WorldWideScience

Sample records for alkali halide crystal

  1. Radiation damage in the alkali halide crystals

    A general review is given of the experimental data on radiation damage in the alkali halide crystals. A report is presented of an experimental investigation of irradiation produced interstitial dislocation loops in NaCl. These loops are found to exhibit the usual growth and coarsening behaviour during thermal annealing which operates by a glide and self-climb mechanism. It is shown that the recombination of defects in these crystals is a two stage process, and that the loss of interstitials stabilized at the loops is caused by extrinsic vacancies. The theoretical techniques used in simulating point defects in ionic crystals are described. Shell model potentials are derived for all the alkali halide crystals by fitting to bulk crystal data. The fitting is supplemented by calculations of the repulsive second neighbour interactions using methods based on the simple electron gas model. The properties of intrinsic and substitutional impurity defects are calculated. The HADES computer program is used in all the defect calculations. Finally the report returns to the problems of irradiation produced interstitial defects. The properties of H centres are discussed; their structure, formation energies, trapping at impurities and dimerization. The structure, formation energies and mobility of the intermediate and final molecular defects are then discussed. The thermodynamics of interstitial loop formation is considered for all the alklai halide crystals. The nucleation of interstitial loops in NaCl and NaBr is discussed, and the recombination of interstitial and vacancy defects. The models are found to account for all the main features of the experimental data. (author)

  2. Mechanoluminescence of γ-irradiated alkali halide crystals

    The mechanoluminescence (ML) spectra of γ-irradiated alkali halide crystals consist of a narrow band of different ranges towards the ultraviolet or violet region. The ML spectra of LiF and NaCl consist of two bands. The ML spectra obtained during the release of pressure are similar to the ML spectra obtained during the application of pressure. The ML spectra of γ-irradiated alkali halide crystals both at the release and at the application of pressure are similar to that of X-irradiated alkali halide crystals. The ML spectra are compared with the other types of luminescence spectra and it is found that the ML spectra of coloured alkali halide crystals resemble the high energy spectra and the thermoluminescence spectra to a large extent. The wavelength corresponding to the peak of the ML spectra is found to be proportional to the square of the lattice constant of the crystals. (author)

  3. Dislocation unpinning model of acoustic emission from alkali halide crystals

    B P Chandra; Anubha S Gour; Vivek K Chandra; Yuvraj Patil

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant $_{\\text{s}}$ for surface annihilation of dislocations and the pinning time $_{\\text{p}}$ of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  4. Energetics of substituted ion disordered alkali halide crystals

    A possibility of interstitial ion arrangement in vacant units of an opposite sublattice is theoretically considered by means of the variational simulation method, taking NaCl, KCl and NaBr alkali halide crystals as examples. Within the framework of the model chosen complex binding energies are calculated: ion vacancy of on and the same sign is the interstitial ion of the opposite sign. A possibility of anti-Schottky dipole rise, an anion component of which is placed in the cation vacancy, as well anti-Schottky dipole, a cation component of which is placed in the anion vacancy, is considered. Binding energies of such complexes are calculated. A possibility of interstitial ion arrangement in vacancy points of the oppopsite sublattice is established. A possibility of anti-Schottky dipole formation, whose component is placed in vacancy of an oppositely charged ion, is shown

  5. Transmission electron microscopy of weakly deformed alkali halide crystals

    Transmission electron microscopy (TEM) is applied to the investigation of the dislocation arrangement of [001]-orientated alkali halide crystals (orientation four quadruple slip) deformed into stage I of the work-hardenig curve. The investigations pertain mainly to NaCl - (0.1-1) mole-% NaBr crystals, because these exhibit a relatively long stage I. The time available for observing the specimens is limited by the ionization radiation damage occuring in the microscope. An optimum reduction of the damage rate is achieved by a combination of several experimental techniques that are briefly outlined. The crystals deform essentially in single glide. According to the observations, stage I deformation of pure and weakly alloyed NaCl crystals is characterized by the glide of screw dislocations, which bow out between jogs and drag dislocation dipoles behind them. In crystals with >= 0.5 mole-% NaBr this process is not observed to occur. This is attributed to the increased importance of solid solution hardening. (orig.)

  6. Simulation of X3- centers dissociation process in alkali halide crystals with accounting of crystalline surroundings

    For detailed elaboration of mechanisms both formation and destruction of X3- centers in irradiated alkali halide crystals by semi-empirical quantum-chemical method MNDO the decay process of X3- center in KCl and KI crystals is simulated. The applied method comes into MOPAC-7.21 program package. For study of these processes plane crystal structures of KCl and KI consisting of 18 cations and 18 anions with lattice parameters of KCl and KI were formed. It is determined, that X3- centers of irradiated alkali halide crystals at simulation with taking into accounting of surrounding are dissociating from singlet state on X20 and X- fragments

  7. Cu halide nanoparticle formation by diffusion of copper in alkali halide crystals

    A., Prez-Rodrguez; M., Flores-Acosta; R., Rodrguez-Mijangos; R., Prez-Salas.

    2006-04-01

    Full Text Available Atomos de cobre han sido introducidos por difusin en cristales de NaCl, KCl y KBr a 500C. Los cristales han sido analizados pticamente con medidas de fotoluminiscencia y por microscopa electrnica de barrido. Los espectros de emisin y excitacin, medidos a baja temperatura muestran el efecto de [...] confinamiento de exciton, indicando la formacin de nanopartculas de CuX (X=Cl, Br), lo cual ha sido confirmado por imgenes de microscopa electrnica. Este mtodo es propuesto como un mtodo alternativo para obtener nanopartculas de CuX en cristales halogenuros alcalinos. Abstract in english Copper atoms have been introduced by diffusion in NaCl, KCl and KBr crystals at 500C. The crystals have been optically analyzed with photoluminescence measurements and by scanning electron microscopy. The emission and excitation spectra measured at low temperatures show the exciton confinement effe [...] ct, indicating the formation of CuX (X=Cl, Br) nanoparticles, which has been confirmed by electron microscopy images. This is proposed as an alternative method to obtain CuX nanoparticles in alkali halides crystals.

  8. Electronic States of F-Centers in Alkali Halide Crystals

    Matsunaga, Katsuyuki; Narita, Nobutaka; Tanaka, Isao; Adachi, Hirohiko

    1996-08-01

    The electronic states of F-centers in alkali halides with NaCl-type structure have been investigated using the discrete variational (DV) Xα cluster method. The electronic transition accompanied by optical absorption is examined on the basis of Slater's transition state concept. The photo-absorption energies of F-centers computed for the compounds with relatively small anions agree well with experimental data, but those for iodides and bromides exhibit much lower values than the observed values. We have also investigated the change in the absorption energy by the atom displacement. By the inward displacement of 1st neighbor cations, the absorption energies are decreased to approach the experimental values. The relaxation of the 1st neighbors estimated from the computation exhibits fairly small values in fluorides, while large values in iodides and bromides. The effect of lattice relaxation around an F-center is discussed in connection with the bonding nature of the F-center level.

  9. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    Rodriguez M, R.; Perez S, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Vazquez P, G.; Riveros, H. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Gonzalez M, P., E-mail: mijangos@cifus.uson.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl{sub x}KBr{sub 1-x} and KBr{sub x}RbBr{sub 1-x}. (Author)

  10. Possibility of elastico-mechanoluminescence dosimetry using alkali halides and other crystals

    The elastico-mechanoluminescence (EML) intensity of X or γ-irradiated alkali halide crystals can be used in radiation dosimetry. The EML intensity of X or γ-irradiated alkali halide crystals increases linearly with the strain of the crystals, and when the crosshead of the testing machine deforming an X or γ-irradiated crystal is stopped, then the EML intensity decreases with time. The semilog plot of the EML intensity versus (t − tc) (where tc is the time where the crosshead of the testing machine is stopped) indicates that, in the post-deformation region, the EML intensity initially decreases exponentially at a fast rate and later on it decreases exponentially at a slow rate. The EML intensity increases linearly with the density of the F-centres in the crystals. This fact indicates that elastico-ML can suitably be used for the radiation dosimetry. The EML spectra of X or γ-irradiated alkali halide crystals are similar to their thermoluminescence spectra. Based on the detrapping of electrons during the mechanical interaction between the dislocation segments and F-centres, an expression is derived, which indicates that the EML intensity should increase linearly with the density of F-centres in the crystals. The expression derived for the decay of EML indicates that the decay time for the fast decrease of EML should gives the pinning time of dislocation segments (lifetime of interacting F-centres), and the decay time for the slow decrease of EML intensity should gives the lifetime of electrons in the shallow traps. As the elastic deformation is non-destructive phenomenon and the EML intensity depends on the radiation dosage given to the alkali halide crystals, similar to the thermoluminescence and photo-stimulated luminescence, the EML of alkali halide crystals and other crystals may be used for the radiation dosimetry. In EML dosimetry, the same crystal can be used number of times because the elastic deformation does not cause permanent deformation in the crystals, and moreover, comparatively the devices needed for the EML measurements are of low cost and very simple. In recent years, a large number of elastico mechanoluminescent materials have been investigated, and the study of their suitability for the radiation dosimetry may be interesting. - Highlights: • Elastico-mechanoluminescence (EML) can be used in radiation dosimetry. • As EML occurs in the elastic region, the same sample can be used number of times. • The EML can be used for X-ray, γ-ray and ultraviolet dosimetry. • Mathematical approach verifies the possibility of EML dosimetry

  11. Mechanoluminescence response to the plastic flow of coloured alkali halide crystals

    Chandra, B.P., E-mail: bpchandra4@yahoo.co.i [Shri Shankaracharya College of Engineering and Technology, Junwani, Bhilai (C.G.) 490020 (India); Bagri, A.K. [Department of Postgraduate Studies and Research in Physics, Rani Durgawati University, Jabalpur 482001 (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg (C.G.) 491001 (India)

    2010-02-15

    The present paper reports the luminescence induced by plastic deformation of coloured alkali halide crystals using pressure steps. When pressure is applied onto a gamma-irradiated alkali halide crystal, then initially the mechanoluminescence (ML) intensity increases with time, attains a peak value and later on it decreases with time. The ML of diminished intensity also appears during the release of applied pressure. The intensity I{sub m} corresponding to the peak of ML intensity versus time curve and the total ML intensity I{sub T} increase with increase in value of the applied pressure. The time t{sub m} corresponding to the ML peak slightly decreases with the applied pressure. After t{sub m}, initially the ML intensity decreases at a fast rate and later on it decreases at a slow rate. The decay time of the fast decrease in the ML intensity is equal to the pinning time of dislocations and the decay time for the slow decrease of ML intensity is equal to the diffusion time of holes towards the F-centres. The ML intensity increases with the density of F-centres and it is optimum for a particular temperature of the crystals. The ML spectra of coloured alkali halide crystals are similar to the thermoluminescence and afterglow spectra. The peak ML intensity and the total ML intensity increase drastically with the applied pressure following power law, whereby the pressure dependence of the ML intensity is related to the work-hardening exponent of the crystals. The ML also appears during the release of the applied pressure because of the movement of dislocation segments and movements of dislocation lines blocked under pressed condition. On the basis of the model based on the mechanical interaction between dislocation and F-centres, expressions are derived for the ML intensity, which are able to explain different characteristics of the ML. From the measurements of the plastico ML induced by the application of loads on gamma-irradiated alkali halide crystals, the pinning time of dislocations, diffusion time of holes towards F-centres, the energy gap E{sub a} between the bottom of acceptor dislocation band and the energy level of interacting F-centres, and work-hardening exponent of the crystals can be determined. As in the elastic region the strain increases linearly with stress, the ML intensity also increases linearly with stress, however, as in the plastic region, the strain increases drastically with stress and follows power law, the ML intensity also increases drastically with stress and follows power law. Thus, the ML is intimately related to the plastic flow of alkali halide crystals.

  12. THEORY OF PLASTICO ML IN γ–IRRADIATED ALKALI HALIDE CRYSTALS

    NAMITA RAJPUT

    2011-01-01

    The present paper reports the results of some theoretical approach made to the studies of mechanoluminescence (ML) in coloured alkali halide crystals. It is shown that moving dislocations produced during plastic deformation of crystalline materials cause light emission due to several processes like mechanical or electrostatic interaction of dislocations with defect centres, the dielectric breakdown of adsorbed gaseous molecules by the surface accumulated dislocation charges, the generation of...

  13. Study on growth of ternary alkali lead halide crystals for IR lasers

    Král, Robert

    Berlin : Polyprint GmbH, 2011, s. 146-147. [International Workshop on Crystal Growth Technology/5./. Berlin (DE), 26.06.2011-30.06.2011] R&D Projects: GA AV ČR KJB200100901 Institutional research plan: CEZ:AV0Z10100521 Keywords : interface s * vertical Bridgman method * ternary alkali lead halides * solid state lasers Subject RIV: BM - Solid Matter Physics ; Magnetism https://iwcgt5.ikz-berlin.de/index.php?id=18

  14. Correlation between deformation bleaching and mechanoluminescence in coloured alkali halide crystals

    B P Chandra; M Ramrakhiani; P Sahu; A M Rastogi

    2000-02-01

    The present paper reports the correlation between deformation bleaching of coloration and mechanoluminescence (ML) in coloured alkali halide crystals. When the -centre electrons captured by moving dislocations are picked up by holes, deep traps and other compatible traps, then deformation bleaching occurs. At the same time, radiative recombination of dislocation captured electrons with the holes gives rise to the mechanoluminescence. Expressions are derived for the strain dependence of the density of colour centres in deformed crystals and also for the number of colour centres bleached. So far as strain, temperature, density of colour centres, a and volume dependence are concerned, there exists a correlation between the deformation bleaching and ML in coloured alkali halide crystals. From the strain dependence of the density of colour centres in deformed crystals, the value of coefficient of deformation bleaching is determined and it is found to be 1.93 and 2.00 for KCl and KBr crystals, respectively. The value of $(D + \\mathcal{X})$ is determined from the strain dependence of the ML intensity and it is found to be 2.6 and 3.7 for KCl and KBr crystals, respectively. This gives the value of coefficient of deformation generated compatible traps $\\mathcal{X}$ to be 0.67 and 1.7 for KCl and KBr crystals, respectively.

  15. Application of secondary ion mass spectrometer for measuring the diffusion profiles in alkali-halide crystals

    Chernyavskii, A. V.; Kaz, M. S.

    2015-04-01

    Depth profiles of magnesium, fluorine and oxygen impurities was examined in the surface layers of alkali-halide KBr crystals using method of secondary ion mass spectrometry. Samples of potassium bromide, coated with a surface film of magnesium fluoride were subjected to isothermal diffusion annealing in air at various times. It is shown that the diffusion of O ions occurs from the ambient atmosphere besides the diffusion of Mg and F ions during annealing of KBr crystals. Accurate estimation of the diffusion coefficients of cationic impurity Mg requires taking into account the possible interaction of this impurity and oxygen.

  16. Rapid yet accurate first principle based predictions of alkali halide crystal phases using alchemical perturbation

    Solovyeva, Alisa

    2016-01-01

    We assess the predictive power of alchemical perturbations for estimating fundamental properties in ionic crystals. Using density functional theory we have calculated formation energies, lattice constants, and bulk moduli for all sixteen iso-valence-electronic combinations of pure pristine alkali halides involving elements $A \\in \\{$Na, K, Rb, Cs$\\}$ and $X \\in \\{$F, Cl, Br, I$\\}$. For rock salt, zincblende and cesium chloride symmetry, alchemical Hellmann-Feynman derivatives, evaluated along lattice scans of sixteen reference crystals, have been obtained for all respective 16$\\times$15 combinations of reference and predicted target crystals. Mean absolute errors (MAE) are on par with density functional theory level of accuracy for energies and bulk modulus. Predicted lattice constants are less accurate. NaCl is the best reference salt for alchemical estimates of relative energies (MAE $<$ 40 meV/atom) while alkali fluorides are the worst. By contrast, lattice constants are predicted best using NaF as a re...

  17. Accidental birefringence and annealing effects in alkali halide single crystals

    Photoelasticity is used to explain the accidental birefringence patterns induced by thermal stresses in KCl and KBr-KCl crystals. It is shown that the residual stress and plastic deformations are essentially due to the variable temperature gradients. An optimal thermal treatment in order to eliminate the residual stresses is presented. (author)

  18. THEORY OF PLASTICO ML IN γ–IRRADIATED ALKALI HALIDE CRYSTALS

    NAMITA RAJPUT

    2011-06-01

    Full Text Available The present paper reports the results of some theoretical approach made to the studies of mechanoluminescence (ML in coloured alkali halide crystals. It is shown that moving dislocations produced during plastic deformation of crystalline materials cause light emission due to several processes like mechanical or electrostatic interaction of dislocations with defect centres, the dielectric breakdown of adsorbed gaseous molecules by the surface accumulated dislocation charges, the generation of holes during decay of mobile dislocations on the surfaces of crystals, etc. On the basis of rate equations, expressions are derived for the rise and decay of ML intensity at a given strain rate. The estimated values of ML intensities for different crystals are found to be comparable with the experimentally observed values. The expression derived are able to explain the dependence of ML intensity on several parameters like strain-rate, defect centre density, temperature, applied stress, crystal- size etc.

  19. New AIG method of growing alkali halide crystals and potential application to CZT

    The new AIG (Advance Interface Growth) method has been successfully applied to alkali halide scintillation crystals at PhotoPeak, Inc. for the last four years. It produces single, stress-free crystals having a low level of defects and has resulted in increasing the yield of usable CsI(Tl) crystals to 75-85%. Essentially it is a low gradient method but has the capability to adapt the gradient to that needed by an individual crystal for the most successful growth. High quality crystals have been supplied to national laboratories and the nuclear medicine market. For example, a blank CsI(Tl) crystal 2 in diameter and 2 in length was produced having a measured energy resolution of 6.5% at 662 keV on a 2 -diameter PMT having a standard blue bialkali photocathode. This far exceeds the best resolution, 8.5-9.5%, obtained for CsI(Tl) crystals grown by the conventional Bridgman method. It is expected that this method can be successfully applied to grow high quality CZT crystals with substantially higher yield, 25-35%, than the presently existing 5-10%. The reasons for the expected improved yield of CZT crystals are that the phase diagram of CZT material has a narrow range of stability and CZT crystals should benefit from growth in a low gradient environment. Since the AIG method does not involve any moving parts, the temperature control and stability are much higher than for the conventional Bridgman method. The experience with CsI crystals indicates that imperfections like twinning, sparks, and multiplicities can be substantially reduced or even eliminated in CZT crystals. The expected higher yield and improved spectroscopic quality of CZT should allow many commercial applications to become a reality

  20. Luminescent unit computerization to research spectral characteristics of fine film alkali halide crystal

    The fundamental optical absorption of ion crystals characterizes the creation of different free low energetic electronic excitation (the excitons and electron-hole pairs), but their straight registration is not possible because of incommensurable big absorption factor of alkali halide monocrystals. So to registration the spectrums of alkali halide monocrystal very fine layers are necessary. We have received fine films of Nal and KCl in system of KCl-Nal-KCl, KCl-KI-KCl on the base of universal vacuum post VUP-4, VUP-5 by thermal evaporation. A unique spectral unit has been created For this on the basic the SDL-2 complex. Complex consists of radiator, systems of condensers, monochromators MDR-12 and MDR-23, receivers of radiation, controller by unit. Connect and control of monochromators by means of IBM-compatible computer has been created. Kinematics schemes of monochromators provide consequent removing on output slot of monochromatic radiation in operating range of each diffraction lattice and indication its wavelength. The tumbling diffraction lattices is done the crossbar engines SHDR-711. For this special plate of control and block of reinforcement for crossbar engines in monochromators MDR-12 and MDR-23 are designed and constructed. Created controller of monochromators consists of double cascade preamplifier on transistors n-p-n type (815G) and logical scheme, constructed on summers and K555 series triggers. The preamplifier is used for reinforcement of signal to available amplifier on transistors KT837D. The logical scheme reduces the number of used categories of bidirectional port and enables unhooking the feeding to the windings of crossbar engine at conservation of previous combination of signals. The connection controller of monochromators is done through controller of port of computer with use the parallel interface. For installing computerized system of collection and data processing is provided marketed by means of modern object-oriented programming languages (Visual C++ 6.0, Visual Basic 6.0). As the result of the experiments it has been noted that the burning effect of own luminescence is in its maximum in the iodides of alkaline metals, for instance, in KI, NaI, RbI, and CsI crystals. From the point of the experimental equipment in order to registration the fundamental optical absorption of these crystals there is no necessity in such rare vacuum monochromators

  1. The experimental estimation of screen barrier of self trapped excitons' relaxation in alkali halide crystals

    Full text: Earlier the effect of intrinsic luminescence ignition of alkali halide crystals (AHC) at lattice symmetry lowering was found. This is probably connected with the efficiency decrease of nonradiative channel of exciton decay into initial radiation defects. It is well known that at self trapped exciton (STE) luminescence quenching the radiation defects creation efficiency increases. Experimental method for the estimation of nonradiative STE transfer activation energy in AHC at low temperature uniaxial stress is proposed. On the basis of values of STE luminescence quenching activation energy for the range of AHC obtained by temperature dependence of X-ray luminescence for both in absentia and at low temperature uniaxial stress, we can mark out the main rule: the activation energy increase at elastic uniaxial stress is observed in the range KBr→NaCl →KI→Rbl→CsBr and explained by the increase of potential barrier of STE nonradiative decay into radiation defects. It is represented the values of STE luminescence quenching activation energy for the range of AHC for both in absentia and at low temperature uniaxial stress. Thus, it becomes obvious that radiation defects' creation decrease in KI and Rbl crystals depends on elastic stress degree because of the increase of potential barrier sharing radiative and nonradiative STE decay channels

  2. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional cHF and show that there exists one value of cHF (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material

  3. Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals

    A theoretical study is made on the mobile interstitial and mobile electron models of mechano-induced luminescence in coloured alkali halide crystals. Equations derived indicate that the mechanoluminescence intensity should depend on several factors like strain rate, applied stress, temperature, density of F-centres and volume of crystal. The equations also involve the efficiency and decay time of mechanoluminescence. Results of mobile interstitial and mobile electron models are compared with the experimental observations, which indicated that the latter is more suitable as compared to the former. From the temperature dependence of ML, the energy gaps between the dislocation band and ground state of F-centre is calculated which are 0.08, 0.072 and 0.09 eV for KCl, KBr and NaCl crystals, respectively. The theory predicts that the decay of ML intensity is related to the process of stress relaxation in crystals. (author). 33 refs., 5 figs., 1 tab

  4. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author)

  5. Effect of a magnetic field on the luminescent lifetime of Cu+ in alkali halide host crystals

    We have measured the change in the triplet emission lifetime of the Cu+ impurity in various alkali halide hosts at 4.2 K as a function of applied magnetic field. Pedrini [Phys. Status Solidi B 87, 273 (1978)] has proposed that the 3E/sub g/ emitting state is split into T/sub 1g/ and T/sub 2g/ spin-orbit components and has found that the emission lifetime depends sensitively on the splitting. We have utilized an external magnetic field to mix these spin-orbit levels. This produced a measurable decrease in the emission lifetime which we explained with Pedrini's model. We also diagonalized the d9s excited-state matrix to calculate independently the T/sub 1g/,T/sub 2g/ spin-orbit splitting and obtained reasonable agreement with our experimental results

  6. Optical surface breakdown of alkali halide crystals by microsecond pulses from a wide-aperture CO2 laser

    A study was made of the dynamics of temporal and spatial changes in the spectral characteristics of plasmas. A three-stage mechanism of the damage to surfaces of alkali halide crystals by microsecond pulses from a TEA CO2 laser was proposed: breakdown initiation (at a distance of 3-5 mm from the surface with a time delay up to 1 ?s relative to the leading edge of a laser pulse), evaporation (after a further delay of 3-5 ?s), and interaction of the adsorbates with a plasma jet and with the laser radiation, as well as heating and cracking of a crystal by the UV plasma radiation. (interaction of laser radiation with matter. laser plasma)

  7. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  8. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X1Σ+→a'3Σ+ transitions of the CN- molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN- concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author)

  9. A correlation between the spectral location of the absorption bands due to the localized centers and the lattice constant in alkali halide crystals

    For four anionic impurity centers with s2-configuration (H-, Cu-, Ag-, and Au- centers) and the F center in alkali halides, a correlation between the peak energy, E, of the absorption band concerned and the lattice constant, d is extensively investigated. All the results indicate that the Smakula (STSN) relation, E = ad/sup -n/, holds for every alkali family (a and n are adjustable parameters). The values of exponent, n, derived from the analysis for all centers treated show a systematic variation with the defect center, the absorption band, and the alkali ion. It seems that the factor n expresses a degree of the lattice relaxation. In fact, a relation between the n-value and the Stokes-shift ΔE concerned, is very simple. An empirical relation, ΔE = bn/sup k/, roughly holds and the constants b and k depend only on the crystal structures of the alkali halides. (author)

  10. Stable geometries of the self-trapped exciton in alkali halide crystals

    According to recent works, the self-trapped excitons (STE) in alkali halides are grouped in three different types. In some (e.g. RbI), a population transfer is observed among coexisting types as temperature is raised. In others (NaBr and NaI) extra type emission bands have been observed under dilational strain. We studied the adiabatic potential energy surface (APES) of the STE under the effect of expanded or compressed lattices, and of rotation of the Vk core in several directions, based on both extended-ion and ab initio Hartree-Fock methods. A critical study of the zero field splitting parameter D of the spin Hamiltonian is made in assessing the effect of rotation. It is shown that: (a) the potential barrier separating the adjacent local minima on the APES becomes smaller as the lattice is dilated; (b) the APES associated with rotation of the halogen molecule-ion axis from [110] toward [001], upto about 30 , is flat; Rotations in other directions are stiff, however; (c) the observed anomaly of the D parameter in NaCl is compatible with the rotation described in (b) above. The geometries of the three types are discussed on the basis of this study. ((orig.))

  11. Aging of alkali halide windows

    Kennedy, Michael; Trung, D.; Meyer, Franz; Buth, T.; Ristau, Detlev; Schmidt, Holger; Korth, Joerg U.; Hamburg, K.

    1995-07-01

    The environmental effect on the aging behavior of NaCl and KCl windows was studied. Laser windows were aged at different relative humidities in a controlled climate-chamber. Degradation is monitored with a microscope inspection system equipped with a computer controlled image processing board. The temporal development of surface defect density under different atmospheric conditions was investigated with respect to optical absorption and damage thresholds of the windows at 10.6 micrometers . Laser windows coated with single layers of NaF deposited by an adapted IAD-technique were analyzed. The performance of the coated and uncoated laser windows is discussed under consideration of typical applications. In comparison to the bare samples, the coated windows show an improved resistivity against environmental influences. Accelerated testing theory is employed to model the aging behavior of the samples. An approach to deduce a qualified acceleration factor is made in order to extrapolate the lifetime of alkali halide laser window under normal conditions.

  12. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  13. Heat capacity of shocked alkali halides

    Boness, David A.; Brown, J. Michael

    1996-05-01

    The rarefaction-overtake method, combined with optical-pyrometry temperature measurements, allows the determination of the heat capacity for shocked transparent materials. We measured heat capacity for shocked single-crystal CsBr, KBr, KCl, and NaCl, and compared these results with previously-reported values for CsI. For these alkali halides as a suite, temperature strongly correlates linearly with compression, and the heat capacities rise with temperature from a classical 3R value to more than twice that for two-fold compressions and eV-level temperature. Electronic structure and thermalization of electrons likely account for the observed correlation between heat capacity and material band gap.

  14. Temperature dependence of pulse-induced mechanoluminescence excitation in coloured alkali halide crystals

    Namita Rajput; S Tiwari; B P Chandra

    2004-12-01

    In practice, the relative efficiencies of different crystals are often determined under identical conditions of temperature and excitation. If the temperature of a crystal is increased or decreased with respect to room temperature, luminescence efficiency may get increased or decreased according to the composition of the crystal. When coloured crystals of NaCl, NaBr, KCl and KBr are excited by pulse-induced excitation at different temperatures, the mechanoluminescence (ML) intensity increases with temperature. The ML intensity of first peak, ml, second peak, _m2 and the total ML intensity, T, initially increase with temperature and then tend to attain an optimum value for a particular temperature of crystals. The ratio, m2/ml, is found to increase with increasing temperature of the crystals. The expression derived on the basis of rate equations, are able to explain the temperature dependence of ML intensity on several parameters.

  15. Point defect production by ultrafast laser irradiation of alkali-containing silica glasses and alkali halide single crystals

    Avanesyan, S. M.; Orlando, S.; Langford, S. C.; Dickinson, J. T.

    2005-07-01

    The high instantaneous powers associated with femtosecond lasers can color many nominally transparent materials. Although the excitations responsible for this defect formation occur at subpicosecond time scales, subsequent interactions between the resulting electronic and lattice defects complicate the evolution of color center formation and decay. These interactions must be understood in order to account for the long-term behavior of coloration. In this work, we probe the evolution of color centers produced by femtosecond laser radiation in soda lime glass and single-crystal sodium chloride at time scales from microseconds to hundreds of seconds. By using an appropriately chosen probe laser focused through the femtosecond laser spot, we can follow the changes in coloration due to individual or multiple femtosecond pulses, and follow the evolution of that coloration for long times after the femtosecond laser radiation is terminated. For the soda lime glass, the decay of color centers is well described in terms of bimolecular annihilation reactions between electron and hole centers. Similar processes are also occurring in single-crystal sodium chloride. Finally, we report fabrication of permanent periodic patterns in soda lime glass by two time coincident femtosecond laser pulses.

  16. Temperature dependence of radiation colloidal centers production and annealing in alkali halide crystals

    The investigation results on temperature dependences of production and annealing of radiation colloidal color centers have been reviewed. In order to produce such centers in NaCl, KCl and KBr crystals the doses of 102-104 Mrad as well as irradiation temperatures of 300-600 K and post-irradiation heating of up to 800 K were applied. It has been demonstrated that to produce X-centers, it is necessary to have optimal temperature and initial critical dose during both irradiation and post-irradiation heating of crystals. It has been also found that during annealing hole centers produced are different with regard to thermal stability. The possible recombination mechanisms of hole and electron products of radiolysis during post-irradiation heating has been analyzed

  17. Large resonance enhanced second order susceptibilities in alkali halide crystals due to FA color centers

    Model calculation of second order susceptibilities for FA color centers in wide band gap materials is reported. The second order optical nonlinearity in KCL:Li crystals due to FA color centers evaluated theoretically. The density matrix formalism is employed and the equation of motion is solved by second order perturbation to evaluate the nonlinear optical susceptibility for second harmonic generation as well as frequency mixing. It is found that the system shows large resonance-enhanced second order susceptibilities (≅10-16 mV-1) for color center concentration of ≅1023 m-3. A scheme of phase matching in terms of anomalous dispersion of the centers and coherent length are discussed (Author)

  18. A simple formula for the fundamental optical absorption of alkali halide melts

    Significant similarities - with respect to absorption of ultraviolet - between the crystalline and liquid phases of the alkali halides are considered. It is shown that a simple formula which emerged from an earlier application of local electron transfer concepts to the fundamental absorption of the alkali halide crystals appears to apply equally well (i.e., within experimental error) to their melts. This formula fits the observations relating to the fundamental absorption of five molten alkali halides and yields predictions for all the others - which will, it is hoped, stimulate experimental activity. (author)

  19. Theory of the late stage of radiolysis of alkali halides

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage in alkali halides. This model was constructed to describe metal colloids and dislocation loops formed in alkali halides during earlier stages of irradiation. We present a theory based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of excess H centers. Voids are shown to arise due to the reaction between F and VF centers at the surface of halogen bubbles. Critical parameters associated with the bubble-to-void transition are evaluated. Voids can grow to sizes exceeding the mean distance between colloids and bubbles, eventually absorbing them, and, hence, igniting a back reaction between the halogen gas and metal. The amount of radiation damage in alkali halides should be evaluated with account of void formation, which strongly affects the radiation stability of material

  20. Study on influence of growth conditions on position and shape of crystal/melt interface of alkali lead halide crystals at Bridgman growth

    Král, Robert

    2012-01-01

    Roč. 360, S1 (2012), s. 162-166. ISSN 0022-0248. [5th International Workshop on Crystal Growth Technology (IWCGT). Berlin, 26.06.2011-30.06.2011] R&D Projects: GA AV ČR KJB200100901 Institutional research plan: CEZ:AV0Z10100521 Keywords : Interface s * morphological stability * segregation * Bridgman technique * halides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.552, year: 2012

  1. Thermoluminescence of alkali halides and its implications

    Gartia, R. K.; Rey, L.; Tejkumar Singh, Th.; Basanta Singh, Th.

    2012-03-01

    Trapping levels present in some alkali halides namely NaCl, KCl, KBr, and KI are determined by deconvolution of the thermoluminescence (TL) curves. Unlike most of the studies undertaken over the last few decades, we have presented a comprehensive picture of the phenomenon of TL as an analytical technique capable of revealing the position of the trapping levels present in the materials. We show that for all practical purposes, TL can be described involving only the three key trapping parameters, namely, the activation energy (E), the frequency factor (s), and the order of kinetics (b) even for complex glow curves having a number of TL peaks. Finally, based on these, we logically infer the importance of TL in development and characterization of materials used in dosimetry, dating and scintillation.

  2. Thermoluminescence of alkali halides and its implications

    Trapping levels present in some alkali halides namely NaCl, KCl, KBr, and KI are determined by deconvolution of the thermoluminescence (TL) curves. Unlike most of the studies undertaken over the last few decades, we have presented a comprehensive picture of the phenomenon of TL as an analytical technique capable of revealing the position of the trapping levels present in the materials. We show that for all practical purposes, TL can be described involving only the three key trapping parameters, namely, the activation energy (E), the frequency factor (s), and the order of kinetics (b) even for complex glow curves having a number of TL peaks. Finally, based on these, we logically infer the importance of TL in development and characterization of materials used in dosimetry, dating and scintillation.

  3. Method of Gaussian quadrature in the calculation of optical absorption and magnetic circular dichroism spectra of s2 ions in alkali halide crystals: application to KBr:In+

    The problem of calculating the lineshape functon for optical absorption and magnetic circular dichroism due to ionic impurities with the ns2 outer electron configuraton, incorporated substitutionally in alkali halide crystals, has been reformulated. The complete energy matrix has been diagonalized directly. Integration over the interaction mode coordinates of E sub(g) and T sub(2g) symmetry has been carried out numerically using Gaussian quadrature formulae; the interaction with the A sub(1g) mode has been taken into account by the usual convolution procedure. The method has been applied to KBr:In+. The calculated lineshape functions for optical absorption at temperatures ranging from 4 to 300 K and, for MCD at 5 K, are in good agreement with the experimentally determined lineshapes. Moreover, the theory accounts very well for the observed variation of the effective g tensor for the A band with temperature. The calculated values for the moments of the absorption and MCD lineshape functions are in reasonably satisfactory agreement with those deduced from the observed spectra. (author)

  4. Graphitic cage transformation by electron-beam-induced catalysis with alkali-halide nanocrystals

    Fujita, Jun-ichi; Tachi, Masashi; Ito, Naoto; Murakami, Katsuhisa; Takeguchi, Masaki

    2016-05-01

    We found that alkali-halide nanocrystals, such as KCl and NaCl, have strong catalytic capability to form graphitic carbon cages from amorphous carbon shells under electron beam irradiation. In addition to the electron beam irradiation strongly inducing the decomposition of alkali-halide nanocrystals, graphene fragments were formed and linked together to form the final product of thin graphitic carbon cages after the evaporation of alkali-halide nanocrystals. The required electron dose was approximately 1 to 20 C/cm2 at 120 keV at room temperature, which was about two orders of magnitude smaller than that required for conventional beam-induced graphitization. The “knock-on” effect of primary electrons strongly induced the decomposition of the alkali-halide crystal inside the amorphous carbon shell. However, the strong ionic cohesion quickly reformed the crystal into thin layers inside the amorphous shell. The bond excitation induced by the electron beam irradiation seemed to enhance strongly the graphitization at the interface between the outer amorphous carbon shell and the inner alkali-halide crystal.

  5. Electro-optic contribution to field-induced Raman scattering in alkali halides

    The electro-optic contribution to the field-induced first-order Raman scattering cross section in alkali halide crystals is calculated using measured values for hyperpolarizabilities. The electro-optic contribution is much larger than the previously reported atomic displacement contribution. The results cast some doubt on the accuracy of the reported hyperpolarizability values

  6. Through a glass, darkly: point defect production by ultrafast laser irradiation of alkali-containing silica glasses and alkali halide single crystals

    Avanesyan, Sergey M.; Orlando, Stefano; Langford, Steve C.; Dickinson, J. Thomas

    2005-02-01

    The high instantaneous powers associated with femtosecond lasers can color many nominally transparent materials. Although the excitations responsible for this defect formation occur on subpicosecond time scales, subsequent interactions between the resulting electronic and lattice defects complicate the evolution of color center formation and decay. These interactions must be understood in order to account for the long term behavior of coloration. In this work, we probe the evolution of color centers produced by femtosecond laser radiation in soda lime glass and single crystal sodium chloride on time scales from microseconds to hundreds of seconds. By using an appropriately chosen probe laser focused through the femtosecond laser spot, we can follow the changes in coloration due to individual or multiple femtosecond pulses, and follow the evolution of that coloration for long times after femtosecond laser radiation is terminated. For the soda lime glass, the decay of color centers is well described in terms of bimolecular annihilation reactions between electron and hole centers. Similar processes are also occurring in single crystal sodium chloride. Finally, we report fabrication of permanent periodic patterns in soda lime glass by two time coincident femtosecond laser pulses.

  7. Lattice defect formation via exciton dissociation in ammonium halide crystals

    Peculiarities of lattice defect formation via exciton dissociations in ammonium halide crystals are investigated by means of optical and thermoactivation spectroscopy. Crystals were activated by ytterbium and europium bivalent ions and X-ray irradiated at liquid nitorgen temperature. Present experimental results and published data prove the formation diagram of lattice defects at exciton nonradiating dissociation-formation of stable Frenkel defects where Vk-center an NH30-center considered as electron center are initial ones. This formation diagram is suggested for alkali-halide crystals

  8. A new fundamental hydrogen defect in alkali halides

    Atom hydrogen in neutral (H0) and negative (H-) form on substitutional and interstitial lattice sites gives rise to well characterized model defects in alkali-halides (U,U1,U2,U3 centers), which have been extensively investigated in the past. When studying the photo-decomposition of OH- defects, a new configuration of atomic charged hidrogen was discovered, which can be produced in large quantities in the crystal and is apparently not connected to any other impurity. This new hidrogen defect does not show any pronounced electronic absorption, but displays a single sharp local mode band (at 1114cm-1 in KCl) with a perfect isotope shift. The defect can be produced by various UV or X-ray techniques in crystais doped with OH-, Sh- or H- defects. A detailed study of its formation kinetics at low temperature shows that it is primarily formed by the reaction of a mobile CI2- crowdion (H-center) with hidrogen defects

  9. Alkali halide microstructured optical fiber for X-ray detection

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed

  10. Volcanic Origin of Alkali Halides on Io

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  11. Ab initio modeling of the F-center in light alkali halides

    Dunning, Rodney Blane

    This thesis reports the first determination of the spatial dependence of the F-center electron wave function in the alkali halides within the framework of Density Functional Theory. The results reported herein also allow us to evaluate two long-standing but contradictory views of the distribution of the F-center electron density within the alkali halides. We applied Blochl's Projector Augment Wave (PAW) method to the F-center in several alkali halide materials, viz., lithium fluoride, lithium bromide, lithium chloride, sodium fluoride, sodium chloride, sodium bromide, and potassium chloride, determining for each, inter alia, the lattice constant, cohesive energy, and bulk modulus of the perfect crystal, the relaxed atomic configuration and cohesive energy of the defective crystal, the formation energy of the F-center, and the topology of the F-center electron, including the electron density, with comparisons to electron-nuclear double resonance (ENDOR) data where available, and the root-mean-square (RMS) size of the F-center electron. We find the F-center defect has little effect on the positions of the surrounding ions. Relaxation is largely limited to the nearest- and next-neighbor shells, and with a few exceptions all shells relax away from the vacancy site. The formation energy of the F-center is only a few electron volts. The calculated F-center electron density at the nearest-, next-, and next-next nearest neighbor sites is in good agreement with ENDOR data, except for sodium chloride. The F -center electron becomes less localized with increasing interionic separation, when comparing materials with a common alkali ion. The RMS size of the F-center electron increases with increasing interionic separation, when comparing materials with a common alkali ion. We find good agreement with other calculations of the RMS size based on optical absorption data.

  12. Structure and Bonding in Small Neutral Alkali-Halide Clusters

    Aguado, A; López, J M; Alonso, J A

    1997-01-01

    The structural and bonding properties of small neutral alkali-halide clusters (AX)n, with n less than or equal to 10, A=Li, Na, K, Rb and X=F, Cl, Br, I, are studied using the ab initio Perturbed Ion (aiPI) model and a restricted structural relaxation criterion. A trend of competition between rock-salt and hexagonal ring-like isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C/r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rock-salt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n= 4, 6 and 9, and these are universal since they occur for all alkali-halides and do not depend on the specific ground state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n (n=3-7) and (AX)_3 clusters, an...

