WorldWideScience

Sample records for algal population dynamics

  1. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    Science.gov (United States)

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    Science.gov (United States)

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  3. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    Science.gov (United States)

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  4. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Directory of Open Access Journals (Sweden)

    Minnett Peter

    2008-11-01

    Full Text Available Abstract Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs. Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  5. The extended Kalman filter for forecast of algal bloom dynamics.

    Science.gov (United States)

    Mao, J Q; Lee, Joseph H W; Choi, K W

    2009-09-01

    A deterministic ecosystem model is combined with an extended Kalman filter (EKF) to produce short term forecasts of algal bloom and dissolved oxygen dynamics in a marine fish culture zone (FCZ). The weakly flushed FCZ is modelled as a well-mixed system; the tidal exchange with the outer bay is lumped into a flushing rate that is numerically determined from a three-dimensional hydrodynamic model. The ecosystem model incorporates phytoplankton growth kinetics, nutrient uptake, photosynthetic production, nutrient sources from organic fish farm loads, and nutrient exchange with a sediment bed layer. High frequency field observations of chlorophyll, dissolved oxygen (DO) and hydro-meteorological parameters (sampling interval Deltat=1 day, 2h, 1h, respectively) and bi-weekly nutrient data are assimilated into the model to produce the combined state estimate accounting for the uncertainties. In addition to the water quality state variables, the EKF incorporates dynamic estimation of algal growth rate and settling velocity. The effectiveness of the EKF data assimilation is studied for a wide range of sampling intervals and prediction lead-times. The chlorophyll and dissolved oxygen estimated by the EKF are compared with field data of seven algal bloom events observed at Lamma Island, Hong Kong. The results show that the EKF estimate well captures the nonlinear error evolution in time; the chlorophyll level can be satisfactorily predicted by the filtered model estimate with a mean absolute error of around 1-2 microg/L. Predictions with 1-2 day lead-time are highly correlated with the observations (r=0.7-0.9); the correlation stays at a high level for a lead-time of 3 days (r=0.6-0.7). Estimated algal growth and settling rates are in accord with field observations; the more frequent DO data can compensate for less frequent algal biomass measurements. The present study is the first time the EKF is successfully applied to forecast an entire algal bloom cycle, suggesting the

  6. Observations on algal populations in an experimental maturation pond system

    CSIR Research Space (South Africa)

    Shillinglaw, SN

    1977-01-01

    Full Text Available ?) of influent (HTE) and secondary pond. The arrows indicate the beginning of the noled algal concentration declines. 190 Water SA Vol. 3 No. 4 October 1977 intermittent presence of some factor which suppresses algal growth and/or removes algal cells from... the system at a very rapid rate. Another possibility is that an algal growth suppres sor is almost continuously present and only when the suppres sing factor is intermittently ahsent, do the algal concentrations exhihit a peak. Based on the results...

  7. Algal genotype and photoacclimatory responses of the symbiotic alga Symbiodinium in natural populations of the sea anemone Anemonia viridis

    Science.gov (United States)

    Bythell, J. C.; Douglas, A. E.; Sharp, V. A.; Searle, J. B.; Brown, B. E.

    1997-01-01

    As an approach to investigate the impact of solar radiation on an alga–invertebrate symbiosis, the genetic variation and photosynthetic responses of the dinoflagellate algal symbiosis in an intertidal and a subtidal population of the sea anemone Anemonia viridis were explored. Allozyme analysis of the anemones indicated that the two populations were genetically very similar, with a Nei's index value of genetic identity (I) of 0.998. The algae in all animals examined were identified as Symbiodinium of clade a by PCR-RFLP analysis of the small subunit ribosomal RNA gene. The symbiosis in the two populations did not differ significantly in algal population density, chlorophyll a content per algal cell or any photosynthetic parameter obtained from studies of the relationship between photosynthesis and irradiance. We conclude that there is not necessarily genetic variation or photosynthetic plasticity of the symbiotic algae in Anemonia viridis inhabiting environments characterized by the different solar irradiances of the subtidal and intertidal habitats.

  8. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir.

    Science.gov (United States)

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-02-18

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in Zhoucun drinking water reservoir. Our study highlights the potential role of microbial diversity as a driving force for the algal bloom and biogeochemical cycling of reservoir ecology.

  9. Algal Supply System Design - Harmonized Version

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; Daniel Stevens; Allison Ray; Debor

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  10. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Haihan Zhang

    2018-02-01

    Full Text Available The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP from the outbreak to the decline period (p < 0.05 while Fe concentration increased sharply during the decline period (p < 0.05. The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02. Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of

  11. Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model

    CSIR Research Space (South Africa)

    Robertson Lain, L

    2014-07-01

    Full Text Available (PFT) analysis. To these ends, an initial validation of a new model of Equivalent Algal Populations (EAP) is presented here. This paper makes a first order comparison of two prominent phytoplankton Inherent Optical Property (IOP) models with the EAP...

  12. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    OpenAIRE

    Haihan Zhang; Jingyu Jia; Shengnan Chen; Tinglin Huang; Yue Wang; Zhenfang Zhao; Ji Feng; Huiyan Hao; Sulin Li; Xinxin Ma

    2018-01-01

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal tr...

  13. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    Science.gov (United States)

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  14. Effects of fertilizers used in agricultural fields on algal blooms

    Science.gov (United States)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.; Misra, A. K.; Chattopadhyay, Joydev

    2017-06-01

    The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.

  15. Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model.

    Science.gov (United States)

    Robertson Lain, L; Bernard, S; Evers-King, H

    2014-07-14

    There is a pressing need for improved bio-optical models of high biomass waters as eutrophication of coastal and inland waters becomes an increasing problem. Seasonal boom conditions in the Southern Benguela and persistent harmful algal production in various inland waters in Southern Africa present valuable opportunities for the development of such modelling capabilities. The phytoplankton-dominated signal of these waters additionally addresses an increased interest in Phytoplankton Functional Type (PFT) analysis. To these ends, an initial validation of a new model of Equivalent Algal Populations (EAP) is presented here. This paper makes a first order comparison of two prominent phytoplankton Inherent Optical Property (IOP) models with the EAP model, which places emphasis on explicit bio-physical modelling of the phytoplankton population as a holistic determinant of inherent optical properties. This emphasis is shown to have an impact on the ability to retrieve the detailed phytoplankton spectral scattering information necessary for PFT applications and to successfully simulate reflectance across wide ranges of physical environments, biomass, and assemblage characteristics.

  16. Deep-Learning-Based Approach for Prediction of Algal Blooms

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2016-10-01

    Full Text Available Algal blooms have recently become a critical global environmental concern which might put economic development and sustainability at risk. However, the accurate prediction of algal blooms remains a challenging scientific problem. In this study, a novel prediction approach for algal blooms based on deep learning is presented—a powerful tool to represent and predict highly dynamic and complex phenomena. The proposed approach constructs a five-layered model to extract detailed relationships between the density of phytoplankton cells and various environmental parameters. The algal blooms can be predicted by the phytoplankton density obtained from the output layer. A case study is conducted in coastal waters of East China using both our model and a traditional back-propagation neural network for comparison. The results show that the deep-learning-based model yields better generalization and greater accuracy in predicting algal blooms than a traditional shallow neural network does.

  17. Carbohydrate-degrading bacteria closely associated with Tetraselmis indica: Influence on algal growth

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Delany, J.; Rajarajan, N.; Emami, K.; Mesbahi, E.

    to promote growth of the algae. These experiments revealed that microbes associated with the alga differentially influence algal growth dynamics. Bacterial presence on the cast-off cell wall products of the alga suggested the likely utilisation of algal cell...

  18. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia

    International Nuclear Information System (INIS)

    Murray, R.E.; Cooksey, K.E.; Priscu, J.C.

    1986-01-01

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 10 4 cells cm -2 (diatoms) and 5 x 10 6 cells cm -2 (bacteria). The algal-bacterial consortia consistently exhibited higher rates of [ 3 H]thymidine incorporation than did biofilms composed solely of bacteria. The rates of [ 3 H]thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10 -21 mol to 17.9 x 10 -21 mol of [ 3 H]thymidine incorporated cell -1 h -1 ) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon

  19. Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship.

    Science.gov (United States)

    Johannessen, Torill Vik; Larsen, Aud; Bratbak, Gunnar; Pagarete, António; Edvardsen, Bente; Egge, Elianne D; Sandaa, Ruth-Anne

    2017-04-20

    Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae , showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.

  20. A mechanistic analysis of density dependence in algal population dynamics

    Directory of Open Access Journals (Sweden)

    Adrian eBorlestean

    2015-04-01

    Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.

  1. The Structure of Algal Population in the Presence of Toxicants

    Science.gov (United States)

    Ipatova, Valentina; Prokhotskaya, Valeria; Dmitrieva, Aida

    Algal bioassays are routinely employed as part of a battery of toxicity tests to assess the environmental impacts of contaminants on aquatic ecosystems. This estimation is an essential component of the ecological risk assessment.

  2. Responses of Algal Cells to Engineered Nanoparticles Measured as Algal Cell Population, Chlorophyll a, and Lipid Peroxidation: Effect of Particle Size and Type

    Directory of Open Access Journals (Sweden)

    D. M. Metzler

    2012-01-01

    Full Text Available This paper investigated toxicity of three engineered nanoparticles (ENP, namely, Al2O3, SiO2, and TiO2 to the unicellular green algae, exemplified by Pseudokirchneriella subcapitata with an emphasis on particle size. The changes in pH, cell counts, chlorophyll a, and lipid peroxidation were used to measure the responses of the algal species to ENP. The most toxic particle size was TiO2 at 42 nm with an EC20 of 5.2 mg/L and Al2O3 at 14–18 nm with an EC20 of 5.1 mg/L. SiO2 was the least toxic with an EC20 of 318 mg/L. Toxicity was positively related to the surface charge of both ENP and algae. The chlorophyll content of the algal cells was influenced by the presence of ENP, which resulted in limited light and availability of nutrients due to increase in turbidity and nutrient adsorption onto the ENP surface, separately. Lipid peroxidation was attributed to reactive oxygen species (ROS. Fast reaction between algal cells and ROS due to direct contact between TiO2 and algal cells is an important factor for lipid peroxidation.

  3. Algal assay research in programs for Euthrophic Lake management: laboratory and field studies

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, G

    1979-01-01

    The present study is an attempt to clarify whether relations between viruses (cyanophages) and their algal hosts can be affected by manipulations in the environment. Is is possible to activate cyanophages and accelerate lysis of blue-green algal populations or to enhance the resistance of blue-green algae to attack from cynaophages. The experiments presented here were performed under laboratory conditions with a well-known algal - canophage system, Plectonema boryanum and cyanophage LPP-1 (attacking strains of Lyngbya, Phormidium and Plectonema). The work was done in close connection with field experiments on natural blue-green algal communities, however, because the nature of the induced blue-green algal collapse in plastic enclosures suggested lysis of the algal cells. The rate of LPP-1 cyanophage replication and lysis of plectonema was studied in relation to: (a) pH alterations by CO/sub 2//air additions, (b) algal host culture age and density, (c) nutrient concentrations and (d) presence of additional algal species.

  4. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    Science.gov (United States)

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  6. Effects of fertilizers used in agricultural fields on algal blooms

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.

    2017-01-01

    of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing......) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look...... at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation....

  7. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  8. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Cyd E. [Dept. of Energy (DOE), Washington DC (United States).

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  9. Harmful Algal Blooms

    Science.gov (United States)

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  10. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  11. Experimental study on the interspecific interactions between the two bloom-forming algal species and the rotifer Brachionus plicatilis

    Science.gov (United States)

    Xie, Zhihao; Xiao, Hui; Tang, Xuexi; Cai, Hengjiang

    2009-06-01

    The interspecific interactions between the rotifer Brachionus plicatilis and two harmful algal blooms (HAB) species were investigated experimentally by single culture method. B. plicatilis population and the growth of the two algae were compared at different algal cell densities. The results demonstrated that the B. plicatilis obtained sufficient nutrition from Prorocentrum donghaiense to support net population increase. With exposure to 2.5×104 cells mL-1 of P. donghaiense, the number of B. plicatilis increased faster than it did when exposed to other four algal densities (5, 10, 15 and 20 ×104 cells mL-1), and the increase rate of B. plicatilis population ( r) at this algal density was 0.104 ± 0.015 rd-1. Cell densities of P. donghaiense decreased due to the grazing of B. plicatilis. In contrast, Heterosigma akashiwo had an adverse effect on B. plicatilis population and its growth was largely unaffected by rotifer grazing. In this case, B. plicatilis population decreased and H. akashiwo grew at a rate similar to that of the control.

  12. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  13. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    Energy Technology Data Exchange (ETDEWEB)

    Abodeely, Jared [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Coleman, Andre M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Hydrology Technical Group; Stevens, Daniel M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Ray, Allison E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Cafferty, Kara G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Newby, Deborah T. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  14. Microbial bioenergetics of coral-algal interactions

    Directory of Open Access Journals (Sweden)

    Ty N.F. Roach

    2017-06-01

    Full Text Available Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify

  15. Algal dermatitis in cichlids.

    Science.gov (United States)

    Yanong, Roy P E; Francis-Floyd, Ruth; Curtis, Eric; Klinger, Ruth Ellen; Cichra, Mary E; Berzins, Ilze K

    2002-05-01

    Three varieties of a popular African cichlid aquarium species, Pseudotropheus zebra, from 2 tropical fish farms in east central Florida were submitted for diagnostic evaluation because of the development of multifocal green lesions. The percentage of infected fish in these populations varied from 5 to 60%. Fish were otherwise clinically normal. Microscopic examination of fresh and fixed lesions confirmed algal dermatitis, with light invasion of several internal organs in each group. A different alga was identified from each farm. Fish from farm A were infected with Chlorochytrium spp, whereas fish from farm B were infected with Scenedesmus spp. Because of the numbers of fish involved, bath treatments to remove the algae from affected fish from farm B were attempted, with different dosages of several common algaecides including copper sulfate pentahydrate, diuron, and sodium chloride. However, none of these treatments were successful, possibly because of the location of the algae under the scales and within the dermis, and also because of the sequestering effect of the granulomatous response. To our knowledge, this is the first report of algal dermatitis in ornamental cichlids, as well as the first report of Scenedesmus spp infection in any fish.

  16. ENSAYOS DE BIOESTIMULACIÓN ALGAL CON DIFERENTES RELACIONES NITRÓGENO: FÓSFORO, BAJO CONDICIONES DE LABORATORIO ASSAYS OF ALGAL BIO-STIMULATION WITH DIFFERENT NITROGEN-PHOSPHORUS RELATIONS UNDER LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Néstor J. Aguirre Ramírez

    2007-07-01

    Full Text Available Esta investigación tuvo como objetivo evaluar el crecimiento del alga Chlorella vulgaris ante diferentes concentraciones de nitrógeno y fósforo, a través de ensayos de bioestimulación en una cámara ambiental. Las variables respuesta fueron la densidad algal y la turbidez, evaluadas por conteo en una cámara de Neubauer y por espectrofotometría, empleando un equipo NOVA 60. Para los ensayos de bioestimulación se utilizó el medio de cultivo Estándar Métodos, sugerido por APHA, AWWA (1995 con diferentes concentraciones de nitrógeno y de fósforo. En general, se concluyó que la bioestimulación del crecimiento de Chlorella vulgaris depende de la relación estequiométrica entre el nitrógeno y el fósforo. En síntesis, cuando el fósforo se hace menos limitante se presentó una mayor tasa de crecimiento poblacional. Sin embargo, el nitrógeno es también esencial y ambos nutrientes no pueden ser analizados independientemente. Por lo tanto, el aumento o la disminución de las concentraciones de estos nutrientes en los ambientes acuáticos deben ser estudiados conjuntamente a través de sus relaciones estequiométricas.The main objective of this work was to evaluate the growth of algal population Chlorella vulgaris in different concentrations from nitrogen and phosphorus, through tests of algal stimulation in an environmental camera. The answer variables were algal density and turbidity, evaluated by count in a camera of Neubauer and with a photometric method (# 077, using NOVA 60 equipment. For the algal stimulation tests, methods suggested by APHA, AWWA (1995 with different phosphorus and nitrogen concentrations were used In general we concluded that the algal stimulation of the population growth of C. vulgaris depends on the stoichiometric relation between nitrogen and phosphorus. In synthesis when phosphorus becomes a less limit, a greater rate of population growth, appears; nevertheless nitrogen is also essential and both nutrients

  17. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    Science.gov (United States)

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    Phytoplankton populations in the Tualatin River in northwestern Oregon are an important component of the dissolved oxygen (DO) budget of the river and are critical for maintaining DO levels in summer. During the low-flow summer period, sufficient nutrients and a long residence time typically combine with ample sunshine and warm water to fuel blooms of cryptophyte algae, diatoms, green and blue-green algae in the low-gradient, slow-moving reservoir reach of the lower river. Algae in the Tualatin River generally drift with the water rather than attach to the river bottom as a result of moderate water depths, slightly elevated turbidity caused by suspended colloidal material, and dominance of silty substrates. Growth of algae occurs as if on a “conveyor belt” of streamflow, a dynamic system that is continually refreshed with inflowing water. Transit through the system can take as long as 2 weeks during the summer low-flow period. Photosynthetic production of DO during algal blooms is important in offsetting oxygen consumption at the sediment-water interface caused by the decomposition of organic matter from primarily terrestrial sources, and the absence of photosynthesis can lead to low DO concentrations that can harm aquatic life. The periods with the lowest DO concentrations in recent years (since 2003) typically occur in August following a decline in algal abundance and activity, when DO concentrations often decrease to less than State standards for extended periods (nearly 80 days). Since 2003, algal populations have tended to be smaller and algal blooms have terminated earlier compared to conditions in the 1990s, leading to more frequent declines in DO to levels that do not meet State standards. This study was developed to document the current abundance and species composition of phytoplankton in the Tualatin River, identify the possible causes of the general decline in algae, and evaluate hypotheses to explain why algal blooms diminish in midsummer. Plankton

  18. The engine of the reef: Photobiology of the coral-algal symbiosis

    Directory of Open Access Journals (Sweden)

    Melissa Susan Roth

    2014-08-01

    Full Text Available Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis and recent advances in the field. Studies integrating physiology with the developing omics fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.

  19. The engine of the reef: photobiology of the coral–algal symbiosis

    Science.gov (United States)

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  20. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    Science.gov (United States)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  1. Harmful algal blooms (HABs), dissolved organic matter (DOM), and planktonic microbial community dynamics at a near-shore and a harbour station influenced by upwelling (SW Iberian Peninsula)

    Science.gov (United States)

    Loureiro, Sofia; Reñé, Albert; Garcés, Esther; Camp, Jordi; Vaqué, Dolors

    2011-05-01

    The surface microalgal community, including harmful species, dissolved organic matter (DOM), and bacterial and viral populations were studied during an annual cycle (November 2007-October 2008) in a Near-shore (NS) and a Harbour (H) station located in an upwelling area (Sagres, SW Iberian Peninsula). The higher water residence time, water stability and shallowness of harbours in comparison with open waters likely contributed to the differences found between stations regarding chemical variables, statistical correlations and harmful algal proliferations. Also, several differences were noticed from a previous assessment ( Loureiro et al., 2005) including higher SST, lower nitrate and chlorophyll a concentrations, along with a shift in the microplankton community structure from diatom to nanoflagellate predominance. These variations feasibly reflect the response of this dynamic system to regional environmental modifications contributing to the understanding of common patterns in environmental change trends. The division of the sampling period into (1) non-upwelling (Non-Uw), (2) "spin-up" of upwelling (SU-Uw), and (3) "spin-down" and relaxation-downwelling (SD-Rel) stages allowed the identification of natural groupings of microplankton samples by Multi Dimensional Scaling (MDS) analysis. Dissolved organic nitrogen (DON) and viruses were the most significant abiotic and biotic variables, respectively, contributing to the dissimilarities between these stages (SIMPER analysis) and, therefore, potentially affecting the microplankton community structure. Harmful algal species and a stable viral community appeared to be favoured by SD-Rel conditions. Data seem to indicate that both Gymnodinium catenatum and Heterosigma akashiwo, the most abundant potentially harmful species, have been imported into the sampling area. Also, the H location, together with potential retention sites developing around the Cabo de São Vicente upwelling centre, may contribute to the local

  2. Constraints to commercialization of algal fuels.

    Science.gov (United States)

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  3. Advanced Algal Systems Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  4. Population dynamics

    Directory of Open Access Journals (Sweden)

    Cooch, E. G.

    2004-06-01

    Full Text Available Increases or decreases in the size of populations over space and time are, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change over time in the abundance of some population is the simple difference between the number of additions (individuals entering the population minus the number of subtractions (individuals leaving the population. Of course, the precise nature of the pattern and process of these additions and subtractions is often complex, and population biology is often replete with fairly dense mathematical representations of both processes. While there is no doubt that analysis of such abstract descriptions of populations has been of considerable value in advancing our, there has often existed a palpable discomfort when the ‘beautiful math’ is faced with the often ‘ugly realities’ of empirical data. In some cases, this attempted merger is abandoned altogether, because of the paucity of ‘good empirical data’ with which the theoretician can modify and evaluate more conceptually–based models. In some cases, the lack of ‘data’ is more accurately represented as a lack of robust estimates of one or more parameters. It is in this arena that methods developed to analyze multiple encounter data from individually marked organisms has seen perhaps the greatest advances. These methods have rapidly evolved to facilitate not only estimation of one or more vital rates, critical to population modeling and analysis, but also to allow for direct estimation of both the dynamics of populations (e.g., Pradel, 1996, and factors influencing those dynamics (e.g., Nichols et al., 2000. The interconnections between the various vital rates, their estimation, and incorporation into models, was the general subject of our plenary presentation by Hal Caswell (Caswell & Fujiwara, 2004. Caswell notes that although interest has traditionally

  5. The spatial and temporal dynamic of algal biomass associated with mangrove roots in Buenaventura bay pacific coast of Colombia

    International Nuclear Information System (INIS)

    Pena Salamanca, Enrique Javier

    2008-01-01

    The spatial and temporal variation of biomass of mangrove associated macro algae growing on roots of Rhizophora mangle and pneumatophores of Avicennia. germinans were studied at three sampling stations in Buenaventura bay, Colombia, between November 1999 and September 2003. Eighteen species of algae were collected including nine Rhodophyceae, five Chlorophyceae and four Cyanophyta (Cyanobacteria). Four species dominated the algal flora and collectively contributed with 90 % of the total algal biomass. Bostrychia calliptera was the most dominant with 32 % of the total biomass, followed by Boodleopsis verticillata (26 %), Catenella impudica (18 %), and Caloglossa leprieurii (12 %) Algal biomass between seasons showed significant differences, with higher biomass found during the dry season compared to those of the rainy season. The algal biomass at the mouth of the estuary was significantly higher than that found in the inner areas of the estuary (annual means of 30.7 ± 10.8 vs. 13.8 ± 4.1 g m 2 respectively).Three well-defined vertical zones were observed, based on algal biomass

  6. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  7. Eco-evolutionary dynamics in a coevolving host-virus system.

    Science.gov (United States)

    Frickel, Jens; Sieber, Michael; Becks, Lutz

    2016-04-01

    Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.

  8. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  9. Sapphire Energy - Integrated Algal Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    White, Rebecca L. [Sapphire Energy, Inc., Columbus, NM (United States). Columbus Algal Biomass Farm; Tyler, Mike [Sapphire Energy, Inc., San Diego, CA (United States)

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  10. Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.

    2017-07-20

    Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large

  11. Fungal farmers or algal escorts: lichen adaptation from the algal perspective.

    Science.gov (United States)

    Piercey-Normore, Michele D; Deduke, Christopher

    2011-09-01

    Domestication of algae by lichen-forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations (Goward 1992). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont 'selection' by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction (Ahmadjian & Jacobs 1981) only after the interaction has been initiated. The theory of ecological guilds (Rikkinen et al. 2002) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens (Rikkinen et al. 2002), other studies propose models to explain variation in symbiont combinations in green algal lichens (Ohmura et al. 2006; Piercey-Normore 2006; Yahr et al. 2006) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & Škaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose

  12. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    Science.gov (United States)

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.

  13. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory.

    Science.gov (United States)

    Chen, Qiuwen; Rui, Han; Li, Weifeng; Zhang, Yanhui

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004-2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial-temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial-temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Algal Systems for Hydrogen Photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, Maria L [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-08

    The National Renewable Energy Laboratory (NREL), under the guidance of Drs. Michael Seibert (retired, Fellow Emeritus) and Maria Ghirardi (Fellow), led 15 years of research addressing the issue of algal H2 photoproduction. This project resulted in greatly increased rates and yields of algal hydrogen production; increased understanding of the H2 metabolism in the green alga, Chlamydomonas reinhardtii; expanded our knowledge of other physiological aspects relevant to sustained algal photosynthetic H2 production; led to the genetic identification, cloning and manipulation of algal hydrogenase genes; and contributed to a broader, fundamental understanding of the technical and scientific challenges to improving the conversion efficiencies in order to reach the U.S. Department of Energy’s Fuel Cell Technologies Office’s targets. Some of the tangible results are: (i) 64 publications and 6 patents, (ii) international visibility to NREL, (iii) reinvigoration of national and international biohydrogen research, and (iv) research progress that helped stimulate new funding from other DOE and non-DOE programs, including the AFOSR and the DOE Office of Science.

  15. Significance of Algal Assemblages in Assessing Water Quality of the River Nile at Minia,Egypt

    International Nuclear Information System (INIS)

    El-Shahed, A.M.; Ibrahim, H.A.

    1999-01-01

    A sector of the Nile system in the Providence Minia, has been studied for physicochemical properties of waters and characteristics of the inhabiting algal communities. Monthly samples in the period April, 1994-Marsh, 1995 were collected from three sites on the Nile and one site on a drainage canal connected to it. Samples were analysed for water temperature, ph, inorganic forms of nitrogen, inorganic phosphates, silicates, chemical oxygen demand, total carbohydrates, total proteins, and the major nutritive metal ions; Na +, K +, Ca + + a nd Mg + + . Algal samples, collected at the same intervals, were studied for the characteristics of algal communities including diversity of species, abundance of populations and species co,position. A total of 124 taxa were recorded during the period of study of which 27 cyanophytes, 34 chlorophyte, 6 euglenophytes and 57 bacillariophytes. Changes in water chemistry of the river Nile, on receiving discharges from domestic, agricultural and industrial effluents, have been shown to be accompanied with alterations in the algal communities including species composition, species diversity and abundance of populations. Water quality was assessed on the basis of both chemical and biological data and results have indicated that the Nile at the area of study is subjected to eutrophication and organic pollution. Bio indicator species have also used to distinguish polluted and relatively clean localities

  16. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuwen, E-mail: qchen@rcees.ac.cn [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China); China Three Gorges University, Daxuelu 8, Yichang 443002 (China); CEER, Nanjing Hydraulics Research Institute, Guangzhoulu 223, Nanjing 210029 (China); Rui, Han; Li, Weifeng; Zhang, Yanhui [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China)

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004–2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial–temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial–temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. - Highlights: • An innovative method is developed to analyze algal bloom risks with uncertainties. • The algal blooms in Taihu Lake showed obvious spatial and temporal patterns. • The lake is mainly characterized as moderate bloom but with high uncertainty. • Severe bloom with low uncertainty appeared occasionally in the northwest part. • The results provide important information to bloom monitoring and management.

  17. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  18. NREL Algal Biofuels Projects and Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  19. Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles

    Science.gov (United States)

    Metzler, David M.

    Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a

  20. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    Science.gov (United States)

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  1. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    Science.gov (United States)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  2. Fish population dynamics

    National Research Council Canada - National Science Library

    Gulland, J. A

    1977-01-01

    This book describes how the dynamics of fish populations can be analysed in terms of the factors affecting their rates of growth, mortality and reproduction, with particular emphasis on the effects of fishing...

  3. Determination of the algal growth-limiting nutrients in strip mine ponds

    International Nuclear Information System (INIS)

    Bucknavage, M.J.; Aharrah, E.C.

    1984-01-01

    Using both a test organism, Ankistrodesmus falcatus, and natural phytoplankton, the Printz Algal Assay Bottle Test was used to determine the algal growth limiting nutrients in two strip mine ponds. Nitrogen, phosphorus, and iron were investigated, singly and in combination, as possible limiting nutrients. A synthetic chelator, Na 2 EDTA, was also used in the assay to test for the presence of metal toxicants and/or trace metal limitation. Because bacteria have a major influence on water chemistry, a separate assay incorporating the natural bacteria population was performed. In both ponds, assay results using test alga indicate phosphorus to be the primary limiting nutrient and nitrogen as a secondary factor. The presence of EDTA in combination with phosphate containing treatment promoted a higher algal concentration in both ponds. Iron was determined to be a secondary limiting nutrient in only one of the ponds. Natural phytoplankton of the two ponds responded in a similar manner to nutrient increases. Only one pond had the same results produced by both assays. Nutrient availability was influenced by the presence of bacteria in one pond but not in the other

  4. Algal stabilisation of estuarine sediments

    International Nuclear Information System (INIS)

    1992-01-01

    The presence of benthic microalgae can increase the stability of intertidal sediments and influence sediment fluxes within an estuarine environment. Therefore the relative importance of algal stabilisation needs to be understood to help predict the effects of a tidal barrage. The biogenic stabilisation of intertidal estuarine sediments by epipelic diatom films and the macrophyte Vaucheria was studied at three sites on the Severn Estuary. The cohesive strength meter (CSM) was developed to measure surface critical shear stress with varied algal density. A number of techniques have been used to determine the general in situ erodibility of cohesive estuarine sediments. The measurements of sediment shear strength and critical erosion velocity were investigated. Field experiments were undertaken to investigate the effect of algae on binding sediments, and a predictive method for the assessment of sediment stabilisation by algal binding was developed. (author)

  5. Population dynamics at high Reynolds number

    NARCIS (Netherlands)

    Perlekar, P.; Benzi, R.; Nelson, D.R.; Toschi, F.

    2010-01-01

    We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasi-localization and a remarkable reduction in the carrying

  6. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  7. Sustainable Algal Energy Production and Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, William E. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  8. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific coral reef

    Directory of Open Access Journals (Sweden)

    Fernando A Zapata

    2010-05-01

    Full Text Available Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004 from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7% and algal cover low (28.8%-37.5% and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP, recovering pre-disturbance (1979 levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (<6% reduction. Despite

  9. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific) coral reef.

    Science.gov (United States)

    Zapata, Fernando A; Rodríguez-Ramírez, Alberto; Caro-Zambrano, Carlos; Garzón-Ferreira, Jaime

    2010-05-01

    Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC) was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004) from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7%) and algal cover low (28.8%-37.5%) and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP), recovering pre-disturbance (1979) levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (< 6% reduction). Despite recurrent

  10. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Investigation of animal and algal bioassays for reliable saxitoxin ecotoxicity and cytotoxicity risk evaluation.

    Science.gov (United States)

    Perreault, François; Matias, Marcelo Seleme; Melegari, Silvia Pedroso; Pinto, Catia Regina Silva de Carvalho; Creppy, Edmond Ekué; Popovic, Radovan; Matias, William Gerson

    2011-05-01

    Contamination of water bodies by saxitoxin can result in various toxic effects in aquatic organisms. Saxitoxin contamination has also been shown to be a threat to human health in several reported cases, even resulting in death. In this study, we evaluated the sensitivity of animal (Neuro-2A) and algal (Chlamydomonas reinhardtii) bioassays to saxitoxin effect. Neuro-2A cells were found to be sensitive to saxitoxin, as shown by a 24 h EC50 value of 1.5 nM, which was obtained using a cell viability assay. Conversely, no saxitoxin effect was found in any of the algal biomarkers evaluated, for the concentration range tested (2-128 nM). These results indicate that saxitoxin may induce toxic effects in animal and human populations at concentrations where phytoplankton communities are not affected. Therefore, when evaluating STX risk of toxicity, algal bioassays do not appear to be reliable indicators and should always be conducted in combination with animal bioassays. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Allee effects on population dynamics with delay

    International Nuclear Information System (INIS)

    Celik, C.; Merdan, H.; Duman, O.; Akin, O.

    2008-01-01

    In this paper, we study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay

  13. Evidence for water-mediated mechanisms in coral–algal interactions

    Science.gov (United States)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  14. Structural stability of nonlinear population dynamics.

