WorldWideScience

Sample records for algae activates plant

  1. Antihyperglycemic effect of crude extracts of some Egyptian plants and algae.

    Science.gov (United States)

    AbouZid, Sameh Fekry; Ahmed, Osama Mohamed; Ahmed, Rasha Rashad; Mahmoud, Ayman; Abdella, Ehab; Ashour, Mohamed Badr

    2014-03-01

    Diabetes mellitus is a major global health problem. Various plant extracts have proven antidiabetic activity and are considered as promising substitution for antidiabetic drugs. The antihyperglycemic effect of 16 plants and 4 algae, commonly used in Egypt for the treatment of diabetes mellitus, was investigated. A diabetes model was induced by intraperitoneal injection of nicotinamide (120 mg/kg body weight [b.wt.]), then streptozotocin (200 mg/kg b.wt.) after 15 min. Hydroethanolic extracts (80%) of the plants and algae under investigation were prepared. The extracts were orally administered to nicotinamide-streptozotocin-induced diabetic mice by a gastric tube at doses 10 or 50 mg/kg b.wt. for 1 week. The antidiabetic activity was assessed by detection of serum glucose concentrations at the fasting state and after 2 h of oral glucose loading (4.2 mg/kg b.wt.). Extracts prepared from Cassia acutifolia, Fraxinus ornus, Salix aegyptiaca, Cichorium intybus, and Eucalyptus globulus showed the highest antihyperglycemic activity among the tested plants. Extracts prepared from Sonchus oleraceus, Bougainvillea spectabilis (leaves), Plantago psyllium (seeds), Morus nigra (leaves), and Serena repens (fruits) were found to have antihyperglycemic potentials. Extracts prepared from Caulerpa lentillifera and Spirulina versicolor showed the most potent antihyperglycemic activity among the tested algae. However, some of the tested plants have insulinotropic effects, all assessed algae have not. Identification of lead compounds from these plants and algae for novel antidiabetic drug development is recommended.

  2. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  3. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    Science.gov (United States)

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-06-01

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  4. Antibody Production in Plants and Green Algae.

    Science.gov (United States)

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  5. Cytotoxic, Virucidal, and Antiviral Activity of South American Plant and Algae Extracts

    Directory of Open Access Journals (Sweden)

    Paula Faral-Tello

    2012-01-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection has a prevalence of 70% in the human population. Treatment is based on acyclovir, valacyclovir, and foscarnet, three drugs that share the same mechanism of action and of which resistant strains have been isolated from patients. In this aspect, innovative drug therapies are required. Natural products offer unlimited opportunities for the discovery of antiviral compounds. In this study, 28 extracts corresponding to 24 plant species and 4 alga species were assayed in vitro to detect antiviral activity against HSV-1. Six of the methanolic extracts inactivated viral particles by direct interaction and 14 presented antiviral activity when incubated with cells already infected. Most interesting antiviral activity values obtained are those of Limonium brasiliense, Psidium guajava, and Phyllanthus niruri, which inhibit HSV-1 replication in vitro with 50% effective concentration (EC50 values of 185, 118, and 60 μg/mL, respectively. For these extracts toxicity values were calculated and therefore selectivity indexes (SI obtained. Further characterization of the bioactive components of antiviral plants will pave the way for the discovery of new compounds against HSV-1.

  6. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    Science.gov (United States)

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  7. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    Directory of Open Access Journals (Sweden)

    Ingrid Ramírez

    2011-05-01

    Full Text Available Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens.

  8. Origin of land plants: Do conjugating green algae hold the key?

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2011-04-01

    Full Text Available Abstract Background The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales. For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. Results Here, we use a large data set of nuclear-encoded genes (129 proteins from 40 green plant taxa (Viridiplantae including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. Conclusions Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the

  9. The occurrence of hormesis in plants and algae

    DEFF Research Database (Denmark)

    Cedergreen, Nina; Streibig, Jens Carl; Kudsk, Per

    2007-01-01

    This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-alga Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one...

  10. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  11. Temperature optimum of algae living in the outfall of a power plant on Lake Monona

    International Nuclear Information System (INIS)

    Brock, T.D.; Hoffmann, J.

    1974-01-01

    Temperature optima for photosynthesis were measured for algal populations living in the outfall of a fossil-fuel electric power plant on Lake Monona and were compared with the temperature optima of algae living in a control area in the nearby Yahara River. The temperature of the power plant outfall averaged about 8 0 C higher than that of the Yahara River. In the winter, no differences in species composition between the two study areas could be detected, Cladophora and Ulothrix being the dominant algae. The temperature optima of the populations from the two locations were the same, around 27 0 C, although the habitat temperatures at both locations were considerably lower. The only difference in response to temperature seen between the two populations was that the population at the outfall was able to photosynthesize at higher temperature, still showing high photosynthesis at 35 0 C and detectable photosynthesis at 46 0 C, a temperature at which the population from the Yahara River showed no detectable photosynthesis. In the summer, the dominant algae at the power plant outfall were Stigeoclonium and filamentous blue-green algae (family Oscillatoriaceae), whereas at the Yahara River the algal population was almost exclusively Cladophora. The temperature optima of both summer populations were the same, 31.5 0 C, only slightly higher than the mid-winter optima. Again, the population from the power plant was able to photosynthesize at higher temperature than the control population, showing quite active photosynthesis at 42.5 0 C, a temperature at which the population from the Yahara River was completely inactive. (U.S.)

  12. Estimation of Heavy Elements Pollution in Sea Plants (Algae) by Using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    El-Ghondi, A. A.; El-Mismary, Y. A.; Etwir, R. H.; Machiouf, M. A.; Ben Shaban, Y.; Abia, R.

    2007-01-01

    The total content of trace elements were determined in 50 samples of sea plants (macro algae) collected from Tripoli coast area (Tajura, El schab, Dat Elemad ) in Libya. The samples were investigated as an indication of heavy elements pollution. In this paper, the total amounts of Zn, Sc, Fe, Co, Cr, Ba, Cs, Sb, Rb, and Hf concentration were determined by using Neutron Activation Analysis in Tajura research center. High levels of Zn and Cr and slightly increasing in amount of Co and Fe are considered as normal values comparing with polluted area particularly with Fe and Co in investigated samples. Statistical calculation of the results have shown a positive relationship between the contents of Ba, Sc, Hf, Cr and Fe-Sb but no relation with Zn and other investigated trace elements contents. Further investigation should be carried out to confirm these findings and correlate them to source attribution.

  13. Not in your usual Top 10: protists that infect plants and algae.

    Science.gov (United States)

    Schwelm, Arne; Badstöber, Julia; Bulman, Simon; Desoignies, Nicolas; Etemadi, Mohammad; Falloon, Richard E; Gachon, Claire M M; Legreve, Anne; Lukeš, Julius; Merz, Ueli; Nenarokova, Anna; Strittmatter, Martina; Sullivan, Brooke K; Neuhauser, Sigrid

    2018-04-01

    Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  14. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  15. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  16. The opportunities for obtaining of the biogas on methane fermentation from marine algae biomass and water plant biomass

    Directory of Open Access Journals (Sweden)

    Jachniak Ewa

    2018-01-01

    Full Text Available The aim of the research was to try to obtain of the biogas on a laboratory scale from marine algae biomass and water plant biomass. The research was conducted in 2016 year and samples were taken from the Polish coast of the Baltic Sea. In laboratory work, algae and plant species were first identified. The next, in order to subject them to methane fermentation processes and to obtain biogas,partial mechanical treatment of the biomass was conducted. Dry matter content and dry organic matter content were also determined. The research has shown different production of the biogas depending on the various species of the algae and plants. The percentage composition of the biogas was also determined (% CO2 and % CH4. In this research some kinds and species of algae and aquatic plants were distinguished: Scytosiphon cf. S. tortilis, Fucus vesiculosus, Cladophora, Audouinella, Potamogeton perfoliatus. Production of biogas from selected algae and water plants oscillated between 0.023 dm3·g-1 and 0.303 dm3·g-1. The highest content of the methane in biogas was obtained from the mixture of Ectocarpus from spring and autumn harvest (values oscillated from 80.7 % to 81.2 %, while the highest percentage share of carbon dioxide in the biogas was characterized by the mixture Fucus vesiculosus and Audouinella (22 %. Due to a small amount of the research in this field, more research is needed.

  17. Role of algae and higher aquatic plants in decontamination of cyanide-containing waters

    International Nuclear Information System (INIS)

    Timofeeva, S.S.; Kraeva, V.Z.; Men'shikova, O.A.

    1986-01-01

    Cyanide compounds and especially free cyanides stand out among components of wastewaters of hydrometallurgy, electroforming, and other such enterprises with respect to toxicity and danger for man and fauna of water bodies. In this article data on a study of the regularities of decontamination of cyanide-containing wastewaters by hydrophytes are given, the mechanisms of this process are examined, and the results of testing the hydrobotanical method of treating wastewaters of a goldrecovery plant are examined. The experiments were carried out with hydrophytes from the Angara River, Lake Baikal, and small lakes and ponds in the vicinity of Irkutsk and Tashkent. The series of experiments established that algae and higher aquatic plants are resistant to cyanides. A table shows the kinetic parameters of the removal of cyanide by algae and higher aquatic plants collected in Baikal. Of the multitude of species investigated for detoxifying ability, the most resistant were detected in the experimental basins and the most suitable were charophytes

  18. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  19. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  20. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  1. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Antibacterial activity of extracts of marine algae from the Red Sea of ...

    African Journals Online (AJOL)

    Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. ... African Journal of Biotechnology ... The antibacterial activities of petroleum ether, diethyl ether, ethyl acetate and methanol extracts of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta were studied.

  3. Extraction of essential oils from native plants and algae from the coast of Peniche (Portugal: antimicrobial and antioxidant activity.

    Directory of Open Access Journals (Sweden)

    Clélia Neves Afonso

    2014-06-01

    Full Text Available Coastal areas are highly complex and dynamic ecosystem of interface between land, sea and atmosphere, which also suffer biotic influences. These areas play several important ecological functions, and here we can find an enormous biodiversity. The coastline of Portugal features a high number of endemic flora and vegetation with the potential to provide functional compounds that may provide physiological benefits at nutritional and therapeutic levels, as sources of bioactive substances with antimicrobial, antioxidant, antifungal, antitumalr and anti-inflammatory activity. Among these compounds, we find essential oils, also known as volatile oils, which are a result of secondary metabolism of aromatic plants, containing a large number of substances with varied chemical composition that can be obtained by different methods of extraction. The aim of this study was to extract essential oils of native plants and seaweeds from the coast of Peniche by hydrodistillation in Clevenger apparatus, with optimization of the purification process. Extracted essential oils were tested as to their ability as antibacterial and antifungal agents, and also as antioxidants. The plants studied for this purpose were Inula chritmoides L., Juniperus phoenicea subsp. turbinata (Guss. Nyman, Daucus carota spp. halophilus and the seaweeds Fucus spiralis L., Codium tomentosum Stackhouse, Stypocaulon scoparium (Linnaeus Kützing and Plocamium cartilagineum (Linnaeus P.S.Dixon. The antimicrobial ability was tested in two bacteria species, Bacillus subtilis and Escherichia coli and in the yeast Saccharomyces cerevisiae, using standard procedures. The antioxidant potential was evaluated and from the results obtained, we can conclude that the essential oils extracted by the hydrodistillation method of plants and algae contain bioactive compounds present in its constitution with interesting bio-activity that can offer significant benefits and biotechnological relevance.

  4. The opportunities for obtaining of the biogas on methane fermentation from marine algae biomass and water plant biomass

    OpenAIRE

    Jachniak Ewa; Chmura Joanna; Kuglarz Mariusz; Wiktor Józef

    2018-01-01

    The aim of the research was to try to obtain of the biogas on a laboratory scale from marine algae biomass and water plant biomass. The research was conducted in 2016 year and samples were taken from the Polish coast of the Baltic Sea. In laboratory work, algae and plant species were first identified. The next, in order to subject them to methane fermentation processes and to obtain biogas,partial mechanical treatment of the biomass was conducted. Dry matter content and dry organic matter con...

  5. Antibacterial and anti-hyperlipidemic activities of the green alga Cladophora koeiei

    Directory of Open Access Journals (Sweden)

    Neveen Abdel-Raouf

    2018-03-01

    Full Text Available In the present investigation, an antihyperlipidemic activity of Cladophora koeiei ethanol extract against six pathogenic bacteria was conducted. Also, we evaluate the activity of the alga extract against hyperlipedemia in the administrated albino rates through measuring the blood lipid profiles [triglycerides (TG, total cholesterol (TC, low-density lipoprotein (LDL-C, high-density lipoprotein cholesterol (HDL-C, cholesterol] and induced hepatic damage by measuring the contents of creatinine, total proteins, blood urea nitrogen (BUN, albumin and globulin and diagnostic marker enzymes such as aspartate aminotransaminase (AST and alanine aminotransaminase (ALT. Alga extract proved efficient activity against the tested bacteria ranged between medium and high suppression action. Results revealed also, the efficiency of C. koeiei extract in the decreasing the triglycerides (TG, total cholesterol (TC, low-density lipoproteins (LDL-C, blood urea nitrogen (BUN and creatinine caused by alcohol. However, the treatment by alga extract exhibits high-density of lipoproteins (HDL-C (beneficial, total protein, albumin, and globulins. Also, the algal treatments masking the lethal effects caused by harmful alcohol from raising the rate of enzymes ALT, AST, which returned to the normal state in the groups treated with alga extract. Our findings provide the evidence that new natural antioxidant substances can be present in the C. koeiei extract and hence this alga proves to be effective as a source for therapeutic agents.

  6. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    Energy Technology Data Exchange (ETDEWEB)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  7. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  9. Algae-production in the desert

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, H.

    1988-11-01

    The company Koor Food Ltd. (Israel) developed in co-operation with the Weizmann-Institute (Israel) a production-plant for the industrial cultivation of algae in the desert area of Elat. For almost a year now, they succeed in harvesting large amounts of algae material with the help of the intensive sun and the Red Sea water. The alga Dunaliella with the natural US -carotine, as well as the alga Spirulina with the high content of protein find their market in the food-, cosmetic- and pharma-industry. This article will give a survey of a yet here unusual project.

  10. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...

  11. Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities?

