up to 5 monolayers (ML). A wide variety of structures of the film is found. For integer ML coverages we find the continuous, so-called floating mode rumple ...

  3. Thermal decomposition of complex halides of arsenic(3), antimony(3) and bismuth(3) with alkali metals

    Cyganski, A.; Ptaszynski, B.; Zalewicz, M. (Politechnika Lodzka (Poland))

    1980-01-01

    Thermal analyses of complexes M/sub 3/(As/sub 2/X/sub 9/) (M = Rb, Cs; X = Cl, Br), M/sub 3/(Sb/sub 2/X/sub 9/) (M = Rb, Cs; X = Cl, Br, I), Rb/sub 3/(BiX/sub 6/) (X = Cl, Br) and Cs/sub 3/(Bi/sub 2/X/sub 9/) (X = Cl, Br, I) were performed. From chemical and X-ray analyses of their solid decomposition products the mechanism of thermal decomposition reactions was established. From thermogravimetric curves apparent activation energies were calculated using Coats-Redfern's and Zsako's methods. Thermal stability of complexes increases distinctly in the following order: As

  4. The aluminum electrode in AlCl3-alkali-halide melts.

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.

  5. Role of Farben centers in electron- and photon-stimulated desorption from alkali halides

    Measurements of the time history of ground-state neutral lithium desorption from LiF during pulsed electron irradiation have resulted in a new model for the lithium-desorption mechanism. We show that the slow diffusion to the surface of bulk Farben (F) centers created by the electron-beam is the rate-controlling factor responsible for most of the time history of the lithium desorption rather than the thermal evaporation of the metal from the surface. Comparison between theoretical and experimental time dependencies yields values for the F center diffusion constant and its activation energy

  6. Anions of alkali halide salts at surfaces of formamide solutions: Concentration depth profiles and surface topography

    Andersson, G.; Morgner, H.; Cwiklik, Lukasz; Jungwirth, Pavel

    2007-01-01

    Roč. 111, č. 11 (2007), s. 4379-4387. ISSN 1932-7447 R&D Projects: GA MŠk LC512; GA MŠk ME 644 Grant ostatní: DFG(DE) 288/25 Institutional research plan: CEZ:AV0Z40550506 Keywords : surfaces of salt solutions * formamide * ions * molecular dynamics simulations Subject RIV: CF - Physical ; Theoretical Chemistry

  7. A generalized rule of average for glow peak temperature of ternary alkali halide systems

    G. Moroyoqui-Estrella

    2011-01-01

    Full Text Available Se estudia la dependencia de la temperatura en la curva de brillo con la composición de los aniones en mezclas cristalinas impurificadas con Europio: KCl0.50KBr0.25RbX0.25:Eu2+ (X = Cl, Br. Cada material muestra una curva de brillo termoluminiscente consistente en dos picos de brillo principales con temperatura entre la del KCl:Eu2+ y la del KBr:Eu2+. El pico más intenso está relacionado con la destrucción del centro F, como ocurre en el caso de cristales de KCl:Eu2+ y su temperatura característica depende fuertemente de la composición del halogeno. El comportamiento confirma que la temperatura de la recombinación de los centros F-H en este tipo de materiales depende en gran medida de la proporción de los aniones. De estos resultados se propone una regla generalizada para obtener la temperatura, promediando la temperatura característica en función de la composición.

  8. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  9. Computational Screening of Mixed Metal Halide Ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich; Vegge, Tejs

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. In this project we are searching for improved mixed materials with optimal desorption temperature and kinetics. We apply DFT calculations on mixed compounds...

  10. Corrosion by the Alkali Metals

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or

  11. Structure and bonding in metal-rich compounds: pnictides, chalcides and halides

    The subject is reviewed under the following headings: introduction (compounds included in the review; purpose of the review); MX compounds with M = transition metal and X = O,N,S or P; sulfides and selenides of the transition metals; transition-metal phosphides; alkali oxides; transition-metal oxides and nitrides with X/M < 1; metal-rich halides; conclusion. The references number 238. Compounds of the following principal elements of nuclear interest are included in the tables and text: Am, Ce, Cs, Eu, Gd, Hf, La, Mo, Np, Nb, Pu, Pr, Pa, Re, Ru, Sc, Ta, Tb, Th, W, U, V, Y, Zr. The information in the tables is presented under: structure type, space group, lattice parameters and remarks. (U.K.)

  12. Construction of thermionic alkali-ion sources

    Ul Haq, F.

    1986-04-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed.

  13. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  14. Reactions of 1,4-bis(tetrazole)benzenes: formation of long chain alkyl halides

    Kelleher, Fintan; Bond, Andrew; Fleming, Adrienne; McGinley, John; Prajapati, Vipa

    2006-01-01

    The reactions of 1,4-bis[2-(tributylstannyl)tetrazol-5-yl]benzene with α,ω-dibromoalkanes were carried out in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazole. This led to the formation of several alkyl halide derivatives, substituted variously at N1 or N2 on the tetrazole ring. The crystal structures of 1,4-bis[(2-(4-bromobutyl)tetrazol-5-yl)]benzene (2-N,2-N′), 1,4-bis[(2-(4-bromobutyl)tetrazol-5-yl)]benzene (1-N,2-N′) and 1,4-bis[(2-(8-bromooctyl)tetra...

  15. Alkali and transition metal phospholides

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references

  16. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups

    Hulsbosch, Niels; Hertogen, Jan; Dewaele, Stijn; André, Luc; Muchez, Philippe

    2014-05-01

    This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986 ± 10 Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb-Ta-Sn) pegmatites occur most distal from the granite.

  17. Seed-mediated growth of palladium nanocrystals: The effect of pseudo-halide thiocyanate ions

    Zhang, Ling; Niu, Wenxin; Xu, Guobao

    2011-02-01

    In synthesis in a solution phase, adsorbates such as halides can interact selectively with different metal crystal facets and affect the final morphology of nanocrystals. Pseudo-halide thiocyanate ions (SCN-) can also adsorb on the metal surface, but they have never been used for the synthesis of shape-controlled colloidal metal nanocrystals. In this study, we first investigated the effect of SCN- on the morphology of palladium nanocrystals through a seed-mediated growth method. The presence of 1 µM SCN- in the growth solutions could lead to the formation of palladium polyhedra: truncated rhombic dodecahedra enclosed by twelve {110}, eight {111} and six {100} facets. The products were nanocubes enclosed with six {100} facets if cetyltrimethylammonium bromide (CTAB) was the only capping agent. Meanwhile, the mechanism of the effect of SCN- on the morphology of Pd nanocrystals is discussed.In synthesis in a solution phase, adsorbates such as halides can interact selectively with different metal crystal facets and affect the final morphology of nanocrystals. Pseudo-halide thiocyanate ions (SCN-) can also adsorb on the metal surface, but they have never been used for the synthesis of shape-controlled colloidal metal nanocrystals. In this study, we first investigated the effect of SCN- on the morphology of palladium nanocrystals through a seed-mediated growth method. The presence of 1 µM SCN- in the growth solutions could lead to the formation of palladium polyhedra: truncated rhombic dodecahedra enclosed by twelve {110}, eight {111} and six {100} facets. The products were nanocubes enclosed with six {100} facets if cetyltrimethylammonium bromide (CTAB) was the only capping agent. Meanwhile, the mechanism of the effect of SCN- on the morphology of Pd nanocrystals is discussed. Electronic supplementary information (ESI) available: Additional SEM, TEM and XRD data. See DOI: 10.1039/c0nr00622j

  18. Transport of Soil Halides through Rice Paddies: A Viable Mechanism for Rapid Dispersion of the Soil Halide Reservoir

    Redeker, K. R.; Manley, S.; Wang, N.; Cicerone, R.

    2002-05-01

    On short time scales (1-10 years) soil halide concentrations have been assumed to be primarily driven by leaching and deposition processes. Recent results however, have shown that terrestrial plants volatilize soil halides in the form of methyl halides. Emissions of methyl chloride, methyl bromide and methyl iodide represent major pathways for delivery of inorganic halogen radicals to the atmosphere. Inorganic halogen radicals destroy ozone in the stratosphere and modify the oxidative capacity of the lower atmosphere. We have previously shown that rice paddies emit methyl halides and that emissions depend on growth stage of the rice plant as well as field water management. We show here that rice grown in a greenhouse at UCI is capable of volatilizing and/or storing up to 30%, 5%, and 10% of the available chloride, bromide and iodide within the top meter of soil. The percent of plant tissue halide volatilized as methyl halide over the course of the season is calculated to be 0.05%, 0.25% and 85.0% for chloride, bromide and iodide. We compare our greenhouse soil halide concentrations to other commercial rice fields around the world and estimate the e-folding time for soil halides within each region. We suggest that rice agriculture is the driving removal mechanism for halides within rice paddies and that terrestrial plants play a larger role in global cycling of halides than previously estimated.

  19. The structure of metallic complexes of polyacetylene with alkali metals

    Baughman, R. H.; Murthy, N. S.; Miller, G. G.

    1983-07-01

    The crystal structures of sodium, potassium, rubidium, and cesium doped polyacetylene have been determined using crystal packing and x-ray diffraction analyses. Each of these metallic complexes is tetragonal, with the polyacetylene chains forming a host lattice in which the alkali metal ions are present in channels. Lithium appears to be too small to stabilize the channel structure and an amorphous structure is observed. Predicted unit cell parameters and x-ray diffraction intensities are in agreement with observed values. Similarities with the alkali metal doped graphite suggest that hybridization between carbon pz orbitals and metal s orbitals occurs. Such hybridization is expected to result in a high conductivity component normal to the chain direction. On the other hand, direct overlap between polymer chains appears small, since alkali metal columns separate polymer chains. Compositions calculated for the channel structures (from meridional diffraction spacings, the intensity of equatorial diffraction lines, measured volume expansion, and distances in model complexes) all range from y=0.12 to 0.18 for (CHMy)x, where M is sodium, potassium, rubidium, or cesium.

  20. ACCUMULATION OF ALKALIS IN THE RECYCLING FILTRATE OF THE PHOSPHOGYPSUM PULPS

    ANTANAS KAZILIUNAS

    2011-12-01

    Full Text Available Sodium and potassium combinations existing in phosphogypsum are highly soluble and remain in the filtrate, their amount increasing with each recycle. It has been determined that the amount of alkalis in the recycling filtrate depends on an amount of alkalis in uncleaned phosphogypsum, a number of recycles in the filtrate, the technology of the phosphogypsum pulp preparation and an amount of soluble phosphates. New phosphate formations composed in an acid medium (pH = 4.5-5 are well crystalized crystals. They do not alter the filtrability of the phosphogypsum pulp. The new combinations formed in an alkaline medium (pH = 7-11 are colloidal. They settle down on the surface of the hard particles and make the filtration of the phosphogypsum pulp complicated. The filtrated phosphogypsum is more humid which causes the growth of the amount of alkalis carried out together with moisture and thus the lower alkali concentration is observed in the recycling filtrate. In the discussed case, the larger amount of soluble phosphates of uncleaned phosphogypsum is formed the larger amount of the colloidal particles in the neutralized phosphogypsum pulp which results in complicated filtration. In all the cases, the alkali concentration in the recycling filtrate approaches the maximum degree which would take place if alkalis existing in uncleaned phosphogypsum were thawed in humidity of cleaned phosphogypsum.

  1. Evaluation of Ce3+ and alkali metal ions Co-doped LiSrAlF6 crystalline scintillators

    High scintillation efficiency of Eu-doped LiSrAlF6 (LiSAF) and LiCaAlF6 (LiCAF) codoped with alkali metal ions has been reported in our recent studies. Thus in this paper, we demonstrated the scintillation properties of 1% Ce-doped LiSAF crystals with 1% alkali metal ions co-doping to increase the light yield and understand the scintillation mechanism. The crystals showed intense emission band corresponding to the 5d-4f transition of Ce3+, and their light yields under thermal neutron excitation were higher than that of the Ce only doped crystal. Especially, the light yield of Ce–Na co-doped crystal exceeded about two times that of Ce only doped one. -- Highlights: ► Ce-doped and alkali metal co-doped LiSAF crystals were grown by μ-PD method. ► Alkali metal co-doped crystals showed higher light yield than Ce only doped crystal. ► Decay time of alkali metal co-doped LiSAF were longer than that of Ce only doped one

  2. Water Content of Lunar Alkali Fedlspar

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of water content of the magma ocean would have water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites

  3. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  4. Lanthanide-halide based humidity indicators

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  5. Computational Screening of Mixed Metal Halide Ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich;

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. In this project we are searching for improved mixed materials with optimal desorption temperature and kinetics. We apply DFT calculations on mixed compounds...... selected by a Genetic Algorithm (GA), relying on biological principles of natural selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d...... and 4d metals and the four lightest halides, giving in total almost two million combinations....

  6. Cerium doped lanthanum halides: fast scintillators for medical imaging

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl3:Ce3+ and LaBr3:Ce3+).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  7. Process and composition for drying of gaseous hydrogen halides

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  8. Iridium-catalyzed intramolecular [4 + 2] cycloadditions of alkynyl halides

    Andrew Tigchelaar; William Tam

    2012-01-01

    Iridium-catalyzed intramolecular [4 + 2] cycloadditions of diene-tethered alkynyl halides were investigated by using [IrCl(cod)]2 as catalyst, and dppe was found to be the most suitable phosphine ligand for the reaction. No oxidative insertion of the iridium into the carbon–halide bond was observed, and the reactions proceeded to provide the halogenated cycloadducts in good yield (75–94%). These results are the first examples of cycloadditions of alkynyl halides using an iridium c...

  9. FTIR Studies of Internal Water Molecules of Bacteriorhodopsin: Structural Analysis of Halide-bound D85S and D212N Mutants in the Schiff Base Region

    Shibata, Mikihiro; Kandori, Hideki

    2007-12-01

    Bacteriorhodopsin (BR), a membrane protein found in Halobacterium salinarum, functions as a light-driven proton pump. The Schiff base region has a quadropolar structure with positive charges located at the protonated Schiff base and Arg82, and counterbalancing negative charges located at Asp85 and Asp212 (Figure 1A). It is known that BR lacks a proton-pumping activity if Asp85 or Asp212 is neutralized by mutation. On the other hand, binding of C1- brings different effects for pumping functions in mutants at D85 and D212 position. While C1--bound D85T and D85S pump C1-, photovoltage measurements suggested that C1--bound D212N pumps protons at low pH. In this study, we measured low-temperature FTIR spectra of D85S and D212N containing various halides to compare the halide binding site of both proteins. In the case of D85S, the N-D stretching vibrations of the Schiff base were halide-dependent. This result suggests that the halide is a hydrogen-bond acceptor of the Schiff base, being consistent with the X-ray crystal structure. On the other hand, no halide dependence was observed for vibrational bands of the retinal skeleton and the Schiff base in the D212N mutant. This result suggests that the halide does not form a hydrogen bond with the Schiff base directly, unlike the mutation at D85 position. Halide-dependent water bands in the Schiff base region also differ between D85S and D212N. From these results, halide binding site of both proteins and role of two negative charges in BR will be discussed.

  10. Lanthanide doped strontium-barium cesium halide scintillators

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  11. Effect of alkali and heat treatments for bioactivity of TiO{sub 2} nanotubes

    Kim, Seo young, E-mail: mast6269@nate.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Yu kyoung, E-mail: yk0830@naver.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Park, Il song, E-mail: ilsong@jbnu.ac.kr [Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jin, Guang chun, E-mail: jingc88@126.com [Oral Medical College, Beihua University, Jilin City 132013 (China); Bae, Tae sung, E-mail: bts@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Lee, Min ho, E-mail: mh@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of)

    2014-12-01

    Highlights: • TiO{sub 2} nanotubes formed via anodization were treated by alkali and heat. • The surface roughness was increased after alkali treatment (p < 0.05). • After alkali and heat treatment, the wettability was better than before treatment. • Alkali treated TiO{sub 2} nanotubes were shown higher HAp formation in SBF. • Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO{sub 2} nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO{sub 2} nanotubes (PNA) and alkali and heat-treated TiO{sub 2} nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na{sub 2}TiO{sub 3}) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  12. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides w...