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  15. Structural stability of nonlinear population dynamics

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  16. Algal stabilisation of estuarine sediments

    International Nuclear Information System (INIS)

    1992-01-01

    The presence of benthic microalgae can increase the stability of intertidal sediments and influence sediment fluxes within an estuarine environment. Therefore the relative importance of algal stabilisation needs to be understood to help predict the effects of a tidal barrage. The objectives of this study are: to assess the significance of stabilisation of sediments by algae, in relation to the changes in hydrodynamic and sedimentological regimes arising from the construction of tidal power barrages; to identify a reliable and meaningful method of measuring the effectiveness, including duration, of algal binding on sediment stability, and to relate this method to other methods of measuring critical erosion velocity and sediment shear strength; to undertake a series of field experiments investigating the effect of algae on binding sediments and the parameters which could potentially influence such binding and to develop a predictive method for the assessment of sediment stabilisation by algal binding. This report contains plates, figures and tables. (author)

  17. Algal Toxins Alter Copepod Feeding Behavior

    Science.gov (United States)

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  18. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  19. Resolving Mixed Algal Species in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Mehrube Mehrubeoglu

    2013-12-01

    Full Text Available We investigated a lab-based hyperspectral imaging system’s response from pure (single and mixed (two algal cultures containing known algae types and volumetric combinations to characterize the system’s performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert’s law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements.

  20. Harmful algal blooms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.; PrabhaDevi; DeSouza, L.; Verlecar, X.N.; Naik, C.G.

    as harmful algal bloom. Bloom formation is a natural process and it enhances biological productivity, but turns worrisome when caused by toxic species, leading to massive fish mortalities and hazards to human health. Incidences of'red tide' are increasing...

  1. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  2. Population dynamics on heterogeneous bacterial substrates

    Science.gov (United States)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  3. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    Science.gov (United States)

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  4. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-09-01

    Algal bloom can significantly impact reverse osmosis desalination process and reduce the drinking water production. In 2008, a major bloom event forced several UAE reverse osmosis plants to stop their production, and in this context, a better understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also be an alternative for the filtration of marine algal solutions. The fouling potential of the Red Sea and the Arabian Sea, sampled at different seasons, along with four algal monocultures grown in laboratory, and one mesocosm experiment in the Red Sea was investigated. Algal solutions induce a stronger and more irreversible fouling than terrestrial humic solution, toward ceramic membrane. During algal bloom events, this fouling is enhanced and becomes even more problematic at the decline phase of the bloom, for a similar initial DOC. Three main mechanisms are involved: the formation of a cake layer at the membrane surface; the penetration of the algal organic matter (AOM) in the pore network of the membrane; the strong adhesion of AOM with the membrane surface. The last mechanism is species-specific and metal-oxide specific. In order to understand the stronger ceramic UF fouling at the decline phase, AOM quality was analyzed every two days. During growth, AOM is getting enriched in High Molecular Weight (HMW) structures (> 200 kDa), which are mainly composed by proteins and polysaccharides, and these compounds seem to be responsible for the stronger fouling at decline phase. In order to prevent the fouling of ceramic membrane, coagulation-flocculation (CF) using ferric chloride was implemented prior to filtration. It permits a high removal of HMW compounds and greatly reduces the fouling potential of the algal solution. During brief algal bloom events, CF should be

  5. Population dynamics in variable environments

    CERN Document Server

    Tuljapurkar, Shripad

    1990-01-01

    Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula­ tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to re...

  6. Population dynamical responses to climate change

    DEFF Research Database (Denmark)

    Forchhammer, Mads; Schmidt, Niels Martin; Høye, Toke Thomas

    2008-01-01

    approaches, we analyse concurrently the influence of climatic variability and trophic interactions on the temporal population dynamics of species in the terrestrial vertebrate community at Zackenberg. We describe and contrast the population dynamics of three predator species (arctic fox Alopex lagopus, stoat...... of arctic fox were not significantly related to changes in lemming abundance, both the stoat and the breeding of long-tailed skua were mainly related to lemming dynamics. The predator-prey system at Zackenberg differentiates from previously described systems in high-arctic Greenland, which, we suggest...

  7. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    Science.gov (United States)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  8. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses.

    Science.gov (United States)

    Kim, Eunsoo; Lin, Yuan; Kerney, Ryan; Blumenberg, Lili; Bishop, Cory

    2014-01-01

    Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga "Oophila amblystomatis" (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the 'Oophila' clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae.

  9. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses.

    Directory of Open Access Journals (Sweden)

    Eunsoo Kim

    Full Text Available Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga "Oophila amblystomatis" (Lambert ex Wille, which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the 'Oophila' clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae.

  10. Market Squid Population Dynamics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...

  11. A study of algal biomass potential in selected Canadian regions.

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  12. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  13. Population dynamics and population control of Galium aparine L.

    NARCIS (Netherlands)

    Weide, van der R.Y.

    1993-01-01

    The population biology of Galium aparine L. needs to be better understood, in order to be able to rationalize decisions about the short- and long-term control of this weed species for different cropping practices.

    A population dynamics model was developed to

  14. Evolutionary dynamics of cooperation in neutral populations

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2018-01-01

    Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.

  15. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    Science.gov (United States)

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  16. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the

  17. Algal Turf Scrubbers: Cleaning Water While Capturing Solar Energy

    International Nuclear Information System (INIS)

    Adey, W.

    2009-01-01

    Algal Turfs and Algal Turf Scrubbers (ATS) Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. ATS was invented at the Smithsonian Institution, by scientist, Walter Adey in the 1980s as a tool for controlling water quality in highly diverse model ecosystems. The technology received extensive R and D for aqua cultural, municipal, and industrial water cleaning by Dr. Adey, using venture capital, through the 1990s. Later, Hydro Mentia, Inc., of Ocala, Florida, engineered ATS to landscape scale of 20-50 Mgpd (it is important to note that this is a modular system, capable of expanding to any size.) A 2005 independent study of ATS, by the South Florida Water Management District and the IFAS Institute of the University of Florida, certified ATS as 5-100 times more cost efficient at removing nutrients from Everglades canal waters than the next competitor, the STA, a managed marsh system. ATS and STA were the final contestants in a 15-year study of nine technologies, and ATS was the only technology that created a use able byproduct.

  18. Two-Phase Flow Modeling of Solid Dissolution in Liquid for Nutrient Mixing Improvement in Algal Raceway Ponds

    Directory of Open Access Journals (Sweden)

    Haider Ali

    2018-04-01

    Full Text Available Achieving optimal nutrient concentrations is essential to increasing the biomass productivity of algal raceway ponds. Nutrient mixing or distribution in raceway ponds is significantly affected by hydrodynamic and geometric properties. The nutrient mixing in algal raceway ponds under the influence of hydrodynamic and geometric properties of ponds is yet to be explored. Such a study is required to ensure optimal nutrient concentrations in algal raceway ponds. A novel computational fluid dynamics (CFD model based on the Euler–Euler numerical scheme was developed to investigate nutrient mixing in raceway ponds under the effects of hydrodynamic and geometric properties. Nutrient mixing was investigated by estimating the dissolution of nutrients in raceway pond water. Experimental and CFD results were compared and verified using solid–liquid mass transfer coefficient and nutrient concentrations. Solid–liquid mass transfer coefficient, solid holdup, and nutrient concentrations in algal pond were estimated with the effects of pond aspect ratios, water depths, paddle wheel speeds, and particle sizes of nutrients. From the results, it was found that the proposed CFD model effectively simulated nutrient mixing in raceway ponds. Nutrient mixing increased in narrow and shallow raceway ponds due to effective solid–liquid mass transfer. High paddle wheel speeds increased the dissolution rate of nutrients in raceway ponds.

  19. Algal Biology Toolbox Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-01

    DOE-EERE's Bioenergy Technologies Office (BETO) works to accelerate the development of a sustainable, cost-competitive, advanced biofuel industry that can strengthen U.S. energy security, environmental quality, and economic vitality, through research, development, and demonstration projects in partnership with industry, academia, and national laboratory partners. BETO’s Advanced Algal Systems Program (also called the Algae Program) has a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels. The team works with partners to develop new technologies, to integrate technologies at commercially relevant scales, and to conduct crosscutting analyses to better understand the potential and challenges of the algal biofuels industry. Research has indicated that this industry is capable of producing billions of gallons of renewable diesel, gasoline, and jet fuels annually. R&D activities are integrated with BETO’s longstanding effort to accelerate the commercialization of lignocellulosic biofuels.

  20. Combination of the mutation process with the sensitization and repair processes leading to increased frequencies of mutations in algal populations

    International Nuclear Information System (INIS)

    Necas, J.

    1977-01-01

    The possibility of combining the mutation process with the induction of the repair processes was studied to increase the mutation frequencies in algal populations after UV treatment. The repair process induced by visible light was found to be much more effective than the dark repair processes in the chlorococcal algae used. In these algae, visible light possibly does not induce only those repair processes which affect their DNA, but probably also certain recovery processes which affect their damaged structures and physiological functions. A suitable combination of the sensitization of algae cells by a DNA-base analogue before UV treatment and the induction of the light repair and recovery processes resulted in a rather high increase of viable mutations in chlorococcal algae. These findings may be useful in breeding chlorococcal algae, which have no possibility of hybridization other than somatic. (author)

  1. Mechanical algal disruption for efficient biodiesel extraction

    Science.gov (United States)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  2. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  3. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina

    Directory of Open Access Journals (Sweden)

    Daniel Wiltsie

    2018-02-01

    Full Text Available The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions, but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β-N-methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT] revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study’s findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed.

  4. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina.

    Science.gov (United States)

    Wiltsie, Daniel; Schnetzer, Astrid; Green, Jason; Vander Borgh, Mark; Fensin, Elizabeth

    2018-02-24

    The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β- N -methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study's findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed.

  5. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina

    Science.gov (United States)

    Wiltsie, Daniel; Schnetzer, Astrid; Green, Jason; Vander Borgh, Mark; Fensin, Elizabeth

    2018-01-01

    The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β-N-methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study’s findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed. PMID:29495289

  6. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Directory of Open Access Journals (Sweden)

    Zak Frentz

    2015-10-01

    Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  7. How Resource Phenology Affects Consumer Population Dynamics.

    Science.gov (United States)

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  8. Responses of Algal Cells to Engineered Nanoparticles Measured as Algal Cell Population, Chlorophyll a, and Lipid Peroxidation: Effect of Particle Size and Type

    OpenAIRE

    D. M. Metzler; A. Erdem; Y. H. Tseng; C. P. Huang

    2012-01-01

    This paper investigated toxicity of three engineered nanoparticles (ENP), namely, Al2O3, SiO2, and TiO2 to the unicellular green algae, exemplified by Pseudokirchneriella subcapitata with an emphasis on particle size. The changes in pH, cell counts, chlorophyll a, and lipid peroxidation were used to measure the responses of the algal species to ENP. The most toxic particle size was TiO2 at 42 nm with an EC20 of 5.2 mg/L and Al2O3 at 14–18 nm with an EC20 of 5.1 mg/L. SiO2 was the least toxic...

  9. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-01-01

    understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also

  10. Influence of Diadema antillarum populations (Echinodermata: Diadematidae on algal community structure in Jardines de la Reina, Cuba

    Directory of Open Access Journals (Sweden)

    Félix Martín Blanco

    2011-09-01

    Full Text Available The 1983-1984 mass mortality of Diadema antillarum produced severe damages on Caribbean reefs contributing to substantial changes in community structure that still persist. Despite the importance of Diadema grazing in structuring coral reefs, available information on current abundances and algal-urchin interactions in Cuba is scarce. We analyzed spatial variations in Diadema abundance and its influence on algal community structure in 22 reef sites in Jardines de la Reina, in June/2004 and April/2005. Urchins were counted in five 30x2m transects per site, and algal coverage was estimated in randomly located 0.25m side quadrats (15 per site. Abundances of Diadema were higher at reef crests (0.013-1.553 ind/m², while reef slope populations showed values up to three orders of magnitude lower and were overgrown by macroalgae (up to 87%, local values. Algal community structure at reef slopes were dominated by macroalgae, especially Dictyota, Lobophora and Halimeda while the most abundant macroalgae at reef crests were Halimeda and Amphiroa. Urchin densities were negatively and positively correlated with mean coverage of macroalgae and crustose coralline algae, respectively, when analyzing data pooled across all sites, but not with data from separate habitats (specially reef crest, suggesting, along with historical fish biomass, that shallow reef community structure is being shaped by the synergistic action of other factors (e.g. fish grazing rather than the influence of Diadema alone. However, we observed clear signs of Diadema grazing at reef crests and decreased macroalgal cover according to 2001 data, what suggest that grazing intensity at this habitat increased at the same time that Diadema recruitment began to be noticeable. Furthermore, the excessive abundance of macroalgae at reef slopes and the scarcity of crustose coralline algae seems to be due by the almost complete absence of D. antillarum at mid depth reefs, where local densities of this

  11. Modelling the Dynamics of an Aedes albopictus Population

    Directory of Open Access Journals (Sweden)

    Thomas Anung Basuki

    2010-08-01

    Full Text Available We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.

  12. HARMFUL ALGAL BLOOMS IN THE MEDITERRANEAN SEA: EFFECTS ON HUMAN HEALTH.

    Directory of Open Access Journals (Sweden)

    Margherita Ferrante

    2013-01-01

    Full Text Available A harmful algal bloom (HAB is defined as a bloom that has deleterious effects on plants, animals or humans. Marine algal toxins are responsible for an array of human illnesses associated with consumption of seafood or exposure to aerosolized toxins. The effects of algal toxins are generally observed as acute intoxications, whereas the environmental health effects of chronic exposure to low levels of algal toxins are, to date, only poorly documented and an emerging issue. Consumption of seafood contaminated with algal toxins can result in five types of seafood poisoning syndromes: paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning, diarrhetic shellfish poisoning and ciguatera fish poisoning. The aim of this paper is to provide an overview on HAB-related issues in the Mediterranean Sea.

  13. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    Science.gov (United States)

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  14. Changes in algal composition and environmental variables in the ...

    African Journals Online (AJOL)

    Monthly sampling in 2003 and 2006 indicated that dissolved inorganic nitrogen concentrations decreased, while dissolved inorganic phosphorus concentration increased 12-fold, resulting in increases in algal concentration and a shift from green algal dominance in 2003 to cyanobacterial dominance in 2006. Multivariate ...

  15. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.

    Science.gov (United States)

    Deng, Yang; Wu, Meiyin; Zhang, Huiqin; Zheng, Lei; Acosta, Yaritza; Hsu, Tsung-Ta D

    2017-11-01

    Although ferrate(VI) has long been recognized as a multi-purpose treatment agent, previous investigations regarding ferrate(VI) for addressing harmful algal blooms (HABs) impacts in drinking water treatment only focused on a single HAB pollutant (e.g. algal cells or algal toxins). Moreover, the performance of ferrate(VI)-driven coagulation was poorly investigated in comparison with ferrate(VI) oxidation, though it has been widely acknowledged as a major ferrate(VI) treatment mechanism. We herein reported ferrate(VI) as an emerging agent for simultaneous and effective removal of algal cells and toxins in a simulated HAB-impacted water. Ferrate(VI)-driven oxidation enabled algal cell inactivation and toxin decomposition. Subsequently, Fe(III) from ferrate(VI) reduction initiated an in-situ coagulation for cell aggregation. Cell viability (initial 4.26 × 10 4 cells/mL at pH 5.5 and 5.16 × 10 4 cells/mL at pH 7.5) decreased to 0.0% at ≥ 7 mg/L Fe(VI) at pH 5.5 and 7.5, respectively. Cell density and turbidity were dramatically decreased at pH 5.5 once ferrate(VI) doses were beyond their respective threshold levels, which are defined as minimum effective iron doses (MEIDs). However, the particulate removal at pH 7.5 was poor, likely because the coagulation was principally driven by charge neutralization and a higher pH could not sufficiently lower the particle surface charge. Meanwhile, algal toxins (i.e., microcystins) of 3.98 μg/L could be substantially decomposed at either pH. And the greater degradation achieved at pH 5.5 was due to the higher reactivity of ferrate(VI) at the lower pH. This study represents the first step toward the ferrate(VI) application as a promising approach for addressing multiple HABs impacts for water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    Science.gov (United States)

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  17. Evidence for water-mediated mechanisms in coral–algal interactions

    NARCIS (Netherlands)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; Beer, De Dirk; Nugues, Maggy M.

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations

  18. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    Science.gov (United States)

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Algal MIPs, high diversity and conserved motifs.

    Science.gov (United States)

    Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban

    2011-04-21

    Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  20. Algal MIPs, high diversity and conserved motifs

    Directory of Open Access Journals (Sweden)

    Johanson Urban

    2011-04-01

    Full Text Available Abstract Background Major intrinsic proteins (MIPs also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs and GlpF-like Intrinsic Proteins (GIPs, are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  1. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories.

    Science.gov (United States)

    Miller, David A; Clark, William R; Arnold, Stevan J; Bronikowski, Anne M

    2011-08-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of

  2. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    Science.gov (United States)

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use. © 2015 Wiley Periodicals, Inc.

  3. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  4. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  5. Beach-goer behavior during a retrospectively detected algal ...

    Science.gov (United States)

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  6. Allee effects on population dynamics in continuous (overlapping) case

    International Nuclear Information System (INIS)

    Merdan, H.; Duman, O.; Akin, O.; Celik, C.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a continuous population dynamics with delay under the Allee effect which occurs at low population density. The mathematical results and numerical simulations show the stabilizing role of the Allee effects on the stability of the equilibrium point of this population dynamics.

  7. Daphnia fed algal food grown at elevated temperature have reduced fitness

    Directory of Open Access Journals (Sweden)

    Anna B. Sikora

    2014-05-01

    Full Text Available Lake water temperature is negatively correlated with fatty acids content and P:C ratio in green algae. Hence, elevated temperature may indirectly reduce the fitness of Daphnia due to induced decrease in algal food quality. The aim of this study was to test the hypotheses that quality of algal food decreases with increasing temperature of its culture and that large-bodied Daphnia are more vulnerable to the temperature-related deterioration of algal food quality than small-bodied ones. Laboratory life-table experiments were performed at 20°C with large-bodied D. pulicaria and small-bodied D. cucullata fed with the green alga Scenedesmus obliquus, that had been grown at temperatures of 16, 24 or 32°C. The somatic growth rates of both species decreased significantly with increasing algal culture temperature and this effect was more pronounced in D. pulicaria than in D. cucullata. In the former species, age at first reproduction significantly increased and clutch size significantly decreased with increasing temperature of algae growth, while no significant changes in these two parameters were observed in the latter species. The proportion of egg-bearing females decreased with increasing algal culture temperature in both species. The results of this study support the notion that the quality of algal food decreases with increasing water temperature and also suggest that small-bodied Daphnia species might be less vulnerable to temperature-related decreases in algal food quality than large-bodied ones.

  8. Analysis of Population Dynamics in World Economy

    OpenAIRE

    Martin, Gress

    2011-01-01

    Population dynamics is an important topic in current world economy. The size and growth of population have an impact on economic growth and development of individual countries and vice versa, economic development influences demographic variables in a country. The aim of the article is to analyze historical development of world population, population stock change and relations between population stock change and economic development.

  9. Algal Bloom: Boon or Bane?

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Algal blooms occur in response to nutrient deplete or replete conditions. Nitrogen fixing forms proliferate under oligotrophic conditions when nutrient levels are low. Replete conditions in response to upwelling creates the most biologically...

  10. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    Science.gov (United States)

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  11. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  12. Increasing the extraction efficiency of algal lipid for biodiesel ...

    African Journals Online (AJOL)

    Various studies have been conducted recently using microalgal system for the production of algal lipid for biodiesel production. This study aimed at increasing the extraction efficiency of algal lipid from Chlorella sp. by the application of Chlorella viruses. The calorific value of lipid from Chlorella sp. has been reported to be ...

  13. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    Directory of Open Access Journals (Sweden)

    Pavel Pořízka

    2014-09-01

    Full Text Available Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail.

  14. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  15. Perturbation analysis of transient population dynamics using matrix projection models

    DEFF Research Database (Denmark)

    Stott, Iain

    2016-01-01

    Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... these methods to know exactly what is being measured. Despite a wealth of existing methods, I identify some areas that would benefit from further development....

  16. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Science.gov (United States)

    Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λbounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  17. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.; Tabatabai, S. Assiyeh Alizadeh; Anderson, Donald M.; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2015-01-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  18. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  19. Central-marginal population dynamics in species invasions

    Directory of Open Access Journals (Sweden)

    Qinfeng eGuo

    2014-06-01

    Full Text Available The species’ range limits and associated central-marginal (C-M; i.e., from species range center to margin population dynamics continue to draw increasing attention because of their importance for current emerging issues such as biotic invasions and epidemic diseases under global change. Previous studies have mainly focused on species borders and C-M process in natural settings for native species. More recently, growing efforts are devoted to examine the C-M patterns and process for invasive species partly due to their relatively short history, highly dynamic populations, and management implications. Here I examine recent findings and information gaps related to (1 the C-M population dynamics linked to species invasions, and (2 the possible effects of climate change and land use on the C-M patterns and processes. Unlike most native species that are relatively stable (some even having contracting populations or ranges, many invasive species are still spreading fast and form new distribution or abundance centers. Because of the strong nonlinearity of population demographic or vital rates (i.e. birth, death, immigration and emigration across the C-M gradients and the increased complexity of species ranges due to habitat fragmentation, multiple introductions, range-wide C-M comparisons and simulation involving multiple vital rates are needed in the future.

  20. Copper desorption from Gelidium algal biomass.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  1. Collection and conversion of algal lipid

    Science.gov (United States)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  2. Thermodynamic analysis of algal biocrude production

    International Nuclear Information System (INIS)

    Beal, C.M.; Hebner, R.E.; Webber, M.E.

    2012-01-01

    Although algal biofuels possess great potential, profitable production is quite challenging. Much of this challenge is rooted in the thermodynamic constraints associated with producing fuels with high energy, low entropy, and high exergy from dispersed materials. In this study, a preliminary thermodynamic analysis is presented that calculates the energy, entropy, and exergy of the intermediate products for algal biocrude production. These values are also used in an initial attempt to characterize the thermodynamic efficiency of that system. The production pathway is simplified by assuming ideal solutions throughout. Results for the energy and exergy efficiencies, and the first-order energy and exergy return on investment, of the system are given. The summary finding is that the first-order energy return on investment in the best case considered could be as high as 520, as compared to 1.7 × 10 −3 in the experimental unit under development. While this analysis shows that significant improvement may be possible, the ultimate thermodynamic efficiency of algal biofuels likely lies closer to the moderate case examined here, which yielded a first-order energy return on investment of 10. For perspective, the first-order energy return on investment for oil and gas production has been estimated in the literature to be ∼35. -- Highlights: ► A first-principles thermodynamic analysis was conducted for algal biocrude production. ► The energy, entropy, and exergy was determined for each intermediate product by assuming the products were ideal solutions. ► The thermodynamic properties were used to calculate the energy and exergy return on investments for three cases. ► It was determined that the energy and exergy return on investments could be as high as ∼500. ► More realistic assumptions for efficient systems yielded return on investments on the order of 10.

  3. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nyholm, Niels; Verbruggen, Eric M. J.

    2000-01-01

    Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well as to the......Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well......, and the resulting dissolved CO2 concentration supported maximum algal growth rates without pH drift for algal densities up to 4 mg dry weight/L. Two-day toxicity tests with kerosene were performed with this new test design and compared with an open bottle test and with a closed bottle test with headspace. Exposure...... concentrations of the volatile fraction of kerosene decreased by 99% in the open test, by 77% in the closed flask test with headspace, and by 16% in the filled closed bottle test. Algal growth inhibition was observed at much lower additions of kerosene in the new test design because of the improved maintenance...

  4. Algal Growth and Waste Stabilization Ponds Performance Efficiency in a Sub-Tropical Climate

    International Nuclear Information System (INIS)

    Alamgir, A.; Khan, M. A.; Shaukat, S. S.

    2016-01-01

    Both irrigation and potable water are in diminutive supply in most of the developing countries particularly those situated in tropical and subtropical regions where, often untreated wastewater is utilized for the purpose of irrigation. Treated wastewater has proved to be a potential asset serving as an alternate source for the expansion of irrigated agriculture. Waste stabilization ponds (WSP) are considered as less costly and effective substitute for the wastewater water treatment in tropics. The principle of wastewater treatment in waste stabilization pond is based on the symbiotic relationship between bacteria and various algal species. In this study, an attempt was made to relate algal growth and different extrinsic factors using multiple regression models. The predominant algal species found in WSP systems were Chlorella, Euglena, Oscillatoria and Scenedesmus. The growth of individual algal species and overall algal growth was principally governed by temperature, total sunshine hours and Total Kjeldhal Nitrogen (TKN). The study suggested that algal bacterial symbiotic relationship works well and the dissolved oxygen production through algal photosynthesis was optimum to decompose heavy organic load resulting in oxygen-rich effluent (liquid fertilizer) which could be successfully exploited for unrestricted irrigation. (author)

  5. Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    The consideration of algal biomass in biodiesel production increased very rapidly in the last decade. A life cycle assessment (LCA) study is presented to compare six different biodiesel production pathways (three different harvesting techniques, i.e., aluminum as flocculent, lime flocculent, and ......, ecosystem quality, and resources were higher than the conventional diesel. This study recommends more practical data at pilot-scale production plant with maximum utilization of by-products generated during the production to produce a sustainable algal biodiesel......., and centrifugation, and two different oil extraction methods, i.e., supercritical CO2 (sCO2) and press and co-solvent extraction). The cultivation of Nannochloropsis sp. considered in a flat-panel photobioreactor (FPPBR). These algal biodiesel production systems were compared with the conventional diesel in a EURO 5...... passenger car used for transport purpose (functional unit 1 person km (pkm). The algal biodiesel production systems provide lesser impact (22–105 %) in comparison with conventional diesel. Impacts of algal biodiesel on climate change were far better than conventional diesel, but impacts on human health...

  6. Nonlinear Relaxation in Population Dynamics

    Science.gov (United States)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  7. Enhanced production of green tide algal biomass through additional carbon supply.

    Science.gov (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  8. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  9. Physical determinants of phytoplankton production, algal stoichiometry, and vertical nutrient fluxes.

    Science.gov (United States)

    Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian

    2010-04-01

    Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.

  10. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    Energy Technology Data Exchange (ETDEWEB)

    Anton, David [Cellana, LLC, Kailua-Kona, HI (United States)

    2016-12-31

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing, and refining.

  11. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    Science.gov (United States)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  12. 2016 National Algal Biofuels Technology Review Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  13. Catalytic Processes for Utilizing Carbohydrates Derived from Algal Biomass

    Directory of Open Access Journals (Sweden)

    Sho Yamaguchi

    2017-05-01

    Full Text Available The high productivity of oil biosynthesized by microalgae has attracted increasing attention in recent years. Due to the application of such oils in jet fuels, the algal biosynthetic pathway toward oil components has been extensively researched. However, the utilization of the residue from algal cells after oil extraction has been overlooked. This residue is mainly composed of carbohydrates (starch, and so we herein describe the novel processes available for the production of useful chemicals from algal biomass-derived sugars. In particular, this review highlights our latest research in generating lactic acid and levulinic acid derivatives from polysaccharides and monosaccharides using homogeneous catalysts. Furthermore, based on previous reports, we discuss the potential of heterogeneous catalysts for application in such processes.

  14. Early detection of protozoan grazers in algal biofuel cultures.

    Science.gov (United States)

    Day, John G; Thomas, Naomi J; Achilles-Day, Undine E M; Leakey, Raymond J G

    2012-06-01

    Future micro-algal biofuels will most likely be derived from open-pond production systems. These are by definition open to "invasion" by grazers, which could devastate micro-algal mass-cultures. There is an urgent requirement for methodologies capable of early detection and control of grazers in dense algal cultures. In this study a model system employing the marine alga Nannochloropsis oculata was challenged by grazers including ciliates, amoebae and a heterotrophic dinoflagellate. A FlowCAM flow-cytometer was used to detect all grazers investigated (size range 80 μm in length) in the presence of algae. Detection limits were 1.4 × 10(8) cells ml(-1) (>0.5 g l(-1) dry wt.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A review of algal research in space

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-05-01

    With the continued expansion of human presence into space, typical mission durations will routinely exceed six months and extend to distances beyond the Moon. As such, sending periodic resupply vehicles, as currently provided to the International Space Station, will likely no longer be feasible. Instead, self-sustaining life support systems that recycle human waste products will become increasingly necessary, especially for planetary bases. The idea of bioregenerative life support systems using algal photobioreactors has been discussed since the beginning of the space age. In order to evaluate how such a system could be implemented, a variety of space flight studies aimed at characterizing the potential for using algae in air revitalization, water recycling, food production, and radiation shielding applications have been conducted over the years. Also, given the recent, growing interest in algal research for regenerative fuel production, food supplements, and cosmetics, many algal strains are already well documented from related terrestrial experiments. This paper reviews past algal experiments flown in space from 1960 until today. Experimental methods and results from 51 investigations utilizing either green algae (Chlorophyta), cyanobacteria (Cyanophyta), or Euglenophyta are analyzed and categorized by a variety of parameters, including size, species and duration. The collected data are summarized in a matrix that allows easy comparison between the experiments and provides important information for future life support system requirement definition and design. Similarities between experiment results are emphasized. Common problems and shortcomings are summarized and analyzed in terms of potential solutions. Finally, key research gaps, which must be closed before developing a functional life support system, are identified.

  16. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  17. Population and evolutionary dynamics in spatially structured seasonally varying environments.

    Science.gov (United States)

    Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin

    2018-03-25

    Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can

  18. Effects of an invasive plant on population dynamics in toads.

    Science.gov (United States)

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  19. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M. L.

    2016-01-13

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  20. Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results

    Directory of Open Access Journals (Sweden)

    Colin M. Beal

    2012-06-01

    Full Text Available Worldwide, algal biofuel research and development efforts have focused on increasing the competitiveness of algal biofuels by increasing the energy and financial return on investments, reducing water intensity and resource requirements, and increasing algal productivity. In this study, analyses are presented in each of these areas—costs, resource needs, and productivity—for two cases: (1 an Experimental Case, using mostly measured data for a lab-scale system, and (2 a theorized Highly Productive Case that represents an optimized commercial-scale production system, albeit one that relies on full-price water, nutrients, and carbon dioxide. For both cases, the analysis described herein concludes that the energy and financial return on investments are less than 1, the water intensity is greater than that for conventional fuels, and the amounts of required resources at a meaningful scale of production amount to significant fractions of current consumption (e.g., nitrogen. The analysis and presentation of results highlight critical areas for advancement and innovation that must occur for sustainable and profitable algal biofuel production can occur at a scale that yields significant petroleum displacement. To this end, targets for energy consumption, production cost, water consumption, and nutrient consumption are presented that would promote sustainable algal biofuel production. Furthermore, this work demonstrates a procedure and method by which subsequent advances in technology and biotechnology can be framed to track progress.

  1. Investigation and Control of Algal Grwoths in Water Resources Using Zn Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehdi Eskandary

    2016-03-01

    Full Text Available Increasing nutrients such as nitrates and phosphates in water resources lead to the growth of various algal species, causing undesirable odors and taste in the water. This study investigated the identification and removal of harmful algal growths by Zinc oxide nanoparticles (using Ardabil Yamichi Dam reservoir as a case study. Samples were initially collected from the Yamichi Dam reservoir and the algae in the water samples were cultivated. Enough time was allowed for the algae to grow before they were identified under the microscope. The results showed that most of the algal species grown in the culture medium belonged to the species Cladophora and Euglena. Zinc oxide nanoparticles were then synthesized to be used in the removal and/or inhibition of algal growths. ZnO nanoparticles were subsequently characterized by transmission electron microscopy (TEM and X-ray diffraction (XRD methods which revealed that the size of the ZnO nanoparticles was in the range of 10‒30 nanometers and further that the nanoparticles were pure and of a  hexagonal phase. In continuation, the capability of ZnO nanoparticles with concentrations in the range of 0-3 ppm to inhibit algal growth was investigated. Results showed that no reduction was observed in algal growth for Zinc oxide nanoparticle concentrations below 1 mg/lit. At concentrations between 1 to 2 mg/lit, however, a significant reduction was observed in algal growth. Finally, it was found that algal growths completely stopped at ZnO concentrations beyond 2 mg/lit

  2. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  3. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  4. Dynamics of a physiologically structured population in a time-varying environment

    DEFF Research Database (Denmark)

    Heilmann, Irene Louise Torpe; Starke, Jens; Andersen, Ken Haste

    2016-01-01

    Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more...... or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two...... cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts...