    Science.gov (United States)

    van Wijngaarden, René P A; Arts, Gertie H P

    2018-01-01

    In the aquatic tier-1 effect assessment for plant protection products with an herbicidal mode of action in Europe, it is usually algae and/or vascular plants that determine the environmental risks. This tier includes tests with at least 2 algae and 1 macrophyte (Lemna). Although such tests are considered to be of a chronic nature (based on the duration of the test in relation to the life cycle of the organism), the measurement endpoints derived from the laboratory tests with plants (including algae) and used in the first-tier effect assessment for herbicides are acute effect concentrations affecting 50% of the test organisms (EC50 values) and not no-observed-effect concentrations (NOECs) or effect concentrations affecting 10% of the test organisms (EC10) values. Other European legislative frameworks (e.g., the Water Framework Directive) use EC10 values. The present study contributes to a validation of the tiered herbicide risk assessment approach by comparing the standard first-tier effect assessment with results of microcosm and mesocosm studies. We evaluated EC50 and EC10 values for standard test algae and macrophytes based on either the growth rate endpoint (E r C50) or the lowest available endpoint for growth rate or biomass/yield (E r /E y C50). These values were compared with the regulatory acceptable concentrations for the threshold option as derived from microcosm and mesocosm studies. For these studies, protection is maintained if growth rate is taken as the regulatory endpoint instead of the lowest value of either growth rate or biomass/yield in conjunction with the standard assessment factor of 10. Based on a limited data set of 14 herbicides, we did not identify a need to change the current practice. Environ Toxicol Chem 2018;37:175-183. © 2017 SETAC. © 2017 SETAC.

  12. Effects of local Polynesian plants and algae on growth and expression of two immune-related genes in orbicular batfish (Platax orbicularis).

    Science.gov (United States)

    Reverter, Miriam; Saulnier, Denis; David, Rarahu; Bardon-Albaret, Agnès; Belliard, Corinne; Tapissier-Bontemps, Nathalie; Lecchini, David; Sasal, Pierre

    2016-11-01

    The emerging orbicular batfish (Platax orbicularis) aquaculture is the most important fish aquaculture industry in French Polynesia. However, bacterial infections are causing severe mortality episodes. Therefore, there is an urgent need to find an effective management solution. Besides the supplying difficulty and high costs of veterinary drugs in French Polynesia, batfish aquaculture takes place close to the coral reef, where use of synthetic persistent drugs should be restricted. Medicinal plants and bioactive algae are emerging as a cheaper and more sustainable alternative to chemical drugs. We have studied the effect of local Polynesian plants and the local opportunistic algae Asparagopsis taxiformis on batfish when orally administered. Weight gain and expression of two immune-related genes (lysozyme g - Lys G and transforming growth factor beta - TGF-β1) were studied to analyze immunostimulant activity of plants on P. orbicularis. Results showed that several plants increased Lys G and TGF-β1 expression on orbicular batfish after 2 and 3 weeks of oral administration. A. taxiformis was the plant displaying the most promising results, promoting a weight gain of 24% after 3 weeks of oral administration and significantly increasing the relative amount of both Lys G and TGF-β1 transcripts in kidney and spleen of P. orbicularis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  14. Carbon Partitioning in Green Algae (Chlorophyta and the Enolase Enzyme

    Directory of Open Access Journals (Sweden)

    Jürgen E. W. Polle

    2014-08-01

    Full Text Available The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.

  15. Green Algae from Coal Bed Methane Ponds as a Source of Fertilizer for Economically Important Plants of Montana

    Science.gov (United States)

    Ogunsakin, O. R.; Apple, M. E.; Zhou, X.; Peyton, B.

    2016-12-01

    The Tongue River Basin of northeastern Wyoming and southeastern Montana is the location of natural gas reserves and coal bed methane (CBM) acreage. Although the water that emanates from CBM extraction varies with site, it is generally of higher quality than the waters produced by conventional oil and gas wells, in part because it is low in volatile organic compounds. However, since CBM water contains dissolved solids, including sodium (Na), bicarbonate (HCO3) and chloride (Cl) ions, the water must be treated before it can be discharged into the river or wetlands, or used for stock ponds or irrigation. Several ponds have been constructed to serve as a holding facility for CBM water. Algae from the CBM ponds of the Tongue River Basin have the potential to be utilized as fertilizer on economically important plants of Montana. Two very important crop plants of Montana are wheat, Triticum aestivum, and potatoes, Solanum tuberosum. To explore this potential, isolates of unicellular green algae (Chlorella sp.) from the CBM ponds were cultured in aerated vessels with Bold's Basic Growth Medium and natural and/or supplemental light. Algal biomass was condensed in and collected from a valved funnel, after which cell density was determined via light microscopy and a hemacytometer. Algal/water slurries with known nutrient contents were added to seedlings of hard winter wheat, T.aestivum, grown in a greenhouse for three months before harves. When compared to wheat provided with just water, or with water and a commercially available fertilizer, the wheat fertilized with algae had a higher chlorophyll content, more tillers (side shoots), and a higher ratio of influorescences (groups of flowers) per stem. In a related experiment, Ranger Russet seed potatoes, S. tuberosum were given just water, water and Hoagland's nutrient solution, or water with algae in order to compare aboveground growth and potato production among the treatments. The results of this study suggest that

  16. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Harholt, Jesper; Ulvskov, Peter

    2014-01-01

    in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. METHODS: Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs...... to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non......-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs...

  17. The physiological responses of Vallisneria natans to epiphytic algae with the increase of N and P concentrations in water bodies.

    Science.gov (United States)

    Song, Yu-Zhi; Wang, Jin-Qi; Gao, Yong-Xia; Xie, Xue-Jian

    2015-06-01

    To reveal the mechanism of submerged plants decline in progressively eutrophicated freshwaters, physiological responses of Vallisneria natans to epiphytic algae were studied in simulation lab by measuring plant physiological indexes of chlorophyll content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity based on a 2 × 4 factorial design with two epiphytic conditions (with epiphytic algae and without) and four levels of N and P concentrations in water (N-P[mg.L(-1)]: 0.5, 0.05; 2.5, 0.25; 4.5, 0.45; 12.5, 1.25). Compared with control (non-presence of epiphytic algae), chlorophyll contents of V. natans were significantly decreased (p algae under any concentrations of N and P in water bodies. While the presence of epiphytic algae induced peroxidation of membrane lipids, MDA contents of V. natans had significantly increased (p algae in the treatments of T2 and T3 in the whole culture process by comparing with control, sometimes reaching an extremely significant level (p algae (p algae on chlorophyll content and SOD activity in the leaves of V. natans were increased at first and then decreased with the concentrations of N and P in water, and MDA content became higher with the increase of N and P. concentrations. Repeated measurement data testing showed that the effects of epiphytic algae on the chlorophyll content and MDA content and SOD activity were significant, respectively (p algae were combining with effects of concentrations of N and P (p algae directly produced adverse effects on physiology of V. natans and epiphytic algal biomass were positively correlated with nutrient available in the water column.

  18. New methodologies for the integration of power plants with algae ponds

    NARCIS (Netherlands)

    Schipper, K.; Gijp, S. van der; Stel, R.W van der; Goetheer, E.L.V.

    2013-01-01

    It is generally recognized that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  19. Sustainable Algae Biodiesel Production in Cold Climates

    OpenAIRE

    Baliga, Rudras; Powers, Susan E.

    2010-01-01

    This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA) are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a ...

  20. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  1. Importance of algae oil as a source of biodiesel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan; Fatih Demirbas, M.

    2011-01-01

    Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7-31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

  2. Pathway of /sup 14/Co/sub 2/ fixation in marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, G V; Karekar, M D [Shivaji Univ., Kolhapur (India). Dept. of Botany

    1973-08-01

    Marine plants have a different metabolic environment which is likely to affect pathways of CO/sub 2/ fixation. It has been observed that in marine alga, Ulva lactuca, during short term light fixation of /sup 14/CO/sub 2/, besides PGA, an appreciable amount of activity was located in aspartate. This curious observation can now be explained on the basis of Hatch, Slack and Kortschak pathway of CO/sub 2/ fixation. In order to trace pathways of /sup 14/CO/sub 2/ in marine algae, a wide variety of algal specimens were exposed to NaH/sup 14/CO/sub 3/ in light and the products were analyzed. The algae selected were Ulva lactuca, Sargassum ilicifolium, Sphacelaria sp., Padina tetrastromatica, Chaetomorpha media and Enteromorpha tubulosa. It has been found that the pathways of CO/sub 2/ in the above marine algae differ from the conventional pattern recorded in Chlorella. The early labelling of aspartate and its subsequent utilization indicates that HSK pathway is operative in the marine algae. Malate synthesis is inhibited due to the effect of saline environment on the activity of malic dehydrogenase. Appreciable label in PGA is suggestive of the fact that Calvin and Bassham pathway as well as the HSK route are simultaneously operating. (auth)

  3. Fibonacci spirals in a brown alga [Sargassum muticum (Yendo Fensholt] and in a land plant [Arabidopsis thaliana (L. Heynh.]: a case of morphogenetic convergence

    Directory of Open Access Journals (Sweden)

    Alexis Peaucelle

    2016-12-01

    Full Text Available In this article, the morphology of a brown alga is revisited and compared to the phyllotaxis of land plants. The alga, Sargassum muticum (Yendo Fensholt has a highly organized thallus with a stipe, the stem-like main axis, and hierarchically organized lateral branches of successive orders. Around each of these axes, the lateral organs: blades, side-branches, and receptacles grow in a spiral disposition. As in land plants, this organization is related to an apical mode of growth. Measurements performed along the mature differentiated axes as well as in their meristematic regions confirm the similarity of the large-scale organization of this brown alga with that of the land plants. In particular, the divergence angle between successive elements has similar values and it results from the existence around the meristem of parastichies having the same Fibonacci ordering. This is remarkable in view of the fact that brown algae (Phaeophyceae and land plants (Embryophyta are two clades that diverged approximately 1800 million years ago when they were both unicellular organisms. We argue that the observed similarity results from a morphogenetic convergence. This is in strong support of the genericity and robustness of self-organization models in which similar structures, here Fibonacci related spirals, can be obtained in various situations in which the genetic and physiological implementation of development can be of a different nature.

  4. Bibliographical review of radioactive cesium uptake capacity and processes in aquatic plants

    International Nuclear Information System (INIS)

    Pally, Monique; Foulquier, Luc.

    1981-11-01

    Both freshwater and marine plants are included in this survey covering 217 reports published between 1954 and 1979. These articles involve the radiocesium abundance found in areas either directly or indirectly affected by liquid waste releases. They specify the concentration factors determined from field measurements and laboratory works. Other areas covered include contamination kinetics, radiocesium distribution in higher plants, effects of biological and environmental factors. Radiocesium uptake potential is higher in freshwater algae and plants than in marine algae. Radiocesium adsorption phenomena seem to predominate in algae over absorption, while in the higher freshwater plants absorption is the primary phenomena. In areas not directly affected by liquid wastes, plant activity levels increased until they reached 10000 pCi/kg wet weight in 1965, and reduced thereafter. In areas directly affected by waste discharges, the activity levels range from 10 to 16000 pCi/kg wet weight in seawater, and from practically zero to 230000 pCi/kg in fresh water. This variability also affects the concentration factors. In most cases, the values measured in marine algae range from 10 to 100; the highest radiocesium uptake is found in brown algae and red algae. The concentration factors measured in freshwater mosses and algae are most often around 4000, while they are about 2000 in submerged, floating and emergent plants. Some plants, specially mosses and algae, proved to be better bioindicators than others. The biological half-lives range from 2 to 21 days in marine algae, and from 1 to 65 days in freshwater plants. This survey underscores the necessity of allowing for the ecological characteristics of each site when evaluating the impact of nuclear plants [fr

  5. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    Science.gov (United States)

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  6. Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium

    Science.gov (United States)

    Dayuti, S.

    2018-04-01

    Red alga was widely used in several fields, including food, feed, phamacy and industrial point of view. The chemical analysis showed that red alga contained terpenoid, acetogenic, and aromatic compounds, which have a wide range of biological activities, such as anti-micobial, anti-inflammatory and anti-viral. The objectives of this research was to evaluate the effect of extraction solvent and time on antibacterial activity of red alga (Gracilaria verrucosa), and to explore the bioactive compound contained within Gracilaria verrucosa. The method in this study used descriptive reseach. These findings revealed that the highest inhibition activity among all extracts was obtained with the ratio of methanol:aquades (75:25) and extraction time around 72 hours against Escherichia coli and Salmonella typhimurium. The bioactive compounds of Gracilaria verrucosa tested by phytochemical analysisi consisted of flavonoid, alkaloid, and saponin. Those secondary metabolites may be approximated as antibactial substances.

  7. Gain and loss of polyadenylation signals during evolution of green algae

    OpenAIRE

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-01-01

    Abstract Background The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related seq...

  8. Photosynthetic electron transport in thylakoid preparations from two marine red algae (Rhodophyta).

    Science.gov (United States)

    Stewart, A C; Larkum, A W

    1983-01-01

    Thylakoid membrane preparations active in photosynthetic electron transport have been obtained from two marine red algae, Griffithsia monilis and Anotrichium tenue. High concentrations (0.5-1.0 M) of salts such as phosphate, citrate, succinate and tartrate stabilized functional binding of phycobilisomes to the membrane and also stabilized Photosystem II-catalysed electron-transport activity. High concentrations (1.0 M) of chloride and nitrate, or 30 mM-Tricine/NaOH buffer (pH 7.2) in the absence of salts, detached phycobilisomes and inhibited electron transport through Photosystem II. The O2-evolving system was identified as the electron-transport chain component that was inhibited under these conditions. Washing membranes with buffers containing 1.0-1.5 M-sorbitol and 5-50 mM concentrations of various salts removed the outer part of the phycobilisome but retained 30-70% of the allophycocyanin 'core' of the phycobilisome. These preparations were 30-70% active in O2 evolution compared with unwashed membranes. In the sensitivity of their O2-evolving apparatus to the composition of the medium in vitro, the red algae resembled blue-green algae and differed from other eukaryotic algae and higher plants. It is suggested that an environment of structured water may be essential for the functional integrity of Photosystem II in biliprotein-containing algae. PMID:6860312

  9. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  10. The Effect of Pulsed Streamer-like Discharge in Liquid on Transcriptional Activation of Retrotransposon Genes of a Red Alga, Porphyra Yezoensis

    OpenAIRE

    Ohno, T.; Li, Z.; Lin, X.F.; Zhang, W.B.; Takano, H.; Takio, S.; Namihira, T.; Akiyama, H.; オオノ, ツヨシ; ナミヒラ, タカオ; アキヤマ, ヒデノリ; 大野, 剛史; 浪平, 隆男; 秋山, 秀典

    2007-01-01

    Retrotransposons are mobile genetic elements thataccomplished transposition via an RNA intermediate.These elements can be transcriptionally activated by stressfactors, such as UV light, ozone, pathogens, woundingand drought. A red alga, porphyra yezoensis has recentlybeen recognized as a model plant for fundamental andapplied study in marine biological science. In this paper,pulsed streamer-like discharge in liquid was used as a newstress condition, and the transcription level of a copia-like...