  13. On-line alkali monitoring - Part 1

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  14. Alkali metal sources for OLED devices

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  15. Lanthanum halide scintillators for time-of-flight 3-D pet

    Karp, Joel S.; Surti, Suleman

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  16. New alkali metal diphosphates how materials to preserve the security of the environment: CsNaCu(P2O7), Rb2Cu(P2O7) and CsNaCo(P2O7) synthesis and crystal structure determination

    Chernyatieva, Anastasiya; Filatova, Alyona; Spiridonova, Dariya; Krivovichev, Sergey

    2013-04-01

    In this work we describe preliminary results of the synthesis and of a crystal-chemical study of synthetic phosphates with transition metals. Due to the increasing requirements for environmental safety specialists from various industries, we are searching for sustainable forms of immobilization of hazardous waste during storage. We are also developing a component-based waste for new materials. In our continued exploratory synthesis of compounds containing transition-metals, we were able to produce the new diphosphate phases CsNaCu(P2O7), Rb2Cu(P2O7) and CsNaCo(P2O7). A crystal chemical study has allowed us to identify new phosphates. Crystals of CsNaCu(P2O7) (Phase 1) is orthorhombic, crystallizes in space group Pmn21, with a = 5.147(8), b = 15.126(2), c = 9.717(2) Å, V = 756.20 Å3, R1 = 0.066 and Rb2Cu(P2O7) (Phase 2) is orthorhombic as well, crystallizes in space group Pmcn, with a = 5.183(8), b = 10.096(1), c = 15.146(3) Å, V = 793.55 Å3, R1 = 0.063, they have been obtained by high-temperature reaction of RbNO3, CsNO3, Cu(NO3)2, NaOH and (NH4)4P2O7. Synthetic crystals of the phosphate of copper and rubidium were studied in detail by us on the structures of Rb2Cu(P2O7) and Rb2Cu3(P2O7)2 - new alkali metal copper diphosphates (CHERNYATIEVA et al., 2008). Here we report the synthesis, the structure and the properties of the title compounds and we compare these phases with the previously discovered K2CuP2O7 (ELMAADI et al., 1995) and CsNaMnP2O7 (HUANG et al., 1998). These structures crystallize in other space groups, although their structures are also based on 2-D layers, formed by P2O7 groups combined with polyhedra of the transition metals (CHERNYATIEVA et al., 2012). A crystal chemical study has allowed us to identify even new diphosphates CsNaCu(P2O7) (Phase 3). Crystals of CsNaCoP2O7 is monoclinic, space group P 21/n, with a = 7,424(2), b = 7,648(1), c = 12,931(3)Å, β = 90,71(2)° , V = 734.2(3) Å3 and R1 = 0.060. The structure is based framework of Co

  17. Actinide halides and their complexes

    Papers are reviewed published since late 1967 to middle 1970. Problems involving the availability of actinoid halogenides with oxidation degrees from +6 to +2, actinoid oxihalogenides, and also halogenous actinoid complexes with oxidation degrees from +6 to +3, oxihalogenous actinoid complexes with valencies from +6 to -6. The NpF+L5, BKF4, CfF4, BKF3, CfF3 BKBr3, PaF5.2H2O and Pa2OF8 compounds with rhombic pseudocell with the parameters of a0=6.894A, b0=4.014A, c0=4.143A have been obtained for the first time. The process is described of the hew- synthesised ThOF with the face-centered lattice (a0=5.68A), hydrated U(5)-MU2F12 complexes where M=Co, Mi, Cu, and also MUF7 complexes where M=K1Rb, Cs. Csub(s)UFsub(7) is characterized by cubic symmetry with a0=5.54A. The crystal structure of the formally-divalent actinoid compound, ThI2, has been examined. In fact, this compound should be regarded as Th4+(e-)2I2. An interesting method for obtaining UOCl3 through a reaction between UO3 and MoCl5; UOF2.H2O from aqueous solution, and also a simple method for obtaining UCl5 by UO3 reduction with the silicon tetrachloride. The results of investigation of infrared spectra of halogenous and oxihalogenous actinoid complexes (valency from +6 to +4) with donor ligands

  18. Performance characterization of rigid polyurethane foam with refined alkali lignin and modified alkali lignin

    LIU Zhi-ming; YU Fei; FANG Gui-zhen; YANG Hui-jun

    2009-01-01

    The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.

  19. The coacervation of aqueous solutions of tetraalkylammonium halides

    The coacervation of aqueous solutions of tatraalkylammonium halides in the presence of not of inorganic halides and acids has been studied, considering thermodynamic and spectroscopic aspects. The importance of dispersion forces as well as forces resulting from hydrophobic hydration has been assessed. The analogy between these systems and anionic ion exchange resins has been shown especially for Uranium VI extraction

  20. Geochemical Trace of Silicon Isotopes of Intrusions and Ore Veins Related to Alkali-rich Porphyry Deposits in Western Yunnan, China

    LIU Xianfan; YANG Zhengxi; LIU Jiaduo; WU Dechao; ZHANG Chenjiang; LI Youguo

    2004-01-01

    Western Yunnan is the well-known polymetallic province in China. It is characterized by copper-gold mineralization related to Cenozoic alkali-rich porphyry. This paper analyzes the silicon isotope data obtained from four typical alkali-rich porphyry deposits based on the dynamic fractionation principle of silicon isotope. The study shows that the ore materials should originate mainly from alkali-rich magmas, together with silicon-rich mineralizing fluids.The process of mineralization was completed by auto-metasomatism, i.e. silicon-rich mineralizing fluids (including alkali-rich porphyry and wall-rock strata) replaced and altered the country rocks and contaminated with crustal rocks during the crystallization of alkali-rich magmas. Such a process is essentially the continuance of the metasomatism of mantle fluids in crust's mineralization. This provides important evidence of silicon isotopic geochemistry for better understanding the mineralization of the Cenozoic alkali-rich porphyry polymetallic deposits

  1. Elastic Properties of Potassium Halides under Pressure

    K.Haddadi; L.Louail; D.Maouche

    2008-01-01

    The moderate-pressure elastic properties of potassium halides KX (X=F, CI, Br) was studied theoretically using the density functional theory (DFT) with normconserving pseudopotentials method. The phase transfor- mation from the B1 phase (NaCl-type structure) to the denser B2 phase (CsCl-type structure) occurred at 7.7, 3.46 and 2.96 GPa for KF, KCl and KBr, respectively. The elastic stiffness coefficients and bulk modulus of these materials were calculated as function of hydrostatic pressure and compared with both the experimental and theoretical values.

  2. Studies of rare gas halide lasers

    Hogan, Daniel Christopher.; Webb, Colin E.; Dr. C. E. Webb

    1983-01-01

    This thesis presents the results of a study of the mechanisms responsible for limiting the laser pulse duration obtainable in xenon chloride lasers which are excited by UV-preionized, self-sustained gas discharges. The xenon chloride laser system, the principal emission band of which is centred around 308 nm, belongs to the class of high pressure gas lasers known as 'rare-gas halides'(RGH). RGH lasers are now well known for their high peak power output at a number of wavelen...

  3. Quasiparticle electronic band structure of the alkali metal chalcogenides

    S.V. Syrotyuk

    2015-09-01

    Full Text Available The electronic energy band spectra of the alkali metal chalcogenides M2A (M: Li, Na, K, Rb; A: O, S, Se, Te have been evaluated within the projector augmented waves (PAW approach by means of the ABINIT code. The Kohn-Sham single-particle states have been found in the GGA framework. Further, on the basis of these results the quasiparticle energies of electrons as well as the dielectric constants were obtained in the approximation GW. The calculations based on the Green's function have been originally done for all the considered M2A crystals, except Li2O.

  4. Characterization of Waste Poly(Ethylene-Terephthalate after Alkali Treatment

    Rešček, A.

    2011-07-01

    Full Text Available Poly(ethylene terephthalate, PET, recycling represents one of the most successful and widespread examples of polymer recycling. This material is fully recyclable and may be used for manufacturing new products in many industrial areas. Nevertheless, the excellent properties of PET needed for its many applications are also responsible for the difficult degradation of PET and an accumulation of polymer waste, which in turn creates serious environmental problems connected to littering and illegal landfilling or incineration. The main goal of this study was to examine the effect of alkali pretreatment on the properties of PET flakes. PET flakes were washed at twotemperatures, 70 °C and 75 °C and in various time intervals of 15, 18, 21, 25, and 30 min. All samples were characterized by FTIR spectroscopy, differential scanning calorimetry and by contact angle measurements. The results showed that during the alkali treatment the partial depolymerization of PET was obtained, which resulted in the formation of various types of oligomers with hydroxyl and carboxyl end groups, which were the result of loss of high molecular structure. Decrease of intensity of characteristic vibrational bands (CO at 1717, COO at 1265 and CH2 at 722 cm-1 with extended time was observed (Figs. 1 and 2. Further on, the formation of hydroxyl groups at ṽ = 3428 cm-1 was also observed as a result of PET depolimerization during the alkali treatment, which behaviour was better visible for samples washed at 75 °C and with extended washing time (Fig 2b. During the DSC thermal analysis, multiple melting peaks were observed in some studied samples which could be linked to partial melting and re-crystallization of PET or to the occurrence of new polymer fractions of lower molecular mass (Figs. 3 and 4. It is evident that the contact angle of PET samples (Fig. 5 decreases in comparison to the PET 0, which points to the changes on the PET surface during the alkali treatment. Decrease

  5. Superconductivity in alkali-doped fullerene nanowhiskers.

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  6. Silver nanoparticles from silver halide photography to plasmonics

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  7. Two dimensional condensation of argon adsorbed on lamellar halides

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  8. Synthetic and structural chemistry of amidinate-substituted boron halides.

    Hill, Nicholas J; Findlater, Michael; Cowley, Alan H

    2005-10-01

    The following new amidinate-substituted boron halides are reported: [PhC{N(SiMe(3))}(2)]BCl(2)(6), [MeC{NCy}(2)]BCl(2)(10), [Mes*C{NCy}(2)]BCl(2)(11), [MeC{N(i)Pr}(2)]BCl(2)(12), and [FcC{NCy}(2)]BBr(2)(13). Compound 6 was prepared via the trimethylsilyl chloride elimination reaction of BCl(3) with N,N,N'-tris(trimethylsilyl)benzamidine, and compounds 10-12 were prepared by salt metathesis between the lithium amidinates [RC(NR')(2)]Li and BX(3). Compound 13 was prepared via the insertion of 1,3-dicyclohexylcarbodiimide into the B-C bond of ferrocenyldibromoborane FcBBr(2). The molecular structures of 6, 10, 11, 13 and the known compound [PhC{N(SiMe(3))}(2)]BBr(2)(1) were established by single-crystal X-ray diffraction. PMID:16172649

  9. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local

  10. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  11. Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies.

    Li, Chi; Wei, Jian; Sato, Mikio; Koike, Harunobu; Xie, Zhong-Zhi; Li, Yan-Qing; Kanai, Kaname; Kera, Satoshi; Ueno, Nobuo; Tang, Jian-Xin

    2016-05-11

    Solution-processed perovskite solar cells are attracting increasing interest due to their potential in next-generation hybrid photovoltaic devices. Despite the morphological control over the perovskite films, quantitative information on electronic structures and interface energetics is of paramount importance to the optimal photovoltaic performance. Here, direct and inverse photoemission spectroscopies are used to determine the electronic structures and chemical compositions of various methylammonium lead halide perovskite films (MAPbX3, X = Cl, Br, and I), revealing the strong influence of halide substitution on the electronic properties of perovskite films. Precise control over halide compositions in MAPbX3 films causes the manipulation of the electronic properties, with a qualitatively blue shift along the I → Br → Cl series and showing the increase in ionization potentials from 5.96 to 7.04 eV and the change of transport band gaps in the range from 1.70 to 3.09 eV. The resulting light absorption of MAPbX3 films can cover the entire visible region from 420 to 800 nm. The results presented here provide a quantitative guide for the analysis of perovskite-based solar cell performance and the selection of optimal carrier-extraction materials for photogenerated electrons and holes. PMID:27101940

  12. Metal halide perovskites for energy applications

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  13. Isothermal equation of state of a lithium fluoride single crystal

    Kim, K.Y.

    1975-01-01

    An isothermal equation of state of a LiF single crystal was determined from length change measurements of the specimen as a function of hydrostatic pressure up to approximately 7 kbars at 28 to 41/sup 0/C. The length change was measured with an accuracy of approximately 500 A by using a Fabry Perot type He--Ne laser interferometer for a 1-m long specimen at temperatures constant to less than 0.002/sup 0/C. Several two- and three-parameter equations of state were used in analyzing the measured pressure-volume data. The computer fit for each equation of state determines not only the value of its parameters but also the standard deviations associated with them and one dependent variable, either pressure or volume. With the parameters determined, the equations of state are extrapolated to approximately 5 megabars in order to see discrepancies. Using the Born model of ionic solids, two equations of state were derived both from a power law potential and from an exponential form for the repulsive energy of alkali metal halides and used to fit the pressure-volume data of a LiF single crystal. They are also extrapolated to approximately 5 megabars. The Birch's two-parameter equation and the Grover, Getting, and Kennedy equation are indistinguishable from the two equations of state derived from the Born model for pressures approximately equal to or less than 800 kbars within +-20 kbars. The above four equations of state also fit closely the Pagannone and Drickamer static compression data, the Christian shock wave data, and the Kormer et al. shock wave data. The isothermal bulk modulus and its first pressure derivative at atmospheric pressure and 28.83/sup 0/C are 664.5 +- 0.5 kbars and 5.40 +- 0.18, respectively, in close agreement with those values ultrasonically measured by R. A. Miller and C. S. Smith. (auth)

  14. Advancements in flowing diode pumped alkali lasers

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  15. High effective silica fume alkali activator

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  16. Silver-catalyzed coupling reactions of alkyl halides with indenyllithiums

    Someya, Hidenori; Yorimitsu, Hideki; Oshima, Koichiro

    2010-01-01

    Coupling reactions of tertiary and secondary alkyl halides with indenyllithiums proceeded effectively in the presence of a catalytic amount of silver bromide to provide tertiary- and secondary-alkyl-substituted indene derivatives in good yields.