  5. Climate Adaptation and Harmful Algal Blooms

    Science.gov (United States)

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  6. Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.

    1995-07-01

    The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.

  7. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...

  8. [Effects of Alexandrium tamarense and Prorocentrum donghaiense on rotifer Brachionus plicatilis population].

    Science.gov (United States)

    Wang, Liping; Yan, Tian; Tan, Zhijun; Zhou, Mingjiang

    2003-07-01

    The effects of Prorocentrum donghaiense and Alexandrium sp., causative species of harmful algal bloom of East China Sea in May 2002, on rotifer Brachionus plicatilis population were studied in the laboratory. The results showed that Alexandrium tamarense (ATHK) had a lethal effect on B. plicatilis and the 48hLC50 was about 1300 cell.ml-1. The toxin comparison of different fractions showed that the algal culture and re-suspended algal cells had the adverse effects, and the alga at earlier growth phases showed a stronger impact, indicating that the inhibitory effect was related with the activity of the living algal cells. P. donghaiense at high densities (4 x 10(4), 5 x 10(4) and 10 x 10(4) cell.ml-1) had an adverse effect on B. plicatilis population, while at low densities (1 x 10(4), 2 x 10(4) and 3 x 10(4) cell.ml-1), the alga could be used as food for rotifer population. When the two algae were mixed, the lethal effect of A. tamarense could be decreased by P. donghaiense. The results indicated that the above HAB event could affect the micro-zooplankton population in the occurrence area of East China Sea.

  9. Population dynamics of active and total ciliate populations in arable soil amended with wheat

    DEFF Research Database (Denmark)

    Ekelund, F.; Frederiksen, Helle B.; Ronn, R.

    2002-01-01

    of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil...... microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable...

  10. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jochem, Warren C [ORNL; Sims, Kelly M [ORNL; Bright, Eddie A [ORNL; Urban, Marie L [ORNL; Rose, Amy N [ORNL; Coleman, Phil R [ORNL; Bhaduri, Budhendra L [ORNL

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  11. Algal diversity of Adada River, Nigeria. I. Chlorophyta (green algae ...

    African Journals Online (AJOL)

    Commercial water tankers collect water and sell to indigenes and towns around the river, hence the need to investigate the algal biodiversity in other to access its suitability for human consumption using known algal indicators of water quality and add to the pool of data useful for long term trends in floral composition in ...

  12. DYNAMICS OF Cercospora zeina POPULATIONS IN MAIZE-BASED ...

    African Journals Online (AJOL)

    ACSS

    DYNAMICS OFCercospora zeina POPULATIONS IN MAIZE-BASED AGRO- ..... Population differentiation of Cercospora zeina in three districts of Uganda based on analysis of molecular variance ..... interactions: The example of the Erysiphe.

  13. Algal biofuels: challenges and opportunities.

    Science.gov (United States)

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effects of solar ultraviolet radiation on tropical algal communities

    International Nuclear Information System (INIS)

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity

  15. Algal biofuels: key issues, sustainability and life cycle assessment

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2011-01-01

    wastewater. Algae capture CO2 from atmosphere and industrial flue gases and transform it in to organic biomass that can be used for the production of biofuels. Like other biomass, algal biomass is also a carbon neutral source for the production of bioenergy. Therefore cultivation of algal biomass provides......In recent years research activities are intensively focused on renewable fuels in order to fulfill the increasing energy demand and to reduce the fossil fuels consumption and external oil dependency either in order to provide local energetic resources and or as a means for reducing greenhouse gases...... (GHG) emissions to reduce the climate change effects. Among the various renewable energy sources algal biofuels is a very promising source of biomass as algae sequester huge quantities of carbon from atmosphere and are very efficient in utilizing the nutrients from the industrial effluent and municipal...

  16. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  17. Data from: Evidence for water-mediated mechanisms in coral–algal interactions

    NARCIS (Netherlands)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, R.; Beer, De Dirk; Nugues, Maggy M.

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at

  18. POPULATION DYNAMICS OF PSEUDO-NITZSCHIA SPECIES ...

    African Journals Online (AJOL)

    nb

    current study aimed at assessing the population dynamics of Pseudo-nitzschia ... and to the developing aquaculture industry ... B. Hotel. Pangani Island. Bongoyo Island. Mbudya Island. Msasani Bay ... Salinity values did not show clear trends.

  19. The finite state projection approach to analyze dynamics of heterogeneous populations

    Science.gov (United States)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  20. Critical dynamics in population vaccinating behavior.

    Science.gov (United States)

    Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T

    2017-12-26

    Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.

  1. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Directory of Open Access Journals (Sweden)

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  2. Marine algal toxins: origins, health effects, and their increased occurrence

    International Nuclear Information System (INIS)

    Van Dolah, Frances M.

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. (Author)

  3. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  4. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    Directory of Open Access Journals (Sweden)

    Ladislav Nedbal

    2010-09-01

    Full Text Available Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C=C stretching mode and 1,445 cm−1 (CH2 scissoring mode as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  5. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    Science.gov (United States)

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  6. Rotating Algal Biofilm Reactors: Mathematical Modeling and Lipid Production

    OpenAIRE

    Woolsey, Paul A.

    2011-01-01

    Harvesting of algal biomass presents a large barrier to the success of biofuels made from algae feedstock. Small cell sizes coupled with dilute concentrations of biomass in lagoon systems make separation an expensive and energy intense-process. The rotating algal biofilm reactor (RABR) has been developed at USU to provide a sustainable technology solution to this issue. Algae cells grown as a biofilm are concentrated in one location for ease of harvesting of high density biomass. A mathematic...

  7. A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses

    Science.gov (United States)

    Rowan, Rob; Powers, Dennis A.

    1991-03-01

    Zooxanthellae are unicellular algae that occur as endosymbionts in many hundreds of marine invertebrate species. Because zooxanthellae have traditionally been difficult to classify, little is known about the natural history of these symbioses. Zooxanthellae were isolated from 131 individuals in 22 host taxa and characterized by the use of restriction fragment length polymorphisms (RFLPs) in nuclear genes that encode small ribosomal subunit RNA (ssRNA). Six algal RFLPs, distributed host species specifically, were detected. Individual hosts contained one algal RFLP. Zooxanthella phylogenetic relationships were estimated from 22 algal ssRNA sequences-one from each host species. Closely related algae were found in dissimilar hosts, suggesting that animal and algal lineages have maintained a flexible evolutionary relation with each other.

  8. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Šafaříková, Jana; Barešová, Magdalena; Pivokonská, Lenka; Kopecká, Ivana

    2014-01-01

    Roč. 51, March (2014), s. 37-46 ISSN 0043-1354 R&D Projects: GA AV ČR IAA200600902 Institutional support: RVO:67985874 Keywords : Algal organic matter * Extracellular organic matter * Cellular organic matter * Peptide/protein content * Hydrophobicity * Molecular weight fraction ation Subject RIV: BK - Fluid Dynamics Impact factor: 5.528, year: 2014 http://www.sciencedirect.com/science/article/pii/S004313541301021X

  9. The paradox of algal blooms in oligotrophic waters

    Science.gov (United States)

    Sundareshwar, P. V.; Upadhyay, S.; Abessa, M. B.; Honomichl, S.; Berdanier, B.; Spaulding, S.; Sandvik, C.; Trennepohl, A.

    2010-12-01

    Nutrient inputs to streams and lakes, primarily from anthropogenic sources, lead to eutrophic conditions that favor algal blooms with undesirable consequences. In contrast, low nutrient or oligotrophic waters rarely support algal blooms; such ecosystems are typically lower in productivity. Since the mid-1980’s however, the diatom Didymosphenia geminata has dramatically expanded its range colonizing oligotrophic rivers worldwide with blooms appearing as thick benthic mats. This recent global occurrence of Didymosphenia geminata blooms in temperate rivers has been perplexing in its pace of spread and the paradoxical nature of the nuisance growths. The blooms occur primarily in oligotrophic flowing waters, where phosphorus (P) availability often limits primary production. We present a biogeochemical process by which D. geminata mats adsorb both P and iron (Fe) from flowing waters and make P available for cellular uptake. The adsorbed P becomes bioavailable through biogeochemical processes that occur within the mat. The biogeochemical processes observed here while well accepted in benthic systems are novel for algal blooms in lotic habits. Enzymatic and bacterial processes such as Fe and sulfate reduction can release the adsorbed P and increase its bioavailability, creating a positive feedback between total stalk biomass and nutrient availability. Stalk affinity for Fe, Fe-P biogeochemistry, and interaction between watershed processes and climatic setting explain the paradoxical blooms, and the recent global spread of this invasive aquatic species. At a broader scale the study also implies that such algal blooms in oligotrophic environments can fundamentally alter the retention and longitudinal transfer of important nutrients such as P in streams and rivers.

  10. Delay differential systems for tick population dynamics.

    Science.gov (United States)

    Fan, Guihong; Thieme, Horst R; Zhu, Huaiping

    2015-11-01

    Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.

  11. Modeling the population dynamics of Pacific yew.

    Science.gov (United States)

    Richard T. Busing; Thomas A. Spies

    1995-01-01

    A study of Pacific yew (Taxus brevifolia Nutt.) population dynamics in the mountains of western Oregon and Washington was based on a combination of long-term population data and computer modeling. Rates of growth and mortality were low in mature and old-growth forest stands. Diameter growth at breast height ranged from 0 to 3 centimeters per decade...

  12. Stochastic population dynamic models as probability networks

    Science.gov (United States)

    M.E. and D.C. Lee. Borsuk

    2009-01-01

    The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...

  13. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  15. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste

    2014-01-01

    with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  16. Environmental change disrupts communication and sexual selection in a stickleback population.

    Science.gov (United States)

    Candolin, Ulrika; Tukiainen, Iina; Bertell, Elina

    2016-04-01

    Environmental change that disrupts communication during mate choice and alters sexual selection could influence population dynamics. Yet little is known about such long-term effects. We investigated experimentally the consequences that disrupted visual communication during mate choice has for the quantity and viability of offspring produced in a threespine stickleback population (Gasterosteus aculeatus). We further related the results to long-term monitoring of population dynamics in the field to determine if changes are apparent under natural conditions. The results show that impaired visual communication because of algal blooms reduces reliability of male visual signals as indicators of offspring survival during their first weeks of life. This relaxes sexual selection but has no effect on the number of offspring hatching, as most males have a high hatching success in turbid water. Despite eutrophication and high turbidity levels that interfere with communication during mate choice, the population has grown during recent decades. Large numbers of offspring hatching, combined with high variation in juvenile fitness, has probably shifted selection to later life history stages and maintained a viable population. Together with reduced cost of sexual selection and ongoing ecosystem changes caused by human activities, this could have promoted population growth. These results point to the complexity of ecosystems and the necessity to consider all influencing factors when attempting to understand impacts of human activities on populations.

  17. Effect of algal density in bead, bead size and bead concentrations ...

    African Journals Online (AJOL)

    Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. ... African Journal of Biotechnology ... The bioreactor containing algal beads (4 mm diameter) with 1.5 x 106 cells bead-1 (cell stocking) at concentration of 10.66 beads ml-1 wastewater (1:3 bead: wastewater, v/v) achieved ...

  18. Biofouling in capillary and spiral wound membranes facilitated by marine algal bloom

    NARCIS (Netherlands)

    Villacorte, L.O.; Ekowati, Y.; Calix-Ponce, H.N.; Kisielius, V.; Kleijn, J.M.; Vrouwenvelder, J.S.; Schippers, J.C.; Kennedy, M.D.

    2017-01-01

    Algal-derived organic matter (AOM), particularly transparent exopolymer particles, has been suspected to facilitate biofilm development in membrane systems (e.g., seawater reverse osmosis). This study demonstrates the possible role of AOM on biofouling in membrane systems affected by marine algal

  19. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions.

    Science.gov (United States)

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M; Cai, Zhonghua

    2016-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.

  20. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  1. Computer simulation of population dynamics inside the urban environment

    Science.gov (United States)

    Andreev, A. S.; Inovenkov, I. N.; Echkina, E. Yu.; Nefedov, V. V.; Ponomarenko, L. S.; Tikhomirov, V. V.

    2017-12-01

    In this paper using a mathematical model of the so-called “space-dynamic” approach we investigate the problem of development and temporal dynamics of different urban population groups. For simplicity we consider an interaction of only two population groups inside a single urban area with axial symmetry. This problem can be described qualitatively by a system of two non-stationary nonlinear differential equations of the diffusion type with boundary conditions of the third type. The results of numerical simulations show that with a suitable choice of the diffusion coefficients and interaction functions between different population groups we can receive different scenarios of population dynamics: from complete displacement of one population group by another (originally more “aggressive”) to the “peaceful” situation of co-existence of them together.

  2. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific coral reef

    Directory of Open Access Journals (Sweden)

    Fernando A Zapata

    2010-05-01

    Full Text Available Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004 from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7% and algal cover low (28.8%-37.5% and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP, recovering pre-disturbance (1979 levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (A través del Sistema

  3. Algal Biofuels R&D at NREL (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  4. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II and Pb(II

    Directory of Open Access Journals (Sweden)

    Shengye Wang

    2016-09-01

    Full Text Available Alginate and algal-biomass (Laminaria digitata beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine (PEI was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM coupled with energy dispersive X-ray analysis (EDX: the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads, the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions.

  5. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol

    International Nuclear Information System (INIS)

    Al Abdallah, Qusai; Nixon, B. Tracy; Fortwendel, Jarrod R.

    2016-01-01

    The production of fuels from biomass is categorized as first-, second-, or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild-type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway. Other monosaccharides must be converted to

  6. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol

    Directory of Open Access Journals (Sweden)

    Qusai Al Abdallah

    2016-11-01

    Full Text Available The production of fuels from biomass is categorized as first-, second- or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits, however they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen, the glucose subunits are linked together by α-(1→4 and α-(1→6 glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon are made of glucose subunits that are linked together by β-(1→3 and β-(1→6 glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden-Meyerhof-Parnas pathway or Entner-Doudoroff pathway. Other monosaccharides must be

  7. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Al Abdallah, Qusai, E-mail: qalabdal@uthsc.edu [Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN (United States); Nixon, B. Tracy [Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA (United States); Fortwendel, Jarrod R. [Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN (United States)

    2016-11-04

    The production of fuels from biomass is categorized as first-, second-, or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild-type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway. Other monosaccharides must be converted to

  8. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  9. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  10. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  11. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.

    2014-08-04

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  12. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.; Tabatabai, S. Assiyeh Alizadeh; Dhakal, N.; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2014-01-01

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  13. Population Dynamics and Cost-Benefit Analysis. An Attempt to Relate Population Dynamics via Lifetime Reproductive Success to Short-Term Decisions

    NARCIS (Netherlands)

    Tinbergen, J.M.; Balen, J.H. van; Drent, P.J.; Cavé, A.J.; Mertens, J.A.L.; Boer-Hazewinkel, J. den

    1987-01-01

    1. The aim of this article is to explore whether cost-benefit analysis of behaviour may help to understand the population dynamics of a species. The Great Tit is taken as an example. 2. The lifetime reproductive success in different populations of Great Tits amounts from 0.7 (Hoge Veluwe, Wytham) to

  14. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  15. Population dynamics of potentially harmful algal blooms in Bizerte ...

    African Journals Online (AJOL)

    These were numerically dominated by potentially toxic species of the diatom genus Pseudo-nitzschia, which were present year-round at all stations. ... Canonical correspondence analyses revealed significant relationships between the harmful phytoplankton species monitored and the environmental conditions.

  16. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    Science.gov (United States)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  17. Algal remediation of CO₂ and nutrient discharges: A review.

    Science.gov (United States)

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically, principally microalgal strain, C:N:P load and balance, CO2 and liquid

  18. Particle algorithms for population dynamics in flows

    International Nuclear Information System (INIS)

    Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone

    2011-01-01

    We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.

  19. Population dynamics of rural Ethiopia.

    Science.gov (United States)

    Bariabagar, H

    1978-01-01

    2 rounds of the national sample surveys, conducted by the central statistical office of Ethiopia during 1964-1967 and 1969-1971, provide the only comprehensive demographic data for the country and are the basis for this discussion of rural Ethiopia's population dynamics. The population of Ethiopia is predominantly rural. Agglomerations of 2000 and over inhabitants constitute about 14% of the population, and this indicates that Ethiopia has a low level of urbanization. In rural Ethiopia, international migration was negligent in the 1970's and the age structure can be assumed to be the results of past trends of fertility and mortality conditions. The reported crude birthrate (38.2), crude death rate (12.3) and infant mortality rate (90) of rural Ethiopia fall short of the averages for African countries. Prospects of population growth of rural Ethiopia would be immense. At the rate of natural increase of between 2.4 and 3.0% per annum, the population would double in 24-29 years. Regarding population issues, the programs of the National Democratic Revolution of Ethiopia faces the following main challenging problems: 1) carrying out national population censuses in order to obtain basic information for socialist planning; 2) minimizing or curtailing the existing high urban growth rates; 3) reducing rapidly growing population; and 5) mobilizing Ethiopian women to participate in the social, economic and political life of the country in order to create favorable conditions for future fertility reduction.

  20. Detecting the Killer Toxin (Harmful Algal Blooms)

    International Nuclear Information System (INIS)

    Quevenco, Rodolfo

    2011-01-01

    IAEA is stepping up efforts to help countries understand the phenomenon and use more reliable methods for early detection and monitoring so as to limit harmful algal blooms (HABs) adverse effects on coastal communities everywhere.

  1. Ecological study of algal flora of Neelum river Azad Kashmir

    International Nuclear Information System (INIS)

    Leghari, M.K.; Leghari, M.Y.

    2000-01-01

    First time ecological study of Algal Flora of Neelum River Azad Kashmir was carried out during January 1998 to July 1998. A total of 78 species belonging to 48 genera of 4 Algal groups. Cyanophyceae (16 species 20.5 % belonging to 11 genera), Choloronophycease (23 species 29.5 % belonging to 18 genera), Bacillariophyceae (37 species 47 % belonging to 17 genera), Xanthophyceae (2 species 3 % belonging to 2 genera) and 39 physico - chemical parameters were recorded. (author)

  2. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    Science.gov (United States)

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Freshwater Algal Bloom Prediction by Support Vector Machine in Macau Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie

    2012-01-01

    Full Text Available Understanding and predicting dynamic change of algae population in freshwater reservoirs is particularly important, as algae-releasing cyanotoxins are carcinogens that would affect the health of public. However, the high complex nonlinearity of water variables and their interactions makes it difficult to model the growth of algae species. Recently, support vector machine (SVM was reported to have advantages of only requiring a small amount of samples, high degree of prediction accuracy, and long prediction period to solve the nonlinear problems. In this study, the SVM-based prediction and forecast models for phytoplankton abundance in Macau Storage Reservoir (MSR are proposed, in which the water parameters of pH, SiO2, alkalinity, bicarbonate (HCO3 -, dissolved oxygen (DO, total nitrogen (TN, UV254, turbidity, conductivity, nitrate, total nitrogen (TN, orthophosphate (PO4 3−, total phosphorus (TP, suspended solid (SS and total organic carbon (TOC selected from the correlation analysis of the 23 monthly water variables were included, with 8-year (2001–2008 data for training and the most recent 3 years (2009–2011 for testing. The modeling results showed that the prediction and forecast powers were estimated as approximately 0.76 and 0.86, respectively, showing that the SVM is an effective new way that can be used for monitoring algal bloom in drinking water storage reservoir.

  4. Coupling population dynamics with earth system models: the POPEM model.

    Science.gov (United States)

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  5. Leveraging Algal Omics to Reveal Potential Targets for Augmenting TAG Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Guarnieri, Michael T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pienkos, Philip T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arora, Neha [Indian Institute of Technology Roorkee; Pruthi, Vikas [Indian Institute of Technology Roorkee; Poluri, Krishna Mohan [Indian Institute of Technology Roorkee

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.

  6. Dynamics of Population on the Verge of Extinction

    OpenAIRE

    Oborny, B.; Meszena, G.; Szabo, G.

    2005-01-01

    Theoretical considerations suggest that extinction in dispersal-limited populations is necessarily a threshold-like process that is analogous to a critical phase transition in physics. We use this analogy to find robust, common features in the dynamics of extinctions, and suggest early warning signals which may indicate that a population is endangered. As the critical threshold of extinction is approached, the population spontaneously fragments into discrete subpopulations and, consequently, ...

  7. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hostetler

    Full Text Available Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008 study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1 for 9 out of 18 years. The stochastic population growth rate λ(s was 0.92, suggesting a declining population; however, the 95% CI on λ(s included 1.0 (0.52-1.60. Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  8. [The dynamics of heath indicators of population of industrial town].

    Science.gov (United States)

    Kalinkin, D E; Karpov, A B; Takhauov, R M; Samoĭlova, Iu A

    2013-01-01

    The article presents the results of analysis of dynamics of health indicators of population of industrial town (medical demographic indicators, disability, morbidity of social hygienically important diseases) during 1970-2010. The classified administrative territorial municipality of Seversk constructed near the Siberian chemical industrial center, the internationally first-rate complex of nuclear industry enterprises was used as a research base. It is demonstrated that dynamics of health indicators of studied population had such negative tendencies as rapid population ageing, population loss due to decrease of natality and increase of mortality (population of able-bodied age included), prevalence of cardio-vascular diseases, malignant neoplasms and external causes, chronization of diseases. The established tendencies are to be considered in management decision making targeted to support and promote population health in industrial towns.

  9. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations

    Science.gov (United States)

    Lou, Yijun; Zhao, Xiao-Qiang

    2017-04-01

    There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host-macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.

  10. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield

    International Nuclear Information System (INIS)

    Vinebrooke, R.D.; Dixit, S.S.; Graham, M.D.; Gunn, J.M.; Chen, Y.-W.; Belzile, N.

    2002-01-01

    A century of cultural acidification is hypothesized to have altered algal community structure in boreal lakes. To date, this hypothesis has remained untested because of both the lack of data predating the onset of industrial pollution and incomplete estimates of whole-lake algal community structure. High-pressure liquid chromatography (HPLC) of sedimentary pigments was used to quantify whole-lake algal responses to acid deposition in six boreal lakes located in Killarney Park, Ontario, Canada. Concomitant significant increases in chlorophyll and carotenoid concentrations, diatom-inferred lake acidity, and metal levels since 1900 suggested that algal abundances in four acidified lakes and one small, circumneutral lake were enhanced by aerial pollution. An alternate explanation is that increased acidity and underwater light availability in the acidified lakes shifted algal abundance towards phytobenthos and deepwater phytoplankton, whose pigment signatures were better preserved in the sediments. Taxonomically diagnostic pigment stratigraphies were consistent with shifts in algal community structure towards filamentous green phytobenthos and deepwater phytoflagellates in the acidified lakes. Our findings suggest that decades of aerial pollution have altered the base of foodwebs in boreal lakes, potentially rendering them less resilient to other environmental stressors. (author)

  11. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka; Devarenne, Timothy P.; Downes, C. Meghan; Dutcher, Susan K.; Fox, David T.; Goodenough, Ursula; Jaworski, Jan; Holladay, Jonathan E.; Kramer, David M.; Koppisch, Andrew T.; Lipton, Mary S.; Marrone, Babetta L.; McCormick, Margaret; Molnár, István; Mott, John B.; Ogden, Kimberly L.; Panisko, Ellen A.; Pellegrini, Matteo; Polle, Juergen; Richardson, James W.; Sabarsky, Martin; Starkenburg, Shawn R.; Stormo, Gary D.; Teshima, Munehiro; Twary, Scott N.; Unkefer, Pat J.; Yuan, Joshua S.; Olivares, José A.

    2017-03-01

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.

  12. Network evolution induced by the dynamical rules of two populations

    Science.gov (United States)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  13. Bounds on the dynamics of sink populations with noisy immigration.

    Science.gov (United States)

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart

    2014-03-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Population dynamics model for plasmid bearing and plasmid lacking ...

    African Journals Online (AJOL)

    Streptokinase production in bioreactor is well associated to cell population dynamics. It is an established fact that two types of cell populations are found to emerge from the initial pool of recombinant cell population. This phenomenon leads to an undesired loss in yield of the product. Primary metabolites, like acetic acid etc ...

  15. Potentially harmful microalgae and algal blooms in a eutrophic estuary in Turkey

    Directory of Open Access Journals (Sweden)

    S. TAS

    2015-07-01

    Full Text Available Distribution of potentially harmful microalgae and algal blooms were investigated at monthly and weekly time scales between October 2009 and September 2010 in the Golden Horn, a eutrophic estuary in the Sea of Marmara (Turkey. Several physical and chemical parameters were analysed together with phytoplankton composition and abundance. A total number of 23 potentially harmful and/or bloom-forming microalgae (14 dinoflagellates, 4 diatoms and 5 phytoflagellates were identified throughout this study period, of which nine taxa have been confirmed to be toxic elsewhere in the world. Most harmful species and algal blooms were observed in late spring and summer particularly in the middle and upper estuaries, and nine taxa formed dense and successive algal blooms causing water discoloration. Nutrient concentrations increased significantly from the lower to the upper estuary. Additionally, high organic matter loads in the upper estuary could also have benefited by mixotrophic species. The increasing number of potentially harmful and bloom-forming species and algal blooms indicated that the GHE is a potential risk area for future HABs.

  16. Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy

    Directory of Open Access Journals (Sweden)

    Sandra Lage

    2018-03-01

    Full Text Available Algae are without doubt the most productive photosynthetic organisms on Earth; they are highly efficient in converting CO2 and nutrients into biomass. These abilities can be exploited by culturing microalgae from wastewater and flue gases for effective wastewater reclamation. Algae are known to remove nitrogen and phosphorus as well as several organic contaminants including pharmaceuticals from wastewater. Biomass production can even be enhanced by the addition of CO2 originating from flue gases. The algal biomass can then be used as a raw material to produce bioenergy; depending on its composition, various types of biofuels such as biodiesel, biogas, bioethanol, biobutanol or biohydrogen can be obtained. However, algal biomass generated in wastewater and flue gases also contains contaminants which, if not degraded, will end up in the ashes. In this review, the current knowledge on algal biomass production in wastewater and flue gases is summarized; special focus is given to the algal capacity to remove contaminants from wastewater and flue gases, and the consequences when converting this biomass into different types of biofuels.

  17. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed

    2017-01-05

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.

  18. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production

    International Nuclear Information System (INIS)

    Sturm, Belinda S.M.; Lamer, Stacey L.

    2011-01-01

    Recently, several life cycle analyses of algal biodiesel from virtual production facilities have outlined the potential environmental benefits and energetic balance of the process. There are a wide range of assumptions that have been utilized for these calculations, including the addition of fertilizers and carbon dioxide to achieve high algal yields in open ponds. This paper presents an energy balance of microalgal production in open ponds coupled with nutrient removal from wastewater. Actual microalgal yields and nutrient removal rates were obtained from four pilot-scale reactors (2500 gallons each) fed with wastewater effluent from a conventional activated sludge process for 6 months, and the data was used to estimate an energy balance for treating the total average 12 million gallons per day processed by the wastewater treatment plant. Since one of the most energy-intensive steps is the dewatering of algal cultures, several thickening and dewatering processes were compared. This analysis also includes the energy offset from removing nutrients with algal reactors rather than the biological nutrient removal processes typically utilized in municipal wastewater treatment. The results show that biofuel production is energetically favorable for open pond reactors utilizing wastewater as a nutrient source, even without an energy credit for nutrient removal. The energy content of algal biomass was also considered as an alternate to lipid extraction and biodiesel production. Direct combustion of algal biomass may be a more viable energy source than biofuel production, especially when the lipid content of dry biomass (10% in this field experiment) is lower than the high values reported in lab-scale reactors (50-60%).

  19. Population dynamics of Pseudo-nitzschia species ...

    African Journals Online (AJOL)

    The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es Salaam. Samples ...

  20. Effects of demographic structure on key properties of stochastic density-independent population dynamics.

    Science.gov (United States)

    Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar

    2012-12-01

    The development of stochastic demography has largely been based on age structured populations, although other types of demographic structure, especially permanent and dynamic heterogeneity, are likely common in natural populations. The combination of stochasticity and demographic structure is a challenge for analyses of population dynamics and extinction risk, because the population structure will fluctuate around the stable structure and the population size shows transient fluctuations. However, by using a diffusion approximation for the total reproductive value, density-independent dynamics of structured populations can be described with only three population parameters: the expected population growth rate, the environmental variance and the demographic variance. These parameters depend on population structure via the state-specific vital rates and transition rates. Once they are found, the diffusion approximation represents a substantial reduction in model complexity. Here, we review and compare the key population parameters across a wide range of demographic structure, from the case of no structure to the most general case of dynamic heterogeneity, and for both discrete and continuous types. We focus on the demographic variance, but also show how environmental stochasticity can be included. This study brings together results from recent models, each considering a specific type of population structure, and places them in a general framework for structured populations. Comparison across different types of demographic structure reveals that the reproductive value is an essential concept for understanding how population structure affects stochastic dynamics and extinction risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Aspiration dynamics of multi-player games in finite populations.

    Science.gov (United States)

    Du, Jinming; Wu, Bin; Altrock, Philipp M; Wang, Long

    2014-05-06

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics.

  2. The effects of mixed algal diets on population growth, egg productivity and nutritional profiles in cyclopoid copepods (Thermocyclops hyalinus and Mesocyclops aspericornis

    Directory of Open Access Journals (Sweden)

    Kumar Vidhya

    2014-03-01

    Full Text Available This experiment was carried out to evaluate the effect of mixed algal diet on dietary profiles of copepods. The microalgae like Spirulina platensis, Chlorella vulgaris and Azolla pinnata were mass cultured in artificial medium for a period of 20 days, cells are harvested, dried, powdered and used as feed. The small freshwater cyclopoids Thermocyclops hyalinus were compared to Mesocyclops aspericornis a species of copepod genera commonly preferred by most of the fish larvae. Both species are easily maintained in culture, when fed with mixed algal diets of equal ratios (1:1:1. Biochemical composition, egg production ratios, growth performance and fatty acids profile of the two different species were analyzed after an experimental period of 15 days, all the nutritional values were found to be high and statistically variable. On the basis of biochemical composition, egg production ratio, growth performance, amino acids and fatty acids profile it is found that M. aspericornis was the suitable candidate for larval fish diets.

  3. On the population dynamics of the malaria vector

    International Nuclear Information System (INIS)

    Ngwa, G.A.

    2005-10-01

    A deterministic differential equation model for the population dynamics of the human malaria vector is derived and studied. Conditions for the existence and stability of a non-zero steady state vector population density are derived. These reveal that a threshold parameter, the vectorial basic reproduction number, exist and the vector can establish itself in the community if and only if this parameter exceeds unity. When a non-zero steady state population density exists, it can be stable but it can also be driven to instability via a Hopf Bifurcation to periodic solutions, as a parameter is varied in parameter space. By considering a special case, an asymptotic perturbation analysis is used to derive the amplitude of the oscillating solutions for the full non-linear system. The present modelling exercise and results show that it is possible to study the population dynamics of disease vectors, and hence oscillatory behaviour as it is often observed in most indirectly transmitted infectious diseases of humans, without recourse to external seasonal forcing. (author)

  4. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shitanda, Isao [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)], E-mail: shitanda@rs.noda.tus.ac.jp; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2009-08-30

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC{sup '}{sub 50}) for atrazine and DCMU were 12 and 1 {mu}mol dm{sup -3}, respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  5. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    International Nuclear Information System (INIS)

    Shitanda, Isao; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki

    2009-01-01

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC ' 50 ) for atrazine and DCMU were 12 and 1 μmol dm -3 , respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  6. High population variability and source-sink dynamics in a solitary bee species.

    Science.gov (United States)

    Franzén, Markus; Nilsson, Sven G

    2013-06-01

    Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.

  7. Bridging the Timescales of Single-Cell and Population Dynamics

    Science.gov (United States)

    Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya

    2018-04-01

    How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.

  8. Primary production of edaphic algal communities in a Mississippi salt marsh

    International Nuclear Information System (INIS)

    Sullivan, M.J.; Moncreiff, C.A.