  11. Growth acceleration and photosynthesis of the scenedesmus algae and cocconeis algae in deuterium water

    International Nuclear Information System (INIS)

    Liu Feng; Wang Wenqing

    1998-01-01

    In order to find new way to treat the radioactive tritium waste water, scenedesmus algae and cocconeis algae are cultured in medium which contains 30% (w) deuterium water. During different time, activities of photosymthesis, absorption spectrum, growth rate and low-temperature fluorescence spectrum are measured. Accelerated growth is found in the deuterium water compared to the normal water. Activities of photosynthesis show the similar result (F v /F m ) to the growth data. It is also concluded from low-temperature fluorescence spectra that algae activities in the deuterium water, which are expressed by PS I/PS II, are more sensitive than those in the normal water

  12. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  13. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  14. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?

    Science.gov (United States)

    de Vries, Jan; de Vries, Sophie; Slamovits, Claudio H; Rose, Laura E; Archibald, John M

    2017-05-01

    The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Antibacterial activity of extracts of marine algae from the Red Sea of ...

    African Journals Online (AJOL)

    hanan

    2012-09-04

    Sep 4, 2012 ... bacteria (Bacillus subtilis, Methicillin-Resistant Staphylococcus aureus (MRSA) and Staphylococcus aureu) and ... algae have been shown to have antibacterial activity ..... of Sargassum Ilicifolium and Kappaphycus alvarezii.

  16. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions.

    Science.gov (United States)

    Kottke, Tilman; Oldemeyer, Sabine; Wenzel, Sandra; Zou, Yong; Mittag, Maria

    2017-10-01

    Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    Science.gov (United States)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  18. Instrumental neutron activation analysis study of elemental concentrations in some species of marine algae form different regions of Libyan coast

    International Nuclear Information System (INIS)

    Abugassa, I. O.; Al-Dalem, B. S.

    2012-12-01

    Algae are an ideal marine species to study responses to different environmental factors free complication inherent in research with more complex higher plants. One of the advantages of environmental study using algae is the possibility to achieve and observe many generations during relative short time period. Algae materials have been used as ecological and environmental indicators to monitor and control in many fields of study such as freshwater and marine ecosystems, soil fertility, industrial applications, etc. It also has been shown that algae assemblages could be used as indicators of clean or polluted water. Previous studies proved high sensitivity of the most algae towards changing of environmental conditions, especially as consequences of water pollution. Algae respond rapidly and predictably to a wide range of pollutants and potentially use full early warning signals of deteriorating conditions and possible causes. Because of their nutritional needs and their position at the base of aquatic food web, algae indicators provide relativity unique information concerning ecosystem conditions compared with commonly used animal indicators. In most cases ecologically relevant signals of ecosystem changes are being provided that can be used to distinguish acceptable from unacceptable environmental conditions. Algae indicators are also a cost-effective monitoring tool as well. (Author)

  19. MORPHOLOGICAL ANATOMICAL AND PHITOCHEMICAL CHARACTERISTICS OF SOME ALGAE

    Directory of Open Access Journals (Sweden)

    N. S. Kaysheva

    2014-01-01

    Full Text Available Morphological and anatomical features of thalluses of brown (Laminaria saccharina, Fucus vesiculosus and red (Ahnfeltia plicata algae, procured at a coastal strip of the Northern basin in gulfs of Ura-Guba and Palkina-Guba at different depths. Compliance of Fucus and Ahnfeltia with pharmacopoeial norms and merchandising indices for Laminaria was established, except for high concentration of sand in Ahnfeltia thalluses. The identity of algae between each other was shown based on the results of qualitative analysis on polysaccharides, alginic acids, reducing sugars, iodine, mannitol, amino acids presence. Quantitative content of polysaccharides, alginic acids, reducing sugars, pentosans, iodine, cellulose, mannitol, proteins, lipids, agar was determined. In comparison with Fucus and Ahnfeltia higher concentration of the following content was noted in Laminaria: alginic acids (1.4 and 5.75 times higher, polysaccharides (1.3 and 1.4 times, iodine (4.5 and 1.8 times, mannatol (1.5 and 2.5 times (data received is statistically reliable. Impropriety of storm algae for processing was shown as law quality raw material. The highest concentration of active substances was revealed in Laminaria thalluses which were procured at the depth of 10 m in a period from September to October. Active accumulation of sodium, potassium, calcium, iron, magnesium, manganese corresponding to similar sea water composition was established in algae. Mathematical equations of regression between protein and manganese, protein and iron content in algae were deduced. Under proper conditions of drying and storage high quality of the materials can be preserved during 3 years. Based on the findings of photochemical researches, taking into account squares of plantations and possible exploitation stocks, the possibility and prospectivity of industrial processing of Fucus vesiculosus and Ahnfeltia plicata together with Laminaria saccharina as plant sources of polysaccharides (mainly

  20. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geisy, J P; Paine, D

    1978-01-01

    Algae and bacteria are important factors in the transport and mobilization of elements in the biosphere. These factors may be involved in trophic biomagnification, resulting in a potential human hazard or environmental degradation. Although americium, one of the most toxic elements known, is not required for plant growth, it may be concentrated by algae and bacteria. Therefore, the availability of americium-241 to algae and bacteria was studied to determine their role in the ultimate fate of this element released into the environment. Both algae and bacteria concentrated americium-241 to a high degree, making them important parts of the biomagnification process. The ability to concentrate americium-241 makes algae and bacteria potentially significant factors in cycling this element in the water column. (4 graphs, numerous references, 3 tables)

  1. Natural history of coral-algae competition across a gradient of human activity in the Line Islands

    NARCIS (Netherlands)

    Barott, K.L.; Williams, G.J.; Vermeij, M.J.A.; Harris, J.; Smith, J.E.; Rohwer, F.L.; Sandin, S.A.

    2012-01-01

    Competition between corals and benthic algae is prevalent on coral reefs worldwide and has the potential to influence the structure of the reef benthos. Human activities may influence the outcome of these interactions by favoring algae to become the superior competitor, and this type of change in

  2. Effect of ferrate on green algae removal.

    Science.gov (United States)

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  3. In vitro antitumor activity of Gracilaria corticata (a red alga) against ...

    African Journals Online (AJOL)

    ) assay. The results showed that 9.336 and 9.726 μg/μl of algal extract were the most effective concentrations against Jurkat and molt-4 cells, respectively. The water crude extract of red alga G. corticata had significant anticancer activity and it ...

  4. Microscopic Gardens: A Close Look at Algae.

    Science.gov (United States)

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  5. The Significance of Forests and Algae in CO2 Balance: A Hungarian Case Study

    Directory of Open Access Journals (Sweden)

    Attila Bai

    2017-05-01

    Full Text Available This study presents the sequestration and emissions of forests and algae related to CO2 while providing a comparison to other biomass sources (arable crops, short rotation coppices. The goal of the paper is to analyze the impact of the current CO2 balance of forests and the future prospects for algae. Our calculations are based on data, not only from the literature but, in the case of algae, from our own previous experimental work. It was concluded that the CO2 sequestration and natural gas saving of forests is typically 3.78 times higher than the emissions resulting from the production technology and from the burning process. The economic and environmental protection-related efficiency operate in opposite directions. The CO2 sequestration ability of algae can primarily be utilized when connected to power plants. The optimal solution could be algae production integrated with biogas power plants, since plant sizes are smaller and algae may play a role, not only in the elimination of CO2 emissions and the utilization of heat but also in wastewater purification.

  6. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    Science.gov (United States)

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  7. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body.

    Science.gov (United States)

    Song, Yu-Zhi; Wang, Jin-Qi; Gao, Yong-Xia

    2017-04-01

    The disappearance of submerged vascular macrophytes in shallow eutrophic lakes is a common phenomenon in the world. To explore the mechanism of the decline in submerged macrophyte abundance due to the growth of epiphytic algae along a nutrient gradient in eutrophic water, a 2 × 3 factorial experiment was performed over 4 weeks with the submerged macrophyte (Myriophyllum spicatum L.) by determining the plant's biomass and some physiological indexes, such as chlorophyll (Chl) content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity in the leaves of M. spicatum L. on days 7, 14, 21, and 28, which are based on three groups of nitrogen and phosphorus levels in the water body (N-P [mg L -1 ]: NP1 0.5-0.05, NP2 2.5-0.25, NP3 4.5-0.45) and two levels of epiphytic algae (the epiphytic algae group and the control group). Epiphytic algal biomass was also assayed. The results indicated that epiphytic algal biomass remarkably enhanced in the course of the experiment with elevated levels of nitrogen and phosphorus in the water. Under the same level of nutrient condition, plants' biomass accumulation and Chl content were higher in the control group than that in the epiphytic algae group, respectively, while MDA content and SOD activity in the former were lower than that in the latter. The influences of epiphytic algae on the biomass accumulation and Chl content and MDA content became greater and greater with elevated levels of nutrients. In general, in this experiment, water nutrients promoted the growth of both epiphytic algae and submerged plants, while the growth of epiphytic algae hindered submerged macrophytes' growth by reducing Chl content and promoting peroxidation of membrane lipids in plants.

  8. Inventory of North-West European algae initiatives

    NARCIS (Netherlands)

    Spruijt, J.

    2015-01-01

    In 2012 an inventory of North-West European (NWE) algae initiatives was carried out to get an impression of the market and research activities on algae production and refinery, especially for bioenergy purposes. A questionnaire was developed that would provide the EnAlgae project with information on

  9. Selenium accumulation and metabolism in algae.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    Dwivedi, Rakesh Kumar

    2013-01-01

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  11. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    NARCIS (Netherlands)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural

  12. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  13. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  14. Evaluation of in vitro antiviral activity of a brown alga ( Cystoseira ...

    African Journals Online (AJOL)

    The hot water extract of a brown marine alga, Cystoseira myrica, from the Persian Gulf was evaluated as an antiviral compound against KOS strain of HSV-1 in cell culture. The extract exhibited antiviral activity against herpes simplex virus type 1 (HSV-1) not only during absorption of virus to the cells, but also on post ...

  15. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    Syed Isa Syed Alwi; Mohd Norsham Che Yahya; Ruzanna Abdul Rahman

    2010-01-01

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO 2 ) emissions through the diversion of the CO 2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO 2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO 2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO 2 produced from power stations and industrial plants to feed the process (CO 2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO 2 ) to the developer. In a nutshell, CO 2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO 2 in the stack gases to produce algae. (author)

  16. Gain and loss of polyadenylation signals during evolution of green algae

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2007-04-01

    Full Text Available Abstract Background The Viridiplantae (green algae and land plants consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE. However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. Results We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza and one streptophyte (Closterium peracerosum. Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Conclusion Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA was invented in derived chlorophytes and replaced

  17. Gain and loss of polyadenylation signals during evolution of green algae.

    Science.gov (United States)

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-04-18

    The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence) 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE). However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs) from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza) and one streptophyte (Closterium peracerosum). Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA) was invented in derived chlorophytes and replaced not only the A-rich NUE but the complete poly

  18. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Algae. LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  20. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78 19-30 De Smet I and Beeckman T 2011 Asymmetric cell division in land plants and algae: the driving force for differentiation. Nature Rev. Mol. Cell Biol. 12 177... of Prasinophytes, but are as evolved as any other green alga or land plant. These organisms share several ultrastructural features with the other core Chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae...

  1. [Ecological Effects of Algae Blooms Cluster: The Impact on Chlorophyll and Photosynthesis of the Water Hyacinth].

    Science.gov (United States)

    Liu, Guo-feng; He, Jun; Yang, Yi-zhong; Han, Shi-qun

    2015-08-01

    The response of chlorophyll and photosynthesis of water hyacinth leaves in different concentrations of clustered algae cells was studied in the simulation experiment, and the aim was to reveal the mechanism of the death of aquatic plants during algae blooms occurred through studying the physiological changes of the macrophytes, so as to play the full function of the ecological restoration of the plants. And results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed the lack of oxygen (DO algae cell died and concentration of DTN in treatment 1 and 2 were 44.49 mg x L(-1) and 111.32 mg x L(-1), and the content of DTP were 2.57 mg x L(-1) and 9.10 mg x L(-1), respectively. The NH4+ -N concentrations were as high as 32.99 mg x L(-1) and 51.22 mg x L(-1), and the root zone with the anoxia, strong reducing, higher nutrients environment had a serious stress effects to the aquatic plants. The macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate of the treatment 2 reduced to 3.95 micromol (M2 x S)(-1), 0.088 micromol x (m2 x s)(-1), and only were 0.18 times, 0.11 times of the control group, respectively, at the end of the experiment, the control group were 22 micromol x (m2 x s)(-1), 0.78 micromol x (M2 x s)(-1). Results indicated the algae bloom together had the irreversible damage to the aquatic plants. Also it was found large amounts of new roots and the old roots were dead in the treatment 1, but roots were all died in the treatment 2, and leaves were yellow and withered. Experiment results manifested that the serious environment caused by the algae blooms together was the main reason of the death of aquatic plants during the summer. So in the practice of ecological restoration, it should avoid the

  2. Chemical Composition and Biological Activities of Trans-Himalayan Alga Spirogyra porticalis (Muell.) Cleve

    Science.gov (United States)

    Kumar, Jatinder; Dhar, Priyanka; Tayade, Amol B.; Gupta, Damodar; Chaurasia, Om P.; Upreti, Dalip K.; Toppo, Kiran; Arora, Rajesh; Suseela, M. R.; Srivastava, Ravi B.

    2015-01-01

    The freshwater alga Spirogyra porticalis (Muell.) Cleve, a filamentous charophyte, collected from the Indian trans-Himalayan cold desert, was identified on the basis of morpho-anatomical characters. Extracts of this alga were made using solvents of varying polarity viz. n-hexane, acetonitrile, methanol and water. The antioxidant capacities and phenolic profile of the extracts were estimated. The methanol extract showing highest antioxidant capacity and rich phenolic attributes was further investigated and phytochemical profiling was conducted by gas chromatography-mass spectrometry (GC/MS) hyphenated technique. The cytotoxic activity of methanol extract was evaluated on human hepatocellular carcinoma HepG2 and colon carcinoma RKO cell lines. The anti-hypoxic effect of methanol extract of the alga was tested on in vivo animal system to confirm its potential to ameliorate oxidative stress. The antioxidant assays viz. ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging capacities, β-carotene-linoleic acid bleaching property and lipid peroxidation exhibited analogous results, wherein the algal extracts showed significantly high antioxidant potential. The extracts were also found to possess high content of total proanthocyanidin, flavonoid and polyphenol. GC/MS analysis revealed the presence of thirteen chemotypes in the methanol extract representing different phytochemical groups like fatty acid esters, sterols, unsaturated alcohols, alkynes etc. with substantial phyto-pharmaceutical importance. The methanol extract was observed to possess anticancer activity as revealed from studies on HepG2 and RKO cell lines. In the present study, S. porticalis methanol extract also provided protection from hypoxia-induced oxidative stress and accelerated the onset of adaptative changes in rats during exposure to hypobaric hypoxia. The

  3. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.