  17. Structural and chemical analysis of gadolinium halides encapsulated within WS2 nanotubes

    Anumol, E. A.; Enyashin, Andrey N.; Batra, Nitin M.; Costa, Pedro M. F. J.; Deepak, Francis Leonard

    2016-06-01

    The hollow cavities of nanotubes serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of WS2 nanotubes by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is non-trivial due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.The hollow cavities of nanotubes serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of WS2 nanotubes by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is non-trivial due to the

  18. Evidence of Production of Neutral Cl35 Atoms by the Cl35 (n, p)S35 Process in Alkali Metal Chlorides

    A number of investigations reported in the literature have shown that S35 produced by the Cl35 (n, p)S35 process in neutron-irradiated alkali metal halides may be separated as S= , SO=3 and SO=4 after the irradiated crystals are dissolved in aqueous solutions of the appropriate carriers. The relative amounts of the three chemical forms depend on the purity of the sample and the conditions of irradiation and analysis. Attempts to identify neutral S35 atoms among the products of the neutron irradiation have been limited by the fact that elemental sulphur is too insoluble to use as a carrier in aqueous solution and by the exchange and adsorption processes which interfere when heterogeneous extraction processes are used. However, we have observed chemical evidence for an S35 species with properties which might be expected for neutral monatomic sulphur. When vacuum-sublimed, neutron-irradiated KCl is dissolved in degassed 0.3N aqueous NaOH containing S=, SO=3 and SO=4 , analysis for the three species typically shows 90% of the S35 activity as S=, 7% as SO=3 and 3% as SO=4 . When an identical experiment is done in which the carriers are added to the 0.3N NaOH solution after adding the KCl the typical S35 yields are 30% S=, 30% SO3 and 40% SO=4. Thus some 60% of the S35 species found in the S=3 fraction when the KCl is dissolved in the presence of carriers is found as SO=4 and SO=3 when the carriers are added after dissolution of the KCl. Since monatomic sulphur is thermodynamically unstable in H2O with respect to oxidation (ΔF = -5900 kcal/mole for S + 4H2O → 3H2O → 3H2 + H2SO4), and since it would also be expected to exchange readily with S= carrier these results suggest that some 60% of the S35 may be present in the irradiated KCl crystals as neutral monatomic S. Similar evidence for neutral S35 atoms has been obtained from neutron-irradiated crystals of NaCl, RbCl and CsCl. The effects of S= carrier concentration at the time of dissolution and of gamma

  19. Phonon Dispersion Relations in Alkali Metals

    It has been shown in this paper that the phonon dispersion curves of sodium in the [100], [110] and [111] symmetry directions can be explained well on the basis of a simple model, where one has to consider only central force constants between nearest and next nearest neighbours. The tangential force constant between the nearest neighbours is very much smaller as compared to the radial force constant, while for the next nearest neighbours the radial and tangential force constants are comparable. The calculation is carried out on the basis of the model suggested by de Launay, where it is shown that the conduction electrons exert a volume force for longitudinal modes. The stiffness constant of the electron gas is its bulk modulus which in de Launay's model is equal to the Cauchy discrepancy (C12-C14) for the cubic crystals. The three force constants α1, α2 and α1' can be determined from the measured elastic constants and the secular equation can be solved to give the dispersion curves. The dispersion curves have also been obtained using the calculated values of the bulk modulus of the electron gas after considering not only the exchange and correlation energies but also the Fermi kinetic energy. These also agree fairly well with experiment. The measured elastic constants as well as calculated bulk modulus of the electron gas indicate that the Cauchy relation C12 = C44 holds good approximately in alkali metals. This result is rather surprising as it requires that the interaction between the atoms be central in nature in spite of the metallic binding. A justification for this has been given by Cochran. A model with four force constants is being worked out. They can be determined from the three elastic constants and calculated bulk modulus of the electron gas. (author)

  20. Density of mixed alkali borate glasses: A structural analysis

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B2O3. The number of BO3 and BO4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  1. Density of mixed alkali borate glasses: A structural analysis

    Doweidar, H. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)]. E-mail: hdoweidar@mans.edu.eg; El-Damrawi, G.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Moustafa, Y.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Ramadan, R.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)

    2005-05-15

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B{sub 2}O{sub 3}. The number of BO{sub 3} and BO{sub 4} units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide.

  2. Alkali-metal intercalation in carbon nanotubes

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  3. Calcium silicate hydrate: Crystallisation and alkali sorption

    Homogeneous single C-S-H gels has been prepared for the investigation of alkali binding potential and crystallisation. A distribution coefficient, Rd, was introduced to express the partition of alkali between solid and aqueous phases at 25 deg. C. Rd is independent of alkali hydroxide concentration and depends only on Ca:Si ratio over wide ranges of alkali concentration. The trend of numerical values of Rd indicates that alkali bonding into the solid improves as its Ca:Si ratio decreases. Reversibility is demonstrated, indicating a possibility of constant Rd value of the material. Al has been introduced to form C-A-S-H gels and their alkali sorption properties also determined. Al substituted into C-S-H markedly increases Rd, indicating enhancement of alkali binding. However, the dependence of Rd on alkali concentration is non-ideal with composition. A two-site model for bonding is presented. Crystallisation both under saturated steam and 1 bar vapour pressure has been investigated. It has been shown that heat treatment by saturated steam causes crystallisation of gels. The principal minerals obtained were (i) C-S-H gel and Ca(OH)2 at -55 deg. C, (ii) 1.1 nm tobermorite, jennite and afwillite at 85 -130 deg. C, and (iii) xonotlite, foshagite and hillebrandite at 150-180 deg. C. Properties of crystalline C-S-H were also reported for reversible phase transformation, pH conditioning ability, seeding effect and solubility. At 1 bar pressure, crystallisation is slower than in saturated steam due to lower water activity. Tobermorite-like nanodomains develop during reaction at low Ca/Si ratios. In some Ca-rich compositions, Ca(OH)2 is exsolved and occurs as nano-sized crystallites. (author)

  4. Caracterización de nitratos alcalinos y alcalinoterreos por espectroscopia vibracional Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Martínez, S; Acción, F.; Puertas, F.

    1992-01-01

    [EN] Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide), employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1.387 cm~^ (present in the I.R. spectra of the four nitrates in KBr médium) allowed us to determine th...

  5. Two-photon spectroscopy of free carrier generation in the wide-band gap crystals

    Multiphoton absorption is able to produce primary free electron concentration, launching avalanch ionization mechanism in the transparent solids. We applied transient photoconductivity technique to investigate free carrier generation, caused by two-photon absorption in the alkali halide undoped crystals. Using radiation of tunable optical parametric oscillator-amplifier, the excitation spectra and temperature dependencies for conduction band electron concentration were measured. Two variations of experiment included optical excitation by equal quanta and by combination of tunable radiation with a fixed wavelength laser source. As it was shown, an efficient free electron producing was observed not only for interband optical transitions, but also for two-photon exciton absorption at room temperature. An analysis of the data obtained and comparison to conventional photoconductivity spectra indicated thermal ionization of the exciton states in the temperature range above 300 K. The corresponding exciton activation energy in KI was estimated and found to be consistent with the location of energy levels, allowed for two-photon exciton transitions

  6. Color silver halide hologram production and mastering

    Bjelkhagen, Hans I.; Huang, Qiang

    1997-04-01

    Color reflection holograms recorded with the Denisyuk geometry have been demonstrated by the recently formed HOLOS Corporation in New Hampshire. The Slavich red-green-blue (RGB) sensitized ultra-high resolution silver halide emulsion was used for the hologram recording. The employed laser wavelengths were 647 nm, 532 nm, and 476 nm, generated by an argon ion, a frequency doubled Nd:YAG, and a krypton ion laser, respectively. A beam combination mechanism with dichroic filters enabled a simultaneous RGB exposure, which made the color balance and overall exposure energy easy to control as well as simplifying the recording procedure. HOLOS has been producing limited edition color holograms in various sizes from 4' X 5' to 12' X 16'. A 30 foot long optical table and high power lasers will enable HOLOS to record color holograms up to the size of one meter square in the near future. Various approaches have been investigated in generating color hologram masters which have sufficiently high diffraction efficiency to contact copy the color images onto photopolymer materials. A specially designed test object including the 1931 CIE chromaticity diagram, a rainbow ribbon cable, pure yellow dots, and a cloisonne elephant was used for color recording experiments. In addition, the Macbeth Color Checker chart was used. Both colorimetric evaluation and scattering noise measurements were performed using the PR-650 Photo Research SpectraScan SpectraCalorimeter.

  7. Structural and Chemical Analysis of Gadolinium Halides Encapsulated within WS 2 Nanotubes

    Anumol, E A

    2016-05-18

    The hollow cavities of nanotubes could serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of inorganic nanotubes of WS2 by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is a non-trivial matter due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.

  8. Alkali-Doped Lithium Orthosilicate Sorbents for Carbon Dioxide Capture.

    Yang, Xinwei; Liu, Wenqiang; Sun, Jian; Hu, Yingchao; Wang, Wenyu; Chen, Hongqiang; Zhang, Yang; Li, Xian; Xu, Minghou

    2016-09-01

    New alkali-doped (Na2 CO3 and K2 CO3 ) Li4 SiO4 sorbents with excellent performance at low CO2 concentrations were synthesized. We speculate that alkali doping breaks the orderly arrangement of the Li4 SiO4 crystals, hence increasing its specific surface area and the number of pores. It was shown that 10 wt % Na2 CO3 and 5 wt % K2 CO3 are the optimal additive ratios for doped sorbents to attain the highest conversions. Moreover, under 15 vol % CO2 , the doped sorbents present clearly faster absorption rates and exhibit stable cyclic durability with impressive conversions of about 90 %, at least 20 % higher than that of non-doped Li4 SiO4 . The attained conversions are also 10 % higher than the reported highest conversion of 80 % on doped Li4 SiO4 . The performance of Li4 SiO4 is believed to be enhanced by the eutectic melt, and it is the first time that the existence of eutectic Li/Na or Li/K carbonate on doped sorbents when absorbing CO2 at high temperature is confirmed; this was done using systematical analysis combining differential scanning calorimetry with in situ powder X-ray diffraction. PMID:27531239

  9. Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy.

    Xie, Li-Qiang; Zhang, Tai-Yang; Chen, Liang; Guo, Nanjie; Wang, Yu; Liu, Guo-Kun; Wang, Jia-Rui; Zhou, Jian-Zhang; Yan, Jia-Wei; Zhao, Yi-Xin; Mao, Bing-Wei; Tian, Zhong-Qun

    2016-07-21

    Organolead halide perovskites exhibit superior photoelectric properties, which have given rise to the perovskite-based solar cells whose power conversion efficiency has rapidly reached above 20% in the past few years. However, perovskite-based solar cells have also encountered problems such as current-voltage hysteresis and degradation under practical working conditions. Yet investigations into the intrinsic chemical nature of the perovskite material and its role on the performance of the solar cells are relatively rare. In this work, Raman spectroscopy is employed together with CASTEP calculations to investigate the organic-inorganic interactions in CH3NH3PbI3 and CH3NH3PbBr3-xClx perovskite single crystals with comparison to those having ammonic acid as the cations. For Raman measurements of CH3NH3PbI3, a low energy line of 1030 nm is used to avoid excitation of strong photoluminescence of CH3NH3PbI3. Raman spectra covering a wide range of wavenumbers are obtained, and the restricted rotation modes of CH3-NH3(+) embedded in CH3NH3PbBr3 (325 cm(-1)) are overwhelmingly stronger over the other vibrational bands of the cations. However, the band intensity diminishes dramatically in CH3NH3PbBr3-xClx and most of the bands shift towards high frequency, indicating the interaction with the halides. The details of such an interaction are further revealed by inspecting the band shift of the restricted rotation mode as well as the C-N, NH3(+) and CH3 stretching of the CH3NH3(+) as a function of Cl composition and length of the cationic ammonic acids. The results show that the CH3NH3(+) interacts with the PbX3(-) octahedral framework via the NH3(+) end through N(+)-HX hydrogen bonding whose strength can be tuned by the composition of halides but is insensitive to the size of the organic cations. Moreover, an increase of the Cl content strengthens the hydrogen bonding and thus blueshifts the C-N stretching bands. This is due to the fact that Cl is more electronegative than Br

  10. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature. PMID:27174223

  11. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors. PMID:27089497

  12. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Somera, L.; Cruz Z, E.; Roman L, J. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Hernandez A, J. M.; Murrieta S, H., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2015-10-15

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl{sub 2}) impurity were grown by using the Czochralski method. The emission characteristic of Mn{sup 2+} was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from {sup 60}Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  13. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl2) impurity were grown by using the Czochralski method. The emission characteristic of Mn2+ was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from 60Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  14. Application of lanthanum halide scintillators and low-resolution dense plastics for modern MC and A needs

    Recent developments in lanthanum halide scintillators and low-resolution dense plastics give breadth to gamma-ray methods of nuclear material detection suitable for modern MC and A needs. Demanding goals for modernization of MC and A cover both portable and continuous on-line measurement applications that are quantitative for inventory/verification, and that serve those quantitative measurement needs plant-wide. Improved performance (sensitivity and reoslution) is important for portable applications in which a single detector must measure many types of materials. Budget is a major issue for continuous inventory measurements with hundreds or even thousands of detectors placed throughout a facility. Experimentally proven resolution of under 4% for 662 keV 137Cs gamma rays measured with large cerium-doped LaCl3 (lanthanum chloride) crystals set a new performance standard for versatile, efficient portable applications comparable in price to NaI(Tl), which has been dominant for decades. While the relatively high cost of crystals remains an obstacle for the application of very large numbers of lanthanum halide scintillators as distributed networked detectors, scintillators made from high-density plastic offer a different type of solution for these gamma-ray measurements. Compared to lanthanum halide crystals they are inexpensive and can be larger in size. Despite lower resolution than NaI(Tl), a quantitative interpretation of the photopeak response of the low-cost dense plastic detectors can be tailored to the unique mechanical and spectral properties of different materials at each of hundreds of fixed on-line locations in a plant. This paper describes the properties and presents experimental results for the two new spectrometer types that, together, bracket NaI(Tl) detectors in both performance and cost, fulfilling modern demands for portable and continuous on-line accountability of uranium and plutonium.

  15. Silica enigma and ignorance in alkali

    Si migration and K, Na alterations are two key problems for understanding the whole process of hydrothermal metallogenesis, but they have not attracted sufficient attention of geologists for a long time. It is impossible for us to know hydrothermal metallogenetic regularity actually without studying dequartzfication and alkali-introduction. Being distinct from common habitual thinking, it is considered that ore-forming elements are micro-amount, passive subordinate components in the flow of hydrothermal matter movement, and there is no metallogenesis for a certain element in nature. Except that the ore source is controlled by the uneven distribution ore-forming elements in the mantle and crust the same metallogenesis may almost lead to the formation of deposits of all elements. Principal active components in the hydrothermal matter system include alkali, silica and acid volatiles. The ternary system has determined the fate of release, activation, migration, precipitaion and concentration of ore-forming elements. Each member of the ternary system plays a different role in metallogenesis, having marvellous functional division of work. of these three members main control factor is alkali metal, whereas silica and acid are constrained by alkali. Acidic matter (including silica) and ore-forming elements are derivatives from activities of alkali metals

  16. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.;

    1979-01-01

    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide. This is...

  17. Correlation of Crystal Quality and Extreme Magnetoresistance of WTe$_2$

    Ali, Mazhar N.; Schoop, Leslie; Xiong, Jun; Flynn, Steven; Gibson, Quinn; Hirschberger, Max; Ong, N. P.; Cava, R. J.

    2015-01-01

    High quality single crystals of WTe$_2$ were grown using a Te flux followed by a cleaning step involving self-vapor transport. The method is reproducible and yields consistently higher quality single crystals than are typically obtained via halide assisted vapor transport methods. Magnetoresistance (MR)values at 9 Tesla and 2 Kelvin as high as 1.75 million \\%, nearly an order of magnitude higher than previously reported for this material, were obtained on crystals with residual resistivity ra...

  18. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Kasahara, Yuichi, E-mail: ykasahara@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kuroki, Kazuhiko, E-mail: kuroki@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Taguchi, Yasujiro, E-mail: y-taguchi@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-07-15

    In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron–phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors.