  13. Response of alkali halide scintillators to neutrons from 5 to 100 MeV

    The response of three alkali halide scintillator's to neutrons in the range 5 to 100 MeV was investigated with the spallation neutron source at LAMPF/WNR. Scintillating crystals were Nal(Tl), Kl(Tl) and Csl(Tl), each 2.5 cm in diameter and 1.2 cm thick. Pulse shapes that depend on particle type were observed for Nal(Tl) and Csl(Tl) but not for Kl(Tl). Pulse height spectra for are reported as a function of neutron energy, and, where pulse shape discrimination was observed, for individual charged-particle groups

  14. Theory of freezing of alkali halides and binary alloys

    Using the basic equations of classical statistical mechanics relating the singlet densities rho1 and rho2 of a binary system to the three partial direct correlation functions csub(ij), a theory of freezing is developed. Though the theory is set up for arbitrary concentration, we focus on the freezing of the alkali halides. In particular, we show that periodic solutions of the equations for rho1 and rho2 can coexist with homogeneous solutions. The difference in free energy between periodic and homogeneous phases is built up in terms of (i) the volume difference and (ii) the Fourier components of rho1, rho2 and csub(ij). To lowest order, it is stressed that the freezing transition is determined by the charge-charge structure factor at the principal peak and by the compressibility. (author)

  15. Charge-charge liquid structure factor and the freezing of alkali halides

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  16. Aggregating of mercury-like rare-earth ions in the alkali halide crystals as model of clusterization in lava-like fuel-containing materials

    On the basis of results of spectral-luminescent characteristics research for dielectric crystals of different structure, activated by lead ions, possibility of creation of lead-containing nanocrystals is shown, that can model mechanism and reasons of creation of different crystalline inclusions into lava-like fuel-containing materials. Mechanical destruction of lava under influence of alpha-, beta-, gamma-rays may promote going out of lava the crystalline inclusions

  17. Why Are Alkali Halide Solid Surfaces Not Wetted By Their Own Melt?

    Zykova-Timan, T; Tartaglino, U; Tosatti, E

    2005-01-01

    Alkali halide (100) crystal surfaces are anomalous, being very poorly wetted by their own melt at the triple point. We present extensive simulations for NaCl, followed by calculations of the solid-vapor, solid-liquid, and liquid-vapor free energies showing that solid NaCl(100) is a nonmelting surface, and that its full behavior can quantitatively be accounted for within a simple Born-Meyer-Huggins-Fumi-Tosi model potential. The incomplete wetting is traced to the conspiracy of three factors: surface anharmonicities stabilizing the solid surface; a large density jump causing bad liquid-solid adhesion; incipient NaCl molecular correlations destabilizing the liquid surface. The latter is pursued in detail, and it is shown that surface short-range charge order acts to raise the surface tension because incipient NaCl molecular formation anomalously reduces the surface entropy of liquid NaCl much below that of solid NaCl(100).

  18. Physics and Nanofriction of Alkali Halide Solid Surfaces at the Melting Point

    Zykova-Timan, T; Tartaglino, U; Tosatti, E

    2006-01-01

    Alkali halide (100) surfaces are anomalously poorly wetted by their own melt at the triple point. We carried out simulations for NaCl(100) within a simple (BMHFT) model potential. Calculations of the solid-vapor, solid-liquid and liquid-vapor free energies showed that solid NaCl(100) is a nonmelting surface, and that the incomplete wetting can be traced to the conspiracy of three factors: surface anharmonicities stabilizing the solid surface; a large density jump causing bad liquid-solid adhesion; incipient NaCl molecular correlations destabilizing the liquid surface, reducing in particular its entropy much below that of solid NaCl(100). Presently, we are making use of the nonmelting properties of this surface to conduct case study simulations of hard tips sliding on a hot stable crystal surface. Preliminary results reveal novel phenomena whose applicability is likely of greater generality.

  19. Interaction of radiation-induced defects of phosphate matrix and alkali-halide substructure in alkali phosphate glasses with chlorine, bromine, and iodine

    Absorption spectra of glasses in the systems Li(Na)PO3-Li(Na)Hal, where Hal = Cl, Br, I, prior to and after ultraviolet and X radiation, as well as after thermal treatment, have been studied. In the spectra of additional absorption certain bands have been detected, their position and behaviour during irradiation and thermal treatment of the glass permit referring them to analogues of radiation defects of Vk, H, VF, I type in alkali-halide crystals. Interaction between the glass centers and intrinsic radiation defects in the glass phosphate matrix can be noted as their specific feature

  20. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author)

  1. Energy distributions of atoms sputtered from alkali halides by 540 eV electrons, Ch.1

    The emission of halogen and alkali atoms, occurring under bombardment of alkali halides with electrons has been investigated. The electron energy was 540 eV and the temperature of the target was varied between room temperature and 4000C. The energy distribution of the emitted neutral particles was measured with a time of flight method. It was found that either diffusing interstitial halogen atoms or moving holes dominate the sputtering process above 2000C. Below 1500C alkali halides with lattice parameters s/d >= 0.33 show emission of non-thermal halogen atoms. s is the interionic space between two halogen ions in a direction and d is the diameter of a halogen atom. In general the energy distribution of the alkali and halogen atoms is thermal above 2000C, but not Maxwellian. (Auth.)

  2. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu+ and Ag+ and the heavy-metal ions In+ and Tl+ was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  3. Cluster-Bethe lattice calculation for the electronic structure of hydrogen centers in alkali-halides

    The Cluster-Bethe lattice (CBL) method to calculate the electronic structure of the hydrogen centers U, U1, U2, U3 in alkali-halides has been used. The results show the adequacy of the CBL in the interpretation of the nature of the optical transitions. (author)

  4. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    Balzer, Frank; Sun, Rong; Parisi, Jrgen; Rubahn, Horst-Gnter; Ltzen, Arne; Schiek, Manuela

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  5. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    Klick, David Ira

    1977-01-01

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu+ and Ag+ and the heavy-metal ions In+ and Tl+ was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data.

  6. Refractive index of the alkali halides. II. Effect of pressure on the refractive index of 11 alkali halides

    Johannsen, P. G.; Reiß, G.; Bohle, U.; Magiera, J.; Müautller, R.; Spiekermann, H.; Holzapfel, W. B.

    1997-03-01

    A recently developed comparative interferometric method for the determination of the refractive index at high pressures is applied to NaF, NaBr, NaI, KCl, KBr, KI, RbCl, RbI, CsCl, CsBr, and CsI. In the studied pressure range up to 12 GPa, the potassium and rubidium halides show a polymorphic phase transition from NaCl- to CsCl-type structure, accompanied by a discontinuous increase of the refractive index. The pressure data of the sodium and cesium halides are converted from pressure to density dependences by the help of ultrasonic equations of state. The refractive index of the sodium halides shows an almost linear density dependence, while the cesium halides exhibit strong nonlinear behavior. The constant joint-density-of-states (CJDOS) model, proposed in the first paper of this series, is used for the further analysis of the data. In the CJDOS model the density dependence of the dielectric function is related to the different behaviors of s and d conduction bands with density. While the almost linear behavior of the sodium halides can be understood by a competition of an increasing contribution of transitions to the d bands, and a decreasing contribution of transitions to the s conduction band, the nonlinear behavior of the cesium halides is predominantly caused by the closure of the band gap, with a d-band character of the lower conduction-band states.

  7. Angular dependence of static and kinetic friction on alkali halide surfaces

    Steiner, Pascal; Roth, Raphael; Gnecco, Enrico; Baratoff, Alexis; Meyer, Ernst

    2010-11-01

    The angular dependence of the lateral forces acting on an atomically sharp tip slowly pulled by an elastic spring along a crystal surface with square symmetry is investigated in the framework of a separable two-dimensional tip-surface interaction potential. In the stick-slip regime kinetic friction is proportional to (cos?+|sin?|) , ? being the angle between the scan direction and a particular symmetry axis. For a high enough normal force, static friction is proportional to 1/cos? , whereas for intermediate loads it shows a ? -dependent spread of possible values. Continuous sliding with ultralow friction sets in below a load-dependent corrugation amplitude. Numerical simulations help interpret those analytic results in terms of the zigzag motion of a friction force microscope tip sliding on the (001) surface of a rocksalt crystal. The influence of the offset between the start of a scan and the center of the corresponding unit cell, in particular, for scans along ?100? directions is also elucidated. The predicted ratio of kinetic friction along the ?100? and ?110? directions agrees best with values measured on alkali halides with similar cation and anion radii. This ratio, as well as the angular dependence of the static friction may be used to determine fine details of the lateral tip-sample interaction.

  8. Surface tension of molten alkali metal halides as a function of ion sizes

    The analysis of the experimental data on the surface tension of the liquid/vapor interphase boundary of the molten alkali metal halides MX (M Li-Cs, X = F-I) near the melting temperature, accounting for the cation and anion dimensional differences, is presented. The main attention is focused at the manifestation of the effects of the interphase boundary of the effects of the interphase boundary thickness and twofold electric layer. It is shown, that the experimental data on the whole MX series may be represented in the form of the electrocapillary curve on the graph of the surface tension dependence on the degree of the halides dimensional asymmetry

  9. Physics of solid and liquid alkali halide surfaces near the melting point

    Zykova-Timan, Tatyana; Ceresoli, Davide; Tartaglino, Ugo; Tosatti, Erio

    2006-03-01

    NaCl (and other alkali halide) crystal surfaces have the peculiar property of repelling their own melt. As a result they let themselves be wetted only partially by their own liquid at the melting point TM. We recently investigated the physical reasons for this unusual behavior. We found them through theory and molecular dynamics simulation to stem from the conspiracy of three factors. First, the solid NaCl(100) surface is exceptionally anharmonic,but also exceptionally stable. It can in fact survive even well above the melting point, for unlike most other surfaces it does not spontaneously melt. Second, the solid-liquid interface is very costly, due to a 27% density difference between solid and liquid. Third, the surface tension of liquid NaCl is relatively high. This last feature is due to an unexpected entropy deficit, that can in turn be traced to incipient molecular charge order in the outermost regions of the molten salt surface[1,2].[1] T. Zykova-Timan, D. Ceresoli, U. Tartaglino, E. Tosatti, Phys. Rev. Lett. 94, 176105 (2005) [2] T. Zykova-Timan, D. Ceresoli, U. Tartaglino, E. Tosatti, J. Chem. Phys. 123, 164701 (2005)

  10. Reactions between cold methyl halide molecules and alkali-metal atoms

    Lutz, Jesse J

    2013-01-01

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  11. Estimation of the critical temperatures and densities of molten alkali metal halides

    The critical temperatures and densities of the alkali halides MX (M Li-Cs; X = F-I) are calculated on the basis of the Rykov, Goldhammer and Philippov equations for estimating the liquids density. The modified Philippov equation is recommended as the equation for describing the experimental data on the density of the these melts in the temperature area Tmelt-Tc with the relative error of 0.1-0.2%

  12. Lifetime of Eu2+ luminescence in alkali halides. Dependence on the host matrix

    Luminescence and decay time measurements of Eu2+ were performed under excitation at 337 nm (N2-pulsed laser) for a number of alkali halides such as NaCl, KCl, RbCl, KBr, RbBr, and KI as host matrices. Room temperature emission spectra for quenched samples and luminescence decay time plots are given and discussed. The results can be explained on the basis of the peak position of emission and the refractive index of the corresponding host matrix

  13. A refinement of the Mollwo-Ivey rule for F-centres in alkali halides

    The simple formula is a very good fit for the detailed variation of the F-center peak absorption energy, for the 16 alkali halides with NaCl structure, excluding CsF. The first term arises from incoherent photon scattering leading to electronic level transitions. The second term is a diffraction term, arising from the coherent scattering of photons from relaxed ionic aggregates around F-centers separated on the average by distances of the order of optical wavelengths

  14. Development of processes for the production of solar grade silicon from halides and alkali metals

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  15. Experimental studies of photon-surface interaction dynamics in the alkali halides

    We describe recent measurements which have provided, in unprecedented detail, insights into the electronic mechanisms through which energy carried into a material by photon irradiation is absorbed, localized and rechanneled to produce desorption, surface modification, erosion and damage. The specific object of these studies has been desorption induced by electronic transition in alkali halide crystals, with particular emphasis on the dynamics of changes in the surface and near-surface regions. In our experiments, the irradiating ultraviolet photons are provided by a synchrotron storage ring, and the dynamical information about desorption products is obtained from optical measurements of the quantum states, yields and velocity distributions of neutral ground-state and excited-state atoms ejected from the surface of the irradiating material. These studies have shown that the dominant exit channels in photon-induced particle emission are those producing ground-state and excited-state neutral atoms. Using dynamical information about these desorbing neutral species, obtained, for example, by laser-induced fluorescence and laser Doppler spectroscopy, we are generating an increasingly comprehensive picture of the dynamics of electronic energy flow into and out of pure crystalline surfaces in these prototypical dielectrics. We are also beginning to be able to relate desorption dynamics to specific materials properties, and to discriminate between pure surface and near-surface effects in these materials. Applications of these techniques to the problem of photon-induced surface damage and to analysis of surface dynamics in dielectric materials are discussed, and the relationships between these nearly ideal model materials and the non-crystalline, covalently bonded materials more typical of real optical elements are pointed out. 19 refs., 13 figs

  16. Observation of nuclear wave packets in the excited state of the F-center in alkali halides

    Oscillations of nuclear wave packets (NWPs) in the excited state of the F-center in four alkali halides, potassium chloride (KCl), potassium bromide (KBr), potassium iodide (KI), and rubidium chloride (RbCl), are investigated. In KCl, the dominant mode is the LO mode near the zone center in the Brillouin zone. In KBr, the NWP oscillation consists mainly of the LO mode near the zone center and the LA modes near the singularity points in the [1 0 0] and/or [1 1 0] crystal directions. In KI, the totally symmetric local mode is dominant in the NWP oscillation. In RbCl, the LO mode near the zone boundary [1 0 0] predominantly forms the NWP oscillation. We comprehensively elucidate correspondences and differences between the present results and the resonance Raman spectra by considering the spatial extension of the electronic wave function and the perturbed phonon density of states.

  17. Mass and orientation effects in dissociative collisions between rare gas atoms and alkali halide molecules

    The collision induced dissociation of alkali halide molecules to ion pairs upon impact with hyperthermal rare gas atoms has been investigated using the crossed molecular beam method. Relative total cross sections for the dissociation of CsI, CsBr, RbI, and KI to ion pairs upon collision with xenon and krypton have been measured over a relative collision energy range from threshold to 10 and 8 eV, respectively. In addition, complete angular and energy distributions of both dissociated ions from Xe+CsI, CsBr, and RbI collisions and from Kr+CsI and CsBr collisions have been obtained at several collision energies within the above energy range. Mass, collision orientation, and energy dependence effects observed throughout this work define two limiting case dissociation mechanisms for the Xe(Kr)+MX→Xe(Kr)+M++X- processes. The dominant dissociation configuration consists of the rare gas atom incident on the light atom end of the alkali halide molecule in a near collinear collision. The less preferred dissociation mechanism results when the rare gas atom is incident in a near collinear configuration on the heavy atom end of the alkali halide molecule. Experimental measurements of the percentage of energy transfer from the relative kinetic energy between Xe(Kr) and MX to the relative motion of M+--X- range as high as 95%; these percentage energy transfers correlate well with the predictions of an impulsive collision model. Three-dimensional classical trajectory calculations using realistic interaction potentials have been performed and they verify the dynamical interpretation suggested by the experiments

  18. Evidence for New Excess Electron Localization Sites in NanFn-1 Alkali-Halide Clusters

    This Letter examines new types of localization sites for an excess electron in finite alkali-halide clusters resulting from defects on cuboidal structures, namely open-quotes edge states,close quotes R center, and other surface defects. We present theoretical calculations on NanF n-1 clusters with one excess electron. Comparisons with experimental results are presented for different cluster sizes (n=17 , 23, 28, and 29). Structures with edge or surface defects are relevant for n=23 , 28, and 29. copyright 1997 The American Physical Society

  19. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    Balzer, Frank; Sun, Rong; Parisi, Jürgen; Rubahn, Horst-Günter; Lützen, Arne; Schiek, Manuela

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X......-ray diffraction (XRD). Both domains from upright molecules as well as fiber-like crystallites from lying molecules form. Neither a wetting layer from lying molecules nor widespread epitaxial fiber growth on the substrates is detected. Our results focus on the upright standing molecules, which condense into a thin...

  20. Examination of the double layer contribution to the surface tension of alkali metal halides

    Analysis of surface tension on the liquid-vapor interface for alkali metal halides MX (M=Li-Cs; X=F-I) was made using microscopic theory, influence of the appearing double electric layer on the characteristic mentioned both for cationic and anionic substitutions was discussed. It is shown that for most MX salts the dependence of surface tension near melting point on the size difference of cation and anion can be adequately described using a model of mean-spheric approximation and parametrized density profile

  1. Calculation of the melting point of alkali halides by means of computer simulations

    Aragones, J. L.; Sanz, E.; Valeriani, C; Vega, C.

    2012-01-01

    In this manuscript we study the liquid-solid coexistence of NaCl-type alkali halides, described by interaction potentials such as Tosi-Fumi (TF), Smith-Dang (SD) and Joung-Cheatham (JC), and compute their melting temperature (Tm) at 1 bar via three independent routes: 1) liquid/solid direct coexistence, 2) free-energy calculations and 3) Hamiltonian Gibbs-Duhem integration. The melting points obtained by the three routes are consistent with each other. The calculated Tm of the Tosi-Fumi model...

  2. Physics of Solid and Liquid Alkali Halide Surfaces Near the Melting Point

    Zykova-Timan, T.; Ceresoli, D.; Tartaglino, U.; Tosatti, E

    2005-01-01

    This paper presents a broad theoretical and simulation study of the high temperature behavior of crystalline alkali halide surfaces typified by NaCl(100), of the liquid NaCl surface near freezing, and of the very unusual partial wetting of the solid surface by the melt. Simulations are conducted using two-body rigid ion BMHFT potentials, with full treatment of long-range Coulomb forces. After a preliminary check of the description of bulk NaCl provided by these potentials, which seems general...

  3. Thermoluminescence in alkali halides irradiated at 80K

    The thermoluminescence, the thermally stimulated currents and the thermal stability of the F centres induced in pure NaCl and KC1 crystals by X irradiation at 80K have been studied in detail, in the range between 80 and 300K. The thermoluminescent processes induced by illumination at 80K with F light in samples previously irradiated at room temperature has also been studied. It has been clearly observed the existence of thermoluminescent processes due to electrons and holes thermally released from traps, in which the F centres are not involved. The existence of hole-F centre recombination has not been observed. There are several thermoluminescent processes in both materials which are scribed to the recombination of F centres with mobile interstitial halogen atoms thermally released from traps, which are likely monovalent impurities in this temperature interval. The light emitting stage in these processes is originated by the formation of self trapped excitons. (Author) 66 refs

  4. Electron- and photon-stimulated desorption of excited hydrogen atoms from alkali halide surfaces

    This dissertation presents the first extensive investigation of electronically-stimulated desorption of excited hydrogen atoms from alkali halide surfaces. Such desorption is observed in fluorescence spectra from alkali halide compounds which are irradiated by electrons or photons in the presence of H2. The fundamental adsorbate-surface interactions which lead to the emission of excited hydrogen atoms has long been an open question. This treatise addresses the nature of this surface bond, its bonding site, and the bond-breaking processes involved in the desorption of excited hydrogen atoms from these surfaces. To this end, the desorption yields of excited hydrogen atoms from the surfaces of KCl, KBr, NaCl, NaF and LiF have been measured as a function of incident photon and electron energy and flux, time of irradiation, dosing pressure of H2 and sample temperature. Under electron or photon bombardment, halogen atoms are preferentially desorbed leaving a metal-rich surface. The results of this study indicate that the desorption yields of H* follow the time evolution of this excess metal and its subsequent evaporation as the substrate is heated. Energy dependent yields of H* exhibit a prominent resonance at threshold when irradiated by photons. This is the first observation of a selective bondbreaking process leading to desorption of neutral hydrogen atoms from a surface. Resonant yields stimulated from compounds which contain the same alkali metal occur energetically at the same incident photon energies. The energy thresholds of electron bombardment studies are also correlated to the alkali component of the substrate

  5. Calculation of the melting point of alkali halides by means of computer simulations

    Aragones, J L; Valeriani, C; Vega, C; 10.1063/1.4745205

    2012-01-01

    In this manuscript we study the liquid-solid coexistence of NaCl-type alkali halides, described by interaction potentials such as Tosi-Fumi (TF), Smith-Dang (SD) and Joung-Cheatham (JC), and compute their melting temperature (Tm) at 1 bar via three independent routes: 1) liquid/solid direct coexistence, 2) free-energy calculations and 3) Hamiltonian Gibbs-Duhem integration. The melting points obtained by the three routes are consistent with each other. The calculated Tm of the Tosi-Fumi model of NaCl is in good agreement with the experimental value as well as with other numerical calculations. However, the other two models considered for NaCl, SD and JC, overestimate the melting temperature of NaCl by more than 200 K. We have also computed the melting temperature of other alkali halides using the Tosi-Fumi interaction potential and observed that the predictions are not always as close to the experimental values as they are for NaCl. It seems that there is still room for improvement in the area of force-fields...

  6. A comparative study of semi-empirical interionic potentials for alkali halides - II

    A comprehensive study of some semi-empirical interionic potentials is carried out through the calculation of the cohesive energy, relative stability and pressure induced solid-solid phase transformations in alkali halides. The theoretical values of these properties of the alkali halides are obtained using a new set of van der Waals coefficients and zero-point energy in the expression for interionic potential. From the comparison of the present calculations with some previous sophisticated ab-initio quantum-mechanical calculations and other semi-empirical approaches, it is concluded that the present calculations in the simplest central pairwise interaction description with the new values of the van der Waals coefficients and zero-point energy are in better agreement with the experimental data than the previous calculations. It is also concluded that in some cases the better choice of the interionic potential alone in the simplest semi-empirical picture of interaction gives an agreement of the theoretical predictions with the experimental data much superior to the ab-initio quantum mechanical approaches. (author)

  7. Oxidizing agents produced by radiolysis of alkali-metal halide melts

    The principal short-lived products from the radiolysis of alkali-metal halide melts are solvated electrons (e/sub s/-), which are particles with the F-center type structure, and molecular anion-radicals of the halogen (GAMMA2-); these are formed in the reactions: (1)GAMMA- ? GAMMA0 + e-; (2) e- ? e/sub s/-; (3) GAMMA0 + GAMMA- ? GAMMA2-. Solvated electrons are strong reducing agents, and they disappear almost completely in rections with the metal cations. Here we are presenting results from a study of the properties of the oxidizer products GAMMA2-, by means of a pulse radiolysis method. The optical spectra of the oxidizer components of radiolysis of alkali-metal halide melts, the molecular anion-radicals GAMMA2-, are similar to the spectra of the corresponding species in aqueous solutions. Rate constants have been measured for the disappearance of GAMMA2-, which goes forward mainly in the reaction of GAMMA2- with the reduced form of the cation. In the presence of alkaline-earth metal cations, owing to the fast disproportionation of their reduced form, there is a greater contribution from the relatively slow reaction of disproportionation of GAMMA2-, leading to an observed retardation of the rate of GAMMA2- disappearance and an increase in the yield of molecular halogen

  8. Infrared Vibrational Fluorescence and Persistent Spectral Hole Burning from Negatively Charged Cyanogen Molecules in Alkali Halides.

    Spitzer, Ronnie Claudette

    1988-12-01

    The union of IR semiconductor diode laser and Fourier transform interferometric methods has produced two new spectroscopic probes for investigating the dynamics of matrix isolated molecules: vibrational fluorescence and persistent spectral hole burning. In this thesis, we investigate a single system, CN^- doped ionic crystals, with both low power techniques. High resolution measurements of the IR vibrational fluorescence from CN^- molecules matrix isolated in alkali halide hosts at low temperatures reveal an up-the-ladder cascade of remarkable range. The CN^- fundamental absorption line is pumped with a CW tunable diode laser near 5 ?m and the vibrational fluorescence analyzed with the high resolution (0.04 cm^{ -1}) interferometer. We find high-lying vibrational levels of CN^- (up to v = 16) are populated at 1.7 K by an electric dipole mediated V-V energy transfer process. At our high resolution, new aspects of the system emerge. Emission features from defect centers composed of a CN^- molecule associated with another nearby impurity ion dominate the spectrum at high CN^- concentrations. The most important center is the CN^- pair defect. At elevated temperatures population of the CN^- pair defect vibrational levels in the ground electronic state have been observed at ultraviolet energies for all hosts. Our results show that energy preferentially accumulates at the pair defect because one member of the pair is always in the ground state ready to accept an excitation from a neighboring center. By using the diode laser as a high brightness probe, a new photophysical hole burning mechanism has been identified. Persistent spectral holes form during laser excitation of the Na^+:CN ^- defect's vibrational mode, when the CN ^- molecule occasionally reorients by 180^circ to an inequivalent lattice orientation generated by the nearby Na ^+ ion. A lattice barrier to reorientation blocks relaxation back to the original ground state at low temperatures. By combining persistent spectral hole burning with broadband FT spectroscopy, the CN ^- dynamics are identified. A solid state linear vibrational Stark effect, observed here for the first time, probes the local lattice configuration.

  9. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on the length of the alkyl chain. Although introduced mesopores alleviated the limited reagent diffusion to reactive sites due to the microporosity of the NaX zeolites, no marked improvement in the product yields was achieved with either the 1-chloroalkanes or the trialkyl phosphates test compounds, regardless of alkyl chain length. The disappointing results have been attributed to lack of substantial net increase in the numbers of zeolite nucleophilic sites accompanying mesopore introduction.

  10. Study on growth of lead halides single crystals for solid-state lasers in mid-IR

    Král, Robert; Cihlář, Antonín

    Bratislava : N, 2009 - (Koman, M.; Mikloš, D.), s. 38-39 ISBN 978-80-89088-81-2. [Development of Materials Science in Research and Education - DMS -RE 2009 /19./. Závažná Poruba (SK), 31.08.2009-04.09.2009] R&D Projects: GA AV ČR KJB200100901 Institutional research plan: CEZ:AV0Z10100521 Keywords : ternary alkali lead halides * crystal growth * Bridgman method * laser mid-IR Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. H2O- center in alkali halides with OH-: properties and formation kinetics-destruction after radiation damage

    In order to understand the basic mechanisms that are responsible for the thermal formation and thermal destruction of the primary and secondary defects after low energy radiation damage in alkali halide crystals doped with OH-, the production of defects by pulse annealing in KCl:OH- and KBr:OH- was studied. These thermal processes were studied over a wide range of temperatures (52-300 K), and the several hydrogen reaction products were identified by their characteristic electronic absorption (visible-ultraviolet). Besides the well known substitucional and interstitial H0 sub(i) and H- defects, a new hydrogen defect, U2 sub(x) center, was discovered after the thermal destruction of the U2 centers. It is characterized by a new structureless eletronic absorption band (UV) at 45000 cm-1 in KCl and 40000 cm-1 in KBr. From this experimental observations it was proposed that the U2 sub(x) center is constituted by one H0 sub(i) center trapped by a substitucional OH-, without disturbing the electronic transition of the OH-. H2O- centers in KCl or H2O- and U centers in KBr are produced by thermal destruction of the U2 sub(x) centers. Furthermore, it was observed that thermal desctruction of H2O- centers produced: F(15%), U(60%) and OH- (25%) centers in KCl and F (approximated 100%) in KBr. At the end of this thermal process (at 300 K), 90 to 95% of the iitial OH- centers were restored at the expenses of F and U centers. Several new properties of the H2O- defect were found and studied. (Author)

  12. Photodissociation comprehensive study of OH- on alkali halides and their interaction with colour centers

    This work shows that the OH- defect induces changes in the electronics processes of the alkali halides such as in radiation damage and optical cycles of colour centers. Two cases were considered: with the presence of an OH- ion in the (1) excited state and (2) in the ground state; 1) the comprehensive study of resonant OH- photodissociation in several hosts showed that deep traps (for electrons) can be produced from the OH- dissociation. These traps can be effective for the capture of electrons produced in the radiation damage of the lattice as well as for trapping electrons from ionized color centers. It was observed a second channel (new) for the de-excitation of the (OH-)* molecule in KI and RbI. This effect can be effective only when the lattice around the molecule holds a large enough interstitial space. This new mechanism is responsible for the strong production at LNT of F centers and OH0 molecules at the expenses of OH- defects. Considering the complete investigation of the full cycle it was proposed a phenomenological model that would explain the observed behaviour when one covers a wide variation of lattice parameters (KCl -> RbI); 2) It was verified that the OH- ion present in the lattice induces strong changes in the de-excitation processes of electronic defects with a spread out wave function (like F centers). A change in the reorientation behaviour of excited F2 and F+2 centers was also verified. Two main effects should be mentioned: A) The induced de-excitation is very fast and non-radiative on F centers. B) Another type of system investigated (F2 and F+2) has shown an intense increase of the speed of reorientation of the F2 and F+2 excited centers. (autor)

  13. Low-Energy Grazing Ion-Scattering from Alkali-Halide Surfaces: A Novel Approach to C-14 Detection

    Meyer, Fred W [ORNL; Galutschek, Ernst [ORNL; Hotchkis, Michael [Australian Nuclear Science and Technology Organization

    2009-01-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance ({approx}15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  14. Low-Energy Grazing Ion-Scattering From Alkali-Halide Surfaces: A Novel Approach To C-14 Detection

    Meyer, F. W.; Galutschek, E.; Hotchkis, M.

    2009-03-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance (15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  15. Low-Energy Grazing Ion-Scattering From Alkali-Halide Surfaces: A Novel Approach To C-14 Detection

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance (∼15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  16. Low-Energy Grazing Ion-Scattering from Alkali-Halide Surfaces: A Novel Approach to C-14 Detection

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance (∼15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  17. Photography: enhancing sensitivity by silver-halide crystal doping

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHIeff of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHItheor=1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO2- as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO2·- radical so formed transfers an electron to another silver cation, so that the PHIeff limit may be of 2Ag0 per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination

  18. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  19. Dependences of molar volumes in solids, partial molal and hydrated ionic volumes of alkali halides on covalent and ionic radii and the golden ratio

    Heyrovská, Raji

    2007-01-01

    Roč. 436, č. 1-3 (2007), s. 287-293. ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040702 Keywords : alkali halides * ionic hydration * golden ratio Subject RIV: BO - Biophysics Impact factor: 2.207, year: 2007

  20. A self-consistent model for the electronic structure of the u-center in alkali-halides

    A simple one-orbital per site model Hamiltonian for the U center in alkali-halides with rock-salt structure where correlation effects are introduced via an Anderson type Hamiltonian is presented. The Cluster-Bethe lattice method is used to determine the local density of states, yielding both localized and extended states. A one-electron approximation is assumed and the problem is solved self consistently in the Hartree-Fock scheme. The optical excitation energy is in fair agreement with experiment. The present approach is compared with other models previously used to describe this center and the results indicate that is adequately incorporates the relevant features of the system indicating the possibility of its application to other physical situations

  1. Sensitivity of alkali halide scintillating calorimeters with particle identification to investigate the DAMA dark matter detection claim

    Nadeau, Patrick; Di Stefano, P C F; Lanfranchi, J -C; Roth, S; von Sivers, M; Yavin, Itay

    2014-01-01

    Scintillating calorimeters are cryogenic detectors combining a measurement of scintillation with one of phonons to provide particle identification. In view of developing alkali halide devices of this type able to check the DAMA/LIBRA claim for the observation of dark matter, we have simulated detector performances to determine their sensitivity by two methods with little model-dependence. We conclude that if performance of the phonon channel can be brought in line with those of other materials, an exposure of 10 kg-days would suffice to check the DAMA/LIBRA claim in standard astrophysical scenarios. Additionally, a fairly modest array of 5 kg with background rejection would be able to directly check the DAMA/LIBRA modulation result in 2 years.

  2. Sensitivity of alkali halide scintillating calorimeters with particle identification to investigate the DAMA dark matter detection claim

    Nadeau, P.; Clark, M.; Di Stefano, P. C. F.; Lanfranchi, J.-C.; Roth, S.; von Sivers, M.; Yavin, I.

    2015-07-01

    Scintillating calorimeters are cryogenic detectors combining a measurement of scintillation with one of phonons to provide particle identification. In view of developing alkali halide devices of this type able to check the DAMA/LIBRA claim for the observation of dark matter, we have simulated detector performances to determine their sensitivity by two methods with little model-dependence. We conclude that if performance of the phonon channel can be brought in line with those of other materials, an exposure of 10 kg-days would suffice to check the DAMA/LIBRA claim in standard astrophysical scenarios. Additionally, a fairly modest array of 5 kg with background rejection would be able to directly check the DAMA/LIBRA modulation result in 2 years.

  3. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  4. Cu halide nanoparticle formation by diffusion of copper in alkali halide crystals

    A. Pérez-Rodríguez

    2006-01-01

    Full Text Available Atomos de cobre han sido introducidos por difusión en cristales de NaCl, KCl y KBr a 500±C. Los cristales han sido analizados óptimamente con medidas de fotoluminiscencia y por microscopía electrónica de barrido. Los espectros de emisión y excitación, medidos a baja temperatura muestran el efecto de confinamiento de exciton, indicando la formación de nanopartículas de CuX (X=Cl, Br, lo cual ha sido confirmado por imágenes de microscopía electrónica. Este método es propuesto como un método alternativo para obtener nanopartículas de CuX en cristales halogenuros alcalinos.

  5. An Investigation of Ion-Pairing of Alkali Metal Halides in Aqueous Solutions Using the Electrical Conductivity and the Monte Carlo Computer Simulation Methods

    Gujt, Jure; Bešter-Rogač, Marija; Hribar-Lee, Barbara

    2013-01-01

    The ion pairing is, in very dilute aqueous solutions, of rather small importance for solutions’ properties, which renders its precise quantification quite a laborious task. Here we studied the ion pairing of alkali halides in water by using the precise electric conductivity measurements in dilute solutions, and in a wide temperature range. The low-concentration chemical model was used to analyze the results, and to estimate the association constant of different alkali halide salts. It has been shown that the association constant is related to the solubility of salts in water and produces a ’volcano relationship’, when plotted against the difference between the free energy of hydration of the corresponding individual ions. The computer simulation, using the simple MB+dipole water model, were used to interprete the results, to find a microscopic basis for Collins’ law of matching water affinities. PMID:24526801

  6. Effect of replacing calcium oxide with calcium halide on crystallization and some physical properties of calcium vanadium phosphate glass ceramics

    The effect of halide ions on density, electrical, magnetic and crystallization kinetics for (20X-50P2O5-30V2O5) mole% has been investigated, where X=CaO, CaF2, CaCl2 and CaBr2. Halide ions reduce the glass transition temperature, crystallization temperature and activation energy of crystallization. Density, electrical conductivity and magnetic susceptibility increase while molar volume, glass thermal stability and interatomic distance between transition metal ions decrease as the halide ions replace the oxygen ions in these glasses. -- Research Highlights: → Replacing oxygen ions by halide ions decreases glass transition temperature and thermal stability. → Replacing oxygen ions by halide ions increases electrical conductivity and decreases activation energy. → Replacing oxygen ions by halide ions enhances the tendency of glass ceramic and decreases the crystallization activation energy.

  7. Effect of replacing calcium oxide with calcium halide on crystallization and some physical properties of calcium vanadium phosphate glass ceramics

    Assem, E.E., E-mail: e_assem_2000@sci.kfs.edu.e [Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh (Egypt)

    2011-02-01

    The effect of halide ions on density, electrical, magnetic and crystallization kinetics for (20X-50P{sub 2}O{sub 5}-30V{sub 2}O{sub 5}) mole% has been investigated, where X=CaO, CaF{sub 2}, CaCl{sub 2} and CaBr{sub 2}. Halide ions reduce the glass transition temperature, crystallization temperature and activation energy of crystallization. Density, electrical conductivity and magnetic susceptibility increase while molar volume, glass thermal stability and interatomic distance between transition metal ions decrease as the halide ions replace the oxygen ions in these glasses. -- Research Highlights: {yields} Replacing oxygen ions by halide ions decreases glass transition temperature and thermal stability. {yields} Replacing oxygen ions by halide ions increases electrical conductivity and decreases activation energy. {yields} Replacing oxygen ions by halide ions enhances the tendency of glass ceramic and decreases the crystallization activation energy.

  8. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  9. Ion partitioning at the liquid/vapor interface of a multicomponent alkali halide solution: A model for aqueous sea salt aerosols

    Ghosal, S.; Brown, M. A.; Bluhm, H.; Krisch, M. J.; Salmeron, M.; Jungwirth, Pavel; Hemminger, J. C.

    2008-01-01

    Roč. 112, č. 48 (2008), s. 12378-12384. ISSN 1089-5639 R&D Projects: GA ČR GA203/07/1006; GA MŠk LC512 Grant ostatní: NSF(US) CHE0431312 Institutional research plan: CEZ:AV0Z40550506 Keywords : photoelectron spectroscopy * molecular dynamics * water surface * alkali halides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008

  10. Thermodynamics of small alkali metal halide cluster ions: comparison of classical molecular simulations with experiment and quantum chemistry.

    Vlcek, Lukas; Uhlik, Filip; Moucka, Filip; Nezbeda, Ivo; Chialvo, Ariel A

    2015-01-22

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali metal halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge nonpolarizable SPC/E, (ii) Drude point charge polarizable SWM4-DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas-phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties. PMID:25513841

  11. Tunable Crystal-to-Crystal Phase Transition in a Cadmium Halide Chain Polymer

    Ulli Englert

    2011-07-01

    Full Text Available The chain polymer [{Cd(μ-X2py2}1∞] (X = Cl, Br; py = pyridine undergoes a fully reversible phase transition between a monoclinic low-temperature and an orthorhombic high-temperature phase. The transformation can be directly monitored in single crystals and can be confirmed for the bulk by powder diffraction. The transition temperature can be adjusted by tuning the composition of the mixed-halide phase: Transition temperatures between 175 K up to the decomposition of the material at ca. 350 K are accessible. Elemental analysis, ion chromatography and site occupancy refinements from single-crystal X-ray diffraction agree with respect to the stoichiometric composition of the samples.

  12. Photostimulated luminescence in alkali halides induced by excitation with ionizing radiation

    The photostimulated luminescence (PSL) phenomenon induced in copper-doped sodium chloride (NaCl : Cu) and europium-doped potassium chloride (KCl : Eu) phosphor crystals by excitation with ionizing radiation such as X-rays is studied. The emission mechanism of the PSL in both phosphor crystals is discussed in terms of the recombination of electrons optically stimulated from the radiation-induced F centers with the luminescence centers such as Cu2+ in NaCl and Eu3+ ions in KCl. The potentiality of both phosphor crystals as a material for two-dimensional X-ray imaging sensors utilizing the PSL phenomenon is also discussed. ((orig.))

  13. Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid.

    Moučka, Filip; Lísal, Martin; Smith, William R

    2012-05-10

    We extend the osmotic ensemble Monte Carlo (OEMC) molecular simulation method (Moučka et al. J. Phys Chem. B 2011, 115, 7849-7861) for directly calculating the aqueous solubility of electrolytes and for calculating their chemical potentials as functions of concentration to cases involving electrolyte hydrates and mixed electrolytes, including invariant points involving simultaneous precipitation of several solutes. The method utilizes a particular semigrand canonical ensemble, which performs simulations of the solution at a fixed number of solvent molecules, pressure, temperature, and specified overall electrolyte chemical potential. It avoids calculations for the solid phase, incorporating available solid chemical potential data from thermochemical tables, which are based on well-defined reference states, or from other sources. We apply the method to a range of alkali halides in water and to selected examples involving LiCl monohydrate, mixed electrolyte solutions involving water and hydrochloric acid, and invariant points in these solvents. The method uses several existing force-field models from the literature, and the results are compared with experiment. The calculated results agree qualitatively well with the experimental trends and are of reasonable accuracy. The accuracy of the calculated solubility is highly dependent on the solid chemical potential value and also on the force-field model used. Our results indicate that pairwise additive effective force-field models developed for the solution phase are unlikely to also be good models for the corresponding crystalline solid. We find that, in our OEMC simulations, each ionic force-field model is characterized by a limiting value of the total solution chemical potential and a corresponding aqueous concentration. For higher values of the imposed chemical potential, the solid phase in the simulation grows in size without limit. PMID:22475081

  14. Effect of halides addition on the ligand field of chromium in alkali borate glasses

    Highlights: •The 10 KM–64.7 B2O3–25 Na2O–0.3 Cr2O3 (M = Cl, Br and I) glassy system was prepared by a quenching method. •Optical basicity, ligand field theory optical band gap energy, refractive index, ESR and IR were studied. •The electronegativity plays an important role in deforming the crystal field around the transition metal ions. •The crystal-field sites of KCl or KBr sample are very strong compared to the very weak one in the KI sample. -- Abstract: Borate oxide glass system of composition 10 KM–64.7 B2O3–25 Na2O–0.3 Cr2O3 (M = Cl, Br and I) was prepared by conventional melt quenching technique. The amorphous nature of the investigated glasses was checked by the X-ray diffraction (XRD) technique. The optical basicity of the system has been calculated, and was found to increase by going from KCl to KBr and to KI. Optical absorption spectra were recorded in the UV–visible range. Through a careful analysis of the data, the ligand field parameters (crystal field strength Dq, Racah parameters B and nephelauxetic functions h) and the optical parameters (optical band gap, Urbach tail band width, and refractive index) have been estimated. The obtained results reveal a strong correlation between that ligand field parameters and the type of halogen atom; the crystal-field strength of KCl or KBr samples are very pronounced but it is rather weak in the KI sample. Electron spin resonance (ESR) has been used to probe the valency of the Chromium ions. The resulting ESR parameters revealed that chromium ions are predominantly in the trivalent state with traces of hexavalent state. Using Infrared spectroscopy (IR) information on the boron structural units has been obtained. The N4 ratio increases by replacing the KCl by KBr or KI, and it was found that the tetrahedral coordination of Cr+ ions becomes preferential in the host glasses with increasing the optical basicity

  15. Effect of homologous impurities on primary radiation defect accumulation in alkali halides

    To clarify the mechanism of the effect of anion and cation homologous impurities on the primary radiation-induced defect accumulation, the transient absorption of H and F centers was studied in KCl and KBr crystals. Pulse electron accelerator technique was used. Pure and doped crystals were investigated. It was obtained that the cation homologue Na in the concentration range from 0 to 0.5 m. % in 10-8-10-6 s post-irradiation time has no effect on the defect accumulation efficiency at low temperature and increases the latter at high temperature. At large post-irradiation time and at high temperatures the rise of efficiency at low Na concentration and decrease of it at high Na concentrations were observed. The conclusion was made that Na does not affect the generation process. The anion homologous impurities (I and Br) lead to a significant increase of the accumulation efficiency due to the formation of more stable F-H pair at self-trapped exciton decay on anion impurities compared with that formed in perfect lattice. Some assumptions are advanced to explain the effect

  16. Coloration of cadmium halide crystals due to reactor irradiation at low temperature

    The optical absorption spectra and ESR spectra of cadmium halide crystals were measured after the reactor irradiation at low temperature to study the coloration. The irradiated neutron dose was about 5 x 1017 n/cm2. In the measurement of ESR spectra, the crystal was rotated around the v-axis (the two-fold axis) in the magnetic field of fixed direction. The optical absorption spectra showed that the Cd3+ center was generated. From the analysis of the angular dependence of ESR spectra, the centers of C(2h) symmetry and the centers of D(3d) symmetry were considered to be generated. The models of these centers were considered, and the angular dependence was analyzed. It can be concluded from the present experiment that the coloration of cadmium halide crystals is recognized as the results of the reactor irradiation at low temperature. (Kato, T.)