    Science.gov (United States)

    Hadariová, Lucia; Vesteg, Matej; Hampl, Vladimír; Krajčovič, Juraj

    2018-04-01

    Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.

  4. Study on the effect of irradiation on algae by proteomics

    International Nuclear Information System (INIS)

    Choi, Jong Il; Yoon, Yo Han; Kim, Jae Hun

    2010-06-01

    Algae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the algae is just beginning and the study on protein expression and growth by the change of condition was not reported. In this study, the effect of radiation on the protein expression was investigated for the protection mechanisms and new genome source and furthermore, isolation of new mutant strains. To monitor the growth of algae, absorbance and FDA staining methods were developed and the content of lipid of algae species were measured. With these methods, the radiation sensitivity of algae species was determined. To investigate the proteome of algae, 2D-electrophoresis methods was applied. From the comparison of proteomes, the radiation specific expressed protein was identified as thioredoxin-h and its nucleotide sequences was defined. The expression of thioredoxin-h was further defined on the mRNA level. Also, the extract of algae species was analyzed for its antioxidant activity and polyphenolic content. The changes in antioxidant activity of extract by radiation was investigated. From the radiation experiments, mutant Spirogyra species having higher resistant against radical stress was obtained. The mutant strain has higher antioxidant activity. This results can provide the proteome date and mutation technology of algae and further contribute in the activation of fishery industry and national health enhancement

  5. Seasonal dynamics of 60Co uptake by freshwater algae under natural conditions

    International Nuclear Information System (INIS)

    Koulikov, N.V.; Trapeznikov, A.V.

    1988-08-01

    The data presented in the present report show that the values of 60 Co uptake coefficient in freshwater algae under naturel conditions can change 5-6 times depending on seasons, reaching maximum values in summer. Specific activity of the radionuclide in water can be essentially changed depending on the nuclear power plant operation mode. In such a nonequilibrium system it is rather questionable to use the uptake coefficient as a constant parameter for the determination of the radionuclide specific activity in water [fr

  6. Biochemical activity of di- and polyamines in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae

    Directory of Open Access Journals (Sweden)

    Romuald Czerpak

    2011-01-01

    Full Text Available This study concerns on the influence of diamines (agmatine, putrescine and polyamines (spermine, spermidine upon the growth and the content of chlorophyll a and b, monosaccharides and proteins in the cells of alga Chlorella vulgaris Beijerinck (Chlorophyceae. In the experiments agmatine, putrescine, spermine and spermidine in the range of concentrations 10-6-10-3 M were used. At the concentration 10-3 M and the 1st day of cultivation, they have a toxic effect on growth of the algae. It was found that di- and polyamines used within the range of concentration 10-6-10-4 M stimulate the growth and the contents of analysed biochemical parameters in the cells of C. vulgaris. The most stimulating influence on metabolism of the alga was demonstrated by spermidine and putrescine at concentration of 10-4 M. Agmatine and spermine were characterised by a lower biological activity than spermidine and putrescine demonstrated the most stimulating influence.

  7. Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2015-01-01

    Full Text Available Pterocladia capillacea, a red marine macroalgae, was tested for its ability to remove toxic hexavalent chromium from aqueous solution. A new activated carbon obtained from P. capillacea via acid dehydration was also investigated as an adsorbent for toxic chromium. The experiments were conducted to study the effect of important parameters such as pH, chromium concentration and adsorbent weight. Batch equilibrium tests at different pH conditions showed that at pH 1.0, a maximum chromium uptake was observed for both inactivated dried red alga P. capillacea and its activated carbon. The maximum sorption capacities for dried red alga and its activated carbon were about 12 and 66 mgg−1, respectively, as calculated by Langmuir model. The ability of inactivated red alga P. capillacea and developed activated carbon to remove chromium from synthetic sea water, natural sea water and wastewater was investigated as well. Different isotherm models were used to analyze the experimental data and the models parameters were evaluated. This study showed that the activated carbon developed from red alga P. capillacea is a promising activated carbon for removal of toxic chromium.

  8. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  9. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    Science.gov (United States)

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  10. Medicinal plant activity on Helicobacter pylori related diseases.

    Science.gov (United States)

    Wang, Yuan-Chuen

    2014-08-14

    More than 50% of the world population is infected with Helicobacter pylori (H. pylori). The bacterium highly links to peptic ulcer diseases and duodenal ulcer, which was classified as a group I carcinogen in 1994 by the WHO. The pathogenesis of H. pylori is contributed by its virulence factors including urease, flagella, vacuolating cytotoxin A (VacA), cytotoxin-associated gene antigen (Cag A), and others. Of those virulence factors, VacA and CagA play the key roles. Infection with H. pylori vacA-positive strains can lead to vacuolation and apoptosis, whereas infection with cagA-positive strains might result in severe gastric inflammation and gastric cancer. Numerous medicinal plants have been reported for their anti-H. pylori activity, and the relevant active compounds including polyphenols, flavonoids, quinones, coumarins, terpenoids, and alkaloids have been studied. The anti-H. pylori action mechanisms, including inhibition of enzymatic (urease, DNA gyrase, dihydrofolate reductase, N-acetyltransferase, and myeloperoxidase) and adhesive activities, high redox potential, and hydrophilic/hydrophobic natures of compounds, have also been discussed in detail. H. pylori-induced gastric inflammation may progress to superficial gastritis, atrophic gastritis, and finally gastric cancer. Many natural products have anti-H. pylori-induced inflammation activity and the relevant mechanisms include suppression of nuclear factor-κB and mitogen-activated protein kinase pathway activation and inhibition of oxidative stress. Anti-H. pylori induced gastric inflammatory effects of plant products, including quercetin, apigenin, carotenoids-rich algae, tea product, garlic extract, apple peel polyphenol, and finger-root extract, have been documented. In conclusion, many medicinal plant products possess anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect. Those plant products have showed great potential as pharmaceutical candidates for H. pylori

  11. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    Science.gov (United States)

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  12. Acute toxicity and associated mechanisms of four strobilurins in algae.

    Science.gov (United States)

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-04-03

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Influence of thermal loading on the ecology of intertidal algae

    International Nuclear Information System (INIS)

    Vadas, R.L.; Keser, M.; Rusanowski, P.c.

    1976-01-01

    Thermal effluents from the Maine Yankee Atomic Power Company (operating intermittently from October 1972 to December 1974) increased water temperatures in the discharge area by 7 to 15 0 C. Plant operation and the removal of a causeway increased mixing and salinities in Montsweag Bay. Four small red algae immigrated into the area, but no species were lost from the system. Distribution and abundance patterns of the dominant algae, Ascophyllum nodosum and Fucus vesiculosus, were altered by the thermal discharge. The cover of F. vesiculosus decreased, whereas that of A. nodosum increased in 1973 but declined significantly in 1974. Reductions in biomass and percent cover were accompanied by changes in the growth dynamics of A. nodosum. Growth and survival in the discharge area were enhanced in 1973 but reduced in 1974. Growth was initiated earlier at all sites affected by the warm water. Plants at experimental sites not directly in the discharge channel grew at accelerated rates during the two years, but stressed plants in the discharge produced few or no viable apexes in 1974. The net effect has been a compression and reduction of intertidal algae into a narrower and less dense band

  14. Nitrogen and sulfur assimilation in plants and algae

    Czech Academy of Sciences Publication Activity Database

    Giordano, Mario; Raven, John A.

    2014-01-01

    Roč. 118, č. 2 (2014), s. 45-61 ISSN 0304-3770 Grant - others:University of Dundee(GB) SC 015096; Italian Ministry for Agriculture(IT) MIPAF, Bioforme project; Italian Ministry of Foreign Affairs(IT) MAE. Joint Italian-Israel Cooperation Program Institutional support: RVO:61388971 Keywords : nitrogen * sulfur * assimilation * algae Subject RIV: EE - Microbiology, Virology Impact factor: 1.608, year: 2014

  15. Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P.

    1998-07-01

    The Aquatic Species Program was a relatively small research effort intended to look at the use of aquatic plants as sources of energy. Its history dates back to 1978, but much of the research from 1978 to 1982 focused on using algae to produce hydrogen. The program switched emphasis to other transportation fuels, particularly biodiesel, beginning in the early 1980's. This report summarizes the research activities carried out from 1980 to 1996, with an emphasis on algae for biodiesel production.

  16. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    Science.gov (United States)

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  17. Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity.

    Science.gov (United States)

    Feng, Leiyu; Chen, Yunzhi; Chen, Xutao; Duan, Xu; Xie, Jing; Chen, Yinguang

    2018-02-01

    Short-chain fatty acid (SCFAs) produced from harvested algae by anaerobic fermentation with uncontrolled pH was limited due to the solid cell structure of algae. This study, therefore, was undertaken to enhance the generation of SCFAs from algae by controlling the fermentation pH. pH influenced not only the total SCFAs production, but the percentage of individual SCFA. The maximal yield of SCFAs occurred at pH 10.0 and fermentation time of 6 d (3161 mg COD/L), which mainly contained acetic and iso-valeric acids and was nearly eight times that at uncontrolled pH (392 mg COD/L). Mechanism exploration revealed at alkaline pH, especially at pH 10.0, not only the cell structure of algae was damaged effectively, but also activities and relative quantification of hydrolases as well as the abundance of microorganisms responsible for organics hydrolysis and SCFAs production were improved. Also, the released microcystins from algae were removed efficiently during alkaline anaerobic fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. EnAlgae Decision Support Toolset: model validation

    NARCIS (Netherlands)

    Kenny, Philip; Visser, de Chris; Skarka, Johannes; Sternberg, Kirstin; Schipperus, Roelof; Silkina, Alla; Ginnever, Naomi

    2015-01-01

    One of the drivers behind the EnAlgae project is recognising and addressing the need for increased availability of information about developments in applications of algae biotechnology for energy, particularly in the NW Europe area, where activity has been less intense than in other areas of the

  19. Structural characterization and Biological Activity of Sulfolipids from selected Marine Algae

    Directory of Open Access Journals (Sweden)

    El Baz, F. K.

    2013-12-01

    Full Text Available The sulfolipid classes (SLs in the total lipids of five species of marine algae, two species of Rhodophyta (Laurencia popillose, Galaxoura cylindriea, one species of Chlorophyta (Ulva fasciata, and two species of Phaeophyta (Dilophys fasciola, Taonia atomaria were separated and purified on DEAE-cellulose column chromatography. The SLs component was identified by IR, gas chromatography MS/MS and liquid chromatography MS/MS. The level of SLs contents va ried from 1.25% (in L. papillose to 11.82% (in D. fasciola of the total lipid contents. However, no significant differences in sulfate content (0.13 – 0.21% were observed among all these algae species. All SLs were characterized by high contents of palmitic acid (C 16:0, which ranged from 30.91% in G. cylindriea to 63.11% in T. atomatia. The main constitutes of algal sulfolipids were identified as sulfoquinovosyl-di-acylglycerol and sulfoquinovosyl acylglycerol. The sulfolipids of different algal species exhibited remarkable antiviral activity against herps simplex virus type 1 (HSV-1 with an IC50 ranging from 18.75 to 70. 2 μg mL–1. Moreover, algal sulfolipid inhibited the growth of the tumor cells of breast and liver human cancer cells with IC50 values ranging from 0.40 to 0.67 μg mL–1 for human breast adenocarcinoma cells (MCF7.Se separaron diferentes clases sulfolípidos (SL a partir de los lípidos totales de cinco especies de algas marinas: una especie de Chlorophyta (Ulva fasciata, dos especies de Phaeophyta (Dilophys fasciola, Taonia atomaria y dos especies de Rhodophyta (Laurencia popillose, Galaxoura cylindriea que se purificaron mediante cromatografía en columna de DEAE-celulosa. Los components de SLs fueron identificados por IR, cromatografía de gases MS/MS y cromatografía líquida MS/ MS. Los contenidos de SL en relación al total de lípidos varió de 1,25% (en L. papilosa al 11,82% (en D. fasciola. Sin embargo, no hay diferencias significativas en el contenido de sulfato

  20. Bio sorption of copper ions with biomass of algae and dehydrated waste of olives; Biosorcion de iones cobre con biomasa de algas y orujos deshidratados

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, P.; Santander, M.; Pavez, O.; Valderrama, L.; Guzman, D.; Romero, L.

    2011-07-01

    They were carried out experiments of biosorption batch and in continuous to remove copper from aqueous solutions using as adsorbents green algae and olive residues under virgins conditions and chemically activated. The results of batch bio sorption indicate that the algae present mayor elimination capacities than the waste of olives, with uptakes of copper of the order of 96 % using activated algae with dissolution of Na{sub 2}SO{sub 4} under the optimum conditions. The results of the columns tests show that the virgin algae permits the removal of more copper ions than the activate algae, with removal efficiency of 98 % during the firth 20 min, a breakthrough time of 240 min and a saturation at time of 600 min. In the second cycle the regenerated biomass showed a best performance indicating that they can be used for another bio sorption cycle. (Author) 42 refs.

  1. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  2. Biodiesel Production From Algae to Overcome the Energy Crisis

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2017-10-01

    Full Text Available The use of energy sources has reached at the level that whole world is relying on it. Being the major source of energy, fuels are considered the most important. The fear of diminishing the available sources thirst towards biofuel production has increased during last decades. Considering the food problems, algae gain the most attention to be used as biofuel producers. The use of crop and food-producing plants will never be a best fit into the priorities for biofuel production as they will disturb the food needs. Different types of algae having the different production abilities. Normally algae have 20%–80% oil contents that could be converted into different types of fuels such as kerosene oil and biodiesel. The diesel production from algae is economical and easy. Different species such as tribonema, ulothrix and euglena have good potential for biodiesel production. Gene technology can be used to enhance the production of oil and biodiesel contents and stability of algae. By increasing the genetic expressions, we can find the ways to achieve the required biofuel amounts easily and continuously to overcome the fuels deficiency. The present review article focusses on the role of algae as a possible substitute for fossil fuel as an ideal biofuel reactant.