  19. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron–phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors

  20. Freezing of liquid alkali metals as screened ionic plasmas

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  1. Superconductivity in alkali-doped C60

    Highlight: • Superconductivity in alkali-doped C60 (A3C60) is well described by an s-wave state produced by phonon mediated pairing. • Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures up to 33 K in single-phase material. • The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials. - Abstract: Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials

  2. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  3. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  4. Thallous and cesium halide materials for use in cryogenic applications

    Certain thallous and cesium halides, either used alone or in combination with other ceramic materials, are provided in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous and cesium halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated or extruded onto substrates or wires. (author)

  5. Recovery of alkali metal constituents from catalytic coal conversion residues

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  6. Lighter Alkali hydride and deuteride 1: Electronic properties of pure solids

    The properties of lighter alkali hydrides of metals which crystallize in the rock-salt structure are discussed. First, the properties of pure crystals which are dominated by the electrons, in particular the energy levels and the eigenstates of the electrons in the absence of lattice defects are considered. After that, the optical properties of the solids excited at photon energies larger than those appropriate to lattice vibration and dominated by the transition of electron from the occupied core and valence levels to the normally empty conduction states, are discussed. 127 refs, 29 figs, 17 tabs

  7. Experimental determination of partition coefficients for Rb, Sr, and Ba between alkali feldspar and silicate liquid

    Partitioning of Rb, Sr and Ba between alkali feldspar and a synthetic granitic melt has been determined at 8 kb and 720 to 7800C for a single quaternary granite composition. The results suggest that Henry's Law is obeyed by Rb up to approximately 0.8 wt.%Rb2O in both the liquid and in the alkali feldspar. The measured D values for Rb range from 0.77 to 1.1 For Ba, Henry's Law is obeyed up to approximately 0.6 wt.% BaO in the liquid and approximately 5 wt.% BaO in the alkali feldspar. D values for Ba range from 6.4 to 14. For Sr there is only a crude relationship between concentration in the liquid and concentration in the alkali feldspar at concentrations greater than approximately 0.6wt.%SrO in the liquid and approximately 0.4 wt.% SrO in the alkali feldspar. D values for Sr range from 1.2 to 5.0. Partitioning of Sr is apparently sensitive to the concentration of Ba in the system and this partly explains the failure of Sr to obey Henry's Law. Linear least-squares fits to the partitioning data as a function of temperature suggest inverse correlation between temperature and D values. Rb shows only a slight temperature effect whereas Ba and Sr appear to be rather strongly affected by temperature, but the temperature range examined here is small compared to the scatter in the data making these trends relatively uncertain. Other factors that appear to affect partitioning, especially of Sr, are growth rate, development of sector zoning, and Or content of the alkali feldspar. These factors severely limit the use of partitioning of these elements in alkali feldspar as geothermometers. The technique for measuring growth rates utilized here combined with measurement of trace element depletion in diffusion boundary layers adjacent to the alkali feldspar crystals makes it possible to estimate diffusivities for Ba and Sr. These estimates suggest a difference of 2 orders of magnitude between diffusivities for Ba and Sr in a vapor-saturated melt and those measured for a dry

  8. Off-center impurity in alkali halides: reorientation, electric polarization and pairing to F center. IV. Reorientational rate

    Baldacchini, G; Grassano, U M; Scacco, A; Petrova, P; Mladenova, M; Ivanovich, M; Georgiev, M

    2007-01-01

    This last Part IV is aimed at deriving relaxation rates (times) of an off-center Li+ impurity. We follow Christov's reaction rate method to define general rate equations in terms of the exact Mathieu eigenvalues, as well as of harmonic-oscillator eigenvalues approximating for the energy spectrum near the bottom of the reorientational wells. To calculate the rate in each particular case, we derive configurational tunneling probabilities by either Mathieu eigenfunctions or by harmonic oscillator eigenfunctions. The electron-transfer probability is calculated by generalizing Landau-Zener's method. Typical examples are considered and compared with experimental relaxation times in KCl:Li+.

  9. Molecular Simulation of Aqueous Electrolyte Solubility. 3. Alkali-halide Salts and Their Mixtures in Water and in Hydrochloric Acid

    Moučka, F.; Lísal, Martin; Smith, W. R.

    2012-01-01

    Roč. 116, č. 18 (2012), s. 5468-5478. ISSN 1520-6106 R&D Projects: GA ČR GA203/08/0094; GA MŠk LH12020 Grant ostatní: NSERC(CA) OGP1041; EC(XE) COST TD0802 Institutional research plan: CEZ:AV0Z40720504 Keywords : molecular simulations * electrolyte hydrates * oemc simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.607, year: 2012

  10. Study of the point defect creation and of the excitonic luminescence in alkali halides irradiated by swift heavy ions

    The aim of this experimental thesis is to study the excitonic mechanisms and of the defect creation, in NaCl and KBr, under dense electronic excitations induced by swift heavy ion irradiations. In the first part, we present the main features of the interaction of swift heavy ions with solid targets, and after we review the well known radiolytic processes of the defect creation during X-ray irradiation. In the second chapter, we describe our experimental set-up. In the chapter III, we present our results of the in-situ optical absorption measurements. This results show that defect creation is less sensitive to the temperature than during a classical irradiation. Besides, we observe new mechanisms concerning the defect aggregation. In the chapter IV, we present the results of excitonic luminescence induced by swift by swift heavy ions. We observe that the luminescence yields only change with the highest electronic stopping power. In the chapter V, we perform thermal spike and luminescence yields calculations and we compare the numerical results to the experiments presented in the chapter IV. (author). 121 refs., 65 figs., 30 tabs

  11. Different Approaches for the Calculation of Electronic Excited States of Nonstoichiometric Alkali Halide Clusters: The Example of Na3F

    Durand, G.; Heitz, M. C.; Spiegelman, F.; Meier, C.; Mitrić, R.; Bonačić-Koutecký, V.; Pittner, Jiří

    2004-01-01

    Roč. 121, č. 20 (2004), s. 9898-9905. ISSN 0021-9606 R&D Projects: GA AV ČR KSK4040110 Keywords : Wigner distribution approach * optical response properties * sodium - fluoride clusters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.105, year: 2004

  12. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes

    Kim, Seo young; Kim, Yu kyoung; Park, Il song; Jin, Guang chun; Bae, Tae sung; Lee, Min ho

    2014-12-01

    In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO2 nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO2 nanotubes (PNA) and alkali and heat-treated TiO2 nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na2TiO3) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  13. The influence of different parameters on the hydration process of binders based on alkali activated slag

    DARKO KRIZAN

    2005-02-01

    Full Text Available The influence of certain types of activators (water glass Na2O·nSiO2 and sodium-metasilicate Na2SiO3·5H2O on the hydration process of alkali activated slag was investigated in this study. The influence of activator concentration, specific surface area of the slag and the modulus n of the water glass (mass ratio between SiO2 and Na2O on the kinetics of the hydration process i.e., the change of compressive strength were also investigated. Poorly crystallized low base calcium silicate hydrate C–S–H (I is the main hydration product of alkali activated slag regardless of the activator used. This is the reason for the rapid increase in the strength of alkali activated slag and also of the very high strength values. The strength growth rate and strength values were significantly higher when sodium–metasilicate was used as the activator than when water glass was used. The specific surface area of the slag and the activator concentration are parameters which have a closely connected influence on strength and their action is cumulative. The modulus n of water glass does not have an explicit influence on the strength of alkali activated slag.

  14. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.

    2012-01-01

    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  15. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  16. Alternative alkali resistant deNOx catalysts

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes;

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared by...

  17. Positronium impact ionization of Alkali atoms

    Ghosh, D

    2015-01-01

    Target ionization processes of alkali atoms by Positronium impact are investigated. Calculations are performed in the frame work of model potential formalism using the Coulomb distorted eikonal approximation. Interesting qualitative features are noted both in the scattered Ps and the ejected electron distributions in differential as well as double differential levels of the collision cross sections.

  18. Alkali metals in fungi of forest soil

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  19. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  20. Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    Lammert, Heiko; Heuer, Andreas

    2005-01-01

    The mixed-alkali effect on the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed--alkali slowdown longer residence times and an increased probability of correlated backjumps are identified. The slowdown is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronge...

  1. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  2. Method for calcining nuclear waste solutions containing zirconium and halides

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  3. Kinetic Studies of the Solvolysis of Two Organic Halides

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  4. On the Boiling Points of the Alkyl Halides.

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  5. Halide glass containing trivalent uranium ions and its fabrication process

    This halide glass, showing an optical attenuation -1 in the near infrared from 2.2 to 304 micrometers, is prepared with a glass containing uranium ions as U4+ and/or U5+ reduced by ionizing radiations in U3+. Application is made to the fabrication of optical fibers and lasers doped with trivalent uranium

  6. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  7. On dewetting of thin films due to crystallization (crystallization dewetting).

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting. PMID:26993991

  8. He atom surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    Investigations have focused primarily on surface structure and dynamics of ionic insulators, epitaxial growth onto alkali halide crystals and multiphoton studies. The surface dynamics of RbCl has been re-examined. We have developed a simple force constant model which provides insight into the dynamics of KBr overlayers on NaCl(001), a system with a large lattice mismatch. The KBr/NaCl(001) results are compared to Na/Cu(001) and NaCl/Ge(001). We have completed epitaxial growth experiments for KBr onto RbCl(001). Slab dynamics calculations using a shell model for this system with very small lattice mismatch are being carried out in collaboration with Professor Manson of Clemson University and with Professor Schroeder in Regensburg, Germany. Extensive experiments on multiphoton scattering of helium atoms onto NaCl and, particularly, LiF have been carried out and the theory has been developed to a rather advanced stage by Professor Manson. This work will permit the extraction of more information from time-of-flight spectra. It is shown that the theoretical model provides a very good description of the multiphoton scattering from organic films. Work has started on self-assembling organic films on gold (alkyl thiols/Au(111)). We have begun to prepare and characterize the gold crystal; one of the group members has spent two weeks at the Oak Ridge National Laboratory learning the proper Au(111) preparation techniques. One of our students has carried out neutron scattering experiments on NiO, measuring both bulk phonon and magnon dispersion curves

  9. Electronic structure and Fano antiresonance of chromium Cr(III) ions in alkali silicate glasses

    The optical properties of the Cr3+ doped in alkali silicate glasses X2O–SiO2 with different modifier cations X=Li, Na and K have been investigated by Villian et al. This work investigates a theoretical crystal-field analysis of the electronic energy levels of Cr3+ in these glasses. This analysis based on the Racah theory was carried out for the Chromium (III) center with an Oh site symmetry. The objective of this study is to determine the effect of glass matrix modifier on the Racah B, C and crystal-field Dq parameters. The effect of the glass matrix environment on these parameters is also reported by comparison with alkali cadmium borosulphate, phosphate and borate glasses. The interference dips observed in the broad band 4T2g(4F) result from interaction with the 2Eg(2G) and 2T1g(2G) sharp levels are known as the Fano antiresonance model. This feature is qualitatively studied using the adiabatic potential surfaces for the quartet 4T2g(4F) and doublet 2Eg(2G) levels. - Highlights: • The electronic structure of Cr3+ in alkali silicate glasses X2O–SiO2 (X=Li,Na,K) was performed. • The theoretical study, based on Racah theory, permits us to deduce the energy levels. • The observed interference dip in absorption spectra is related to Fano antiresonance

  10. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    Guo, W., E-mail: guowei1982cry@163.com [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Ma, H.A.; Jia, X. [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  11. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF2 > MgF2. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF2 and MgF2. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides

  12. Developments in alkali-metal atomic magnetometry

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  13. In.sup.+./sup., Pb.sup.2+./sup. and Bi.sup.3+./sup. in KBr crystal: Luminescence dynamics

    Polák, Karel; Mihóková, Eva

    2010-01-01

    Roč. 32, č. 10 (2010), s. 1280-1282. ISSN 0925-3467. [5th International Symposium on Laser, Scintillator and Non Linear Optical Materials (ISLNOM - 5). Pisa, 03.09.2009-05.09.2009] Institutional research plan: CEZ:AV0Z10100521 Keywords : alkali halides * optical properties * photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.679, year: 2010

  14. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  15. Experimental and theoretical studies of highly emissive dinuclear Cu(I) halide complexes with delayed fluorescence.

    Kang, Liju; Chen, Jin; Teng, Teng; Chen, Xu-Lin; Yu, Rongmin; Lu, Can-Zhong

    2015-07-01

    A series of luminescent homo-dinuclear Cu(I) halide complexes, [PPh2PAr2Cu(μ-X)2CuPPh2PAr2] (X = I (1), Br (2), Cl (3)) (PPh2PAr2 = (1-bis(2-methylphenyl)phosphino-2-diphenylphosphino)benzene) were synthesized from the reaction of the corresponding cuprous halide and the chelating bisphosphine ligand PPh2PAr2 in CH3CN. The complexes were structurally characterized by X-ray single crystal analysis. Their photophysical properties were studied in detail. The Cu(I) atoms in these complexes are four-coordinated and adopt a tetrahedral coordination geometry. In each complex, the copper centers are bridged by two halide anions and each Cu(I) is chelated further terminally by a PPh2PAr2 ligand. The[Cu(μ-X)2Cu] cores have similar butterfly-type configurations. The distances between the Cu(I) atoms in each complex are over 2.94 Å. In the solid state, these complexes are highly emissive and exhibit bluish-green photoluminescence (emission peaks, λmax = 488 nm (1), 482 nm (2), 490 nm (3)) with short lifetimes (4.9-5.9 μs) and high quantum yields (ϕ = 0.42-0.95) at room temperature. In this series of complexes, the ligand-field strengths of the ions (I(-) complexes indicate that the mechanism of their emissions involves two thermal-equilibrium excited states. At room temperature, the complexes display thermally activated delayed fluorescences with short decay lifetimes. With a decrease of the temperature, a significant increase of emission decay times by almost 2 orders of magnitude is observed. At temperatures below T ≈ 100 K, the decay times of the studied complexes are over one hundred microseconds long, which indicates that the emission originates mainly from the triplet state (T1 state). To interpret the varied temperature photophysics of these complexes, an equilibrated 2 excited states model S0 ← T1 ↔ S1 → S0 was used. The results of the experimental and DFT calculations suggest that the emission in the solid state originates from the (1,3)(MLCT + XLCT

  16. Influence of alkali and alkaline earth ions on the -alkylation of the lower rim phenolic-OH groups of -tert-butyl-calix[4]arene to result in amide-pendants: Template action of K+ and the structure of K+ bound tetra-amide derivative crystallized with a -tert-butylcalix[4]arene anion

    Amjad Ali; Chebrolu P Rao; Philippe Guionneau

    2008-03-01

    Role of alkali and alkaline earth ions on the formation of calix[4]arene-amide derivatives through -alkylation of the lower rim phenolic-OH groups in general and template action of K+ in particular have been explored. Na+ and K+ ions among alkali, and Ca2+ and Sr2+ ions among alkaline earth have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as template and yields a K+ bound tetra-amide derivative where the charge is counter balanced by a calix[4] arene-monoanion and the product is crystallographically characterized. Change in the amide precursor used in these -alkylation reactions has no effect on the type of the amide derivative formed. Also demonstrated is a direct one-step reaction for the preparation of 1,3-di-amide derivative in high yield and low reaction period using CsHCO3.

  17. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  18. Decalcification resistance of alkali-activated slag

    Komljenovic, Miroslav M., E-mail: miroslav.komljenovic@imsi.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Bascarevic, Zvezdana, E-mail: zvezdana@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Marjanovic, Natasa, E-mail: natasa@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Nikolic, Violeta, E-mail: violeta@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer The effects of decalcification on properties of alkali-activated slag were studied. Black-Right-Pointing-Pointer Decalcification was performed by concentrated NH{sub 4}NO{sub 3} solution (accelerated test). Black-Right-Pointing-Pointer Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Black-Right-Pointing-Pointer Decalcification led to strength decrease and noticeable structural changes. Black-Right-Pointing-Pointer Alkali-activated slag showed significantly higher resistance to decalcification. - Abstract: This paper analyses the effects of decalcification in concentrated 6 M NH{sub 4}NO{sub 3} solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si {approx}0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification.