    1988-01-01

    Primary production rates of edaphic algae associated with the sediments beneath four monospecific canopies of vascular plants were determined over an annual cycle in a Mississippi salt marsh. The edaphic algal flora was dominated by small, motile pennate diatoms. Algal production (as measured by 14 C uptake) was generally highest in spring-early summer and lowest in fall. Hourly rates ranged from a low of 1.4 mg C/m 2 in Juncus roemerianus Scheele to a high of 163 mg C/m 2 beneath the Scirpus olneyi Gray canopy. Stepwise multiple regressions identified a soil moisture index and chlorophyll a as the best environmental predictors of hourly production; light energy reaching the marsh surface and sediment and air temperature proved of little value. Adding the relative abundances of 33 diatom taxa to the set of independent variables only slightly increased R 2 ; however, virtually all variables selected were diatom taxa. R 2 was only 0.38 for the Spartina alterniflora Loisel. habitat but ranged from 0.70 to 0.87 for the remaining three vascular plant zones. Annual rates of algal production (g C/m 2 ) were estimated as follows: Juncus (28), Spartina (57), Distichlis spicata (L.) Greene (88), and Scirpus (151). The ratio of annual edaphic algal production to vascular plant net aerial production (EAP/VPP) was 10-12% for the first three habitats and 61% for Scirpus. Chlorophyll a concentrations, annual algal production rates, and EAP/VPP values were comparable to those determined in Texas, Delaware, and Massachusetts salt marshes but lower than those reported for Georgia and particularly California marshes

  9. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.

    Science.gov (United States)

    Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg

    2016-11-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.

  10. Progress on lipid extraction from wet algal biomass for biodiesel production.

    Science.gov (United States)

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    Science.gov (United States)

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.

  12. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production.

    Science.gov (United States)

    Zheng, Yubin; Chi, Zhanyou; Lucker, Ben; Chen, Shulin

    2012-01-01

    A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Efficient algal bioassay based on short-term photosynthetic response

    International Nuclear Information System (INIS)

    Giddings, J.M.; Stewart, A.J.; O'Neill, R.V.; Gardner, R.H.

    1983-01-01

    A procedure is described for measuring the effects of toxicants on algal photosynthesis (carbon-14 bicarbonate (H 14 CO 3 )uptake) in 4-h experiments. The results for individual aromatic compounds and the water-soluble fraction (WSF) of a synthetic oil are presented as examples of applications of the bioassay. The toxicity of the WSF varied among the seven algal species tested, and the responses of some species were pH-dependent. With Selenastrum capricornutum as the test organism, the bioassay results were unaffected by variations in pH from 7.0 to 9.0, light intensity from 40 to 200 μeinsteins m -2 s -1 , culture density up to 0.5 mg chlorophyll a per litre, and agitation up to 100 rpm. The photosynthesis bioassay is simpler and faster (4 h versus 4 to 14 days), uses smaller culture volumes, and requires less space than static culture-growth tests. One person can conveniently test four materials per day, and the entire procedure, including preparation, exposure, and analysis, takes less than two days. The short incubation time reduces bottle effects such as pH changes, accumulation of metabolic products, nutrient depletion, and bacterial growth. Processes that remove or alter the test materials are also minimized. The data presented here indicate that algal photosynthesis is inhibited at toxicant concentrations similar to those that cause acute effects in aquatic animals. A model of a pelagic ecosystem is used to demonstrate that even temporary (seven-day) inhibition of algal photosynthesis can have a measurable impact on other trophic levels, particularly if the other trophic levels are also experiencing toxic effects. 25 references, 6 figures, 1 table

  14. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  15. A new ODE tumor growth modeling based on tumor population dynamics

    International Nuclear Information System (INIS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-01-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan

  16. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  17. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-04-01

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  18. Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data

    Directory of Open Access Journals (Sweden)

    Merchant Sabeeha S

    2011-07-01

    Full Text Available Abstract Background Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. Description The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of

  19. [Algal community structure and water quality assessment on drawdown area of Kaixian waters in Three Gorges Reservoir during winter storage period].

    Science.gov (United States)

    Guo, Jing-Song; Xie, Dan; Li, Zhe; Chen, Yuan; Sun, Zhi-Yu; Chen, Yong-Bo; Long, Man

    2012-04-01

    The old town area of Kaixian county was flooded and showed reservoir characteristics after the water level of Three Gorges Reservoir got 172. 8 m in December 2008. The aquatic ecology and nutritional status of Kaixian drawdown area after water storage are still rarely reported. To understand the current water environment and changes in algal community structure of Kaixian drawdown area after 172.8 m water level, the algal composition, abundance, biomass distribution and changes of its sampling spots including Hanfeng Lake were observed twice during winter storage period in January and December 2009. The trends in phytoplankton community structure were analyzed and the water quality assessment of nutritional status was carried out. The results indicated that 6 phylums, 37 genera, 69 species of phytoplankton in total were identified in the two sampling, and the dominant species were Dinophyta and Cryptophyta. The cell density and biomass in December 2009 were lower than those in January 2009. The evaluation results of algal population structure and pollution indicators showed that the nutrition level of Kaixian drawdown area during the winter storage period was mesotrophic to eutrophic type, while diversity analysis result indicated moderate pollution.

  20. Basic and Applied Algal Life Support System Research on Board the Deep Space Gateway

    Science.gov (United States)

    Niederwieser, T.; Zea, L.; Anthony, J.; Stodieck, L.

    2018-02-01

    We study the effect of long-term preservation methods on DNA damage of algal cultures for BLSS applications. In a secondary step, the Deep Space Gateway serves as a technology demonstration platform for algal photobioreactors in intermittently occupied habitats.

  1. Harmful algal bloom smart device application: using image analysis and machine learning techniques for classification of harmful algal blooms

    Science.gov (United States)

    Northern Kentucky University and the U.S. EPA Office of Research Development in Cincinnati Agency are collaborating to develop a harmful algal bloom detection algorithm that estimates the presence of cyanobacteria in freshwater systems by image analysis. Green and blue-green alg...

  2. Modeling structured population dynamics using data from unmarked individuals

    Science.gov (United States)

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  3. A trait-based framework for stream algal communities.

    Science.gov (United States)

    Lange, Katharina; Townsend, Colin Richard; Matthaei, Christoph David

    2016-01-01

    The use of trait-based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life-history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our "natural experiment" was conducted along gradients of agricultural land-use intensity (0-95% of the catchment in high-producing pasture) and hydrological alteration (0-92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information-theoretic model-selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large-bodied, non-attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a

  4. Population dynamics and distribution of the coffee berry borer ...

    African Journals Online (AJOL)

    Population dynamics and distribution of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) were studied on Coffea arabica L. in southwestern region of Ethiopia. Thirty coffee trees were sampled at weekly intervals from 2000 to 2001. Findings of this study showed that coffee berry borer population ...

  5. [Population dynamics and armed violence in Colombia, 1985-2010].

    Science.gov (United States)

    Salaya, Hernán Eduardo; Rodríguez, Jesús

    2014-09-01

    Describe changes in the population structure of Colombia's municipalities in relation to internal displacement in response to armed violence. A descriptive ecological study was carried out. Secondary sources were consulted, taken from the Consolidated Registry of Displaced Population and from the National Administrative Department of Statistics, to calculate expulsion and reception rates for population displaced by violence from 2002 to 2010. Based on these rates, four groups were created of municipalities in the extreme quartile for each rate during the entire period, which were classified as high expulsion, low expulsion, high reception, and low reception. Subsequently, population pyramids and structure indicators were constructed for each group of municipalities for two comparative reference years (1985 and 2010). Municipalities with high expulsion or reception rates experienced a slower epidemiological transition, with lower mean ages and aging indices. The high expulsion group had the least regression, based on the Sundbärg index. In the high reception group, the masculinity ratio decreased the most, especially among the economically active population, and it had the highest population growth. Population dynamics in Colombia have been affected by armed violence and changes in these dynamics are not uniform across the country, leading to important social, economic, and cultural consequences. This study is useful for decision-making and public policy making.

  6. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    Science.gov (United States)

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  7. Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: implications for areawide management.

    Science.gov (United States)

    Aluja, Martín; Ordano, Mariano; Guillén, Larissa; Rull, Juan

    2012-06-01

    Fruit flies (Diptera: Tephritidae) are devastating agricultural pests worldwide but studies on their long-term population dynamics are sparse. Our aim was to determine the mechanisms driving long-term population dynamics as a prerequisite for ecologically based areawide pest management. The population density of three pestiferous Anastrepha species [Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), and Anastrepha serpentina (Wiedemann)] was determined in grapefruit (Citrus x paradisi Macfad.), mango (Mangifera indica L.), and sapodilla [Manilkara zapota (L.) P. Royen] orchards in central Veracruz, México, on a weekly basis over an 11-yr period. Fly populations exhibited relatively stable dynamics over time. Population dynamics were mainly driven by a direct density-dependent effect and a seasonal feedback process. We discovered direct and delayed influences that were correlated with both local (rainfall and air temperature) and global climatic variation (El Niño Southern Oscillation [ENSO] and North Atlantic Oscillation [NAO]), and detected differences among species and location of orchards with respect to the magnitude and nature (linear or nonlinear) of the observed effects, suggesting that highly mobile pest outbreaks become uncertain in response to significant climatic events at both global and local levels. That both NAO and ENSO affected Anastrepha population dynamics, coupled with the high mobility of Anastrepha adults and the discovery that when measured as rate of population change, local population fluctuations exhibited stable dynamics over time, suggests potential management scenarios for the species studied lie beyond the local scale and should be approached from an areawide perspective. Localized efforts, from individual growers will probably prove ineffective, and nonsustainable.

  8. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index SABI)

    OpenAIRE

    Alawadi, Fahad

    2010-01-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HA...

  9. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    Science.gov (United States)

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  10. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed; Shamma, Jeff S.

    2017-01-01

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population

  11. Are all red algal parasites cut from the same cloth?

    Directory of Open Access Journals (Sweden)

    Eric D. Salomaki

    2014-12-01

    Full Text Available Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. This is largely because few systems present the opportunity to make meaningful comparisons between a parasite and a close free-living relative. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta, and often infect close relatives. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversify and infect more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Elegant microscopic work in the late 20th century provided detailed insight into the infection cycle of red algal parasites and the cellular interactions between parasites and their hosts. Those studies led to the use of molecular work to further investigate the origins of the parasite organelles and reveal the evolutionary relationships between hosts and their parasites. Here we synthesize the research detailing the infection methods and cellular interactions between red algal parasites and their hosts. We offer an alternative hypothesis to the current dogma of red algal parasite evolution and propose that red algae can adopt a parasitic life strategy through multiple evolutionary pathways, including direct infection of distant relatives. Furthermore, we highlight potential directions for future research to further evaluate parasite evolution in red algae.

  12. Short communication: Algal leaf spot associated with Cephaleuros virescens (Trentepohliales, Ulvophyceae on Nephelium lappaceum in Thailand

    Directory of Open Access Journals (Sweden)

    ANURAG SUNPAPAO

    2016-05-01

    Full Text Available Abstract. Sunpapao A, Pitaloka MK, Arikit S. 2015. Algal leaf spot associated with Cephaleuros virescens (Trentepohliales, Ulvophyceae on Nephelium lappaceum in Thailand. Biodiversitas 17: 31-35. Algal leaf spot disease of Nephelium lappaceum (rambutan was observed in southern Thailand. The algae were isolated on Bold’s basal medium (BBM and identified based on appearance of the lesions, algal morphology and molecular properties. Characteristics of the filamentous thallus cells, sporangiophores, sporangia, gametes and zoospores were clarified. A portion of the 18S small subunit rRNA was amplified to validate the morphological identification by sequence similarity. To summarize the main results, the plant parasite causing algal leaf spot was identified as Cephaleuros virescens, and in sequencing-based phylogenetic analysis the Cephaleuros PSU-R5.1 isolate from rambutan grouped with the algae in genus Cephaleuros. This confirms C. virescens as a causal organism of algal leaf spot disease on rambutan in southern Thailand.

  13. Social Information Links Individual Behavior to Population and Community Dynamics.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M; Spiegel, Orr; Baskett, Marissa L; Sih, Andrew

    2018-05-07

    When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    Science.gov (United States)

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  15. Network evolution induced by the dynamical rules of two populations

    International Nuclear Information System (INIS)

    Platini, Thierry; Zia, R K P

    2010-01-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (N a and N b ) and preferred degree (κ a and κ b a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees (k bb ) and (k ab ) presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal N a = N b , the ratio of the restricted degree θ 0 = (k ab )/(k bb ) appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t 1 = κ b ) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ 0 = 1. Interestingly, in the intermediate time regime (defined for t 1 2 ∝κ a and for which θ 0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ 0 = 3

  16. A general modeling framework for describing spatially structured population dynamics

    Science.gov (United States)

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  17. The population dynamical implications of male-biased parasitism in different mating systems.

    Directory of Open Access Journals (Sweden)

    Martin R Miller

    2007-07-01

    Full Text Available Although there is growing evidence that males tend to suffer higher levels of parasitism than females, the implications of this for the population dynamics of the host population are not yet understood. Here we build on an established 'two-sex' model and investigate how increased susceptibility to infection in males affects the dynamics, under different mating systems. We investigate the effect of pathogenic disease at different case mortalities, under both monogamous and polygynous mating systems. If the case mortality is low, then male-biased parasitism appears similar to unbiased parasitism in terms of its effect on the population dynamics. At higher case mortalities, we identified significant differences between male-biased and unbiased parasitism. A host population may therefore be differentially affected by male-biased and unbiased parasitism. The dynamical outcome is likely to depend on a complex interaction between the host's mating system and demography, and the parasite virulence.

  18. Mathematical-statistical model for analysis of Ulva algal net photosynthesis in Venice lagoon

    International Nuclear Information System (INIS)

    Izzo, G.; Rizzo, V.; Bella, A.; Picci, M.; Giordano, P.

    1996-08-01

    The algal net photosynthesis, an important factor for the characterization of water quality in Venice lagoon, has been studied experimentally providing a mathematical model, validated by using statistical methods. This model relates oxygen production with irradiance, according to a well known law in biological literature. Its observed an inverted proportion between algal oxygen production and temperature, thus seasonality

  19. Study of cnidarian-algal symbiosis in the "omics" age.

    Science.gov (United States)

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  20. Effects of wind farms on harbour porpoise behaviour and population dynamics

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Tougaard, Jakob; Teilmann, Jonas

    We developed an individual-based simulation model in order to study the cumulative impacts of wind farms and ship traffic on the long-term survival and population dynamics of the harbour porpoise (Phocoena phocoena) in Kattegat and the Belt Seas. The model is based on knowl- edge of the porpoises...... at distances >1 km. Our simulations suggest that operating wind farms and wind farms under construction do not affect the size or dynamics of the harbour porpoise population in Kattegat. Ship traffic may, in contrast, cause the population size to decrease....

  1. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    Directory of Open Access Journals (Sweden)

    Joseph G Makin

    2015-11-01

    Full Text Available Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF, the parameters of which can be learned via latent-variable density estimation (the EM algorithm. The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.

  2. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  3. Building the bridge between animal movement and population dynamics.

    Science.gov (United States)

    Morales, Juan M; Moorcroft, Paul R; Matthiopoulos, Jason; Frair, Jacqueline L; Kie, John G; Powell, Roger A; Merrill, Evelyn H; Haydon, Daniel T

    2010-07-27

    While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through 'spatially informed' movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission-fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction.

  4. The failure rate dynamics in heterogeneous populations

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2013-01-01

    Most populations encountered in real world are heterogeneous. In reliability applications, the mixture (observed) failure rate, obviously, can be considered as a measure of ‘average’ quality in these populations. However, in addition to this average measure, some variability characteristics for failure rates can be very helpful in describing the time-dependent changes in quality of heterogeneous populations. In this paper, we discuss variance and the coefficient of variation of the corresponding random failure rate as variability measures for items in heterogeneous populations. Furthermore, there is often a risk that items of poor quality are selected for important missions. Therefore, along with the ‘average quality’ of a population, more ‘conservative’ quality measures should be also defined and studied. For this purpose, we propose the percentile and the tail-mixture of the failure rates as the corresponding conservative measures. Some illustrative examples are given. -- Highlights: ► This paper provides the insight on the variability measures in heterogeneous populations. ► The conservative quality measures in heterogeneous populations are defined. ► The utility of these measures is illustrated by meaningful examples. ► This paper provides a better understanding of the dynamics in heterogeneous populations

  5. SIR dynamics in structured populations with heterogeneous connectivity

    OpenAIRE

    Volz, Erik

    2005-01-01

    Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. ...

  6. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  7. Algal-Based Renewable Energy for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fritsen, Christian [Desert Research Institute, Las Vegas, NV (United States)

    2017-03-31

    To help in the overall evaluation of the potential for growing algal biomass in high productivity systems, we conducted a study that evaluated water from geothermal sources and cultivated mixed consortia from hot springs in Nevada, we evaluated their growth at moderately high varying temperatures and then evaluated potential manipulations that could possibly increase their biomass and oleaginous production. Studies were conducted at scales ranging from the laboratory benchtop to raceways in field settings. Mixed consortia were readily grown at all scales and growth could be maintained in Nevada year round. Moderate productivities were attained even during the shoulder seasons- where temperature control was maintained by hot water and seasonally cold temperatures when there was still plentiful solar radiation. The results enhance the prospects for economic feasibility of developing algal based industries in areas with geothermal energy or even other large alternative sources of heat that are not being used for other purposes. The public may benefit from such development as a means for economic development as well as development of industries for alternative energy and products that do not rely on fossil fuels.

  8. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small Polychaeta

    Science.gov (United States)

    Reise, Karsten

    1983-06-01

    On sandy tidal flats at the Island of Sylt (North Sea) ephemeral mats of green algae covered wide areas in the vicinity of sewage outflows. Algae became anchored in the feeding funnels of lugworms ( Arenicola marina) and thus were able to resist displacement by tidal currents. Below the algal mats anoxic conditions extend to the sediment surface. After about one month a rough sea removed all algae. Polychaetes endured this short-term environmental deterioration, while the more sensitive Turbellaria decreased in abundance and species richness. Diatom-feeders were affected most, predators to a medium extent, and bacteria-feeders the least affected. Rare and very abundant species were more affected than moderately abundant ones. None of the turbellarian species increased in abundance and none colonized the algal mats above the sediment. In a semicontrolled experiment with daily hand-removal of drift algae from a 100-m2 plot within an extensive field of algal mats, this cleaned "island" served as a refuge to Turbellaria escaping from their algal covered habitat. Here abundance doubled relative to initial conditions and was 5-times higher than below algal mats.

  9. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    Science.gov (United States)

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Population Dynamics of Early Human Migration in Britain.

    Directory of Open Access Journals (Sweden)

    Mayank N Vahia

    Full Text Available Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction.We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples' movement over ~2000 years before the present era.We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available.

  11. Geography, European colonization, and past population dynamics in Africa

    OpenAIRE

    Vaz Silva, Luis

    2005-01-01

    Past population dynamics in Africa have remained largely elusive due to the lack of demographic data. Researchers are understandably deterred from trying to explain what is not known and African historical population estimates suffer from this lack of interest. In this paper I explain present day African population densities using mostly ecological factors as explanatory variables. I find evidence supporting the view that ecological factors deeply affected precolonial patterns of human settle...

  12. Effects of constant immigration on the dynamics and persistence of stable and unstable Drosophila populations

    Science.gov (United States)

    Dey, Snigdhadip; Joshi, Amitabh

    2013-01-01

    Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546

  13. Nonlinear dynamics of interacting populations

    CERN Document Server

    Bazykin, Alexander D

    1998-01-01

    This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the

  14. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  15. An Empirical Study of AI Population Dynamics with Million-agent Reinforcement Learning

    OpenAIRE

    Yang, Yaodong; Yu, Lantao; Bai, Yiwei; Wang, Jun; Zhang, Weinan; Wen, Ying; Yu, Yong

    2017-01-01

    In this paper, we conduct an empirical study on discovering the ordered collective dynamics obtained by a population of artificial intelligence (AI) agents. Our intention is to put AI agents into a simulated natural context, and then to understand their induced dynamics at the population level. In particular, we aim to verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-sc...

  16. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.

    Science.gov (United States)

    Furuhama, A; Hasunuma, K; Hayashi, T I; Tatarazako, N

    2016-05-01

    We propose a three-step strategy that uses structural and physicochemical properties of chemicals to predict their 72 h algal growth inhibition toxicities against Pseudokirchneriella subcapitata. In Step 1, using a log D-based criterion and structural alerts, we produced an interspecies QSAR between algal and acute daphnid toxicities for initial screening of chemicals. In Step 2, we categorized chemicals according to the Verhaar scheme for aquatic toxicity, and we developed QSARs for toxicities of Class 1 (non-polar narcotic) and Class 2 (polar narcotic) chemicals by means of simple regression with a hydrophobicity descriptor and multiple regression with a hydrophobicity descriptor and a quantum chemical descriptor. Using the algal toxicities of the Class 1 chemicals, we proposed a baseline QSAR for calculating their excess toxicities. In Step 3, we used structural profiles to predict toxicity either quantitatively or qualitatively and to assign chemicals to the following categories: Pesticide, Reactive, Toxic, Toxic low and Uncategorized. Although this three-step strategy cannot be used to estimate the algal toxicities of all chemicals, it is useful for chemicals within its domain. The strategy is also applicable as a component of Integrated Approaches to Testing and Assessment.

  17. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Deon Van der Merwe

    2015-03-01

    Full Text Available Harmful algal blooms (HABs degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV. Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.

  18. The demographic drivers of local population dynamics in two rare migratory birds.

    Science.gov (United States)

    Schaub, Michael; Reichlin, Thomas S; Abadi, Fitsum; Kéry, Marc; Jenni, Lukas; Arlettaz, Raphaël

    2012-01-01

    The exchange of individuals among populations can have strong effects on the dynamics and persistence of a given population. Yet, estimation of immigration rates remains one of the greatest challenges for animal demographers. Little empirical knowledge exists about the effects of immigration on population dynamics. New integrated population models fitted using Bayesian methods enable simultaneous estimation of fecundity, survival and immigration, as well as the growth rate of a population of interest. We applied this novel analytical framework to the demography of two populations of long-distance migratory birds, hoopoe Upupa epops and wryneck Jynx torquilla, in a study area in south-western Switzerland. During 2002-2010, the hoopoe population increased annually by 11%, while the wryneck population remained fairly stable. Apparent juvenile and adult survival probability was nearly identical in both species, but fecundity and immigration were slightly higher in the hoopoe. Hoopoe population growth rate was strongly correlated with juvenile survival, fecundity and immigration, while that of wrynecks strongly correlated only with immigration. This indicates that demographic components impacting the arrival of new individuals into the populations were more important for their dynamics than demographic components affecting the loss of individuals. The finding that immigration plays a crucial role in the population growth rates of these two rare species emphasizes the need for a broad rather than local perspective for population studies, and the development of wide-scale conservation actions.

  19. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    Energy Technology Data Exchange (ETDEWEB)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  20. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    Science.gov (United States)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  1. Interaction between local hydrodynamics and algal community in epilithic biofilm.

    Science.gov (United States)

    Graba, Myriam; Sauvage, Sabine; Moulin, Frédéric Y; Urrea, Gemma; Sabater, Sergi; Sanchez-Pérez, José Miguel

    2013-05-01

    Interactions between epilithic biofilm and local hydrodynamics were investigated in an experimental flume. Epilithic biofilm from a natural river was grown over a 41-day period in three sections with different flow velocities (0.10, 0.25 and 0.40 m s(-1) noted LV, IV and HV respectively). Friction velocities u* and boundary layer parameters were inferred from PIV measurement in the three sections and related to the biofilm structure. The results show that there were no significant differences in Dry Mass and Ash-Free Dry Mass (g m(-2)) at the end of experiment, but velocity is a selective factor in algal composition and the biofilms' morphology differed according to differences in water velocity. A hierarchical agglomerative cluster analysis (Bray-Curtis distances) and an Indicator Species Analysis (IndVal) showed that the indicator taxa were Fragilaria capucina var. mesolepta in the low-velocity (u*. = 0.010-0.012 m s(-1)), Navicula atomus, Navicula capitatoradiata and Nitzschia frustulum in the intermediate-velocity (u*. = 0.023-0.030 m s(-1)) and Amphora pediculus, Cymbella proxima, Fragilaria capucina var. vaucheriae and Surirella angusta in the high-velocity (u*. = 0.033-0.050 m s(-1)) sections. A sloughing test was performed on 40-day-old biofilms in order to study the resistance of epilithic biofilms to higher hydrodynamic regimes. The results showed an inverse relationship between the proportion of detached biomass and the average value of friction velocity during growth. Therefore, water velocity during epilithic biofilm growth conditioned the structure and algal composition of biofilm, as well as its response (ability to resist) to higher shear stresses. This result should be considered in modelling epilithic biofilm dynamics in streams subject to a variable hydrodynamics regime. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Bolch, Christopher J S; Bejoy, Thaila A; Green, David H

    2017-01-01

    Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum , we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20-115 moles photons PAR m -2 s -1 ). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that

  3. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    Science.gov (United States)

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The attached algal community near Pickering GS: (II)

    International Nuclear Information System (INIS)

    McKinley, S.R.

    1982-01-01

    Environmental parameters correlated with attached algal standing crop are investigated in this report. Three groups were recognized on the basis of standing crop levels and seasonal standing crop patterns. Factors which appeared to influence the separation among the three groups were substrate size and water temperature. Standing crop levels among the discharge transects, intake and areas outside the station were found to be correlated with a combination of parameters. Standing crop levels outside the station were inversely correlated with wind speed but positively correlated with substrate particle size and depth. Algal standing crop at the intake also was inversely correlated with wind speed. Differences in standing crop levels between the intake and areas outside the station may have been attributed to substrate particle size. Low standing crop level among the discharge transects may have been attributed to higher current velocities and periodically to high water temperature

  5. Molecular characterization of microbial population dynamics during sildenafil citrate degradation.

    Science.gov (United States)

    De Felice, Bruna; Argenziano, Carolina; Guida, Marco; Trifuoggi, Marco; Russo, Francesca; Condorelli, Valerio; Inglese, Mafalda

    2009-02-01

    Little is known about pharmaceutical and personal care products pollutants (PPCPs), but there is a growing interest in how they might impact the environment and microbial communities. The widespread use of Viagra (sildenafil citrate) has attracted great attention because of the high usage rate, the unpredictable disposal and the unknown potential effects on wildlife and the environment. Until now information regarding the impact of Viagra on microbial community in water environment has not been reported. In this research, for the first time, the genetic profile of the microbial community, developing in a Viagra polluted water environment, was evaluated by means of the 16S and 18S rRNA genes, for bacteria and fungi, respectively, amplified by polymerase chain reaction (PCR) and separated using the denaturing gradient gel electrophoresis (DGGE) technique. The DGGE results revealed a complex microbial community structure with most of the population persisting throughout the experimental period. DNA sequences from bands observed in the different denaturing gradient gel electrophoresis profiles exhibited the highest degree of identity to uncultured bacteria and fungi found previously mainly in polluted environmental and treating bioreactors. Biotransformation ability of sildenafil citrate by the microbial pool was studied and the capability of these microorganisms to detoxify a polluted water ecosystem was assessed. The bacterial and fungal population was able to degrade sildenafil citrate entirely. Additionally, assays conducted on Daphnia magna, algal growth inhibition assay and cell viability determination on HepG2 human cells showed that biotransformation products obtained from the bacterial growth was not toxic. The higher removal efficiency for sildenafil citrate and the lack of toxicity by the biotransformation products obtained showed that the microbial community identified here represented a composite population that might have biotechnological relevance to

  6. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  7. The Hawaiian Freshwater Algal Database (HfwADB: a laboratory LIMS and online biodiversity resource

    Directory of Open Access Journals (Sweden)

    Sherwood Alison R

    2012-10-01

    Full Text Available Abstract Background Biodiversity databases serve the important role of highlighting species-level diversity from defined geographical regions. Databases that are specially designed to accommodate the types of data gathered during regional surveys are valuable in allowing full data access and display to researchers not directly involved with the project, while serving as a Laboratory Information Management System (LIMS. The Hawaiian Freshwater Algal Database, or HfwADB, was modified from the Hawaiian Algal Database to showcase non-marine algal specimens collected from the Hawaiian Archipelago by accommodating the additional level of organization required for samples including multiple species. Description The Hawaiian Freshwater Algal Database is a comprehensive and searchable database containing photographs and micrographs of samples and collection sites, geo-referenced collecting information, taxonomic data and standardized DNA sequence data. All data for individual samples are linked through unique 10-digit accession numbers (“Isolate Accession”, the first five of which correspond to the collection site (“Environmental Accession”. Users can search online for sample information by accession number, various levels of taxonomy, habitat or collection site. HfwADB is hosted at the University of Hawaii, and was made publicly accessible in October 2011. At the present time the database houses data for over 2,825 samples of non-marine algae from 1,786 collection sites from the Hawaiian Archipelago. These samples include cyanobacteria, red and green algae and diatoms, as well as lesser representation from some other algal lineages. Conclusions HfwADB is a digital repository that acts as a Laboratory Information Management System for Hawaiian non-marine algal data. Users can interact with the repository through the web to view relevant habitat data (including geo-referenced collection locations and download images of collection sites, specimen

  8. Luminescent Solar Concentrators in the Algal Industry

    Science.gov (United States)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  9. Recent progress and future challenges in algal biofuel production [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Jonathan B. Shurin

    2016-10-01

    Full Text Available Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems.

  10. The basic approach to age-structured population dynamics models, methods and numerics

    CERN Document Server

    Iannelli, Mimmo

    2017-01-01

    This book provides an introduction to age-structured population modeling which emphasises the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology, and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modelling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behaviour of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students an...

  11. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    Science.gov (United States)

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups.

  12. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    Science.gov (United States)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  13. Algal communities associated with aquatic macrophytes in some ...

    African Journals Online (AJOL)

    This study describes the algal communities of six ponds colonised by aquatic macrophytes in Nyanza Province, Kenya. Plankton samples were collected from the water column and epiphytic samples from macrophytes such as Azolla, Pistia, Nymphaea, Ipomoea and Ludwigia. Pond pH, temperature, conductivity, ...

  14. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.

  15. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    Science.gov (United States)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  16. Free ammonia offers algal crop protection from predators in dairy wastewater and ammonium-rich media.

    Science.gov (United States)

    Thomas, Patrick K; Dunn, Gary P; Passero, Maxine; Feris, Kevin P

    2017-11-01

    Cost-effective methods for protecting crops from grazing organisms like rotifers are needed to reduce the risk of pond crashes in mass algal cultures. We present a novel strategy to optimize the exposure time to free ammonia, via control of media pH, in both defined media and dairy anaerobic digester effluent to suppress rotifers and maintain algal productivity. We tested five different free ammonia exposure times (0, 1, 2, 6, and 12h) and found a significant nonlinear effect of exposure time (p0.9) on rotifer survival. In both media types, 6-12h of elevated free ammonia significantly reduced Brachionus plicatilis rotifer survival with no negative effects on Nannochloropsis oculata, while shorter exposure times were insufficient to inhibit rotifers, leading to severe algal culture crashes. These results suggest that algal crops can be protected from rotifers, without productivity loss, by elevating free ammonia for 6 or more hours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of algal biofertilizer on yield and protein content of rice

    Energy Technology Data Exchange (ETDEWEB)

    Antarikanonda, P.; Amarit, P.; Chetsumon; Tancharoenrat, P.

    Four strains of nitrogen fixing blue-green algae, namely Anabaena siamensis, Anabaena lutea, Nostoc sp. 46 and Nostoc sp. 79. Mixed cultures were applied as biofertilizers to four paddy soil samples, taken from Rangsit, Khok Sumrong, Sakhon Nakorn and Surin areas. Pots which were arranged in completely randomized design consisted of 3 replications and 2 treatment in each replication. These treatments comprise an unbiofertilizer and a biofertilizer which biofertilizer rate was applied equally at 4 grams of blue green algae per 10 kilograms of soil sample. The results showed that algal biofertilizer enhanced the growth and yield of the rice significantly, which was noticeable in the dry weight of the straw and grain of rice, for all sources of soil. Grain yield of rice in these soils increased form the check of 32.07, 34.87, 8.86 and 21.49 to 53.14, 49.53, 20.02, and 49.60 grams per pot, respectively. The responsiveness of rice which received algal biofertilizer was different. The percentage increase in yield ranged from 42% in Khok Sumrong soil and 66% in Rangsit soil, to 126 and 131% in Sakhon Nakorn and Surin soil, respectively. Significant increase in protein content of rice with the application of algal biofertilizer was from the check of 5.03, 5.14, 6.75 and 5.25 to 6.45, 6.53, 7.80 and 7.11 percent respectively. The difference in plant N-uptake level, after the application algal biofertilizer gave 383.50, 310.00, 222.20 and 480.70 milligrams per pot, respectively.