  3. Costs and benefits of chemical defence in the Red Alga Bonnemaisonia hamifera.

    Directory of Open Access Journals (Sweden)

    Göran M Nylund

    Full Text Available A number of studies have shown that the production of chemical defences is costly in terrestrial vascular plants. However, these studies do not necessarily reflect the costs of defence production in macroalgae, due to structural and functional differences between vascular plants and macroalgae. Using a specific culturing technique, we experimentally manipulated the defence production in the red alga Bonnemaisonia hamifera to examine if the defence is costly in terms of growth. Furthermore, we tested if the defence provides fitness benefits by reducing harmful bacterial colonisation of the alga. Costly defences should provide benefits to the producer in order to be maintained in natural populations, but such benefits through protection against harmful bacterial colonisation have rarely been documented in macroalgae. We found that algae with experimentally impaired defence production, but with an externally controlled epibacterial load, grew significantly better than algae with normal defence production. We also found that undefended algae exposed to a natural epibacterial load experienced a substantial reduction in growth and a 6-fold increase in cell bleaching, compared to controls. Thus, this study provides experimental evidence that chemical defence production in macroalgae is costly, but that the cost is outweighed by fitness benefits provided through protection against harmful bacterial colonisation.

  4. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  5. Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...

  6. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae.

    Science.gov (United States)

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-08-20

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  7. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Directory of Open Access Journals (Sweden)

    Atsushi Kurotani

    2015-08-01

    Full Text Available Recent proteome analyses have reported that intrinsically disordered regions (IDRs of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  8. The ice nucleation activity of extremophilic algae

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Hájek, J.; Worland, M. R.

    2013-01-01

    Roč. 34, č. 2 (2013), s. 137-148 ISSN 0143-2044 R&D Projects: GA AV ČR KJB601630808; GA AV ČR KJB600050708 Institutional support: RVO:67985939 Keywords : Ice nucleation * snow algae * lichen photobionts Subject RIV: EF - Botanics Impact factor: 0.640, year: 2013

  9. Composition, Occurrences and Checklist of Periphyton Algae of ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    The periphyton is also an important indicator of water quality (Azim et al, 2006). Attached algae are primitive plants that get their nutrients from water passing over them. ... rung in the aquatic food chain depend directly ... influence of sea water.

  10. Radionuclides in biota collected near a dicalcium phosphate plant, southern Catalonia, Spain

    International Nuclear Information System (INIS)

    Mola, M.; Palomo, M.; Penalver, A.; Aguilar, C.; Borrull, F.

    2013-01-01

    Industrial waste containing radioactive U-decay series isotopes was released into the Ebro River, Spain, over a period of >20 years from a dicalcium phosphate (DCP) plant. This release raised activities of several natural radionuclides (e.g. 238 U, 234 U, 230 Th, 232 Th and 226 Ra) in biota taken from the area near the DCP plant. Plants and animals selected for this study included the green algae (Cladophora glomerata), the blue mussel (Mytilus edulis), the zebra mussel (Dreissena polymorpha) and the scavenger catfish (Silurus glanis) because they are all common in the area. Multiple sampling points were chosen for this study: (1) a site in the Riba-Roja Reservoir, above the DCP plant's area of influence, (2) four sites in the area surrounding the DCP plant, close to the town of Flix, and (3) a location in the Ebro Delta Estuary in Fangar Bay. Significant differences in the activities (in Bq kg -1 of dry weight) for the radioisotopes included in this study among samples were attributed to sample location and the species evaluated. For instance, relatively high activities for uranium and radium were obtained in algae collected around the DCP plant, compared to results obtained for algae samples taken from the unimpacted Riba-Roja Reservoir. In contrast, for zebra mussels, enhanced activities were observed for all radionuclides and, in particular, for thorium and radium isotopes within the area of influence. Among catfish samples, activity values from different locations were not significantly different, though slightly higher activities were observed at the sampling point just downstream of the DCP factory. (author)

  11. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  12. Diterpenes from the Marine Algae of the Genus Dictyota.

    Science.gov (United States)

    Chen, Jiayun; Li, Hong; Zhao, Zishuo; Xia, Xue; Li, Bo; Zhang, Jinrong; Yan, Xiaojun

    2018-05-11

    Species of the brown algae of the genus Dictyota are rich sources of bioactive secondary metabolites with diverse structural features. Excellent progress has been made in the discovery of diterpenes possessing broad chemical defensive activities from this genus. Most of these diterpenes exhibit significant biological activities, such as antiviral, cytotoxic and chemical defensive activities. In the present review, we summarized diterpenes isolated from the brown algae of the genus.

  13. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  14. Algae from the arid southwestern United States: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  15. Cultivation of phagotrophic algae with waste activated sludge as a fast approach to reclaim waste organics.

    Science.gov (United States)

    Li, Cong; Xiao, Suo; Ju, Lu-Kwang

    2016-03-15

    Substantial energy is reserved in waste activated sludge (WAS) organics but much of it is difficult to recover because the solid organics require long time to solubilize. In this work we introduced the new approach of recovering WAS organics into the biomass of phagotrophic algae. Phagotrophic algae have the unique ability to grow by ingesting insoluble organic particles including microbial cells. This phagotrophic ability renders the solubilization of WAS organics unnecessary and makes this approach remarkably fast. The approach consists of two stages: a short anaerobic digestion treatment followed by the algal growth on treated WAS. The short anaerobic digestion was exploited to release discrete bacteria from WAS flocs. Phagotrophic algae could then grow rapidly with the released bacteria as well as the solubilized nutrients in the treated WAS. The results showed that WAS organics could be quickly consumed by phagotrophic algae. Among all studied conditions the highest WAS volatile solids (VS) reduction was achieved with 72 h anaerobic digestion and 24 h algal growth. In this optimal process, 28% of WAS VS was reduced, and 41% and 20% of the reduced VS were converted into algal biomass and lipids, respectively. In comparison, only 18% WAS VS were reduced after the same time of aerobic digestion without algae addition. Through this approach, the amount of WAS organics requiring further treatment for final disposal is significantly reduced. With the production of significant amounts of algal biomass and lipids, WAS treatment is expected to be more economical and sustainable in material recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Biogas performance from co-digestion of Taihu algae and kitchen wastes

    International Nuclear Information System (INIS)

    Zhao, Ming-Xing; Ruan, Wen-Quan

    2013-01-01

    Highlights: • Co-digestion mode improves the biogas yield of Taihu algae and kitchen wastes. • Neutral protease enzyme reached maximum in algae only group. • The activity of dehydrogenase enzyme in mixed substrate groups was higher than that of algae and kitchen wastes only group. - Abstract: Co-digestion of Taihu algae with high carbon content substrate can balance the nutrients in the fermentation process. In this study, optimal mixing ratio for co-digestion of Taihu algae and kitchen wastes were investigated in order to improve biogas production potential. The results indicated that the biogas yield reached 388.6 mL/gTS at C/N15:1 group, which was 1.29 and 1.18 times of algae and kitchen wastes only. The maximum concentration of VFA reached 4239 mg/L on 8th day in kitchen wastes group, which was 1.21 times of algae group. Neutral protease enzyme activity in algae group reached maximum of 904.2 μg/(gTS h), while dehydrogenase enzyme at C/N 15:1 group reached maximum of 3402.2 μgTF/(gTS h). The feasibility of adjusting the C/N with co-digestion of Taihu algae and kitchen wastes to increase biogas production was demonstrated. Remarkably, the C/N of 15:1 was found to be the most appropriate ratio

  17. The alga Trachydiscus minutus (Pseudostaurastrum minutum): growth and composition

    Czech Academy of Sciences Publication Activity Database

    Iliev, I.; Petkov, G.; Lukavský, Jaromír; Furnadzhieva, S.; Andreeva, R.; Bankova, V.

    2011-01-01

    Roč. 36, 3-4 (2011), 222-231 ISSN 1312-8183 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : algae, * fatty acids * pilot plant cultivation Subject RIV: EF - Botanics

  18. Leachates and elemental ratios of macrophytes and benthic algae of an Andean high altitude wetland

    Directory of Open Access Journals (Sweden)

    Beatriz MODENUTTI

    2011-08-01

    Full Text Available In wetlands, macrophytes and filamentous algae constitute an important carbon source for the total content of Dissolved Organic Matter (DOM of the environment. Mallín wetland meadows are highly diverse and rare habitats in Patagonia, that can be characterized as wet meadows with a dense cover mainly dominated by herbaceous plants. We carried out a field study comparing elemental composition (C:N:P of benthic algae (Spirogyra sp. and Zygnema sp. and the submerged macrophyte (Myriophyllum quitense from a high latitude wetland (local name: mallín. Besides we performed laboratory experiments in order to study the effect of ultraviolet radiation (UVR on the optical properties and nutrient release of DOM from leachates of these benthic algae and submerged macrophyte. The obtained results indicated that macrophyte leachates could contribute significantly to changes in the optical characteristics of the wetlands while benthic algae contribute with leachates with low photoreactivity. Finally, nutrient release differs among plant species and season: benthic algae leachates release more P in spring, while M. quitense releases more of this nutrient in autumn. These results suggested that the different colonization may contribute differentially to the chemical environment of the wetland.

  19. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  20. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  1. Effect of Algae and Plant Lectins on Planktonic Growth and Biofilm Formation in Clinically Relevant Bacteria and Yeasts

    Directory of Open Access Journals (Sweden)

    Mayron Alves Vasconcelos

    2014-01-01

    Full Text Available This study aimed to evaluate the abilities of plant and algae lectins to inhibit planktonic growth and biofilm formation in bacteria and yeasts. Initially, ten lectins were tested on Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella oxytoca, Pseudomonas aeruginosa, Candida albicans, and C. tropicalis at concentrations of 31.25 to 250 μg/mL. The lectins from Cratylia floribunda (CFL, Vatairea macrocarpa (VML, Bauhinia bauhinioides (BBL, Bryothamnion seaforthii (BSL, and Hypnea musciformis (HML showed activities against at least one microorganism. Biofilm formation in the presence of the lectins was also evaluated; after 24 h of incubation with the lectins, the biofilms were analyzed by quantifying the biomass (by crystal violet staining and by enumerating the viable cells (colony-forming units. The lectins reduced the biofilm biomass and/or the number of viable cells to differing degrees depending on the microorganism tested, demonstrating the different characteristics of the lectins. These findings indicate that the lectins tested in this study may be natural alternative antimicrobial agents; however, further studies are required to better elucidate the functional use of these proteins.

  2. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  3. Chemical composition and antibacterial activity of extracts of freshwater green algae, Cladophora glomerata Kützing andMicrospora floccosa (Vaucher Thuret

    Directory of Open Access Journals (Sweden)

    Ratiphan Laungsuwon

    2014-12-01

    Full Text Available Freshwater macroalgae, Cladophora glomerata Kützing and Microspora floccosa (Vaucher Thuret, harvested from Nan River in northern Thailand, were extracted with hexane, ethyl acetate, methanol and hot water. The extracts were screened for antibacterial activities. Hexane and ethyl acetate extracts of both algae showed the activities against Bacillus cereus and Vibrio parahaemolyticus. The extracts were further separated using column chromatography and chemically characterized by GC–MS in order to be tentative identify the compounds responsible for such activities. The main compositions were fatty acid and other organic compounds, in which have not been reported in these algae. These results indicate that extracts of C. glomerata and M. floccosa exhibited appreciable antimicrobial activity and could be a source of valuable bioactive materials for health products.

  4. Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents

    Science.gov (United States)

    Zheng, Yi; Chen, Yin-Shan; Lu, Hai-Sheng

    2001-12-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta ( Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  5. Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Patricia Valentao

    2011-05-01

    Full Text Available The sea constitutes one of the most promising sources of novel compounds with potential application in human therapeutics. In particular, algae have proved to be an interesting source of new bioactive compounds. In this work, six meroditerpenoids (epitaondiol, epitaondiol diacetate, epitaondiol monoacetate, stypotriol triacetate, 14-ketostypodiol diacetate and stypodiol isolated from the brown alga Stypopodium flabelliforme were tested for their cell proliferation inhibitory activity in five cell lines. Cell lines tested included human colon adenocarcinoma (Caco-2, human neuroblastoma (SH-SY5Y, rat basophilic leukemia (RBL-2H3, murine macrophages (RAW.267 and Chinese hamster fibroblasts (V79. Antimicrobial activity of the compounds was also evaluated against Staphylococcus aureus, Salmonella typhimurium, Proteus mirabilis, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus. Overall, the compounds showed good activity against all cell lines, with SH-SY5Y and RAW.267 being the most susceptible. Antimicrobial capacity was observed for epitaondiol monoacetate, stypotriol triacetate and stypodiol, with the first being the most active. The results suggest that these molecules deserve further studies in order to evaluate their potential as therapeutic agents.

  6. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  7. Radionuclides in macro algae at Monaco following the Chernobyl accident

    International Nuclear Information System (INIS)

    Holm, E.; Ballestra, S.; Lopez, J.J.; Bulos, A.; Whitehead, N.E.; Barci-Funel, G.; Ardisson, G.

    1994-01-01

    Samples of macro algae, Codmium tomentosum (green), Corallina mediterranea (red), Sphaerococcus coronopifolius (red) and Dictyota dichotoma (brown), were collected off Monaco during 1984 and 1988 and analysed for gamma-emitting radionuclides and transuranium elements. Due to the Chernobyl accident, increased radioactivity in the atmosphere at Monaco was recorded on 30 April 1986 with maximal activity concentrations on 2-3 May. The maximal activity concentrations in sea water occurred on 5-6 May and in the algae on 11 May. The decrease of activity concentrations can be described after May 11 as a single exponential relationship, where elimination rates for different radionuclides and different species specific to the environment can be calculated. The elimination rates thus observed correspond to mean residence times between 70 and 370 days corrected for physical decay. The concentration factors were also estimated and the highest values were found for 131 I, 129 Te m , and 110 Ag m and lowest for radiocesium and 140 Ba. The red algae Sphaerococcus coronopifoius showed generally higher concentration factors than green and brown algae. Regarding transuranium elements, a theoretical contribution from the Chernobyl accident can be made but only 242 Cm was detected in the algae above previous levels before the accident, due to the relatively small fallout of transuranics. (author) 23 refs.; 9 figs.; 4 tabs

  8. Blue-Green Algae

    Science.gov (United States)

    ... that taking a specific blue-green algae product (Super Blue-Green Algae, Cell Tech, Klamath Falls, OR) ... system. Premenstrual syndrome (PMS). Depression. Digestion. Heart disease. Memory. Wound healing. Other conditions. More evidence is needed ...

  9. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  10. [Mechanism of the inhibitory action of allelochemical dibutyl phthalate on algae Gymnodinium breve].