  17. Differential calorimeter and temperature controller for stored energy measurements in irradiated alkali halides

    The design and performance of a simple temperature-controlled differential calorimeter are presented. This system allows to measure radiation-induced stored energy in insulators, above room temperature with a differential thermal analysis method. With platelets of KC1 single crystals, the base lines obtained for T2 T1 (with T2: irradiated sample temperature and T1: reference sample temperature) show a smooth drift less of 0,2 degree centigree in the interval from 25 to 400 degree centigree. The discrepancy between two consecutive base lines is less than ± 0,02 degree centigree which implies a calorimeter sensitivity of about ±0,004 cal/g. This sensitivity allows to measure stored energy release in samples with a color center concentration low enough to be directly measured with a spectrophotometer so that a search for correlations among the features of the stored energy spectrum and the color center annealing can be made. (Author) 13 refs

  18. Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces

    Laurent Nony

    2012-03-01

    Full Text Available We investigated the adsorption of 4-methoxy-4′-(3-sulfonatopropylstilbazolium (MSPS on different ionic (001 crystal surfaces by means of noncontact atomic force microscopy. MSPS is a zwitterionic molecule with a strong electric dipole moment. When deposited onto the substrates at room temperature, MSPS diffuses to step edges and defect sites and forms disordered assemblies of molecules. Subsequent annealing induces two different processes: First, at high coverage, the molecules assemble into a well-organized quadratic lattice, which is perfectly aligned with the directions of the substrate surface (i.e., rows of equal charges and which produces a Moiré pattern due to coincidences with the substrate lattice constant. Second, at low coverage, we observe step edges decorated with MSPS molecules that run along the direction. These polar steps most probably minimize the surface energy as they counterbalance the molecular dipole by presenting oppositely charged ions on the rearranged step edge.

  19. Thermoluminescence in alkali halides irradiated at 80K; Termoluminiscencia en haluros alcalinos irradiados a 80K

    Jimenez de Castro, M.

    1978-07-01

    The thermoluminescence, the thermally stimulated currents and the thermal stability of the F centres induced in pure NaCl and KC1 crystals by X irradiation at 80K have been studied in detail, In the range between 80 and 300K. The thermoluminescent processes induced by illumination at 80K with F light in samples previously irradiated at room temperature has also been studied. It has been clearly observed the existence of thermoluminescent processes due to electrons and holes thermally released from traps, in which the F centres are not involved. The existence of hole-F centre recombination has not been observed. There are several thermoluminescent processes in both materials which are scribed to the recombination of F centres with mobile interstitial halogen atoms thermally released from traps, which are likely monovalent impurities in this temperature interval. The light emitting stage in these processes is originated by the formation of self trapped excitons. (Author) 66 refs.

  20. Energy Transfer Processes Involving Cyanide Ion Defects and F Center/cyanide Ion Pairs in Alkali Halides

    Dierolf, Volkmar Rudolf Gunter

    1992-01-01

    The association of F centers to CN^ - substitutional molecular defects in alkali halides forms so-called "F_{rm H} (CN^-)" complexes. Under excitation of their electronic absorption in the visible, vibrational excitation and IR luminescence (~ 5mum) of long life-time ( ~10ms) is produced by a very efficient electronic to vibrational (E-V) energy transfer. The population of excited vibrational states of the CN ^- next to the F center can be measured by vibrational luminescence and by anti-Stokes resonance Raman techniques. The E-V transfer and the relaxation kinetics in CsCl, CsBr and RbCl are studied with low intensity pulses and the primary relative E-V transfer efficiencies ( eta_{rm EV(v)}) for the various v-levels have been determined. The maximum of the eta_{rm EV(v)} distribution is found to be at v = 4 and/or 3 depending on the hosts. The relaxation from the v-levels between v = 2 and v = 6 occurs radiatively at low concentrations, but with decay-rates that are fast compared to the isolated CN^- defect. For the v = 1 level a nonradiative decay-channel caused by vibrational-vibrational (V-V) transfer into the isolated CN^- system is found. A secondary E-V transfer was studied using high intensity pulses, causing F_ {rm H} center re-excitation long before full vibrational relaxation is achieved. By this transfer higher excited v-levels (v > 6) become populated, which exhibit fast nonradiative decay -rates. The overall kinetics are explained by phenomenological models, which suggest that besides the E-V transfer a (V -E) energy transfer process from the higher (v > 6) excited vibrational states to electronic excited state occurs. The F_{rm H} (CN^-) relaxation and V-V transfer allow, for higher CN^- concentrations, an excitation of the abundant isolated CN^- molecules and can therefore be used as a pump source of this molecular system. This system exhibits excitation energy migration, trapping and energy accumulation in certain molecules (up to v = 24). The dynamics of these processes is studied experimentally and is compared to a simple model. It turns out that the fixed distribution of the pump sources and the isolated molecules have to be taken into account to explain the experiments.

  1. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-01

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices. PMID:25871732

  2. New halides of neodymium and their crystal structures

    The crystal structures of the peritectic phases NdClsub(2.27) (t-phase) and NdClsub(2.37) (rh-phase) were determined. The structure of the rh-phase was solved, from the t-phase only the elementary cell could be determined because no single crystals of sufficient quality were obtained. Jutting out feature of the rh-phase which has to be formulated as Nd14Cl32O is a polyeder cluster of 6 quadratic antiprisms the inner cubo octahedric cavity of which is occupied by an oxygen atom. The linkage of these polyeder cluster ensues only under each other along the triple axis of the rhomboedric system over 3 upper and 3 lower common borders each. Therewith for the first time a superlattice of the fluorite-type was found in which this unit exclusively occurs. The type of linkage of polyeder clusters causes the occurrence of an exceptional polyeder around the twovalent Nd ions which can be looked at as a zwitter polyeder of icosahedron and cube and therefore coordinates tenfold the twovalent neodymium. The strict order of chemically and crystallografically clearly differentiated cations is expressed by a hexagonal-rhomboedric superstructure of the fluorite-aristotyp with a doubled c-axis. The phase diagram of the system Nd-NdBr3 was determined and a structure proposition was worked out for the first Vernier phase in there with n=4 of the series Lnsub(n)Xsub(2n+1). (SPI)

  3. Photofragmentation of metal halides

    The author deals with photodissociation of molecules of alkali halides. It is shown that the total absorption cross section consists of two contributions arising from transitions to excited states of total electronic angular momentum Ω=0+ and Ω=1. From the inversion of the absorption continua potential energy curves of the excited states can be constructed in the Franck-Condon region. It is found that for all alkali halides the 0+ state is higher in energy than the Ω=1 state. Extensive studies are reported on three thallium halides, TlI, TlBr and TlCl at various wavelengths covering the near ultraviolet region. (Auth.)

  4. Mass spectrometry of oligopeptides in the presence of large amounts of alkali halides using desorption/ionization induced by neutral cluster impact.

    Portz, André; Baur, Markus; Gebhardt, Christoph R; Dürr, Michael

    2016-06-01

    Oligopeptides in the presence of large amounts of salt were desorbed and ionized using desorption/ionization induced by neutral clusters (DINeC) for further analysis by means of mass spectrometry (MS). Using oligopeptides in alkali halide solutions as a model system, DINeC was shown to yield clear and fragmentation free mass spectra of the biomolecules even from environments with a large excess of salt. The results were traced back to a phase separation between salt and biomolecules during sample preparation. The ratio between alkali metal complexes [M+A](+) and bare biomolecules [M+H](+) was controlled using different preparation schemes. DINeC was applied to the products of a tryptic digest of bovine serum albumin in the presence of sodium chloride; the results of a mass fingerprint analysis did not show a major difference for the spectra with and without salt in the original solution. The metal-ion/peptide interaction was further investigated by means of tandem-MS. PMID:26825286

  5. Interaction of dislocations with radiation defects in alkaline-halide crystals

    The studies on interaction of dislocations with point defects in the alkaline-halide crystal are carried out with the purpose of clarifying the nature of the deformation-stimulated luminescence (DSL) and radiation strengthening mechanism. The KCl monocrystals were irradiated by the gamma-quanta (the absorbed dose is of 2 MGy). The information on the hole centers is obtained by analysis of the thermostimulated luminescence curves within the temperature range of 300-540 K. The load on the sample was registered simultaneously with studying the DSL luminescence intensity. It is established that at the room temperature of the DSL crystals the KCl is conditioned by the Vz and V2 hole centers. Dislocations destroy the Vz and V2 centers, which results in the VF- and H-centers, recombining with the F-type centers formation. Thus, the DSL is the consequence of destroying the V2 and Vz hole centers

  6. Energetic aspects of water radiolysis on surface of alkali-halogen crystals

    It is established that radiolysis rate of water adsorbed with alkali-halogen crystals depends on the nature of salt, adsorbate concentration and crystal sizes. It is shown that water decomposition on the surface of potassium and rubidium iodides results from the interaction with components of electron-hole pairs. Assumption of diffusive sink of thermalized electrons and holes to the surface from crystal volume of 0.1-1 mm depth was suggested

  7. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction

  8. Neutron inelastic scattering investigation of phonons in alkali-halides and a neutron small-angle scattering study of voids in creep-deformed steel

    Studies on lattice dynamics in alkali-halides have been performed on RbBr and NaCl using inelastic scattering of thermal neutrons. Anharmonic properties of RbBr have been examined by measuring phonon peaks at the three temperatures 80, 290 and 370 K. In NaCl a three dimensional phonon dispersion map has been obtained. 72 phonon frequencies in off-symmetry directions have been determined. In creep-deformed alloy 800 the void radius distribution was obtained using neutron small-angle scattering. Six samples with different creep-times were studied. As these samples also contain carbides and γ'-precipitates the measured intensity is in principle due to scattering from three kinds of particles. Transmission electron microscopy measurements show that the scattering by the carbides is negligible, however. The relative radius distribution of γ'-particles, calculated for each sample individually, has an average radius of approximately 25 A. Because of experimental difficulties the void radius distribution could be determined only for samples with 5 and 10% creep. The voids appear to have a broad distribution around 300 A and the volume fraction of voids shows an increase of 7% between these two samples. (Auth.)

  9. Scintillation crystal including a rare earth halide, and a radiation detection apparatus including the scintillation crystal.

    Dorenbos, Pieter; Menge, Peter; Ouspenski, Vladimir; Krämer, Karl

    2014-01-01

    A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value at 0-1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixt. thereof, and the scintillation crystal is formed from a melt having a concn. of such elements or mixt. thereof of at least ∼0.02%. In another embodiment, the scintillation crystal can have unexpecte...

  10. Alkali metals

    The discussion is presented under the following section headings: introduction; effect of contaminants; reactions of alkali metals with oxygen and nitrogen (sections on Li, Na, K, Rb, Cs); reactions of alkali metals with hydrogen; sample storage; sampling (sections on liquid metals in dynamic and static syystems and solid metals; methods for determination of oxygen (amalgamation, alkyl halide, fluorination, methanol solution and Karl Fischer titration, liquid ammonia for oxygen in lithium, distillation, plugging meter, electrochemical oxygen meter, freezing-point depression, resistivity, activation analysis); methods for determination of hydrogen (diffusion gasometric procedure, vacuum fusion and similar methods, amalgamation, isotope dilution, and miscellaneous); and,determination of nitrogen. (105 references.) (U.S.)

  11. Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells.

    Zhou, Yuanyuan; Yang, Mengjin; Game, Onkar S; Wu, Wenwen; Kwun, Joonsuh; Strauss, Martin A; Yan, Yanfa; Huang, Jinsong; Zhu, Kai; Padture, Nitin P

    2016-01-27

    Wide-bandgap perovskite solar cells (PSCs) based on organolead (I, Br)-mixed halide perovskites (e.g., MAPbI2Br and MAPbIBr2 perovskite with bandgaps of 1.77 and 2.05 eV, respectively) are considered as promising low-cost alternatives for application in tandem or multijunction photovoltaics (PVs). Here, we demonstrate that manipulating the crystallization behavior of (I, Br)-mixed halide perovskites in antisolvent bath is critical for the formation of smooth, dense thin films of these perovskites. Since the growth of perovskite grains from a precursor solution tends to be more rapid with increasing Br content, further enhancement in the nucleation rate becomes necessary for the effective decoupling of the nucleation and the crystal-growth stages in Br-rich perovskites. This is enabled by introducing simple stirring during antisolvent-bathing, which induces enhanced advection transport of the extracted precursor-solvent into the bath environment. Consequently, wide-bandgap planar PSCs fabricated using these high quality mixed-halide perovskite thin films, Br-rich MAPbIBr2, in particular, show enhanced PV performance. PMID:26726763

  12. Cocrystallization of some 4f- and 5f-elements in bivalent state with alkali metal halides

    Cocrystallization of bivalent actinides (An = Fm, Es, Cf, Am), lanthanides (Ln = Yb, Eu) and Sr2+ with NaCl, KCl and KBr in tetrahydrofuran (THF), hexamethylphosphorotriamide (HMPA) in aqueous ssolution of ethanol, is investigated. It is shown that in aqueous-ethanol medium An2+ is cocrystallized with KCl by the formation of anomalous mixed crystals, and KCl is not cocrystalllized with Ln2+. In HMPA no transition to solid phase of Kr of neither Ln2+ nor An2+ is observed, and in THF both Ln3+ and An2+ are cocrystallized with NaCl. The change in Ln2+ and An2+ behaviour is caused by the difference in effective ion radii of the elements operating due to a high nepheloxetic effect in An2+, as well as different solvency of the solvents

  13. Study of growth conditions influence on shape and position of crystal/melt interface during crystal growth of ternary halides by vertical bridgman method

    Cihlář, Antonín; Král, Robert

    Bratislava : Slovak Expert Group of Solid State Chemistry and Physics, 2011 - (Koman, M.; Jorík, V.), 32-33 ISBN 978-80-8134-002-4. [Joint Seminar – Development of materials science in research and education(DMRSE)/21.th./. Kežmarské Žlaby (SK), 29.08.2011-02.09.2011] R&D Projects: GA AV ČR KJB200100901 Institutional research plan: CEZ:AV0Z10100521 Keywords : crystal growth * growth conditions * vertical Bridgman method * crystal melt interface * ternary halid Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Electrolytic systems and methods for making metal halides and refining metals

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  15. Structural systematic and crystal chemistry of novel borates with REE, Pb, Sr, and alkali metals

    Belokoneva, E.L. [Moscow State Univ., Moscow (Russian Federation). Dept. of Crystallography and Crystal Chemistry

    2013-11-01

    Crystal structures of novel borates with REE, Pb, Sr and alkali metals were analyzed using classical fundamental buildings blocks approach. It is demonstrated that hexa-, penta-, tetra-, tri- and diborates subdivisions in systematic are real families of structures with the common peculiarities. According to the symmetrical way and the degree of FBB condensation structural-generic rows exist in every of subdivisions. Mega- or polyborates subdivision is valid for the structures with the different types of simplest FBB. In all new complex borates it is possible to separate FBB of equal or different types which are presented in isolated form or are connected into chains, layers or frameworks, and to find unexpected correlation between structures. The possibility to recognize and to visualize in this approach the polarity or non-polarity of the structural units and correspondingly the polarity or nonpolarity of the structures in the whole is very important for the conclusion on structure-properties relation. (orig.)

  16. Radiation processes in crystal solid solutions

    Gladyshev, Gennadi

    2012-01-01

    This is a monograph explaining processes occurring in two classes of crystal solids (metal alloys and doped alkali halide) under irradiation by various types of radiation (alpha, beta, gamma, X-radiations, ions). This e-book is a useful reference for advanced readers interested in the physics of radiation and solid state physics.

  17. Spectral-luminescence properties of the halide-cesium crystals with the impurity of the tetrahedral molecular anions

    Absorption, excitation (PLE) and emission (PL) spectra as well as infrared absorption spectra and Raman spectra of the tetrahedral molecular anions (MA) CrO42-. MoO42-, ReO4- in the halide-cesium crystals (CsHal) CsCl, CsBr, CsI have been studied in the temperature range of 4.2 K to 300 K. Impure MA in crystals CsHal is characterized by complicated structure of the infrared absorption and Raman spectra. The structure of the spectra is due to the splitting of the degenerate vibration ?2(E), ?3(F2), ?4(F2) of the impure MA as a result of the decreasing of their local symmetry from Td to C3v, C2v or Cs because of the formation of the complexes of the several types. Such molecular complexes are formed with anion or cation vacancies or with metal cations Me+(Na+, K+, Rb+, Tl+) and Me2+(Mg2+, Ca2+, Sr2+, Ba2+) which have been doped to the crystals for the charge compensation of the impure MA. Observed structure of the vibrational spectra has been identified by the calculation of the MA vibration, decreased the local symmetry in the formed complexes and by the computer optimisation of the theoretical and observed data of the vibrational frequency of MA in crystals. Luminescence of the crystals CsHal with the impure MA CrO42-, MoO4-, ReO4- can be observed only at low temperature. Impure complexes with different structure and symmetry which are formed by the same tetrahedral MA are characterized by different value of the electron-phonon interaction that may be seen in the structure of the absorption, PL and PLE spectra or in the character of the temperature dependence of the emission quantum yield. The parameters of spin orbit and spin lattice interactions in the impure complexes has been received. (author)

  18. Radiation-induced aggregation of Frenkel defects in binary ionic crystals with isoelectronic impurities

    In the work possibility for receiving of fractal distribution of nano-dimensional defects concentration in alkali-halide crystal is obtained. Experimental data for crystals KBr-Li and KBr-Na with different concentration in wide temperature range (4.2-300 K) irradiation are obtained

  19. Preparation and Single-Crystal X-Ray Structures of Four Related Mixed-Ligand 4-Methylpyridine Indium Halide Complexes

    Hepp, Aloysius F.; Clark, Eric B.; Schupp, John D.; Williams, Jennifer N.; Duraj, Stan A.; Fanwick, Philip E.

    2013-01-01

    We describe the structures of four related indium complexes obtained during synthesis of solid-state materials precursors. Indium adducts of halides and 4-methylpyridine, InX3(pic)3 (X = Cl, Br; pic = 4-methylpyridine) consist of octahedral molecules with meridional (mer) geometry. Crystals of mer-InCl3(pic)3 (1) are triclinic, space group P1(bar) (No. 2), with a = 9.3240(3), b = 13.9580(6), c = 16.7268 (7) A, alpha = 84.323(2), beta = 80.938(2), gamma = 78.274(3)Z = 4, R = 0.035 for 8820 unique reflections. Crystals of mer-InBr3(pic)3 (2) are monoclinic, space group P21/n (No. 14), with a = 15.010(2), b = 19.938(2), c = 16.593(3), beta = 116.44(1)Z = 8, R = 0.053 for 4174 unique reflections. The synthesis and structures of related compounds with phenylsulfide (chloride) (3) and a dimeric complex with bridging hydroxide (bromide) (4) coordination is also described. Crystals of trans-In(SC6H5)Cl2(pic)3 (3) are monoclinic, space group P21/n (No. 14), with a = 9.5265(2), b = 17.8729(6), c = 13.8296(4), beta = 99.7640(15)Z = 4, R = 0.048 for 5511 unique reflections. Crystals of [In(mu-OH)Br2(pic)22 (4) are tetragonal, space group = I41cd (No. 110) with a = 19.8560(4), b = 19.8560(4), c = 25.9528(6), Z = 8, R = 0.039 for 5982 unique reflections.

  20. Synthesis, crystal structure, magnetism, and absorption spectra of A2UX5 type halides (A = K, Rb; X = Cl, Br, I)

    The ternary uranium(III) halides A2UX5 (A = K, Rb; X = Cl, Br, I) have been prepared from the binary components AX and UX3 in sealed tantalum containers. According to their Guinier X-ray powder patterns, they all crystallize with the K2PrCl5/Y2HfS5 type of structure. Lattice constants for ambient temperature are reported. Single-crystal structure refinements were undertaken for K2UI5 and Rb2UCl5. Magnetic susceptibility data were recorded with a SQUID magnetometer from liquid helium to room temperature. One-dimensional (intrachain) and three-dimensional antiferromagnetic ordering occur at low temperatures dependent upon the U3+-U3+ distance. Absorption spectra were recorded between 4000 and 28000 cm-1. They show f-f transition typical for U3+ and, depending on the halide, very strong f-d transitions above 14000 to 15000 cm-1, respectively. (orig.)

  1. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth

    Saidaminov, Makhsud I.

    2015-10-20

    Here we show the retrograde solubility of various hybrid perovskites through the correct choice of solvent(s) and report their solubility curves. Retrograde solubility enables to develop inverse temperature crystallization of FAPbX3 (FA = HC(NH2)2+, X = Br−/I−). FAPbI3 crystals exhibit a 1.4 eV bandgap – considerably narrower than their polycrystalline counterparts.

  2. Photoluminescence and EPR studies on gamma irradiated Ce3+ doped potassium halide single crystals

    Electron Paramagnetic Resonance(EPR), Photoluminescence(PL), Thermoluminescence (TL) and other optical studies of ?-irradiated KBr, KCl:Ce3+ single crystals. Cerium when doped into the KBr, KCl is found to enter the host lattice in its trivalent state and act as electron trap during ?-irradiation, thereby partially converting itself to Ce2+. The Photoluminescence(PL) spectra of both KCl and KBr crystals doped with Ce exhibit the strong blue emissions of Ce corresponding to 5d(2D)?2F5/2 and 5d(2D)?2F7/2 transitions. The defect centers formed in the Ce3+ doped KBr and KCl. Crystals are studied using the technique of EPR. A dominant TL glow peak at 374, 422 K and KCl:Ce3+ at 466, 475 K is observed in the crystal. EPR studies indicate the presence at two centers at room temperature. Spectral distribution under the thermoluminescence emission(TLE) and optically stimulated emission(OSL) support the idea that defect annihilation process to be due to thermal release of F electron in KBr, KCl:Ce3+ crystals. Both Ce3+ and Ce2+ emissions were observed in the thermoluminescence emission of the crystals.

  3. Intensity distributions of reflected surface channeling protons scattered on surfaces of electron-bombarded alkali halide crystals

    Fukazawa, Y., E-mail: yukofu@cc.osaka-kyoiku.ac.jp; Kihara, K.; Iwamoto, K.; Susuki, Y.

    2013-11-15

    We have examined the surface-channeling of 550 keV protons on electron-bombarded KBr(0 0 1) surfaces at grazing incidence. On the surface, electron-stimulated desorption (ESD) resulting from the irradiation of 5 keV electrons changes the surface morphology. In order to investigate the change of the surface morphology, the luminous intensity distributions observed on a fluorescent screen (scattering patterns) of the reflected protons under the surface-channeling conditions are measured. Normalized specular intensity of the protons oscillates, and the results of computer simulations show that the period of the intensity oscillation agrees with the period of layer-by-layer desorption. The measured period of the oscillation is comparable to the simulated one, i.e., the period of the desorption, however, the measured amplitude of the oscillation is weak. This shows that the layer-by-layer desorption of the experimental surface is observed but is not as remarkable as that of the perfect surface introduced in the simulation.

  4. Ionic conductivity in gem-quality single-crystal alkali feldspar from the Eifel: temperature, orientation and composition dependence

    El Maanaoui, Hamid; Wilangowski, Fabian; Maheshwari, Aditya; Wiemhöfer, Hans-Dieter; Abart, Rainer; Stolwijk, Nicolaas A.

    2016-05-01

    We measured the ion conductivity of single-crystal alkali feldspar originating from two different locations in the Eifel/Germany, named Volkesfeld and Rockeskyller sanidine and having potassium site fractions C_K of 0.83 and 0.71, respectively. The dc conductivities resulting from electrochemical impedance spectroscopy over the temperature range of 300-900°C show a weak composition dependence but pronounced differences between the b-direction [perp (010)] and c^{*}-direction [perp (001)] of the monoclinic feldspar structure. Conductivity activation energies obtained from the observed linear Arrhenius plots are close to 1.2 eV in all cases, which is closely similar to the activation energies of the ^{22}Na tracer diffusivity in the same crystals. Taking into account literature data on K tracer diffusion and diffusion correlation effects, the present results point to a predominance of the interstitialcy mechanism over the vacancy mechanism in mass and charge transport on the alkali sublattice in potassium-rich alkali feldspar.

  5. Ionic conductivity in gem-quality single-crystal alkali feldspar from the Eifel: temperature, orientation and composition dependence

    El Maanaoui, Hamid; Wilangowski, Fabian; Maheshwari, Aditya; Wiemhöfer, Hans-Dieter; Abart, Rainer; Stolwijk, Nicolaas A.

    2016-01-01

    We measured the ion conductivity of single-crystal alkali feldspar originating from two different locations in the Eifel/Germany, named Volkesfeld and Rockeskyller sanidine and having potassium site fractions C_K of 0.83 and 0.71, respectively. The dc conductivities resulting from electrochemical impedance spectroscopy over the temperature range of 300-900° C show a weak composition dependence but pronounced differences between the b-direction [perp (010) ] and c^{*} -direction [perp (001) ] of the monoclinic feldspar structure. Conductivity activation energies obtained from the observed linear Arrhenius plots are close to 1.2 eV in all cases, which is closely similar to the activation energies of the ^{22}Na tracer diffusivity in the same crystals. Taking into account literature data on K tracer diffusion and diffusion correlation effects, the present results point to a predominance of the interstitialcy mechanism over the vacancy mechanism in mass and charge transport on the alkali sublattice in potassium-rich alkali feldspar.

  6. The radiation defect accumulation in scintillative crystals of caesium halides under intense electron beam irradiation

    Galiy, P V

    1999-01-01

    The characteristics of defect accumulation and radiolysis at CsI crystals under mean energies of electron irradiation at wide dose rates and ranges of doses have been investigated by such methods: thermostimulated exoelectron emission (TSEE), Auger electron spectroscopy (AES) and optical absorption spectroscopy (OAS). The limit dose rates and absorbed doses of electron irradiation that lead to defects accumulation at room temperature in crystals volume and also surface stoichiometry violation have been evaluated. The doses of electron irradiation that lead to CsI radiolysis, with caesium coagulation in metallic phase have been determined. Some quasi periodic connection of such process with irradiation dose was observed.

  7. Crystallization and halide phasing of the C-terminal domain of human KIN17

    Expression, purification, crystallization and phasing procedure are reported for the C-terminal domain of human KIN17. Here, the crystallization and initial phasing of the C-terminal domain of human KIN17, a 45 kDa protein mainly expressed in response to ionizing radiation and overexpressed in certain tumour cell lines, are reported. Crystals diffracting to 1.4 resolution were obtained from 10% ethylene glycol, 27% PEG 6000, 500 mM LiCl and 100 mM sodium acetate pH 6.3 in space group P212121, with unit-cell parameters a = 45.75, b = 46.31, c = 60.80 and one molecule in the asymmetric unit. Since this domain has a basic pI, heavy-atom derivatives were obtained by soaking the crystals with negatively charged ions such as tungstate and iodine. The replacement of LiCl by KI in the cryosolution allowed the determination of phases from iodide ions to give an interpretable electron-density map

  8. Systematic hardness measurements on single crystals and polycrystalline blanks of cesium halides

    D B Sirdeshmukh; P Geeta Krishna; K G Subhadra

    2002-06-01

    Vickers and knoop hardness measurements were carried out on CsBr and CsI single crystals. Polycrystalline blanks of CsCl, CsBr and CsI were prepared by melting and characterized by X-ray diffraction. Vickers hardness measurements were carried out on these blanks. The hardness values were correlated with the lattice constant and the Schottky defect formation energy.

  9. Oxidation of hydrogen halides to elemental halogens

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  10. Nonmetal-metal transition in molten potassium-potassium halide solutions

    It is suggested, in the light of the available experimental evidence, that the nonmetal-to-metal transition in solutions of potassium in molten potassium halides may be viewed as a volume-percolation transition. The critical concentration is estimated and differences between alkali-alkali halide and metal-ammonia solutions are discussed. (author)

  11. Metal halide reduction with molten sodium/potassium alloy

    A method of obtaining a desired metal, selected from the group consisting of titanium, aluminium, iron, manganese, hafnium, zirconium, tantalum, vanadium, uranium and tungsten, which comprises reacting a halide of the desired metal with an alkali metal reducing agent at temperature at which the reducing agent is molten, in order to produce the desired metal and halide of the metal reducing agent

  12. Alkali-ions diffusion, mullite formation, and crystals dissolution during sintering of porcelain bodies: Microstructural approach

    Leonelli, C.; Kamseu, E.; Boccaccini, Dino; Sglavo, V.M.; Pellacani, G.C.

    2009-01-01

    The effect of alkali-silicate glassy matrix as replacement for feldspar in soft and hard porcelain compositions was studied. SEM and X-ray diffraction analysis were used to evidence phase evolution. For each composition, the influence of soaking time was evaluated. The difference in chemical comp...

  13. Magnetoplastic effect in irradiated NaCl and LiF crystals

    Impact of low doses of X-ray radiation on magnetoplastic effect is alkali-halide crystals, consisting in detachment of dislocations from paramagnetic centers under effect of external magnetic field is studied. The measurements of LiF crystals and three types of NaCl crystals, differing in the admixture content were conducted. Dependence of the dislocations medium run on the sample rotation frequency in the magnetic field proved to be especially sensitive to low doses

  14. Differential calorimeter and temperature controller for stored energy measurements in irradiated alkali halides; Calorimetro diferencial y controlador de temperatura para medidas de energia almacenada en haluros alcalinos irradiados

    Delgado Martinez, L.

    1977-07-01

    The design and performance of a simple temperature-controlled differential calorimeter are presented. This system allows to measure radiation-induced stored energy in insulators, above room temperature with a differential thermal analysis method. With platelets of KC1 single crystals, the base lines obtained for T{sub 2} T{sub 1} (with T{sub 2}: irradiated sample temperature and T{sub 1}: reference sample temperature) show a smooth drift less of 0,2 degree centigree in the interval from 25 to 400 degree centigree. The discrepancy between two consecutive base lines is less than {+-} 0,02 degree centigree which implies a calorimeter sensitivity of about {+-}0,004 cal/g. This sensitivity allows to measure stored energy release in samples with a color center concentration low enough to be directly measured with a spectrophotometer so that a search for correlations among the features of the stored energy spectrum and the color center annealing can be made. (Author) 13 refs.

  15. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF6 single crystals for thermal neutron detector

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF6 (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and α-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu2+ were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under 252Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Crystal Dynamics from Neutron Spectrometry

    This paper reviews investigations carried out at Chalk River on the lattice dynamics of various crystals including lead, sodium, alkali halides, semi-conductors, and other more complex compounds. Analysis of the low temperature results (-∼100oK) gives considerable insight into the nature of the interatomic forces. In sodium, a simple metal, the interatomic forces are very nearly derivable from a potential. Lead, a more complicated metal, has extremely long range forces accompanied by strong electronic effects. At higher temperatures anharmonic effects are very pronounced in both metals, especially in lead. The alkali halide results can be interpreted on a ''shell'' model, with polarizable ions. Even at low temperature neutron groups corresponding to the longitudinal optical modes. (author)

  17. Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB3O5 (LBO)

    The recombination processes and lattice defects in crystals of alkali metal borate LiB3O5 (LBO) were studied by the means of the thermally stimulated luminescence (TL) and electron spin resonance (ESR) techniques. The glow curves, the spectra of the LBO recombination luminescence, and the angular variations of ESR-spectra of the O- center in three different planes were measured in the temperature range from 80 to 400 K. The luminescence bands were assigned to the electron (Em=4.0 eV) and hole (Em=4.2 eV) recombination processes. The model of the trapped hole center O- was proposed. The processes responsible for the formation of localised electronic excitations in LBO were discussed and compared with those taking place in other wide-gap oxides

  18. Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudopotential radii or Zunger and Cohen. As a third alternative a classification based on Pettifor's phenomenological chemical scale of the elements is also considered. The alternative structural classification schemes that are developed from these elemental properties are generally successfully in distinguishing molten mixtures in which the available experimental evidence indicates long-lived fourfold coordination of polyvalent metal ions. In addition, Pettifor's chemical scale scheme is useful in sorting out finer details of local coordination in the liquid state. 3 figs., 71 refs

  19. Synthesis and single-crystal structure determination of the zinc nitride halides Zn{sub 2}NX (X=Cl, Br, I)

    Liu, Xiaohui [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen (Germany); Wessel, Claudia [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan); Pan, Fangfang [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen (Germany); Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.de [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen (Germany)

    2013-07-15

    A series of zinc nitride halides, Zn{sub 2}NX (X=Cl, Br, I), has been synthesized from solid–liquid reactions of zinc nitride with the respective zinc halides under vacuum, and their crystal structures were determined using single-crystal and powder X-ray diffraction. While Zn{sub 2}NCl and Zn{sub 2}NBr crystallize in the acentric orthorhombic space group Pna2{sub 1}, Zn{sub 2}NI adopts the centrosymmetric space group Pnma; Zn{sub 2}NCl and Zn{sub 2}NBr can be considered to belong to the anti-β-NaFeO{sub 2} type, and Zn{sub 2}NI is closely related. Each N{sup 3−} is tetrahedrally coordinated by zinc atoms, and the X{sup −} anions are located in the vacancies of the framework formed by corner-sharing [NZn{sub 4}] tetrahedra. According to TGA/DTA analyses, the Zn{sub 2}NX compounds exhibit good thermal stability. The electronic structure has been analyzed by employing density-functional theory and the HSE06 hybrid functional. - Graphical abstract: Zn{sub 2}NCl, Zn{sub 2}NBr, and Zn{sub 2}NI have been synthesized, and their crystal structures (Cl and Br phases: Pna2{sub 1}; I phase: Pnma) have been determined from XRD; the direct band gap of Zn{sub 2}NCl is theoretically (HSE06 hybrid functional) predicted as 3.7 eV. - Highlights: • Zn{sub 2}NCl, Zn{sub 2}NBr, and Zn{sub 2}NI have been synthesized from solid–liquid reactions. • The crystal structures of Zn{sub 2}NCl, Zn{sub 2}NBr, and Zn{sub 2}NI have been determined from single-crystal X-ray diffraction. • Zn{sub 2}NCl and Zn{sub 2}NBr crystallize in the acentric space group Pna2{sub 1} whereas Zn{sub 2}NI adopts the centrosymmetric space group Pnma. • Zn{sub 2}NCl and Zn{sub 2}NBr are stable up to 750 °C whereas Zn{sub 2}NI decays at 600 °C already. • The direct band gap of Zn{sub 2}NCl is theoretically predicted as 3.7 eV using the HSE06 hybrid functional.

  20. Electrodepositions on Tantalum in Alkali Halide Melts

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...... single 4 electron step. By electrolyses at a constant potential of – 1.4 V vs. Pt in a NaCl-KCl-NaF-Na2CO3 melt at 800 oC coherent carbon containing surface layers could be obtained on tantalum substrates, when a CO2 atmosphere was applied......Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in a...

  1. Electrodepositions on Tantalum in alkali halide melts

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    a single 4 electron step. By electrolyses at a constant potential of - 1.4 V vs. Pt in a NaCl-KCl-NaF-Na2CO3 melt at 800 °C coherent carbon containing surface layers could be obtained on tantalum substrates, when a CO2 atmosphere was applied. Copyright © 2012 by The Electrochemical Society....

  2. Dynamics of defects in x-ray irradiated alkali chloride crystals studied by positron annihilation

    Data on the time dependence of positron-electron annihilation characteristics in single crystals of the homologous series NaCl, KCl, RbCl, and CsCl after large doses of x irradiation are reported. A new instrument, the ?-radian coincidence apparatus (PICA), recorded the coincidence count rate P of the two 0.5-MeV annihilation #betta# rays emerging 1800 apart from the crystal during isothermal and isochronal heating conditions. In most crystals an initial rapid increase of P to a maximum followed by a slow decline toward the coincidence count rate corresponding to the pre-irradiation state of the crystal was observed. Positron-annihilation data were completed by independent measurements of the optical absorption in KCl and NaCl crystals after various durations of isothermal heating. Absorption spectrophotometry revealed enhancement of the M band in KCl, of the R and N bands in NaCl, at the expense of the F band during the interpretation that positrons are trapped by radiation-induced color centers in which they annihilate with a higher P than in the bulk of the crystal. The dynamics associated with the incipient rise of P during the initial heating period is attributable to the agglomeration of F centers into aggregate centers. The rise times of P give access to the diffusion rates for agglomeration. At equal temperatures, a strong dependence of the rate of defect diffusion on the size of the cation was observed. The data must be corrected for the effects of decoloration of the crystals by the positrons during the measurements. Activation energies for defect diffusion annealing are extracted

  3. Dynamics of Defects in X-Ray Irradiated Alkali Chloride Crystals Studied by Positron Annihilation.

    Stern, Stanley Hy.

    This thesis reports first data on the time dependence of positron-electron annihilation characteristics in single crystals of the homologous series NaCl, KCl, RbCl, and CsCl after large doses of x irradiation. A new instrument, the (pi)-radian coincidence apparatus (PICA), recorded the coincidence count rate P of the two 0.5-MeV annihilation (gamma) rays emerging 180(DEGREES) apart from the crystal during isothermal and isochronal heating conditions. In most crystals one observes an initial rapid increase of P to a maximum followed by a slow decline toward the coincidence count rate corresponding to the pre-irradiation state of the crystal. Positron-annihilation data were completed by independent measurements of the optical absorption in KCl and NaCl crystals after various durations of isothermal heating. Absorption spectrophotometry revealed enhancement of the M band in KCl, of the R and N bands in NaCl, at the expense of the F band during the interval of increasing P. The PICA results are consistent with the interpretation that positrons are trapped by radiation-induced color centers in which they annihilate with a higher P than in the bulk of the crystal. The dynamics associated with the incipient rise of P during the initial heating period is attributable to the agglomeration of F centers into aggregate centers. The rise times of P give access to the diffusion rates for agglomeration. At equal temperatures, we observe a strong dependence of the rate of defect diffusion on the size of the cation. For example, it is 100 times faster in CsCl than in NaCl at 120(DEGREES)C. The data must be corrected for the effects of decoloration of the crystals by the positrons during the measurements. Activation energies for defect diffusion annealing are extracted. They test the hypotheses underlying the theories of macroscopic transport properties in these crystals in that they are indicative of the dominant microscopic lattice processes and their dependence on the crystal composition.

  4. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts

    Marites A. Guino-o

    2015-06-01

    Full Text Available The asymmetric units for the salts 4-(4-fluorophenyl-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3+·I−, (1, 1-isopropyl-4-(4-methylphenyl-1,2,4-triazol-1-ium iodide, C12H16N3+·I−, (2, 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3+·I−, (3, and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3+·I−, (4, contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3+·Br−·H2O, (5, there is an additional single water molecule. There is a predominant C—H...X(halide interaction for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion interaction between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π–π interactions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.

  5. Dissolution of Alkali Fluoride and Chloride Crystals in Water Studied by Molecular Dynamics Simulations

    Fukushima, N.; Tamura, Y.; Ohtaki, H.