  18. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    Science.gov (United States)

    Russell, Tanya L.; Lwetoijera, Dickson W.; Knols, Bart G. J.; Takken, Willem; Killeen, Gerry F.; Ferguson, Heather M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness. PMID:21389034

  19. Macromolecular synthesis in algal cells

    International Nuclear Information System (INIS)

    Ishida, M.R.; Kikuchi, Tadatoshi

    1980-01-01

    The present paper is a review of our experimental results obtained previously on the macromolecular biosyntheses in the cells of blue-green alga Anacystis nidulans as a representative species of prokaryote, and also in those of three species of eukaryotic algae, i.e. Euglena gracilis strain Z, Chlamydomonas reinhardi, and Cyanidium caldarium. In these algal cells, the combined methods consisting of pulse-labelling using 32 P, 3 H- and 14 C-labelled precursors for macromolecules, of their chasing and of the use of inhibitors which block specifically the syntheses of macromolecules such as proteins, RNA and DNA in living cells were very effectively applied for the analyses of the regulatory mechanism in biosyntheses of macromolecules and of the mode of their assembly into the cell structure, especially organelle constituents. Rased on the results obtained thus, the following conclusions are reached: (1) the metabolic pool for syntheses of macromolecules in the cells of prokaryotic blue-green alga is limited to the small extent and such activities couple largely with the photosynthetic mechanism; (2) 70 S ribosomes in the blue-green algal cells are assembled on the surface of thylakoid membranes widely distributed in their cytoplasm; and (3) the cells of eukaryotic unicellular algae used here have biochemical characters specific for already differentiated enzyme system involving in transcription and translation machineries as the same as in higher organisms, but the control mechanism concerning with such macromolecule syntheses are different among each species. (author)

  20. Population dynamics of light-limited phytoplankton : Microcosm experiments

    NARCIS (Netherlands)

    Huisman, Jef

    This paper investigates the extent to which the predictions of an elementary model for light-limited growth are matched by laboratory experiments with light-limited phytoplankton. The model and experiments link the population dynamics of phytoplankton species with changes in the light gradient

  1. Characteristics of algal succession following rock scraping at Imwon area in the east coast of Korea

    Science.gov (United States)

    Kim, Young Dae; Ahn, Jung Kwan; Nam, Myung Mo; Lee, Chu; Yoo, Hyun Il; Yeon, Su Yeoung; Kim, Young Hwan; Kim, Jang Kyun; Choi, Jae Suk

    2016-12-01

    This study was conducted to clarify the characteristics of algal succession following rock scraping using hoe or high-pressure water sprayer in the period from June 2010 to April 2011. We divided the research area off the eastern coast of Korean near Imwon into 3 categories depending upon the severity of the barren ground, i.e., the urchin barren-affected, urchin barren-ongoing and urchin barren-free areas. In April 2011, in the urchin barren-affected area with 25 seaweed species, the cover percentage and importance value (IV) of crustose coralline algae were higher than those of other species. In the urchin barren-ongoing area with 33 seaweed species, crustose coralline algae (mean IV = 62%) as well as Sargassum sp. (mean IV = 28%), and Gelidium amansii (mean IV = 19%) were observed following rock scraping. In the urchin barren-free area where seaweed communities were relatively abundant with 42 species, a variety of algal species including G. amansii (mean IV = 32%) underwent algal succession. Overall, it was observed that, as an aspect of algal succession, the weaker the barren ground severity was, the more frequent and diverse the seaweeds were, and the more complex the succession pattern was in the study. As an aspect of recovering algal community, rock scraping using hoe was shown to be superior to the method using high-pressure water spraying. Therefore, we conclude that rock scraping using hoe is a very effective strategy for recovering the algal community in urchin barren-ongoing area.

  2. Rethinking the logistic approach for population dynamics of mutualistic interactions.

    Science.gov (United States)

    García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J

    2014-12-21

    Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Selective recovery of gold and other metal ions from an algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Darnall, D.W.; Greene, B.; Henzl, M.T.; Hosea, J.M.; McPherson, R.A.; Sneddon, J.; Alexander, M.D.

    1986-02-01

    The authors observed that the pH dependence of the binding of Au/sup 3 +/, Ag/sup +/, and Hg/sup 2 +/ to the algae Chlorella vulgaris is different than the binding of other metal ions. Between pH 5 and 7, a variety of metal ions bind strongly to the cell surface. Most of these algal-bound metal ions can be selectively desorbed by lowering the pH to 2; however, Au/sup 3 +/, Hg/sup 2 +/, and Ag/sup +/ are all bound strongly at pH 2. Addition of a strong ligand at different pHs is required to elute these ions from the algal surface. Algal-bound gold and mercury can be selectively eluted by using mercaptoethanol. An elution scheme is demonstrated for the binding and selective recovery of Cu/sup 2 +/, Zn/sup 2 +/, Au/sup 3 +/, and Hg/sup 2 +/ from an equimolar mixture. 20 references, 2 figures.

  4. Controlling silver nanoparticle exposure in algal toxicity testing - A matter of timing

    DEFF Research Database (Denmark)

    Sørensen, Sara Nørgaard; Baun, Anders

    2015-01-01

    ) in a standard algal growth inhibition test (ISO 8692:2004) for 48 h and a short-term (2 h) 14C-assimilation test. For AgNO3, similar responses were obtained in the two tests, whereas freshly prepared suspensions of citrate stabilized AgNPs were less toxic in the 2-h tests compared to the 48-h tests. The 2-h...... test was found applicable for dissolved silver, but yielded non-monotonous concentration–response relationships and poor reproducibility for freshly prepared AgNP suspensions. However, when aging AgNPs in algal medium 24 h prior to testing, clear concentration–response patterns emerged...... and reproducibility increased. Prolonged aging to 48 h increased toxicity in the 2-h tests whereas aging beyond 48 h reduced toxicity. Our results demonstrate that the outcome of algal toxicity testing of AgNPs is highly influenced not only by the test duration, but also by the time passed from the moment Ag...

  5. Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity

    International Nuclear Information System (INIS)

    Tung Wenwen; Qi Yan; Gao, J.B.; Cao Yinhe; Billings, Lora

    2005-01-01

    In recent years it has been increasingly recognized that noise and determinism may have comparable but different influences on population dynamics. However, no simple analysis methods have been introduced into ecology which can readily characterize those impacts. In this paper, we study a population model with strong periodicity and both with and without noise. The noise-free model generates both quasi-periodic and chaotic dynamics for certain parameter values. Due to the strong periodicity, however, the generated chaotic dynamics have not been satisfactorily described. The dynamics becomes even more complicated when there is noise. Characterizing the chaotic and stochastic dynamics in this model thus represents a challenging problem. Here we show how the chaotic dynamics can be readily characterized by the direct dynamical test for deterministic chaos developed by [Gao JB, Zheng ZM. Europhys. Lett. 1994;25:485] and how the influence of noise on quasi-periodic motions can be characterized as asymmetric diffusions wandering along the quasi-periodic orbit. It is hoped that the introduced methods will be useful in studying other population models as well as population time series obtained both in field and laboratory experiments

  6. Efficient characterisation of large deviations using population dynamics

    Science.gov (United States)

    Brewer, Tobias; Clark, Stephen R.; Bradford, Russell; Jack, Robert L.

    2018-05-01

    We consider population dynamics as implemented by the cloning algorithm for analysis of large deviations of time-averaged quantities. We use the simple symmetric exclusion process with periodic boundary conditions as a prototypical example and investigate the convergence of the results with respect to the algorithmic parameters, focussing on the dynamical phase transition between homogeneous and inhomogeneous states, where convergence is relatively difficult to achieve. We discuss how the performance of the algorithm can be optimised, and how it can be efficiently exploited on parallel computing platforms.

  7. Algal Turf Scrubbers: Cleaning Water while Capturing Solar Energy for Bio fuel Production

    International Nuclear Information System (INIS)

    Jeffrey Bannon, J.; Adey, W.

    2010-01-01

    Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. Since they are controlled ecosystems, using local algae, ATS does not suffer the major disadvantages of agricultural crops, which for maximum efficiency require fertilizers, herbicides and pesticides. ATS removes CO 2 from water and the atmosphere, and can be configured to remove CO 2 from power plant stack gases. As a normal part of operations, ATS removes heavy metals, break down toxic hydrocarbons, and oxygenates treated waters. ATS systems are capable of removing nitrogen and phosphorous from surface waters in the mid latitude US at $0.60/kg and $10.60/kg respectively (10% of the cost certified by the Chesapeake Bay Commission), and independently producing an energy product at $0.85/gallon. Given a nutrient credit system for rewarding nutrient removal from rivers and lakes, this price can be driven down to below $.40/gallon. Conservatively ATS can produce the equivalent of US imported oil on less than 30 M acres of land along major rivers

  8. Ruffed grouse population dynamics in the central and southern Appalachians

    Science.gov (United States)

    John M. Giuliano Tirpak; C. Allan Miller; Thomas J. Allen; Steve Bittner; David A. Buehler; John W. Edwards; Craig A. Harper; William K. Igo; Gary W. Norman; M. Seamster; Dean F. Stauffer

    2006-01-01

    Ruffed grouse (Bonasa urnbellus; hereafter grouse) populations in the central and southern Appalachians are in decline. However, limited information on the dynamics of these populations prevents the development of effective management strategies to reverse these trends. We used radiotelemetry data collected on grouse to parameterize 6 models of...

  9. Marine mimivirus relatives are probably large algal viruses

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2008-01-01

    Full Text Available Abstract Background Acanthamoeba polyphaga mimivirus is the largest known ds-DNA virus and its 1.2 Mb-genome sequence has revealed many unique features. Mimivirus occupies an independent lineage among eukaryotic viruses and its known hosts include only species from the Acanthamoeba genus. The existence of mimivirus relatives was first suggested by the analysis of the Sargasso Sea metagenomic data. Results We now further demonstrate the presence of numerous "mimivirus-like" sequences using a larger marine metagenomic data set. We also show that the DNA polymerase sequences from three algal viruses (CeV01, PpV01, PoV01 infecting different marine algal species (Chrysochromulina ericina, Phaeocystis pouchetii, Pyramimonas orientalis are very closely related to their homolog in mimivirus. Conclusion Our results suggest that the numerous mimivirus-related sequences identified in marine environments are likely to originate from diverse large DNA viruses infecting phytoplankton. Micro-algae thus constitute a new category of potential hosts in which to look for new species of Mimiviridae.

  10. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms (SETAC presentation)

    Science.gov (United States)

    Reports of toxic cyanobacterial blooms, also known as Harmful Algal Blooms (HABS) have increased drastically in recent years. HABS impact human health from causing mild allergies to liver damage and death. The Ecological Stewardship Institute (ESI) at Northern Kentucky Universi...

  11. Modelling population dynamics model formulation, fitting and assessment using state-space methods

    CERN Document Server

    Newman, K B; Morgan, B J T; King, R; Borchers, D L; Cole, D J; Besbeas, P; Gimenez, O; Thomas, L

    2014-01-01

    This book gives a unifying framework for estimating the abundance of open populations: populations subject to births, deaths and movement, given imperfect measurements or samples of the populations.  The focus is primarily on populations of vertebrates for which dynamics are typically modelled within the framework of an annual cycle, and for which stochastic variability in the demographic processes is usually modest. Discrete-time models are developed in which animals can be assigned to discrete states such as age class, gender, maturity,  population (within a metapopulation), or species (for multi-species models). The book goes well beyond estimation of abundance, allowing inference on underlying population processes such as birth or recruitment, survival and movement. This requires the formulation and fitting of population dynamics models.  The resulting fitted models yield both estimates of abundance and estimates of parameters characterizing the underlying processes.  

  12. Population dynamics of potato cyst nematodes and associated damage to potato

    NARCIS (Netherlands)

    Schans, J.

    1993-01-01

    Population dynamics of potato cyst nematodes (PCN; Globoderarostochiensis (Woll.) Skarbilovich and G. pallida Stone) and their interactions with potato plants are insufficiently understood to explain variations of population

  13. Population dynamics of bowfin in a south Georgia reservoir: latitudinal comparisons of population structure, growth, and mortality

    Science.gov (United States)

    Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael

    2014-01-01

    The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.

  14. Boom or bust? A comparative analysis of transient population dynamics in plants

    DEFF Research Database (Denmark)

    Stott, Iain; Franco, Miguel; Carslake, David

    2010-01-01

    researchers as further possible effectors of complicated dynamics. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large...... a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. We apply the Kreiss bound and other transient indices to a data base...... worrying artefact of basic model parameterization. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest...

  15. Algal massive growth in relation to water quality and salinity at Damietta, north of Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Ibraheem Deyab

    2015-02-01

    Full Text Available Objective: To relate the proliferation and dominance of certain algal species at the Damietta and its relation to water quality. Methods: Water and algal biomass were bimonthly sampled from five selected sites at Damietta Province, Egypt during 2012. Algae were identified and quantified. Waters, algae and sediment were analyzed. Results: The physicochemical properties of water showed limited seasonal but substantial local variation. The high levels of nitrogen and phosphorus and turbidity of water pointed to marked eutrophication, which could enhance massive algal growth. The temporal fluctuation in temperature, exposure to industrial and domestic sewage and salinity results in succession between blooming algal species. Spirulina platensis and Chlorella vulgaris alternated in a moderately saline water and Oscillatoria agardhii and Mougeotia scalaris in a fresh water body during summer and winter respectively. Likewise, Microcystis aureginosa and Ulva lactuca alternated in a moderately saline site during autumn and summer respectively. Cladophora albida dominated a fish pond of brackish water and Dunaliella salina dominated the most saline water over the whole period of study. Conclusions: Growth of the predominant algal species is correlated to water quality. These species are of considerable nutritive value, with moderate contents of protein, carbohydrate, macronutrients and micronutrients, which evaluates them for usage as food (green and macroalgae, fodder or bio-fertilizer (cyanophytes.

  16. Relations between water physico-chemistry and benthic algal communities in a northern Canadian watershed: defining reference conditions using multiple descriptors of community structure.

    Science.gov (United States)

    Thomas, Kathryn E; Hall, Roland I; Scrimgeour, Garry J

    2015-09-01

    Defining reference conditions is central to identifying environmental effects of anthropogenic activities. Using a watershed approach, we quantified reference conditions for benthic algal communities and their relations to physico-chemical conditions in rivers in the South Nahanni River watershed, NWT, Canada, in 2008 and 2009. We also compared the ability of three descriptors that vary in terms of analytical costs to define algal community structure based on relative abundances of (i) all algal taxa, (ii) only diatom taxa, and (iii) photosynthetic pigments. Ordination analyses showed that variance in algal community structure was strongly related to gradients in environmental variables describing water physico-chemistry, stream habitats, and sub-watershed structure. Water physico-chemistry and local watershed-scale descriptors differed significantly between algal communities from sites in the Selwyn Mountain ecoregion compared to sites in the Nahanni-Hyland ecoregions. Distinct differences in algal community types between ecoregions were apparent irrespective of whether algal community structure was defined using all algal taxa, diatom taxa, or photosynthetic pigments. Two algal community types were highly predictable using environmental variables, a core consideration in the development of Reference Condition Approach (RCA) models. These results suggest that assessments of environmental impacts could be completed using RCA models for each ecoregion. We suggest that use of algal pigments, a high through-put analysis, is a promising alternative compared to more labor-intensive and costly taxonomic approaches for defining algal community structure.

  17. Environmental variables, algal pigments and phytoplankton in the ...

    African Journals Online (AJOL)

    The phytoplankton diversity, environmental variables and algal pigments of the Atlantic Ocean off the coast of Badagry, Lagos were investigated for twelve months between May 2015 and April 2016. The water chemistry characteristics reflected sea water conditions. At the two stations, the range of values recorded for some ...

  18. An individual-based probabilistic model for simulating fisheries population dynamics

    Directory of Open Access Journals (Sweden)

    Jie Cao

    2016-12-01

    Full Text Available The purpose of stock assessment is to support managers to provide intelligent decisions regarding removal from fish populations. Errors in assessment models may have devastating impacts on the population fitness and negative impacts on the economy of the resource users. Thus, accuracte estimations of population size, growth rates are critical for success. Evaluating and testing the behavior and performance of stock assessment models and assessing the consequences of model mis-specification and the impact of management strategies requires an operating model that accurately describe the dynamics of the target species, and can resolve spatial and seasonal changes. In addition, the most thorough evaluations of assessment models use an operating model that takes a different form than the assessment model. This paper presents an individual-based probabilistic model used to simulate the complex dynamics of populations and their associated fisheries. Various components of population dynamics are expressed as random Bernoulli trials in the model and detailed life and fishery histories of each individual are tracked over their life span. The simulation model is designed to be flexible so it can be used for different species and fisheries. It can simulate mixing among multiple stocks and link stock-recruit relationships to environmental factors. Furthermore, the model allows for flexibility in sub-models (e.g., growth and recruitment and model assumptions (e.g., age- or size-dependent selectivity. This model enables the user to conduct various simulation studies, including testing the performance of assessment models under different assumptions, assessing the impacts of model mis-specification and evaluating management strategies.

  19. Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics

    KAUST Repository

    Bressloff, Paul C.

    2010-01-01

    We analyze a stochastic model of neuronal population dynamics with intrinsic noise. In the thermodynamic limit N→∞, where N determines the size of each population, the dynamics is described by deterministic Wilson-Cowan equations. On the other hand

  20. Biology as population dynamics: heuristics for transmission risk.

    Science.gov (United States)

    Keebler, Daniel; Walwyn, David; Welte, Alex

    2013-02-01

    Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the biology of HIV infection and viral replication. A simple dynamic model can explore the effect of a vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which impact on the probability of infection. Variations on this model could capture the importance of the timing and duration of different key events in viral transmission, and hence be applied to questions of mucosal immunology. The dynamical insights and assumptions of such models are compatible with the continuum of between- and within-individual risks in sexual violence and may be helpful in making sense of the sparse data available on the association between HIV transmission and sexual violence. © 2012 John Wiley & Sons A/S.

  1. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  2. An age structured model for obesity prevalence dynamics in populations

    Directory of Open Access Journals (Sweden)

    Gilberto González Parra

    2010-08-01

    Full Text Available Objective. Modeling the correlation of the development of obesity in a population with age and time and predict the dynamics of the correlation of the development of obesity in a population with age and time under different scenarios in Valencia (Spain. Materials and methods. An age structured mathematical model is used to describe the future dynamics of obesity prevalence for different ages in human population with excess weight. Simulation of the model with parameters estimated using the Health Survey of the Region of Valencia 2000 (4.319 interviews and Health Survey of the Region of Valencia 2005 (4.012 interviews. The model considers only overweight and obese populations since these subpopulations are the most relevant on obesity health concern. Results. The model allows predicting and studying the prevalence of obesity for each age. Results showed an increasing trend of obesity in the following years in well accordance with the trend observed in several countries. Conclusions. Based on the numerical simulations it is possible to conclude that the age structured mathematical model is suitable to forecast the obesity epidemic in each age group in different countries. Additionally, this type of models may be applied to study other characteristics of other populations such animal populations.

  3. Use of Mobile Device Data To Better Estimate Dynamic Population Size for Wastewater-Based Epidemiology.

    Science.gov (United States)

    Thomas, Kevin V; Amador, Arturo; Baz-Lomba, Jose Antonio; Reid, Malcolm

    2017-10-03

    Wastewater-based epidemiology is an established approach for quantifying community drug use and has recently been applied to estimate population exposure to contaminants such as pesticides and phthalate plasticizers. A major source of uncertainty in the population weighted biomarker loads generated is related to estimating the number of people present in a sewer catchment at the time of sample collection. Here, the population quantified from mobile device-based population activity patterns was used to provide dynamic population normalized loads of illicit drugs and pharmaceuticals during a known period of high net fluctuation in the catchment population. Mobile device-based population activity patterns have for the first time quantified the high degree of intraday, week, and month variability within a specific sewer catchment. Dynamic population normalization showed that per capita pharmaceutical use remained unchanged during the period when static normalization would have indicated an average reduction of up to 31%. Per capita illicit drug use increased significantly during the monitoring period, an observation that was only possible to measure using dynamic population normalization. The study quantitatively confirms previous assessments that population estimates can account for uncertainties of up to 55% in static normalized data. Mobile device-based population activity patterns allow for dynamic normalization that yields much improved temporal and spatial trend analysis.

  4. Factors Controlling Changes in Epilithic Algal Biomass in the Mountain Streams of Subtropical Taiwan.

    Directory of Open Access Journals (Sweden)

    Yi-Ming Kuo

    Full Text Available In upstream reaches, epilithic algae are one of the major primary producers and their biomass may alter the energy flow of food webs in stream ecosystems. However, the overgrowth of epilithic algae may deteriorate water quality. In this study, the effects of environmental variables on epilithic algal biomass were examined at 5 monitoring sites in mountain streams of the Wuling basin of subtropical Taiwan over a 5-year period (2006-2011 by using a generalized additive model (GAM. Epilithic algal biomass and some variables observed at pristine sites obviously differed from those at the channelized stream with intensive agricultural activity. The results of the optimal GAM showed that water temperature, turbidity, current velocity, dissolved oxygen (DO, pH, and ammonium-N (NH4-N were the main factors explaining seasonal variations of epilithic algal biomass in the streams. The change points of smoothing curves for velocity, DO, NH4-N, pH, turbidity, and water temperature were approximately 0.40 m s-1, 8.0 mg L-1, 0.01 mg L-1, 8.5, 0.60 NTU, and 15°C, respectively. When aforementioned variables were greater than relevant change points, epilithic algal biomass was increased with pH and water temperature, and decreased with water velocity, DO, turbidity, and NH4-N. These change points may serve as a framework for managing the growth of epilithic algae. Understanding the relationship between environmental variables and epilithic algal biomass can provide a useful approach for maintaining the functioning in stream ecosystems.

  5. Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population.

    Science.gov (United States)

    Cushing, J M; Henson, Shandelle M

    2018-02-03

    For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.

  6. Marine algal flora of submerged Angria Bank (Arabian Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Reddy, C.R.K.; Ambiye, V.

    Submerged Angria Bank was surveyed for the deep water marine algal flora. About 57 species were reported from this bank for the first time. Rhodophyta dominated (30 species) followed by Chlorophyta (18 species) and Phaeophyta (9 species). A few...

  7. Interacting trophic forcing and the population dynamics of herring

    DEFF Research Database (Denmark)

    Lindegren, Martin; Ostman, Orjan; Gardmark, Anna

    2011-01-01

    -up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue....... Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life...... cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua...

  8. Biological control of Microcystis dominated harmful algal blooms ...

    African Journals Online (AJOL)

    Freshwater resources are now threatened by the presence and increase of harmful algal blooms (HAB) all over the world. The HABs are sometimes a direct result of anthropogenic pollution entering water bodies, such as partially treated nutrient-rich effluents and the leaching of fertilisers and animal wastes. The impact of ...

  9. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.

    Directory of Open Access Journals (Sweden)

    Jan Janouškovec

    Full Text Available Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase - a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.

  10. Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    Science.gov (United States)

    Twiner, Michael J.; Fire, Spencer; Schwacke, Lori; Davidson, Leigh; Wang, Zhihong; Morton, Steve; Roth, Stephen; Balmer, Brian; Rowles, Teresa K.; Wells, Randall S.

    2011-01-01

    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health. PMID:21423740

  11. Concurrent exposure of bottlenose dolphins (Tursiops truncatus to multiple algal toxins in Sarasota Bay, Florida, USA.

    Directory of Open Access Journals (Sweden)

    Michael J Twiner

    Full Text Available Sentinel species such as bottlenose dolphins (Tursiops truncatus can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA, the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA. Over a ten-year study period (2000-2009 we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009 with 36% of all animals testing positive for brevetoxin (n = 118 and 53% positive for DA (n = 83 with several individuals (14% testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001 and eosinophil (p<0.001 counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.

  12. Drivers of waterfowl population dynamics: from teal to swans

    Science.gov (United States)

    Koons, David N.; Gunnarsson, Gunnar; Schmutz, Joel A.; Rotella, Jay J.

    2014-01-01

    Waterfowl are among the best studied and most extensively monitored species in the world. Given their global importance for sport and subsistence hunting, viewing and ecosystem functioning, great effort has been devoted since the middle part of the 20th century to understanding both the environmental and demographic mechanisms that influence waterfowl population and community dynamics. Here we use comparative approaches to summarise and contrast our understanding ofwaterfowl population dynamics across species as short-lived as the teal Anas discors and A.crecca to those such as the swans Cygnus sp. which have long life-spans. Specifically, we focus on population responses to vital rate perturbations across life history strategies, discuss bottom-up and top-down responses of waterfowlpopulations to global change, and summarise our current understanding of density dependence across waterfowl species. We close by identifying research needs and highlight ways to overcome the challenges of sustainably managing waterfowl populations in the 21st century.

  13. Design of a novel flat-plate photobioreactor system for green algal hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Zemichael, F.W.; Maitland, G.C.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae have the ability to photosynthetically produce molecular hydrogen using sunlight and water. This renewable, carbon-neutral process has the additional benefit of sequestering carbon dioxide during the algal growth phase. The main costs associated with this process result from building and operating a photobioreactor system. The challenge is to design an innovative and cost effective photobioreactor that meets the requirements of algal growth and sustainable hydrogen production. We document the details of a novel 1 litre vertical flat-plate photobioreactor that has been designed to accommodate green algal hydrogen production at the laboratory scale. Coherent, non-heating illumination is provided by a panel of cool white LEDs. The reactor body consists of two compartments constructed from transparent Perspex sheets. The primary compartment holds the algal culture, which is agitated by means of a recirculating gas flow. A secondary compartment is filled with water and used to control the temperature and wavelength of the system. The reactor is fitted with instruments that monitor the pH, pO{sub 2}, temperature and optical density of the culture. A membrane-inlet mass spectrometry system has been developed for hydrogen collection and in situ monitoring. The reactor is fully autoclaveable and the possibility of hydrogen leaks has been minimised. The modular nature of the reactor allows efficient cleaning and maintenance. (orig.)

  14. Physical abrasion method using submerged spike balls to remove algal biofilm from photobioreactors.

    Science.gov (United States)

    Nawar, Azra; Khoja, Asif Hussain; Akbar, Naveed; Ansari, Abeera Ayaz; Qayyum, Muneeb; Ali, Ehsan

    2017-12-02

    A major factor in practical application of photobioreactors (PBR) is the adhesion of algal cells onto their inner walls. Optimized algal growth requires an adequate sunlight for the photosynthesis and cell growth. Limitation in light exposure adversely affects the algal biomass yield. The removal of the biofilm from PBR is a challenging and expansive task. This study was designed to develop an inexpensive technique to prevent adhesion of algal biofilm on tubular PBR to ensure high efficiency of light utilization. Rubber balls with surface projections were introduced into the reactor, to remove the adherent biofilm by physical abrasion technique. The floatation of spike balls created a turbulent flow, thereby inhibiting further biofilm formation. The parameters such as, specific growth rate and doubling time of the algae before introducing the balls were 0.451 day -1 and 1.5 days respectively. Visible biofilm impeding light transmission was formed by 15-20 days. The removal of the biofilm commenced immediately after the introduction of the spike balls with visibly reduced deposits in 3 days. This was also validated by enhance cell count (6.95 × 106 cells mL -1 ) in the medium. The employment of spike balls in PBR is an environmental friendly and economical method for the removal of biofilm.

  15. Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels

    International Nuclear Information System (INIS)

    Haase, Rachel; Bielicki, Jeffrey; Kuzma, Jennifer

    2013-01-01

    Algal biofuel is an emerging energy source that has the potential to improve upon the environmental benefits realized by conventional biofuels and contribute to the biofuels mandate set by the Renewable Fuel Standard (RFS). While there has been much research into producing fuel from algae, a commercial-scale facility has not yet been built. We examine two case studies of energy technology innovation in the United States, first generation biodiesel and solar photovoltaics (PV), using the technological innovation system (TIS) framework to provide lessons and inform the path forward for commercializing algal biofuel. We identify five event types that have been the most influential to these innovation processes: changing expectations, technology development, demonstration projects, policy targets, and government subsidies. Some algal biofuel demonstration projects have occurred, but despite falling under the mandates set forth in the RFS (a policy target), algal biofuels do not currently receive production subsidies. The main finding from the case study analysis is that government interventions have significantly influenced the innovation processes of first generation biodiesel and solar PV and will likely be key factors in the commercialization of algal biofuel. - Highlights: • Two energy technology case studies were analyzed with a TIS framework. • Major drivers in the innovation process were identified in each case. • Government interventions were key factors for both. • The one identified key driver algal biofuel is lacking is federal subsidies. • All components of the TIS framework deserve attention in promoting innovation

  16. Cooperation guided by the coexistence of imitation dynamics and aspiration dynamics in structured populations

    Science.gov (United States)

    Xu, Kuangyi; Li, Kun; Cong, Rui; Wang, Long

    2017-02-01

    In the framework of the evolutionary game theory, two fundamentally different mechanisms, the imitation process and the aspiration-driven dynamics, can be adopted by players to update their strategies. In the former case, individuals imitate the strategy of a more successful peer, while in the latter case individuals change their strategies based on a comparison of payoffs they collect in the game to their own aspiration levels. Here we explore how cooperation evolves for the coexistence of these two dynamics. Intriguingly, cooperation reaches its lowest level when a certain moderate fraction of individuals pick aspiration-level-driven rule while the others choose pairwise comparison rule. Furthermore, when individuals can adjust their update rules besides their strategies, either imitation dynamics or aspiration-driven dynamics will finally take over the entire population, and the stationary cooperation level is determined by the outcome of competition between these two dynamics. We find that appropriate synergetic effects and moderate aspiration level boost the fixation probability of aspiration-driven dynamics most effectively. Our work may be helpful in understanding the cooperative behavior induced by the coexistence of imitation dynamics and aspiration dynamics in the society.

  17. Herbivory on macro-algae affects colonization of beach-cast algal wrack by detritivores but not its decomposition

    Directory of Open Access Journals (Sweden)

    Philip Eereveld

    2013-05-01

    Full Text Available Spatial subsidies have increasingly been considered significant sources of matter and energy to unproductive ecosystems. However, subsidy quality may both differ between subsidizing sources and vary over time. In our studies, sub-littoral herbivory by snails or isopods on red or brown macro-algae induced changes in algal tissues that affected colonization of beach-cast algal wrack by supra-littoral detritivores (amphipods. However, microbial decay and decomposition through the joint action of detritivores and microbes of algal wrack in the supra-littoral remained unaffected by whether or not red or brown algae had been fed upon by snails or isopods. Thus, herbivory on marine macro-algae affects the cross-system connection of sub-littoral and supra-littoral food webs transiently, but these effects diminish upon ageing of macro-algal wrack in the supra-littoral zone.

  18. Missing cycles: Effect of climate change on population dynamics

    Indian Academy of Sciences (India)

    population dynamics of the larch budmoth – an insect pest which causes massive defoliation of entire larch forests ... hypothesized that global warming has led to the collapse of the cycles ... When temperatures increase after winter, and the.

  19. Algal Biofuels Strategy. Proceedings from the March 26-27, 2014, Workshop, Charleston, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-06-01

    This report is based on the proceedings of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office’s Algal Biofuel Strategy Workshop on March 26-27, 2014, in Charleston, South Carolina. The workshop objective was to convene stakeholders to engage in discussion on strategies over the next 5 to 10 years to achieve affordable, scalable, and sustainable algal biofuels.

  20. Impact of environmental colored noise in single-species population dynamics

    Science.gov (United States)

    Spanio, Tommaso; Hidalgo, Jorge; Muñoz, Miguel A.

    2017-10-01

    Variability on external conditions has important consequences for the dynamics and the organization of biological systems. In many cases, the characteristic timescale of environmental changes as well as their correlations play a fundamental role in the way living systems adapt and respond to it. A proper mathematical approach to understand population dynamics, thus, requires approaches more refined than, e.g., simple white-noise approximations. To shed further light onto this problem, in this paper we propose a unifying framework based on different analytical and numerical tools available to deal with "colored" environmental noise. In particular, we employ a "unified colored noise approximation" to map the original problem into an effective one with white noise, and then we apply a standard path integral approach to gain analytical understanding. For the sake of specificity, we present our approach using as a guideline a variation of the contact process—which can also be seen as a birth-death process of the Malthus-Verhulst class—where the propagation or birth rate varies stochastically in time. Our approach allows us to tackle in a systematic manner some of the relevant questions concerning population dynamics under environmental variability, such as determining the stationary population density, establishing the conditions under which a population may become extinct, and estimating extinction times. We focus on the emerging phase diagram and its possible phase transitions, underlying how these are affected by the presence of environmental noise time-correlations.