    Science.gov (United States)

    Bie, Cong-Cong; Li, Feng-Min; Wang, Yi-Fei; Wang, Hao-Yun; Zhao, Ya-Han; Zhao, Wei; Wang, Zhen-Yu

    2012-01-01

    The aim of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. The effects of DBP on malonaldehyde, subcellular structure and superoxide dismutase (SOD) isoforms were investigated. The results showed that MDA accumulated in the algae cell under DBP exposure, and for the 3 mg x L(-1) DBP treated algae culture a peak value of 0.34 micromol x (10(9) cells) (-1) occurred at 72 h, which was about 2. 3 times than that of the control. TEM pictures showed the disruption of DBP on the subcellular structure of G. breve. A morphological phenomenon appeared that the algae cell was commonly found small tubules or apical parts around the cell membrane, and almost all normal cell organelles were indistinguishable finally. The activity of CuZn-SOD (main cytoplast located isoform with little in cloroplast) under DBP exposure was higher than that of the control, and no significant difference was observed on Fe-SOD (chloroplast located isoform) activity, but for the Mn-SOD (mitochondrial isoform), the activity was significantly inhibited. These results indicated that DBP might inhibit the algae growth from the plasma membrane and the mitochondria, resulting in oxidative damage in algae cell and a final death. This paper will give a theoretical support to the practical usage of the allelochemical on red tide algae.

  11. Development of chemistry support programme for algae control in spray pond waters of CIRUS reactor

    International Nuclear Information System (INIS)

    Ramabhadran, S.; Ghosh, S.; Bose, H.

    2008-01-01

    A major problem in any open recirculating cooling water system, is the growth of micro-organisms, especially algae, which adversely affects the efficient and safe operation of the plant. The algae control depends to a great extent, on the selection of an effective algaecide and on the adoption of proper dose and dosing frequency of the algaecide. The present paper describes the development of (i) a generally applicable analytical method for comparing the algicidal efficacies of available commercial algaecides, for the specific local strains of algae in the spray pond waters of CIRUS reactor at Trombay, and (ii) a procedure for assessing 'algicide demand' in open recirculating cooling water systems, which can be used to establish an effective and efficient algae control programme. (author)

  12. Role of algae in water quality regulation in NPP water reservoirs

    International Nuclear Information System (INIS)

    Klenus, V.G.; Kuz'menko, M.I.; Nasvit, O.I.

    1985-01-01

    Investigations, carried out in Chernobyl NPP water reservoir, show that sewage water inflow, being not sufficiently purified, enriched by mineral and organic substances, is accompanied by a considerable increase of algae productivity. The algae play a determining role in accumulation of radionuclides and their transformation into bottom depositions. Comparative investigation of accumulation intensity in alga cells 12 C and 14 C gives evidence that the rate of radioactive nuclide inclusions is practically adequate to the rate of inclusions of their stable analogues. Bacterial destruction of organic contaminations occurs more intensively under aerobic conditions, which are mainly provided due to photosynthetizing activity of algae

  13. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... algae Gracilaria for the biosorption of Cu(II) from aqueous ... adsorbent dose, and metal ions concentration, were considered. ... precipitation, membrane separation, adsorption and ion exchange processes which are being used to remove copper ... Copper solutions of different concentration (50-180 ppm).

  14. Production of the blood pressure lowing peptides from brown alga ( Undaria pinnatifida)

    Science.gov (United States)

    Minoru, Sato; Takashi, Oba; Takao, Hosokawa; Toshiyasu, Yamaguchi; Toshiki, Nakano; Tadao, Saito; Koji, Muramoto; Takashi, Kahara; Katsura, Funayama; Akio, Kobayashi; Takahisa, Nakano

    2005-07-01

    Brown alga ( Undaria pinnatifida) was treated with alginate lyase and hydrolyzed using 17 kinds of proteases and the inhibitory activity of the hydrolysates for the angiotensin-I-converting enzyme (ACE) was measured. Four hydrolysates with potent ACE-inhibitory activity were administered singly and orally to spontaneously hypertensive rats (SHRs). The systolic blood pressure of SHRs decreases significantly after single oral administration of the brown alga hydrolysates by protease S ‘Amano’ (from Bacillus stearothermophilus) at the concentration of 10 (mg protein) (kg body weight)-1. In the 17 weeks of feeding experiment, 7-week-old SHRs were fed standard diet supplemented with the brown alga hydrolysates for 10 weeks. In SHRs fed 1.0 and 0.1% brown alga hydrolysates, elevating of systolic bloodpressure was significantly suppressed for 7 weeks. To elucidate the active components, the brown alga hydrolysates were fractionated by 1-butanol extraction and HPLC on a reverse-phase column. Seven kinds of ACE-inhibitory peptides were isolated and identified by amino acid composition analysis, sequence analysis, and LC-MS with the results Val-Tyr, Ile-Tyr, Ala-Trp, Phe-Tyr, Val-Trp, Ile-Trp, and Leu-Trp. Each peptide was determined to have an antihypertensive effect after a single oral administration in SHRs. The brown alga hydrolysates were also confirmed to decrease the blood pressure in humans.

  15. A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria

    NARCIS (Netherlands)

    Luimstra, V.M.; Kennedy, S.J.; Güttler, J.; Wood, S.A.; Williams, D.E.; Packer, M.A.

    2014-01-01

    This work describes the development of an easily constructed, cost-effective photosynthetic microbial fuel cell design with highly reproducible electrochemical characteristics that can be used to screen algae and cyanobacteria for photosynthetic electrogenic activity. It is especially suitable for

  16. Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens

    Czech Academy of Sciences Publication Activity Database

    Synytsya, A.; Choi, D. J.; Pohl, Radek; Na, Y. S.; Capek, P.; Lattová, E.; Taubner, T.; Choi, J. W.; Lee, C. W.; Park, J. K.; Kim, W. J.; Kim, S. M.; Lee, J.; Park, Y. I.

    2015-01-01

    Roč. 17, č. 6 (2015), s. 718-735 ISSN 1436-2228 Institutional support: RVO:61388963 Keywords : alga Maesaengi (Capsosiphon fulvescens) * ulvan * monosaccharide composition * structure * anti-coagulant activity Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.062, year: 2015

  17. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  18. Evaluation of Antioxidant Activity of Extracts of Marine Algae Halimeda tuna Collected from the Chabahar Bay

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2017-07-01

    Full Text Available Background and Objectives: Seaweeds are one of the richest sources of natural antioxidants. Antioxidants are main factors of free radical scavenging, which prevent from chronic diseases and food deterioration. These compounds can also be extracted from seaweeds. In this study, the antioxidant activity of the extracts from marine algae Halimeda tuna collected from the coast of Chabahar, was evaluated. Methods: This is an in vitro study. The antioxidant activity of methanol, chloroform, ethyl acetate, and n-hexanic extracts of the algae, were evaluated using three methods of DPPH, ferrous ion chelating activity, and reduction power methods. Data were analyzed by one-way ANOVA and Tukey test at the probability level of 95%. Results: In this study, the highest antioxidant capacity according to DPPH, was related to the chloroform extract (72.85% inhibition at the concentration of 1mg/ml. In the ferrous ion chelating activity, the highest percentage of chelating was allocated to the methanol extract (81.46%. Based on the data from the reduction power test, the highest reduction activity was related to the methanol extract with absorption of 0.553 (concentration, 1mg/ml. Conclusion: Based on the results of this research, the extracts of Halimeda tuna have the potential for application in medicine and pharmaceutical industry and must be confirmed by preclinical and clinical studies.

  19. Biogas from algae, seaweed and seagrass?; Biogas aus Algen, Tang und Seegras?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Holger [Fachhochschule Flensburg (Germany)

    2011-07-01

    Algae, seaweed and sea grass are discussed again and again as alternative sources for raw materials for agricultural biogas plants. The author of the contribution under consideration reports on the identification and optimization of the biogas potential of microalgae, macroalgae and flotsam (mixture of seaweed, seaweed, and so on). Algae, seaweed and sea grass can be fermented into biogas by means of an anaerobic process. The specific yield of biogas is small. The processing of these substrates requires a technical adjustment of the biogas plants. Thus, the effective use of these substrates will continue to fall. The achievable benefit highly depends on the location of the facilities and on the available substrates with the corresponding specific gas yields. The economic efficiency of these substrates in agricultural systems must be examined in each case.

  20. On reproduction in red algae: further research needed at the molecular level

    Directory of Open Access Journals (Sweden)

    Pilar eGarcía-Jiménez

    2015-02-01

    Full Text Available Multicellular red algae (Rhodophyta have some of the most complex life cycles known in living organisms. Economically valuable seaweeds, such as phycocolloid producers, have a triphasic (gametophyte, carposporophyte and tetrasporophyte life cycle, not to mention the intricate alternation of generations in the edible sushi-alga nori. It is a well-known fact that reproductive processes are controlled by one or more abiotic factor(s, including day length, light quality, temperature and nutrients. Likewise, endogenous chemical factors such as plant growth regulators have been reported to affect reproductive events in some red seaweeds. Still, in the genomic era and given the high throughput techniques at our disposal, our knowledge about the endogenous molecular machinery lags far behind that of higher plants. Any potential effective control of the reproductive process will entail revisiting most of these results and facts to answer basic biological questions as yet unresolved. Recent results have shed light on the involvement of several genes in red alga reproductive events. In addition, a working species characterized by a simple filamentous architecture, easy cultivation and accessible genomes may also facilitate our task.

  1. Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jacob Kruger [Michigan State Univ., East Lansing, MI (United States). Dept. of Plant Biology; Michigan State Univ., East Lansing, MI (United States). DOE Great Lakes Bioenergy Research Center; Busse-Wicher, Marta [Univ. of Cambridge (United Kingdom). Dept. of Biochemistry; Poulsen, Christian Peter [Carlsberg Research Lab., Copenhagen (Denmark); Fangel, Jonatan Ulrik [Carlsberg Research Lab., Copenhagen (Denmark); Smith, Peter James [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC); Yang, Jeong-Yeh [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Peña, Maria-Jesus [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC); Dinesen, Malene Hessellund [Carlsberg Research Lab., Copenhagen (Denmark); Martens, Helle Juel [Univ. of Copenhagen (Denmark). Dept. of Plant and Environmental Sciences; Melkonian, Michael [Univ. zu Koln (Germany). Botanical Inst., Dept. of Biological Sciences; Wong, Gane Ka-Shu [BGI-Shenzhen, Shenzhen, Guangdong (China); Moremen, Kelley W. [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Wilkerson, Curtis Gene [Michigan State Univ., East Lansing, MI (United States). Dept. of Plant Biology; Michigan State Univ., East Lansing, MI (United States). DOE Great Lakes Bioenergy Research Center; Michigan State Univ., East Lansing, MI (United States). Dept. of Biochemistry and Molecular Biology; Scheller, Henrik Vibe [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Genomics and Systems Biology Division; Dupree, Paul [Univ. of Cambridge (United Kingdom). Dept. of Biochemistry; Ulvskov, Peter [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Urbanowicz, Breeanna Rae [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC); Harholt, Jesper [Carlsberg Research Lab., Copenhagen (Denmark)

    2018-02-20

    Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 in plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. Finally, these data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.

  2. Evaluating the potential of renewable diesel production from algae cultured on wastewater: techno-economic analysis and life cycle assessment

    Directory of Open Access Journals (Sweden)

    Ankita Juneja

    2017-03-01

    Full Text Available Algae, a renewable energy source, has an added advantage of consuming nutrients from wastewater and consequently aiding in wastewater treatment. The algae thus produced can be processed using alternative paths for conversion to fuels. However, due to high moisture content of algae, wet algae processing methods are being encouraged to avoid the dewatering cost and energy. Hydrothermal liquefaction is one such technology that converts the algae into high heating value bio-oil under high temperature and pressure. This bio-oil can be further upgraded to renewable diesel (RD which can be used in diesel powered vehicles without any modifications. The objective of this study is to evaluate the economic viability and to estimate the energy use and greenhouse gas (GHG emissions during life cycle of RD production from algae grown in wastewater using hydrothermal liquefaction. Economic analysis of RD production on commercial scale was performed using engineering process model of RD production plant with processing capacity of 60 Mgal wastewater/day, simulated in SuperPro designer. RD yields for algae were estimated as 10.18 MML/year with unit price of production as $1.75/RD. The GHG emissions during life cycle of RD production were found to be 6.2 times less than those produced for conventional diesel. Sensitivity analysis indicated a potential to reduce ethanol production cost either by using high lipid algae or increasing the plant size. The integrated economic and ecological assessment analyses are helpful in determining long-term sustainability of a product and can be used to drive energy policies in an environmentally sustainable direction.

  3. Biosorción de iones cobre con biomasa de algas y orujos deshidratados

    Directory of Open Access Journals (Sweden)

    Romero, L.

    2011-02-01

    Full Text Available They were carried out experiments of biosorption batch and in continuous to remove copper from aqueous solutions using as adsorbent green algae and olive residues under virgins conditions and chemically activated. The results of batch biosorption indicate that the algae present mayor elimination capacities than the waste of olives, with uptakes of copper of the order of 96 % using activated algae with dissolution of Na2SO4 under the optimum conditions. The results of the columns tests show that the virgin algae permits the removal of more copper ions than the activate algae, with removal efficiency of 98 % during the firth 20 min, a breakthrough time of 240 min and a saturation at time of 600 min. In the second cycle the regenerated biomass showed a best performance indicating that they can be used for another biosorption cycle.

    Se realizaron experimentos de biosorción batch y en continuo para remover cobre desde soluciones acuosas usando como adsorbentes algas verdes y residuos de aceituna en condiciones vírgenes y activadas químicamente. Los resultados de la biosorción a escala batch indican que las algas presentan mayor capacidad de eliminación que los orujos, alcanzándose captaciones de cobre del orden de 96 % con algas activadas con disoluciones de Na2SO4 bajo condiciones óptimas de las variables estudiadas. Los resultados de los ensayos en columna muestran que las algas vírgenes captan más iones cobre que las activadas con Na2SO4, con eficacias de eliminación del 98 % durante los primeros 20 min, con un tiempo de ruptura de 240 min y una saturación a los 600 min. Al ser sometidas a un segundo ciclo de biosorción, las algas regeneradas muestran un mejor rendimiento lo que indica que pueden ser usadas en otro ciclo de eliminación.