  19. Transport properties of alkali metal doped fullerides

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity

  20. Transport properties of alkali metal doped fullerides

    Yadav, Daluram, E-mail: daluramyadav@gmail.com; Yadav, Nishchhal, E-mail: somyadav@gmail.com [School of studies in Physics, Vikram University, Ujjain (M.P) India (India)

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  1. Effect of Mineral Admixtures on Alkali-Silica Reaction

    ZHANG Chengzhi; WANG Aiqin

    2008-01-01

    The influence of silica fume,slag and fly ash on alkali-silica reaction under the condition of 70℃ is studied.The results show that silica,slag and fly ash may inhibit alkali-silica reaction only under suitable content.When the content is less than 10%,silica fume does not markedly influence the expansion of alkali-silica reaction.When the content is 15%-20%,silica fume only may delay the expansion of alkali-silica reaction.When the content is 30%-70%,slag may only delay the expansion of alkali-silica reaction,but cannot inhibit the expansion of alkali-silica reaction.When the content is 10%,fly ash does not markedly influence the expansion of alkali-silica reaction.When the content is 20%-30%,fly ash may only delay the expansion of alkali-silica reaction,but cannot inhibit the expansion of alkali-silica reaction.When the content is over 50%,it is possible that fly ash can inhibit effectively alkali-silica reaction.

  2. Lanthanum halide scintillators: Properties and applications

    BrilLanCe[reg]-350 and BrilLanCe[reg]-380, Saint-Gobain Crystals' trade-names for LaCl3:Ce and LaBr3:Ce are being brought to market under exclusive license to Delft and Bern Universities. We are reporting the properties of crystals produced with commercially viable processes and find they match others' observations. These scintillators are bright (60,000 photons/MeV for LaBr3:Ce) and have very linear response, a combination that leads to very good energy resolution (3:Ce). The materials also have fast scintillation decay times (3:Ce). These excellent properties are retained at high temperature with only moderate light loss (138 and Ac227, the latter having been substantially reduced in recent processing. BrilLanCe[reg]-350 is now available in detectors up to 51 mm diameter while 38 mm diameter is available for BrilLanCe[reg]-380. Larger sizes are expected

  3. Low-valent molecular plutonium halide complexes.

    Gaunt, Andrew J; Reilly, Sean D; Enriquez, Alejandro E; Hayton, Trevor W; Boncella, James M; Scott, Brian L; Neu, Mary P

    2008-09-15

    Treatment of plutonium metal with 1.5 equiv of bromine in tetrahydrofuran (thf) led to isolation of PuBr3(thf)4 (1), which is a new versatile synthon for exploration of non-aqueous Pu(III) chemistry. Adventitious water in the system resulted in structural characterization of the eight-coordinate complex [PuBr2(H2O)6][Br] (2). The crystal structure of PuI3(thf)4 (3) has been determined for the first time and is isostructural with UI3(thf)4. Attempts to form a bis(imido) plutonyl(VI) moiety ([Pu(NR)2](2+)) by oxidation of PuI3(py)4 with iodine and (t)BuNH2 resulted in crystallization of the Pu(III) complex [PuI2(thf)4(py)][I3] (4). Dissolution of a Pu(IV) carbonate with a HCl/Et2O solution in thf gave the mixed valent (III/IV) complex salt [PuCl2(thf)5][PuCl5(thf)] (5) as the only tractable product. Oxidation of Pu[N(SiMe3)2]3 with TeCl4 afforded the Pu(IV) complex Pu[N(SiMe3)2]3Cl (6), which may prove to be a useful entry route for investigation of organometallic/non-aqueous tetravalent plutonium chemistry. PMID:18714989

  4. Influence of halide flux on the crystallinity, microstructure and thermoluminescence properties of CdSiO3:Co2+ nanophosphor

    Graphical abstract: TL glow curves of CdSiO3:Co2+ different alkali flux (inset without adding flux). Display Omitted Highlights: ► CdSiO3:Co2+ (1–7 mol%) nanocrystalline phosphors synthesized by combustion route. ► Flux effect on thermoluminescence behavior of CdSiO3:Co2+ reported for first time. ► Addition of 2 wt% of flux would drastically enhance the TL properties. ► Well resolved single glow peak at ∼170 °C was recorded for all the samples. ► Among all the alkali flux, NaCl shows highest TL peak intensity. -- Abstract: CdSiO3:Co2+ (1–7 mol %) nanophosphors have been prepared via solution combustion method with post calcination at 800 °C for 2 h for the first time. The formation of expected monoclinic phase was investigated by Powder X-ray diffraction (PXRD) measurements. The effect of different fluxes like NaF, NaCl, NH4F and NH4Cl on the crystallinity, phase and morphology of CdSiO3 was investigated in detail. The crystallinity of the samples can be greatly enhanced by using fluxes rather than increasing the calcination temperature. Scanning electronic micrograph (SEM) image shows that the powder morphologies are highly influenced by flux addition. The addition of 2 wt% of fluxes would drastically enhance the crystallinity when NaCl, NH4F and NH4Cl fluxes are used. A well resolved single thermoluminescent glow peak at ∼170 °C was recorded for all the samples. Among all the halide fluxes, NaCl flux was found to be the potential one in enhancing the TL peak intensity along with crystallinity.

  5. Modification of oxygen content in LiF crystals grown by skull method

    Taranyuk, V.; Gektin, A.; Shiran, N.; Shlyakhturov, V.; Gridin, S.; Boiaryntseva, I.; Sofronov, D.

    2013-10-01

    The work is devoted to the controlled crystal growth procedure providing of optimal doping of dielectric halide materials (LiF crystals in particular). Two series of LiF crystals were studied. One series is represented by ultra- and nominal pure crystals, as well as crystals doped with polyvalent oxides (Nb2O5, WO3 and TiO2), which were grown by classical Kyropoulos method in vacuum, second series involves crystals grown using the skull method. It is shown that the skull technique is a quite efficient method of variously doped LiF crystal growth as compare with the classic Kyropoulos method.

  6. Large methyl halide emissions from south Texas salt marshes

    R. C. Rhew

    2014-06-01

    Full Text Available Coastal salt marshes are natural sources of methyl chloride (CH3Cl and methyl bromide (CH3Br to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  7. Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts

    Linfan Cui

    2015-07-01

    Full Text Available In this study, highly efficient silver halide (AgX-based photocatalysts were successfully fabricated using a facile and template-free direct-precipitation method. AgX nanoparticles, which included silver chloride (AgCl, silver bromide (AgBr and silver iodide (AgI, were synthesized using different potassium halides and silver acetate as reactive sources. The size distribution of the AgX nanopar‐ ticles was determined by the reaction time and ratio of the reagents, which were monitored by UV-vis spectra. The as- prepared AgX nanoparticles exhibited different photoca‐ talytic properties. This shows the differences for the photodegradation of methyl orange and Congo red dyes. In addition, the AgCl nanoparticle-based photocatalyst exhibited the best photocatalytic property among all three types of AgX nanoparticles that are discussed in this study. Therefore, it is a good candidate for removing organic pollutants.

  8. Merwinite-structured phases as a potential host of alkalis in the upper mantle

    Bindi, Luca; Safonov, Oleg G.; Zedgenizov, Dmitriy A.

    2015-08-01

    Two previously unknown Na- and K-rich phases were synthesized near the solidus of the model CMAS lherzolite interacted with the CaCO3 + Na2CO3 + KCl melt at 7 GPa. They coexist with forsterite, garnet and chloride-carbonate melt. Stoichiometry and unit-cell parameters measured by means of powder diffraction indicate that one of the phases corresponds to (K,Na)2Ca4Mg2Si4O15 (with about 0.1 a.p.f.u. Al). Although single-crystal X-ray measurements of this phase did not allow the solution of the crystal structure, we suggest that the structure of this phase includes mixed SiO4 and Si2O7 units. Single-crystal diffraction experiments of the other alkali-rich phase with composition (Ca2.06Na0.86K0.08)Σ=3.00(Mg0.53Si0.45Al0.03)Σ=1.01Si2.00O8 showed that it exhibits the merwinite structure, space group P21/ a, with lattice parameters a = 12.987(2), b = 5.101(1), c = 9.130(2) Å, β = 92.36(1)°, V = 604.3(2) Å3, and Z = 4. The structure was refined to R 1 = 0.031 using 2619 independent reflections. In the structure, Na is hosted at the large Ca sites, whereas Si replaces Mg at the octahedral site and occurs in the usual tetrahedral coordination. Ordering-induced distortion provokes a change in coordination of the (Ca, Na) atoms with respect to pure merwinite. Merwinite phases with lower K + Na contents (0.08-0.18 a.p.f.u.) coexist with forsterite, clinopyroxene and immiscible carbonate-chloride and silicate melts at higher temperatures (up to 1510 °C) at 7 and 5.5 GPa. These phases (including alkali-rich ones at solidus) show a general formula [Ca3-2 x (Na,K)2 x ][Mg1- x Si x ]Si2O8 (with x up to 0.45), where the Na + K content negatively correlates with Ca and positively correlates with Si. The present experimental and crystal-chemical data prove that merwinite-structured phases may be efficient hosts for alkalis in the upper mantle. They are mineralogical indicators of either the interaction of mantle peridotites with alkaline carbonatitic liquids or high

  9. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31Р-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  10. Study of methyl halide fluxes in temperate and tropical ecosystems

    Blei, Emanuel

    2010-01-01

    CH3Br and CH3Cl (methyl halides) are the most abundant natural vectors of bromine and chlorine into the stratosphere and play an important role in stratospheric ozone destruction. The current knowledge of their respective natural sources is incomplete leading to large uncertainties in their global budgets. Beside the issue of quantification, characterisation of possible sources is needed to assist modelling of future environmental change impacts on these sources and hence the s...

  11. Influence of the Print Run on Silver Halide Printing Plates

    Tomislav Cigula

    2010-09-01

    Full Text Available The most common printing technique today is lithography. The difference between printing and nonprinting areason a printing plate is accomplished by opposite physical and chemical properties of those areas (MacPhee, 1998.The printing areas are made of photoactive layer that attracts oil and chemical substances with oil solvent – printinginks. The nonprinting areas are made of aluminium-oxide which attracts water based substances – the fountainsolution.There are many of various types of photoactive layer which are used for production of offset printing plates, amongothers is silver halide layer. The usage of the silver halide technology in the graphic reproduction is not a novelty.The filmmaking phase is based on the usage of the silver halide as the photographically active ingredient, for instance,AgBr (silver bromide. The new, digital plate making technology (Computer to Plate, CtP eliminates thefilmmaking phase and therefore enables control of the printing plate’s exposure made by computer. CtP technologyeliminates the filmmaking phase, but it also results with the reduction of needed material quantities and requiredtime for the production (Limburg, 1994; Seydel, 1996.In this paper the basis of the graphic reproduction by using the silver halide digital printing plates was described.The changes of the AgX copying layer and the surface of the aluminium base in the printing process have beenobserved. The surface characteristics were determined by measuring the relevant surface roughness parameters. Inaddition, measurements of coverage values on the prints, detailed at smaller print run, were conducted.Results showed that surface changes on the printing plate are changing during printing process and that thesechanges influence transfer of the printing ink on the printing substrate. These measurements proved to be of greatinterest in the graphic reproduction as they enable us to determine consistency of the printing plates during theprinting

  12. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  13. Semiphysical development of holograms recorded in silver halide emulsions

    Banyasz, Istvan; Belendez, Augusto; Pascual, Inmaculada V.; Fimia, Antonio

    2000-10-01

    In the course of experiments on measurement of the effects of processing on nonlinear characteristics of silver halide holograms recorded in Agfa-gevaert 8E75HD emulsions we found that, under certain circumstances, the AAC developer acted as a semi-physical developer instead of the normal chemical developing action. The developed and fixed holograms were of low optical density (carbonate of purest grade with that of for analysis grade of the same company.

  14. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    Bijay Shrestha

    2015-12-01

    Full Text Available We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1 as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields.

  15. Effects of Halides on Plasmid-Mediated Silver Resistance in Escherichia coli

    Gupta, Amit; Maynes, Maria; Silver, Simon

    1998-01-01

    Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+.

  16. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles

    Weix, Daniel J.

    2015-01-01

    Conspectus Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C–H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, th...

  17. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  18. Environmental controls over methyl halide emissions from rice paddies

    Redeker, K. R.; Cicerone, R. J.

    2004-03-01

    This paper examines primary controlling factors that affect methyl halide emissions from rice paddy ecosystems. Observations of four cultivars under multiple growth conditions during studies in commercial fields and the University of California, Irvine, greenhouse lead to the conclusion that daily emissions of methyl halides are primarily determined by the growth stage of the rice plant, with the exception that methyl chloride emissions show no clear seasonal pattern. Methyl chloride emissions appear to be more from the paddy water and/or soil as opposed to the plants; however, in soils with high chloride content, these emissions appear to peak during the reproductive phase. Strong secondary influences include air temperature, soil halide concentration, and soil pore water saturation. The cultivars studied had statistically separate seasonally integrated emissions. Irradiant light and aboveground biomass appear to have little effect on emissions. Emissions of methyl chloride, methyl bromide, and methyl iodide are estimated to be 3.5, 2.3, and 48 mg/m2/yr, or 5.3, 3.5, and 72 Gg/yr, from rice paddies globally.

  19. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets.

    Sichert, Jasmina A; Tong, Yu; Mutz, Niklas; Vollmer, Mathias; Fischer, Stefan; Milowska, Karolina Z; García Cortadella, Ramon; Nickel, Bert; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Urban, Alexander S; Feldmann, Jochen

    2015-10-14

    Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites. PMID:26327242

  20. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition. PMID:26791587

  1. CONTRIBUTION TO THE STUDY OF HYDROXYMETYLATION REACTION OF ALKALI LIGNIN

    Teodor Malutan; Raluca Nicu; Valentin I. Popa

    2008-01-01

    The hydroxymethylation of alkali lignin with formaldehyde in alkaline solution was studied. The influence of reaction conditions of the hydroxymethylation of alkali lignin was followed by modifying the temperature, time, and the ratios of NaOH to lignin and CH2O to lignin. Three different types of alkali lignin were utilized. The reaction was followed by total consumption of formaldehyde, and the resulting products were characterized through FTIR-spectra, thermogravimetry analysis, ash and mo...