  1. Population dynamics of Aphis gossypii Glover and in sole and intercropping systems of cotton and cowpea.

    Science.gov (United States)

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Garcia, Adriano G; Santos, Bárbara D B; Malaquias, José B

    2018-01-01

    Population dynamics of aphids have been studied in sole and intercropping systems. These studies have required the use of more precise analytical tools in order to better understand patterns in quantitative data. Mathematical models are among the most important tools to explain the dynamics of insect populations. This study investigated the population dynamics of aphids Aphis gossypii and Aphis craccivora over time, using mathematical models composed of a set of differential equations as a helpful analytical tool to understand the population dynamics of aphids in arrangements of cotton and cowpea. The treatments were sole cotton, sole cowpea, and three arrangements of cotton intercropped with cowpea (t1, t2 and t3). The plants were infested with two aphid species and were evaluated at 7, 14, 28, 35, 42, and 49 days after the infestations. Mathematical models were used to fit the population dynamics of two aphid species. There were good fits for aphid dynamics by mathematical model over time. The highest population peak of both species A. gossypii and A. craccivora was found in the sole crops, and the lowest population peak was found in crop system t2. These results are important for integrated management programs of aphids in cotton and cowpea.

  2. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Increasing the extraction efficiency of algal lipid for biodiesel ...

    African Journals Online (AJOL)

    SAM

    2014-04-09

    Apr 9, 2014 ... biodiesel production: Novel application of algal viruses ... Environmental Virology Cell, Council of Scientific and Industrial ... content, biomass productivity and are more sustainable ... rRNA of microalgae using outsourcing the sequencing services to .... efficiency is concerned, such as development of.

  4. Nonlinear dynamics in a business-cycle model with logistic population growth

    International Nuclear Information System (INIS)

    Brianzoni, Serena; Mammana, Cristiana; Michetti, Elisabetta

    2009-01-01

    We consider a discrete-time growth model of the Solow type where workers and shareholders have different but constant saving rates and the population growth dynamics is described by the logistic equation able to exhibit complicated dynamics. We show conditions for the resulting system having a compact global attractor and we describe its structure. We also perform a mainly numerical analysis using the critical lines method able to describe the strange attractor and the absorbing area, in order to show how cyclical or complex fluctuations may be produced in a business-cycle model. We study the dynamic behaviour of the model under different ranges of the main parameters, i.e. the elasticity of substitution between the two production factors and the one in the logistic equation (namely μ). We prove the existence of complex dynamics when the elasticity of substitution between production factors drops below one (so that capital income declines) or μ increases (so that the amplitude of movements in the population growth rate increases).

  5. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  6. Phenolic Content and Antioxidant Capacity in Algal Food Products

    Directory of Open Access Journals (Sweden)

    Ludmila Machu

    2015-01-01

    Full Text Available The study objective was to investigate total phenolic content using Folin-Ciocalteu’s method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida and red (Porphyra tenera, Palmaria palmata seaweed, green freshwater algae (Chlorella pyrenoidosa, and cyanobacteria (Spirulina platensis. HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g−1 GAE; 7.53 µmol AA·g−1, respectively. A linear relationship existed between ACW and phenolic contents (r = 0.99. Some algal products seem to be promising functional foods rich in polyphenols.

  7. Grazer diversity interacts with biogenic habitat heterogeneity to accelerate intertidal algal succession.

    Science.gov (United States)

    Whalen, Matthew A; Aquilino, Kristin M; Stachowicz, John J

    2016-08-01

    Environmental heterogeneity contributes to coexistence by allowing species with different traits to persist when different species perform best at different times or places. This interaction between niche differences and environmental variability may also help explain relationships between biodiversity and ecosystem functioning, but few data are available to rigorously evaluate this hypothesis. We assessed how a biologically relevant aspect of environmental heterogeneity interacts with species diversity to determine ecosystem processes in a natural rocky intertidal community. We used field removals to factorially manipulate biogenic habitat heterogeneity (barnacles, bare rock, and plots that were 50/50 mixes of the two habitat types) and gastropod grazer species richness and then tracked algal community succession and recovery over the course of 1 yr. We found that herbivore diversity, substrate heterogeneity, and their interaction played unique roles in the peak abundance and timing of occurrence of different algal functional groups. Early successional microalgae were most heavily grazed in diverse herbivore assemblages and those with barnacles present, which was likely due to complementary feeding strategies among all three grazers. In contrast, late successional macroalgae were strongly influenced by the presence of a habitat generalist limpet. In this herbivore's absence, heterogeneous habitats (i.e., mixtures of bare rock and barnacles) experienced the greatest algal accumulation, which was partly a result of complementary habitat use by the remaining herbivores. The complex way habitat identity and heterogeneity altered grazer-algal interactions in our study suggests species' differences and environmental heterogeneity both separately and interactively contribute to the relationship between biodiversity and ecosystem functions. © 2016 by the Ecological Society of America.

  8. Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria

    Science.gov (United States)

    2005-06-01

    1973. Ecology of Vibrio parahemolyticus in mixed-template amplifications: formation, consequences and elimination by Chesapeake Bay. J. Bacteriol. 113...Science 1930 and Engineering DOCTORAL DISSERTATION Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria by...DYNAMICS IN NATURAL POPULATIONS OF PLANKTONIC VIBRIO BACTERIA by Janelle Ren6e Thompson B.S. Biological Sciences, Stanford University 1998 M.S

  9. Selective algicidal action of peptides against harmful algal bloom species.

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Park

    Full Text Available Recently, harmful algal bloom (HAB, also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal

  10. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century

    Science.gov (United States)

    BERDALET, ELISA; FLEMING, LORA E.; GOWEN, RICHARD; DAVIDSON, KEITH; HESS, PHILIPP; BACKER, LORRAINE C.; MOORE, STEPHANIE K.; HOAGLAND, PORTER; ENEVOLDSEN, HENRIK

    2015-01-01

    Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing. PMID:26692586

  11. Demography of the Early Neolithic Population in Central Balkans: Population Dynamics Reconstruction Using Summed Radiocarbon Probability Distributions.

    Directory of Open Access Journals (Sweden)

    Marko Porčić

    Full Text Available The Central Balkans region is of great importance for understanding the spread of the Neolithic in Europe but the Early Neolithic population dynamics of the region is unknown. In this study we apply the method of summed calibrated probability distributions to a set of published radiocarbon dates from the Republic of Serbia in order to reconstruct population dynamics in the Early Neolithic in this part of the Central Balkans. The results indicate that there was a significant population growth after ~6200 calBC, when the Neolithic was introduced into the region, followed by a bust at the end of the Early Neolithic phase (~5400 calBC. These results are broadly consistent with the predictions of the Neolithic Demographic Transition theory and the patterns of population booms and busts detected in other regions of Europe. These results suggest that the cultural process that underlies the patterns observed in Central and Western Europe was also in operation in the Central Balkan Neolithic and that the population increase component of this process can be considered as an important factor for the spread of the Neolithic as envisioned in the demic diffusion hypothesis.

  12. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?

    Directory of Open Access Journals (Sweden)

    Tian Jing

    2009-10-01

    Full Text Available Abstract Background How photosynthetic organelles, or plastids, were acquired by diverse eukaryotes is among the most hotly debated topics in broad scale eukaryotic evolution. The history of plastid endosymbioses commonly is interpreted under the "chromalveolate" hypothesis, which requires numerous plastid losses from certain heterotrophic groups that now are entirely aplastidic. In this context, discoveries of putatively algal genes in plastid-lacking protists have been cited as evidence of gene transfer from a photosynthetic endosymbiont that subsequently was lost completely. Here we examine this evidence, as it pertains to the chromalveolate hypothesis, through genome-level statistical analyses of similarity scores from queries with two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, and two aplastidic sister taxa, Phytophthora ramorum and P. sojae. Results Contingency tests of specific predictions of the chromalveolate model find no evidence for an unusual red algal contribution to Phytophthora genomes, nor that putative cyanobacterial sequences that are present entered these genomes through a red algal endosymbiosis. Examination of genes unrelated to plastid function provide extraordinarily significant support for both of these predictions in diatoms, the control group where a red endosymbiosis is known to have occurred, but none of that support is present in genes specifically conserved between diatoms and oomycetes. In addition, we uncovered a strong association between overall sequence similarities among taxa and relative sizes of genomic data sets in numbers of genes. Conclusion Signal from "algal" genes in oomycete genomes is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution. Combined with the numerous sources of intragenomic phylogenetic conflict characterized previously, our results underscore the potential to be mislead by a posteriori

  13. Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.

    Science.gov (United States)

    Avilés, Leticia; Abbot, Patrick; Cutter, Asher D

    2002-02-01

    Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.

  14. Algal blooms: a perspective from the coasts of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSilva, M.S.; Anil, A.C.; Naik, R.K.; DeCosta, P.M.

    Algal blooms have been documented along the west and east coasts of India. A review of bloom occurrences in Indian waters from 1908 to 2009 points out that a total of 101 cases have been reported. A comparison of the bloom cases reported before...

  15. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  16. Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements. PMID:22272362

  17. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Directory of Open Access Journals (Sweden)

    Mauricio Lima

    Full Text Available Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors. Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  18. The population abundance, distribution pattern and culture studies ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... The population abundance, distribution pattern and culture studies of ... plankton species belong mainly to the nanoplankton and microplankton ... Algal samples were collected from the shore using microalgal net cone shaped of .... species diversity of Porto Novo, Tamil Nadu and De et al. (1994) in the ...

  19. Modelling of population dynamics of red king crab using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Bakanev Sergey ...

    2012-10-01

    Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.

  20. Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

    Science.gov (United States)

    Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George

    2017-03-01

    Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).

  1. Combined effect of concentrations of algal food (Chlorella vulgaris and salt (sodium chloride on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera

    Directory of Open Access Journals (Sweden)

    Víctor M. Peredo-Álvarez

    2003-06-01

    Full Text Available Salinity is an important variable influencing the density and diversity of rotifers. Studies on salt tolerance of rotifers have so far concentrated on euryhaline species while very little information is available on noneuryhaline taxa. In the present work, we have evaluated the combined effects of Chlorella vulgaris and sodium chloride on the population growth of two freshwater rotifers B. calyciflorus and B. patulus. A 24 hr acute tolerance test using NaCl revealed that B. calyciflorus was more resistant (LC50 = 3.75 ± 0.04 g l-1 than B. patulus (2.14 ± 0.09 g l-1 . The maximal population density (mean±standard error for B. calyciflorus in the control at 4.5 X10 6 cells ml-1 (algal level was 80 ±5 ind. ml-1 , which was nearly a fifth of the one for B. patulus (397 ± 7 ind. ml-1 under comparable conditions. Data on population growth revealed that regardless of salt concentration, the density of B. calyciflorus increased with increasing food levels, while for B. patulus, this trend was evident only in the controls. Regardless of salt concentration and algal food level, the day of maximal population density was lower (4 ± 0.5 days for B. calyciflorus than for B. patulus (11 ±1 day. The highest rates of population increase (r values for B. calyciflorus and B. patulus were 0.429 ± 0.012 and 0.367 ± 0.004, respectively, recorded at 4.5 X10(6 cells ml-1 of Chlorella in the controls. The protective role of algae in reducing the effect of salt stress was more evident in B. calyciflorus than B. patulus.La salinidad es una variable importante que tiene influencia sobre la densidad y la diversidad de los rotíferos. Los estudios de rotíferos sobre tolerancia a la sal que se tienen hasta ahora se han concentrado en especies eurihalinas, sin embargo, hay muy poca información sobre taxas no eurihalinos. En el presente trabajo, se evaluaron los efectos combinados de las concentraciones de Chlorella vulgaris y cloruro de sodio sobre el crecimiento

  2. Collective dynamics of populations of weakly correlated filaments of incoherent white light

    International Nuclear Information System (INIS)

    Guo, Jinxin; Sheridan, John T; Saravanamuttu, Kalaichelvi

    2013-01-01

    We examined the dynamics of two populations of self-trapped filaments of spatially and temporally incoherent white light. The populations consisted of (i) independent filaments generated through self-trapping of incandescent speckles, and (ii) co-dependent filaments created through modulation instability of a broad incandescent beam. Both filament populations were positionally stable in conditions where individual pairs of self-trapped beams interact strongly. Both also acquired significantly broad intensity distributions, which were independent of their parent optical fields; a small but persistent number of high-intensity filaments was identified in both cases. These studies provide accessible routes to weakly correlated ensembles, insight into their collective behaviour such as self-stabilization and self-selected intensity distributions, and reveal intriguing similarities between the dynamics of two populations of different origins. (paper)

  3. Application of System Dynamics Methodology in Population Analysis

    Directory of Open Access Journals (Sweden)

    August Turina

    2009-09-01

    Full Text Available The goal of this work is to present the application of system dynamics and system thinking, as well as the advantages and possible defects of this analytic approach, in order to improve the analysis of complex systems such as population and, thereby, to monitor more effectively the underlying causes of migrations. This methodology has long been present in interdisciplinary scientific circles, but its scientific contribution has not been sufficiently applied in analysis practice in Croatia. Namely, the major part of system analysis is focused on detailed complexity rather than on dynamic complexity. Generally, the science of complexity deals with emergence, innovation, learning and adaptation. Complexity is viewed according to the number of system components, or through a number of combinations that must be continually analyzed in order to understand and consequently provide adequate decisions. Simulations containing thousands of variables and complex arrays of details distract overall attention from the basic cause patterns and key inter-relations emerging and prevailing within an analyzed population. Systems thinking offers a holistic and integral perspective for observation of the world.

  4. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    Science.gov (United States)

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  5. Chaos and order in stateless societies: Intercommunity exchange as a factor impacting the population dynamical patterns

    International Nuclear Information System (INIS)

    Medvinsky, Alexander B.; Rusakov, Alexey V.

    2011-01-01

    Highlights: → We model community dynamics in stateless societies. → Intercommunity barter is shown to be a factor impacting the societies dynamics. → Increase in the human population growth rate can lead to appearance of chaos. → Secular and millennial cycles are found to arise as a result of the barter. - Abstract: The once abstract notions of dynamical chaos now appear naturally in various systems [Kaplan D, Glass L. Understanding nonlinear dynamics. New York: Springer; 1995]. As a result, future trajectories of the systems may be difficult to predict. In this paper, we demonstrate the appearance of chaotic dynamics in model human communities, which consist of producers of agricultural product and producers of agricultural equipment. In the case of a solitary community, the horizon of predictability of the human population dynamics is shown to be dependent on both intrinsic instability of the dynamics and the chaotic attractor sizes. Since a separate community is usually a part of a larger commonality, we study the dynamics of social systems consisting of two interacting communities. We show that intercommunity barter can lead to stabilization of the dynamics in one of the communities, which implies persistence of stable equilibrium under changes of the maximum value of the human population growth rate. However, in the neighboring community, the equilibrium turns into a stable limit cycle as the maximum value of the human population growth rate increases. Following an increase in the maximum value of the human population growth rate leads to period-doubling bifurcations resulting in chaotic dynamics. The horizon of predictability of the chaotic oscillations is found to be limited by 5 years. We demonstrate that the intercommunity interaction can lead to the appearance of long-period harmonics in the chaotic time series. The period of the harmonics is of order 100 and 1000 years. Hence the long-period changes in the population size may be considered as an

  6. Chaos and order in stateless societies: Intercommunity exchange as a factor impacting the population dynamical patterns

    Energy Technology Data Exchange (ETDEWEB)

    Medvinsky, Alexander B., E-mail: medvinsky@iteb.ru [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region (Russian Federation); Rusakov, Alexey V. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region (Russian Federation)

    2011-06-15

    Highlights: > We model community dynamics in stateless societies. > Intercommunity barter is shown to be a factor impacting the societies dynamics. > Increase in the human population growth rate can lead to appearance of chaos. > Secular and millennial cycles are found to arise as a result of the barter. - Abstract: The once abstract notions of dynamical chaos now appear naturally in various systems [Kaplan D, Glass L. Understanding nonlinear dynamics. New York: Springer; 1995]. As a result, future trajectories of the systems may be difficult to predict. In this paper, we demonstrate the appearance of chaotic dynamics in model human communities, which consist of producers of agricultural product and producers of agricultural equipment. In the case of a solitary community, the horizon of predictability of the human population dynamics is shown to be dependent on both intrinsic instability of the dynamics and the chaotic attractor sizes. Since a separate community is usually a part of a larger commonality, we study the dynamics of social systems consisting of two interacting communities. We show that intercommunity barter can lead to stabilization of the dynamics in one of the communities, which implies persistence of stable equilibrium under changes of the maximum value of the human population growth rate. However, in the neighboring community, the equilibrium turns into a stable limit cycle as the maximum value of the human population growth rate increases. Following an increase in the maximum value of the human population growth rate leads to period-doubling bifurcations resulting in chaotic dynamics. The horizon of predictability of the chaotic oscillations is found to be limited by 5 years. We demonstrate that the intercommunity interaction can lead to the appearance of long-period harmonics in the chaotic time series. The period of the harmonics is of order 100 and 1000 years. Hence the long-period changes in the population size may be considered as an

  7. Water Quality and Algal Data for the North Umpqua River Basin, Oregon, 2005

    Science.gov (United States)

    Tanner, Dwight Q.; Arnsberg, Andrew J.; Anderson, Chauncey W.; Carpenter, Kurt D.

    2006-01-01

    The upper North Umpqua River Basin has experienced a variety of water-quality problems since at least the early 1990's. Several reaches of the North Umpqua River are listed as water-quality limited under section 303(d) of the Clean Water Act. Diamond Lake, a eutrophic lake that is an important source of water and nutrients to the upper North Umpqua River, is also listed as a water-quality limited waterbody (pH, nuisance algae). A draft Total Maximum Daily Load (TMDL) was proposed for various parameters and is expected to be adopted in full in 2006. Diamond Lake has supported potentially toxic blue-green algae blooms since 2001 that have resulted in closures to recreational water contact and impacts to the local economy. Increased populations of the invasive tui chub fish are reportedly responsible, because they feed on zooplankton that would otherwise control the algal blooms. The Final Environmental Impact Statement (FEIS) for the Diamond Lake Restoration Project advocates reduced fish biomass in Diamond Lake in 2006 as the preferred alternative. A restoration project scheduled to reduce fish biomass for the lake includes a significant water-level drawdown that began in January 2006. After the drawdown of Diamond Lake, the fish toxicant rotenone was applied to eradicate the tui chub. The lake will be refilled and restocked with game fish in 2007. Winter exports of nutrients from Diamond Lake during the restoration project could affect the summer trophic status of the North Umpqua River if retention and recycling in Lemolo Lake are significant. The FEIS includes comprehensive monitoring to assess the water quality of the restored Diamond Lake and the effects of that restoration downstream. One component of the monitoring is the collection of baseline data, in order to observe changes in the river's water quality and algal conditions resulting from the restoration of Diamond Lake. During July 2005, the USGS, in cooperation with Douglas County, performed a synoptic

  8. Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics

    KAUST Repository

    Bressloff, Paul C.

    2010-11-03

    We analyze a stochastic model of neuronal population dynamics with intrinsic noise. In the thermodynamic limit N→∞, where N determines the size of each population, the dynamics is described by deterministic Wilson-Cowan equations. On the other hand, for finite N the dynamics is described by a master equation that determines the probability of spiking activity within each population. We first consider a single excitatory population that exhibits bistability in the deterministic limit. The steady-state probability distribution of the stochastic network has maxima at points corresponding to the stable fixed points of the deterministic network; the relative weighting of the two maxima depends on the system size. For large but finite N, we calculate the exponentially small rate of noise-induced transitions between the resulting metastable states using a Wentzel-Kramers- Brillouin (WKB) approximation and matched asymptotic expansions. We then consider a two-population excitatory or inhibitory network that supports limit cycle oscillations. Using a diffusion approximation, we reduce the dynamics to a neural Langevin equation, and show how the intrinsic noise amplifies subthreshold oscillations (quasicycles). © 2010 The American Physical Society.

  9. Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-08-17

    Dead algal biomass is a natural material that serves as a basis for developing a new family of sorbent materials potentially suitable for many industrial applications. In this work an algal industrial waste from agar extraction process, algae Gelidium and a composite material obtained by immobilization of the algal waste with polyacrylonitrile (PAN) were physical characterized and used as biosorbents for dyes removal using methylene blue as model. The apparent and real densities and the porosity of biosorbents particles were determined by mercury porosimetry and helium picnometry. The methylene blue adsorption in the liquid phase was the method chosen to calculate the specific surface area of biosorbent particles as it seems to reproduce better the surface area accessible to metal ions in the biosorption process than the N2 adsorption-desorption dry method. The porous texture of the biosorbents particles was also studied. Equilibrium isotherms are well described by the Langmuir equation, giving maximum uptake capacities of 171, 104 and 74 mg g(-1), respectively for algae, algal waste and composite material. Kinetic experiments at different initial methylene blue concentrations were performed to evaluate the equilibrium time and the importance of the driving force to overcome mass transfer resistances. The pseudo-first-order and pseudo-second-order kinetic models adequately describe the kinetic data. The biosorbents used in this work proved to be promising materials for removing methylene blue from aqueous solutions.

  10. Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus

    Science.gov (United States)

    Tebbett, Sterling B.; Goatley, Christopher H. R.; Bellwood, David R.

    2017-09-01

    The lined bristletooth, Ctenochaetus striatus, and the brown surgeonfish, Acanthurus nigrofuscus, are among the most abundant surgeonfishes on Indo-Pacific coral reefs. Yet, the functional role of these species has been the focus of an ongoing debate lasting at least six decades. Specifically, to what extent are C. striatus herbivorous like the visually similar A. nigrofuscus? To address this question, we used natural feeding surfaces, covered with late successional stage reef-grown algal turfs, to examine turf algal removal by the two species. Surfaces exposed to C. striatus in laboratory experiments exhibited no significant reductions in turf length or area covered by turfing algae. In marked contrast, A. nigrofuscus reduced turf length by 51% and area covered by turfing algae by 15% in 1 h. The gut contents of specimens from the reef revealed that A. nigrofuscus predominantly ingests algae (the dominant item in 79.6-94.7% of gut content quadrats), while C. striatus ingests detritus and sediments (dominant in 99.6-100% of quadrats). Therefore, C. striatus ingests detritus and sediment, leaving mature algal turfs relatively intact, while A. nigrofuscus directly removes and ingests turf algae. The function of C. striatus differs from cropping herbivorous surgeonfishes such as A. nigrofuscus. On coral reefs, C. striatus brush detrital aggregates from algal turfs, removing microorganisms, organic detritus and inorganic sediment. Confusion over the functional role of C. striatus may stem from an inability to fit it into a single functional category.

  11. Population dynamics in the high Arctic: Climate variations in time and space

    DEFF Research Database (Denmark)

    Hendrichsen, Ditte Katrine

    Climatic factors profoundly influence the population dynamics, species interactions and demography of Arctic species. Analyses of the spatio-temporal dynamics within and across species are therefore necessary to understand and predict the responses of Arctic ecosystems to climatic variability...

  12. Seasonal population dynamics of Brachyiulus jawlowskii (Diplopoda, Julidae in the Dnieper river arena

    Directory of Open Access Journals (Sweden)

    N. G. Gudym

    2016-06-01

    Full Text Available We have researched the population dynamics of Brachyiulus jawlowskii Lohmander, 1928 in the arena of the Dnepr river (within the "Dnieper-Orilsky” Nature Reserve and also present a full picture of the habitat distribution of Julidae within the researched area. The tested models were basic types of arena biogeocenosis: sand steppe, black maple forests, artificial pine plantations, deciduous forest, meadow and swamp. Variation in population density of B. jawlowskii is determined by biotopical features. The swamp and meadow habitats can be characterized by the highest level of population dynamics. B. jawlowskii plays the greatest role in the herpetobiont grouping in swamp and oak forest habitats (6.7% and 4.6% respectively. In other types of habitat this species composes 0.1–3.5% of the total abundance of this group. The highest abundance dynamic was reached by the Julidae cenopopulations which inhabit the swamp, oak forest and meadow habitats. B. jawlowskii occupies a relatively significant share in the herpetobiont communities of these habitats. Thus, the indicators of absolute number of this species and its relative participation in the herpertobiont grouping indicate the preference of this species for marsh, oak forest and meadow habitats. These habitats can be characterized by an excessive or moderate level of edaphotopic humidification. The ecosystem of the steppe zone of Ukraine is subject to significant human impact. In nature reserves, this effect is minimized, which permits research to be conducted on regimes of natural population dynamics. We established that B. jawlowskii inhabits all habitats investigated within the arena zone of the Dnepr river. This indicates that this is an environmentally flexible Julidae species. The population dynamics of B. jawlowskii can be characterized by three distinct periods: spring-summer, summer and autumn. Each of these periods is characterized by a distinct population dynamic, but throughout the

  13. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    Science.gov (United States)

    Sundareshwar, P. V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S. A.; Sandvik, C.; Trennepohl, A.

    2011-05-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large “blooms” in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers.

  14. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida; Le Roux, Julien; Croue, Jean-Philippe

    2015-01-01

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  15. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida

    2015-08-31

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  16. Algal sludge from Taihu Lake can be utilized to create novel PGPR-containing bio-organic fertilizers.

    Science.gov (United States)

    Zhang, Miao; Li, Rong; Cao, Liangliang; Shi, Juanjuan; Liu, Hongjun; Huang, Yan; Shen, Qirong

    2014-01-01

    Large amounts of refloated algal sludge from Taihu Lake result in secondary environmental pollution due to annual refloatation. This study investigated the possibility to produce bio-organic fertilizer (BIO) using algal sludge as a solid-state fermentation (SSF) medium. Results showed that addition of algal sludge contributed to efficient SFF by a plant growth-promoting rhizobacteria (PGPR) strain SQR9 and improved the nutrient contents in the novel BIO. The optimum water content and initial inoculation size were 45% and 5%, respectively. After 6 days of SSF, the biomass of strain SQR9 was increased to a cell density of more than 5 × 10(7) CFU g(-1). Microcystins were rapidly degraded, and a high germination index value was observed. Plant growth experiments showed that the produced BIO efficiently promoted plant growth. Additional testing showed that the novel SSF process was also suitable for other PGPR strains. This study provides a novel way of high-value utilization of algal sludge from Taihu Lake by producing low-cost but high-quality BIOs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Demonstration of Parallel Algal Processing: Production of Renewable Diesel Blendstock and a High-Value Chemical Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Knoshaug, Eric P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mohagheghi, Ali [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagle, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stickel, Jonathan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dong, Tao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kruger, Jacob S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hyman, Deborah A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Earl D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pienkos, Philip T [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    Co-production of high-value chemicals such as succinic acid from algal sugars is a promising route to enabling conversion of algal lipids to a renewable diesel blendstock. Biomass from the green alga Scenedesmus acutus was acid pretreated and the resulting slurry separated into its solid and liquor components using charged polyamide induced flocculation and vacuum filtration. Over the course of a subsequent 756 hours continuous fermentation of the algal liquor with Actinobacillus succinogenes 130Z, we achieved maximum productivity, process conversion yield, and titer of 1.1 g L-1 h-1, 0.7 g g-1 total sugars, and 30.5 g L-1 respectively. Succinic acid was recovered from fermentation media with a yield of 60% at 98.4% purity while lipids were recovered from the flocculated cake at 83% yield with subsequent conversion through deoxygenation and hydroisomerization to a renewable diesel blendstock. This work is a first-of-its-kind demonstration of a novel integrated conversion process for algal biomass to produce fuel and chemical products of sufficient quality to be blend-ready feedstocks for further processing.

  18. Dynamic analysis of a parasite population model

    Science.gov (United States)

    Sibona, G. J.; Condat, C. A.

    2002-03-01

    We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.

  19. The effects of particles and dissolved materials on in situ algal pigment fluorescence sensors

    Science.gov (United States)

    Saraceno, J.; Bergamaschi, B. A.; Downing, B. D.

    2013-12-01

    Field deployable sensors that measure algal pigment fluorescence (APF), such as chlorophyll-a (excitation/emission ca. 470/685 nm), and phycocyanin (ca. 590/685 nm), have been used to estimate algal biomass and study food-web dynamics in coastal and oceanic waters for many years. There is also widespread use of these sensors in real time river-observing networks. However, freshwater systems often possess elevated levels of suspended solids and dissolved organic material that can interfere with optical measurements. Data collected under conditions that result in interferences may not be comparable across time and between sites unless the data are appropriately corrected. Using standard reference materials and a surrogate for algal fluorescence (Rhodamine WT), lab experiments were conducted on several commercially available sensors to quantify sensitivity to interferences over a range of naturally occurring surface water conditions (DOC : 0-30 mg/L and turbidity: 0- 1000 FNU ). Chlorophyll-a sensors exhibited a slight but significant positive bias (2 mg/L, with signal quenching reaching a maximum of 15% at 30 mg/L DOC. All phycocyanin sensors displayed a positive non-linear bias with DOC concentration, reaching a maximum of 40% difference at 30 mg/L DOC. Both chlorophyll-a and phycocyanin sensors showed a positive linear relationship with suspended solids concentration (as indicated by turbidity).The effect of suspended solids on APF output can be explained by the detection of scattered excitation light (leaking through emission filters). Similar qualitative effects were observed for the sensors tested, though the magnitude of the effect varied among sensor type. This indicates that differences in sensor designs such as geometry, wavelength and signal post processing techniques is related to its sensitivity to interferences. Although sensors exhibited significant cross sensitivity to interferences, our results indicate that simple corrections can largely remove

  20. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Pinheiro, José P S; Domingos, Rute F; Boaventura, Rui A R

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  1. Copper removal by algal biomass: Biosorbents characterization and equilibrium modelling

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Botelho, Cidalia M.S.; Pinheiro, Jose P.S.; Domingos, Rute F.; Boaventura, Rui A.R.

    2009-01-01

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g -1 ) and proton binding parameters (pK ' H =5.0,5.3and4.4;m H = 0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK ' M (3.2; 3.6 and 3.3), n M (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions

  2. Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process.

    Science.gov (United States)

    Wirth, Roland; Lakatos, Gergely; Maróti, Gergely; Bagi, Zoltán; Minárovics, János; Nagy, Katalin; Kondorosi, Éva; Rákhely, Gábor; Kovács, Kornél L

    2015-01-01

    The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the 'food or fuel' dispute. Microalgae offer diverse utilization routes. A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition. Through elimination of cost- and labor-demanding sulfur deprivation, sustainable

  3. Noise-induced effects in population dynamics

    Science.gov (United States)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  4. Effects of Peanut-Tobacco Rotations on Population Dynamics of Meloidogyne arenaria in Mixed Race Populations

    OpenAIRE

    Hirunsalee, Anan; Barker, K. R.; Beute, M. K.

    1995-01-01

    A 3-year microplot study was initiated to characterize the population dynamics, reproduction potential, and survivorship of single or mixed populations of Meloidogyne arenaria race 1 (Ma1) and race 2 (Ma2), as affected by crop rotations of peanut 'Florigiant' and M. incognita races 1 and 3-resistant 'McNair 373' and susceptible 'Coker 371-Gold' tobacco. Infection, reproduction, and root damage by Ma2 on peanut and by Ma1 on resistant tobacco were limited in the first year. Infection, reproduc...

  5. Printing of cotton with eco-friendly, red algal pigment from Gracilaria sp.

    Science.gov (United States)

    Moldovan, S.; Ferrandiz, M.; Franco, E.; Mira, E.; Capablanca, L.; Bonet, Mª

    2017-10-01

    Natural dyes represent an emerging trend in the textile industry and eco-fashion due to the increasing awareness of the sustainability concept, which must be applied to the surrounding environment. In the light of the stated problem, the search for alternative sources of dyes, revealed the new, eco-friendly, biodegradable, non-carcinogenic and sustainable colorant matter, the algal biomass. In the present work, the suitability and viability of printing cotton fabrics with pigments obtained from the red macroalgae Gracilaria sp., has been investigated. For this aim, phycoerythrin, the red pigment, was extracted from fresh algal biomass, and used in a laboratory pigment-printing process, employing a natural and synthetic printing paste, for process efficiency comparison. The color values and the rubbing and laundering fastness of the printed substrates were evaluated. Results show that a light pink color can be obtained when applying both tested printing processes, and in terms of color fastness, both printing pastes show good behavior. In conclusion, the algal pigments show a high printing capacity on cotton substrates, either when employing the synthetic conventional paste and; moreover, when applying the more sustainable and eco-friendly natural paste.