    1991-02-01

    The dissolution of cubic crystals of NaF, KF, CsF, LiCl, NaCl, and KCl consisting of 32 cations and 32 anions in an isolated box containing 216 water molecules was studied at 298 K by molecular dynamics simulations. The ion-ion, ion-water and water-water interactions were described in terms of the Tosi-Fumi, Kistenmacher-Popkie-Clementi, and Matsuoka-Clementi-Yoshimine potentials, respectively. During the simulation periods of 12 ps for NaF, CsF and LiCl and 20 ps for KF, NaCl and KCl cations did not dissolve, while anions dissolved from the CsF, LiCl and NaCl crystals but not from the NaF, KF and KCl crystals. The mass effect in the dissolution of CsF was examined by giving the ceasium ions the atomic weight of the fluoride ion (18.998). In case of the "light" caesium ions in the crystal fluctuated less far and again fluoride ions but no caesium ions were dissolved.

  6. Dislocations in SmS single crystals

    Single crystals of SmS with NaCl structure are grown by zone melting in a sealed molybdenum tube. Dislocations introduced during cleaving the crystal are investigated by transmission electron microscopy. The dislocations have Burgers vector of 1/2 and their glide plane is (11-bar0), i.e. the slip system is (11-bar0) as in alkali-halide NaCl-type crystals. The slip seems to be governed by the Peierls mechanism for the screw dislocation. (author)

  7. Radiation-induced processes and defects in alkali and alkaline-earth borate crystals

    Ogorodnikov, I.N. E-mail: ogo@dpt.ustu.ru; Yakovlev, Victor Yu.; Isaenko, Lyudmila I

    2004-12-01

    The paper presents the results of a study of the radiation-induced processes and defects in nonlinear optical crystals Li{sub 2}B{sub 4}O{sub 7} (LTB), LiB{sub 3}O{sub 5} (LBO), CsLiB{sub 6}O{sub 10}, KB{sub 5}O{sub 8}{center_dot}4H{sub 2}O, {beta}-BaB{sub 2}O{sub 4}. It was revealed that a pulsed electron beam irradiation at 290 K forms the radiation-induced pairs of the 'vacancy--interstitial atom' defects in the cation sublattice of these crystals. This gives rise to a creation of metastable electronic (interstitial atom) and hole (small-radius polaron near the cation vacancy) centers in high concentrations. Optical hole-transitions from the local level of the trapped hole centers to the valence band states are responsible for the transient optical absorptions (TOA) of borates in the visible and UV spectral ranges. A sublattice of the weakly bound mobile lithium cations in LTB and LBO favors a spatial separation of the radiation-induced pair defects 'hole polaron near Li-vacancy--mobile interstitial Li{sup 0} atom'. Their decay rated by the electron-hole nonradiative tunnel recombination determines a peculiar feature of the TOA decay kinetics in LTB and LBO.

  8. Radiation-induced processes and defects in alkali and alkaline-earth borate crystals

    The paper presents the results of a study of the radiation-induced processes and defects in nonlinear optical crystals Li2B4O7 (LTB), LiB3O5 (LBO), CsLiB6O10, KB5O8·4H2O, β-BaB2O4. It was revealed that a pulsed electron beam irradiation at 290 K forms the radiation-induced pairs of the 'vacancy--interstitial atom' defects in the cation sublattice of these crystals. This gives rise to a creation of metastable electronic (interstitial atom) and hole (small-radius polaron near the cation vacancy) centers in high concentrations. Optical hole-transitions from the local level of the trapped hole centers to the valence band states are responsible for the transient optical absorptions (TOA) of borates in the visible and UV spectral ranges. A sublattice of the weakly bound mobile lithium cations in LTB and LBO favors a spatial separation of the radiation-induced pair defects 'hole polaron near Li-vacancy--mobile interstitial Li0 atom'. Their decay rated by the electron-hole nonradiative tunnel recombination determines a peculiar feature of the TOA decay kinetics in LTB and LBO

  9. Dislocation Dynamics in a Crystal Lattice (Peierls-Nabarro) Relief

    Petukhov, B. V.

    2007-01-01

    The theory of the dislocation motion in the periodic potential relief of the crystal lattice (the Peierls-Nabarro barriers) is reviewed. On the basis of the kink mechanism the temperature dependence of the flow stress is described for a wide class of materials. The theory of quantum mechanical dislocation tunnelling through the Peierls-Nabarro barriers is extended and compared with experimental data on the plasticity of alkali halides, BCC and HCP metals at low temperatures. The behavior of t...

  10. Nitrate (chloride) melts as media for crystal growth of complex phosphates of alkali and trivalent metals

    Livitska, Oksana; Strutynska, Nataliia; Zatovsky, Igor; Slobodyanik, Nikolai; Odinets, Eugen

    2016-01-01

    The interaction in the molten systems MIPO3-MIII2O3-MINO3 (MICl) (MI - Na, K; MIII - Al, Fe, Y, Bi) was investigated at molar ratios P/MIII=1 or 3 at the temperatures 400 °C (for MINO3) or 810 °C (for MICl). Formation conditions of complex phosphates MI3MIII2(PO4)3 and MI3MIII(PO4)2 (MI - Na, K; MIII - Al, Fe, Bi) were established. It was shown that the crystal size of obtained phosphates can be controlled by using different salt melts. The synthesized compounds were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, Optical microscopy and Scanning electron microscopy with Energy-dispersive X-ray spectroscopy. Differential thermal data for Na3Bi(PO4)2 and Na3Fe(PO4)2 showed congruent and incongruent melting, respectively.

  11. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  12. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties

    2016-01-01

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3+, X = Br– or I–) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(BrxI1–x)3 (0.2 solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.

  13. Thermoluminescence studies of gamma irradiated mixed crystals

    In the present work we have grown (KCl)x(KI)y-x(KBr)x-y ternary alkali halide crystals with MgCl2 dopant for various values of x and y by the melt method and physically characterized. We have studied the thermoluminescence (TL) spectra of ?-irradiated KCl-KI-KBr ternary mixed crystals containing MgCl2 as the dopant. Two peaks were detected for the low heating rate and one for the high heating rate. The chief cause of the differences between the parameters of the TL peaks is the difference between the topography of distribution of the F and FH pairs. (author)

  14. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices

  15. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution

  16. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    Manikandan, K. [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bhardwaj, Amit [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ghosh, Amit [Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036 (India); Reddy, V. S. [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ramakumar, S., E-mail: ramak@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012 (India)

    2005-08-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution.

  17. Metal-halide mixtures for latent heat energy storage

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  18. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  19. NMR spectra of alkali and halogen nuclei in alkali and halogen salts

    NMR signals of 7Li, 23Na, 35Cl, 39K, 79Br, 87Rb and 127I have been measured in various alkali and halogen salt powders relative to well defined aqueous solutions. With the known shielding constants of some of these solutions the nuclear magnetic shielding constants of the alkali and values of the shielding constants in alkali halides do not agree even in the order of magnitude with the experimental ones in some cases. For 23Na first-order and second-order quadrupole patterns have been observed and the quadrupole coupling constants are given. (orig.) 891 WBU

  20. Effect of an electric field on nucleation and growth of crystals

    Yurov, V. M.; Guchenko, S. A.; Gyngazova, M. S.

    2016-02-01

    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH4Cl and NH4Br crystals was found to be 15 kV/cm, and for NH4I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested.

  1. Molten alkali metal nitrate flux to well-crystallized and homogeneous La0.7Sr0.3MnO3 nanocrystallites

    Nanocrystalline La0.7Sr0.3MnO3 (LSO) has been synthesized by an alkali metal nitrate flux process at a relatively low temperature of 600 deg. C. Scanning electron and transmission electron microscopic images show that LSMO grains are of good crystallization and uniform size distribution. Inductively coupled plasma and elemental analyses indicate that the content of K+ is no more than 0.6% in all the samples and the stoichiometry of La, Sr and Mn is very close to the expected value. A significant enhanced magnetoresistance is observed in the nanosized LSMO especially at low temperatures. By improving grain crystallization, the surface spin-glass behavior disappears, and the blocking temperature corresponding to the super-paramagnetic transformation shifts to a higher temperature

  2. Framework solids based on copper(II) halides (Cl/Br) and methylene-bridged bis(1-hydroxybenzotriazole): synthesis, crystal structures, magneto-structural correlation, and density functional theory (DFT) studies.

    Sasmal, Ashok; Shit, Shyamapada; Rizzoli, Corrado; Wang, Hongfeng; Desplanches, Cédric; Mitra, Samiran

    2012-10-01

    A methylene-bridged 1-hydroxybenzotriazole derived ligand L [L = 1, 3-bis(benzotriazol-1-yl)-1,3-dioxapropane] has been synthesized and characterized by spectroscopic and structural methods. Reaction of L with two different copper(II) halides [CuX(2); X = Br, Cl] in an identical condition yields two different compounds of similar compositions, {[Cu(μ-Br)(Br)(μ-L)](2)}(n)·2nH(2)O (1) and {[Cu(μ-Cl)(Cl)(μ-L)](2)}(n)·2nH(2)O (2), both being characterized by various physicochemical techniques. Single crystal X-ray studies reveal that they appear as 2D coordination polymers with similar bridging fashion of L. Low temperature magnetic susceptibility measurements reveal antiferromagnetic and ferromagnetic behaviors for 1 and 2 with magnetic coupling constants J = -15.2 and +1.7 cm(-1), which are in a reasonable agreement with their calculated values (J = -9.79 and +0.68 cm(-1) respectively, for 1 and 2). The role of bridging halides in the structure and magnetic properties of the complexes are investigated, and a possible magneto-structural correlation has been established. Influence of spin density of bridging halides on the magnitude of coupling constants has been discussed with the help of density functional theory (DFT) calculations. PMID:22974283

  3. Persistent infrared spectral hole burning of NO - 2 ions in potassium halide crystals. I. Principle and satellite hole generation

    Ambrose, W. P.; Sethna, J. P.; Sievers, A. J.

    1991-12-01

    New features are resolved within the internal vibrational mode spectra of NO-2 defects in KCl, KBr, and KI crystals at low temperatures using high-resolution Fourier transform spectroscopy and persistent infrared spectral hole (PIRSH) burning separately and together. With interferometry it has been discovered that the vibrational linewidths of the different modes range over a factor of 300from 0.01 cm-1 to 3 cm-1 and, with PIRSH burning, it has been demonstrated that the narrowest lines are inhomogeneously broadened while the broadest ones are homogeneously broadened. PIRSH's have been found in some internal modes and combination bands of the NO-2 molecule when pumped with low-intensity single-mode lead salt diode lasers; however, detectable persistent holes are not produced in all of the modes because of a competition between hole production and relaxation by tunneling at low temperatures. This competition results in a hole burning intensity, below which hole relaxation overwhelms hole production and only small holes may be produced. The most unusually shaped absorption features are the V-shaped notches in the reorientational tunneling fine structure at the NO-2 bending mode frequency in KCl and KBr. Of all the internal modes that do show pronounced PIRSH burning, these V-notched absorption bands exhibit the most striking behavior. Multiple satellite PIRSH's are detected at frequencies away from the single-mode laser burn frequency with a broadband probe beam produced by a high-resolution Fourier transform interferometer. An explanation for these satellite holes is derived from temperature, plastic deformation, and uniaxial stress dependence measurements on the KCl: NO-2 absorption spectrum. We find that the inhomogeneous broadening of the KCl: NO-2 ?2 reorientational tunneling fine structure is dominated by degenerate rotor level splitting produced by random crystal strains. Degenerate perturbation theory of the rotor level splitting in the strain field is found to match very closely the V-shaped inhomogeneous distribution of levels associated with the KCl: NO-2 reorientational tunneling fine structure. The general conclusion is that whenever strain splitting of a doubly degenerate level dominates the inhomogeneous broadening, then the absorption spectrum displays zero strength in the distribution at zero splitting and a linear increase in absorption coefficient away from this frequency generating the observed V-shaped notch in the absorption profile.

  4. Polynuclear technetium halide clusters

    Development of chemistry of polynuclear technetium halide clusters in works devoted to synthesis, structure and investigation of their chemical and physical properties is considered. The role of academician V.I. Spitsyn as an initiator of investigation of polynuclear technetium halide clusters in the Institute of Physical Chemistry of Academy of Science of USSR is noted. Reactions and stability of cluster halides, their molecular and electronic structures are analyzed. Prospects of development of polynuclear technetium halide clusters chemistry as a direction being on the junction of cluster chemistry and theory of metal-metal multiple bonds are appreciated

  5. Alkali Metal/Salt Thermal-Energy-Storage Systems

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  6. Novel phosphate halides BaMnIII[PO4]FCl and BaMnIII[PO4]F2: Effects of mixed halides on crystal structures and magnetic properties

    Pei, Da-Ting; Sun, Wei; Huang, Ya-Xi; Sun, Zhi-Mei; Pan, Yuanming; Mi, Jin-Xiao

    2016-02-01

    Two new phosphate halides BaMnIII[PO4]FCl (1) and BaMnIII[PO4]F2 (2), have been synthesized under hydrothermal conditions. Structural characterizations show that both new compounds adopt layered structures but with different polyhedral linkages. Introduction of Cl into Compound (1) results in isolated hemimorphic [MnO4FCl] octahedra, different from the chain of [MnO4F2]/[MnO2F4] octahedra in Compound (2). These compounds have significantly different molecular vibration modes and thermal stabilities. Magnetic measurements reveal that Compound (2) has larger antiferromagnetic interactions than Compound (1), because the former has strong interactions between Mn3+-Mn3+ ions within corner-shared Mn3+-octahedral chains whereas the latter only possesses isolated Mn3+-octahedra. Both compounds transform to a new orthorhombic compound BaMnII(PO4)F (3) after thermal decomposition.

  7. STUDIES OF DEFECT PROPERTIESAn X-ray Study of Defective Ionic Single Crystals

    Morlin, Z.; Péter, Á.; FÖldvÁri, I.; Mecseki, A.

    1980-01-01

    The line profiles of the (200) and (220) reflections of large (2 x 2 x 1 cm3) pure and doped i.e. deformed alkali-halide single crystals were investigated with CuKβ radiation. The defective state of the crystals presents itself in the formation of a diffuse background and the shift of the Bragg angle. A negative correlation was found between the lattice parameter and residual stress values. Heavily doped crystals develop complex line profiles which can be deconvoluted in the vicinity of the B...

  8. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  10. Synthesis, characterization and computational studies of zinc(ii)-halide complexes with a bidentate Schiff base ligand (2,5-MeO-ba).sub.2./sub.En: the crystal structure of (2,5-MeO-ba).sub.2./sub.En

    Khalaji, A.D.; Mighani, H.; Gholinejad, M.; Grivani, G.; Jalali Akerdi, S.; Fejfarová, Karla; Dušek, Michal

    2013-01-01

    Roč. 54, č. 4 (2013), s. 766-773. ISSN 0022-4766 Institutional research plan: CEZ:AV0Z10100521 Keywords : zinc(II) halides * Schiff base * crystal structure * density functional theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.501, year: 2013

  11. Bio-conventional bleaching of kadam kraft-AQ pulp by thermo-alkali-tolerant xylanases from two strains of Coprinellus disseminatus for extenuating adsorbable organic halides and improving strength with optical properties and energy conservation.

    Lal, Mohan; Dutt, Dharm; Tyagi, C H

    2012-04-01

    Two novel thermo-alkali-tolerant crude xylanases namely MLK-01 (enzyme-A) and MLK-07 (enzyme-B) from Coprinellus disseminatus mitigated kappa numbers of Anthocephalus cadamba kraft-AQ pulps by 32.5 and 34.38%, improved brightness by 1.5 and 1.6% and viscosity by 5.75 and 6.47% after (A)XE(1) and (B)XE(1)-stages, respectively. The release of reducing sugars and chromophores was the highest during prebleaching of A. cadamba kraft-AQ pulp at enzyme doses of 5 and 10 IU/g, reaction times 90 and 120 min, reaction temperatures 75 and 65C and consistency 10% for MLK-01 and MLK-07, respectively. MLK-07 was more efficient than MLK01 in terms of producing pulp brightness, improving mechanical strength properties and reducing pollution load. MLK-01 and MLK-07 reduced AOX by 19.51 and 42.77%, respectively at 4% chlorine demands with an increase in COD and colour due to removal of lignin carbohydrates complexes. A. cadamba kraft-AQ pulps treated with xylanases from MLK-01 to MLK-07 and followed by CEHH bleaching at half chlorine demand (2%) showed a drastic reduction in brightness with slight improvement in mechanical strength properties compared to pulp bleached at 4% chlorine demand. MLK-01 reduced AOX, COD and colour by 43.83, 39.03 and 27.71% and MLK-07 by 38.34, 40.48 and 30.77%, respectively at half chlorine demand compared to full chlorine demand (4%). pH variation during prebleaching of A. cadamba kraft-AQ pulps with strains MLK-01 and MLK-07 followed by CEHH bleaching sequences showed a decrease in pulp brightness, AOX, COD and colour with an increase in mechanical strength properties, pulp viscosity and PFI revolutions to get a beating level of 35 1 SR at full chlorine demand. PMID:22805918

  12. Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells

    Wang, Mao; Shi, Chengwu; Zhang, Jincheng; Wu, Ni; Ying, Chao

    2015-11-01

    In this paper, the influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl2 powder into PbI2 solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH3NH3PbI3-xClx thin film by the precursor solution with the mixture of 0.80 M PbI2 and 0.20 M PbCl2 exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm-2 and a fill factor of 0.69.

  13. Structural study of praseodymium oxalate halide trihydrates

    The praseodymium oxalate halide trihydrates, PrC2O4X.3H2O, X = Cl and Br, crystallize in the monoclinic system with P21/n as the space group (Z = 4). The overall structure consists of layers parallel to the ac plane. The layers are formed by a network of two nearly perpendicular chains of Pr atoms linked by oxalate groups. The water molecules and halide ions reside between the layers and in the voids formed by the two Pr-oxalate chains. The main interaction between adjacent layers occurs by hydrogen bonding between water molecules and halide ions. The praseodymium atoms are coordinated to five oxygens from the two non-equivalent oxalate groups, to three oxygens from water molecules and to one halide. The coordination polyhedron is strongly distorted tricapped trigonal prism. One of the two oxalate groups acts as a hexadentate ligand while the other is only tetradentate. The thermal decomposition proceeds via anhydrous salt and corresponding oxyhalide PrOX to praseodymium oxide, Pr6O11. Several intermediate phases were observed but not identified with certainty. The relation between the thermal decomposition and the crystal structure was discussed

  14. Kinetics of aggregation and annealing of defects in heavily X-irradiated alkali chloride crystals studied by positron annihilation

    Using the positron as a microscopic probe, the authors have measured rates and activation energies for the kinetics of F-center aggregation and anneal in single crystals of NaCl, KCl, RbCl, and CsCl. The crystals were colored to F-center concentrations of approximately 1018 cm-3 by X-rays of average energy 11 keV at a dose rate approximately 5 Mrad/h at 200C to a total dose of 80 Mrad. Isothermal and isochronal measurements were performed in a ?-radian coincidence apparatus (PICA) for recording the two 0.5 MeV positron-electron annihilation #betta# rays emerging from the crystals. (Auth.)

  15. Lead (II) selenite halides Pb3(SeO3)2X2 (X = Br, I): Synthesis and crystal structure

    Two lead selenite halides, Pb3(SeO3)2Br2 and Pb3(SeO3)2I2, have been prepared by solid-phase synthesis and structurally characterized. These compounds are isotypic and can be considered 3D with a microporous framework composed of lead polyhedra (distorted Archimedean antiprisms formed by oxygen and halogen atoms). The framework contains channels oriented in the [010] direction. These channels contain selenium atoms, which are bound with framework oxygen atoms belonging to different lead polyhedra.

  16. Crystal-structural study of zirconium chelates with alkali metals of composition A2[Zr(Nta)2]·xH2O (A=Li, Na, K, Rb, Cs or CH3H6)

    Some zirconium complexes with nitrile triacetate and with alkali metal in the external sphere were studied crystalostructurally. Packing of complexes and extra-sphere cations was studied. Plane or slightly corrugated anion layers of two essentially different types arranged according to the principle of trigonal and square grids represent the standard element of crystal structure. Water molecules are located both in anion and cation layers. CN and coordination polyhedron of cations are different even in case of stereotype nature of reasons of their location in the interlayer space. In Cs-, Rb- and K- compounds polyhedrons of alkali metal form specific doubled chains. These compounds are not isomorphous ones and are characterized by a specific way of water molecule location. Structure of sodium compound differs fundamentally from other ones. Ionic conductivity may be expected in crystals. 4 refs., 6 figs., 2 tabs

  17. Optical break-down in alkali-haloed single crystals by laser focused radiation: the stage of local thermal explosion

    Based on the results of experimental studying the pore formation kinetics and morphology in KCl single crystals under conditions of optical break-down by laser focused radiation were studied. It was shown that with observed parameters of the seats of energetic bursts and the dynamics of their formation, the optical break-down is similar to a powerful point explosion. In the heated area, a shock wave is generated. Having the velocity more than by an order exceeding the acoustic speed, the shock wave comes to the single crystal boundary earlier than other lattice disturbances and initiates formation of crowdions and their movement along atomic close-packed rows parallel to <110> type directions in both sublattices. From the condition of self-consistency between the flows of generated crowdions initiated by the supersonic shock wave and ones passing into unstressed crystal, it follows that the crowdion velocity would be also supersonic that was earlier predicted (A.M. Kosevich and L.S. Kovalyov). An assumption on possible participation of cumulative effect in the process has been made

  18. Process for oxidation of hydrogen halides to elemental halogens

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  19. Studies of EPR theory and trigonal distortion of the (NiX 6) 4- clusters (X = halide ion) in the series of perovskite crystals AMX 3 (A = Rb, Cs; M = Cd, Mg; X = halide ion)

    Wang, Huai-Qian; Kuang, Xiao-Yu; Li, Hui-Fang

    2008-07-01

    A theoretical method is shown to yield a detailed explanation of numerous EPR parameters for d 8 configuration ion in trigonal ligand field. On the basis of the complete energy matrix, the local lattice structures of the octahedral (NiX 6) 4- clusters in the series of perovskite crystals AMX 3 (A = Rb, Cs; M = Cd, Mg; X = Cl, Br, I) with D3 d site symmetry have been studied by simulating the EPR and optical spectra. Moreover, the influences of the local lattice structure parameters R and ? as well as the spin-orbit coupling coefficient ? on the ZFS parameter D from different systems are discussed.

  20. Crystal Structure and Thermoelectric Properties of β-Pyrochlore-Type Alkali Iron Tungsten Oxides with Cage-Like Structure

    Mizuta, Kohei; Ohtaki, Michitaka

    2016-03-01

    We report the electrical and thermal properties of β-pyrochlore (defect pyrochlore) oxides AFe0.33W1.67O6 ( A = K, Rb, Cs) with a crystal structure having a small cation surrounded by oversized cage-like framework. The thermal conductivity, κ, of CsFe0.33W1.67O6 and RbFe0.33W1.67O6 showed extremely low values as oxides (below 1.0 W/mK) similar to those of ATaWO6 ( A = K, Rb, Cs) which we have already reported. These low κ values are ascribed to a "rattling" motion of the A cations, evidenced by their crystal structure refinement and the Raman spectra. Their electrical conductivity, σ, was in the order of 10-3 S/cm, and the Seebeck coefficient, S, was -500 to -600 μV/K. The electrical conductivity of AFe0.33W1.67O6 ( A = Rb, Cs) was much higher than those of ATaWO6 ( A = Rb, Cs), suggesting that an appropriate selection of the framework composition enables us to have better thermoelectric performance.

  1. Phase separation of crystal surfaces a lattice gas approach

    Shore, J D; Shore, Joel D; Bukman, Dirk Jan

    1994-01-01

    We consider both equilibrium and kinetic aspects of the phase separation (``thermal faceting") of thermodynamically unstable crystal surfaces into a hill--valley structure. The model we study is an Ising lattice gas for a simple cubic crystal with nearest--neighbor attractive interactions and weak next--nearest--neighbor repulsive interactions. It is likely applicable to alkali halides with the sodium chloride structure. Emphasis is placed on the fact that the equilibrium crystal shape can be interpreted as a phase diagram and that the details of its structure tell us into which surface orientations an unstable surface will decompose. We find that, depending on the temperature and growth conditions, a number of interesting behaviors are expected. For a crystal in equilibrium with its vapor, these include a low temperature regime with logarithmically--slow separation into three symmetrically--equivalent facets, and a higher temperature regime where separation proceeds as a power law in time into an entire one-...

  2. Temperature jump induction of isomerization dynamics of alkali halide clusters

    The time resolved dynamics of diffusionless cube?ring isomerization of the Na4Cl4 cluster was interrogated by constant energy molecular dynamics simulations, utilizing the first passage time method. The nonreactive isomerization induced by nonselective vibrational excitation is well accounted for in terms of the statistical RRK theory, opening avenues for experimental exploration of time-resolved cluster isomerization dynamics. (orig.)

  3. Analysis and modeling of alkali halide aqueous solutions

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won; Gani, Rafiqul

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion......, respectively, with a Debye-Hückel term for electrostatic interactions. In a second approach of the model, additional parameters for interactions of ion pairs in the KT-UNIFAC are introduced as a correction to get better agreement with data. Structural parameters of ions used in the framework of UNIFAC or...

  4. Cold ablation driven by localized forces in alkali halides.

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Micha? A; Hayes, Stuart A; Manz, Stephanie; Gengler, Regis Y N; Wann, Derek A; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A; Matsuo, Jiro; Sciaini, Germn; Miller, R J Dwayne

    2014-01-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often reaching the universal threshold for plasma formation of ~1 J cm(-2) in most solids. Here we show single-shot time-resolved femtosecond electron diffraction, femtosecond optical reflectivity and ion detection experiments to study the evolution of the ablation process that follows femtosecond 400 nm laser excitation in crystalline sodium chloride, caesium iodide and potassium iodide. The phenomenon in this class of materials occurs well below the threshold for plasma formation and even below the melting point. The results reveal fast electronic and localized structural changes that lead to the ejection of particulates and the formation of micron-deep craters, reflecting the very nature of the strong repulsive forces at play. PMID:24835317

  5. High Biomass Specific Methyl Halide Production Rates of Selected Coastal Marsh Plants and its Relationship to Halide Content

    Manley, S. L.; Wang, N.; Cicerone, R. J.

    2002-12-01

    Salt tolerant coastal marsh plants (halophytes) have previously been shown to be globally significant producers of methyl chloride (MeCl) and methyl bromide (MeBr). While halophytes are known for their high salt content, there are few reports of their halide content. Our studies have attempted to quantify biomass specific methyl halide (MeX) production from these plants and relate it to tissue halide levels. MeCl, MeBr and MeI production rates and tissue chloride, bromide and iodide concentrations from selected coastal marsh plants were measured for nearly a year. Certain halophyte species (i.e. Batis and Frankenia) have very high summer biomass specific production rates for MeX (e.g. Frankenia: 1 ug MeCl /gfwt/hr; 80 ng MeBr/gfwt/hr; 8 ng MeI/gfwt/hr). These rates of MeCl and MeBr production are much higher than those from other coastal marsh plants or seaweeds. Plant halide levels remain high throughout the year, while MeX production peaks at a high level in mid summer falling to low winter rates. This implies a linkage to plant growth. Higher levels of chloride and bromide were seen in the fleshy marsh plants such as Batis (saltwort, approximately 20 percent dry wt chloride, 0.4 percent dry wt bromide) and Salicornia (pickleweed) than in the others such as Frankenia (alkali heath) approx 7 percent dry wt chloride, 0.1 percent dry wt bromide) or Spartina (cordgrass). No such trend was seen for iodide, which ranged from 4 - 10 ppm. Calculations show the daily halide losses from MeX production are far less than the variability in tissue halide content. MeX production removes a small fraction of the total tissue halide from these plants suggesting that MeX production is not a mechanism used by these species to control internal halide levels. Saltwort cell-free extracts incubated with bromide or iodide in the presence of S-adenosyl-L-methionine (SAM) produced the corresponding MeX. MeBr production was inhibited by caffeic acid the substrate of lignin-specific O-methyl transferase. MeX production may be a result of non-specific methylation of halides by SAM utilizing methyl transferases used in other biosynthetic pathways.

  6. Stability analysis for complexes in calcium-alkali bromide solutions

    We discuss the dependence of the stability of tetrahedral complexes in molten halide mixtures on the halogen species. This is done by calculating the equilibrium concentration of (CaBr4)2- complexes in calcium-alkali bromide solutions as a function of composition, in comparison with earlier calculations on the calcium-alkali chloride systems. The comparison supports a possible trend of increasing stability from chlorides to bromides, provided that halogen polarizability or chemical bonding contribute appreciably to the binding of a complex. Supporting evidence is noted and further experiments are suggested. (author). 10 refs, 2 figs

  7. Characteristics of the fast electron emission produced during the cleavage of crystals

    B P Chandra; N L Patel; S S Rahangdale; R P Patel; V K Patle

    2003-01-01

    The present paper reports the fast electron emission produced during the cleavage of alkali halide crystals and models the dynamics of the process. The mechano-emission arises as a result of the ionization of surface traps at the expense of the energy which is released in the annihilation of the defects which are formed during cleavage. The slow electrons which appear upon the ionization of surface traps are subsequently accelerated in the field of negatively charged segment of the freshly cleaved surface. Considering the basic mechanism of fast electron emission, expressions are derived which are able to explain satisfactorily the temporal, thermal, charge, surface, coloration, water adsorption and other characteristics of the fast electron emission produced during the cleavage of crystals. The decay time of the charges on the newly created surfaces, and the velocity of cracks can be determined from the measurements of fast electron emission produced during the cleavage of crystals. It is shown that two types of diffusing centres are responsible for the charge relaxation and thereby for the emission of fast electrons produced during the cleavage of alkali halide crystals.

  8. Alkali metal intercalates of molybdenum disulfide.

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  9. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Moore, David T.

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  10. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films

  11. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    David T. Moore

    2014-08-01

    Full Text Available The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  12. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R+ = Li+, Rb+, Cs+) and alkaline-earth (R2+ = Sr2+, Ba2+) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R+ and R2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na+ or Ca2+ cations in the simplified glass by respectively (Li+, K+, Rb+, Cs+) or (Mg2+, Sr2+, Ba2+) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO4)- entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  13. Neutron scattering experiments of the ionic crystal deformed plastically with uniaxial compression under high temperature

    Tsuchiya, Yoshinori; Minakawa, Nobuaki; Aizawa, Kazuya; Ozawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-04-01

    As an aim of huge growth of alkali halide (AH) single crystal, a mosaic structure of small size AH single crystal deformed plastically with uniaxial compression under high temperature was evaluated due to its neutron irradiation experiment. Using TAS-2 installed at JRR-3M guide hole of Japan Atomic Energy Research Institute, locking curve at a representative face factor of the specimen was measured to observe the mosaic structure accompanied with expansion of the crystal due to compression. As a result, though the specimen before compression could be supposed to be divided to some parts already, the locking curve under 10 sec. of compression time showed already some fracture to divisions to suppose finer degradation of the crystal, and division of the locking curve at 600 sec. of compression time could be observed onto its 220 face. And, every compressed specimens showed some changes of crystallization method from standard sample. (G.K.)

  14. Making and Breaking of Lead Halide Perovskites

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH3NH3PbI3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH3NH3PbI3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.

  15. Making and Breaking of Lead Halide Perovskites.

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH3NH3PbI3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH3NH3PbI3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices. PMID:26789596

  16. A new route to the syntheses of alkali metal bis(fluorosulfuryl)imides: Crystal structure of LiN(SO2F)2

    Beran, Martin; Příhoda, J.; Žák, Z.; Černík, M.

    2006-01-01

    Roč. 25, č. 6 (2006), s. 1292-1298. ISSN 0277-5387 Institutional research plan: CEZ:AV0Z40310501 Keywords : imido-bis( sulfuric acid ) difluoride * lithium bis(fluorosulfuryl)imide * alkali metal bis(fluorosulfuryl)imides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.843, year: 2006

  17. The Raman effect in crystals

    Loudon, R.

    2001-11-01

    A review is given of progress in the theoretical and experimental study of the Raman effect in crystals during the past ten years. Attention is given to the theory of those properties of long-wavelength lattice vibrations in both cubic and uniaxial crystals which can be studied by Raman scattering. In particular the phenomena observed in the Raman scattering from crystals which lack a centre of inversion are related to the theory. The angular variations of the scattering by any type of lattice vibration in a crystal having any symmetry can be easily calculated using a complete tabulation of the Raman tensor. Recent measurements of first-order lattice vibration spectra are listed. A discussion of Brillouin scattering is included. The relation of second-order Raman spectra to critical points in the lattice vibration density of states is discussed, and measurements of the second-order spectra of diamond and the alkali halides are reviewed. The theory and experimental results for Raman scattering by electronic levels of ions in crystals are examined, and proposals for Raman scattering by spin waves, electronic excitations across the superconductive gap and by plasmons are collected together. Finally, the prospects for applying lasers as sources for Raman spectroscopy are discussed, and progress in the new technique of stimulated Raman scattering is reviewed.

  18. Dynamic criterion of complexing and structure of molten halides. Towards forty anniversary of autocomplex model of melts structure

    Recent investigations into the Raman effect of molten alkali and alkaline earth metal halides, among which are LiCl, CsCl, SrCl2, are reviewed, and dynamic criterion of complexing in melts is treated. Results testimonial on momentary and short-lived autocomplexes being in these liquids are received and discussed in the light of autocomplex model of melts structure

  19. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  20. On the reaction of tellurium with tungsten halides: synthesis and crystal structure of Te7WOCl5, a compound with a polymer tellurium cation

    The reaction of tellurium with WOCl4 in the presence of a large excess of WCl6 in a sealed evacuated glass ampoule at 150degC yields beside the main product Te8(WCl6)2 a small amount of Te7WOCl5. The crystal structure determination (orthorhombic space group Pcca, lattice parameters at 173 K: a = 2596.5(9) pm, b = 810.0(3) pm, c = 775.7(2) pm) shows that Te7WOCl5 is built of one-dimensional band shaped polymeric tellurium cations, one-dimensional associated pyramidal WOCl4anions and of isolated Cl- anions. Te7WOCl5 can thus be formulated as [Te72+]n [WOCl4-]n (Cl-). The structure is closely related but not isotypic to the bromine containing analogue Te7WOBr5. The difference between the two structures lies in different directions of the polar [WOX4-]n chains (X = Cl, Br). The strongly elongated thermal ellipsoid of one tellurium atom is shown to be caused by thermal vibration by determining the crystal structure of Te7WOCl5 at three different temperatures (223, 173 and 123 K). All displacement parameters of all atoms can be extrapolated to zero for 0 K. (orig.)

  1. Actinide halide complexes

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1991-02-07

    A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  2. Combustion synthesis of nano-sized tungsten carbide powder and effects of sodium halides

    The synthesis of nano-size tungsten carbide powder has been investigated with a WO3 + Mg + C + carbonate system using alkali halides. The effects of different types of alkali halides on combustion temperature and tungsten carbide formation were discussed. Sodium fluoride had a notable effect on the particle size of the product and the degree of transformation from the initial mixture. A small amount of ammonium carbonate activated the carburization of tungsten carbide by the gas phase carbon transportation. X-ray diffraction data and particle analysis showed that the final product synthesized from a WO3-Mg-C-(NH4)2CO3-NaF system contains pure-phase tungsten carbide with a particle size of 50-100 nm.

  3. Nickel(II) complexes of N2S2 donor set ligand and halide/pseudohalides: Synthesis, crystal structure, DNA and bovine/human serum albumin interaction

    Animesh Patra; Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2015-11-01

    A series of neutral hexacoordinated nickel(II) complexes of formula [NiII (L)X2] (where L = 3,4-bis(2-pyridylmethylthio)toluene with tetradentate N2S2 donor set and X = chloride (1), azide (2), cyanate (3) and isothiocyanate anion (4)) have been synthesized and isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods along with detailed structural characterization of 1,2 and 3 by single crystal X-ray diffraction analyses. The structural study showed that the nickel(II) ion has a distorted octahedral geometry being chelated by the tetradentate N2S2 ligand and bound to cis- located choride or pseudohalide anions. In dimethylformamide solution the complexes showed quasi-reversible NiII/NiIII redox couples in cyclic voltammograms with E1/2 values of +0.723, +0.749, +0.768 and +0.868 V for 1, 2, 3 and 4, respectively. The study of interaction of the complexes with calf thymus DNA, bovine serum albumin (BSA) and human serum albumin (HSA) using spectroscopic and physicochemical tools clearly indicates that the complexes interact with DNA via groove binding mode.

  4. Specificity of structure of zinc(2) halides with cyclic tetraaminne ligands. Crystal structures of ZnCyclamX2, X=Cl, Br, I

    Crystal structure of ZnCyclamX2, X=Cl, Br, I, Cyclam(C10H24N4)=1,4,8,11-tetraazacyclotetradecane, was defined. The complexes are monomer tetragonally-bipyramid structures with meso-planar conformation Cyclam. Metal atoms is statistically shifted from equatorial plane by 0.24 A in case X=Cl; 0.33 A - X=Br; and 0.40 A - X=I. Secondary (elongated) axial bonds are nonequilibrium: Zn-Cl 2.424(8) and 2.0905(8) A, Zn-Br 2.555(4) and 3.214(4) A; Zn-I 2.753(1) and 3.543(1) A. Judging by geometry of the complexes and 13C[1H]NMR data statistical shift of Zn is dynamic character. The assumption is made that intramolecular motion increases stability of the complexes and characterizes specific type of binding, inherent of d10-metal complexes. It is shown that antibate correlation in the lengths of equatorial and axial bonds ascertained for slightly distorted octahedral complexes is just both for pyramid and bipyramid complexes with axial long-range action

  5. Coprecipitation of alkali metal ions with calcium carbonate

    The coprecipitation of alkali metal ions Li+, Na+, K+ and Rb+ with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+. (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite. (author)

  6. Hall Determination of Atomic Radii of Alkali Metals

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  7. Efficiency of energy transfer from γ-irradiated ammonium halides in aqueous iodide and nitrate solutions

    It is well known that ammonium halide (NH4X) crystals, on γ-exposure, store energy in the form of primary and secondary radiolytic products. Such crystals on dissolution in aqueous iodide and nitrate solutions result in oxidation of iodide and reduction of nitrate, respectively. The yields of iodine and nitrite are determined by chemical methods under varying conditions of the amount, dose and particle size of the irradiated ammonium halide salts. The maximum values of the efficiency of energy transfer for oxidation and reduction processes for ammonium halide salts correspond to 40% and 10%, respectively. At low doses, an empirical relation proposed between the percent efficiency of energy transfer and the absorbed dose is valid. The concentrations of inherent oxidizing and reducing species initially present are 7.0*1018 and 1.0*1018 per mol of ammonium halide, respectively. (author) 21 refs.; 7 figs.; 2 tabs

  8. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an aluminoborosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    Quintas, Arnaud; Caurant, Daniel; Majérus, Odile; Charpentier, Thibault; Dussossoy, Jean-Luc

    2008-01-01

    A complex rare-earth rich aluminoborosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R+=Li+, Rb+, Cs+) and alkaline-earth (R'2+=Sr2+, Ba2+) cations present in the complex glass composition. Moreover, neodymium or lanthanum are use...

  9. Anion exchange extraction of halide cadmium complexes

    Anion exchange extraction of halide cadmium complexes, by trinonyloctadecyl ammonium salts has been studied by the method of intermediate exchange. Conventional and thermodynamic constants of exchange of halide cadmium complexes for a series of mineral ions have been calculated

  10. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Simon A. Bretschneider

    2014-04-01

    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  11. Electronic conduction in molten halides

    Heus, R.J.; Egan, J.J.

    1976-01-01

    Methods of measuring electronic conductivity in molten halides are reviewed. These include increase of total conductivity with addition of metal, polarization techniques, chronopotentiometry, and motion of colored subhalides in a potential gradient. The applicability of the Nernst-Einstein equation and the role of convection are considered. Results are presented for several halide melts. Applications of these results are elucidated, including self-discharge rate of molten salt batteries, measurement of alloy thermodynamics using molten salt electrolytes, and kinetics of tarnishing reactions with formation of liquid films.

  12. The first alkali metal hydroxide-ammoniate, cesium hydroxide-ammoniate (1:1), CsOH·NH3, synthesis and crystal structure

    Cesium hydroxide-ammoniate (1:1), CsOH·NH3, was obtained as a side product in the reaction of cesium hydride, CsH and telluric acid, Te(OH)6 in liquid ammonia at −38 °C. The compound crystallizes as colorless crystals in the monoclinic space group P21/c with Z = 8, a = 4.391(9) Å, b = 18.593(4) Å, c = 8.141 (16) Å, β = 90.37(3)°, and V = 664.6(24) Å3. The crystal structure was solved from single crystal X-ray data. The structure contains a three-dimensional network built up by contacts between cesium cations and hydroxide anions and ammonia molecules, which in turn are connected by O–H···N and N–H···O hydrogen bonds. (author)

  13. Liquid + liquid equilibrium in mixtures of lithium fluoride with potassium and rubidium halides

    Highlights: ? We measured electrical conductivity of the dissolving melts of LiF with KBr, KI, RbBr, and RbI along the saturation line. ? We studied a transient layer between the coexisting phases. ? The difference between the conductivities of phases increases as the radius of ion grows. ? An essential reorganisation of the light phase was found near the critical solution point. - Abstract: The liquid + liquid phase equilibrium of molten mixtures of lithium fluoride with potassium and rubidium halides was investigated over an extended temperature range in the two-phase region along the saturation line by the electrical conductivity method. In the overwhelming majority of mixtures, the electrical conductivity for coexisting equilibrium phases increased when the temperature increased. For mixtures with only potassium bromide, it decreased because of the extensive solubility of potassium bromide in lithium fluoride. The electrical conductivity for the light phase was half the value of the conductivity of the pure lithium fluoride. The electrical conductivity of the heavy phase did not differ enough from the conductivity of the pure heavy alkali halides. At the same time, the solubility of the heavy component in LiF was many times less than the lithium fluoride solubility in the lower phase. This contradiction points to essential reorganisation of the structure of the light phase. The difference between the conductivities of the coexisting phases at equal temperatures increased as the radius of the halide anion or alkali cation grew. The temperature growth led to the increase in the conductivity difference along the saturation line for mixtures of LiF with RbI. For mixtures of LiF with lighter alkali halides, it decreased up to zero at the critical mixing point for LiF + KBr mixtures as the temperature increased. Between the coexisting equilibrium phases, a transient layer was revealed, where a conductivity gradient exists. The thickness of this layer decreased as the temperature decreased and the sum of the ionic radii of the mixtures increased.