  2. Formation and evolution of point defects created in alkali halogen compounds irradiated by heavy ions

    The goal of this study was to achieve a better understanding of the heavy-ion material interaction. Alkali halogen crystals were chosen since the color centers produced by heavy ions can be distinguished easier from those generated by X rays. Measurements on KI irradiated at low temperature showed that the usual process of non radiative de-excitation of self-captured exciton is not prevailing. As the main objective of this work was the exact determination of the defects created by accelerated heavy ions, an important effort was dedicated to the spectrum deconvolution. Due to the high quality of the obtained spectra the V band analyse was possible. The defect stability was found to have the same nature in all the cubical alkali halogens and depend essentially on the crystal type. The defect evolution after irradiation is related to the diffusion coefficients corresponding to each mobile species and to the crystal lattice in which they move. Based on measurements made at different temperatures a simple modeling of the recombination kinetics was proposed. This effect was found to be specific to irradiation by heavy ions. It is difficult to determine the initial processes from the fossil defects, so, the defect history must be known as the described investigation methods do not permit to establish the transient aspect of defect creation. The important role of impurities should be stressed as the third intruder in the ion/crystal configuration; it can modify significantly the final state of the irradiated crystal, as it was found in KI, for instance. The open problems underlined in this study will probably be solved by using the atomic force microscopy and diffraction or on-line Raman measurements in ISOC chamber to avoid the passage to ambient conditions of the crystals irradiated at low temperatures

  3. Generation and alteration of the defects induced by particle irradiation and electromagnetic radiation in alkali halogen compounds

    Interactions between electron beams, CO2 - laser radiation and alkali halogen compound have led to interesting results: 1. The development of two types of F-centre respectively in normal lattice or near the dislocations. 2. The beginning of metal colloids development process at low temperature when a thermal treatment is applied. 3. An experimental confirmation of the Pooley-Hersh model for crystal defects has been brought up. 4. The surface penetration is an explosive process. 5. Surface polygonizations were also investigated. A model has been proposed to describe the destructive channels development within alkali halogen crystals with molecular anions impurities of less than 10 ppm. KCl monocrystals of advanced purity level was prepared for building up passive optical components of strong CO2 lasers. (author)

  4. Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection

    Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF3:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to 137Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF3:Ce-loaded sample have been made using 137Cs sources. Figure 2 shows an energy spectrum acquired for CeF3. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr3 crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% 138La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant strength of

  5. Silver-halide/organic-composite structures: Toward materials with multiple photographic functionalities

    We report the synthesis and structure of the novel silver-halide-based organic-inorganic hybrids Ag2Br6(PPD)2, Ag2Br6(CD-2)2.H2O, Ag2Br4(TMBD), and Ag2I6(CD-2)2.H2O. 1,4-phenylenediammonium hexabromodiargentate(I) [Ag2Br6(PPD)2] crystals are monoclinic (P21/n), with unit-cell dimensions, a=10.1915(3)A, b=7.7562(2)A, c=12.4340(5)A and β=93.109(1)o. N,N-diethyl-2-methyl-1,4-benzenediammonium hexabromodiargentate(I) monohydrate [Ag2Br6(CD-2)2.H2O] crystals are monoclinic (space group P21/c) with a=10.8434(2)A, b=11.4293(2)A, c=14.3729(1)A, and β=96.153(1)o. N,N,N',N'-tetramethyl-1,4-benzenediammonium tetrabromodiargentate(I) [Ag2Br4(TMBD)] crystals are orthorhombic (space group Pbcn) with a=17.0030(6)A, b=6.6163(2)A, and c=15.9762(6)A. N,N-diethyl-2-methyl-1,4-benzenediammonium hexaiododiargentate(I) monohydrate, [Ag2I6(CD-2)2.H2O], are monoclinic (C2/c), with unit-cell dimensions, a=21.4691(4)A, b=12.1411(2)A, c=14.3102(2)A, and β=98.657(1)o. The novel structures are members of a class of silver-halide-based organic-inorganic hybrids based upon the assembly of [AgaXb]n- clusters and protonated organoamines in aqueous mineral acids. The clusters display short intracluster Ag-Ag distances, and computational methods are used to evaluate intracluster Ag-Ag bonding. The diverse stoichiometries and cluster connectivities observed suggest a rich compositional and structural chemistry based upon the general assembly method. We have extended the methodology to include a silver-halide-organoamonium chemistry in which the organic moiety is chosen to serve a specific photographic function and demonstrate the first examples of such materials. The methodology allows for the direct assembly of [AgaXb]n- clusters with commercial photographic color developer molecules, and we show that development is repressed but can later be 'switched on' in a unique photographic scheme. The photographic properties of Ag2Br6(PPD)2 are examined and show an extremely facile development rate owing

  6. Quadrupolar deformation of the electronic charge cloud and the lattice mechanics of LiH-LiD crystals

    As the deformable shell model incorporates both scalar and dipolar deformation, it is natural to expect that the quadrupolar deformation may be important in the case of lithium hydride, where the unstable hydrogen ion with its extremely loose bound outermost electron (compared to alkali halides) appears to be a plausible candidate for such deformation. Quadrupolar deformation in an ion in crystal may arise because of the variation of the electric field produced by o,.her ions over the extent of the charge cloud or due to a shortrange overlap effect of nearest neighbours. The second effect is much stronger than the first and this alone is considered in the present investigation. A method has been developed to obtain the relevant equations and evaluate all the lattice sums appropriate for the structure on the basis of an extended deformable shell model which incorporates scalar, dipolar and quadrupolar deformation. The quadrupolar deformation is found to have quite a considerable effect both on the dynamic and static properties of LiH-LiD crystals. The resulting model not only removes the discrepancies mentioned above but has also been successful in correlating the specific properties namely, the static lattice structure, the cohesive energy, the second order elastic constants, the dielectric properties and the lattice dynamics with a single set of parameters used for all of them. Only the shortrange overlap effect of the nearest neighbours has been taken into account and not that due to the variation of the electric field produced by other ions over the extent of charge cloud, since the former effect is much stronger than the latter one. (K.B.)

  7. Synthesis and characterization of the 1:1 adducts of copper(I) halides with bidentate N,N′-bis(benzophenone)-1,2-diiminoethane Schiff base: Crystal structures of [Cu(bz2en)2][CuX2] (X = Br, I) complexes

    Kia, Reza; Mirkhani, Valiollah; Harkema, Sybolt; Hummel, van Gerrit J.

    2007-01-01

    1:1 adducts of N,N′-bis(benzophenone)-1,2-diiminoethane (bz2en) with copper(I) chloride, bromide and iodide, [Cu(bz2en)2][CuX2] (X = Cl, Br, and I), have been synthesized and the structures of the solid bromide and iodide adducts were determined by X-ray crystallography from single-crystal data. The

  8. Compare study cellulose/Mn₃O₄ composites using four types of alkalis by sonochemistry method.

    Fu, Lian-Hua; Li, Shu-Ming; Bian, Jing; Ma, Ming-Guo; Long, Xing-Luan; Zhang, Xue-Ming; Liu, Shi-Jie

    2015-01-22

    The purpose of this article was to explore the influences of alkalis types on the cellulose/Mn3O4 composites via a sonochemistry method. In this study, cellulose/Mn3O4 composites were successfully fabricated using four types of alkalis (urea (CO(NH2)2), hexamethylenetetramine ((CH2)6N4, HMT), NaOH, and KOH) by an environmentally-friendly sonochemistry method. The phase, shape, thermal stability, and the formation mechanism of the cellulose composites were researched in detail. Experimental results demonstrated that the types of alkalis played an important role in the phase, shape, dispersion, and thermal stability of cellulose/Mn3O4 composites. By thermal treatment of cellulose/Mn3O4 composites at 600°C for 3h in air, the Mn3O4 crystals were obtained. This novel method reported here maybe has a guiding significance for the synthesis of manganese oxide materials and other metal oxides using cellulose as template. PMID:25439907

  9. Cathode architectures for alkali metal / oxygen batteries

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  10. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  11. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish)

    Taniguchi Tomokazu; Negishi Takashi; Matsuda Michiko; Toda Hiroshi; Itoh Nobuya; Ohsawa Noboru

    2009-01-01

    Abstract Background Biogenic emissions of methyl halides (CH3Cl, CH3Br and CH3I) are the major source of these compounds in the atmosphere; however, there are few reports about the halide profiles and strengths of these emissions. Halide ion methyltransferase (HMT) and halide/thiol methyltransferase (HTMT) enzymes concerning these emissions have been purified and characterized from several organisms including marine algae, fungi, and higher plants; however, the correlation between emission pr...

  12. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  13. The structure of alkali silicate gel by total scattering methods

    Benmore, C.J.

    2010-06-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  14. Seasonal variations in halides in marine brown algae from Porbandar and Okha coasts (NW coast of India)

    Rao, Ch.K.; Singbal, S.Y.S.

    Seasonal variation of halides and their ratios were estimated in three brown algae, namely Cystoseira indica, Sargassum tenerrimum) and S. johnstonii from Porbandar and Okha Coasts. Halides were found to be higher in early stages of growth. The Br...

  15. The furnace for crystal growth by directional solidification in skull crucible

    Таранюк, Владимир Иванович; Гектин, Александр Вульфович; Колесников, Александр Владимирович

    2014-01-01

    The furnace, based on the skull method for obtaining laboratory samples of halide crystals (40 mmin diameter and15 mmhigh) with the melting temperature of900 °C, is considered in the paper. This technological solution allows growing crystals without using expensive platinum crucibles and moving or rotating design elements. The process control system and the thermal unit design are designed for determining and controlling temperature and a thermal gradient for carrying out crystal growth and m...

  16. Durability of Alkali Activated Blast Furnace Slag

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  17. Artificial Synapses: Organometal Halide Perovskite Artificial Synapses (Adv. Mater. 28/2016).

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    A synapse-emulating electronic device based on organometal halide perovskite thin films is described by T.-W. Lee and co-workers on page 5916. The device successfully emulates important characteristics of a biological synapse. This work extends the application of organometal halide perovskites to bioinspired electronic devices, and contributes to the development of neuromorphic electronics. PMID:27442971

  18. Formal Nucleophilic Boryl Substitution of Organic Halides with Silylborane/Alkoxy Base System

    Yamamoto, Eiji; Izumi, Kiyotaka; Horita, Yuko; Ukigai, Satoshi; Ito, Hajime

    2014-01-01

    Boryl substitution of organohalides with a silylborane and alkoxy bases is described. This reaction can be applied to various functionalized aryl halides. Alkyl and alkenyl halides, and even sterically congested aryl bromides also provided the corresponding borylated products in high yields. Mechanistic studies indicated that neither trace transition-metal impurities nor aryl radical species involved in this reaction.

  19. Temperature effects in the absorption spectra and exciton luminescence in ammonium halides

    Warm-up behavior of the first maximum exciton absorption bands in ammonium halides is explored. Under phase transition occurs offset of bands, bound both with changing a parameter of lattice, and efficient mass of exciton. Warm-up dependency of quantum leaving a luminescence of self-trapped excitons in ammonium halides is measured. (author)

  20. High-Order Dispersion Coefficients for Alkali-metal Atoms

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  1. Effects of alkali treatments on Ag nanowire transparent conductive films

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  2. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  3. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  4. Structural, dynamical, and transport properties of the hydrated halides: How do At− bulk properties compare with those of the other halides, from F− to I−?

    Réal, Florent; Severo Pereira Gomes, Andre; Guerrero Martínez, Yansel Omar; Galland, Nicolas; Vallet, Valérie; Masella, Michel; Ayed, Tarah

    2016-01-01

    International audience The properties of halides from the lightest, uoride (F−), to the heaviest, astatide (At−), have been studied in water using a polarizable force- eld approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force- eld explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force- eld parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Möller-Plesset second-o...

  5. Silylaryl Halides Can Replace Triflates as Aryne Precursors.

    Mesgar, Milad; Daugulis, Olafs

    2016-08-01

    Silylaryl bromides and iodides can be prepared in one step from commercially available starting materials. Arynes can be generated from these compounds under conditions nearly identical to those employed for silylaryl triflates. Three distinct transformations, ortho-arylation of N-tritylanilines, intermolecular addition of arynes to amides, and reaction of ureas with arynes, were shown to be successful for the new aryne precursors. The main advantage of silylaryl halides relative to silyl aryl triflates is their one-step preparation from commercially available starting materials. PMID:27415183

  6. Thermal conductivity of halide solid solutions: measurement and prediction.

    Gheribi, Aïmen E; Poncsák, Sándor; St-Pierre, Rémi; Kiss, László I; Chartrand, Patrice

    2014-09-14

    The composition dependence of the lattice thermal conductivity in NaCl-KCl solid solutions has been measured as a function of composition and temperature. Samples with systematically varied compositions were prepared and the laser flash technique was used to determine the thermal diffusivity from 373 K to 823 K. A theoretical model, based on the Debye approximation of phonon density of state (which contains no adjustable parameters) was used to predict the thermal conductivity of both stoichiometric compounds and fully disordered solid solutions. The predictions obtained with the model agree very well with our measurement. A general method for predicting the thermal conductivity of different halide systems is discussed. PMID:25217938

  7. RENUW - A dry halide process for nuclear fuel reprocessing

    The RENUW Dry Halide Process for reprocessing nuclear fuel will be described. Analysis has shown that the RENUW process will significantly reduce the waste produces from processing irradiated nuclear fuel compared to aqueous processes. Waste reduction is accomplished by recovering the zirconium and uranium for reuse. The RENUW process uses hot chlorine gas to chlorinate the feed; separation is accomplished by exploiting the large differences between the relative volatilities of the fission products and the uranium and zirconium. The flow sheet is quite simple and uses readily commercial technologies

  8. RENUW - A dry halide process for nuclear fuel reprocessing

    Lahoda, E.J.; McLaughlin, D.F.; Peterson, S.H.; Burgman, H.A. [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Behrens, R. Jr.; Johnston, S.C.; Vosen, S.R. [Sandia National Laboratories, Livermore, CA (United States); Christian, J.D. [Westinghouse Idaho Nuclear Company, Idaho Falls, ID (United States)

    1993-12-31

    The RENUW Dry Halide Process for reprocessing nuclear fuel will be described. Analysis has shown that the RENUW process will significantly reduce the waste produces from processing irradiated nuclear fuel compared to aqueous processes. Waste reduction is accomplished by recovering the zirconium and uranium for reuse. The RENUW process uses hot chlorine gas to chlorinate the feed; separation is accomplished by exploiting the large differences between the relative volatilities of the fission products and the uranium and zirconium. The flow sheet is quite simple and uses readily commercial technologies.

  9. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-01

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes. PMID:26560862

  10. "XA6" octahedra influencing the arrangement of anionic groups and optical properties in inverse-perovskite [B6O10]XA3 (X = Cl, Br; A = alkali metal).

    Yang, Zhihua; Lei, Bing-Hua; Yang, Bin; Pan, Shilie

    2016-06-01

    Exploring the effect of microscopic units, which set up the perovsikte framework, is of importance for material design. In this study, a series of borate halides with inverse-perovskite structures [B6O10]XA3 (X = Cl, Br; A = alkali metal) have been studied. It was revealed that the distortion and volume of XA6 octahedra influence the arrangement of anionic groups, which leads to the flexibility of the perovskite-related framework and differences in optical properties. Under the structural control scheme, the structure of Rb3B6O10Cl was predicted. The stability of the predicted structure was confirmed by an ab initio density functional theory-based method. The calculation shows Rb3B6O10Cl has a short UV cutoff edge of less than 200 nm, a moderate birefringence and a large second harmonic generation response. PMID:27211304

  11. Chemical shifts of the X-ray L3 absorption edge of europium in its trivalent halides

    Position of the Eu-L3 absorption edge has been studied in pure metal and in its trivalent halides, EuF3, EuCl3, EuBr3, and EuI3, employing a simple X-ray spectrometer with an LiF single crystal as the analyser. A linear relationship was established between the chemical shift and the effective charge on the absorbing rare earth atom. The chemical shifts have also been correlated to Moessbauer isomer shifts. The results have been discussed in terms of nature of chemical bonding, effective atomic charge on the absorbing atom and some other parameters relevant to the immediate local environment of the absorbing atom. (author)

  12. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites

    Leguy, Aurélien M A; Frost, Jarvist M; Skelton, Jonathan; Brivio, Federico; Rodríguez-Martínez, Xabier; Weber, Oliver J; Pallipurath, Anuradha; Alonso, M Isabel; Campoy-Quiles, Mariano; Weller, Mark T; Nelson, Jenny; Walsh, Aron; Barnes, Piers R F

    2016-01-01

    We present Raman and terahertz absorbance spectra of methylammonium lead halide single crystals (MAPbX3, X = I, Br, Cl) at temperatures between 80 and 370 K. These results show good agreement with density-functional-theory phonon calculations.1 Comparison of experimental spectra and calculated vibrational modes enables confident assignment of most of the vibrational features between 50 and 3500 cm-1. Reorientation of the methylammonium cations, unlocked in their cavities at the orthorhombic-to-tetragonal phase transition, plays a key role in shaping the vibrational spectra of the different compounds. Calculations show that these dynamics effects split Raman peaks and create more structure than predicted from the independent harmonic modes. This explains the presence of extra peaks in the experimental spectra that have been a source of confusion in earlier studies. We discuss singular features, in particular the torsional vibration of the C-N axis, which is the only molecular mode that is strongly influenced b...