  4. Investigating the feasibility of growing algae for fuel in Southern nevada

    Science.gov (United States)

    Moazeni, Faegheh

    Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock production. This study replaces fertilizers and clean water with waste products. The investigated wastes include (1) the liquid fraction of sewage after solids and particles are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at the end of the lipids extraction process at biofuel plants. These wastes contain sufficient amount of nitrogen and phosphorus required for algal growth. This study proposes a system in which centrate would be used as an initial source of water and nutrients for microalgal growth. The generated biomass waste can be continuously recycled, serving as a fertilizer. If so desired, the centrate can be reverted back into the system from time to time as a nutrition supplement and as a make-up water source, particularly in open ponds that face evaporation. Of the six studied algae, i.e. Chlorella sorokiniana, Encyonema caespitosum, Nitzschia thermalis, Scenedesmus sp., Synechocystis sp., and Limnothrix sp., mostly isolated from the habitats influenced by municipal wastewater in and around the Las Vegas Valley, two green algae were eligible. In the laboratory, the green algae C. sorokiniana and Scenedesmus sp. grew in the media composed of centrate or algal residue faster than in the mineral medium BG11, optimized for algal growth. The enhanced productivity is mainly attributed to the photosynthesis known for mixotrophic process and the presence of organic carbon in the waste which serves as an extra source of energy. Tolerance for hard water and strong light and, in the case of C. sorokiniana , an unusually high optimum temperature between 32 and 35°C are also attributing factors to the enhanced productivity of algae. These studied species are particularly suited for cultivation in their native southwestern United States, particularly

  5. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-01-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  6. Exchange of certain radionuclides between environment and freshwater algae

    International Nuclear Information System (INIS)

    Marchyulenene, E. D.P.

    1978-01-01

    Data on the dynamics and levels of accumulation of strontium, cesium, cerium and ruthenium radionuclides by Charophyta and Cladophora fresh-water algae are presented. An attempt has been made to investigate some processes that accompany the accumulation of radionuclides by plants. Under experimental conditions, the intensity and levels of radionuclide accumulation can be presented in the following order: 144 Ce> 106 Ru> 90 Sr> 137 Cs. The dynamics of radionuclide accumulation varied greatly with the radionuclide and the algae species studied. The 144 Ce accumulation coefficients (AC) in the course of experiment (from 3 hours to 16 days) increased 8-, 9-, 23.4-, 27-, 14.3- and 20.4-fold for Cladophora glomerata, Nitella syncarpa, Nitellopsis obtusa, Chara vulgaris, Ch. rudis, and Ch. aspera, respectively. In the case of 106 Ru, AC for C.glomerata, N. syncarapa, Ch. vulgaris and Ch. rudis increased 34-, 18-,24- and 23-fold, respectively. In all algae species studied the equilibrium of radionuclide accumulation was attained after 2-4 days of experiment. Levels of accumulated 90 Sr and 137 Cs in most species depended on the season while that of 144 Cs and 106 Ru remained constant throughout the vegetation period. The levels of radionuclide elimination, like the accumulation levels, are shown to depend on both isotopes and algae species

  7. Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems.

    Science.gov (United States)

    Riaz, Ghazala; Tabinda, Amtul Bari; Iqbal, Shakir; Yasar, Abdullah; Abbas, Mateen; Khan, Abdul Muqeet; Mahfooz, Yusra; Baqar, Mujtaba

    2017-10-03

    Extensive use of Pesticides in agriculture and its surface runoff in river water is a major environmental concern. The present study evaluated the phytoremediation potential of Eichornia crassipes, Pistia strateotes and algae (Chaetomorpha sutoria, Sirogonium sticticum and Zygnema sp.) for organochlorine and pyrethroid pesticides. Water and plant samples were extracted by liquid phase and solid phase extraction respectively and analyzed by high-performance liquid chromatography. Eleven treatments (T1-T11) with and without plants were used for phytoremediation of organochlorine and pyrethroid pesticides. During the experiment, P. strateotes, E. crassipes and algae (C. sutoria, S. sticticum and Zygnema sp.) showed the highest removal efficiency with 62 (71% root, 29% shoot), 60 (67% root, 33% shoot), and 58% respectively for organochlorine and 76 (76% root, 24% shoot), 68 (69% root, 31% shoot), and 70% respectively for pyrethroids for the respective aquatic plants. Dissipation rate constant of treatments with plants (T2, T3, T5, T6, T8, and T9) was significantly higher (p < 0.05) as compared to that of treatments without plants (T10 and T11, control) for both organochlorine and pyrethroid. The bioconcentration factor of pyrethroid treatments (T3, T6, and T9) was significantly higher (p < 0.05) as compared to that of organochlorine treatments (T2, T5 and T8). The removal efficiency of E. crassipes, P. strateotes and algae (C. sutoria, S. sticticum and Zygnema sp.) for pyrethroids was significantly higher (p < 0.01) as compared to that of organochlorine.

  8. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  9. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah

    Science.gov (United States)

    Freebury, Colin E.; Hamilton, Paul B.; Saarela, Jeffery M.

    2016-01-01

    Abstract The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  10. Interactions between marine facultative epiphyte Chlamydomonas sp. (Chlamydomonadales, Chlorophyta) and ceramiaceaen algae (Rhodophyta).

    Science.gov (United States)

    Klochkova, Tatyana A; Cho, Ga Youn; Boo, Sung Min; Chung, Ki Wha; Kim, Song Ja; Kim, Gwang Hoon

    2008-07-01

    Previously unrecorded marine Chlamydomonas that grew epiphytic on ceramiaceaen algae was collected from the western coast of Korea and isolated into a unialgal culture. The isolate was subjected to 18S rDNA phylogenetic analysis as well as ultrastructure and life cycle studies. It had an affinity with the marine Chlamydomonas species and was less related to freshwater/terrestrial representatives of this genus. It had flagella shorter than the cell body two-layered cell wall with striated outer surface and abundant mucilaginous material beneath the innermost layer and no contractile vacuoles. This alga grew faster in mixed cultures with ceramiaceaen algae rather than in any tested unialgal culture condition; the cells looked healthier and zoosporangia and motile flagellated vegetative cells appeared more often. These results suggested that this Chlamydomonas might be a facultative epiphyte benefiting from its hosts. Several ceramiaceaen algae were tested as host plants. Meanwhile, cell deformation or collapse of the whole thallus was caused to Aglaothamnion byssoides, and preliminary study suggested that a substance released from Chlamydomonas caused the response. This is first report on harmful epiphytic interactions between Chlamydomonas species and red ceramiaceaen algae.

  11. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids.

    Science.gov (United States)

    Hund-Rinke, Kerstin; Simon, Markus

    2006-07-01

    Due to their large potential for manifold applications, the use of nanoparticles is of increasing importance. As large amounts of nanoparticles may reach the environment voluntarily or by accident, attention should be paid on the potential impacts on the environment. First studies on potential environmental effects of photocatalytic TiO2 nanoparticles have been performed on the basis of widely accepted, standardized test systems which originally had been developed for the characterization of chemicals. The methods were adapted to the special requirements of testing photocatalytic nanoparticles. Suspensions of two different nanoparticles were illuminated to induce their photocatalytic activity. For testing, the growth inhibition test with the green alga Desmodesmus subspicatus and the immobilization test with the daphnid Daphnia magna were selected and performed following the relevant guidelines (algae: ISO 8692, OECD 201, DIN 38412-33; daphnids: ISO 6341, OECD 202, DIN 38412-30). The guidelines were adapted to meet the special requirements for testing photocatalytic nanoparticles. The results indicate that it is principally possible to determine the ecotoxicity of nanoparticles. It was shown that nanoparticles may have ecotoxicological effects which depend on the nature of the particles. Both products tested differ in their toxicity. Product 1 shows a clear concentration-effect curve in the test with algae (EC50: 44 mg/L). It could be proven that the observed toxicity was not caused by accompanying contaminants, since the toxic effect was comparable for the cleaned and the commercially available product. For product 2, no toxic effects were determined (maximum concentration: 50 mg/L). In the tests with daphnids, toxicity was observed for both products, although the concentration effect-curves were less pronounced. The two products differed in their toxicity; moreover, there was a difference in the toxicity of illuminated and non-illuminated products. Both products

  12. Subcellular Sequestration and Impact of Heavy Metals on the Ultrastructure and Physiology of the Multicellular Freshwater Alga Desmidium swartzii

    Directory of Open Access Journals (Sweden)

    Ancuela Andosch

    2015-05-01

    Full Text Available Due to modern life with increasing traffic, industrial production and agricultural practices, high amounts of heavy metals enter ecosystems and pollute soil and water. As a result, metals can be accumulated in plants and particularly in algae inhabiting peat bogs of low pH and high air humidity. In the present study, we investigated the impact and intracellular targets of aluminum, copper, cadmium, chromium VI and zinc on the filamentous green alga Desmidium swartzii, which is an important biomass producer in acid peat bogs. By means of transmission electron microscopy (TEM and electron energy loss spectroscopy (EELS it is shown that all metals examined are taken up into Desmidium readily, where they are sequestered in cell walls and/or intracellular compartments. They cause effects on cell ultrastructure to different degrees and additionally disturb photosynthetic activity and biomass production. Our study shows a clear correlation between toxicity of a metal and the ability of the algae to compartmentalize it intracellularly. Cadmium and chromium, which are not compartmentalized, exert the most toxic effects. In addition, this study shows that the filamentous alga Desmidium reacts more sensitively to aluminum and zinc when compared to its unicellular relative Micrasterias, indicating a severe threat to the ecosystem.

  13. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    Science.gov (United States)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including some putative predators of algae. A loss of chloroplasts in the brown algae could have led to lower photosynthetic activities and reduced EPS production, which is known to affect predator colonization. Collectively, our results suggest the coexistence of oxygen-generating algae Tribonema sp. and strictly microaerophilic neutrophilic FeOB in a heavy metal-rich environment.

  14. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  15. Screening of Various Herbicide Modes of Action for Selective Control of Algae Responsible for Harmful Blooms

    Science.gov (United States)

    2009-01-01

    included, Scenedesmus quadricauda and Selenastrum sp. After a two-week exposure period, all flasks were filtered. The planktonic algae were measured...activity against the various algal species tested (Figures 1 through 7). Aside from the reduction in biomass of the green alga Scenedesmus by...controls (Figures 1 through 7). Penoxsulam was highly active against the blue-greens Cylindrospermopsis and Anabaena, and the green alga Scenedesmus

  16. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    Science.gov (United States)

    Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula

    2010-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431

  17. The effects of ProAlgaZyme novel algae infusion on metabolic syndrome and markers of cardiovascular health

    Directory of Open Access Journals (Sweden)

    Hildreth DeWall J

    2007-09-01

    Full Text Available Abstract Background Metabolic Syndrome, or Syndrome X, is characterized by a set of metabolic and lipid imbalances that greatly increases the risk of developing diabetes and cardiovascular disease. The syndrome is highly prevalent in the United States and worldwide, and treatments are in high demand. ProAlgaZyme, a novel and proprietary freshwater algae infusion in purified water, has been the subject of several animal studies and has demonstrated low toxicity even with chronic administration at elevated doses. The infusion has been used historically for the treatment of several inflammatory and immune disorders in humans and is considered well-tolerated. Here, the infusion is evaluated for its effects on the cardiovascular risk factors present in metabolic syndrome in a randomized double-blind placebo-controlled study involving 60 overweight and obese persons, ages 25–60. All participants received four daily oral doses (1 fl oz of ProAlgaZyme (N = 22 or water placebo (N = 30 for a total of 10 weeks, and were encouraged to maintain their normal levels of physical activity. Blood sampling and anthropometric measurements were taken at the beginning of the study period and after 4, 8 and 10 weeks of treatment. Eight participants did not complete the study. Results ProAlgaZyme brought about statistically significant (p Conclusion ProAlgaZyme (4 fl oz daily consumption resulted in significant reductions in weight and blood glucose levels, while significantly improving serum lipid profiles and reducing markers of inflammation, thus improving cardiovascular risk factors in overweight and obese subjects over a course of 10 weeks with an absence of adverse side effects. Trial Registration US ClinicalTrials.gov NCT00489333

  18. WATER POLLUTION AND RIVER ALGAE: STUDY IN ZAYANDEH ROOD RIVER – ISFAHAN

    Directory of Open Access Journals (Sweden)

    H POUR MOGHADAS

    2001-06-01

    Full Text Available Introduction: Dischange of domestic, agricultural and industrial waste water into the rivers increase chemical substances such as nitrate and phosphate. These chemical changes increase algal population. High density of algae may cause changes in color, odor and taste of water. Some of the algae such as Oscillatoria, Microcystis and Anabeana produce toxins and in high concentrations may kill fishes. While Zayandehrud river is considered as one of the main water supply sources for drinking water and valuable water resources of Isfahan Province, water quality control of this river is important. The study of algae of the river in relation with the concentration of nitrate and phosphate is the purpose of this research project. Methods: To perform this projects, seven sampling stations from "Pole Vahid" to .Pole choom. were selected. Grab methods were used for sampling of the river water. 147 water samples were collected in one year of the study.The samples were analyzed for phosphate, nitrate and genera of the algae. Nitrate and phosphate of the water samples were determined using Phenol Disulfonic Acid and Stanous chloride methods, respectively. The genera of the algae were detennined using the keys. Results and Disccusion:The result of the study showed that the frequency of the algae increased with increasing nitrate and phosphate. Overall.35 genera of algae in the area of the study were observed, which six of them were indicators of water pollution. Minimum frequency of indicators of pollution was observed in the enterance of Isfahan city and maximum frequency was observed after the discharge of municipal water from waste water treatment plant (pole Choom.

  19. The effect of algae species on biodiesel and biogas production observed by using a data model combines algae cultivation with an anaerobic digestion (ACAD) and a biodiesel process

    International Nuclear Information System (INIS)

    Sapci, Zehra; Morken, John

    2014-01-01

    Highlights: • A combined ACAD-biorefinery based model was investigated. • The model was implemented in the data analysis program MathCad. • Three different scenarios were modeled. • Chlorella vulgaris, Nannochloropsis sp. and Haematococcus pluvialis were evaluated. - Abstract: The influence of an algae species based on the biodiesel yield was investigated by using a combined plant model from the literature. The model has six different processes: algal cultivation, the flocculation and separation process, biodiesel production, anaerobic digestion, scrubbing, and combined heat and power (CHP). The data model in the literature was operated with the values for Chlorella vulgaris. To investigate the roles of the algae species on the biodiesel yield in the model, two different algae species, Nannochloropsis sp. and Haematococcus pluvialis, were selected. Depending on the data from these algae in the literature, three different scenarios were modeled in the study. The model shows that all of the scenarios for biodiesel production can be totally independent of an external energy supply. Energy estimations for all of the applications scenarios show that the system produces more energy than the amount that is required for the processing operation

  20. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  1. Marine Algae As A Prospective Source For Antidiabetic Compounds - A Brief Review.

    Science.gov (United States)

    Unnikrishnan, Pulikkaparambil Sasidharan; Jayasri, Mangalam Achuthananda

    2018-01-01

    Diabetes Mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed to several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Oxytocic principle of red alga @iAmphiroa fragilissima@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; De; Das, B.; Patnaik, G.K.

    The crude aqueous methanolic extract of the marine red alga @iAmphiroa fragilissima@@ has been reported as exhibiting oxytocic and spasmogenic activity at a dose of 50 ~kg/ml. The activity is located in the water soluble fraction and has been found...