  6. Endogenous Population Dynamics and Economic Growth with Free Trade between Countries

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2016-05-01

    Full Text Available This paper builds a model to deal with dynamic interdependence between different countries' birth rates, mortality rates, populations, wealth accumulation, and time distributions between working, leisure and children caring. The model shows the role of human capital, technological and preference changes on national differences in birth rates, mortality rates, time distributions, population change, and wealth accumulation. The economic mechanisms of wealth accumulation, production and trade are based the Solow growth model and the Oniki-Uzawa trade model. We use the utility function proposed by Zhang to describe the behavior of households. We model national and gender differences in human capital, propensity to have children, propensity to use leisure time, and children caring efficiency. We describe the dynamics of global economic growth, trade patterns, national differences in wealth, income, birth rates, mortality rates, and populations with differential equations. We simulate the model to show the motion of the system and identify the existence of equilibrium point. We also examine the effects of changes in the propensity to have children, the propensity to save, woman's propensity to use leisure, woman's human capital, and woman's emotional involvement in children caring on the dynamics of the global and national economies.

  7. MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates.

    Science.gov (United States)

    Van Wychen, Stefanie; Long, William; Black, Stuart K; Laurens, Lieve M L

    2017-02-01

    A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. The MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 μg mL -1 without interference from other algae acidic hydrolyzate components. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Expanded algal cultivation can reverse key planetary boundary transgressions

    Directory of Open Access Journals (Sweden)

    Dean Calahan

    2018-02-01

    Full Text Available Humanity is degrading multiple ecosystem services, potentially irreversibly. Two of the most important human impacts are excess agricultural nutrient loading in our fresh and estuarine waters and excess carbon dioxide in our oceans and atmosphere. Large-scale global intervention is required to slow, halt, and eventually reverse these stresses. Cultivating attached polyculture algae within controlled open-field photobioreactors is a practical technique for exploiting the ubiquity and high primary productivity of algae to capture and recycle the pollutants driving humanity into unsafe regimes of biogeochemical cycling, ocean acidification, and global warming. Expanded globally and appropriately distributed, algal cultivation is capable of removing excess nutrients from global environments, while additionally sequestering appreciable excess carbon. While obviously a major capital and operational investment, such a project is comparable in magnitude to the construction and maintenance of the global road transportation network. Beyond direct amelioration of critical threats, expanded algal cultivation would produce a major new commodity flow of biomass, potentially useful either as a valuable organic commodity itself, or used to reduce the scale of the problem by improving soils, slowing or reversing the loss of arable land. A 100 year project to expand algal cultivation to completely recycle excess global agricultural N and P would, when fully operational, require gross global expenses no greater than $2.3 × 1012 yr−1, (3.0% of the 2016 global domestic product and less than 1.9 × 107 ha (4.7 × 107 ac, 0.38% of the land area used globally to grow food. The biomass generated embodies renewable energy equivalent to 2.8% of global primary energy production.

  9. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    Science.gov (United States)

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  10. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  11. Green genes: bioinformatics and systems-biology innovations drive algal biotechnology

    NARCIS (Netherlands)

    Reijnders, M.J.M.F.; Heck, van R.G.A.; Lam, C.M.C.; Scaife, M.A.; Martins dos Santos, V.A.P.; Smith, A.G.; Schaap, P.J.

    2014-01-01

    Many species of microalgae produce hydrocarbons, polysaccharides, and other valuable products in significant amounts. However, large-scale production of algal products is not yet competitive against non-renewable alternatives from fossil fuel. Metabolic engineering approaches will help to improve

  12. In situ Transesterification of Microalgal Oil to Produce Algal Biodiesel

    Science.gov (United States)

    2012-06-01

    This research was to process whole microalgae cells for biodiesel production without first extracting lipids. The ultimate : goal is develop a novel process for algal biodiesel production directly from microalgae cells in a single step, i.e., in situ...

  13. Border Collision Bifurcations in a Generalized Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Lilia M. Ladino

    2016-01-01

    Full Text Available We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested.

  14. Dynamic assessments of population exposure to urban greenspace using multi-source big data.

    Science.gov (United States)

    Song, Yimeng; Huang, Bo; Cai, Jixuan; Chen, Bin

    2018-09-01

    A growing body of evidence has proven that urban greenspace is beneficial to improve people's physical and mental health. However, knowledge of population exposure to urban greenspace across different spatiotemporal scales remains unclear. Moreover, the majority of existing environmental assessments are unable to quantify how residents enjoy their ambient greenspace during their daily life. To deal with this challenge, we proposed a dynamic method to assess urban greenspace exposure with the integration of mobile-phone locating-request (MPL) data and high-spatial-resolution remote sensing images. This method was further applied to 30 major cities in China by assessing cities' dynamic greenspace exposure levels based on residents' surrounding areas with different buffer scales (0.5km, 1km, and 1.5km). Results showed that regarding residents' 0.5-km surrounding environment, Wenzhou and Hangzhou were found to be with the greenest exposure experience, whereas Zhengzhou and Tangshan were the least ones. The obvious diurnal and daily variations of population exposure to their surrounding greenspace were also identified to be highly correlated with the distribution pattern of urban greenspace and the dynamics of human mobility. Compared with two common measurements of urban greenspace (green coverage rate and green area per capita), the developed method integrated the dynamics of population distribution and geographic locations of urban greenspace into the exposure assessment, thereby presenting a more reasonable way to assess population exposure to urban greenspace. Additionally, this dynamic framework could hold potential utilities in supporting urban planning studies and environmental health studies and advancing our understanding of the magnitude of population exposure to greenspace at different spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Changes in Population Dynamics in Mutualistic versus Pathogenic Viruses

    Directory of Open Access Journals (Sweden)

    Marilyn J. Roossinck

    2011-01-01

    Full Text Available Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics.

  16. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci.

    Directory of Open Access Journals (Sweden)

    Huipeng Pan

    Full Text Available While every individual of Bemisia tabaci (Hemiptera: Aleyrodidae harbors the primary symbiont (P-symbiont Portiera, the infection frequencies of the six secondary symbionts (S-symbionts including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea vary greatly among different populations. To characterize the factors influencing the infection dynamics of the six S-symbionts in B. tabaci, gene-specific PCR were conducted to screen for the presence of the P-symbiont Portiera and the six S-symbionts in 61 (17 B and 44 Q biotypes field populations collected from different plant species and locations in China. All individuals of the 61 populations hosted the P-symbiont Portiera, but none of them harbored Arsenophonus and Fritschea. The presence and infection rates of Hamiltonella, Cardinium, Rickettsia, Wolbachia and their co-infections Rickettsia + Hamiltonella (RH, Rickettsia + Cardinium (RC, Hamiltonella + Cardinium (HC and Rickettsia + Hamiltonella + Cardinium (RHC varied significantly among the 61 field populations; and the observed variations can be explained by biotypes, sexes, host plants and geographical locations of these field populations. Taken together, at least three factors including biotype, host plant and geographical location affect the infection dynamics of S-symbionts in B. tabaci.

  17. Structured population dynamics: continuous size and discontinuous stage structures.

    Science.gov (United States)

    Buffoni, Giuseppe; Pasquali, Sara

    2007-04-01

    A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.

  18. Life history and population dynamics of an estuarine amphipod, Eriopisa chilkensis Chilton (Gammaridae)

    Digital Repository Service at National Institute of Oceanography (India)

    Aravind, N.P.; Sheeba, P.; Nair, K.K.C.; Achuthankutty, C.T.

    Life history and Population Dynamics of an Estuarine Amphipod –Eriopisa chilkensis Chilton (Gammaridae) Nisha. P. Aravind, P. Sheeba, K.K.C. Nair and C.T.Achuthankutty* National Institute of Oceanography, Regional Centre, Cochin 682018, India... of laboratory data to the field suggests that E. chilkensis in Cochin estuary has a multivoltine life cycle. Key words: - Eriopisa chilkensis, Amphipoda, life cycle, population dynamics, Cochin estuary, India 2 1. Introduction Life-history traits of 214 amphipod...

  19. Productivity and species composition of algal mat communities exposed to a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.

    1981-01-01

    Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs

  20. Effects of Peanut-Tobacco Rotations on Population Dynamics of Meloidogyne arenaria in Mixed Race Populations.

    Science.gov (United States)

    Hirunsalee, A; Barker, K R; Beute, M K

    1995-06-01

    A 3-year microplot study was initiated to characterize the population dynamics, reproduction potential, and survivorship of single or mixed populations of Meloidogyne arenaria race 1 (Ma1) and race 2 (Ma2), as affected by crop rotations of peanut 'Florigiant' and M. incognita races 1 and 3-resistant 'McNair 373' and susceptible 'Coker 371-Gold' tobacco. Infection, reproduction, and root damage by Ma2 on peanut and by Ma1 on resistant tobacco were limited in the first year. Infection, reproduction, and root-damage potentials on susceptible tobacco were similar for Ma1 and Ma2. In the mixed (1:1) population, Ma1 was dominant on peanut and Ma2 was dominant on both tobacco cultivars. Crop rotation affected the population dynamics of different nematode races. For years 2 and 3, the low numbers of Ma1 and Ma2 from a previous-year poor host increased rapidly on suitable hosts. Ma1 had greater reproduction factors ([RF] = population density at harvest/population density at preplandng) than did Ma2 and Ma1 + Ma2 in second-year peanut plots following first-year resistant tobacco, and in third-year peanut plots following second-year tobacco. In mixed infestations, Ma1 predominated over Ma2 in previous-year peanut plots, whereas Ma2 predominated over Ma1 in previous-year tobacco plots. Moderate damage on resistant tobacco was induced by Ma1 in the second year. In the third year, moderate damage on peanut was associated with 'Ma2' from previous-year peanut plots. The resistant tobacco supported sufficient reproduction of Ma1 over 2 years to effect moderate damage and yield suppression to peanut in year 3.

  1. Algal testing of titanium dioxide nanoparticles - Testing considerations, inhibitory effects and modification of cadmium bioavailability

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; von der Kammer, F.; Hofmann, T.

    2010-01-01

    The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300 nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types...... surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2 mg/LTiO(2). The presence of TiO(2) in algal tests......(II) species, indicating a possible carrier effect, or combined toxic effect of TiO(2) nanoparticles and cadmium. These results emphasize the importance of systematic studies of nanoecotoxicological effects of different sizes of nanoparticles and underline the fact that, in addition to particle toxicity...

  2. Microencapsulation of Algal Oil Using Spray Drying Technology

    Directory of Open Access Journals (Sweden)

    Xueshan Pan

    2018-01-01

    Full Text Available This work aims at developing a process of microencapsulation of algal oil containing ≥40 % docosahexaenoic acid (DHA using spray drying technology. Purity Gum® 2000 and Capsul®, both obtained from waxy corn starch, were chosen as the encapsulation materials. The effects of emulsification conditions on the droplet size, stability, viscosity and surface tension, and the effects of spraying conditions on the particle size, moisture content and surface oil content were investigated successively. The morphology of emulsion droplets and the microcapsules was observed by optical microscope and scanning electron micro scopy. The results showed that the produced spherical microcapsules were smooth and free of pores, cracks, and surface indentation when shear velocity was 8.63 m/s in the first step of emulsification, homogenization pressure was 1.75·10˄8 Pa and number of passes through homogenization unit was six for fine emulsification, rotational speed of spray disk was 400 s-1, and air inlet temperature was 170 °C. Therefore, it was concluded that the emulsification and encapsulation of algal oil containing DHA with above process was feasible.

  3. Relationships between primary production and irradiance in coral reef algal communities

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Shallow water algal turf communities are the major primary producers on coral reefs. High rates of primary production are maintained despite extremely high light intensities and exposure to ultraviolet wavelengths. The relationships between the light intensity and primary production in these assemblages are typical of algae adapted to a high light environment [low α (initial slope), high I/sub k/ (saturating light intensity), and high I/sub c/ (compensation point light intensity)]. Seasonal variations in algal standing crop due to herbivory and daylength result in some characteristic photoadaptive changes in α I/sub k/, and I/sub c/ and changes in Pnet/sub max/ rates (maximum net photosynthetic rate achieved at light saturation) on both a chlorophyll α and an areal basis. Exposure to UV wavelength results in significantly higher respiration rates but no changes in α, Pnet/sub max/, or I/sub k/, when compared with these parameters for the same algal communities incubated at the same light intensities without UV wavelengths. The apparent lack of photoinhibition in these algae allows calculation of the daily integrated production from the P vs. I parameters. This integrated production is highest in July (3.1 +/- 0.2 g C m -2 d -1 ) and is reduced by 30% from this maximum in December (2.1 +/- 0.1 g C m -2 d -1 )

  4. seasonal population dynamics of rodents of mount chilalo, arsi ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A study on seasonal population dynamics of rodents was carried out on Mount. Chilalo from .... vegetation growth, availability of food and water, and ... vegetation (3,300–4,200 masl) (Alemayehu. Mengistu, 1975; APEDO and ABRDP, 2004). The mountain is one of the Afrotropical biodiversity hotspots areas.

  5. Population Dynamics of Biota on the Roots of Azolla microphylla Kaulfuss

    Directory of Open Access Journals (Sweden)

    NITA ETIKAWATI

    2000-01-01

    Full Text Available Azolla was a special fern that their associations with Anabaena azollae able to fix free nitrogen from air, to produce protein. Although by the ages, biota diversity those habits on the roots of Azolla increased and effected to protein concentration. The research was to find out population dynamics of biota on the roots of Azolla microphylla Kaulfuss and the growth peak. This study used Completely Randomized Design with 10 kinds of biota, i.e. bacteria, Fungi, Actinomycetes, Protozoa, Alga, Crustacean, Rotifers, Coelenterate, Insect and Molluscs, and it was used 3 replications. Research was conducted within 4 weeks and the populations of biota were observed every week. Data were statistically analyzed using Analysis Variant and Duncan’s Multiple Range Test. The population dynamics of biota on the roots of Azolla microphylla Kaulfuss were influenced on its quantity and composition, and the growth peak is done in 2nd week.

  6. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    NARCIS (Netherlands)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡

  7. Population dynamics of Ascaris suum in trickle-infected pigs.

    Science.gov (United States)

    Nejsum, Peter; Thamsborg, Stig M; Petersen, Heidi H; Kringel, Helene; Fredholm, Merete; Roepstorff, Allan

    2009-10-01

    The population dynamics of Ascaris suum was studied by long-term exposure of pigs to infective eggs. The pigs were experimentally inoculated with 25 A. suum eggs/kg/day, and 7, 8, and 8 pigs were necropsied at weeks 4, 8, and 14 postinoculation (PI), respectively. Despite the fact that the pigs were continuously reinfected, dramatic reductions in numbers of liver lesions (white spots) and migrating lung larvae were observed as a function of time. However, even at the end of the study, a few larvae were able to complete migration, but these larvae seemed unable to mature in the small intestine. Thus, the adult worm population seemed to consist of worms from the first part of the exposure period. The noticeable decrease in number of white spots suggests that the level of exposure is not reflected in the number of white spots in the late phase of a continuous infection. The serum levels of A. suum L3-specific IgG1 and IgA were significantly elevated by week 4 PI, after which the antibody levels declined. The population dynamics and parasite regulating mechanisms are discussed for A. suum in pigs as well as for the closely related species A. lumbricoides in humans.

  8. Characterization of unsaturated fatty acid sustained-release microspheres for long-term algal inhibition.

    Science.gov (United States)

    Ni, Lixiao; Jie, Xiaoting; Wang, Peifang; Li, Shiyin; Hu, Shuzhen; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-02-01

    The unsaturated fatty acid (linoleic acid) sustained-release microspheres were prepared with linoleic acid (LA) using alginate-chitosan microcapsule technology. These LA sustained-release microspheres had a high encapsulation efficiency (up to 62%) tested by high performance liquid chromatography with a photo diode array. The dry microspheres were characterized by a scanning electron microscope, X-ray diffraction measurement, dynamic thermogravimetric analysis and Fourier transform infrared spectral analysis. The results of characterization showed that the microspheres had good thermal stability (decomposition temperature of 236°C), stable and temperature independent release properties (release time of more than 40 d). Compared to direct dosing of LA, LA sustained-released microspheres could inhibit Microcystis aeruginosa growth to the non-growth state. The results of this study suggested that the LA sustained-release microspheres may be a potential candidate for algal inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Macroinvertebrate and algal community sample collection methods and data collected at selected sites in the Eagle River watershed, Colorado, 2000-07

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.

    2010-01-01

    State and local agencies are concerned about the effects of increasing urban development and human population growth on water quality and the biological condition of regional streams in the Eagle River watershed. In response to these needs, the U.S. Geological Survey initiated a study in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service. As part of this study, previously collected macroinvertebrate and algal data from the Eagle River watershed were compiled. This report includes macroinvertebrate data collected by the U.S. Geological Survey and(or) the U.S. Department of Agriculture Forest Service from 73 sites from 2000 to 2007 and algal data collected from up to 26 sites between 2000 and 2001 in the Eagle River watershed. Additionally, a brief description of the sample collection methods and data processing procedures are presented.

  10. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    Science.gov (United States)

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  11. Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH contaminated soils

    DEFF Research Database (Denmark)

    Baun, Anders; Justesen, Kasper Bo; Nyholm, Niels

    2002-01-01

    An algal growth inhibition test procedure with soil suspensions is proposed and evaluated for PAH-contaminated soil. The growth rate reduction of the standard freshwater green alga Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum) was used as the toxicity endpoint......, and was quantified by measuring the fluorescence of solvent-extracted algal pigments. No growth rate reduction was detected for soil contents up to 20 g/l testing five non-contaminated Danish soils. Comparative testing with PAH-contaminated soil elutriates and soil suspensions showed that the suspensions had...

  12. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  13. Phase control of light amplification with dynamically irreversible pathways of population transfer in a Λ system

    International Nuclear Information System (INIS)

    Yuan Shi; Wu Jinhui; Gao Jinyue; Pan Chunliu

    2002-01-01

    We use the relative phase of two coherent fields for the control of light amplification with dynamically irreversible pathways of population transfer in a Λ system. The population inversion and gain with dynamically irreversible pathways of population transfer are shown as the relative phase is varied. We support our results by numerical calculation and analytical explanation

  14. Spatial and temporal dynamics of the genetic organization of small mammal populations

    International Nuclear Information System (INIS)

    Smith, M.H.; Manlove, M.N.; Joule, J.

    1978-01-01

    A functional population is a group of organisms and their offspring that contributes to a common gene pool within a certain area and time period. It is also the unit of evolution and should be viewed both in quantitative and qualitative terms. Selection, drift, dispersal, and mutation can alter the composition of populations. Spatial heterogeneity in allele frequencies argues for a conceptual model that has a series of relatively small populations semi-isolated from one another. Because of the relatively high levels of genetic variability characteristic of most mammalian species, significant amounts of gene flow between these spatially subdivided populations must occur when longer time periods are considered. Fluctuations in the genetic structure of populations seem to be important in altering the fitness of the individuals within the populations. The interaction of populations through gene flow is important in changing the levels of intrapopulational genetic variability. Populations can be characterized as existing on a continuum from relatively stable to unstable numbers and by other associated changes in their characteristics. Temporal changes in allele frequency occur in a variety of mammals. Conceptually, a species can be viewed as a series of dynamic populations that vary in numbers and quality in both a spatial and temporal context even over short distances and time periods. Short term changes in the quality of individuals in a population can be important in altering the short term dynamics of a population

  15. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  16. Biofouling in capillary and spiral wound membranes facilitated by marine algal bloom

    DEFF Research Database (Denmark)

    Villacorte, L.O.; Ekowati, Y.; Calix-Ponce, H.N.

    2017-01-01

    blooms. The tendency of AOM from bloom-forming marine algae to adhere to membranes and its ability to enhance biofilm growth were measured using atomic force microscopy, flow cytometry, liquid chromatography and accelerated membrane biofouling experiments. Adhesion force measurements indicate that AOM......Algal-derived organic matter (AOM), particularly transparent exopolymer particles, has been suspected to facilitate biofilm development in membrane systems (e.g., seawater reverse osmosis). This study demonstrates the possible role of AOM on biofouling in membrane systems affected by marine algal...... biodegradable nutrients. The abovementioned findings indicate that AOM facilitates the onset of membrane biofouling primarily as a conditioning platform and to some extent as a nutrient source for biofilm-forming bacteria....

  17. Population dynamics of soil microbes and diversity of Bacillus ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Population dynamics of soil microbes and diversity of ... 25.78, 25.78, 86.26, 24.73, 68.0, 26.8 and 26.8 kDa proteins and equivalent to Cyt, Cry5 and Cry2 toxins ..... Molecular weight (kDa) of protein fractions of the BT isolates.

  18. Population dynamics of the invasive fish, Gambusia affinis , in ...

    African Journals Online (AJOL)

    Repeated-measures ANOVA analyses on the catch per unit effort (CPUE) of G. affinis between sampling events and dams revealed significant differences in population dynamics among dams, although an overall trend of rapid increase followed by plateau in summer, with a rapid decline in winter was seen in most dams.

  19. Individual based model of slug population and spatial dynamics

    NARCIS (Netherlands)

    Choi, Y.H.; Bohan, D.A.; Potting, R.P.J.; Semenov, M.A.; Glen, D.M.

    2006-01-01

    The slug, Deroceras reticulatum, is one of the most important pests of agricultural and horticultural crops in UK and Europe. In this paper, a spatially explicit individual based model (IbM) is developed to study the dynamics of a population of D. reticulatum. The IbM establishes a virtual field

  20. Copper removal by algal biomass: Biosorbents characterization and equilibrium modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Pinheiro, Jose P.S.; Domingos, Rute F. [Centro de Biomedicina Molecular e Estrutural, Department of Chemistry and Biochemistry, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g{sup -1}) and proton binding parameters (pK{sup '}{sub H}=5.0,5.3and4.4;m{sub H} = 0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK{sup '}{sub M} (3.2; 3.6 and 3.3), n{sub M} (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  1. Considering transient population dynamics in the conservation of slow life-history species: An application to the sandhill crane

    Science.gov (United States)

    Gerber, Brian D.; Kendall, William L.

    2016-01-01

    The importance of transient dynamics of structured populations is increasingly recognized in ecology, yet these implications are not largely considered in conservation practices. We investigate transient and long-term population dynamics to demonstrate the process and utility of incorporating transient dynamics into conservation research and to better understand the population management of slow life-history species; these species can be theoretically highly sensitive to short- and long-term transient effects. We are specifically interested in the effects of anthropogenic removal of individuals from populations, such as caused by harvest, poaching, translocation, or incidental take. We use the sandhill crane (Grus canadensis) as an exemplar species; it is long-lived, has low reproduction, late maturity, and multiple populations are subject to sport harvest. We found sandhill cranes to have extremely high potential, but low likelihood for transient dynamics, even when the population is being harvested. The typically low population growth rate of slow life-history species appears to buffer against many perturbations causing large transient effects. Transient dynamics will dominate population trajectories of these species when stage structures are highly biased towards the younger and non-reproducing individuals, a situation that may be rare in established populations of long-lived animals. However, short-term transient population growth can be highly sensitive to vital rates that are relatively insensitive under equilibrium, suggesting that stage structure should be known if perturbation analysis is used to identify effective conservation strategies. For populations of slow life-history species that are not prone to large perturbations to their most productive individuals, population growth may be approximated by equilibrium dynamics.

  2. Turf algal epiphytes metabolically induce local pH increase, with implications for underlying coralline algae under ocean acidification

    DEFF Research Database (Denmark)

    Short, J.A.; Pedersen, Ole; Kendrick, G.A.

    2015-01-01

    The presence of epiphytic turf algae may modify the effects of ocean acidification on coralline algal calcification rates by altering seawater chemistry within the diffusive boundary layer (DBL) above coralline algal crusts. We used microelectrodes to measure the effects of turf algal epiphytes...... on seawater pH and the partial pressure of oxygen (pO2) within the DBL at the surface of Hydrolithoideae coralline algal crusts under ambient (36 Pa) CO2 and an ocean acidification scenario with elevated CO2 (200 Pa). Turf algae significantly increased the mean diel amplitude of pH and pO2, and this effect...... was more pronounced under elevated CO2. We suggest that increases in seawater CO2 under ocean acidification conditions may drive an increase in the abundance of epiphytic turf algae, consequently modifying the chemistry within the DBL. Thus, the effect of epiphytic turf algae on microscale pH is striking...

  3. Exploiting Fast-Variables to Understand Population Dynamics and Evolution

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-11-01

    We describe a continuous-time modelling framework for biological population dynamics that accounts for demographic noise. In the spirit of the methodology used by statistical physicists, transitions between the states of the system are caused by individual events while the dynamics are described in terms of the time-evolution of a probability density function. In general, the application of the diffusion approximation still leaves a description that is quite complex. However, in many biological applications one or more of the processes happen slowly relative to the system's other processes, and the dynamics can be approximated as occurring within a slow low-dimensional subspace. We review these time-scale separation arguments and analyse the more simple stochastic dynamics that result in a number of cases. We stress that it is important to retain the demographic noise derived in this way, and emphasise this point by showing that it can alter the direction of selection compared to the prediction made from an analysis of the corresponding deterministic model.

  4. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    NARCIS (Netherlands)

    Russell, T.L.; Lwetoijera, D.W.; Knols, B.G.J.; Takken, W.; Killeen, G.F.; Ferguson, H.M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in

  5. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    NARCIS (Netherlands)

    Russell, T.L.; Lwetoijera, D.W.; Knols, B.G.J.; Takken, W.; Killeen, G.F.; Ferguson, H.M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low-or high-density insect populations. We assessed whether variation in

  6. Physical processes contributing to harmful algal blooms in Saldanha ...

    African Journals Online (AJOL)

    Since 1994, disruption of harvesting as a result of the presence of harmful algal species has been a regular late-summer phenomenon. Toxic blooms that are ultimately advected into the bay develop on the continental shelf to the north between 32°S and St Helena Bay, a region characterized by favourable conditions for ...

  7. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    Science.gov (United States)

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  8. Investigation of severe UF membrane fouling induced by three marine algal species

    KAUST Repository

    Merle, Tony

    2016-02-06

    Reducing membrane fouling caused by seawater algal bloom is a challenge for regions of the world where most of their freshwater is produced by seawater desalination. This study aims to compare ultrafiltration (UF) fouling potential of three ubiquitous marine algal species cultures (i.e., Skeletonena costatum-SKC, Tetraselmis sp.-TET, and Hymenomonas sp.-HYM) sampled at different phases of growth. Results showed that flux reduction and irreversible fouling were more severe during the decline phase as compared to the exponential phase, for all species. SKC and TET were responsible for substantial irreversible fouling but their impact was significantly lower than HYM. The development of a transparent gel layer surrounding the cell during the HYM growth and accumulating in water is certainly responsible for the more severe observed fouling. Chemical backwash with a standard chlorine solution did not recover any membrane permeability. For TET and HYM, the Hydraulically Irreversible Fouling Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 μm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling, especially for HYM for which the HIFI was reduced by a factor of 82.3.

  9. The removal of uranium from mining waste water using algal/microbial biomass

    International Nuclear Information System (INIS)

    Kalin, Margarete; Wheeler, W.N.; Meinrath, G.

    2004-01-01

    We describe a three step process for the removal of uranium (U) from dilute waste waters. Step one involves the sequestration of U on, in, and around aquatic plants such as algae. Cell wall ligands efficiently remove U(VI) from waste water. Growing algae continuously renew the cellular surface area. Step 2 is the removal of U-algal particulates from the water column to the sediments. Step 3 involves reducing U(VI) to U(IV) and transforming the ions into stable precipitates in the sediments. The algal cells provide organic carbon and other nutrients to heterotrophic microbial consortia to maintain the low E H , within which the U is transformed. Among the microorganisms, algae are of predominant interest for the ecological engineer because of their ability to sequester U and because some algae can live under many extreme environments, often in abundance. Algae grow in a wide spectrum of water qualities, from alkaline environments (Chara, Nitella) to acidic mine drainage waste waters (Mougeotia, Ulothrix). If they could be induced to grow in waste waters, they would provide a simple, long-term means to remove U and other radionuclides from U mining effluents. This paper reviews the literature on algal and microbial adsorption, reduction, and transformation of U in waste streams, wetlands, lakes and oceans

  10. An obligatory bacterial mutualism in a multi-drug environment exhibits strong oscillatory population dynamics

    Science.gov (United States)

    Conwill, Arolyn; Yurtsev, Eugene; Gore, Jeff

    2014-03-01

    A common mechanism of antibiotic resistance in bacteria involves the production of an enzyme that inactivates the antibiotic. By inactivating the antibiotic, resistant cells can protect other cells in the population that would otherwise be sensitive to the drug. In a multidrug environment, an obligatory mutualism arises because populations of different strains rely on each other to breakdown antibiotics in the environment. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics: ampicillin and chloramphenicol. Together the strains are able to grow in antibiotic concentrations that inhibit growth of either one of the strains alone. Although mutualisms are often thought to stabilize population dynamics, we observe strong oscillatory dynamics even when there is long-term coexistence between the two strains. We expect that our results will provide insight into the evolution of antibiotic resistance and, more generally, the evolutionary origin of phenotypic diversity, cooperation, and ecological stability.

  11. Emergence of Algal Blooms: The Effects of Short-Term Variability in Water Quality on Phytoplankton Abundance, Diversity, and Community Composition in a Tidal Estuary

    Directory of Open Access Journals (Sweden)

    Todd A. Egerton

    2014-01-01

    Full Text Available Algal blooms are dynamic phenomena, often attributed to environmental parameters that vary on short timescales (e.g., hours to days. Phytoplankton monitoring programs are largely designed to examine long-term trends and interannual variability. In order to better understand and evaluate the relationships between water quality variables and the genesis of algal blooms, daily samples were collected over a 34 day period in the eutrophic Lafayette River, a tidal tributary within Chesapeake Bay’s estuarine complex, during spring 2006. During this period two distinct algal blooms occurred; the first was a cryptomonad bloom and this was followed by a bloom of the mixotrophic dinoflagellate, Gymnodinium instriatum. Chlorophyll a, nutrient concentrations, and physical and chemical parameters were measured daily along with phytoplankton abundance and community composition. While 65 phytoplankton species from eight major taxonomic groups were identified in samples and total micro- and nano-phytoplankton cell densities ranged from 5.8 × 106 to 7.8 × 107 cells L−1, during blooms, cryptomonads and G. instriatum were 91.6% and 99.0%, respectively, of the total phytoplankton biomass during blooms. The cryptomonad bloom developed following a period of rainfall and concomitant increases in inorganic nitrogen concentrations. Nitrate, nitrite and ammonium concentrations 0 to 5 days prior were positively lag-correlated with cryptomonad abundance. In contrast, the G. insriatum bloom developed during periods of low dissolved nitrogen concentrations and their abundance was negatively correlated with inorganic nitrogen concentrations.

  12. Weed populations and crop rotations: exploring dynamics of a structured periodic system

    NARCIS (Netherlands)

    Mertens, S.K.; Bosch, F. van den; Heesterbeek, J.A.P.

    2002-01-01

    The periodic growing of a certain set of crops in a prescribed order, called a crop rotation, is considered to be an important tool for managing weed populations. Nevertheless, the effects of crop rotations on weed population dynamics are not well understood. Explanations for rotation effects on

  13. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China.

    Science.gov (United States)

    Zhao, Yang; Jia, Xin; Lee, Harry F; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin

    2017-01-01

    It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.

  14. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911. Global Position System information and structure (length, width, and span of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.

  15. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    released into water due to algal cells lysis was performed by placing samples in two ... Keywords; Algae, cells lysis, Fatty acids, gas chromatography time-of-flight mass spectrometry, water quality ... Factors such as municipal and industrial.

  16. Evaluation of algal biofilms on indium tin oxide (ITO for use in biophotovoltaic platforms based on photosynthetic performance.

    Directory of Open Access Journals (Sweden)

    Fong-Lee Ng

    Full Text Available In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP, USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC generated using a pulse amplitude modulation (PAM fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria Synechococcus elongatus (UMACC 105, Spirulina platensis. (UMACC 159 and the Chlorophyta Chlorella vulgaris (UMACC 051, and Chlorella sp. (UMACC 313 were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105 (6.38×10(-5 Wm(-2/µgChl-a>Chlorella vulgaris UMACC 051 (2.24×10(-5 Wm(-2/µgChl-a>Chlorella sp.(UMACC 313 (1.43×10(-5 Wm(-2/µgChl-a>Spirulina platensis (UMACC 159 (4.90×10(-6 Wm(-2/µgChl-a. Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.