  13. Electronic structure and Fano antiresonance of chromium Cr(III) ions in alkali silicate glasses

    Taktak, Olfa, E-mail: taktak.olfa@gmail.com; Souissi, Hajer; Souha, Kammoun

    2015-05-15

    The optical properties of the Cr{sup 3+} doped in alkali silicate glasses X{sub 2}O–SiO{sub 2} with different modifier cations X=Li, Na and K have been investigated by Villian et al. This work investigates a theoretical crystal-field analysis of the electronic energy levels of Cr{sup 3+} in these glasses. This analysis based on the Racah theory was carried out for the Chromium (III) center with an O{sub h} site symmetry. The objective of this study is to determine the effect of glass matrix modifier on the Racah B, C and crystal-field Dq parameters. The effect of the glass matrix environment on these parameters is also reported by comparison with alkali cadmium borosulphate, phosphate and borate glasses. The interference dips observed in the broad band {sup 4}T{sub 2g}({sup 4}F) result from interaction with the {sup 2}E{sub g}({sup 2}G) and {sup 2}T{sub 1g}({sup 2}G) sharp levels are known as the Fano antiresonance model. This feature is qualitatively studied using the adiabatic potential surfaces for the quartet {sup 4}T{sub 2g}({sup 4}F) and doublet {sup 2}E{sub g}({sup 2}G) levels. - Highlights: • The electronic structure of Cr{sup 3+} in alkali silicate glasses X{sub 2}O–SiO{sub 2} (X=Li,Na,K) was performed. • The theoretical study, based on Racah theory, permits us to deduce the energy levels. • The observed interference dip in absorption spectra is related to Fano antiresonance.

  14. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH{sub 2}){sub 3}]CdI{sub 3} and [4-ClC{sub 6}H{sub 5}NH{sub 3}]{sub 3}CdBr{sub 5}

    Gesing, Thorsten M.; Lork, Enno [Bremen Univ. (Germany). MAPEX Center for Material and Processes; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education

    2016-05-01

    The crystal structures of [C(NH{sub 2}){sub 3}]CdI{sub 3} (1) and [4-ClC{sub 6}H{sub 5}NH{sub 3}]{sub 3}CdBr{sub 5} (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P2{sub 1}/c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI{sub 4}] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr{sub 6}] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three {sup 127}I (m = ±1/2 <-> m = ±3/2), five {sup 81}Br, and three {sup 35}Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd{sub 5}I{sub 16}]{sup 6-} for 1 and [Cd{sub 3}Br{sub 16}]{sup 10-} for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  15. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Martínez, S.

    1992-09-01

    Full Text Available Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide, employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium allowed us to determine the Lambert-Beer law slopes for each compound. These values are differents (bearing in mind experimental random errors, so we have could to affirm the nonexistence of solid solution between the nitrate and the alkaline halide médium. The L-B law obtained by us can be used for the Identification differentiation and quantitative analysis of these nitrates in solid phase, even if they are present in a very low concentration.

    Se ha realizado la asignación de los espectros infrarrojo (IR de los nitratos alcalinos, sódico y potásico, y de los alcalinotérreos, magnésico y cálcico, en estado sólido. Se ha visto la influencia del medio dispersante (haluro alcalino, utilizado en la preparación de la muestra sólida. El estudio cuantitativo de la absorbencia de la banda a 1.387 cm-1 (presente en los espectros IR de los cuatro nitratos en medio KBr permite determinar las pendientes de la Ley de Lambert-Beer Se comprueba que dichas pendientes son diferentes lo que conduce a poder afirmar que no se produce disolución sólida entre el KBr y el nitrato alcalino o alcalinotérreo. La determinación de la ley de Lambert-Beer permite la identificación y el análisis cualitativo y cuantitativo por espectroscopia IR de estos nitratos cuando están presentes en bajas concentraciones en muestras sólidas.

  16. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Xie Yulong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  17. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  18. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident γ-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  19. Halides with Fifteen Aliphatic C–H···Anion Interaction Sites

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J.; Lastovickova, Dominika N.; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W.; Kim, Kwang S.

    2016-07-01

    Since the aliphatic C–H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C–H (Cali–H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali–H groups. An X-ray structure of imidazolium-based scaffolds using Cali–H···A‑ interactions (A‑ = anion) shows that a halide anion is directly interacting with fifteen Cali–H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali–H···A‑ interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms.

  20. Halides with Fifteen Aliphatic C-H···Anion Interaction Sites.

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J; Lastovickova, Dominika N; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W; Kim, Kwang S

    2016-01-01

    Since the aliphatic C-H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C-H (Cali-H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali-H groups. An X-ray structure of imidazolium-based scaffolds using Cali-H···A(-) interactions (A(-) = anion) shows that a halide anion is directly interacting with fifteen Cali-H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali-H···A(-) interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms. PMID:27444513

  1. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals.

    Jellicoe, Tom C; Richter, Johannes M; Glass, Hugh F J; Tabachnyk, Maxim; Brady, Ryan; Dutton, Siân E; Rao, Akshay; Friend, Richard H; Credgington, Dan; Greenham, Neil C; Böhm, Marcus L

    2016-03-01

    Metal halide perovskite crystal structures have emerged as a class of optoelectronic materials, which combine the ease of solution processability with excellent optical absorption and emission qualities. Restricting the physical dimensions of the perovskite crystallites to a few nanometers can also unlock spatial confinement effects, which allow large spectral tunability and high luminescence quantum yields at low excitation densities. However, the most promising perovskite structures rely on lead as a cationic species, thereby hindering commercial application. The replacement of lead with nontoxic alternatives such as tin has been demonstrated in bulk films, but not in spatially confined nanocrystals. Here, we synthesize CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals and provide evidence of their spectral tunability through both quantum confinement effects and control of the anionic composition. We show that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nanosecond time scales via two spectrally distinct radiative decay processes, which we assign to band-to-band emission and radiative recombination at shallow intrinsic defect sites. PMID:26901659

  2. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    Zhao, Yixin; Zhu, Kai

    2016-02-01

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities. PMID:26645733

  3. Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites.

    Herz, Laura M

    2016-05-27

    Hybrid organic-inorganic metal halide perovskites have recently emerged as exciting new light-harvesting and charge-transporting materials for efficient photovoltaic devices. Yet knowledge of the nature of the photogenerated excitations and their subsequent dynamics is only just emerging. This article reviews the current state of the field, focusing first on a description of the crystal and electronic band structure that give rise to the strong optical transitions that enable light harvesting. An overview is presented of the numerous experimental approaches toward determining values for exciton binding energies, which appear to be small (a few milli-electron volts to a few tens of milli-electron volts) and depend significantly on temperature because of associated changes in the dielectric function. Experimental evidence for charge-carrier relaxation dynamics within the first few picoseconds after excitation is discussed in terms of thermalization, cooling, and many-body effects. Charge-carrier recombination mechanisms are reviewed, encompassing trap-assisted nonradiative recombination that is highly specific to processing conditions, radiative bimolecular (electron-hole) recombination, and nonradiative many-body (Auger) mechanisms. PMID:26980309

  4. Solidification of nitrate solutions with alkali-activated slag and slag–metakaolin cements

    Rakhimova, Nailia R., E-mail: rahimova.07@list.ru [Kazan State University of Architecture and Engineering, Kazan (Russian Federation); Rakhimov, Ravil Z. [Kazan State University of Architecture and Engineering, Kazan (Russian Federation); Osin, Yury N. [Kazan Federal University, Kazan (Russian Federation); Naumkina, Natalia I.; Gubaidullina, Alfiya M. [Central Research Institute for Geology of Industrial Minerals, Kazan (Russian Federation); Yakovlev, Grigory I.; Shaybadullina, Arina V. [Kalashnikov Izhevsk State Technical University, Izhevsk (Russian Federation)

    2015-02-15

    Highlights: • The effectiveness of an AASC matrix for NaNO{sub 3} solution solidification is stated. • XRD, DTA-TG, and X-ray microtomography experiments were performed. • Crystallization of NaNO{sub 3} reduces the shrinkage of hardened AASC-based waste forms. • Metakaolin shortens the setting time and increases the compressive strength of AASC. - Abstract: The solidification of nitrate solutions with alkali-activated slag (AASC) and slag–metakaolin cements (AASMC) and the resulting setting times, compressive strengths, dimensional stability, water resistance, hydration products, microstructures, and macroporous network structures were evaluated. The influences of the alkali activator concentration, mineral composition of metakaolin, ratio of slag to slag + metakaolin, and concentration of NaNO{sub 3} on the cement performance were all evaluated in detail. The compressive strength of cemented nitrate solutions with AASC and AASMC aged for 28 days was from 13.4 to 42 MPa depending on the NaNO{sub 3} concentration. X-ray diffractometer, differential thermal analyzer, and electron microscope analyses suggested that NaNO{sub 3} crystallizes in cementitious matrices without reacting with the hydration products of AASC and AASMC. X-ray microtomography showed that the solidified NaNO{sub 3} solution with a salt concentration of 700 g/l and AASC had a denser microstructure without shrinkage microcracks, a smaller macropore volume, and smaller macropore sizes than hardened AASC-based paste mixed with water.

  5. Solidification of nitrate solutions with alkali-activated slag and slag–metakaolin cements

    Highlights: • The effectiveness of an AASC matrix for NaNO3 solution solidification is stated. • XRD, DTA-TG, and X-ray microtomography experiments were performed. • Crystallization of NaNO3 reduces the shrinkage of hardened AASC-based waste forms. • Metakaolin shortens the setting time and increases the compressive strength of AASC. - Abstract: The solidification of nitrate solutions with alkali-activated slag (AASC) and slag–metakaolin cements (AASMC) and the resulting setting times, compressive strengths, dimensional stability, water resistance, hydration products, microstructures, and macroporous network structures were evaluated. The influences of the alkali activator concentration, mineral composition of metakaolin, ratio of slag to slag + metakaolin, and concentration of NaNO3 on the cement performance were all evaluated in detail. The compressive strength of cemented nitrate solutions with AASC and AASMC aged for 28 days was from 13.4 to 42 MPa depending on the NaNO3 concentration. X-ray diffractometer, differential thermal analyzer, and electron microscope analyses suggested that NaNO3 crystallizes in cementitious matrices without reacting with the hydration products of AASC and AASMC. X-ray microtomography showed that the solidified NaNO3 solution with a salt concentration of 700 g/l and AASC had a denser microstructure without shrinkage microcracks, a smaller macropore volume, and smaller macropore sizes than hardened AASC-based paste mixed with water

  6. Study on alkali metal thermoelectric converter

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting β''-alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20-40%), high power densities (1 W/cm2), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported. (J.P.N.) 79 refs

  7. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  8. Halide salts accelerate degradation of high explosives by zerovalent iron

    Zerovalent iron (Fe0, ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl- and Br- was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br- was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  9. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications. PMID:27336412

  10. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them. PMID:27100910

  11. Charging Induced Emission of Neutral Atoms from NaCl Nanocube Corners

    Ceresoli, Davide; Zykova-Timan, Tatyana; Tosatti, Erio

    2008-01-01

    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutral...

  12. Alkali element background reduction in laser ICP-MS

    C. W. Magee Jr.

    2014-11-01

    Full Text Available Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  13. Concrete alkali-silica reaction and nuclear radiation damage

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 108 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  14. In vitro Biological Effects of Ti2448 Alloy Modified by Micro-arc Oxidation and Alkali Heatment

    Xue Han; Hongchen Liu; Dongsheng Wang; Shujun Li; Rui Yang; Xiaojie Tao; Xiaohong Jiang

    2011-01-01

    The purpose of this study was to test the hypothesis that the combination of micro-arc oxidation and alkali heatment (MAH) would improve the cytocompatibility of a newly designed Ti-24Nb-4Zr-8Sn alloy. In this study, commercially pure titanium (cp Ti) and Ti-24Nb-4Zr-8Sn were used. Surface modification of Ti-24Nb-4Zr-8Sn by a two-step treatment of micro-arc oxidation (MAO) and alkali heatment was reported. Surface characterizations were performed by scanning electron microscopy (SEM), thin film X-ray diffraction (TF-XRD)and X-ray photoelectron spectroscopy (XPS). The MAH layer consisted of finer crystals and possessed a higher degree of crystallity and stability than the MAO layer. A biocompatibility study on treated and untreated Ti24Nb-4Zr-8Sn in comparison with cp Ti was carried out to investigate the effect of the different surfaces on the bone integration property in vitro. The cellular assays revealed that the MAO and MAH layer favored the initial adhesion of MC3T3-E1 cells and that the growth rate of MC3T3-E1 cells on MAH layer was significantly higher than that on the conventional MAO-treated layer after 3-day and 5-day incubation, demonstrating the greater potential of the hybrid treatment of micro-arc oxidation followed with alkali heatment as a novel surface modification method for implanting materials.

  15. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites.

    Li, Chonghea; Lu, Xionggang; Ding, Weizhong; Feng, Liming; Gao, Yonghui; Guo, Ziming

    2008-12-01

    In this study a total of 186 complex halide systems were collected; the formabilities of ABX3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF2) without perovskite structure and six systems (RbF-PbF2, CsF-BeF2, KCl-FeCl2, TlI-MnI2, RbI-SnI2, TlI-PbI2) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. PMID:19029699

  16. Minocycline Inhibits Alkali Burn-Induced Corneal Neovascularization in Mice

    Ou Xiao; Zhao-lian Xie; Bin-wu Lin; Xiao-fang Yin; Rong-biao Pi; Shi-you Zhou

    2012-01-01

    The purpose of this study was to investigate the effects of minocycline on alkali burn-induced corneal neovascularization (CNV). A total of 105 mice treated with alkali burns were randomly divided into three groups to receive intraperitoneal injections of either phosphate buffered saline (PBS) or minocycline twice a day (60 mg/kg or 30 mg/kg) for 14 consecutive days. The area of CNV and corneal epithelial defects was measured on day 4, 7, 10, and14 after alkali burns. On day 14, a histopathol...

  17. Mild Palladium-Catalyzed Cyanation of (Hetero)aryl Halides and Triflates in Aqueous Media

    Cohen, Daniel T.; Buchwald, Stephen L.

    2015-01-01

    A mild, efficient, and low-temperature palladium-catalyzed cyanation of (hetero)aryl halides and triflates is reported. Previous palladium-catalyzed cyanations of (hetero)aryl halides have required higher temperatures to achieve good catalytic activity. This current reaction allows the cyanation of a general scope of (hetero)aryl halides and triflates at 2–5 mol % catalyst loadings with temperatures ranging from rt to 40 °C. This mild method was applied to the synthesis of lersivirine, a reve...

  18. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    Falivene, Laura

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  19. Neutron Activation Analysis of Lead Halide Pollution Aerosols

    Iodine, bromine and chlorine have been determined by neutron activation analysis in atmospheric samples of both natural and pollution origin, and a comparison of the two sources provides the basis of a technique described in this paper for determining the composition and possible source of lead halide pollution aerosols. The activation analysis procedure employed consists of reactor neutron irradiation of aqueous samples and comparators for 20 min followed by radiochemical separation of iodine, bromine and chlorine and automatic counting of beta radioactivity from solid silver halide sources. Determination of lead by anodic stripping voltammetry (inverse polarography) consists of deposition of Pb++ from the solution onto a composite paraffin- impregnated graphite and mercury electrode at -1.00 V versus the standard calomel electrode, and then stripping by increasing the potential continuously. A significant question of public health interest in the air chemistry of lead is the source of the lead. Ethyl fluid, a mixture of organic lead, bromine and chlorine compounds, burns to form inorganic lead halide particles with Cl/Pb = 0.34 and Br/Pb = 0.39 by weight. In Cambridge, Massachusetts, analyses of cascade impactor aerosols were compared with similarly collected samples from the unpolluted air of Hawaii. The pollution bromine component ranged from 0.4 to 0.1 or less of the lead concentration, indicating in most cases either automotive lead with a bromine deficiency or a mixture of lead from automotive and other sources. In Fairbanks, Alaska, during winter, atmospheric conditions favour high local concentrations of air pollutants. Aerosols collected by Millipore filters show that pollution chlorine averages very nearly the value predicted from the observed lead and the known composition of ethyl fluid, and the automotive source for both chlorine and lead is strongly indicated. Pollution bromine, however, was less than predicted, and the bromine deficiency was about

  20. The 4843 Alkali Metal Storage Facility Closure Plan

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  1. Electric field-induced softening of alkali silicate glasses

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown

  2. Kinetics of molybdenite oxidizing leaching in alkali medium by ozone

    On the basis of investigation of the process kinetics proposed is a model of oxidizing leaching of molybdenite in alkali medium while ozonization of the solution by ozoneair mixture. A kinetic equation is derived, that describes experimental data satisfactorily

  3. Alkali-bonded ceramics with hierarchical tailored porosity

    Landi, E.; Medri, V.; Papa, E.; Dědeček, Jiří; Klein, Petr; Benito, P.; Vaccari, A.