  14. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites.

    Glaser, Tobias; Mller, Christian; Sendner, Michael; Krekeler, Christian; Semonin, Octavi E; Hull, Trevor D; Yaffe, Omer; Owen, Jonathan S; Kowalsky, Wolfgang; Pucci, Annemarie; Lovrin?i?, Robert

    2015-08-01

    The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites. PMID:26267180

  15. New ternary alkali oxides and quaternary alkali oxy-nitrides of molybdenum and tungsten

    Arumugam, Nachiappan

    2005-01-01

    This work has focused on exploring the synthesis and characterization of new alkali oxides and oxynitrides of molybdenum and tungsten. In particular, the synthetic approach via the azide/nitrate route, which was developed recently, should be evaluated and extended to the oxides of the heavy group VI elements. For characterization, the crystal structures have been determined by using X-ray diffraction data by means of single crystal or powder methods, and TGA/DTA, DSC and specific heat me...

  16. The first pseudo-ternary thiocyanate containing two alkali metals. Synthesis and single-crystal structure of LiK{sub 2}[SCN]{sub 3}

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.

    2016-04-01

    A procedure was empirically developed to prepare the compound LiK{sub 2}[SCN]{sub 3}, which forms colorless, transparent, very fragile, and extremely hygroscopic thin rectangular plates. Its unique crystal structure was determined by single-crystal X-ray diffraction. LiK{sub 2}[SCN]{sub 3} adopts the orthorhombic space group Pna2{sub 1} (no. 33, Z = 4) with the cell parameters a = 1209.32(9), b = 950.85(9), and c = 849.95(6) pm.

  17. Fluorescence Properties of Colour Centres Produced by Ultrashort Laser Irradiation in LiF Crystals

    Samad, R. E.; Courrol, L. C.; Gomes, L.; Ranieri, I. M.; Baldochi, S. L.; de Freitas, A. Z.; Vieira, N. D., Jr.

    2010-11-01

    LiF is a nonhygroscopic alkali halide crystal which possesses good optical and physical properties, and can host different species of colour centres at room temperature. Colour centres in LiF present broad absorption and emission bands in the near UV, visible and near IR regions of the spectrum. In this paper we study spectroscopic properties of colour centres produced in LiF by ultrashort laser pulses. The absorption and emission properties of these materials were measured showing that during the irradiation F, F2, F2+, F3+ and F2- colour centres were created in the crystals. A colour centres formation dose-like curve as a function of the ultrashort pulse energy was determined using fluorescence spectroscopy.

  18. Development of Halide and Oxy-Halides for Isotopic Separations

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  19. Correlations between entropy and volume of melting in halide salts

    Melting parameters and transport coefficients in the melt are collated for halides of monovalent, divalent and trivalent metals. A number of systems show a deficit of entropy of melting relative to the linear relationships between entropy change and relative volume change on melting that are found to be approximately obeyed by a majority of halides. These behaviours are discussed on the basis of structural and transport data. The deviating systems are classified into three main classes, namely (i) fast-ion conductors in the high-temperature crystal phase such as AgI, (ii) strongly structured network-like systems such as ZnCl2, and (iii) molecular systems melting into associated molecular liquids such as SbCl3. (author). 35 refs, 1 fig., 3 tabs

  20. Melting and liquid structure of polyvalent metal halides

    A short review is given of recent progress in determining and understanding liquid structure types and melting mechanisms for halides of polyvalent metals. The nature of the preferred local coordination for the polyvalent metal ion in the melt can usually be ascertained from data on liquid mixtures with halogen-donating alkali halides. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure melt determines the character of its short-range and possible medium-range order. A broad classification of structural and melting behaviours can be given on the basis of measured melting parameters and transport coefficients for many compounds, in combination with the available diffraction data on the liquid structure of several compounds. Correlations have been shown to exist with a simple indicator of the nature of the chemical bond and also with appropriate parameters of ionic models, wherever the latter are usefully applicable for semiquantitative calculations of liquid structure. Consequences on the mechanisms for valence electron localization in solutions of metallic elements into strongly structured molten salts are also briefly discussed. (author). 46 refs, 4 figs, 2 tabs

  1. Alkali and Halogen Chemistry in Volcanic Gases on Io

    Schaefer, L

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observation...

  2. HF Adducts of alkali metal acid salts containing hydrogen bonds of the F-H-O type: synthesis and crystal structures

    Crystal adducts of acid oxysalts with hydrogen fluoride, i.e. CsH2PO3HF (1) and Cs4(SeO4)(HSeO4)2HF (2) were synthesized. By the method of X-ray diffraction analysis of monocrystals at 180 K crystal structure of compounds 1 and 2 was determined respectively: 1 - a = 5.581 (2), b = 4.863 (2), c = 18.400 (7) A, ? = 92.09 (3) deg, sp.gr. P21/c; 2 - a = 25.413 (5), b = 12.718 (3), c = 10.819 (2) A, ? 107.57 (3) deg, sp.gr. C2/c. Besides hydrogen bonds of used type O-H-O shorter bonds F-H-O, their length 2.36-2.44 A, were discovered in the structures studied

  3. ALKALI RESISTANT CATALYST

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount of...... alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  4. Alkali metal ion battery with bimetallic electrode

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  5. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector’s self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  6. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector's self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  7. Tris(bipyridineMetal(II-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction

    Alla Dikhtiarenko

    2016-02-01

    Full Text Available A series of 3D oxalate-bridged ruthenium-based coordination polymers with the formula of {[ZII(bpy3][MIRu(C2O43]}n (ZII = Zn2+ (1, Cu2+ (3, 4, Ru2+ (5, 6, Os2+ (7, 8; MI = Li+, Na+; bpy = 2,2’-bipyridine and {[ZnII(bpy3](H2O[LiRu(C2O43]}n (2 has been synthesized at room temperature through a self-assembly reaction in aqueous media and characterized by single-crystal and powder X-ray diffraction, elemental analysis, infrared and diffuse reflectance UV–Vis spectroscopy and thermogravimetric analysis. The crystal structures of all compounds comprise chiral 3D honeycomb-like polymeric nets of the srs-type, which possess triangular anionic cages where [ZII(bpy3]2+ cationic templates are selectively embedded. Structural analysis reveals that the electronic configuration of the cationic guests is affected by electrostatic interaction with the anionic framework. Moreover, the MLCT bands gaps values for 1–8 can be tuned in a rational way by judicious choice of [ZII(bpy3]2+ guests. The 3D host-guest polymeric architectures can be used as self-supported heterogeneous photocatalysts for the reductive splitting of water, exhibiting photocatalytic activity for the evolution of H2 under UV light irradiation.

  8. Spectra of alkali atoms

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  9. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  10. Cs7Sm11[TeO3]12Cl16 and Rb7Nd11[TeO3]12Br16, the new tellurite halides of the tetragonal Rb6LiNd11[SeO3]12Cl16 structure type

    Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.; Sklovsky, Dmitry E.; Berdonosov, Peter S.; Olenev, Andrei V.; Zhou, Wuzong; Lightfoot, Philip; Dolgikh, Valery A.

    2015-12-01

    Two new rare-earth - alkali - tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs7Sm11[TeO3]12Cl16 (I) and Rb7Nd11[TeO3]12Br16 (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn11(TeO3)12] and [M6X16] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted.

  11. Hydrothermal alkali metal recovery process

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  12. Coordination chemistry of halides and oxohalides of tungsten (6)

    Literature data on the structure of molecular complexes of halides, exo- and dioxohalides of tungsten (6), as well as results of the study of WX6, WOX4 and WO2X2 structures in gaseous phase, crystal state and in solutions of organic solvents, were generalized. The greatest volume of structural studies involved complexes W6 with oxygen-containing ligands. The presence of cis- and trans- effects of aliquotly bound oxygen atoms in complexes of exo- and dioxohalides of tungsten is pointed out

  13. Oscillatory rule in the energy spectrum of traps in KCl and NaI crystals

    Gumenyuk, A F; Stanovyi, O P; Pashchenko, V G; Tomylko, S V

    2010-01-01

    The thermoluminescence (TL) method is used for the investigation of the energy spectrum of traps in KCl and NaI crystals in the temperature range 80-500 K. It is shown that the thermal activation energies of traps in KCl and NaI form one oscillatory series E=hwn with vibrational quantum energies of 0.121 eV in KCl and 0.061 eV in NaI. In this case, the quantum number n assumes half-integer and integer values. Based on the generalized data on the investigated alkali-halide crystals (AHC), we confirmed the earlier proposed model of TL in AHCs. It is assumed that, in addition to the nonradiative H-F recombination, there exists the two-stage recombination of H-centers at anion vacancies resulting in the radiative recombination of a hole at an F-center. The energy of a quantum in the oscillatory rule corresponds to a local vibrational mode of an X2 halide molecule.

  14. Heidelberg polarized alkali source

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li+ and Na+, respectively

  15. Fullerenes doped with metal halides

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  16. Toxicity of organometal halide perovskite solar cells

    Babayigit, Aslihan; Ethirajan, Anitha; Muller, Marc; Conings, Bert

    2016-03-01

    In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.

  17. The effect of doses, irradiation temperature, and doped impurities in the thermoluminescence response of NaCl crystals

    The interactions between ionizing gamma-radiation and two alkali halide single crystals, NaCl doped with Cd2+ (0.5 mol %) or Mn2+ (0.087 mol %), were analyzed for their possible use as low dose dosimeters. For that purpose, two irradiation temperatures (298 K and 77 K) and different doses at a fix dose rate were studied. The irradiated crystals were analyzed using their thermoluminescence and optical absorption properties. The F-centers formed in these crystals were measured as a function of the dose. The production of irradiation defects in the solid were correlated with the glow curve. Bleaching the F-centers produced a decrease in the peak of the glow curve, suggesting that F centers are intimately involved in the production of the thermoluminescence phenomenon. For the NaCl crystals doped with Cd, the area under the peak observed in the glow curves (associated to very deep traps) changes uniformly in the 1.15–13.8 Gy dose intervals, making this crystal a candidate for use as a dosimeter in low dose intervals. -- Highlights: ► The gamma irradiation of single crystals of NaCl doped with Cd or Mn were studied. ► The bleaching of the F-centers produced a decrease of the peak of the glow curve. ► Crystals of NaCl:Cd can be use as a dosimeter at low radiation doses

  18. ICES studies on 99mTc-halide complexes: formation, hydrolysis and ligand exchange

    The Internal Conversion Electron Spectroscopy (ICES) method was employed to study the products of reduction of no-carrier-added [99mTc]pertechnetate by concentrated hydrochloric, hydrobromic and hydroiodic acids. The reductions were carried out in vacuum with subbsequent evaporation of the solution to dryness. In the solid deposits, containing ∼ 10-9 g Tc, chemical shifts of 99mTc electron binding energies were measured and the results were compared with known data of x-ray photoelectron spectroscopy for defined technetium compounds. It was evidenced that all reduction/evaporation procedures yielded 99mTc(IV)-halide complexes. Another technique of reduction by vapours of halogen acids was proposed to prepare thin radioactive sources for physics studies. The reduction power of alkali halides in absence of acids was examined and a partial reduction of pertechnetate by iodide was found. The product was a hydrolysed species. The hydrolysis of halide complexes yielded the same product. In the absence of acids, dissolved species were partly oxidised to Tc(VII) by air. Oxidation was most apparent for the chloride and negligible for the iodide system. Ligand exchange of chloro and bromo complexes to chelate with DTPA at pH 3 was found to be uncomplete. Tc(IV) hydrolysed species, Tc(IV)DTPA and Tc(VII) were evidenced. Tc(V)DTPA was also observed which arises from partially oxidised products. (author)

  19. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  20. The alkali-aggregate reaction - concrete microstructure evolution

    The alkali-aggregate reaction has been studied by scanning electron microscopy and energy dispersive X-ray analysis, electron probe microanalysis, and X-ray diffraction in concretes containing glass aggregates or hornfels and greywacke aggregates. The surface reaction of the natural aggregates in alkaline solutions has been analysed by X-ray photo-electron spectrometry. The study of concretes with glass aggregates stored at 20 degrees Celcius and 100 percent relative humidity has revealed, irrespective of alkali content and type of cement, the formation of a gel containing SiO2, Na2O, CaO, MgO and Al2O3. Under heat and pressure (210 degrees Celcius at MPa for 48 hours), the gel crystallizes and yields silicates not very different from tobermorite found in autoclaved normal concretes but cotaining Na and K in solid solutions. The alkali reaction in two natural aggregate concretes, is also shown by the formation of gels and silicate crystals. The progressive structuring of the gels in silicate crystals is promoted by an increase in temperature. Ettringite and Ca(OH)2 reinforce the alkali-aggregate reaction which may be looked upon as a hydration reaction, partially of the pozzolanic type

  1. Modelling current transfer to cathodes in metal halide plasmas

    This work is concerned with investigation of the main features of current transfer to cathodes under conditions characteristic of metal halide (MH) lamps. It is found that the presence of MHs in the gas phase results in a small decrease of the cathode surface temperature and of the near-cathode voltage drop in the diffuse mode of current transfer; the range of stability of the diffuse mode expands. Effects caused by a variation of the work function of the cathode surface owing to formation of a monolayer of alkali metal atoms on the surface are studied for particular cases where the monolayer is composed of sodium or caesium. It is found that the formation of the sodium monolayer affects the diffuse mode of current transfer only moderately and in the same direction that the presence of metal atoms in the gas phase affects it. Formation of the caesium monolayer produces a dramatic effect: the cathode surface temperature decreases very strongly, the diffuse-mode current-voltage characteristic becomes N-S-shaped

  2. Dimming of metal halide lamps

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  3. Palladium-catalyzed asymmetric reductive heck reaction of aryl halides.

    Yue, Guizhou; Lei, Kaining; Hirao, Hajime; Zhou, Jianrong Steve

    2015-05-26

    Asymmetric reductive Heck reaction of aryl halides is realized in high stereoselectivity. Hydrogen-bond donors, trialkylammonium salts in a glycol solvent, were used to promote halide dissociation from neutral arylpalladium complexes to access cationic, stereoselective pathways. PMID:25867113

  4. Syntheses, crystal structures, magnetic properties and vibrational spectra of nitridoborate-halide compounds Sr2[BN2]Br and Eu2[BN2]X (X = Br, I) with isolated [BN2]3- units

    The title compounds Sr2[BN2]Br (1), Eu2[BN2]Br (2) and Eu2[BN2]I (3) were obtained from reactions of mixtures of Sr3[BN2]2 and SrBr2 (1) and the binaries EuN, h-BN and EuX2 (X = Br, I) (2, 3), respectively. The crystal structure of Sr2[BN2]Br was solved from X-ray powder diffraction data and those of the europium compounds from X-ray single crystal data. Sr2[BN2]Br and Eu2[BN2]Br are isotypic crystallizing in the rhombohedral space group R anti 3m (No. 166, Pearson code: hR18; Z = 3; a = 4.11692(2) A, c = 26.4611(2) A (1); a = 4.0728(3) A, c = 26.589(3) A (2)). The crystal structures are built up by layers of condensed edge-sharing [B - N - B] rate at Eu6 and [Br] rate at Eu6 trigonal antiprisms, which are alternately stacked along [001]. Eu2[BN2]I - isotypic to Sr2[BN2]I - crystallizes in the monoclinic space group P21/m (No. 11, Pearson code: mP24; Z = 4; a = 10.2548(6) A, b = 4.1587(3) A, c = 13.1234(9) A, ? = 91.215(4) ). The crystal structure is characterized by slightly puckered layers formed by condensed edge sharing I rate at Eu6 octahedra which are separated by isolated [BN2]3- units. The bond lengths for the strictly linear [BN2]3- anions in (1) and (2) are d(B-N) = 1.351(4) A and 1.356(8) A, respectively. In Eu2[BN2]I two crystallographically distinct [BN2]3- anions are present with d(B1-N) = 1.32(4) A, 1.37(4) A and d(B2-N) = 1.30(4) A, 1.34(4) A, respectively. Their bond angles vary slightly: angle (N - B1 -N) = 179(3) and angle (N - B2 - N) = 177(3) . The magnetic susceptibility data of the europium compounds (2) and (3) indicate that the Eu ions are divalent with 4f7 configuration. Vibrational spectra were measured and interpreted based on the D?h symmetry of the discrete linear [N - B - N]3- moieties, considering the site symmetry reduction and the presence of two distinct [BN2]3- groups in (3). (orig.)

  5. Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals.

    Carter, Robin; Suyetin, Mikhail; Lister, Samantha; Dyson, M Adam; Trewhitt, Harrison; Goel, Sanam; Liu, Zheng; Suenaga, Kazu; Giusca, Cristina; Kashtiban, Reza J; Hutchison, John L; Dore, John C; Bell, Gavin R; Bichoutskaia, Elena; Sloan, Jeremy

    2014-05-28

    In common with rocksalt-type alkali halide phases and also semiconductors such as GeTe and SnTe, SnSe forms all-surface two atom-thick low dimensional crystals when encapsulated within single walled nanotubes (SWNTs) with diameters below ?1.4 nm. Whereas previous density functional theory (DFT) studies indicate that optimised low-dimensional trigonal HgTe changes from a semi-metal to a semi-conductor, low-dimensional SnSe crystals typically undergo band-gap expansion. In slightly wider diameter SWNTs (?1.4-1.6 nm), we observe that three atom thick low dimensional SnSe crystals undergo a previously unobserved form of a shear inversion phase change resulting in two discrete strain states in a section of curved nanotube. Under low-voltage (i.e. 80-100 kV) imaging conditions in a transmission electron microscope, encapsulated SnSe crystals undergo longitudinal and rotational oscillations, possibly as a result of the increase in the inelastic scattering cross-section of the sample at those voltages. PMID:24637546

  6. Effect of temperature on non-destructive wave propagation in potassium halides

    Temperature dependence of ultrasonic attenuation is investigated for potassium halides in the temperature range 100-400 K. These calculations are done for KCl, KBr and KI for longitudinal and shear waves along the ?1 1 1? direction. The non-linearity coupling parameters and thermal relaxation time have also been obtained for these crystals. In the present investigation, it has been found that phonon-phonon interaction is the dominant cause for ultrasonic attenuation.

  7. Method for recovering hydrocarbons from molten metal halides

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  8. Harmonic dynamical behaviour of thallous halides

    Sarvesh K Tiwari; L J Shukla; K S Upadhyaya

    2010-05-01

    Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.

  9. Computational screening of mixed metal halide ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich; Vegge, Tejs

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure....... In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles...

  10. Thermodynamic properties of pure and dilute alkali cyanides: short range order effects

    The alkali-cyanides NaCN and KCN, both pure and mixed in alkali-halides are studied, in the low temperature phases (paraelectric and antiferroelectric). Experimental results on the dielectric properties of these systems indicate that short-range order effects are important. These effects are investigated using the Kikuchi method in the limit of the pair correlation approximation (Bethe approximation). The results for the temperature dependence of the dielectric constant, for the pure systems, are adjusted to the experimental data available to obtain the three relevant parameters of the model: coordination number, coupling interaction and electric dipole moment of the CN- molecular ion. This parametrization is used in the study of the dielectric constants of the mixed systems and the critical temperature as a function of the CN- dipole concentration is obtained. The results are in good qualitative agreement with the experimental ones. (Author)

  11. Process for the disposal of alkali metals

    The invention describes a method of disposing of alkali metals by forming a solid waste for storage. The method comprises preparing an aqueous disposal solution of at least 55 weight percent alkali metal hydroxide, heating the alkali metal to melting temperature to form a feed solution, and spraying the molten feed solution into the disposal solution. The alkali metal reacts with the water in the disposal solution in a controlled reaction which produces alkali metal hydroxide, hydrogen and heat and thereby forms a solution of alkali metal hydroxides. Water is added to the solution in amounts sufficient to maintain the concentration of alkali metal hydroxides in the solution at 70 to 90 weight percent, and to maintain the temperature of the solution at about the boiling point. Removing and cooling the alkali metal hydroxide solution thereby forms a solid waste for storage. The method is particularly applicable to radioactive alkali metal reactor coolant. (auth)

  12. New hypodiphosphates of the alkali metals: Synthesis, crystal structure and vibrational spectra of the hypodiphosphates(IV) M{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (M=Rb and Cs)

    Wu, Peng [Institut fuer Anorganische und Analytische Chemie der TU Clausthal, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld (Germany); Wiegand, Thomas; Eckert, Hellmut [Institut fuer Physikalische Chemie and Graduate School of Chemistry, Westfaelische Wilhelms-Universitaet Muenster, Corrensstr. 28/30, D-48149 Muenster (Germany); Gjikaj, Mimoza, E-mail: mimoza.gjikaj@tu-clausthal.de [Institut fuer Anorganische und Analytische Chemie der TU Clausthal, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld (Germany)

    2012-10-15

    The new hypodiphosphates(IV) Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (1) and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (2) were synthesized by soft chemistry reactions from aqueous solutions of hypophosphoric acid and the corresponding heavy alkali-metal carbonates. Their crystal structures were determined by single crystal X-ray diffraction. Both compounds crystallize isotypic in the triclinic space group P-1 with one formula unit in the unit cell. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units in staggered conformation for the P{sub 2}O{sub 6} skeleton and the corresponding alkali-metal cations. In the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} ion the hydrogen atoms are in a 'trans-trans' conformation. O{center_dot}H-O hydrogen bonds between the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups consolidate the structures into a three-dimensional network. The FT-Raman and {sup 31}P and {sup 1}H and MAS NMR spectra of the title compounds have been recorded and interpreted, especially with respect to their assignment to the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups. Thermogravimetric data of 2 have been interpreted in terms of a thermal decomposition model. - Graphical Abstract: The layered compounds Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] have been synthesized and investigated. Both crystallize isotypic. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units and the corresponding alkali-metal cations. Highlights: Black-Right-Pointing-Pointer Synthesis and single-crystal structure of new alkali hypodiphosphates. Black-Right-Pointing-Pointer Structures are characterized by [(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})]{sup 2-} units and M{sup +} cations. Black-Right-Pointing-Pointer (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units are linked by short hydrogen bonds. Black-Right-Pointing-Pointer Both compounds are characterized by {sup 31}P MAS-NMR spectra.

  13. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH2)3]CdI3 and [4-ClC6H5NH3]3CdBr5

    The crystal structures of [C(NH2)3]CdI3 (1) and [4-ClC6H5NH3]3CdBr5 (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P21/c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI4] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr6] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three 127I (m = ±1/2 <-> m = ±3/2), five 81Br, and three 35Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd5I16]6- for 1 and [Cd3Br16]10- for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  14. The influence of Halide and pseudo-Halide antioxidants in Fenton-like reaction systems

    Malesic, J.; Kolar, J.; Strlic, M.; Polanc, S.

    2006-01-01

    An application of the N,N'-(5-nitro-1,3-phenylene) bisglutaramide (NPG) hydroxylation assay for spectrophotometric determination of the rate of oxidising species generation in Fenton-like systems in the presence of halide and pseudo-halide antioxidants was evaluated. Using ion chromatography it was demonstrated that the concentration of antioxidants did not decrease during the course of the experiment. Although the stoichiometry was not constant, determination of the rate constant of NPG hydr...

  15. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu2+/Eu3+ ratio in the glass ceramics should be determined and optimize favor of the Eu2+. We also want to distinguish between Eu2+ in the glass matrix and Eu2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF2 host lattice were carried out. (orig.)

  16. Properties of Ce-activated alkali-lutetium double phosphate scintillators

    Wi?niewski, D. [Institute of Physics, Nicolaus Copernicus University, Toru?, Poland; Wojtowicz, A. J. [Institute of Physics, Nicolaus Copernicus University, Toru?, Poland; Boatner, Lynn A [ORNL

    2010-01-01

    The scintillation properties of Ce-activated alkali-lutetium double phosphate single crystals that vary with the alkali ion type and activation level are summarized and compared. The materials investigated here have been identified as fast and efficient scintillators for the detection of x-ray and radiation, and in case of Li3Lu(PO4)2:Ce, for thermal neutron detection as well.

  17. Computer calculations of stability of C{sub 70} fullerene intercalated by alkali metals

    Fabianski, R.; Kuchta, B. [Politechnika Wroclawska, Wroclaw (Poland). Inst. Chemii Fizycznej i Teoretycznej; Firlej, L. [Groupe de Dynamique des Phases Condensees, Universite Montpellier II, Montpellier (France)

    2000-03-01

    Calculations of the energy of alkali atoms placed in tetrahedral and octahedral voids in the fcc crystal lattice of C{sub 70} are presented. A comparison of stabilities of intercalated C{sub 60} and C{sub 70} has been done. An existence of the off-centre positions in the octahedral voids has been shown and discussed. A path of diffusion of alkali atoms (ions) into C{sub 70} structure has been proposed. (orig.)

  18. Vibration-Resistant Support for Halide Lamps

    Kiss, J.

    1987-01-01

    Lamp envelope protected against breakage. Old and new mounts for halide arc lamp sealed in housing with parabolic refector and quartz window. New version supports lamp with compliant garters instead of rigid brazed joint at top and dimensionally unstable finger stock at bottom.

  19. Computational Screening of Mixed Metal Halide Ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich; Vegge, Tejs

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. In this project we are searching for improved mixed materials with optimal desorption temperature and kinetics. We apply DFT calculations on mixed compounds...

  20. The electronic structure of alkali aurides. A four-component Dirac-Kohn-Sham study.

    Belpassi, Leonardo; Tarantelli, Francesco; Sgamellotti, Antonio; Quiney, Harry M

    2006-04-01

    Spectroscopic constants, including dissociation energies, harmonic and anharmonic vibrational frequencies, and dipole moments, are calculated for the complete alkali auride series (LiAu, NaAu, KAu, RbAu, CsAu). The four-component formulation of relativistic density functional theory has been employed in this study, using the G-spinor basis sets implemented recently in the program BERTHA. The performance of four standard nonrelativistic density functionals employed is investigated by comparing the results with the best available theoretical and experimental data. The present work provides the first theoretical predictions on the molecular properties of RbAu. The intermetallic bond that occurs in the alkali auride series is highly polar and is characterized by a large charge transfer from the alkali metals to gold. The extent of this electron transfer has been investigated using several different charge analysis methods, enabling us to reach some general conclusions on their relative performance. We further report a detailed analysis of the topological properties of relativistic electron density in the bonding region, discussing the features of this approach which characterize the nature of the chemical bond. We have also computed the fully relativistic density for the alkali halides MBr and MI (M = Li, Na, K, Rb, and Cs). The comparative study shows that, on the basis of several topological properties and the variation in bond lengths, the gold atom behaves similarly to a halogen intermediate between Br and I. PMID:16571062

  1. Role of Farben centers in electron- and photon-stimulated desorption from alkali halides

    Measurements of the time history of ground-state neutral lithium desorption from LiF during pulsed electron irradiation have resulted in a new model for the lithium-desorption mechanism. We show that the slow diffusion to the surface of bulk Farben (F) centers created by the electron-beam is the rate-controlling factor responsible for most of the time history of the lithium desorption rather than the thermal evaporation of the metal from the surface. Comparison between theoretical and experimental time dependencies yields values for the F center diffusion constant and its activation energy

  2. A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes

    Jafeen, M. J. M.; Careem, M.A.; Skaarup, Steen

    2014-01-01

    transport in concentrated electrolytes is found to be very low. In dilute electrolytes, water molecules accompany counter ions as solvated molecules and due to osmotic effect. In concentrated electrolytes, water movement is less due to limited availability of free water as well as a smaller osmotic pressure...

  3. Nearest neighbors EPR superhyperfine interaction in divalent iridium complexes in alkali halide host lattice

    Further splitting of chlorine superhyperfine lines on the EPR spectrum of the [Ir (CN)4 Cl2]4- molecular species in NaCl latice indicates a super-superhyperfine interaction with the nearest neighbors sodium atoms. (Author)

  4. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  5. Reduction of Methylene Blue and related dyes by gamma-irradiated alkali halides

    A spectrophotometric study is reported of the reduction of some dyes with methylene blue structure used in bacteriological staining. The reduction is effected by the species liberated during the dissolution of γ-irradiated sodium chloride. The G values for the two modes of the reduction are compared and the effects of radical scavengers on the reactions are studied. Results are found to be similar to the chemically and biologically induced reduction. The dyes studied include, in addition to Methylene Blue, Janus Green B and Nile Blue sulfate. (author) 9 refs.; 5 figs.; 2 tabs

  6. Anions of alkali halide salts at surfaces of formamide solutions: Concentration depth profiles and surface topography

    Andersson, G.; Morgner, H.; Cwiklik, Lukasz; Jungwirth, Pavel

    2007-01-01

    Roč. 111, č. 11 (2007), s. 4379-4387. ISSN 1932-7447 R&D Projects: GA MŠk LC512; GA MŠk ME 644 Grant ostatní: DFG(DE) 288/25 Institutional research plan: CEZ:AV0Z40550506 Keywords : surfaces of salt solutions * formamide * ions * molecular dynamics simulations Subject RIV: CF - Physical ; Theoretical Chemistry

  7. A generalized rule of average for glow peak temperature of ternary alkali halide systems

    G. Moroyoqui-Estrella

    2011-01-01

    Full Text Available Se estudia la dependencia de la temperatura en la curva de brillo con la composición de los aniones en mezclas cristalinas impurificadas con Europio: KCl0.50KBr0.25RbX0.25:Eu2+ (X = Cl, Br. Cada material muestra una curva de brillo termoluminiscente consistente en dos picos de brillo principales con temperatura entre la del KCl:Eu2+ y la del KBr:Eu2+. El pico más intenso está relacionado con la destrucción del centro F, como ocurre en el caso de cristales de KCl:Eu2+ y su temperatura característica depende fuertemente de la composición del halogeno. El comportamiento confirma que la temperatura de la recombinación de los centros F-H en este tipo de materiales depende en gran medida de la proporción de los aniones. De estos resultados se propone una regla generalizada para obtener la temperatura, promediando la temperatura característica en función de la composición.

  8. Thermal decomposition of complex halides of arsenic(3), antimony(3) and bismuth(3) with alkali metals

    Thermal analyses of complexes M3[As2X9] (M = Rb, Cs; X = Cl, Br), M3[Sb2X9] (M = Rb, Cs; X = Cl, Br, I), Rb3[BiX6] (X = Cl, Br) and Cs3[Bi2X9] (X = Cl, Br, I) were performed. From chemical and X-ray analyses of their solid decomposition products the mechanism of thermal decomposition reactions was established. From thermogravimetric curves apparent activation energies were calculated using Coats-Redfern's and Zsako's methods. Thermal stability of complexes increases distinctly in the following order: As< Sb< Bi. Caesium complexes are more stabile than rubidium compounds of the same type. (author)

  9. Corrosion by the Alkali Metals

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or Hf as ''getters'' to the refractory alloys and proper heat treatment to make the 'getter' addition react with oxygen, nitrogen, carbon and hydrogen in the alloys are required to prevent their corrosion by the alkali metals at these temperatures. (author)

  10. Structure and electric resistivity of dilute solutions of potassium halides in molten potassium

    The change in electric resistivity due to the addition of potassium halides to liquid potassium is calculated at high dilution within the Faber-Ziman scheme. The relevant structure factors of the dilute solution are evaluated by an electron-ion plasma model previously developed for the liquid alkali metals and their alloys. The halogen ion is found to form a rather well-define co-ordination shell of potassium ions, and these ''clusters'' are an important source of extra resistivity in the solution. Another sizeable contribution arises from the change in density relative to the pure metal. The numerical results for the change in resistivity are in good agreement with experimental data, and in particular, its observed dependence on the size of the halogen ion is reproduced by the theory. (author)

  11. Structure and bonding in metal-rich compounds: pnictides, chalcides and halides

    The subject is reviewed under the following headings: introduction (compounds included in the review; purpose of the review); MX compounds with M = transition metal and X = O,N,S or P; sulfides and selenides of the transition metals; transition-metal phosphides; alkali oxides; transition-metal oxides and nitrides with X/M < 1; metal-rich halides; conclusion. The references number 238. Compounds of the following principal elements of nuclear interest are included in the tables and text: Am, Ce, Cs, Eu, Gd, Hf, La, Mo, Np, Nb, Pu, Pr, Pa, Re, Ru, Sc, Ta, Tb, Th, W, U, V, Y, Zr. The information in the tables is presented under: structure type, space group, lattice parameters and remarks. (U.K.)

  12. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  13. Origin of the 330 nm absorption band and effect of doping Yb in LiYF4 crystals

    The electronic structures of LiYF4 (YLF) crystals containing F color center (YLF-F) and Yb doped YLF crystals (Yb3+:YLF, Yb2+:YLF) are systematically studied within the framework of the density functional theory. The calculated results indicate that the 330 nm absorption band originates from the F center in YLF crystals. Thus the doping of Yb3+ can weaken the 330 nm absorption band by competing with F vacancies in capturing free electrons arising after ?-irradiation and change to Yb2. By analyzing the lattice relaxation and the electronic structure of YLF containing Yb2+, we can reasonably believe that once Yb2+ is formed in YLF crystal, its compensating hole will turn out to be shared by two F- nearest to Yb2+ forming a diatomic fluoride molecular ion (F2-) perturbed by Yb2+, or to say VF color center. According to the molecular-orbital linear combination of atomic orbital (MO-LCAOs) theory, compared to the alkali halides, e.g. LiF, the F2- in VF center in LiYF4 peaks at about 340 nm, which is in agreement with the experimental results.

  14. Origin of the 330 nm absorption band and effect of doping Yb in LiYF{sub 4} crystals

    Yin Jigang [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Hang Yin, E-mail: yhang@siom.cn.co [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang Lianhan [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao Chengchun; Xiong Jing; Hu Pengchao [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China)

    2010-08-15

    The electronic structures of LiYF{sub 4} (YLF) crystals containing F color center (YLF-F) and Yb doped YLF crystals (Yb{sup 3+}:YLF, Yb{sup 2+}:YLF) are systematically studied within the framework of the density functional theory. The calculated results indicate that the 330 nm absorption band originates from the F center in YLF crystals. Thus the doping of Yb{sup 3+} can weaken the 330 nm absorption band by competing with F vacancies in capturing free electrons arising after {gamma}-irradiation and change to Yb{sup 2}. By analyzing the lattice relaxation and the electronic structure of YLF containing Yb{sup 2+}, we can reasonably believe that once Yb{sup 2+} is formed in YLF crystal, its compensating hole will turn out to be shared by two F{sup -} nearest to Yb{sup 2+} forming a diatomic fluoride molecular ion (F{sub 2}{sup -}) perturbed by Yb{sup 2+}, or to say V{sub F} color center. According to the molecular-orbital linear combination of atomic orbital (MO-LCAOs) theory, compared to the alkali halides, e.g. LiF, the F{sub 2}{sup -} in V{sub F} center in LiYF{sub 4} peaks at about 340 nm, which is in agreement with the experimental results.

  15. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  16. Unraveling halide hydration: A high dilution approach

    Migliorati, Valentina, E-mail: valentina.migliorati@uniroma1.it; Sessa, Francesco; DAngelo, Paola, E-mail: p.dangelo@uniroma1.it [Dipartimento di Chimica, Universit di Roma La Sapienza, P. le A. Moro 5, 00185 Roma (Italy); Aquilanti, Giuliana [Sincrotrone Trieste S.C.p.A s.s. 14, km 163.5, I-34149 Basovizza, Trieste (Italy)

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hnenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (?G{sub hyd}{sup ?}[H{sup +}]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely L{sub E}, thus strengthening preliminary evidences for a ?G{sub hyd}{sup ?}[H{sup +}] value of ?1100 kJ mol{sup ?1} [M. M. Reif and P. H. Hnenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl{sup ?}, Br{sup ?}, and I{sup ?} ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F{sup ?} ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl{sup ?}, Br{sup ?}, and I{sup ?} ions does not extend beyond the ion first hydration shell, and the structure of water in the F{sup ?} second shell is also substantially unaffected by the ion.

  17. Cerium doped lanthanum halides: fast scintillators for medical imaging

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl3:Ce3+ and LaBr3:Ce3+).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  18. ACCUMULATION OF ALKALIS IN THE RECYCLING FILTRATE OF THE PHOSPHOGYPSUM PULPS

    ANTANAS KAZILIUNAS

    2011-12-01

    Full Text Available Sodium and potassium combinations existing in phosphogypsum are highly soluble and remain in the filtrate, their amount increasing with each recycle. It has been determined that the amount of alkalis in the recycling filtrate depends on an amount of alkalis in uncleaned phosphogypsum, a number of recycles in the filtrate, the technology of the phosphogypsum pulp preparation and an amount of soluble phosphates. New phosphate formations composed in an acid medium (pH = 4.5-5 are well crystalized crystals. They do not alter the filtrability of the phosphogypsum pulp. The new combinations formed in an alkaline medium (pH = 7-11 are colloidal. They settle down on the surface of the hard particles and make the filtration of the phosphogypsum pulp complicated. The filtrated phosphogypsum is more humid which causes the growth of the amount of alkalis carried out together with moisture and thus the lower alkali concentration is observed in the recycling filtrate. In the discussed case, the larger amount of soluble phosphates of uncleaned phosphogypsum is formed the larger amount of the colloidal particles in the neutralized phosphogypsum pulp which results in complicated filtration. In all the cases, the alkali concentration in the recycling filtrate approaches the maximum degree which would take place if alkalis existing in uncleaned phosphogypsum were thawed in humidity of cleaned phosphogypsum.

  19. The structure of metallic complexes of polyacetylene with alkali metals

    Baughman, R. H.; Murthy, N. S.; Miller, G. G.

    1983-07-01

    The crystal structures of sodium, potassium, rubidium, and cesium doped polyacetylene have been determined using crystal packing and x-ray diffraction analyses. Each of these metallic complexes is tetragonal, with the polyacetylene chains forming a host lattice in which the alkali metal ions are present in channels. Lithium appears to be too small to stabilize the channel structure and an amorphous structure is observed. Predicted unit cell parameters and x-ray diffraction intensities are in agreement with observed values. Similarities with the alkali metal doped graphite suggest that hybridization between carbon pz orbitals and metal s orbitals occurs. Such hybridization is expected to result in a high conductivity component normal to the chain direction. On the other hand, direct overlap between polymer chains appears small, since alkali metal columns separate polymer chains. Compositions calculated for the channel structures (from meridional diffraction spacings, the intensity of equatorial diffraction lines, measured volume expansion, and distances in model complexes) all range from y=0.12 to 0.18 for (CHMy)x, where M is sodium, potassium, rubidium, or cesium.

  20. Water Content of Lunar Alkali Fedlspar

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of water content of the magma ocean would have water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a mantle with water. However, this would have been a heterogeneous pro-cess based on K distribution. Thus some, if not most of the mantle may not have been devolatilized by this process; as seen by water in volcanic glasses and melt inclusions.

  1. Short-arc metal halide lamp suitable for projector application

    Kawai, Kouji; Matsumoto, Masayuki

    1995-04-01

    Recently, progress has been made in the development of projectors used for large screen displays. Projection systems employing high luminous efficiency Metal Halide Lamps as a light source demonstrate unique and desirable features. For example, compared to conventional lamps, a Metal Halide Lamp has longer life, higher luminous efficiency, the shortest arc length possible, and higher color-rendering characteristics, resulting in an overall superior performance. Several lamps, including Metal Halide, Xenon, and Halogen lamps, are used in HDTV (High Definition Television). Recently, Metal Halide Lamps have become accepted as the light source of choice. The reason for this is the high brightness, color balance, and long life of the Metal Halide Lamp. The fundamental operating principal for Metal Halide Lamps is almost the same as that of Mercury lamps. A Metal Halide Lamp has very different characteristics in that, the spectrum of illumination can be varied by varying the mixture of Metal Halide generated in the lamp. For these lamps, we have improved the electrode, the chemical composition of the Metal Halide, and the glass envelope. We have achieved a longer average life (greater than 2500 hours) for a compact, single-bulb, projection-type lamp.