  17. Alternating event processes during lifetimes: population dynamics and statistical inference.

    Science.gov (United States)

    Shinohara, Russell T; Sun, Yifei; Wang, Mei-Cheng

    2018-01-01

    In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions. In this paper, we consider the dynamics of a chronic disease and its associated exacerbation-remission process over two time scales: calendar time and time-since-onset. In particular, over calendar time, we explore population dynamics and the relationship between incidence, prevalence and duration for such alternating event processes. We provide nonparametric estimation techniques for characteristic quantities of the process. In some settings, exacerbation processes are observed from an onset time until death; to account for the relationship between the survival and alternating event processes, nonparametric approaches are developed for estimating exacerbation process over lifetime. By understanding the population dynamics and within-process structure, the paper provide a new and general way to study alternating event processes.

  18. Distribution and population dynamics of Rhizobium sp. introduced into soil

    NARCIS (Netherlands)

    Postma, J.

    1989-01-01

    In this thesis the population dynamics of bacteria introduced into soil was studied. In the introduction, the existence of microhabitats favourable for the survival of indigenous bacteria is discussed. Knowledge about the distribution of introduced bacteria over

  19. Cellular-automata model of the dwarf shrubs populations and communities dynamics

    Directory of Open Access Journals (Sweden)

    A. S. Komarov

    2015-06-01

    Full Text Available The probabilistic cellular-automata model of development and long-time dynamics of dwarf shrub populations and communities is developed. It is based on the concept of discrete description of the plant ontogenesis and joint model approaches in terms of probabilistic cellular automata and L-systems by Lindenmayer. Short representation of the basic model allows evaluation of the approach and software implementation. The main variables of the model are a number of partial bushes in clones or area projective cover. The model allows us to investigate the conditions of self-maintenance and sustainability population under different environmental conditions (inaccessibility of the territory for settlement, mosaic moisture conditions of soil and wealth. The model provides a forecast of the total biomass dynamics shrubs and their fractions (stems, leaves, roots, fine roots, fruits on the basis of the data obtained in the discrete description of ontogenesis and further information on the productivity of the plant fractions. The inclusion of the joint dynamics of biomass of shrubs and soil in EFIMOD models cycle of carbon and nitrogen to evaluate the role of shrubs in these circulations, especially at high impact, such as forest fires and clear cutting, allow forecasting of the dynamics of populations and ecosystem functions of shrubs (regulation of biogeochemical cycles maintaining biodiversity, participation in the creation of non-wood products with changing climatic conditions and strong damaging effects (logging, fires; and application of the models developed to investigate the stability and productivity of shrubs and their participation in the cycle of carbon and nitrogen in different climatic and edaphic conditions.

  20. Environmental status of algal mat sites located at the east coast of Saudi Arabia following the Gulf War

    International Nuclear Information System (INIS)

    Al-Thukair, A.

    1993-01-01

    Remote sensing techniques and ground truth verification were used to provide information on algal mat locations and damage intensity caused by the oil spill. Pre and post oil spill satellite images, ground truth assessment were compared for damage evaluation. Locations and sites status (heavily oiled, recovering, and no algal mats) were conveyed in maps. Recovered sites are found in Abu Ali and Tanajib areas. However, recovery seems to be slower in Abu Ali area as compared to Tanajib. Different types and formations of algal mats were found in both areas. This differentiation is more likely to be attributable to coastal topography and tide regimes

  1. Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish

    NARCIS (Netherlands)

    Huijbers, C.M.; Nagelekerken, I.; Debrot, A.O.; Jongejans, E.

    2013-01-01

    Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived

  2. Changes in density and composition of algal assemblages in certain ...

    African Journals Online (AJOL)

    The water purification plants at Virginia and Bothaville, South Africa, experience problems with cyanobacteria and other algae. Their algal assemblages were studied during 2010 and 2011 to determine the dominant species that may pose problems in purification. Cyanobacteria, diatoms and green algae were the dominant ...

  3. Monitoring of harmful algal blooms along the Norwegian coast using ...

    African Journals Online (AJOL)

    A Norwegian monitoring system for harmful algal blooms, consisting of an Observer Network, the State Food Hygiene Control Agency, the Oceanographic Company of Norway, the Institute of Marine Research and the Directorate for Fisheries, is reviewed. Potentially harmful algae on the Norwegian coast are found primarily ...

  4. Nutrients and toxin producing phytoplankton control algal blooms - a spatio-temporal study in a noisy environment.

    Science.gov (United States)

    Sarkar, Ram Rup; Malchow, Horst

    2005-12-01

    A phytoplankton-zooplankton prey-predator model has been investigated for temporal, spatial and spatio-temporal dissipative pattern formation in a deterministic and noisy environment, respectively. The overall carrying capacity for the phytoplankton population depends on the nutrient level. The role of nutrient concentrations and toxin producing phytoplankton for controlling the algal blooms has been discussed. The local analysis yields a number of stationary and/or oscillatory regimes and their combinations. Correspondingly interesting is the spatio-temporal behaviour, modelled by stochastic reaction-diffusion equations. The present study also reveals the fact that the rate of toxin production by toxin producing phytoplankton (TPP) plays an important role for controlling oscillations in the plankton system. We also observe that different mortality functions of zooplankton due to TPP have significant influence in controlling oscillations, coexistence, survival or extinction of the zoo-plankton population. External noise can enhance the survival and spread of zooplankton that would go extinct in the deterministic system due to a high rate of toxin production.

  5. Fish Kill Incidents and Harmful Algal Blooms in Omani Waters

    Directory of Open Access Journals (Sweden)

    Hamed Mohammed Al Gheilani

    2011-01-01

    Full Text Available Red tide, one of the harmful algal blooms (HABs is a natural ecological phenomenon and often this event is accompanied by severe impacts on coastal resources, local economies, and public health. The occurrence of red tides has become more frequent in Omani waters in recent years. Some of them caused fish kill, damaged fishery resources and mariculture, threatened the marine environment and the osmosis membranes of desalination plants. However, a number of them have been harmless. The most common dinoflagellate Noctiluca scintillans is associated with the red tide events in Omani waters. Toxic species like Karenia selliformis, Prorocentrum arabianum, and Trichodesmium erythraeum have also been reported recently. Although red tides in Oman have been considered a consequence of upwelling in the summer season (May to September, recent phytoplankton outbreaks in Oman are not restricted to summer. Frequent algal blooms have been reported during winter (December to March. HABs may have contributed to hypoxia and/or other negative ecological impacts.

  6. Interactions between algal-bacterial populations and trace metals in fjord surface waters during a nutrient stimulated summer bloom

    DEFF Research Database (Denmark)

    Muller, F.; Larsen, A.; Stedmon, C.

    2005-01-01

    We examined how variations in algal-bacterial community structure relate to Cu, Zn, and Mn speciation during a diatom-rich bloom that was induced by daily additions of inorganic macronutrients to fjord waters in August 2002. The experiments were carried out in 11-m3 floating mesocosm bags deployed...... in the Raunefjord, near Bergen, Norway, and operated in a chemostat (flow-through) mode. Copper speciation was controlled by the formation of very strong organic complexes (log K1' = 15.2-15.8; log 1' = 13.0-13.4) whose likely source was the cyanobacterium Synechococcus sp. Strong ligand concentrations were...... this period, the weaker Cu-binding ligands appeared to have the same source or production process as the proteinlike fluorophores detected in these coastal waters. Zinc speciation was controlled by complexation with a single class of organic ligands that appeared to be released inadvertently upon the death...

  7. Ecological and geographical characteristics of algal communities on gastropod shells of the river Uzh

    Directory of Open Access Journals (Sweden)

    N. M. Korniichuk

    2017-07-01

    Full Text Available Freshwater molluscs serve as test objects in the ecological monitoring of the environment, because they are able to extract in indicator quantity from the environment and accumulate in their bodies radionuclides, various macro- and micronutrients, toxic substances of inorganic and organic origin, and so on. The gastropods are a taxonomically diverse, ecologically plastic and rather widespread group of aquatic organisms, whose role in the life of freshwater ecosystems is very important. Molluscs often have various interactions in biogeocenoses that determines their trophic net. As a rule, these interactions occur in the form of ectocommensalism, endocommensalism, supercrescence, predation or parasitism. The latter type of interaction is the subject of many studies, but the epibionts of gastropods and bivalves have practically not been studied and this research is an effort towards filling this gap. Species composition of algal epibionts identifies specific sensitivity to the effects of certain environmental factors and reflects the processes occurring in their ecosystem water bodies. This determines their efficient use for analyzing changes of water bodies as aquatic habitat, particularly in terms of complex anthropogenic pressure on aquatic ecosystems. The aim of the research was to determine the ecological characteristics of algal communities on gastropod shells: Lymnaea stagnalis, L. auricularia and Viviparus viviparus (the Uzh river, Korosten district, Zhytomyr region. Identified microalgae communities were grouped and studied according to such indices as: confinedness to the habitat (substrate, temperature, fluidity and water oxygenating, saprobiological characteristics according to the Pantle-Buck system in the modification of Sladecek and Watanabe, salinity according to Kolbe’s system, pH at Hustedt scale in the interpretation of M. M. Davydova and geographical limitations of the objects of study. Algal fouling on the shells L. stagnalis

  8. Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future

    Science.gov (United States)

    Hüsler, A. D.; Sornette, D.

    2014-10-01

    We analyze the growth rates of human population and of atmospheric carbon dioxide by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model describing the growth dynamics of coupled processes involving human population (labor in economic terms), capital and technology (proxies by CO2 emissions). Human population in the context of our energy intensive economies constitutes arguably the most important underlying driving variable of the content of carbon dioxide in the atmosphere. Using some of the best databases available, we perform empirical analyses confirming that the human population on Earth has been growing super-exponentially until the mid-1960s, followed by a decelerated sub-exponential growth, with a tendency to plateau at just an exponential growth in the last decade with an average growth rate of 1.0% per year. In contrast, we find that the content of carbon dioxide in the atmosphere has continued to accelerate super-exponentially until 1990, with a transition to a progressive deceleration since then, with an average growth rate of approximately 2% per year in the last decade. To go back to CO2 atmosphere contents equal to or smaller than the level of 1990 as has been the broadly advertised goals of international treaties since 1990 requires herculean changes: from a dynamical point of view, the approximately exponential growth must not only turn to negative acceleration but also negative velocity to reverse the trend.

  9. Endogenous Population Dynamics and Economic Growth with Free Trade between Countries

    OpenAIRE

    Wei-Bin Zhang

    2016-01-01

    This paper builds a model to deal with dynamic interdependence between different countries' birth rates, mortality rates, populations, wealth accumulation, and time distributions between working, leisure and children caring. The model shows the role of human capital, technological and preference changes on national differences in birth rates, mortality rates, time distributions, population change, and wealth accumulation. The economic mechanisms of wealth accumulation, production and trade ar...

  10. Fast stochastic algorithm for simulating evolutionary population dynamics

    Science.gov (United States)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  11. Optimal growth entails risky localization in population dynamics

    Science.gov (United States)

    Gueudré, Thomas; Martin, David G.

    2018-03-01

    Essential to each other, growth and exploration are jointly observed in alive and inanimate entities, such as animals, cells or goods. But how the environment's structural and temporal properties weights in this balance remains elusive. We analyze a model of stochastic growth with time correlations and diffusive dynamics that sheds light on the way populations grow and spread over general networks. This model suggests natural explanations of empirical facts in econo-physics or ecology, such as the risk-return trade-off and the Zipf law. We conclude that optimal growth leads to a localized population distribution, but such risky position can be mitigated through the space geometry. These results have broad applicability and are subsequently illustrated over an empirical study of financial data.

  12. Analysis of Population Diversity of Dynamic Probabilistic Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Qingjian Ni

    2014-01-01

    Full Text Available In evolutionary algorithm, population diversity is an important factor for solving performance. In this paper, combined with some population diversity analysis methods in other evolutionary algorithms, three indicators are introduced to be measures of population diversity in PSO algorithms, which are standard deviation of population fitness values, population entropy, and Manhattan norm of standard deviation in population positions. The three measures are used to analyze the population diversity in a relatively new PSO variant—Dynamic Probabilistic Particle Swarm Optimization (DPPSO. The results show that the three measure methods can fully reflect the evolution of population diversity in DPPSO algorithms from different angles, and we also discuss the impact of population diversity on the DPPSO variants. The relevant conclusions of the population diversity on DPPSO can be used to analyze, design, and improve the DPPSO algorithms, thus improving optimization performance, which could also be beneficial to understand the working mechanism of DPPSO theoretically.

  13. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics

    DEFF Research Database (Denmark)

    Grossart, H.P.; Kiørboe, Thomas; Tang, K.W.

    2006-01-01

    as well as abundance, colonization behaviour, and community composition of bacteria during the growth of 2 marine diatoms (Thalassiosira weissflogii and Navicula sp.) under axenic and non-axenic conditions. Community composition of free-living and attached bacteria during phytoplankton growth...... and aggregation was studied by amplification of 16S rRNA gene fragments and denaturing gradient gel electrophoresis (DGGE). Our results show that the presence of bacteria was a prerequisite for aggregation of T. weissflogii but not of Navicula sp. Occurrences of distinct populations of free-living and attached...... bacteria depended on phytoplankton growth and aggregation dynamics. The community composition of especially attached bacteria significantly differed between the 2 algal cultures. Our study suggests that phytoplankton aggregation and vertical fluxes are closely linked to interactions between the marine...

  14. Dynamic population gratings in rare-earth-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx

    2008-11-21

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  15. Dynamic population gratings in rare-earth-doped optical fibres

    International Nuclear Information System (INIS)

    Stepanov, Serguei

    2008-01-01

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  16. Population Dynamics of the Mediterranean Fruit Fly in Montenegro

    Directory of Open Access Journals (Sweden)

    Sanja Radonjić

    2013-01-01

    Full Text Available Population dynamics of the Mediterranean fruit fly was studied along Montenegro seacoast. Tephri traps baited with 3 component female-biased attractants were used in 11 different localities to monitor the fruit fly population in commercial citrus orchards, mixed-fruit orchards, and in backyards. From 2008–2010, the earliest captures were recorded no earlier than July. In 2011, the first adult fly was detected in mid-June. Low captures rates were recorded in July and August (below 0.5 flies per trap per day; FTD and peaked from mid-September to the end of October of each year. Our results indicate fluctuation of fly per trap per day depending on dates of inspection and locality, with significant differences in the adult population density. A maximum population was always reached in the area of Budva-Herceg Novi with an FTD of 66.5, 89.5, 71.63, and 24.64 (from 2008–2011 respectively. Fly activity lasts from mid-June/early-July to end December, with distinct seasonal variation in the population.

  17. Sensitivity Analysis for Assessing Effects of Tree Population Dynamics on Soil Bioturbation

    Science.gov (United States)

    Martin, Y. E.; Johnson, E. A.

    2012-12-01

    Bioturbation due to tree root throw is thought to be an important process in soil production and soil mixing. Despite progress in our understanding of root throw processes, the tree population dynamics affecting the occurrence and timing of root throw events remain much less well explained. Unfortunately, research about forest dynamics is not always undertaken from the perspective of those interested in tree death, tree topple and associated root throw. As a result, the necessary field data about tree population dynamics is often unavailable for many locations. The acquisition of such data would allow for improved interpretation of root throw observations and for incorporation within numerical models of tree root throw occurrence. The present study uses our earlier tree population dynamics model calibrated for subalpine forests in the Canadian Rockies to test the sensitivity of forest parameters within the model that determine tree death, tree topple, root throw and soil bioturbation. Crown wildfire disturbance is the primary driver of tree population dynamics, with wind throw being mainly of local importance. The recruitment and mortality of trees during multiple generations of forest determine the number of live trees on the landscape at any given time. Tree death may occur due to competition/thinning of trees between wildfire events or as a result of the wildfire itself. Unless trees die due to sudden wind throw events (as mentioned above, this is only of local significance in our study area), they remain standing for some time period after tree death and before tree topple; these trees are referred to as standing dead trees. The duration of this time window and several other factors influence if a tree breaks at its base or upheaves a relatively intact root plate with attached sediment. Our field research has also suggested that a minimum dbh is required before a root plate is large enough to upheave notable amounts of sediment. Modelling results in this study

  18. Algal composition and abundance in the neuston surface micro layer from a lake and pond in Virginia (U.S.A.

    Directory of Open Access Journals (Sweden)

    Harold G. MARSHALL

    2003-08-01

    Full Text Available A comparative study was conducted that characterized the algae within the neuston, ca 2 mm below the surface, and the algae in the water column from two freshwater habitats. There were significant differences in total algal abundance and the abundance of diatoms, cyanoprokaryotes, and chlorophytes between the neuston and water column algae of these two regions during each season and at both sites. The pond neuston was dominated by chlorophytes, with total algal abundance ranging seasonally from 0.6 to 59.6 × 10-3 cells ml-1 compared to water column algal concentrations of 4.1 to 40.4 × 10-3 cells ml-1. The lake was dystrophic, with diatoms the most common and abundant species, with the neuston algal abundance ranging from 0.09 to 1.31 × 10-3 cells ml-1, and the water column algae from 0.19 to 2.70 × 10-3 cells ml-1. Proximity to the variable nature of the surface layer was not a deterrent for neuston algal development, which frequently reached bloom status and contained a diverse assemblage of taxa.

  19. Scaling of the mean and variance of population dynamics under fluctuating regimes.

    Science.gov (United States)

    Pertoldi, Cino; Faurby, S; Reed, D H; Knape, J; Björklund, M; Lundberg, P; Kaitala, V; Loeschcke, V; Bach, L A

    2014-12-01

    Theoretical ecologists have long sought to understand how the persistence of populations depends on the interactions between exogenous (biotic and abiotic) and endogenous (e.g., demographic and genetic) drivers of population dynamics. Recent work focuses on the autocorrelation structure of environmental perturbations and its effects on the persistence of populations. Accurate estimation of extinction times and especially determination of the mechanisms affecting extinction times is important for biodiversity conservation. Here we examine the interaction between environmental fluctuations and the scaling effect of the mean population size with its variance. We investigate how interactions between environmental and demographic stochasticity can affect the mean time to extinction, change optimal patch size dynamics, and how it can alter the often-assumed linear relationship between the census size and the effective population size. The importance of the correlation between environmental and demographic variation depends on the relative importance of the two types of variation. We found the correlation to be important when the two types of variation were approximately equal; however, the importance of the correlation diminishes as one source of variation dominates. The implications of these findings are discussed from a conservation and eco-evolutionary point of view.

  20. [Population dynamics of oligosporous actinomycetes in Chernozem soil].

    Science.gov (United States)

    Zenova, G M; Mikhaĭlova, N V; Zviagintsev, D G

    2000-01-01

    Investigation of the dynamics of an oligosporous actinomycete population in chernozem soil in the course of succession induced by soil wetting allowed us to reveal the time intervals and conditions optimal for the isolation of particular oligosporous actinomycetes. Saccharopolysporas and microbisporas proved to be best isolated in the early and late stages of succession, whereas actinomycetes of the subgroup Actinomadura and saccharomonosporas could be best isolated in the early and intermediate stages of succession.

  1. Divergent composition of algal-bacterial biofilms developing under various external factors

    NARCIS (Netherlands)

    Barranguet, C.; Veuger, B.; van Beusekom, S.A.M.; Marvan, P.; Sinke, J.J.; Admiraal, W.

    2005-01-01

    The influence of external factors other than nutrients on biofilm development and composition was studied with a combination of optical (Confocal Laser Scanning Microscopy, PAM fluorometry) and chemical methods (EPS extraction, HPLC, TOC determination). The development of algal-bacterial biofilms

  2. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    Science.gov (United States)

    Wells, Mark L.; Trainer, Vera L.; Smayda, Theodore J.; Karlson, Bengt S.O.; Trick, Charles G.; Kudela, Raphael M.; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M.; Cochlan, William P.

    2015-01-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB “best practices” manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic

  3. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  4. First-principles flocculation as the key to low energy algal biofuels processing.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Wyatt, Nicholas B.; Pierce, Flint; Brady, Patrick Vane; Dwyer, Brian P.; Grillet, Anne; Hankins, Matthew G; Hughes, Lindsey Gloe; Lechman, Jeremy B.; Mondy, Lisa Ann; Murton, Jaclyn K.; O' Hern, Timothy J; Parchert, Kylea Joy; Pohl, Phillip Isabio; Williams, Cecelia Victoria; Zhang, Xuezhi; Hu, Qiang; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton

    2012-09-01

    This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

  5. Harmful algal blooms of the Southern Benguela current: A review ...

    African Journals Online (AJOL)

    Harmful algal blooms of the Southern Benguela current: A review and appraisal of monitoring from 1989 to 1997. ... The Benguela upwelling system is subjected to blooms of harmful and toxic algae, the incidence and consequences of which are documented here. Red tides are common and usually attributed to members of ...

  6. Pan-Arctic sea ice-algal chl a biomass and suitable habitat are largely underestimated for multiyear ice.

    Science.gov (United States)

    Lange, Benjamin A; Flores, Hauke; Michel, Christine; Beckers, Justin F; Bublitz, Anne; Casey, John Alec; Castellani, Giulia; Hatam, Ido; Reppchen, Anke; Rudolph, Svenja A; Haas, Christian

    2017-11-01

    There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan-Arctic scale. We sampled sea ice cores from MYI and first-year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m 2 , a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice-algal biomass and represent a reliable ice-algal habitat due to the (quasi-) permanent low-snow surface of these features. We identified an ice-algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice-algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan-Arctic CryoSat-2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice-algal habitat within the MYI-covered region of 0.54 million km 2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km 2 (0.3% of total ice area) determined using the conventional block-model classification, which assigns single-parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice-algal habitat during spring when food is sparse and many organisms depend on ice-algae. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  7. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  8. About a dynamic model of interaction of insect population with food plant

    Directory of Open Access Journals (Sweden)

    L.V. Nedorezov

    2011-12-01

    Full Text Available In present paper there is the consideration of mathematical model of food plant (resource - consumer (insect population - pathogen system dynamics which is constructed as a system of ordinary differential equations. The dynamic regimes of model are analyzed and, in particular, with the help of numerical methods it is shown that trigger regimes (regimes with two stable attractors can be realized in model under very simple assumptions about ecological and intra-population processes functioning. Within the framework of model it was assumed that the rate of food flow into the system is constant and functioning of intra-population selfregulative mechanisms can be described by Verhulst model. As it was found, trigger regimes are different with respect to their properties: in particular, in model the trigger regimes with one of stable stationary points on the coordinate plane can be realized (it corresponds to the situation when sick individuals in population are absent and their appearance in small volume leads to their asymptotic elimination; also the regimes with several nonzero stationary states and stable periodic fluctuations were found.

  9. CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS

    International Nuclear Information System (INIS)

    McDermid, Richard M.; Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Duc, Pierre-Alain; Crocker, Alison F.; Davis, Timothy A.; De Zeeuw, P. T.; Emsellem, Eric; Kuntschner, Harald; Khochfar, Sadegh; Krajnović, Davor; Morganti, Raffaella; Oosterloo, Tom; Naab, Thorsten

    2014-01-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS 3D project. We study trends between our dynamically derived IMF normalization α dyn ≡ (M/L) stars /(M/L) Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of α dyn at a given population parameter. As a result, we find weak α dyn -[α/Fe] and α dyn –Age correlations and no significant α dyn –[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis

  10. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    Science.gov (United States)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2014-09-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  11. Phenotypic equilibrium as probabilistic convergence in multi-phenotype cell population dynamics.

    Directory of Open Access Journals (Sweden)

    Da-Quan Jiang

    Full Text Available We consider the cell population dynamics with n different phenotypes. Both the Markovian branching process model (stochastic model and the ordinary differential equation (ODE system model (deterministic model are presented, and exploited to investigate the dynamics of the phenotypic proportions. We will prove that in both models, these proportions will tend to constants regardless of initial population states ("phenotypic equilibrium" under weak conditions, which explains the experimental phenomenon in Gupta et al.'s paper. We also prove that Gupta et al.'s explanation is the ODE model under a special assumption. As an application, we will give sufficient and necessary conditions under which the proportion of one phenotype tends to 0 (die out or 1 (dominate. We also extend our results to non-Markovian cases.

  12. Population dynamics of Greater Scaup breeding on the Yukon-Kuskokwim Delta, Alaska

    Science.gov (United States)

    Flint, Paul L.; Grand, J. Barry; Fondell, Thomas F.; Morse, Julie A.

    2006-01-01

    Populations of greater scaup (Aythya marila) remained relatively stable during a period when populations of lesser scaup (A. affinis) have declined from historic levels. To assist in describing these differences in population trends, from 1991 through 2000, we studied the survival, nesting ecology, and productivity of greater scaup on the Yukon-Kuskokwim Delta (Y-K Delta), Alaska, to develop a model of population dynamics. We located nests, radio-marked females for renesting studies, estimated duckling survival, and leg-banded females to examine nest site fidelity and annual survival.

  13. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  14. Planning applications in east central Florida. [resources management and planning, land use, and lake algal blooms in Brevard County from Skylab imagery

    Science.gov (United States)

    Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Lake Apopka and three lakes downstream of it (Dora, Eustis, and Griffin) are in an advanced state of eutrophication with high algal concentrations. This feature has shown up consistently on ERTS-1 images in the form of a characteristic water color for those lakes. As expected, EREP photographs also show a characteristic color for those lakes. What was not expected is that Lake Griffin shows a clear pattern of this coloration. Personnel familiar with the lake believe that the photograph does, indeed, show an algal bloom. It is reported that the algal concentration is often significantly higher in the southern portion of the lake. What the photograph shows that was not otherwise known is the pattern of the algal bloom. A similar, but less pronounced, effect is seen in Lake Tohopekaliga. Personnel stationed at Kissimmee reported that there was an algal bloom on that lake at the time of the EREP pass and that its extent corresponded approximately to that shown on the photograph. Again, the EREP photograph gives information about the extent of the bloom that could not be obtained practically by sampling. ERTS-1 images give some indication of this algal distribution on Lake Griffin in some cases, but are inconclusive.

  15. Integrating count and detection–nondetection data to model population dynamics

    Science.gov (United States)

    Zipkin, Elise F.; Rossman, Sam; Yackulic, Charles B.; Wiens, David; Thorson, James T.; Davis, Raymond J.; Grant, Evan H. Campbell

    2017-01-01

    There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture–recapture data from marked individuals with other data types into integrated population models. Yet, studies of species distributions and trends often rely on data from unmarked individuals across broad scales where local abundance and environmental variables may vary. We present a modeling framework for integrating detection–nondetection and count data into a single analysis to estimate population dynamics, abundance, and individual detection probabilities during sampling. Our dynamic population model assumes that site-specific abundance can change over time according to survival of individuals and gains through reproduction and immigration. The observation process for each data type is modeled by assuming that every individual present at a site has an equal probability of being detected during sampling processes. We examine our modeling approach through a series of simulations illustrating the relative value of count vs. detection–nondetection data under a variety of parameter values and survey configurations. We also provide an empirical example of the model by combining long-term detection–nondetection data (1995–2014) with newly collected count data (2015–2016) from a growing population of Barred Owl (Strix varia) in the Pacific Northwest to examine the factors influencing population abundance over time. Our model provides a foundation for incorporating unmarked data within a single framework, even in cases where sampling processes yield different detection probabilities. This approach will be useful for survey design and to researchers interested in incorporating historical or citizen science data into analyses focused on understanding how demographic rates drive population abundance.

  16. Long-term population dynamics of a managed burrowing owl colony

    Science.gov (United States)

    Barclay, John H.; Korfanta, Nicole M.; Kauffman, Matthew J.

    2011-01-01

    We analyzed the population dynamics of a burrowing owl (Athene cunicularia) colony at Mineta San Jose International Airport in San Jose, California, USA from 1990-2007. This colony was managed by using artificial burrows to reduce the occurrence of nesting owls along runways and within major airport improvement projects during the study period. We estimated annual reproduction in natural and artificial burrows and age-specific survival rates with mark-recapture techniques, and we estimated the relative contribution of these vital rates to population dynamics using a life table response experiment. The breeding colony showed 2 distinct periods of change: high population growth from 7 nesting pairs in 1991 to 40 pairs in 2002 and population decline to 17 pairs in 2007. Reproduction was highly variable: annual nesting success (pairs that raised =1 young) averaged 79% and ranged from 36% to 100%, whereas fecundity averaged 3.36 juveniles/pair and ranged from 1.43 juveniles/pair to 4.54 juveniles/pair. We estimated annual adult survival at 0.710 during the period of colony increase from 1996 to 2001 and 0.465 during decline from 2002 to 2007, but there was no change in annual survival of juveniles between the 2 time periods. Long-term population growth rate (lambda) estimated from average vital rates was lambdaa=1.072 with lambdai=1.288 during colony increase and lambdad=0.921 (DELTA lambda=0.368) during decline. A life table response experiment showed that change in adult survival rate during increasing and declining phases explained more than twice the variation in growth rate than other vital rates. Our findings suggest that management and conservation of declining burrowing owl populations should address factors that influence adult survival.

  17. Effect of temperature on the population dynamics of Aedes aegypti

    Science.gov (United States)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  18. Sex in murky waters: algal-induced turbidity increases sexual selection in pipefish.

    Science.gov (United States)

    Sundin, Josefin; Aronsen, Tonje; Rosenqvist, Gunilla; Berglund, Anders

    2017-01-01

    Algal-induced turbidity has been shown to alter several important aspects of reproduction and sexual selection. However, while turbidity has been shown to negatively affect reproduction and sexually selected traits in some species, it may instead enhance reproductive success in others, implying that the impact of eutrophication is far more complex than originally believed. In this study, we aimed to provide more insight into these inconsistent findings. We used molecular tools to investigate the impact of algal turbidity on reproductive success and sexual selection on males in controlled laboratory experiments, allowing mate choice, mating competition, and mate encounter rates to affect reproduction. As study species, we used the broad-nosed pipefish, Syngnathus typhle , a species practicing male pregnancy and where we have previously shown that male mate choice is impaired by turbidity. Here, turbidity instead enhanced sexual selection on male size and mating success as well as reproductive success. Effects from mating competition and mate encounter rates may thus override effects from mate choice based on visual cues, producing an overall stronger sexual selection in turbid waters. Hence, seemingly inconsistent effects of turbidity on sexual selection may depend on which mechanisms of sexual selection that have been under study. Algal blooms are becoming increasingly more common due to eutrophication of freshwater and marine environments. The high density of algae lowers water transparency and reduces the possibility for fish and other aquatic animals to perform behaviors dependent on vision. We have previously shown that pipefish are unable to select the best partner in mate choice trials when water transparency was reduced. However, fish might use other senses than vision to compensate for the reduction in water transparency. In this study, we found that when fish were allowed to freely interact, thereby allowing competition between partners and direct contact

  19. Emergence of cooperation in phenotypically heterogeneous populations: a replicator dynamics analysis

    International Nuclear Information System (INIS)

    Barreira da Silva Rocha, A; Escobedo, R; Laruelle, A

    2015-01-01

    The emergence of cooperation is analyzed in heterogeneous populations where two kinds of individuals exist according to their phenotypic appearance. Phenotype recognition is assumed for all individuals: individuals are able to identify the type of every other individual, but fail to recognize their own type. Individuals thus behave under partial information conditions. The interactions between individuals are described by the snowdrift game, where individuals can either cooperate or defect. The evolution of such populations is studied in the framework of evolutionary game theory by means of the replicator dynamics. Overlapping generations are considered, so the replicator equations are formulated in discrete-time form. The stability analysis of the dynamical system is carried out and a detailed description of the behavior of trajectories starting from the interior of the state-space is given. We find that the four monomorphic states are unstable and that a polymorphic state exists which is a global attractor for non-degenerate initial states of the population. The result for the discrete-time replicator coincides with the one of the continuous case. (paper)

  20. The Cyanobacteria Assessment Network - Recent Success in Harmful Algal Bloom Detection

    Science.gov (United States)

    Cyanobacteria blooms, which can become harmful algal blooms (HABs), are a huge environmental problem across the United States. They are capable of producing dangerous toxins that threaten the health of humans and animals, quality of drinking water supplies, and the ecosystem in w...