    2013-01-01

    Roč. 73, SI (2013), s. 56-64. ISSN 0169-1317 Institutional support: RVO:61388955 Keywords : alkali-bonded ceramics * metalcaolin * geopolymerization parameters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.703, year: 2013

  4. Electric field-induced softening of alkali silicate glasses

    McLaren, C.; Heffner, W.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Tessarollo, R.; Raj, R. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  5. The Alkali Metal Interactions with MgO Nanotubes

    Beheshtian, Javad [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi; Bagheri, Zargham [Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of); Kamfiroozi, M. [Islamic Azad University, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2012-06-15

    Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of .0.25 to .0.74 eV. HOMO-LUMO gap (E{sub g}) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of E{sub g} decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased

  6. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  7. Hypercalcemia in Pregnancy: A Case of Milk-Alkali Syndrome

    Kolnick, Leanne; Harris, Bryan D.; Choma, David P.; Choma, Neesha N.

    2011-01-01

    Milk-alkali syndrome is a rare cause of hypercalcemia characterized by the triad of hypercalcemia, renal insufficiency, and metabolic alkalosis that results from the overconsumption of calcium containing products. In the setting of pregnancy where there is a physiologic increase in calcium absorption, milk-alkali syndrome can be potentially life threatening. We report a case of a 26-year-old woman in her second trimester of pregnancy who presented with 2 weeks of flank pain, nausea, vomiting,...

  8. Alkali promotion of N-2 dissociation over Ru(0001)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using self-consistent density functional calculations, we show that adsorbed Na and Cs lower the barrier for dissociation of N2 on Ru(0001). Since N2 dissociation is a crucial step in the ammonia synthesis reaction, we explain in this way the experimental observation that alkali metals promote th...... the ammonia synthesis reaction over Ru catalysts. We also show that the origin of this effect is predominantly a direct electrostatic attraction between the adsorbed alkali atoms and the dissociating molecule....

  9. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Juho Yliniemi; Paivo Kinnunen; Pasi Karinkanta; Mirja Illikainen

    2016-01-01

    Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW) and glass wool (GW) were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated w...

  10. Theoretical study of the scandium and yttrium halides

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1988-01-01

    The X1Sigma(+) ground states and a3Delta excited states of the diatomic halides of Sc and Y are characterized theoretically, using the SDCI coupled-pair functional method and the state-averaged CASSCF method to determine the spectroscopic constants and related properties. The techniques employed are discussed, and the results are presented in extensive tables. The dissociation energies are given as D0 = 6.00 eV for ScF, 4.55 eV for ScCl, 3.90 eV for ScBr, 6.72 eV for YF, 5.36 eV for YCl, and 4.74 eV for YBr.

  11. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-01

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities. PMID:26631361

  12. Quasielastic neutron scattering study of silver selenium halides

    Major, A G; Barnes, A C; Howells, W S

    2002-01-01

    Both silver chalcogenides (Ag sub 2 S, Ag sub 2 Se, and Ag sub 2 Te) and silver halides (AgCl, AgBr, and AgI) are known to be fast-ion solids in which the silver ions can diffuse quickly in a sublattice formed by the other ions. To clarify whether mixtures of these materials (such as Ag sub 3 SeI) possess comparable properties and whether a systematic dependence on the cation-to-anion ratio can be observed, some of these mixtures were studied by quasielastic neutron scattering both in the solid and the liquid phases. To identify the diffusion mechanisms and constants, a new data-analysis method based on a two-dimensional maximum-likelihood fit is proposed. This method has the potential to give more reliable information on the diffusion mechanism than the traditional Bayesian method. (orig.)

  13. Giant photostriction in organic-inorganic lead halide perovskites

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  14. Mechanical properties of silver halide core/clad IR fibers

    Shalem, Shaul; German, Alla; Moser, Frank; Katzir, Abraham

    1996-04-01

    We have developed core/clad polycrystalline silver halide optical fibers with a loss of roughly 0.3 dB/m at 10.6 micrometers. Such fibers, with core diameters 0.3 - 0.6 mm and lengths of 1 to 2 meters are capable of continuously delivering output power densities as high as 14 KW/cm2. The fibers were repetitively bent in the plastic and elastic regimes and the optical transmission monitored during bending. The mechanical properties of the core/clad fibers and of the core only fibers are similar. It was also demonstrated that the 'bending' properties of the core/clad fibers are determined by the cladding material. Our investigations suggest that proper design of the core/clad structure may give significant improvement in mechanical properties such as more cycles to optical failure. This will be very important especially for endoscopic laser surgery and other medical applications.

  15. Two-photon pumped lead halide perovskite nanowire lasers

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  16. Giant photostriction in organic–inorganic lead halide perovskites

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-01-01

    Among the many materials investigated for next-generation photovoltaic cells, organic–inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge–orbital–lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices. PMID:27044485

  17. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  18. High alkali-resistant basalt fiber for reinforcing concrete

    Highlights: • Doping of basalt fiber with ZrSiO4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr4+, Fe3+ and Mg2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  19. CHEMICAL AND THERMAL STABILITY OF RICE HUSKS AGAINST ALKALI TREATMENT

    Bwire S. Ndazi

    2008-11-01

    Full Text Available Chemical and thermal stability of rice husks against alkali treatment with 2 to 8% w/v NaOH are presented and discussed in this paper. The thermal stability of the rice husks was examined by using a thermal gravimetric analysis instrument. Chemical stability was evaluated by examining the organic components of rice husks using proximate analysis. The results indicated that the proportion of lignin and hemicellulose in rice husks treated with NaOH ranging from 4 to 8% decreased significantly by 96% and 74%, respectively. The thermal stability and final degradation temperatures of the alkali-treated rice husks were also lowered by 24-26°C due to degradation of hemicellulose and lignin during alkali treatment. Absence of the onset degradation zones in the alkali-treated rice husks was a further indication that hemicellulose and other volatile substances degraded during alkali treatment. This leads to a conclusion that alkali treatment of rice husks with more than 4% NaOH causes a substantial chemical degradation of rice husks, which subsequently decreases their thermal stability.

  20. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer

    Liang Chen

    2016-09-01

    Full Text Available The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO2:Al2O3:Na2O:NaOH:H2O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection.

  1. Phase space investigation of the lithium amide halides

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  2. Phase space investigation of the lithium amide halides

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li3(NH2)2I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li7(NH2)6Cl. • New low-chloride phase maintained improved H2 desorption properties of Li4(NH2)3Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH2). It was found that the lithium amide iodide Li3(NH2)2I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li7(NH2)6Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li4(NH2)3Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li7(NH2)6Cl was observed. In comparison to LiNH2, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li4(NH2)3Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful

  3. Fundamental study on alkali metal thermoelectric converter

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting β''-alumina is a device to convert heat energy to electric energy directly. In this paper, the results of theoretical and experimental studies on AMTEC power generating characteristics, internal electrical resistances of single cell, and system analysis of AMTEC power generating systems are reported. This paper consists of 5 chapters, which are summarized as follows: In chapter 1, a theoretical explanation of AMTEC, a brief survey of the research and development history of AMTEC and a purpose of this paper are reported. In chapter 2, the properties of β''-alumina, preparations of thin film electrodes, and special attention points to be paid in handling of β''-alumina and film electrodes are reported. The AMTEC power generating characteristics of the tubular cells are also reported. In chapter 3, the experimental results of the disk type cells and the theoretical considerations about internal resistances are reported. The causes of electrode erosion are also reported. In chapter 4, the system analysis on AMTEC steam-turbine combined cycle for a dispersed power station and AMTEC power system for a aerospace power are reported. Chapter 5 summarizes major results achieved in the preceding four chapters as a concluding remark. (J.P.N.) 62 refs

  4. Bioinorganic Chemistry of the Alkali Metal Ions.

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  5. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  6. Palladium-catalyzed Cascade Cyclization-Coupling Reaction of Benzyl Halides with N,N-Diallylbenzoylamide

    Yi Min HU; Yu ZHANG; Jian Lin HAN; Cheng Jian ZHU; Yi PAN

    2003-01-01

    A novel type of palladium-catalyzed cascade cyclization-coupling reaction has been found. Reaction of N, N-diallylbenzoylamide 1 with benzyl halides 2 afforded the corresponding dihydropyrroles 3 in moderate to excellent yields.

  7. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  8. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were gen...

  9. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles w...

  10. Nickel-Catalyzed Regiodivergent Opening of Epoxides with Aryl Halides: Co-Catalysis Controls Regioselectivity

    Zhao, Yang; Weix, Daniel J.

    2013-01-01

    Epoxides are versatile intermediates in organic synthesis, but have rarely been employed in cross-coupling reactions. We report that bipyridine-ligated nickel can mediate the addition of functionalized aryl halides, a vinyl halide, and a vinyl triflate to epoxides under reducing conditions. For terminal epoxides, the regioselectivity of the reaction depends upon the co-catalyst employed. Iodide co-catalysis results in opening at the less hindered position via an iodohydrin intermediate. Titan...

  11. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  12. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    Hou, H [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  13. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  14. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Yomei Tokuda; Yuya Takahashi; Hirokazu Masai; Shunichi Kaneko; Yoshikatsu Ueda; Shigeto Fujimura; Toshinobu Yoko

    2015-01-01

    We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1) the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2) the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1) glass showe...

  15. Luminescence, autolocalization and decay of excitons on defects in ionic crystals (CsBr)

    The review is made of investigations on specific features of excitons in alkali haloid crystals: existence of free and autolocalized excitons, autolocalizing excitons with defects production, defects recombination with luminescent exciton production, cubic crystals (mainly CsBr) taken as an exsample

  16. Pressure-structure relationships in the 10 K layered carbide halide superconductor Y2C2I2

    Ahn, Kyungsoo; Kremer, Reinhard K.; Simon, Arndt; Marshall, William G.; Muñoz, Alfonso

    2016-09-01

    The electronic structures of the 10 K layered yttrium carbide halide superconductor Y2C2I2 is characterized by bands of low dispersion and narrow peak-valley features in the electronic density of states at the Fermi level. In order to investigate to what extent the superconducting properties can be modified by external pressure we have studied the pressure dependence of the superconducting critical temperature and the crystal structure of Y2C2I2 to pressures of 7.4 GPa. Up to ~2.5 GPa we observe an increase of T c from 10 K to about 12 K. A structural phase transition from a 1s to a 3s stacking variant occurs at about 2.5 GPa above which T c rapidly decreases to a value of ~7.5 K at 7.5 GPa. Density functional calculations corroborate the structural phase transition to occur at a critical cell volume of ~270 Å3 corresponding to a pressure of ~2.4 GPa, in good agreement with the experimental findings. The pressure dependence of T c and inter-atomic distances and angles are discussed with respect to the results of density functional calculations of the electronic and crystal structure.

  17. Pressure-structure relationships in the 10 K layered carbide halide superconductor Y2C2I2.

    Ahn, Kyungsoo; Kremer, Reinhard K; Simon, Arndt; Marshall, William G; Muñoz, Alfonso

    2016-09-21

    The electronic structures of the 10 K layered yttrium carbide halide superconductor Y2C2I2 is characterized by bands of low dispersion and narrow peak-valley features in the electronic density of states at the Fermi level. In order to investigate to what extent the superconducting properties can be modified by external pressure we have studied the pressure dependence of the superconducting critical temperature and the crystal structure of Y2C2I2 to pressures of 7.4 GPa. Up to ~2.5 GPa we observe an increase of T c from 10 K to about 12 K. A structural phase transition from a 1s to a 3s stacking variant occurs at about 2.5 GPa above which T c rapidly decreases to a value of ~7.5 K at 7.5 GPa. Density functional calculations corroborate the structural phase transition to occur at a critical cell volume of ~270 Å(3) corresponding to a pressure of ~2.4 GPa, in good agreement with the experimental findings. The pressure dependence of T c and inter-atomic distances and angles are discussed with respect to the results of density functional calculations of the electronic and crystal structure. PMID:27420394

  18. Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides

    Liu Xiao-Dong; Meng Dong-Dong; Hagihala Masato; Zheng Xu-Guang

    2011-01-01

    Raman vibrational spectra of the selected basic(hydroxyl OH and deuteroxyl OD)transition-metal halides,geometrically frustrated material series α-,β-,γ-Cu2(OH)3Cl,α-Cu2(OH)3Br,β-Ni2(OH)3Cl,β-Co2(OH)3Cl,β-Co2(OH)3Br,γ-Cu2(OD)3Cl,and β-Co2(OD)3Cl are measured at room temperature and analysed to investigate the relationship between the microstructured OH environments and their respective Raman spectra.Among these selected samples,the last two are used to determine the OH stretching vibration region(3600 cm-1-3300 cm-1)and OH bending vibration region(1000 cm-1-600 cm-1)of OH systems in the spectra.Through the comparative analysis of the distances d(metal-O),d(O-halogen),and d(OH),the strong metal-O interaction and trimeric hydrogen bond(C3υ,Cs,or C1 symmetry)are found in every material,but both determine simultaneously an ultimate d(OH),and therefore an OH stretching vibration frequency.According to the approximately linear relationship between the OH stretching vibration frequency and d(OH),some unavailable d(OH)are guessed and some doubtful d(OH)are suggested to be corrected.In addition,it is demonstrated in brief that the OH bending vibration frequency is also of importance to check the more detailed crystal microstructure relating to the OH group.

  19. Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides

    Raman vibrational spectra of the selected basic (hydroxyl OH and deuteroxyl OD) transition-metal halides, geometrically frustrated material series α-, β-, γ-Cu2(OH)3Cl, α-Cu2(OH)3Br, β-Ni2(OH)3Cl, β-Co2(OH)3Cl, β-Co2(OH)3Br, γ-Cu2(OD)3Cl, and β-Co2(OD)3Cl are measured at room temperature and analysed to investigate the relationship between the microstructured OH environments and their respective Raman spectra. Among these selected samples, the last two are used to determine the OH stretching vibration region (3600 cm−1−3300 cm−1) and OH bending vibration region (1000 cm−1−600 cm−1) of OH systems in the spectra. Through the comparative analysis of the distances d(metal—O), d(O—halogen), and d(OH), the strong metal—O interaction and trimeric hydrogen bond (C3v, Cs or C1 symmetry) are found in every material, but both determine simultaneously an ultimate d(OH), and therefore an OH stretching vibration frequency. According to the approximately linear relationship between the OH stretching vibration frequency and d(OH), some unavailable d(OH) are guessed and some doubtful d(OH) are suggested to be corrected. In addition, it is demonstrated in brief that the OH bending vibration frequency is also of importance to check the more detailed crystal microstructure relating to the OH group. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Reactivity of TEMPO anion as a nucleophile and its applications for selective transformations of haloalkanes or acyl halides to aldehydes

    Inokuchi, Tsutomu; Kawafuchi, Hiroyuki

    2004-01-01

    Sodium 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO−Na+), generated by reduction of TEMPO· with sodium naphthalenide in THF, reacted with alkyl halides or acyl halides to produce O-alkylated or acylated TEMPOs, which were in turn oxidized with mCPBA or reduced with DIBAL-H to afford the corresponding aldehydes, thus accomplishing a new protocol for the halides-carbonyls conversion.