  2. Lanthanide doped strontium-barium cesium halide scintillators

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  3. Evaluation of Ce3+ and alkali metal ions Co-doped LiSrAlF6 crystalline scintillators

    High scintillation efficiency of Eu-doped LiSrAlF6 (LiSAF) and LiCaAlF6 (LiCAF) codoped with alkali metal ions has been reported in our recent studies. Thus in this paper, we demonstrated the scintillation properties of 1% Ce-doped LiSAF crystals with 1% alkali metal ions co-doping to increase the light yield and understand the scintillation mechanism. The crystals showed intense emission band corresponding to the 5d-4f transition of Ce3+, and their light yields under thermal neutron excitation were higher than that of the Ce only doped crystal. Especially, the light yield of Ce–Na co-doped crystal exceeded about two times that of Ce only doped one. -- Highlights: ► Ce-doped and alkali metal co-doped LiSAF crystals were grown by μ-PD method. ► Alkali metal co-doped crystals showed higher light yield than Ce only doped crystal. ► Decay time of alkali metal co-doped LiSAF were longer than that of Ce only doped one

  4. Performance of Alkali Activated Slag with Various Alkali Activators

    D.V.S.P.RAJESH; A. Narender Reddy *; U.VENKATA TILAK; M Raghavendra

    2013-01-01

    The need to meet a sustainable development is now an important challenge to the cement industry. The production of OPC is responsible for about 7% of the world‟s CO2 emission, a major contributor to the green house effect which is implicated in global warming and climatic changes, lead to the search for more environmentally viable alternative to cement. One of those alternative material is alkali activated slag (AAS) where ground granulated blast furnace slag is used not as partial replacemen...

  5. Effect of alkali and heat treatments for bioactivity of TiO{sub 2} nanotubes

    Kim, Seo young, E-mail: mast6269@nate.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Yu kyoung, E-mail: yk0830@naver.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Park, Il song, E-mail: ilsong@jbnu.ac.kr [Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jin, Guang chun, E-mail: jingc88@126.com [Oral Medical College, Beihua University, Jilin City 132013 (China); Bae, Tae sung, E-mail: bts@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Lee, Min ho, E-mail: mh@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of)

    2014-12-01

    Highlights: • TiO{sub 2} nanotubes formed via anodization were treated by alkali and heat. • The surface roughness was increased after alkali treatment (p < 0.05). • After alkali and heat treatment, the wettability was better than before treatment. • Alkali treated TiO{sub 2} nanotubes were shown higher HAp formation in SBF. • Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO{sub 2} nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO{sub 2} nanotubes (PNA) and alkali and heat-treated TiO{sub 2} nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na{sub 2}TiO{sub 3}) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  6. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes

    Highlights: TiO2 nanotubes formed via anodization were treated by alkali and heat. The surface roughness was increased after alkali treatment (p < 0.05). After alkali and heat treatment, the wettability was better than before treatment. Alkali treated TiO2 nanotubes were shown higher HAp formation in SBF. Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO2 nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO2 nanotubes (PNA) and alkali and heat-treated TiO2 nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na2TiO3) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group

  7. Mesoporous zeolite single crystals for catalytic hydrocarbon conversion

    Schmidt, I.; Christensen, C.H.; Hasselriis, Peter; Kustova, Marina; Nielsen, Michael Brorson; Dahl, Søren; Johannsen, K.; Christensen, Claus H.

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies, a...

  8. Lanthanum halide scintillators for time-of-flight 3-D pet

    Karp, Joel S. (Glenside, PA); Surti, Suleman (Philadelphia, PA)

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  9. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals.

    Volonakis, George; Filip, Marina R; Haghighirad, Amir Abbas; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry J; Giustino, Feliciano

    2016-04-01

    Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV. PMID:26982118

  10. Alkali metal sources for OLED devices

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  11. On-line alkali monitoring - Part 1

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  12. Experimental and theoretical optical properties of methylammonium lead halide perovskites

    Leguy, Aurélien M. A.; Azarhoosh, Pooya; Alonso, M. Isabel; Campoy-Quiles, Mariano; Weber, Oliver J.; Yao, Jizhong; Bryant, Daniel; Weller, Mark T.; Nelson, Jenny; Walsh, Aron; van Schilfgaarde, Mark; Barnes, Piers R. F.

    2016-03-01

    The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3]+ cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS).The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3]+ cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05435d

  13. Double-Diffusive Convection During Growth of Halides and Selenides

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of several materials such as mercurous chloride, mercurous bromide, mercurous iodide, lead chloride lead bromide, lead iodide, thallium arsenic selenide, gallium selenide, zince sulfide zinc selenide and several crystals into devices. We have used both Bridgman and physical vapor transport (PVT) crystal growth methods. In the past have examined PVT growth numerically for conditions where the boundary of the enclosure is subjected to a nonlinear thermal profile. Since past few months we have been working on binary and ternary materials such as selenoiodides, doped zinc sulfides and mercurous chloro bromide and mercurous bromoiodides. In the doped and ternary materials thermal and solutal convection play extremely important role during the growth. Very commonly striations and banding is observed. Our experiments have indicated that even in highly purified source materials, homogeneity in 1-g environment is very difficult. Some of our previous numerical studies have indicated that gravity level less than 10-4 (?-g) helps in controlling the thermosolutal convection. We will discuss the ground based growth results of HgClxBr(1-x) and ZnSe growth results for the mm thick to large cm size crystals. These results will be compared with our microgravity experiments performed with this class of materials. For both HgCl-HgBr and ZnS-ZnSe the lattice parameters of the mixtures obey Vagard's law in the studied composition range. The study demonstrates that properties are very anisotropic with crystal orientation, and performance achievement requires extremely careful fabrication to utilize highest figure of merit. In addition, some parameters such as crystal growth fabrication, processing time, resolution, field of view and efficiency will be described based on novel solid solution materials. It was predicted that very similar to the pure compounds solid solutions also have very large anisotropy, and very precise oriented and homogeneous bulk and thin film crystals is required to achieve maximum performance of laser or imagers. Some of the parameters controlling the homogeneity such as thermos-solutal convection driven forces can be controlled in microgravity environments to utilize the benefits of these unique materials.

  14. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability.

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W; Liang, Dong; Ding, Qi; Joshi, Prakriti; Hwang, Leekyoung; Zhu, X-Y; Jin, Song

    2016-02-10

    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers. PMID:26727024

  15. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions

    Manikandan, Karuppasamy; Bhardwaj, Amit; Gupta, Naveen; Lokanath, Neratur K.; Ghosh, Amit; Reddy, Vanga Siva; Ramakumar, Suryanarayanarao

    2006-01-01

    Crystal structures are known for several glycosyl hydrolase family 10 (GH10) xylanases. However, none of them is from an alkalophilic organism that can grow in alkaline conditions. We have determined the crystal structures at 2.2 Å of a GH10 extracellular endoxylanase (BSX) from an alkalophilic Bacillus sp. NG-27, for the native and the complex enzyme with xylosaccharides. The industrially important enzyme is optimally active and stable at 343 K and at a pH of 8.4. Comparison of the structure...

  16. The coacervation of aqueous solutions of tetraalkylammonium halides

    The coacervation of aqueous solutions of tatraalkylammonium halides in the presence of not of inorganic halides and acids has been studied, considering thermodynamic and spectroscopic aspects. The importance of dispersion forces as well as forces resulting from hydrophobic hydration has been assessed. The analogy between these systems and anionic ion exchange resins has been shown especially for Uranium VI extraction

  17. Growth and characterization of polycrystalline lanthanide halide scintillators

    We are exploring a novel time- and cost-efficient approach to produce robust, large-volume polycrystalline lanthanide halide scintillators using a hot wall evaporation (HWE) technique. To date, we have fabricated LaBr3:Ce and LaCl3:Ce films (slabs) measuring up to 7 cm in diameter and 7+ mm in thickness (20-25 cm3 in volume) on quartz substrates. These polycrystalline scintillators exhibit very bright emissions approaching those exhibited by their melt-grown crystal counterparts. Scanning electron micrographs (SEMs) and X-ray diffraction analysis confirm polycrystalline growth with columnar structures, both of which help in light piping, thereby contributing to the observed high light yields. The new scintillators also exhibit good energy resolution for γ-rays over the tested range of 60 keV (241Am) to 662 keV (137Cs), although they have not yet reached that of the corresponding crystals. The measured response linearity over the same energy range is comparable for both our HWE synthesized films and melt-grown commercially-available reference crystals. Similar consistency in response is also observed in terms of their decay time and afterglow behaviors. The data collected so far demonstrate that our HWE technique permits the rapid creation of scintillators with desired structural and compositional characteristics, without the introduction of appreciable defects, and yields material performance equivalent to or approaching that of crystals. Consequently, the deposition parameters may be manipulated to tailor the physical and scintillation performance of the resulting structures, while achieving a cost per unit volume that is substantially lower than that of crystals. In turn, this promises to allow the use of these novel scintillation materials in such applications as SPECT, PET, room-temperature radioisotope identification and homeland security, where large volumes of materials in a wide variety of shapes and sizes are needed. This paper describes our growth and testing of polycrystalline LaBr3:Ce scintillators and provides comparative characterizations of their performance with crystals.

  18. Liquid alkali metals and alkali-based alloys as electron-ion plasmas

    The article reviews the theory of thermodynamic and structural properties of liquid alkali metals and alkali-based alloys, within the framework of linear screening theory for the electron-ion interactions. (author)

  19. Color separation in metal halide lamps

    Stoffels, W. W.; Nimalasuriya, T.; Flikweert, A. J.; Brok, W. J. M.; Mullen, J. J. A. M.; Kroesen, G. M. W.; Haverlag, M.

    2006-10-01

    Metal halide discharge lamps are efficient lighting sources. However their widespread application is hindered by several problems. One problem is color separation. This is caused by a non-homogeneous distribution of radiating species within the lamp. It is believed to be the result of a complex interplay between diffusion and convection processes. In this contribution convection in the lamp is varied by placing the lamp in a rotating centrifuge. The resulting centrifugal force of up to ten times the normal gravitational force enhances the convection within the lamp and allows studying its effect on the color separation.

  20. Structural Characterization of Methanol Substituted Lanthanum Halides

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Alam, Todd M.; Rodriguez, Mark A.; Yang, Pin; McIntyre, Sarah K.

    2010-01-01

    The first study into the alcohol solvation of lanthanum halide [LaX3] derivatives as a means to lower the processing temperature for the production of the LaBr3 scintillators was undertaken using methanol (MeOH). Initially the de-hydration of {[La(µ-Br)(H2O)7](Br)2}2 (1) was investigated through the simple room temperature dissolution of 1 in MeOH. The mixed solvate monomeric [La(H2O)7(MeOH)2](Br)3 (2) compound was isolated where the La metal center retains its original 9-coordination through...

  1. Novel Ultra-Violet/Blue Optoelectronic Materials and Devices Based on Copper Halides (CuHa)

    Cowley, A.J.

    2011-01-01

    Considerable research is being carried out in the area of wide band gap semiconductor materials for light emission applications in the UV/Blue (300-400 nm) spectral range. This project explores the novel use of the Copper Halides (CuHa), specifically γ-CuCl and γ-CuBr, I–VII wide band gap mixed ionic–electronic semiconducting materials with light emitting properties suitable for novel UV/blue light applications. This project details novel research carried out towards achieving single crystal...

  2. Performance of Alkali Activated Slag with Various Alkali Activators

    D.V.S.P.RAJESH

    2013-02-01

    Full Text Available The need to meet a sustainable development is now an important challenge to the cement industry. The production of OPC is responsible for about 7% of the world‟s CO2 emission, a major contributor to the green house effect which is implicated in global warming and climatic changes, lead to the search for more environmentally viable alternative to cement. One of those alternative material is alkali activated slag (AAS where ground granulated blast furnace slag is used not as partial replacement to cement but also as a sole binder in the production of concrete. The overall aim of the study was to investigate the potential of alkali activated slag as a sole binder in producing concrete.The performance of alkali-activated slag concrete with sodium silicate, sodium hydroxide, sodium carbonate as activator are used at 4% Na2O(by weight of slag and 4% of hydrated lime by total weight of solid binder content if used as a retarder. The scope of the work covered four mixes: - Normal OPC mix and three alkali activated slag mixesof the same binder content and the same water binder ratio. The fresh concrete properties studied were setting time and workability and the Engineering properties studied are compressive strength was measured in 1,7,28 days, split tensile strength was measured in 7,28 days and flexure, punching shear strength was compared in 12 days only. The AAS concrete with different activators investigated was found to achieve good workability comparable with that of OPC. Sodium silicate, sodium hydroxide activated slag mixes sets very quickly. AAS concrete is much more sensitive to curing where if there is no addition of retarder (hydrated lime to the mix. Among AAS mix sodium silicate was the best; sodium carbonate was the second; and sodium hydroxide was third in terms of compressive, split tensile strengths and in terms of flexure strength and punching shear strength sodium hydroxide was best; sodium carbonate was second; sodium silicate (water glass was third.

  3. Mutual effect of elements in coprecipitation. Influence of alkali metals on cocrystallization of rare earths with alkaline earth metal sulfates

    Coprecipitation of rare earths with Sr, Ca and Ba sulfates in the presence of alkali metals in a wide range of component concentration variation has been studied to establish reciprocal effect of elements during cocrystallization in such systems. The degree of rare earths coprecipitation is determined radiometrically, and the composition of the phases formed - using X-ray phase analysis and ESR method. Cocrystallization of rare earths (3) with calcium, strontium and barium sulfates in the presence of alkali metals is realized depending on conditions as to mechanisms resulting in the formation of solid phases, different in composition and structure. When rare earths are included in crystal lattice alkali metals manifest a compensating effect, the character of which is determined by the process mechanism. Cocrystallization is the most energetically profitable in the case when metal is included in the composition of solid phase, and in particular, under crystallization conditions of double sulfates of alkali and alkaline earth metals

  4. Two dimensional condensation of argon adsorbed on lamellar halides

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  5. Silver nanoparticles from silver halide photography to plasmonics

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  6. Experimental and theoretical optical properties of methylammonium lead halide perovskites.

    Leguy, Aurélien M A; Azarhoosh, Pooya; Alonso, M Isabel; Campoy-Quiles, Mariano; Weber, Oliver J; Yao, Jizhong; Bryant, Daniel; Weller, Mark T; Nelson, Jenny; Walsh, Aron; van Schilfgaarde, Mark; Barnes, Piers R F

    2016-03-17

    The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS). PMID:26477295

  7. Synthetic and structural chemistry of amidinate-substituted boron halides.

    Hill, Nicholas J; Findlater, Michael; Cowley, Alan H

    2005-10-01

    The following new amidinate-substituted boron halides are reported: [PhC{N(SiMe(3))}(2)]BCl(2)(6), [MeC{NCy}(2)]BCl(2)(10), [Mes*C{NCy}(2)]BCl(2)(11), [MeC{N(i)Pr}(2)]BCl(2)(12), and [FcC{NCy}(2)]BBr(2)(13). Compound 6 was prepared via the trimethylsilyl chloride elimination reaction of BCl(3) with N,N,N'-tris(trimethylsilyl)benzamidine, and compounds 10-12 were prepared by salt metathesis between the lithium amidinates [RC(NR')(2)]Li and BX(3). Compound 13 was prepared via the insertion of 1,3-dicyclohexylcarbodiimide into the B-C bond of ferrocenyldibromoborane FcBBr(2). The molecular structures of 6, 10, 11, 13 and the known compound [PhC{N(SiMe(3))}(2)]BBr(2)(1) were established by single-crystal X-ray diffraction. PMID:16172649

  8. Theoretical study on RbCl crystal with M\\"{o}bius inverse potentials

    Shen, Y; Chen, N; Shen, Yue; Zhang, Shuo; Chen, Nan-xian

    2003-01-01

    The alkali halides have been studied very frequently for their simple structures and interesting properties, for example, the high-pressure induced transition$^1$. There are several successful models that can be employed. The most famous model of them is the Tosi-Fumi interionic potential$^2$ which is an empirical potential derived from the experimental data. Whereas, here we developed a new potential model based on the M\\"{o}bius lattice inversion method$^{3,4}$, which can be derived directly from the cohesive energy curve without any experimental data and is more effective than the ab initial calculation. With the M\\"{o}bius interionic potentials, we calculated the structural and elastic properties of RbCl crystal. The results are in good agreement with experiments. We also studied the high-pressure induced B1-B2 transition of RbCl crystal and estimated approximately the transition-point which is about 1.09GPa. Further more, we used this potential model to simulate the RbCl melting with molecular dynamics. ...

  9. Colloquium: The unexpected properties of alkali metal iron selenide superconductors

    Dagotto, Elbio

    2013-04-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2-ySe2 (A=alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the iron-based superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  10. The unexpected properties of alkali metal iron selenide superconductors

    Dagotto, Elbio R [ORNL

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  11. Characterization of Waste Poly(Ethylene-Terephthalate after Alkali Treatment

    Rešček, A.

    2011-07-01

    Full Text Available Poly(ethylene terephthalate, PET, recycling represents one of the most successful and widespread examples of polymer recycling. This material is fully recyclable and may be used for manufacturing new products in many industrial areas. Nevertheless, the excellent properties of PET needed for its many applications are also responsible for the difficult degradation of PET and an accumulation of polymer waste, which in turn creates serious environmental problems connected to littering and illegal landfilling or incineration. The main goal of this study was to examine the effect of alkali pretreatment on the properties of PET flakes. PET flakes were washed at twotemperatures, 70 °C and 75 °C and in various time intervals of 15, 18, 21, 25, and 30 min. All samples were characterized by FTIR spectroscopy, differential scanning calorimetry and by contact angle measurements. The results showed that during the alkali treatment the partial depolymerization of PET was obtained, which resulted in the formation of various types of oligomers with hydroxyl and carboxyl end groups, which were the result of loss of high molecular structure. Decrease of intensity of characteristic vibrational bands (CO at 1717, COO at 1265 and CH2 at 722 cm-1 with extended time was observed (Figs. 1 and 2. Further on, the formation of hydroxyl groups at ṽ = 3428 cm-1 was also observed as a result of PET depolimerization during the alkali treatment, which behaviour was better visible for samples washed at 75 °C and with extended washing time (Fig 2b. During the DSC thermal analysis, multiple melting peaks were observed in some studied samples which could be linked to partial melting and re-crystallization of PET or to the occurrence of new polymer fractions of lower molecular mass (Figs. 3 and 4. It is evident that the contact angle of PET samples (Fig. 5 decreases in comparison to the PET 0, which points to the changes on the PET surface during the alkali treatment. Decrease in contact angle (which is measured with water indicates an increase in surface hydrophilicity and increase in the number of present polar -OH and -COOH groups formed during the partial degradation. Also, the values of total surface energies and their polar and dispersive components indicate that during the alkali treatment the surface characteristics of PET flakes were slightly changed due to depolymerization (Table 3. Generally, it can be concluded that partial depolymerization of PET flakes occurs during the alkali treatment but the material retains its good properties and it is appropriate for the further recycling process.

  12. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local microstructure of the hybrid crystals and not only on its chemical composition. This leads to the possibility of band gap engineering and the consequent control of the elementary photoexcitation dynamics that determine the perovskites' performances in different optoelectronic devices. PMID:26883988

  13. Structural analysis of alkali cations in mixed alkali silicate glasses by 23Na and 133Cs MAS NMR

    T. Minami

    2014-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium silicate glasses by using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. In the NMR spectra of cesium silicate crystals, the peak position shifted to higher magnetic field for structures with larger Cs+ coordination numbers and to lower magnetic field for smaller Cs+ coordination numbers. The MAS NMR spectra of xNa2O-yCs2O-2SiO2 (x=0, 0.2, 0.33, 0.5, 0.66, 0.8, 1.0; x+y=1 glass reveal that the average coordination number of both the alkali cations decreases with increasing Cs+/(Na++Cs+ ratio. In addition, the coordination number of Na+ in xNa2O-yCs2O-2SiO2 glass is smaller than that of Cs+. This difference between the average coordination numbers of the alkali cations is considered to be one structural reason of the mixed alkali effect.

  14. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF{sub 2} host lattice were carried out. (orig.)

  15. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-05-01

    Tellurite glasses have historically been shown to host large concentrations of halides. They are here considered for the first time as a waste form for immobilizing chloride wastes, such as may be generated in the proposed molten alkali salt electrochemical separations step in nuclear fuel reprocessing. Key properties of several tellurite glasses are determined to assess acceptability as a chloride waste form. TeO2 glasses with other oxides (PbO, Al2O3 + B2O3, WO3, P2O5, or ZnO) were fabricated with and without 10 mass% of a simulated (non-radioactive) mixed alkali, alkaline-earth, and rare earth chloride waste. Measured chemical durability is compared for the glasses, as determined by the product consistency test (PCT), a common standardized chemical durability test often used to validate borosilicate glass waste forms. The glass with the most promise as a waste form is the TeO2-PbO system, as it offers good halide retention, a low sodium release (by PCT) comparable with high-level waste silicate glass waste forms, and a high storage density.

  16. Anion exchange extraction of cadmium halide complexes by triphenylnonylphosphonium salts

    Using the method of intermediate exchange, anion exchange extraction of cadmium halide complexes by triphenylnonylphosphonium salts has been studied. At 293 K and different ratios of components thermodynamic exchange constants of cadmium halide complexes for anion of certain inorganic acids are calculated. The highest values of the constants are observed in case of hydrophilic gegenions, the lowest ones - in case of hydrophobic gegenions. A high affinity of cadmium halide complexes to anionite can be used to develop methods of cadmium isolation, concentration and determination

  17. Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders

    Musil, Sean

    Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400C.

  18. Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies.

    Li, Chi; Wei, Jian; Sato, Mikio; Koike, Harunobu; Xie, Zhong-Zhi; Li, Yan-Qing; Kanai, Kaname; Kera, Satoshi; Ueno, Nobuo; Tang, Jian-Xin

    2016-05-11

    Solution-processed perovskite solar cells are attracting increasing interest due to their potential in next-generation hybrid photovoltaic devices. Despite the morphological control over the perovskite films, quantitative information on electronic structures and interface energetics is of paramount importance to the optimal photovoltaic performance. Here, direct and inverse photoemission spectroscopies are used to determine the electronic structures and chemical compositions of various methylammonium lead halide perovskite films (MAPbX3, X = Cl, Br, and I), revealing the strong influence of halide substitution on the electronic properties of perovskite films. Precise control over halide compositions in MAPbX3 films causes the manipulation of the electronic properties, with a qualitatively blue shift along the I → Br → Cl series and showing the increase in ionization potentials from 5.96 to 7.04 eV and the change of transport band gaps in the range from 1.70 to 3.09 eV. The resulting light absorption of MAPbX3 films can cover the entire visible region from 420 to 800 nm. The results presented here provide a quantitative guide for the analysis of perovskite-based solar cell performance and the selection of optimal carrier-extraction materials for photogenerated electrons and holes. PMID:27101940

  19. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete

    Surface alteration of typical aggregates with alkali-silica reactivity and alkali-carbonate reactivity, i.e. Spratt limestone (SL) and Pittsburg dolomitic limestone (PL), were studied by XRD and SEM/EDS after autoclaving in KOH, NaOH and LiOH solutions at 150 deg. C for 150 h. The results indicate that: (1) NaOH shows the strongest attack on both ASR and ACR aggregates, the weakest attack is with LiOH. For both aggregates autoclaved in different alkali media, the crystalline degree, morphology and distribution of products are quite different. More crystalline products are formed on rock surfaces in KOH than that in NaOH solution, while almost no amorphous product is formed in LiOH solution; (2) in addition to dedolomitization of PL in KOH, NaOH and LiOH solutions, cryptocrystalline quartz in PL involves in reaction with alkaline solution and forms typical alkali-silica product in NaOH and KOH solutions, but forms lithium silicate (Li2SiO3) in LiOH solution; (3) in addition to massive alkali-silica product formed in SL autoclaved in different alkaline solutions, a small amount of dolomite existing in SL may simultaneously dedolomitize and possibly contribute to expansion; (4) it is promising to use the duplex effect of LiOH on ASR and ACR to distinguish the alkali-silica reactivity and alkali-carbonate reactivity of aggregate when both ASR and ACR might coexist

  20. Study of Ammonium Halides by Neutron Spectrometry

    The scattering of slow neutrons from the ammonium halides NH4Cl, ND4Cl, and NH4Br has been studied at several temperatures with a view to elucidate the nature of the specific heat anomaly associated with these substances. According to Pauling the anomaly is due to the onset of free rotation of the ammonium ion, whereas according to Frenkel the anomaly is due to an order-disorder process. The present measurements rule out the possibility of free rotation thus confirming the Frenkel hypothesis. Values of the torsional frequencies and barrier heights for rotation have been derived and the relation of neutron scattering data to infra-red absorption. Raman scattering and NMR results are discussed. (author)

  1. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing

    Riley, Brian J., E-mail: brian.riley@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Rieck, Bennett T. [Washington State University, Pullman, WA 99164 (United States); McCloy, John S.; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Sundaram, S.K. [Alfred University, Alfred, NY 14802 (United States); Vienna, John D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We provide the first standardized chemical durability test on tellurite glasses. Black-Right-Pointing-Pointer The glasses we studied showed a wide variety of chemical durability. Black-Right-Pointing-Pointer The best-performing glass showed good halide retention following melting and durability testing. Black-Right-Pointing-Pointer These glasses have very high densities resulting in high volumetric waste loading ability. - Abstract: Tellurite glasses have historically been shown to host large concentrations of halides. They are here considered for the first time as a waste form for immobilizing chloride wastes, such as may be generated in the proposed molten alkali salt electrochemical separations step in nuclear fuel reprocessing. Key properties of several tellurite glasses are determined to assess acceptability as a chloride waste form. TeO{sub 2} glasses with other oxides (PbO, Al{sub 2}O{sub 3} + B{sub 2}O{sub 3}, WO{sub 3}, P{sub 2}O{sub 5}, or ZnO) were fabricated with and without 10 mass% of a simulated (non-radioactive) mixed alkali, alkaline-earth, and rare earth chloride waste. Measured chemical durability is compared for the glasses, as determined by the product consistency test (PCT), a common standardized chemical durability test often used to validate borosilicate glass waste forms. The glass with the most promise as a waste form is the TeO{sub 2}-PbO system, as it offers good halide retention, a low sodium release (by PCT) comparable with high-level waste silicate glass waste forms, and a high storage density.

  2. Oxygen mobility in alkali feldspars

    The oxygen mobility is shown from oxygen atoms exchange between potassic and sodic feldspars and 18 oxygen enriched water. Exchanges are carried out in autoclaves between 400 and 800 deg. C under a water pressure between 300 and 800 bars. The oxygen is extracted from silicate by a ClF3 attack. Two distinct mechanisms may be found. The first one is auto-diffusion; for adularia we have: D = 9.10-7 exp(-32000/RT) (cm2.s-1), for albite: D 4.5.10-5 exp(-37000/RT) (cm2.s-1). The second one, more rapid, is associated with alkali atoms exchanges. These results are applied to the order-disorder problem in feldspars and to the oxygen geochemistry. (author)

  3. High temperature reactions between molybdenum and metal halides

    Good colour rendering properties, high intensity and efficacy are of vital importance for high-end lighting applications. These requirements can be achieved by high intensity discharge lamps doped with different metal halide additives (metal halide lamps). To improve their reliability, it is very important to understand the different failure processes of the lamps. In this paper, the corrosion reactions between different metal halides and the molybdenum electrical feed-through electrode are discussed. The reactions were studied in the feed-through of real lamps and on model samples too. X-ray photoelectron spectroscopy (XPS) was used to establish the chemical states. In case of the model samples we have also used atomic absorption spectroscopy (AAS) to measure the reaction product amounts. Based on the measurement results we were able to determine the most corrosive metal halide components and to understand the mechanism of the reactions

  4. Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure.

    Rain, Gabriele; Nedelcu, Georgian; Protesescu, Loredana; Bodnarchuk, Maryna I; Kovalenko, Maksym V; Mahrt, Rainer F; Stferle, Thilo

    2016-02-23

    Metal-halide semiconductors with perovskite crystal structure are attractive due to their facile solution processability, and have recently been harnessed very successfully for high-efficiency photovoltaics and bright light sources. Here, we show that at low temperature single colloidal cesium lead halide (CsPbX3, where X = Cl/Br) nanocrystals exhibit stable, narrow-band emission with suppressed blinking and small spectral diffusion. Photon antibunching demonstrates unambiguously nonclassical single-photon emission with radiative decay on the order of 250 ps, representing a significant acceleration compared to other common quantum emitters. High-resolution spectroscopy provides insight into the complex nature of the emission process such as the fine structure and charged exciton dynamics. PMID:26771336

  5. Role of microstructure in the electron-hole interaction of hybrid lead halide perovskites

    Grancini, Giulia; Srimath Kandada, Ajay Ram; Frost, Jarvist M.; Barker, Alex J.; de Bastiani, Michele; Gandini, Marina; Marras, Sergio; Lanzani, Guglielmo; Walsh, Aron; Petrozza, Annamaria

    2015-10-01

    Organic-inorganic metal halide perovskites have demonstrated high power conversion efficiencies in solar cells and promising performance in a wide range of optoelectronic devices. The existence and stability of bound electron-hole pairs in these materials and their role in the operation of devices with different architectures remains a controversial issue. Here we demonstrate, through a combination of optical spectroscopy and multiscale modelling as a function of the degree of polycrystallinity and temperature, that the electron-hole interaction is sensitive to the microstructure of the material. The long-range order is disrupted by polycrystalline disorder and the variations in electrostatic potential found for smaller crystals suppress exciton formation, while larger crystals of the same composition demonstrate an unambiguous excitonic state. We conclude that fabrication procedures and morphology strongly influence perovskite behaviour, with both free carrier and excitonic regimes possible, with strong implications for optoelectronic devices.

  6. Investigation of doped cuprous halides for photovoltaic and display applications

    Vijayaraghavan, Rajani

    2011-01-01

    The thesis mainly focuses on the growth and optoelectronic characterisation of the doped cuprous halides (CuX) with high UV/blue emission properties and the light harvesting in the CuBr/Si based heterojunction photovoltaic (PV) cells. Since cuprous halides are short wavelength emitters with high excitonic binding energies, growth of lower resistivity, highly luminescent p and n-type films are essential for the development of the future excitonic based light emitting devices with these materia...

  7. Effect of the alkali metal activator on the properties of fly ash-based geopolymers

    Jaarsveld, J.G.S. van; Deventer, J.S.J. van

    1999-10-01

    The alkali and alkali earth metal cations present during the formation of most known aluminosilicate structures have a very significant effect on both the physical and chemical properties of the final product. Geopolymers are no exception, although this effect has not been thoroughly quantified and in the case of waste-based geopolymers it has not received any significant attention. The present study investigates the effect of mainly Na{sup +} and K{sup +} on the physical and chemical properties of fly ash-based geopolymeric binders both before and after setting has occurred. A variety of tests were conducted, including rheological measurements, various leaching tests, compressive strength testing, specific surface area determinations, and infrared spectroscopy (IR). It is concluded that the alkali metal cation controls and affects almost all stages of geopolymerization, from the ordering of ions and soluble species during the dissolution process to playing a structure-directing role during gel hardening and eventual crystal formation.

  8. EPR and optical absorption studies on manganese ion doped in mixed alkali cadmium phosphate glasses

    Electron paramagnetic resonance (EPR) spectra of Mn(II) ions in cadmium phosphate glasses are presented with mixed alkali variation as xLi2O + (20 - x) Na2O + 20 CdO + 59.5 P2O5 + 0.5 MnO glass system with 5 ? x ? 15 mol%. The EPR spectra of Mn(II) ions doped samples exhibit a sextet centered at g = 20. The optical absorption spectrum at room temperature shows three bands for Mn(II) ions in octahedral symmetry. The crystal field (Dq) and Racah parameters (B and C) are evaluated. From EPR and optical spectral studies reveals the nature of the bonding is dominantly ionic and its site symmetry is octahedral. At equal composition of alkali content, i.e. for x = 10 the glass system shows the mixed alkali effect.

  9. High effective silica fume alkali activator

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  10. Phonon Dispersion Relations in Alkali Metals

    It has been shown in this paper that the phonon dispersion curves of sodium in the [100], [110] and [111] symmetry directions can be explained well on the basis of a simple model, where one has to consider only central force constants between nearest and next nearest neighbours. The tangential force constant between the nearest neighbours is very much smaller as compared to the radial force constant, while for the next nearest neighbours the radial and tangential force constants are comparable. The calculation is carried out on the basis of the model suggested by de Launay, where it is shown that the conduction electrons exert a volume force for longitudinal modes. The stiffness constant of the electron gas is its bulk modulus which in de Launay's model is equal to the Cauchy discrepancy (C12-C14) for the cubic crystals. The three force constants α1, α2 and α1' can be determined from the measured elastic constants and the secular equation can be solved to give the dispersion curves. The dispersion curves have also been obtained using the calculated values of the bulk modulus of the electron gas after considering not only the exchange and correlation energies but also the Fermi kinetic energy. These also agree fairly well with experiment. The measured elastic constants as well as calculated bulk modulus of the electron gas indicate that the Cauchy relation C12 = C44 holds good approximately in alkali metals. This result is rather surprising as it requires that the interaction between the atoms be central in nature in spite of the metallic binding. A justification for this has been given by Cochran. A model with four force constants is being worked out. They can be determined from the three elastic constants and calculated bulk modulus of the electron gas. (author)

  11. Density of mixed alkali borate glasses: A structural analysis

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B2O3. The number of BO3 and BO4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  12. Density of mixed alkali borate glasses: A structural analysis

    Doweidar, H. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)]. E-mail: hdoweidar@mans.edu.eg; El-Damrawi, G.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Moustafa, Y.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Ramadan, R.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)

    2005-05-15

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B{sub 2}O{sub 3}. The number of BO{sub 3} and BO{sub 4} units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide.

  13. Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates

    Kasuya, Ryo; Miki, Takeshi; Morikawa, Hisashi; Tai, Yutaka

    2015-12-01

    To improve the safety of the Pd recovery processes that use toxic oxidizers, dissolution of Pd in hydrochloric acid with alkali metal palladates was investigated. Alkali metal palladates were prepared by calcining a mixture of Pd black and alkali metal (Li, Na, and K) carbonates in air. Almost the entire amount of Pd was converted into Li2PdO2 after calcination at 1073 K (800 C) using Li2CO3. In contrast, PdO was obtained by calcination at 1073 K (800 C) using Na and K carbonates. Our results indicated that Li2CO3 is the most active reagent among the examined alkali metal carbonates for the formation of palladates. In addition, dissolution of the resulting Li2PdO2 in HCl solutions was evaluated under various conditions. In particular, Li2PdO2 rapidly dissolved in diluted (0.1 M) HCl at ambient temperature. Solubility of Pd of Li2PdO2 was found to be 99 pct or larger after dissolution treatment at 353 K (80 C) for 5 minutes; in contrast, PdO hardly dissolved in 0.1 M HCl. The dissolution mechanism of Li2PdO2 in HCl was also elucidated by analysis of crystal structures and particulate properties. Since our process is completely free from toxic oxidizers, the dissolution process via alkali metal palladates is much safer than currently employed methods.

  14. Improved alkali-metal/silicate binders

    Schutt, J.

    1978-01-01

    Family of inorganic binders utilizes potassium or sodium oxide/silicate dispersion and employs high mole ratio of silicon dioxide to alkali-metal binder. Binders are stable, inexpensive, extremely water resistant, and easy to apply.

  15. High Pressure Electrochemistry: Application to silver halides

    Havens, K.; Kavner, A.

    2007-12-01

    Electron and ion charge transfer processes help govern electrical conductivity and diffusive mass and heat transport properties in deep Earth minerals. In an attempt to understand how pressure influences charge transfer behavior, the halide silver bromide (AgBr) was studied under the influence of an electric potential difference applied across two electrodes in a diamond anvil cell. This study follows our previous work on AgI, which was found to dissociate to molecular iodine and silver metal due to pressure and voltage influences. We performed two sets of experiments on AgBr at high pressure in a diamond anvil cell: electrochemical dissociation and electrical resistance measurements. In our study, we were able to electrochemically dissociate AgBr at pressures of 0.25-1.6 GPa by applying a voltage across the electrodes in the diamond cell sample chamber. Ag metal grew visibly on the negatively-charged electrode when voltages varying from 0.1 V to 5 V were applied. Additionally, a dark blue color appeared in low pressure areas of the diamond cell and grew darker from both voltage application and light exposure, indicating photochemical effects. We found that the reaction area and growth rate of both metal and dark blue color strongly increased as voltage increased, but tended to decrease with greater pressure. The resistance across the cell was observed to be influenced by both pressure and light exposure. As the AgBr sample was exposed to visible light, the resistance dropped instantaneously, and after the light was turned off, the resistance increased on a timescale of 10's of seconds to minutes. Notably, at higher pressures, the AgBr showed less photosensitivity. Exploration of these metal halide systems has many potential applications. First, these experiments explore the pressure-dependence of photochemical and photovoltaic processes, and may spur development of pressure-tuned microscale electronic devices. Second, these experimental results can be used to constrain thermodynamic models of pressure-dependent electrochemical behavior of materials, which may then be applied to the high temperature, high pressure mineral phases of the deep Earth and planets.

  16. NMR investigations on alkali intercalated carbon nanotubes

    Schmid, Michael

    2005-01-01

    In the present work, nuclear magnetic resonance (NMR) experiments were carried out on Lithium and Cesium intercalated single-walled carbon nanotube (SWNT) bundles. The alkali metals were intercalated in raw SWNT as starting material. The raw nanotubes are supposed to possess closed end caps whereby possible alkali adsorption sites are only provided by the interstitial channels as well as the surface of a carbon nanotube bundle. The interior space of the present SWNT is supposed to be predomi...

  17. Structural and Chemical Analysis of Gadolinium Halides Encapsulated within WS 2 Nanotubes

    Anumol, E A

    2016-05-18

    The hollow cavities of nanotubes could serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of inorganic nanotubes of WS2 by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is a non-trivial matter due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.

  18. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications.

    Slavney, Adam H; Hu, Te; Lindenberg, Aaron M; Karunadasa, Hemamala I

    2016-02-24

    Despite the remarkable rise in efficiencies of solar cells containing the lead-halide perovskite absorbers RPbX3 (R = organic cation; X = Br(-) or I(-)), the toxicity of lead remains a concern for the large-scale implementation of this technology. This has spurred the search for lead-free materials with similar optoelectronic properties. Here, we use the double-perovskite structure to incorporate nontoxic Bi(3+) into the perovskite lattice in Cs2AgBiBr6 (1). The solid shows a long room-temperature fundamental photoluminescence (PL) lifetime of ca. 660 ns, which is very encouraging for photovoltaic applications. Comparison between single-crystal and powder PL decay curves of 1 suggests inherently high defect tolerance. The material has an indirect bandgap of 1.95 eV, suited for a tandem solar cell. Furthermore, 1 is significantly more heat and moisture stable compared to (MA)PbI3. The extremely promising optical and physical properties of 1 shown here motivate further exploration of both inorganic and hybrid halide double perovskites for photovoltaics and other optoelectronics. PMID:26853379

  19. Slow relaxation, confinement, and solitons

    Schulman, L S; Scardicchio, A; Facchi, P; Nikl, M; Polk, K; Gaveau, B

    2002-01-01

    Millisecond crystal relaxation has been used to explain anomalous decay in doped alkali halides. We attribute this slowness to Fermi-Pasta-Ulam solitons. Our model exhibits confinement of mechanical energy released by excitation. Extending the model to long times is justified by its relation to solitons, excitations previously proposed to occur in alkali halides. Soliton damping and observation are also discussed.

  20. Genetic Control of Methyl Halide Production in Arabidopsis

    Rhew, R. C.; Ostergaard, L.; Saltzman, E. S.; Yanofsky, M. F.

    2003-12-01

    Methyl chloride and methyl bromide are the primary carriers of natural chlorine and bromine to the stratosphere where they catalyze the destruction of ozone, whereas methyl iodide influences aerosol formation and ozone loss in the troposphere. Methyl bromide is also an agricultural fumigant whose use is scheduled to be phased out by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Currently identified sources include oceans, biomass burning, industrial and agricultural use, fuel combustion, salt marshes, wetlands, rice paddies, certain terrestrial plants and fungi, and abiotic processes. We demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene located on chromosome II. In mutant plants that have a disruption of the HOL gene, methyl halide production is largely eliminated. A phylogenetic analysis using the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.

  1. Design and construction of a copper-halide laser

    The considerations necessary for the design and construction of an inexpensive, reliable copper halide laser are presented. A broad range of parameters which govern the output of the double-pulse copper-halide laser was studied. The laser has an optimum operating temperature which is different for each halide uCl, CuBr, CuI), but corresponds to a halide vapor pressure of about 0.1 torr for all three halides. At low repetition rates the highest laser output is achieved with helium as buffer gas. The laser output increases linearly with laser tube cross-section. As the tube diameter is increased, the dissociation energy must be increased, but not the excitation energy. A thyratron bias circuit has been developed which permits both dissociation and excitation pulses to be obtained from the same capacitor (with a small delay) without thyratron latch. Use of the single thyratron reduces the laser cost considerably. A laser tube with an operating life of many hundreds of hours has been designed. The description of a laser with an output of 0.5 mJ per pulse at repetition rates of up to 120 pulses per second is given. The design and construction of various components of this laser are given in detail. (authors)

  2. Chemistry of gaseous lower-valent actinide halides

    The objective of this program is to provide accurate thermochemical information for the uranium and thorium halide and oxyhalide systems, two of the key actinide systems, so that the basic factors underlying the chemical bonding and chemical reactivity in these systems can be elucidated in a systematic way. A complete characterization of the uranium and thorium systems will serve as a reliable base for modeling the behavior of the heavier actinides, which will be much more difficult to study because of sample size and safety restrictions. Our principal focus is on the the gaseous halides, mainly the lower-valent halides, because these molecular species largely will define the high-temperature chemistry in the nuclear applications of interest. 2 refs., 1 tab

  3. Mutual effect of elements during coprecipitation. Cocrystallization of rare earths in conditions of formation of double sulfates of alkali and alkaline earth metals

    Effect of solution composition on the coprecipitation of rare earths with double sulphates of alkali and alkali earth metals is studied. A principle possibility of the use of these crystal precipitates as collectors for selective rare earths concentrating out of solutions is shown. A possibility of rare earths determination after their concentrating at double salts by X-ray fluorescence, atom-emission and neutron-activation methods

  4. Silica enigma and ignorance in alkali

    Si migration and K, Na alterations are two key problems for understanding the whole process of hydrothermal metallogenesis, but they have not attracted sufficient attention of geologists for a long time. It is impossible for us to know hydrothermal metallogenetic regularity actually without studying dequartzfication and alkali-introduction. Being distinct from common habitual thinking, it is considered that ore-forming elements are micro-amount, passive subordinate components in the flow of hydrothermal matter movement, and there is no metallogenesis for a certain element in nature. Except that the ore source is controlled by the uneven distribution ore-forming elements in the mantle and crust the same metallogenesis may almost lead to the formation of deposits of all elements. Principal active components in the hydrothermal matter system include alkali, silica and acid volatiles. The ternary system has determined the fate of release, activation, migration, precipitaion and concentration of ore-forming elements. Each member of the ternary system plays a different role in metallogenesis, having marvellous functional division of work. of these three members main control factor is alkali metal, whereas silica and acid are constrained by alkali. Acidic matter (including silica) and ore-forming elements are derivatives from activities of alkali metals

  5. Solubility of alkali and alkaline earth metal sulfates in anhydrous hydrogen peroxide

    Solubility of alkali and alkaline earth metals sulfates is determined by isothermal method in anhydrous hydrogen method. Sodium sulfated of anhydrous hydrogen peroxide are crystallized in form of Na2SO4x2H2O2 solvates. Presence of peroxosolvates in the rest of solvates was not determined. Solubility of fluorides and perchlorates in hydrogen peroxide was also considered. 9 refs., 1 fig

  6. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  7. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Kasahara, Yuichi, E-mail: ykasahara@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kuroki, Kazuhiko, E-mail: kuroki@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Taguchi, Yasujiro, E-mail: y-taguchi@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-07-15

    In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron–phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors.

  8. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron–phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors

  9. Halide-Free Synthesis of Hydrochalcogenide Ionic Liquids of the Type [Cation][HE] (E=S, Se, Te).

    Finger, Lars H; Sundermeyer, Jrg

    2016-03-14

    We present the synthesis and thorough characterization of ionic liquids and organic salts based on hydrochalcogenide HE(-) (E=S, Se, Te) anions. Our approach is based on halide-, metal-, and water-free decarboxylation of methylcarbonate precursors under acidic conditions, resulting from the easily dissociating reagents H2 E. The compounds were characterized by elemental analysis, multinuclear NMR spectroscopy, thermal and single-crystal XRD analyses. The hydrosulfide salts were investigated with respect to their ability to dissolve elemental sulfur in varying stoichiometry. Thus-prepared polysulfide ILs were also analyzed by UV/Vis spectroscopy and cyclic voltammetry. PMID:26879604

  10. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Somera, L.; Cruz Z, E.; Roman L, J. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Hernandez A, J. M.; Murrieta S, H., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2015-10-15

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl{sub 2}) impurity were grown by using the Czochralski method. The emission characteristic of Mn{sup 2+} was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from {sup 60}Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  11. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl2) impurity were grown by using the Czochralski method. The emission characteristic of Mn2+ was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from 60Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  12. Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts

    Cui, Linfan; Jiao, Tifeng; Zhang, Qingrui; Zhou, Jingxin; Peng, Qiuming

    2015-01-01

    In this study, highly efficient silver halide (AgX)-based photocatalysts were successfully fabricated using a facile and template-free direct-precipitation method. AgX nanoparticles, which included silver chloride (AgCl), silver bromide (AgBr) and silver iodide (AgI), were synthesized using different potassium halides and silver acetate as reactive sources. The size distribution of the AgX nanopar? ticles was determined by the reaction time and ratio of the reagents, which were monitored by U...

  13. Thallous and cesium halide materials for use in cryogenic applications

    Certain thallous and cesium halides, either used alone or in combination with other ceramic materials, are provided in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous and cesium halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated or extruded onto substrates or wires. (author)

  14. Reactivity of halide and pseudohalide ligands in transition metal complexes

    The review generalizes experimental material on reactions of coordinated halide ligands, as well as cyanide, azide, thiocyanate and cyanate ligands in transition metal (Mo, W, Ru, etc.) complexes. It is shown that transformation of the intrasphere pseudohalide ligands is a very important method of directed synthesis of coordination compounds. The tendency of halide and pseudohalide ions to the formation of low-soluble salts or strong complexes can be widely used in preparation coordination chemistry for the ''forced'' introduction of solvent molecules into the complexes

  15. Alkali subhalides: high-pressure stability and interplay between metallic and ionic bonds.

    Saleh, G; Oganov, A R

    2016-01-20

    The application of high pressure (hundreds of gigapascals) to materials, besides modifying their properties, changes dramatically their reactivity. Consequently, new compounds are formed, which violate the chemical paradigms known to date. In fact, it was recently discovered (Zhang et al., Science, 2013) that sodium subchlorides (NaxCl, x > 1) become stable at high pressure. In this work, we carry out a thorough study of these compounds as well as of other alkali subhalides by means of evolutionary crystal structure prediction calculations combined with an in-depth analysis of their crystal and electronic structures. The results of our investigation are threefold. We present an updated phase diagram of NaxCl, including one new compound (Na4Cl3) and two previously undiscovered phases of Na3Cl. We demonstrate the appearance of remarkable features in the electronic structure of sodium subchlorides, such as chlorine atoms acquiring a -2 oxidation state. Most importantly, we derive a model which enables one to rationalize the stability of alkali subhalides at high pressure. The predictive ability of our model was validated by the results of crystal structure prediction calculations we carried out on alkali subhalides A3Y (A = Li, Na, K; Y = F, Cl, Br). Moreover, we show how the stability of recently reported high-pressure compounds can be rationalized on the basis of the insights gained in the present study. PMID:26728327

  16. Superconductivity in alkali-doped C60

    Highlight: • Superconductivity in alkali-doped C60 (A3C60) is well described by an s-wave state produced by phonon mediated pairing. • Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures up to 33 K in single-phase material. • The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials. - Abstract: Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials

  17. Microscopic Surface Structure of Liquid Alkali Metals

    Tostmann, Holger; DiMasi, Elaine; Shpyrko, Oleg G.; Pershan, Peter S.; Ocko, Benjamin M.; Deutsch, Moshe

    2004-01-01

    We report an x-ray scattering study of the microscopic structure of the surface of a liquid alkali metal. The bulk liquid structure factor of the eutectic K67Na33 alloy is characteristic of an ideal mixture, and so shares the properties of an elemental liquid alkali metal. Analysis of off-specular diffuse scattering and specular x-ray reflectivity shows that the surface roughness of the K-Na alloy follows simple capillary wave behavior with a surface structure factor indicative of surface ind...

  18. Alkali metal vapors - Laser spectroscopy and applications

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  19. Different Approaches for the Calculation of Electronic Excited States of Nonstoichiometric Alkali Halide Clusters: The Example of Na3F

    Durand, G.; Heitz, M. C.; Spiegelman, F.; Meier, C.; Mitrić, R.; Bonačić-Koutecký, V.; Pittner, Jiří

    2004-01-01

    Roč. 121, č. 20 (2004), s. 9898-9905. ISSN 0021-9606 R&D Projects: GA AV ČR KSK4040110 Keywords : Wigner distribution approach * optical response properties * sodium - fluoride clusters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.105, year: 2004

  20. Study of the point defect creation and of the excitonic luminescence in alkali halides irradiated by swift heavy ions

    The aim of this experimental thesis is to study the excitonic mechanisms and of the defect creation, in NaCl and KBr, under dense electronic excitations induced by swift heavy ion irradiations. In the first part, we present the main features of the interaction of swift heavy ions with solid targets, and after we review the well known radiolytic processes of the defect creation during X-ray irradiation. In the second chapter, we describe our experimental set-up. In the chapter III, we present our results of the in-situ optical absorption measurements. This results show that defect creation is less sensitive to the temperature than during a classical irradiation. Besides, we observe new mechanisms concerning the defect aggregation. In the chapter IV, we present the results of excitonic luminescence induced by swift by swift heavy ions. We observe that the luminescence yields only change with the highest electronic stopping power. In the chapter V, we perform thermal spike and luminescence yields calculations and we compare the numerical results to the experiments presented in the chapter IV. (author). 121 refs., 65 figs., 30 tabs

  1. Molecular Simulation of Aqueous Electrolyte Solubility. 3. Alkali-halide Salts and Their Mixtures in Water and in Hydrochloric Acid

    Moučka, F.; Lísal, Martin; Smith, W. R.

    2012-01-01

    Roč. 116, č. 18 (2012), s. 5468-5478. ISSN 1520-6106 R&D Projects: GA ČR GA203/08/0094; GA MŠk LH12020 Grant ostatní: NSERC(CA) OGP1041; EC(XE) COST TD0802 Institutional research plan: CEZ:AV0Z40720504 Keywords : molecular simulations * electrolyte hydrates * oemc simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.607, year: 2012

  2. Sampling And Measuring Alkali Salts In Industrial Gasification Plants

    Kowalski, T.; Schuler, A.J.; Ludwig, Chr.; Schneebeli, J.; Biollaz, S.

    2005-03-01

    A new alkali sampling technique was used for measuring sodium and potassium salts in gases from two different industrial biomass gasifiers. The method allows sampling tars and alkali salts in the same solution. (author)

  3. Recovery of alkali metal constituents from catalytic coal conversion residues

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  4. Lighter Alkali hydride and deuteride 1: Electronic properties of pure solids

    The properties of lighter alkali hydrides of metals which crystallize in the rock-salt structure are discussed. First, the properties of pure crystals which are dominated by the electrons, in particular the energy levels and the eigenstates of the electrons in the absence of lattice defects are considered. After that, the optical properties of the solids excited at photon energies larger than those appropriate to lattice vibration and dominated by the transition of electron from the occupied core and valence levels to the normally empty conduction states, are discussed. 127 refs, 29 figs, 17 tabs

  5. Experimental determination of partition coefficients for Rb, Sr, and Ba between alkali feldspar and silicate liquid

    Partitioning of Rb, Sr and Ba between alkali feldspar and a synthetic granitic melt has been determined at 8 kb and 720 to 7800C for a single quaternary granite composition. The results suggest that Henry's Law is obeyed by Rb up to approximately 0.8 wt.%Rb2O in both the liquid and in the alkali feldspar. The measured D values for Rb range from 0.77 to 1.1 For Ba, Henry's Law is obeyed up to approximately 0.6 wt.% BaO in the liquid and approximately 5 wt.% BaO in the alkali feldspar. D values for Ba range from 6.4 to 14. For Sr there is only a crude relationship between concentration in the liquid and concentration in the alkali feldspar at concentrations greater than approximately 0.6wt.%SrO in the liquid and approximately 0.4 wt.% SrO in the alkali feldspar. D values for Sr range from 1.2 to 5.0. Partitioning of Sr is apparently sensitive to the concentration of Ba in the system and this partly explains the failure of Sr to obey Henry's Law. Linear least-squares fits to the partitioning data as a function of temperature suggest inverse correlation between temperature and D values. Rb shows only a slight temperature effect whereas Ba and Sr appear to be rather strongly affected by temperature, but the temperature range examined here is small compared to the scatter in the data making these trends relatively uncertain. Other factors that appear to affect partitioning, especially of Sr, are growth rate, development of sector zoning, and Or content of the alkali feldspar. These factors severely limit the use of partitioning of these elements in alkali feldspar as geothermometers. The technique for measuring growth rates utilized here combined with measurement of trace element depletion in diffusion boundary layers adjacent to the alkali feldspar crystals makes it possible to estimate diffusivities for Ba and Sr. These estimates suggest a difference of 2 orders of magnitude between diffusivities for Ba and Sr in a vapor-saturated melt and those measured for a dry obsidian glass. (author)

  6. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes

    Kim, Seo young; Kim, Yu kyoung; Park, Il song; Jin, Guang chun; Bae, Tae sung; Lee, Min ho

    2014-12-01

    In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO2 nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO2 nanotubes (PNA) and alkali and heat-treated TiO2 nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na2TiO3) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  7. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium alkyltherpropyl... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides....

  8. Methyl halide emission estimates from domestic biomass burning in Africa

    Mead, M. I.; Khan, M. A. H.; White, I. R.; Nickless, G.; Shallcross, D. E.

    Inventories of methyl halide emissions from domestic burning of biomass in Africa, from 1950 to the present day and projected to 2030, have been constructed. By combining emission factors from Andreae and Merlet [2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966], the biomass burning estimates from Yevich and Logan [2003. An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles 17(4), 1095, doi:10.1029/2002GB001952] and the population data from the UN population division, the emission of methyl halides from domestic biomass usage in Africa has been estimated. Data from this study suggest that methyl halide emissions from domestic biomass burning have increased by a factor of 4-5 from 1950 to 2005 and based on the expected population growth could double over the next 25 years. This estimated change has a non-negligible impact on the atmospheric budgets of methyl halides.

  9. Method for calcining nuclear waste solutions containing zirconium and halides

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate

  10. Halide glass containing trivalent uranium ions and its fabrication process

    This halide glass, showing an optical attenuation -1 in the near infrared from 2.2 to 304 micrometers, is prepared with a glass containing uranium ions as U4+ and/or U5+ reduced by ionizing radiations in U3+. Application is made to the fabrication of optical fibers and lasers doped with trivalent uranium

  11. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  12. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  13. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  14. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  15. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  16. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  17. Analysis of Melting for Alkali Earth and Alkali Oxides Based on the Diffusional Force Theory

    Liu, Quan; Chen, Li-Rong

    An analysis of the melting alkali earth and alkali oxides is presented using the concept of diffusional force. The calculations are performed by developing an ionic model based on Harrison's quantum mechanical treatment of overlap repulsive potential which takes into account the interactions up to second neighbors. Van der Waals dipole-dipole and dipole-quadrupole interactions calculated by more accurate methods are also included in the model. Using the formula by Fang, derived on the basis of thermodynamic analysis, the values of interionic distances for 8 alkali earth and alkali oxides at melting have been obtained. A simple model for melting is developed based on the diffusional force models. The values of Tm thus obtained are found to show fairly good agreement with experimental values of melting temperatures.

  18. Positronium impact ionization of Alkali atoms

    Ghosh, D

    2015-01-01

    Target ionization processes of alkali atoms by Positronium impact are investigated. Calculations are performed in the frame work of model potential formalism using the Coulomb distorted eikonal approximation. Interesting qualitative features are noted both in the scattered Ps and the ejected electron distributions in differential as well as double differential levels of the collision cross sections.

  19. Thermoelastic behaviour of mixed ammonium halides

    Bedi, S. S.; Singh, Jaspal

    1992-04-01

    A theory for the temperature derivatives of second order elastic constants of ammonium chloride and ammonium bromide, crystalizing in ceasium chloride structure has been developed incorporating contributions due to the thermal phonons and three body interactions in the lattice energy in the framework of Hildebrand approximation. The expressions for the temperature derivatives have been derived by differentiating the expressions of the second order elastic constants. The repulsive potential which is taken to be of the Born-Mayer type is assumed significant up to the first neighbours only. Computations have been made for pure and mixed crystals NH4Cl1-xBrx for x=0, 0.13, 0.23 and 1.00. The results have been found in agreement with the experimental data wherever these are available.

  20. Electronic structure and Fano antiresonance of chromium Cr(III) ions in alkali silicate glasses

    The optical properties of the Cr3+ doped in alkali silicate glasses X2O–SiO2 with different modifier cations X=Li, Na and K have been investigated by Villian et al. This work investigates a theoretical crystal-field analysis of the electronic energy levels of Cr3+ in these glasses. This analysis based on the Racah theory was carried out for the Chromium (III) center with an Oh site symmetry. The objective of this study is to determine the effect of glass matrix modifier on the Racah B, C and crystal-field Dq parameters. The effect of the glass matrix environment on these parameters is also reported by comparison with alkali cadmium borosulphate, phosphate and borate glasses. The interference dips observed in the broad band 4T2g(4F) result from interaction with the 2Eg(2G) and 2T1g(2G) sharp levels are known as the Fano antiresonance model. This feature is qualitatively studied using the adiabatic potential surfaces for the quartet 4T2g(4F) and doublet 2Eg(2G) levels. - Highlights: • The electronic structure of Cr3+ in alkali silicate glasses X2O–SiO2 (X=Li,Na,K) was performed. • The theoretical study, based on Racah theory, permits us to deduce the energy levels. • The observed interference dip in absorption spectra is related to Fano antiresonance

  1. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF2 > MgF2. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF2 and MgF2. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides

  2. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    Guo, W., E-mail: guowei1982cry@163.com [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Ma, H.A.; Jia, X. [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2014-03-01

    Graphical abstract: - Highlights: Appropriate etch processes of hBN and cBN under HPHT are proposed. The degree of the crystallization of hBN was decreased. A special cBN growth mechanism with a triangular unit is proposed. Plate-shape cBN crystals with large ratio of length to thickness were obtained. A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the graphitization index values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  3. He atom surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    Investigations have focused primarily on surface structure and dynamics of ionic insulators, epitaxial growth onto alkali halide crystals and multiphoton studies. The surface dynamics of RbCl has been re-examined. We have developed a simple force constant model which provides insight into the dynamics of KBr overlayers on NaCl(001), a system with a large lattice mismatch. The KBr/NaCl(001) results are compared to Na/Cu(001) and NaCl/Ge(001). We have completed epitaxial growth experiments for KBr onto RbCl(001). Slab dynamics calculations using a shell model for this system with very small lattice mismatch are being carried out in collaboration with Professor Manson of Clemson University and with Professor Schroeder in Regensburg, Germany. Extensive experiments on multiphoton scattering of helium atoms onto NaCl and, particularly, LiF have been carried out and the theory has been developed to a rather advanced stage by Professor Manson. This work will permit the extraction of more information from time-of-flight spectra. It is shown that the theoretical model provides a very good description of the multiphoton scattering from organic films. Work has started on self-assembling organic films on gold (alkyl thiols/Au(111)). We have begun to prepare and characterize the gold crystal; one of the group members has spent two weeks at the Oak Ridge National Laboratory learning the proper Au(111) preparation techniques. One of our students has carried out neutron scattering experiments on NiO, measuring both bulk phonon and magnon dispersion curves

  4. Developments in alkali-metal atomic magnetometry

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs) of the electron and the 129Xe atom, with projected sensitivity of deltade=9x10 -30 e-cm and deltadXe=4x10 -31 e-cm after 100 days of integration; both bounds are more than two orders of magnitude better than the existing experimental limits on the EDMs of the electron and of any diamagnetic atom.

  5. On dewetting of thin films due to crystallization (crystallization dewetting).

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting. PMID:26993991

  6. Preparation of lithium manganese oxides in molten alkali hydroxides and their electrochemical properties

    Katayama, K.; Higuchi, M.; Azuma, Y. [Tokai Univ., Kanagawa (Japan). Dept. of Industrial Chemistry; Yukawa, M.; Suhara, M. [Seimi Chemical Co., Ltd., Chigasaki (Japan)

    2002-07-01

    Lithium manganese oxides, which are used as cathode materials in lithium rechargeable batteries, were prepared by using molten alkali hydroxides, and the electrochemical properties of these oxide powders were evaluated. The composition of alkali hydroxides and heating period altered the composition and crystal structure of the powders, with the shorter period being the more favorable in this preparation method. The cathode performance of the batteries prepared using these powders was evaluated as satisfactory. This method was also applied to the preparation of doped lithium manganese oxide powders with a composition of LiMn{sub 0.9}M{sub 0.1}O{sub 2}(M: Co, Ni, Cr, Al, Ag, Fe), which also showed promising properties for use as cathode materials in rechargeable lithium batteries. These results indicated that this simple and quick method was promising for the preparation of cathode powders. (orig.)

  7. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  8. Time-resolved photoemission study of the electronic structure and dynamics of chemisorbed alkali atoms on Ru(0001)

    Zhang, Shengmin; Wang, Cong; Cui, Xuefeng; Wang, Yanan; Argondizzo, Adam; Zhao, Jin; Petek, Hrvoje

    2016-01-01

    We investigate the electronic structure and photoexcitation dynamics of alkali atoms (Rb and Cs) chemisorbed on transition-metal Ru(0001) single-crystal surface by angle- and time-resolved multiphoton photoemission. Three- and four-photon photoemission (3PP and 4PP) spectroscopic features due to the σ and π resonances arising from the n s and n p states of free alkali atoms are observed from ˜2 eV below the vacuum level in the zero-coverage limit. As the alkali coverage is increased to a maximum of 0.02 monolayers, the resonances are stabilized by formation of a surface dipole layer, but in contrast to alkali chemisorption on noble metals, both resonances form dispersive bands with nearly free-electron mass. Density functional theory calculations attribute the band formation to substrate-mediated interaction involving hybridization with the unoccupied d bands of the substrate. Time-resolved measurements quantify the phase and population relaxation times in the three-photon photoemission (3PP) process via the σ and π resonances. Differences between alkali-atom chemisorption on noble and transition metals are discussed.

  9. Lanthanum halide scintillators: Properties and applications

    BrilLanCe[reg]-350 and BrilLanCe[reg]-380, Saint-Gobain Crystals' trade-names for LaCl3:Ce and LaBr3:Ce are being brought to market under exclusive license to Delft and Bern Universities. We are reporting the properties of crystals produced with commercially viable processes and find they match others' observations. These scintillators are bright (60,000 photons/MeV for LaBr3:Ce) and have very linear response, a combination that leads to very good energy resolution (3:Ce). The materials also have fast scintillation decay times (3:Ce). These excellent properties are retained at high temperature with only moderate light loss (138 and Ac227, the latter having been substantially reduced in recent processing. BrilLanCe[reg]-350 is now available in detectors up to 51 mm diameter while 38 mm diameter is available for BrilLanCe[reg]-380. Larger sizes are expected

  10. In.sup.+./sup., Pb.sup.2+./sup. and Bi.sup.3+./sup. in KBr crystal: Luminescence dynamics

    Polák, Karel; Mihóková, Eva

    2010-01-01

    Roč. 32, č. 10 (2010), s. 1280-1282. ISSN 0925-3467. [5th International Symposium on Laser, Scintillator and Non Linear Optical Materials (ISLNOM - 5). Pisa, 03.09.2009-05.09.2009] Institutional research plan: CEZ:AV0Z10100521 Keywords : alkali halides * optical properties * photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.679, year: 2010

  11. Removal of Retired Alkali Metal Test Systems

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  12. Alkali metal containing battery grid lead alloy

    Vikram Rao, M.; Foerster, G.S.; Hebbar, R.K.

    1979-07-03

    A lead alloy containing alkali metal and with low antimony content, characterized by improved ductility for use as an electric storage battery grid or in acidic environments, suitably contains from 0.5% to 3.0% Sb, 0.01% to 0.7% As, 0.001% to 0.7% Sn, 0.001% to 0.15% Cu, 0.001% to 0.015% S or 0.001% to 0.05% Se or admixtures thereof, and 0.001% to 0.05% of an alkali metal. Battery grids made from the alloy are resistant to electrochemical corrosion, gassing, and grid growth, and exhibit improved bend ductility. 3 tables.

  13. Transmission of alkali aerosols through sampling systems

    Kowalski, T.; Judex, J.; Schildhauer, T.J.; Ludwig, C. [Paul Scherrer Institut, General Energy Department, Villigen (Switzerland)

    2011-01-15

    In biomass gasification, particles such as condensed alkali salts pose a threat on equipment. Due to high loads of condensable tars in the gases, sampling of these particles to liquids and subsequent analysis of the liquid is frequently the method of choice for measuring the alkali concentration in the gas. However, little is known about the collection efficiency of liquid sampling devices. By measuring the aerosol transmission using a surface ionization detector, two continuous sampling systems are compared with conventional impinger bottles. A low collection efficiency for the latter was found, but down to nearly zero transmission for the continuous sampling systems. The main mechanisms for mass transfer from gas to liquid are discussed with emphasis on particle removal in gas slugs in two-phase flow inside tubes of the sampling system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Nonlinear lattice relaxation of photoexcited diplatinum-halide chain compounds

    Ohara, J; Ohara, Jun; Yamamoto, Shoji

    2006-01-01

    In order to reveal the relaxation mechanism of photogenerated charge-transfer excitations in quasi-one-dimensional halogen-bridged diplatinum complexes, we calculate the low-lying adiabatic potential energy surfaces of a one-dimensional extended Peierls-Hubbard model. High-energy excitations above the electron-hole continuum may relax into polarons, while excitons pumped within the optical gap are self-localized and then either decay by luminescence or divide into solitons. Neutral solitons, charged solitons, and polarons may be simultaneously photogenerated in a diplatinum-halide chain, which has never been observed in any conventional platinum-halide chain. Optical conductivity is also simulated along the decay paths for experimental verification.

  15. Pulse radiolysis of alkali metal fluorides melts

    The melts of alkali metal fluoride mixtures are investigated by the method of pulse radiolysis with optical recording. Parameters of optical spectra and radiochemical yields of solveted electrons in these systems are close to the halogenides. Optical absorption of radiolysis oxydizing component is established, the parameters of this component differ significantly from those in the melts of chlorides, bromides and iodides which seems to be related to fast reaction of F3-

  16. A simple alkali metal ion gun

    An easily constructed alkali-metal-ion gun with a large metal-zeolite reservoir is described. The gun provides ion-beam currents from 100 eV to 5 keV in excess of 10 ?A with a wide range of focal lengths. The ion trajectories of the extraction, acceleration, and focusing have been computed using the program simion. A versatile three-electrode extraction geometry that provides ion trajectories which emulate the planar diode is described

  17. Influence of alkali and alkaline earth ions on the -alkylation of the lower rim phenolic-OH groups of -tert-butyl-calix[4]arene to result in amide-pendants: Template action of K+ and the structure of K+ bound tetra-amide derivative crystallized with a -tert-butylcalix[4]arene anion

    Amjad Ali; Chebrolu P Rao; Philippe Guionneau

    2008-03-01

    Role of alkali and alkaline earth ions on the formation of calix[4]arene-amide derivatives through -alkylation of the lower rim phenolic-OH groups in general and template action of K+ in particular have been explored. Na+ and K+ ions among alkali, and Ca2+ and Sr2+ ions among alkaline earth have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as template and yields a K+ bound tetra-amide derivative where the charge is counter balanced by a calix[4] arene-monoanion and the product is crystallographically characterized. Change in the amide precursor used in these -alkylation reactions has no effect on the type of the amide derivative formed. Also demonstrated is a direct one-step reaction for the preparation of 1,3-di-amide derivative in high yield and low reaction period using CsHCO3.

  18. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  19. Transport properties of alkali metal doped fullerides

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity

  20. Study of methyl halide fluxes in temperate and tropical ecosystems

    Blei, Emanuel

    2010-01-01

    CH3Br and CH3Cl (methyl halides) are the most abundant natural vectors of bromine and chlorine into the stratosphere and play an important role in stratospheric ozone destruction. The current knowledge of their respective natural sources is incomplete leading to large uncertainties in their global budgets. Beside the issue of quantification, characterisation of possible sources is needed to assist modelling of future environmental change impacts on these sources and hence the s...

  1. Demixing in a metal halide lamp, results from modelling

    Convection and diffusion in the discharge region of a metal halide lamp is studied using a computer model built with the plasma modelling package Plasimo. A model lamp containing mercury and sodium iodide is studied. The effects of the total lamp pressure on the degree of segregation of the light emitting species are examined and compared to a simpler model with a fixed temperature profile. Significant differences are observed, justifying the use of the more complete approach

  2. Halide-bridged binuclear HX-splitting catalysts.

    Powers, David C; Hwang, Seung Jun; Zheng, Shao-Liang; Nocera, Daniel G

    2014-09-01

    Two-electron mixed-valence compounds promote the rearrangement of the two-electron bond photochemically. Such complexes are especially effective at managing the activation of hydrohalic acids (HX). Closed HX-splitting cycles require proton reduction to H2 and halide oxidation to X2 to be both accomplished, the latter of which is thermodynamically and kinetically demanding. Phosphazane-bridged Rh2 catalysts have been especially effective at activating HX via photogenerated ligand-bridged intermediates; such intermediates are analogues of the classical ligand-bridged intermediates proposed in binuclear elimination reactions. Herein, a new family of phosphazane-bridged Rh2 photocatalysts has been developed where the halide-bridged geometry is designed into the ground state. The targeted geometries were accessed by replacing previously used alkyl isocyanides with aryl isocyanide ligands, which provided access to families of Rh2L1 complexes. H2 evolution with Rh2 catalysts typically proceeds via two-electron photoreduction, protonation to afford Rh hydrides, and photochemical H2 evolution. Herein, we have directly observed each of these steps in stoichiometric reactions. Reactivity differences between Rh2 chloride and bromide complexes have been delineated. H2 evolution from both HCl and HBr proceeds with a halide-bridged Rh2 hydride photoresting state. The H2-evolution efficiency of the new family of halide-bridged catalysts is compared to a related catalyst in which ligand-bridged geometries are not stabilized in the molecular ground state, and the new complexes are found to more efficiently facilitate H2 evolution. PMID:25137532

  3. Influence of the Print Run on Silver Halide Printing Plates

    Tomislav Cigula

    2010-09-01

    Full Text Available The most common printing technique today is lithography. The difference between printing and nonprinting areason a printing plate is accomplished by opposite physical and chemical properties of those areas (MacPhee, 1998.The printing areas are made of photoactive layer that attracts oil and chemical substances with oil solvent – printinginks. The nonprinting areas are made of aluminium-oxide which attracts water based substances – the fountainsolution.There are many of various types of photoactive layer which are used for production of offset printing plates, amongothers is silver halide layer. The usage of the silver halide technology in the graphic reproduction is not a novelty.The filmmaking phase is based on the usage of the silver halide as the photographically active ingredient, for instance,AgBr (silver bromide. The new, digital plate making technology (Computer to Plate, CtP eliminates thefilmmaking phase and therefore enables control of the printing plate’s exposure made by computer. CtP technologyeliminates the filmmaking phase, but it also results with the reduction of needed material quantities and requiredtime for the production (Limburg, 1994; Seydel, 1996.In this paper the basis of the graphic reproduction by using the silver halide digital printing plates was described.The changes of the AgX copying layer and the surface of the aluminium base in the printing process have beenobserved. The surface characteristics were determined by measuring the relevant surface roughness parameters. Inaddition, measurements of coverage values on the prints, detailed at smaller print run, were conducted.Results showed that surface changes on the printing plate are changing during printing process and that thesechanges influence transfer of the printing ink on the printing substrate. These measurements proved to be of greatinterest in the graphic reproduction as they enable us to determine consistency of the printing plates during theprinting process, to predict the endurance as well as to define the print run which will result with optimal qualityprints.

  4. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  5. Characterization of Catalytically Active Octahedral Metal Halide Cluster Complexes

    Satoshi Kamiguchi

    2014-04-01

    Full Text Available Halide clusters have not been used as catalysts. Hexanuclear molecular halide clusters of niobium, tantalum, molybdenum, and tungsten possessing an octahedral metal framework are chosen as catalyst precursors. The prepared clusters have no metalmetal multiple bonds or coordinatively unsaturated sites and therefore required activation. In a hydrogen or helium stream, the clusters are treated at increasingly higher temperatures. Above 150250 C, catalytically active sites develop, and the cluster framework is retained up to 350450 C. One of the active sites is a Brnsted acid resulting from a hydroxo ligand that is produced by the elimination of hydrogen halide from the halogen and aqua ligands. The other active site is a coordinatively unsaturated metal, which can be isoelectronic with the platinum group metals by taking two or more electrons from the halogen ligands. In the case of the rhenium chloride cluster Re3Cl9, the cluster framework is stable at least up to 300 C under inert atmosphere; however, it is reduced to metallic rhenium at 250300 C under hydrogen. The activated clusters are characterized by X-ray diffraction analyses, Raman spectrometry, extended X-ray absorption fine structure analysis, thermogravimetrydifferential thermal analysis, infrared spectrometry, acid titration with Hammett indicators, and elemental analyses.

  6. Reaction of mesophase pitch and semicoke with halogens and halides

    Preiss, H. (Academy of Sciences of the GDR, Berlin. Central Institute of Physical Chemistry)

    1989-10-01

    The reaction of both mesophase pitch and semicoke with halogens and halides has been studied. Absorption of chlorine and bromine, and subsequent desorption indicate the existence of both loosely- and strongly-held halogens in the pyrolysed pitch. The absorbed halogen concentration decreases when the pyrolysis temperature of the pitch increases. The total concentration of absorbed bromine in mesophase pitch is three times higher than that in stage 2 bromine graphite, however, no X-ray evidence for intercalation has been found. The mechanism of fixation of the strongly-held halogen atoms is discussed in view of the content of C-H groups. Mesophase pitch absorbs non-oxidizing halides (e.g. AsCl{sub 3}, SbCl{sub 3}) without any indication of interlayer intercalate ordering. Oxidizing halides (e.g. SbCl{sub 5}, PCl{sub 5}) react with mesophase pitches and semi-cokes, forming halogenated pitches with a halogen content ranging from about 30-50 wt%. 20 refs., 5 figs., 2 tabs.

  7. Solvation structures of lithium halides in methanol–water mixtures

    Sarkar, Atanu; Dixit, Mayank Kumar; Tembe, B.L., E-mail: bltembe@chem.iitb.ac.in

    2015-02-02

    Highlights: • Potentials of mean force for Li{sup +}-halides are calculated in methanol–water mixtures. • Stable CIP for x{sub methanol} = 1.0 becomes unstable at and below x{sub methanol} = 0.75. • The Li{sup +} ion is preferentially solvated by methanol molecules. • The halide ions are preferentially solvated by water molecules. - Abstract: The potentials of mean force (PMFs) for the ion pairs, Li{sup +}−Cl{sup −}, Li{sup +}−Br{sup −} and Li{sup +}−I{sup −} have been calculated in five methanol–water compositions. The results obtained are verified by trailing the trajectories and calculating the ion pair distance residence times. Local structures around the ions are studied using the radial distribution functions, density profiles, orientational correlation functions, running coordination numbers and excess coordination numbers. The major change in PMF is observed as the methanol mole fraction (x{sub methanol}) is changed from 1.0 to 0.75. The stable contact ion pair occurring for x{sub methanol} = 1.0 becomes unstable at and below x{sub methanol} = 0.75. The preferential solvation data show that the halide ions are always preferentially solvated by water molecules. Although the lithium ion is preferentially solvated by methanol molecules, there is significant affinity towards water molecules as well.

  8. Solvation structures of lithium halides in methanol–water mixtures

    Highlights: • Potentials of mean force for Li+-halides are calculated in methanol–water mixtures. • Stable CIP for xmethanol = 1.0 becomes unstable at and below xmethanol = 0.75. • The Li+ ion is preferentially solvated by methanol molecules. • The halide ions are preferentially solvated by water molecules. - Abstract: The potentials of mean force (PMFs) for the ion pairs, Li+−Cl−, Li+−Br− and Li+−I− have been calculated in five methanol–water compositions. The results obtained are verified by trailing the trajectories and calculating the ion pair distance residence times. Local structures around the ions are studied using the radial distribution functions, density profiles, orientational correlation functions, running coordination numbers and excess coordination numbers. The major change in PMF is observed as the methanol mole fraction (xmethanol) is changed from 1.0 to 0.75. The stable contact ion pair occurring for xmethanol = 1.0 becomes unstable at and below xmethanol = 0.75. The preferential solvation data show that the halide ions are always preferentially solvated by water molecules. Although the lithium ion is preferentially solvated by methanol molecules, there is significant affinity towards water molecules as well

  9. Methyl halide emissions from greenhouse-grown mangroves

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  10. Anionic halide···alcohol clusters in the solid state.

    Gushchin, Pavel V; Kuznetsov, Maxim L; Haukka, Matti; Kukushkin, Vadim Yu

    2014-10-01

    The cationic (1,3,5-triazapentadiene)Pt(II) complexes [1](Cl)2, [2](Cl)2, [3](Br)2, and [4](Cl)2, were crystallized from ROH-containing systems (R = Me, Et) providing alcohol solvates studied by X-ray diffraction. In the crystal structures of [1-4][(Hal)2(ROH)2] (R = Me, Et), the Hal(-) ion interacts with two or three cations [1-4](2+) by means of two or three or four contacts thus uniting stacked arrays of complexes into the layers. The solvated MeOH or EtOH molecules occupy vacant space, giving contacts with [1-4](2+), and connects to the Hal(-) ion through a hydrogen bridge via the H(1O)O(1S) H atom forming, by means of the Hal(-)···HOR (Hal = Cl, Br) contact, the halide-alcohol cluster. Properties of the Cl(-)···HO(Me) H-bond in [1][(Cl)2(MeOH)2] were analyzed using theoretical DFT methods. PMID:25192004

  11. Thermalization of different alkali and alkali-earth elements at the TRI?P facility

    Radioactive isotopes produced by the in-flight method are converted into low-energy ions with a thermal ionizer (TI) ion catcher, the operation of which is based on a hot cavity ion source. The extraction efficiency of the TI for different alkali and alkali-earth elements has been studied and compared to a model based on diffusion only. The model describes the stationary limit, i.e. the extraction efficiency, as well as the dynamic response of the TI output when the primary beam is switched on and off.

  12. Thermalization of different alkali and alkali-earth elements at the TRI{mu}P facility

    Shidling, P.D., E-mail: P.Shidling@rug.n [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Giri, G.S.; Hoek, D.J. van der; Jungmann, K.; Kruithof, W.L.; Onderwater, C.J.G.; Santra, B.; Sohani, M.; Versolato, O.O.; Willmann, L.; Wilschut, H.W. [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands)

    2010-10-01

    Radioactive isotopes produced by the in-flight method are converted into low-energy ions with a thermal ionizer (TI) ion catcher, the operation of which is based on a hot cavity ion source. The extraction efficiency of the TI for different alkali and alkali-earth elements has been studied and compared to a model based on diffusion only. The model describes the stationary limit, i.e. the extraction efficiency, as well as the dynamic response of the TI output when the primary beam is switched on and off.

  13. Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection

    Paul Guss, Sanjoy Mukhopadhyay, Ron Guise, Ding Yuan

    2010-06-09

    Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF{sub 3}:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to {sup 137}Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF{sub 3}:Ce-loaded sample have been made using {sup 137}Cs sources. Figure 2 shows an energy spectrum acquired for CeF{sub 3}. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr{sub 3} crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% {sup 138}La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant strength of the nanostructure detector concept is the ability to create extremely large detector volumes by mixing nanoparticles into a transparent matrix. This would argue for use of nanoparticles other than lanthanum halides. Nanocomposites are easy to prepare; it is much less costly to use nanocomposites than to grow large whole crystals of these materials. The material can be fabricated at an industrial scale, further reducing cost. This material potentially offers the performance of $300/cc material (e.g., lanthanum bromide) at a cost of $1/cc. Because the material acts as a plastic, it is rugged and flexible, and can be made in large sheets, increasing the sensitivity of a detector using it. It would operate at ambient temperatures. Very large volumes of detector may be produced at greatly reduced cost, enhancing the non-proliferation posture of the nation for the same dollar value.

  14. Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection

    Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF3:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to 137Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF3:Ce-loaded sample have been made using 137Cs sources. Figure 2 shows an energy spectrum acquired for CeF3. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr3 crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% 138La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant strength of the nanostructure detector concept is the ability to create extremely large detector volumes by mixing nanoparticles into a transparent matrix. This would argue for use of nanoparticles other than lanthanum halides. Nanocomposites are easy to prepare; it is much less costly to use nanocomposites than to grow large whole crystals of these materials. The material can be fabricated at an industrial scale, further reducing cost. This material potentially offers the performance of $300/cc material (e.g., lanthanum bromide) at a cost of $1/cc. Because the material acts as a plastic, it is rugged and flexible, and can be made in large sheets, increasing the sensitivity of a detector using it. It would operate at ambient temperatures. Very large volumes of detector may be produced at greatly reduced cost, enhancing the non-proliferation posture of the nation for the same dollar value.

  15. Generation and alteration of the defects induced by particle irradiation and electromagnetic radiation in alkali halogen compounds

    Interactions between electron beams, CO2 - laser radiation and alkali halogen compound have led to interesting results: 1. The development of two types of F-centre respectively in normal lattice or near the dislocations. 2. The beginning of metal colloids development process at low temperature when a thermal treatment is applied. 3. An experimental confirmation of the Pooley-Hersh model for crystal defects has been brought up. 4. The surface penetration is an explosive process. 5. Surface polygonizations were also investigated. A model has been proposed to describe the destructive channels development within alkali halogen crystals with molecular anions impurities of less than 10 ppm. KCl monocrystals of advanced purity level was prepared for building up passive optical components of strong CO2 lasers. (author)

  16. Formation and evolution of point defects created in alkali halogen compounds irradiated by heavy ions

    The goal of this study was to achieve a better understanding of the heavy-ion material interaction. Alkali halogen crystals were chosen since the color centers produced by heavy ions can be distinguished easier from those generated by X rays. Measurements on KI irradiated at low temperature showed that the usual process of non radiative de-excitation of self-captured exciton is not prevailing. As the main objective of this work was the exact determination of the defects created by accelerated heavy ions, an important effort was dedicated to the spectrum deconvolution. Due to the high quality of the obtained spectra the V band analyse was possible. The defect stability was found to have the same nature in all the cubical alkali halogens and depend essentially on the crystal type. The defect evolution after irradiation is related to the diffusion coefficients corresponding to each mobile species and to the crystal lattice in which they move. Based on measurements made at different temperatures a simple modeling of the recombination kinetics was proposed. This effect was found to be specific to irradiation by heavy ions. It is difficult to determine the initial processes from the fossil defects, so, the defect history must be known as the described investigation methods do not permit to establish the transient aspect of defect creation. The important role of impurities should be stressed as the third intruder in the ion/crystal configuration; it can modify significantly the final state of the irradiated crystal, as it was found in KI, for instance. The open problems underlined in this study will probably be solved by using the atomic force microscopy and diffraction or on-line Raman measurements in ISOC chamber to avoid the passage to ambient conditions of the crystals irradiated at low temperatures

  17. Mesoscopic photosystems for solar light harvesting and conversion: facile and reversible transformation of metal-halide perovskites.

    Harms, Hauke Arne; Tétreault, Nicolas; Pellet, Norman; Bensimon, Michaël; Grätzel, Michael

    2014-01-01

    Recently, hybrid organic-inorganic metal halide perovskites have gained prominence as potent light harvesters in thin film solid-state photovoltaics. In particular the solar-to-electric power conversion efficiency (PCE) of devices using CH(3)NH(3)PbI(3) as sensitizer has increased from 3 to 20.1% within only a few years. This key material can be prepared by solution processing from PbI(2) and CH(3)NH(3)I in one step or by sequential deposition. In the latter case an electron capturing support such as TiO(2) is first covered with PbI(2), which upon exposure to a CH(3)NH(3)I solution is converted to the perovskite. Here we apply for the first time quartz crystal microbalance (QCMD) measurements in conjunction with X-ray diffraction and scanning electron microscopy to analyse the dynamics of the conversion of PbI(2) to CH(3)NH(3)PbI(3). Employing 200 nm thick PbI(2) films as substrates we discover that the CH(3)NH(3)I insertion in the PbI(2) is reversible, with the extraction into the solvent isopropanol occurring on the same time scale of seconds as the intercalation process. This offers an explanation for the strikingly rapid and facile exchange of halide ions in CH(3)NH(3)PbX(3) by solution processing at room temperature. PMID:25643832

  18. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 C offset from the normal melter operating temperature of 1150 C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and Include noble metals in glass melt experiments because of their potential to act as nucleation site

  19. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish)

    Taniguchi Tomokazu; Negishi Takashi; Matsuda Michiko; Toda Hiroshi; Itoh Nobuya; Ohsawa Noboru

    2009-01-01

    Abstract Background Biogenic emissions of methyl halides (CH3Cl, CH3Br and CH3I) are the major source of these compounds in the atmosphere; however, there are few reports about the halide profiles and strengths of these emissions. Halide ion methyltransferase (HMT) and halide/thiol methyltransferase (HTMT) enzymes concerning these emissions have been purified and characterized from several organisms including marine algae, fungi, and higher plants; however, the correlation between emission pr...

  20. Compare study cellulose/Mn₃O₄ composites using four types of alkalis by sonochemistry method.

    Fu, Lian-Hua; Li, Shu-Ming; Bian, Jing; Ma, Ming-Guo; Long, Xing-Luan; Zhang, Xue-Ming; Liu, Shi-Jie

    2015-01-22

    The purpose of this article was to explore the influences of alkalis types on the cellulose/Mn3O4 composites via a sonochemistry method. In this study, cellulose/Mn3O4 composites were successfully fabricated using four types of alkalis (urea (CO(NH2)2), hexamethylenetetramine ((CH2)6N4, HMT), NaOH, and KOH) by an environmentally-friendly sonochemistry method. The phase, shape, thermal stability, and the formation mechanism of the cellulose composites were researched in detail. Experimental results demonstrated that the types of alkalis played an important role in the phase, shape, dispersion, and thermal stability of cellulose/Mn3O4 composites. By thermal treatment of cellulose/Mn3O4 composites at 600°C for 3h in air, the Mn3O4 crystals were obtained. This novel method reported here maybe has a guiding significance for the synthesis of manganese oxide materials and other metal oxides using cellulose as template. PMID:25439907

  1. Quadrupolar deformation of the electronic charge cloud and the lattice mechanics of LiH-LiD crystals

    As the deformable shell model incorporates both scalar and dipolar deformation, it is natural to expect that the quadrupolar deformation may be important in the case of lithium hydride, where the unstable hydrogen ion with its extremely loose bound outermost electron (compared to alkali halides) appears to be a plausible candidate for such deformation. Quadrupolar deformation in an ion in crystal may arise because of the variation of the electric field produced by o,.her ions over the extent of the charge cloud or due to a shortrange overlap effect of nearest neighbours. The second effect is much stronger than the first and this alone is considered in the present investigation. A method has been developed to obtain the relevant equations and evaluate all the lattice sums appropriate for the structure on the basis of an extended deformable shell model which incorporates scalar, dipolar and quadrupolar deformation. The quadrupolar deformation is found to have quite a considerable effect both on the dynamic and static properties of LiH-LiD crystals. The resulting model not only removes the discrepancies mentioned above but has also been successful in correlating the specific properties namely, the static lattice structure, the cohesive energy, the second order elastic constants, the dielectric properties and the lattice dynamics with a single set of parameters used for all of them. Only the shortrange overlap effect of the nearest neighbours has been taken into account and not that due to the variation of the electric field produced by other ions over the extent of charge cloud, since the former effect is much stronger than the latter one. (K.B.)

  2. Alternative alkali resistant deNOx catalysts

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes; Riisager, Anders; Fehrmann, Rasmus

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared by...... potassium doping (250 and 280 µmol of K/g, respectively). The increased poisoning resistance was due to high substrate acidity (sulphated, heteropoly acid promoted and zeolite supports), substituting the active species of the catalyst (other than vanadium species, i.e. Cu, Fe) and new catalyst synthesis...

  3. Pulse radiolysis of alkali metal nitrates

    Absorption spectra of alkali metal nitrate monocrystals irradiated by pulses of accelerated electrons with 200 keV energy and 5-8 kGy pulse dose were measured. Absorption bands of separate centers were distinguished, their identification was conducted and temperature dependence of efficiency of their formation and death was studied. It is shown that in 200-250 K region sudden change of kinetic characteristics of processes of formation and death of intermediate radiolysis products conditioned by structural changes of matrix lattices is observed

  4. Cathode architectures for alkali metal / oxygen batteries

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  5. The structure of alkali silicate gel by total scattering methods

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested.

  6. The structure of alkali silicate gel by total scattering methods

    Benmore, C.J.

    2010-06-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  7. Gamma radiolytic decomposition of solid binary mixtures of potassium nitrate with halides

    Gamma-ray induced decomposition of solid binary mixtures of KNO3 with halides viz. KCl, KBr and KI was studied at room temperature. G(NO2-) values were found to vary with absorbed dose. Size and electronegativity of anions and molar composition of halides are the other factors influencing radiolysis. (author) 23 refs.; 4 figs

  8. An efficient transformation of primary halides into nitriles through palladium-catalyzed hydrogen transfer reaction.

    Zou, Tao; Yu, Xiaoqiang; Feng, Xiujuan; Bao, Ming

    2015-07-01

    Two-step one-pot transformation of primary halides into corresponding nitriles is successfully achieved. Nucleophilic substitution of primary halides with sodium azide and subsequent palladium-catalyzed hydrogen transfer proceeds smoothly in the presence of sterically bulky ligand dicyclohexyl(2',4',6'-triisopropylbiphenyl-2-yl)phosphine (XPhos) in acetone to produce nitriles in satisfactory to good yields. PMID:26050994

  9. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  10. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  11. Synthesis and thermal stability of perovskite alkali metal strontium borohydrides.

    Mller, Kasper T; Ley, Morten B; Schouwink, Pascal; ?ern, Radovan; Jensen, Torben R

    2015-12-22

    Three new perovskite-type bimetallic alkali metal strontium borohydride compounds, ?-MSr(BH4)3 (M = K, Rb, Cs), have been synthesized and investigated by in situ synchrotron radiation powder X-ray diffraction, thermal analysis combined with mass spectrometry and Sievert's measurements. The bimetallic borohydrides were synthesized via an addition reaction between Sr(BH4)2 and MBH4 (M = K, Rb, Cs) by mechanochemical treatment. The Sr(BH4)2-NaBH4 system, which was treated in a similar manner, did not undergo reaction. All three ?-MSr(BH4)3 compounds crystallize in the orthorhombic crystal system at room temperature: KSr(BH4)3 (P21cn), a = 7.8967(6), b = 8.2953(7), and c = 11.508(1) (V = 753.82(12) (3)). RbSr(BH4)3 (Pbn21), a = 8.0835(3), b = 8.3341(4), and c = 11.6600(5) (V = 785.52(6) (3)). CsSr(BH4)3 (P22121), a = 8.2068(9), b = 8.1793(9), and c = 6.0761(4) (V = 407.87(7) (3)). All three compounds are perovskite-type 3D framework structures built from distorted [Sr(BH4)6] octahedra. High-temperature polymorphs are identified to form at 258, 220 and 150 C for MSr(BH4)3, M = K, Rb and Cs, respectively. The new compounds are thermally stable and decompose at T > 360 C into SrB6, SrH2 and MBH4 (M = K, Rb, Cs). PMID:26646319

  12. Gas-phase identity nucleophilic substitution reactions of cyclopropenyl halides.

    Kim, Chang Kon; Li, Hong Guang; Lee, Bon-Su; Kim, Chan Kyung; Lee, Hai Whang; Lee, Ikchoon

    2002-03-22

    The gas-phase identity nucleophilic substitution reactions of halide anions (X = F, Cl, and Br) with cyclopropenyl halides, X(-) + (CH)(3)X X(CH)(3) + X(-), are investigated theoretically at four levels of theory, B3LYP/6-311+G**, MP2/6-311+G**, G2(+)MP2//MP2/6-311+G**, and G2(+)//MP2/6-311+G**. Four types of reaction paths, the sigma-attack S(N)2, pi-attack S(N)2'-syn, and S(N)2'-anti and sigmatropic 1,2-shift, are possible for all the halides. In the fluoride anion reactions, two types of stable adducts, syn- and anti-1,2-difluorocyclopropyl anions, can exist on the triple-well-type potential energy surface of the identity substitution reactions with rearrangement of double bond (C=C), S(N)2'-syn, and S(N)2'-anti processes. The TSs for the sigma-attack S(N)2 paths have "open" (loose) structures so that the ring positive charges are high rendering strong aromatic cyclopropenyl (delocalized) cation-like character. In contrast, in the pi-attack S(N)2' paths, a lone pair is formed at the unsubstituted carbon (C3), which stabilizes the 1,2-dihalocyclopropyl (delocalized) anion-like TS by two strong n(C)-sigma*(C-F) vicinal charge-transfer delocalization interactions. The barrier height increases in the order S(N)2'-anti < sigma-attack S(N)2 < S(N)2'-syn for X = Cl and Br, whereas for X = F the order is changed to S(N)2'-anti < S(N)2'-syn < sigma-attack S(N)2 due to the stable difluoro adduct formation. The sigmatropic 1,2-shift (circumambulatory) reactions have high activation barriers and cannot interfere with the substitution reactions. PMID:11895417

  13. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  14. New generation of medium wattage metal halide lamps and spectroscopic tools for their diagnostics

    Dunaevsky, A.; Tu, J.; Gibson, R.; Steere, T.; Graham, K.; van der Eyden, J.

    2010-11-01

    A new generation of ceramic metal halide high intensity discharge (HID) lamps has achieved high efficiencies by implementing new design concepts. The shape of the ceramic burner is optimized to withstand high temperatures with minimal thermal stress. Corrosion processes with the ceramic walls are slowed down via adoption of non-aggressive metal halide chemistry. Light losses over life due to tungsten deposition on the walls are minimized by maintaining a self-cleaning chemical process, known as tungsten cycle. All these advancements have made the new ceramic metal halide lamps comparable to high pressure sodium lamps for luminous efficacy, life, and maintenance while providing white light with high color rendering. Direct replacement of quartz metal halide lamps and systems results in the energy saving from 18 up to 50%. High resolution spectroscopy remains the major non-destructive tool for the ceramic metal halide lamps. Approaches to reliable measurements of relative partial pressures of the arc species are discussed.

  15. Application of electrogenerated iodine(1) for successive determination by halides

    Conditions have been studied for electrogeneration of iodine at a platinum electrode in RI (R=CH3, C2H5, C3H7, C4H9) solutions in glacial acetic acid containing 0.2 M HClO4. At potentials from 1.8 to 2.3 V (vs Ag/AgCl electrode) RI is oxidized to iodine (1) to give the quantitative current yield. The real redox potential of the I(I)/RI system has been measured. A method has been developed of successive coulometric titration of halide ions in their mixtures

  16. Thermal Isomerization in Isolated Cesium-Halide Clusters

    We have used photoelectron spectroscopy to observe thermal isomerization in cesium-halide cluster anions. In many of the (CsX)nCsm- (X=Cl,Br,I; n=27; m=0,1) systems we have studied, small changes in the source nozzle temperature produce dramatic changes in the distribution of cluster isomers. When specific isomers are selectively photodepleted, isomer interconversion quickly reestablishes the thermal isomer distribution, even though the clusters are isolated in a cluster beam. copyright 1996 The American Physical Society

  17. New route for the synthesis of tricyclopentadienyluranium halides

    A facile synthetic route for UCp4, UCp3, U(COT)2, and other related organoactinides has been achieved by the direct reaction of a fresh reactive uranium powder from electrolytic amalgamation with respective organic substrates. In this work we further demonstrate the applicability of the uranium powder method to the simple synthesis of UCp3X, where X = Cl, Br, and I, respectively. The uranium powder was reacted with cyclopentadiene and alkyl halides simultaneously under a mild condition to obtain the respective complexes

  18. Iron Halide Species Produced by Laser-Evaporation

    Iron halide species were produced by the reaction of laser-evaporated iron atoms with halogen-containing reactant gas, and isolated in low-temperature matrices to obtain their Moessbauer spectra. Iron fluoride (Fe2F6, FeF3 and Fe2F4) and iron iodide (FeI2 and Fe2I4) were produced by the reaction of laser-evaporated iron atoms with sulfur hexafluoride SF6 and methyl iodide CH3I, respectively. The yields of the products varied depending on the concentration of reactant gas in the Ar matrix. Molecular orbital calculations were performed in order to confirm their assignments.

  19. RENUW - A dry halide process for nuclear fuel reprocessing

    The RENUW Dry Halide Process for reprocessing nuclear fuel will be described. Analysis has shown that the RENUW process will significantly reduce the waste produces from processing irradiated nuclear fuel compared to aqueous processes. Waste reduction is accomplished by recovering the zirconium and uranium for reuse. The RENUW process uses hot chlorine gas to chlorinate the feed; separation is accomplished by exploiting the large differences between the relative volatilities of the fission products and the uranium and zirconium. The flow sheet is quite simple and uses readily commercial technologies

  20. Durability of Alkali Activated Blast Furnace Slag

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  1. The magnetic phase transition in the metal-rich halides Gd2IFe2, Gd2ICo2 and Gd2BrFe2

    The critical behavior of the metal-rich halides Gd2IFe2, Gd2ICo2 and Gd2BrFe2 is investigated. These compounds crystallize in a layered structure exhibiting a sequence of Gd-(Fe,Co)-Gd layers enclosed between halogen atom layers. The critical exponents β, γ', γ and δ obtained by several methods show a good agreement with the theorectical predictions derived for the 3d-XY model. This result implies a strong planar anisotropy caused by anisotropic exchange interactions induced by the 3d transition metal ions. In addition, the temperature dependence of the Kouvel-Fisher exponent γ(T) is discussed. ((orig.))

  2. High-Order Dispersion Coefficients for Alkali-metal Atoms

    High-order dispersion coefficients C9, C11, C12, and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions. The results were compared. (atomic and molecular physics)

  3. Chemical shifts of the X-ray L3 absorption edge of europium in its trivalent halides

    Position of the Eu-L3 absorption edge has been studied in pure metal and in its trivalent halides, EuF3, EuCl3, EuBr3, and EuI3, employing a simple X-ray spectrometer with an LiF single crystal as the analyser. A linear relationship was established between the chemical shift and the effective charge on the absorbing rare earth atom. The chemical shifts have also been correlated to Moessbauer isomer shifts. The results have been discussed in terms of nature of chemical bonding, effective atomic charge on the absorbing atom and some other parameters relevant to the immediate local environment of the absorbing atom. (author)

  4. Diffusion and conductivity in simple ionic crystals

    The characteristics of ionic crystals (nature of point defects interactions between these defects) are reviewed, together with techniques used for their study (conductivity, diffusion, dielectric relaxation, doping). The following problems are then discussed: determination of formation and migration enthalpies and entropies, variation of these enthalpies with temperature and defect concentration, point defects in simple oxides and alcaline-earth halides, role of space charges around dislocations and in the vicinity of surfaces, crystal field effect on diffusion, and clustering of solute-vacancy complexes

  5. Isomorphism in the structural chemistry of two-coordinate adducts of diphenyl(2-formylphenyl)phosphine and triphenylphosphine with gold(I) halides

    Dunstan, Samuel P. C.; Healy, Peter C.; Sobolev, Alexandre N.; Tiekink, Edward R. T.; White, Allan H.; Williams, Michael L.

    2014-08-01

    Single crystal X-ray structure determinations are recorded for diphenyl(2-formylphenyl)phosphine gold(I) halides [Ph2(Ph-CHO)PAuX], X = Cl, Br and I, and for redeterminations of enhanced precision for triphenylphosphine gold(I) halides [Ph3PAuX], X = Cl, Br, I, and SCN0.91Br0.09. These complexes, other than [Ph2(Ph-CHO)PAuCl], together with a diverse array of other structures, crystallize as an isomorphous series in the orthorhombic space group P212121a = 9.804(1)-11.906(3), b = 11.771(2)-12.996(3) and c = 12.871(1)-14.169(3) . In these complexes, introduction of the formyl group results in only minor differences between the conformations of the two phosphine ligands and the corresponding Au-P, Au-X, and Au-P-X bond lengths and angles. The crystal packings of [Ph3PAuX] for X = Cl, Br, I and of [Ph2(Ph-CHO)PAuX] for X = Br and I show that, while these structures are isomorphous, different supramolecular synthons may be present, suggesting global packing considerations are all-important rather than specific supramolecular interactions. This is borne out by the different packing found for the centrosymmetric [Ph2(Ph-CHO)PAuCl] structure. Crystallization of the mixed anion structure [Ph3PAuSCN0.91Br0.09] in the above P212121 lattice rather than the P21/c lattice reported for pure [Ph3PAuSCN] suggests that co-crystallization with bromide may impose constraints on packing considerations which favor crystallization in the P212121 lattice.

  6. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    Zhao, Yixin; Zhu, Kai

    2016-02-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities. PMID:26645733

  7. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals.

    Jellicoe, Tom C; Richter, Johannes M; Glass, Hugh F J; Tabachnyk, Maxim; Brady, Ryan; Dutton, Siân E; Rao, Akshay; Friend, Richard H; Credgington, Dan; Greenham, Neil C; Böhm, Marcus L

    2016-03-01

    Metal halide perovskite crystal structures have emerged as a class of optoelectronic materials, which combine the ease of solution processability with excellent optical absorption and emission qualities. Restricting the physical dimensions of the perovskite crystallites to a few nanometers can also unlock spatial confinement effects, which allow large spectral tunability and high luminescence quantum yields at low excitation densities. However, the most promising perovskite structures rely on lead as a cationic species, thereby hindering commercial application. The replacement of lead with nontoxic alternatives such as tin has been demonstrated in bulk films, but not in spatially confined nanocrystals. Here, we synthesize CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals and provide evidence of their spectral tunability through both quantum confinement effects and control of the anionic composition. We show that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nanosecond time scales via two spectrally distinct radiative decay processes, which we assign to band-to-band emission and radiative recombination at shallow intrinsic defect sites. PMID:26901659

  8. Synthesis, structural and spectral studies of five- and six-coordinate adducts of organotin(IV) halides containing dibenzylsulfoxide (DBSO) as ligand. The crystal structures of fac-[MeSnCl{sub 3}(dbso){sub 2}] and trans-[Ph{sub 2}SnCl{sub 2}(dbso){sub 2}

    Sousa, Gerimario F. de [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Quimica], e-mail: gfreitas@unb.br; Sabino, Jose R.; Vencato, Ivo [Universidade Federal do Goias (UFGO), Goiania, GO (Brazil). Inst. de Fisica; Filgueiras, Carlos A. L. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Ardisson, Jose D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Fisica Aplicada

    2009-07-01

    The reaction of the ambidentate ligand dibenzylsulfoxide (dbso) with Me{sub 2}SnCl{sub 2} in 1:1 molar ratio leads to the formation of the five-coordinate adduct [Me{sub 2}SnCl{sub 2}(dbso)], whereas the same reaction conditions with Ph{sub 2}SnCl{sub 2} provide the six-coordinate adduct trans-[Ph{sub 2}SnCl{sub 2}(dbso){sub 2}]. On the other hand, the reaction with {sup {pi}}Bu{sub 2}SnCl{sub 2} forms the dimeric adduct [{l_brace}{sup {pi}}Bu{sub 2}SnCl{sub 2}(dbso){r_brace}{sub 2}], which probably possesses octahedral tin(IV) nuclei and bridging chlorides. The adducts [MeSnCl{sub 3}(dbso){sub 2}] and [Ph{sub 3}SnCl(dbso)] were also prepared and included in the study. All complexes were studied by microanalysis and IR, NMR ({sup 1}H, {sup 13}C and {sup 119}Sn) and Moessbauer spectroscopies to investigate their structural properties. The six-coordinate species fac-[MeSnCl{sub 3}(dbso){sub 2}] and trans-[Ph{sub 2}SnCl{sub 2}(dbso){sub 2}] were also studied by single crystal X-ray diffractometry. These compounds crystallize in the orthorhombic, Pbcn, and monoclinic space group P2{sub 1}/c, respectively, as discrete neutral molecules with the tin(IV) atom in a distorted octahedral geometry and the two dbso ligands in cis and trans positions, respectively. (author)

  9. Halide salts accelerate degradation of high explosives by zerovalent iron

    Zerovalent iron (Fe0, ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl- and Br- was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br- was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  10. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them. PMID:27100910

  11. Sodium-metal halide and sodium-air batteries.

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. PMID:24953300

  12. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident γ-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  13. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  14. Superconductivity of Alkali Metals under High Pressure

    Shi, L; Shi, Lei; Papaconstantopoulos, Dimitrios A.

    2005-01-01

    We calculated the superconductivity properties of alkali metals under high pressure using the results of band theory and the rigid-muffin theory of Gaspari and Gyorffy. Our results suggest that at high pressures Lithium, Potassium, Rubidium and Cesium would be superconductors with transition temperatures approaching 10-20 $K$. Our calculations also suggest that Sodium would not be a superconductor under high pressure even if compressed to less than half of its equilibrium volume. We found that the compression of the lattice strengthens the electron-phonon coupling through a delicately balanced increase of both the electronic and phononic components of this coupling. This increase of the electron-phonon coupling in Li is due to an enhancement of the $s$-$p$ channel of the interaction, while in the heavier elements the $p$-$d$ channel is the dominant component.

  15. Structural analysis of alkali borate glasses

    This paper reports on the elastic properties of alkali borate glass systems (R2O-B2O3, R=K, Rb, Cs). The elastic moduli were calculated in terms of Makishima-Mackenzie model and a model by Bridge et al. The average cross-link density, number of network bonds per unit volume, average stretching force constant, atomic ring size, and the ratio Kbc/Ke, have been calculated and discussed according to bond compression model to analyze the borate anomaly. Young's modulus, packing density and Poisson's ratio have been calculated and analyzed according to Makishima-Mackenzie model. Debye temperature has been calculated and discussed in terms of the cross-link density of these glasses. The borate anomaly was discussed in terms of experimentally derived Debye temperature and theoretically calculated elastic moduli. The results showed good agreement between experimental and theoretical data for the borate anomaly representation

  16. Solidification of nitrate solutions with alkali-activated slag and slagmetakaolin cements

    Highlights: The effectiveness of an AASC matrix for NaNO3 solution solidification is stated. XRD, DTA-TG, and X-ray microtomography experiments were performed. Crystallization of NaNO3 reduces the shrinkage of hardened AASC-based waste forms. Metakaolin shortens the setting time and increases the compressive strength of AASC. - Abstract: The solidification of nitrate solutions with alkali-activated slag (AASC) and slagmetakaolin cements (AASMC) and the resulting setting times, compressive strengths, dimensional stability, water resistance, hydration products, microstructures, and macroporous network structures were evaluated. The influences of the alkali activator concentration, mineral composition of metakaolin, ratio of slag to slag + metakaolin, and concentration of NaNO3 on the cement performance were all evaluated in detail. The compressive strength of cemented nitrate solutions with AASC and AASMC aged for 28 days was from 13.4 to 42 MPa depending on the NaNO3 concentration. X-ray diffractometer, differential thermal analyzer, and electron microscope analyses suggested that NaNO3 crystallizes in cementitious matrices without reacting with the hydration products of AASC and AASMC. X-ray microtomography showed that the solidified NaNO3 solution with a salt concentration of 700 g/l and AASC had a denser microstructure without shrinkage microcracks, a smaller macropore volume, and smaller macropore sizes than hardened AASC-based paste mixed with water

  17. Alkali metal rhenium sulphides and selenides containing [Re6X8] clusters

    The sulphides Rb4Re6S13 and Rb2K2Re6S13 were synthesized by the reaction of alkali metal carbonates with rhenium in a stream of H2S at 800 0C. The preparation of the selenides Cs4Re6Se13, Rb4Re6Se12, and K4Re6Se12 succeeded when a hydrogen atmosphere charged with selenium was used. By combining both reaction methods we obtained mixed crystals of the composition Cs4Re6S/sub 9.45/Se/sub 3.55/. Structural investigations on single crystals revealed atomic arrangements in which [Re6X8] clusters are linked threedimensionally by X and X2 bridges. In the A4Re6X12-type a ([Re6X8]X/sub 4/2/(X2)/sub 2/2/)4- framework is found whereas the corresponding notation for the A4Re6X13-type is ([Re6X8]X/sub 2/2/(X2)/sub 4/2/)4-. The dependence of the respective type of framework on the size of the alkali metal ions will be discussed. The diamagnetic behaviour, which was measured in the temperature range between 3.8 and 300 K corresponds with the existence of nearly regular Re6-octahedra with a 24-electron configuration. (author)

  18. Solidification of nitrate solutions with alkali-activated slag and slag–metakaolin cements

    Rakhimova, Nailia R., E-mail: rahimova.07@list.ru [Kazan State University of Architecture and Engineering, Kazan (Russian Federation); Rakhimov, Ravil Z. [Kazan State University of Architecture and Engineering, Kazan (Russian Federation); Osin, Yury N. [Kazan Federal University, Kazan (Russian Federation); Naumkina, Natalia I.; Gubaidullina, Alfiya M. [Central Research Institute for Geology of Industrial Minerals, Kazan (Russian Federation); Yakovlev, Grigory I.; Shaybadullina, Arina V. [Kalashnikov Izhevsk State Technical University, Izhevsk (Russian Federation)

    2015-02-15

    Highlights: • The effectiveness of an AASC matrix for NaNO{sub 3} solution solidification is stated. • XRD, DTA-TG, and X-ray microtomography experiments were performed. • Crystallization of NaNO{sub 3} reduces the shrinkage of hardened AASC-based waste forms. • Metakaolin shortens the setting time and increases the compressive strength of AASC. - Abstract: The solidification of nitrate solutions with alkali-activated slag (AASC) and slag–metakaolin cements (AASMC) and the resulting setting times, compressive strengths, dimensional stability, water resistance, hydration products, microstructures, and macroporous network structures were evaluated. The influences of the alkali activator concentration, mineral composition of metakaolin, ratio of slag to slag + metakaolin, and concentration of NaNO{sub 3} on the cement performance were all evaluated in detail. The compressive strength of cemented nitrate solutions with AASC and AASMC aged for 28 days was from 13.4 to 42 MPa depending on the NaNO{sub 3} concentration. X-ray diffractometer, differential thermal analyzer, and electron microscope analyses suggested that NaNO{sub 3} crystallizes in cementitious matrices without reacting with the hydration products of AASC and AASMC. X-ray microtomography showed that the solidified NaNO{sub 3} solution with a salt concentration of 700 g/l and AASC had a denser microstructure without shrinkage microcracks, a smaller macropore volume, and smaller macropore sizes than hardened AASC-based paste mixed with water.

  19. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  20. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  1. Alkali element background reduction in laser ICP-MS

    C. W. Magee Jr.

    2014-11-01

    Full Text Available Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  2. Photophysical behavior and fluorescence quenching by halides of quinidine dication: Steady state and time resolved study

    Joshi, Neeraj Kumar; Tewari, Neeraj; Arora, Priyanka; Rautela, Ranjana; Pant, Sanjay [Photophysics Laboratory, Department of Physics, DSB Campus, Kumaun University, Nainital 263002, Uttarakhand (India); Joshi, Hem Chandra, E-mail: hem_sup@yahoo.co.uk [Institute for Plasma Research, Laser Diagnostics Division, Bhat, Near Indira Bridge, Gandhinagar 382428, Gujarat (India)

    2015-02-15

    The fluorescence quenching of quinidine in acidified aqueous solution by various halides (Cl{sup ?}, Br{sup ?} and I{sup ?}) was studied using steady state and time resolved fluorescence techniques. The quenching process was characterized by SternVolmer (SV) plots. Possibility of conformers (one is not quenched by halide and the other is quenched) is invoked to explain the observed results. - Highlights: Fluorescence quenching of quinidine in acidified aqueous solution by halides. Various quenching parameters have been estimated. Possibility of conformers is invoked to explain the observed results.

  3. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    Falivene, Laura

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  4. Photophysical behavior and fluorescence quenching by halides of quinidine dication: Steady state and time resolved study

    The fluorescence quenching of quinidine in acidified aqueous solution by various halides (Cl−, Br− and I−) was studied using steady state and time resolved fluorescence techniques. The quenching process was characterized by Stern–Volmer (S–V) plots. Possibility of conformers (one is not quenched by halide and the other is quenched) is invoked to explain the observed results. - Highlights: • Fluorescence quenching of quinidine in acidified aqueous solution by halides. • Various quenching parameters have been estimated. • Possibility of conformers is invoked to explain the observed results

  5. Development of halide copper vapor laser (the characteristics of using Cul)

    We are developing halide copper vapor laser that is high efficiency and high reputation rate visible laser. Halide copper vapor laser uses halide copper of copper vapor source. It melts low temperature in comporison with metal copper, because laser tube structure is very simple and it can operate easy. This time, we experiment to use Cul for copper vapor source. We resulted maximum output energy 17.8 (W) and maximum efficiency 0.78 (%) when operate condition was reputation rate 30 (kHz), gas pressure 90 (Torr), charging voltage 13 (kV). (author)

  6. Electrowinning of metallic tungsten, molybdenum and their carbides from low-distillation halide-oxide melts

    Cyclic voltametry, potentiostatic and galvanic electrolysis were used for the investigation into electrochemical deposition of metallic tungsten and molybdenum as well as their carbides from halide-oxide melts at 550 Deg C. Conditions of mutual electroreduction of tungsten and molybdenum fluorine-oxide complexes with carbon dioxide as well as with nickel and cobalt ions in halide-oxide melts at 550 Deg C were found. Optimal conditions for the metallic tungsten and molybdenum separation, tungsten (molybdenum) carbides, binary tungsten carbides with nickel (cobalt) from oxide-halide melts were determined

  7. Porcelain stoneware scraps recycle in alkali bonded insulating panels

    Medri, Valentina; Landi, Elena

    2011-01-01

    Ground porcelain stoneware scraps were recycled as main component (up to 80 wt%) in alkali bonded insulating panels. Sandwich panels were prepared by varying the scraps dimension and amount in the core and skins.The binder for the alkali bonding was prepared by using highly reactive metakaolin as raw powder, while the alkali aqueous solution was KOH/K2SiO3 mixture. The setting was performed at 80?C for 24 h. The thermal conductivity at room temperature was 0.7 W.m-1.K-1. Dilatometric analyses...

  8. Pretreatment of wheat straw by ?-ray Radiation and alkali solution

    Gamma ray radiation and alkali solution pretreatment of wheat straw and its effect on enzymatic hydrolysis were studied. The result shows that the ?-irradiation can significantly decrease the initial concentration of alkali solution and shorten the pretreated time,but the changes in the physical and chemical properties of only irradiated wheat straw are indistinctive. A synergistic effect between irradiation and alkali solution pretreatment was observed. Reducing sugar yield is 78.2%(accounted for theoretical yield) after wheat straw is radiated at a dose of 100 kGy and then with 2%NaOH pretreated for 1 h. (authors)

  9. Neutron Activation Analysis of Lead Halide Pollution Aerosols

    Iodine, bromine and chlorine have been determined by neutron activation analysis in atmospheric samples of both natural and pollution origin, and a comparison of the two sources provides the basis of a technique described in this paper for determining the composition and possible source of lead halide pollution aerosols. The activation analysis procedure employed consists of reactor neutron irradiation of aqueous samples and comparators for 20 min followed by radiochemical separation of iodine, bromine and chlorine and automatic counting of beta radioactivity from solid silver halide sources. Determination of lead by anodic stripping voltammetry (inverse polarography) consists of deposition of Pb++ from the solution onto a composite paraffin- impregnated graphite and mercury electrode at -1.00 V versus the standard calomel electrode, and then stripping by increasing the potential continuously. A significant question of public health interest in the air chemistry of lead is the source of the lead. Ethyl fluid, a mixture of organic lead, bromine and chlorine compounds, burns to form inorganic lead halide particles with Cl/Pb = 0.34 and Br/Pb = 0.39 by weight. In Cambridge, Massachusetts, analyses of cascade impactor aerosols were compared with similarly collected samples from the unpolluted air of Hawaii. The pollution bromine component ranged from 0.4 to 0.1 or less of the lead concentration, indicating in most cases either automotive lead with a bromine deficiency or a mixture of lead from automotive and other sources. In Fairbanks, Alaska, during winter, atmospheric conditions favour high local concentrations of air pollutants. Aerosols collected by Millipore filters show that pollution chlorine averages very nearly the value predicted from the observed lead and the known composition of ethyl fluid, and the automotive source for both chlorine and lead is strongly indicated. Pollution bromine, however, was less than predicted, and the bromine deficiency was about the same in Fairbanks and in Cambridge. These results imply that ethyl fluid combustion is the major source of atmospheric lead in Cambridge as well as in Fairbanks, and the observed pollution bromine and chlorine come predominantly from the same source. (author)

  10. Giant photostriction in organic–inorganic lead halide perovskites

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-01-01

    Among the many materials investigated for next-generation photovoltaic cells, organic–inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge–orbital–lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices. PMID:27044485

  11. Two-photon pumped lead halide perovskite nanowire lasers

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  12. Mechanical properties of silver halide core/clad IR fibers

    Shalem, Shaul; German, Alla; Moser, Frank; Katzir, Abraham

    1996-04-01

    We have developed core/clad polycrystalline silver halide optical fibers with a loss of roughly 0.3 dB/m at 10.6 micrometers. Such fibers, with core diameters 0.3 - 0.6 mm and lengths of 1 to 2 meters are capable of continuously delivering output power densities as high as 14 KW/cm2. The fibers were repetitively bent in the plastic and elastic regimes and the optical transmission monitored during bending. The mechanical properties of the core/clad fibers and of the core only fibers are similar. It was also demonstrated that the 'bending' properties of the core/clad fibers are determined by the cladding material. Our investigations suggest that proper design of the core/clad structure may give significant improvement in mechanical properties such as more cycles to optical failure. This will be very important especially for endoscopic laser surgery and other medical applications.

  13. Quasielastic neutron scattering study of silver selenium halides

    Major, A G; Barnes, A C; Howells, W S

    2002-01-01

    Both silver chalcogenides (Ag sub 2 S, Ag sub 2 Se, and Ag sub 2 Te) and silver halides (AgCl, AgBr, and AgI) are known to be fast-ion solids in which the silver ions can diffuse quickly in a sublattice formed by the other ions. To clarify whether mixtures of these materials (such as Ag sub 3 SeI) possess comparable properties and whether a systematic dependence on the cation-to-anion ratio can be observed, some of these mixtures were studied by quasielastic neutron scattering both in the solid and the liquid phases. To identify the diffusion mechanisms and constants, a new data-analysis method based on a two-dimensional maximum-likelihood fit is proposed. This method has the potential to give more reliable information on the diffusion mechanism than the traditional Bayesian method. (orig.)

  14. Theoretical study of the scandium and yttrium halides

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1988-01-01

    The X1Sigma(+) ground states and a3Delta excited states of the diatomic halides of Sc and Y are characterized theoretically, using the SDCI coupled-pair functional method and the state-averaged CASSCF method to determine the spectroscopic constants and related properties. The techniques employed are discussed, and the results are presented in extensive tables. The dissociation energies are given as D0 = 6.00 eV for ScF, 4.55 eV for ScCl, 3.90 eV for ScBr, 6.72 eV for YF, 5.36 eV for YCl, and 4.74 eV for YBr.

  15. Emission spectroscopy for characterizing metal-halide lamps

    The metal-halide (MH) lamp shows an unwanted axial non-uniform distribution of the metal additives when burning in vertical position, which is caused by the interplay between convection and diffusion. Various MH lamps are investigated by means of emission spectroscopy under varying gravity conditions (1-10g) in a centrifuge. The method yields spectra, axial inhomogeneity parameters and axially integrated intensities. The method is easier than methods used before on the same type of lamp. Measurements on lamps with DyI3 as salt filling are used as a calibration of the setup. After comparison with the earlier measurements, we conclude that the new emission spectroscopy is valid for characterization of MH lamps. Next, we apply the method on commercial lamps (Philips MASTER CosmoWhite). For these lamps, in addition NaI densities at the wall and axial temperature profiles are obtained by using self-reversed lines of Na and Hg, respectively

  16. Metal halide arc discharge lamp having short arc length

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  17. Phase-resolved response of a metal-halide lamp

    The metal-halide (MH) lamp sometimes shows unwanted colour segregation, caused by a combination of convection and diffusion. In the past we investigated the lamp, running on a switched dc ballast of 120 Hz, using a dc approximation for the distribution of the radiating species. Here we present phase-resolved intensity measurements to verify this approximation. The MH lamp contains Hg as buffer gas and DyI3 as salt additive; we measure the light emitted by Dy and by Hg atoms. An intensity fluctuation of ∼25% close to the electrodes is found only. The observed fluctuations are explained by the cataphoresis effect and temperature fluctuations; the time scales are in the same order. Furthermore, measurements at higher gravity in a centrifuge (up to 10g) show that the effect becomes smaller at increasing gravity levels. From these results it is concluded that a dc approximation, which is generally assumed by lamp developers, is allowed for this MH lamp.

  18. Solvation structures of lithium halides in methanol-water mixtures

    Sarkar, Atanu; Dixit, Mayank Kumar; Tembe, B. L.

    2015-02-01

    The potentials of mean force (PMFs) for the ion pairs, Li+sbnd Cl-, Li+sbnd Br- and Li+sbnd I- have been calculated in five methanol-water compositions. The results obtained are verified by trailing the trajectories and calculating the ion pair distance residence times. Local structures around the ions are studied using the radial distribution functions, density profiles, orientational correlation functions, running coordination numbers and excess coordination numbers. The major change in PMF is observed as the methanol mole fraction (xmethanol) is changed from 1.0 to 0.75. The stable contact ion pair occurring for xmethanol = 1.0 becomes unstable at and below xmethanol = 0.75. The preferential solvation data show that the halide ions are always preferentially solvated by water molecules. Although the lithium ion is preferentially solvated by methanol molecules, there is significant affinity towards water molecules as well.

  19. Giant photostriction in organic-inorganic lead halide perovskites

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  20. Gas phase chromatography of halides of elements 104 and 105

    On-line isothermal gas phase chromatography was used to study halides of 261104 (T1/2 = 65 s) and 262,263105 (T1/2 = 34 s and 27 s) produced an atom-at-a time via the reactions 248Cm(18O, 5n) and 249Bk(18O, 5n, 4n), respectively. Using HBr and HCl gas as halogenating agents, we were able to produce volatile bromides and chlorides of the above mentioned elements and study their behavior compared to their lighter homologs in Groups 4 or 5 of the periodic table. Element 104 formed more volatile bromides than its homolog Hf. In contrast, element 105 bromides were found to be less volatile than the bromides of the group 5 elements Nb and Ta. Both 104 and Hf chlorides were observed to be more volatile than their respective bromides. 31 refs., 8 figs