  3. The quantity of algae colonizing the inside face of cooling towers and the consequences for wear of the shell

    International Nuclear Information System (INIS)

    Aprosi, G.; Chauvel, D.

    1990-01-01

    These studies are part of the interdirectorate working group's mandate relating to lifespan project on cooling towers. Involving the collaboration of several divisions of Electricity de France: the Construction Division (SEPTEN). The Generation and Transmission Division (SPT) and the Research and Development Division (EAA). Among the biological colonies which proliferate in the cooling circuits of power stations, algae are broadly represented in the form of wall coatings which cover the inside face of cooling towers: shell algae. They can also grow at other points in the cooling circuit; in the cold water basin, in the fill, and, in some cooling towers, in the hot water basin. These plant organisms hamper the operation of power stations by clogging the grids located in the pipe from the cold water basin to the condenser. In addition, when algae come free of the shell, they remove micro-fragments of the concrete, which could accelerate wear. This paper presents the findings of studies conducted by the Aquatic and Atmospheric Department on the infestation of cooling towers by algae. In particular, the results of studies to evaluate the quantity of algae on the inside face of the shell of cooling towers. Many scenarios will be proposed, linked to the operation of the plant and to the local meteorological conditions

  4. Bioecology of an articulated coralline alga Amphiroa fragilissima from Anjuna, Goa, Central Western Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ambiye, V.; Untawale, A.G

    An articulated coralline alga Amphiroa fragilissima L. Lam. was found to exhibit spasmogenic and hypotensive activities due to the presence of a biogenic amine. This biologically active alga was studied for its bioecology. Its thallus is multiaxial...

  5. Design and installation of a strategically placed algae mesh barrier at OPG Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Marttila, D.; Patrick, P.; Gregoris, C.

    2009-01-01

    Ontario Power Generation's Pickering Nuclear has experienced a number of events in which attached algae have become entrained in the water intake costing approximately $30M over the 1995-2005 period as a result of deratings, Unit shutdowns and other operational issues. In 2005-2006 OPG and Kinectrics worked collaboratively on evaluating different potential solutions to reduce the impact of algae on the station. One of the solutions developed by Kinectrics included a strategically placed barrier net designed to regulate algae flow into the station intake. In 2006, Kinectrics designed and installed the system, the first of its kind at a Nuclear Power Plant in Canada. The system was operational by May 2007. OPG completed an effectiveness study in 2007 and concluded the barrier system had a beneficial effect on reducing algae impact on the station. (author)

  6. Insights into species diversity of associated crustose coralline algae (Corallinophycidae, Rhodophyta with Atlantic European maerl beds using DNA barcoding

    Directory of Open Access Journals (Sweden)

    Cristina Pardo

    2017-10-01

    Full Text Available DNA barcoding in combination with morpho-anatomical analysis was applied to study the diversity of crustose coralline algae associated to two maerl beds from two protected Atlantic European areas from Brittany and Galicia —France and Spain, respectively—. Given the records of gametophytes of the maerl species Phymatolithon calcareum under crustose growth-forms, and that associated crustose coralline algae appear to be involved in the recruitment of new maerl plants, we compared the species composition between the associated crustose coralline algae to Breton and Galician maerl beds with the maerl species identified in these beds in previous DNA barcoding surveys. Our molecular results revealed higher species diversity in associated crustose coralline algae than in maerl-forming species. Nine taxa of crustose coralline algae were found in both study areas: four in Brittany and five in Galicia. Three species from Brittany were identified as Phymatolithon calcareum, Phymatolithon lamii, and Lithophyllum hibernicum. The remaining six ones were assigned to the genera Phymatolithon and Mesophyllum, along with Lithothamnion and Lithophyllum. Morpho-anatomical examination of diagnostic characters corroborated our molecular identification. Our results showed that the most representative genus of crustose coralline algae in Brittany was Phymatolithon, while in Galicia was Mesophyllum. In Brittany, Phymatolithon calcareum was found under both growth-forms, maerl and crustose coralline algae, the latter assigned to the gametophyte stage by the presence of uniporate conceptacles. The recruitment of new maerl plants involving associated crustose coralline algae with maerl beds may occur, but only we can affirm it for Phymatolithon calcareum in Brittany. By contrast, the different species composition between both growth-forms in the Galician maerl beds would indicate that the fragmentation of own free-living maerl species appears to be the most common

  7. Measuring of the Chlorophyll a Fluorescence in Calcium Alginate-Encapsulated Algae

    Directory of Open Access Journals (Sweden)

    Ibeth Paola Delgadillo Rodríguez

    2017-05-01

    Full Text Available Immobilization of algae has many applications, such as water bioremediation and production of metabolites. One of the variables that can be determined in the immobilized algae is chlorophyll a fluorescence, because this parameter is related to the physiological response of these organisms. Therefore, the objective of this study was to explore a method for measuring the chlorophyll a fluorescence in calcium alginate-encapsulated algae. To do this, two species of microalgae (Scenedesmus ovalternus LAUN 001 and Parachlorella kessleri LAUN 002 were grown in monocultures in both free culture conditions (10 mL of algae preparation in 250 mL of Basal Bold Medium and encapsulated (250 spheres in 250 mL of Basal Bold Medium. Different measurement protocols of chlorophyll a fluorescence of photosystem II (PSII were performed by varying a the preadaptation time to darkness (10, 15 and 30 min, b the light intensity of the non-modulated fluorometer (between 1000 and 3500 μmoles m-2s-1, and c the time of exposure to actinic light (1, 2 and 5 s. The optimal conditions for the measurement of the maximum quantum yield of PSII (Fv/Fm in encapsulated algae were established as follow: a 30 min of preadaptation time; b 3000 μmoles m-2s-1 of the fluorometer light intensity; and c 1 to 2 s of exposure to actinic light. The following values in the photochemical activity of algae in non-stressful conditions were found: 0.760 – 0.764 for S. ovalternus, and 0.732 – 0.748 for P. kessleri. This methodology allows to observe some changes in the photochemical activity related with variations in the factors under which are the immobilized algae.

  8. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Distributions of radionuclides among green alga (Ulva pertusa), sea water and marine sediment

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Suzuki, Yuzuru; Ueda, Taishi

    1976-01-01

    Distributions of radionuclides ( 60 Co, 137 Cs, 95 Zr- 95 Nb and 106 Ru- 106 Rh) among green alga (Ulva pertusa), sea water and marine sediment were examined by radioisotope tracer experiment in order to estimate the influence of sediment on the accumulation of radionuclides by the alga. By the application of the compartment model to the experimental results, exponential formulas of distributions were obtained. Through comparison of the transfer coefficients of radionuclides calculated from the exponential formulas, the influence of the sediment on the accumulation of the radionuclides by the green alga was determined to be the largest for 60 Co, followed by 95 Zr,- 95 Nb, 106 Ru- 106 Rh and 137 Cs in this order. The activity ratios of 95 Zr- 95 Nb and 106 Ru- 106 Rh calculated from the transfer coefficients are larger for the alga than for the sediment, inversely those of 60 Co and 137 Cs show higher values for the sediment than for the alga. Especially, in the case of 60 Co, the activity ratio for the sediment is approximately 20 times greater than that for the alga. Biological half lives in green alga estimated from the transfer coefficients were 10 days for 60 Co, 7 days for 137 Cs, 26 days for 95 Zr- 95 Nb and 24 days for 95 Zr- 95 Nb and 24 days for 106 Ru- 106 Rh. (auth.)

  10. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Science.gov (United States)

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new

  12. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    Doucha Jiří

    2009-05-01

    Full Text Available Abstract Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3 – strain SeIV, selenate (Na2SeO4 – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity

  13. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    Science.gov (United States)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    2017-07-01

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2  = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influences of marine sediment on the accumulation of radionuclides by green alga (Ulva pertusa)

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Suzuki, Yuzuru; Ueda, Taiji

    1975-01-01

    Distribution of radionuclides ( 60 Co, 137 Cs, 95 Zr- 95 Nb and 106 Ru- 106 Rh) among green alga (Ulva pertusa), sea water and marine sediment were examined by radioisotope tracer experiment in order to estimate the influence of sediment on the accumulation of radionuclides by the alga. By the application of the compartment model to the experimental results, exponential formulas of distributions were obtained. Through comparison of the transfer coefficients of radionuclides calculated from the exponential formulas, the influence of the sediment on the accumulation of the radionuclides by the green alga was determined to be the largest for 60 Co, followed by 95 Zr- 95 Nb, 106 Ru- 106 Rh and 137 Cs in this order. The activity ratios of 95 Zr- 95 Nb and 106 Ru- 106 Rh calculated from the transfer coefficients are larger for the alga than for the sediment, inversely those of 60 Co and 137 Cs show higher values for the sediment than for the alga. Especially, in the case of 60 Co, the activity ratio for the sediment is approximately 20 times greater than that for the alga. Biological half lives in green alga estimated from the transfer coefficients were 10 days for 60 Co, 7 days for 137 Cs, 26 days for 95 Zr- 95 Nb and 24 days for 106 Ru- 106 Rh. (auth.)

  15. Algae

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Giordano, Mario

    2014-01-01

    Roč. 24, č. 13 (2014), s. 590-595 ISSN 0960-9822 Institutional support: RVO:61388971 Keywords : algae * life cycle * evolution Subject RIV: EE - Microbiology, Virology Impact factor: 9.571, year: 2014

  16. Phylogenetic analysis of the thylakoid ATP/ADP carrier reveals new insights into its function restricted to green plants

    Directory of Open Access Journals (Sweden)

    Cornelia eSpetea

    2012-01-01

    Full Text Available ATP is the common energy currency of cellular metabolism in all living organisms. Most of them synthesize ATP in the cytosol or on the mitochondrial inner membrane, whereas land plants, algae and cyanobacteria also produce it on the thylakoid membrane during the light-dependent reactions of photosynthesis. From the site of synthesis, ATP is transported to the site of utilization via intracellular membranes transporters. One major type of ATP transporter is represented by the mitochondrial ADP/ATP carrier family. Here we review a recently characterized member, namely the thylakoid ATP/ADP carrier from Arabidopsis thaliana (AtTAAC. Thus far, no orthologues of this carrier have been characterized in other organisms, although similar sequences can be recognized in many sequenced genomes. Protein Sequence database searches and phylogenetic analyses indicate the absence of TAAC in cyanobacteria and its appearance early in the evolution of photosynthetic eukaryotes. The TAAC clade is composed of carriers found in land plants and some green algae, but no proteins from other photosynthetic taxa, such as red algae, brown algae and diatoms. This implies that TAAC-like sequences arose only once before the divergence of green algae and land plants. Based on these findings, it is proposed that TAAC may have evolved in response to the need of a new activity in higher photosynthetic eukaryotes. This activity may provide the energy to drive reactions during biogenesis and turnover of photosynthetic complexes, which are heterogenously distributed in a thylakoid membrane system composed of appressed and non-appressed regions.

  17. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  18. Microwave-enhanced pyrolysis of natural algae from water blooms.

    Science.gov (United States)

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Epithermal neutron activation analysis of blue-green algae Spirulina Platensis as a matrix for selenium-containing pharmaceuticals

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Kirkesali, E.I.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Gundorina, S.F.; Oprea, C.D.

    2000-01-01

    To evaluate the potentiality of the blue-green algae Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals, the background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p)-reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina Platensis biomass were determined by means of epithermal neutron activation analysis. The possibility of the purpose-oriented incorporation of Se into Spirulina Platensis biomass was demonstrated. The polynomial dependence of the Se accumulation on nutritional medium loading was revealed. The employed analytical technique allows one to reliably control the amount of toxic elements in algae Spirulina Platensis. Based on this study, a conclusion of the possibility to use Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals was drawn

  20. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Gao Shanshan; Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan

    2010-01-01

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm 2 , pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10 9 -1.55 x 10 9 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m 3 . The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  1. Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light

    OpenAIRE

    Wang, L; Zhang, C; Gao, F; Mailhot, G; Pan, G

    2017-01-01

    Algae as an abundant natural biomass, more attention has been paid to explore its potential application in environmental pollutants treatment. This work prepared the algae-TiO2/Ag bionano hybrid material by loading algae cells on the ultrafine TiO2/Ag chitosan hybrid nanofiber mat. For the first time, the synergistic photocatalytic effect of fresh algae and TiO2/Ag nanomaterial was investigated by removal of Cr(VI). The addition of algae significantly improved the photo-removal of Cr(VI) in t...

  2. 21 CFR 73.275 - Dried algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  3. Evidence of ancient genome reduction in red algae (Rhodophyta).

    Science.gov (United States)

    Qiu, Huan; Price, Dana C; Yang, Eun Chan; Yoon, Hwan Su; Bhattacharya, Debashish

    2015-08-01

    Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle. © 2015 Phycological Society of America.

  4. Distribution of 137Cs in benthic plants along depth profiles in the outer Puck Bay (Baltic Sea)

    International Nuclear Information System (INIS)

    Tamara Zalewska

    2012-01-01

    A study was conducted on three macroalgae species: Polysiphonia fucoides and Furcellaria lumbricalis, the species of the red algae division, and Cladophora glomerata, representing the green algae division, as well as Zostera marina, representing vascular plants. The main aim of the study was to recognize the level of 137 Cs concentrations in the plants, which could be used as a measurement of bioaccumulation efficiency in the selected macrophytes at varying depths, and in the seasonal resolution of the vegetation period: spring-summer and autumnal. The plants' biomass clearly showed seasonal variability, as did the 137 Cs concentrations in the plants. Cesium activity also changed with depth. Seasonal variability in radionuclide content in the plants, as well as the differences in its activity determined along the depth profile, were related mainly to the plant biomass and the dilution effect caused by the biomass increment and reflected the growth dynamics. P. fucoides showed much greater bioaccumulation ability at each depth as compared to C. glomerata, a green algae. Lower concentrations of 137 Cs were also identified in F. lumbricalis and in Z. marina, mostly as a result of differences in morphology and physiology. P. fucoides can be recommended as a bioindicator for the monitoring of 137 Cs contamination due to the high efficiency of bioaccumulation and the available biomass along the depth profile, as well as the occurrence throughout the entire vegetation season. (author)

  5. SOIL ALGAE OF BLADE OF COIL IN DONETSK REGION

    Directory of Open Access Journals (Sweden)

    Maltseva I.A.

    2011-12-01

    Full Text Available On territory of Donbass for more than 200 years the underground coal mining has produced, accompanied by the formation of the mine dumps. Finding ways to reduce their negative impact on the environment should be based on their comprehensive study. The soil algae are active participants in the syngenetic processes in industrial dumps of different origin. The purpose of this paper is to identify the species composition and dominant algae groups in dump mine SH/U5 “Western” in the western part of Donetsk.The test blade is covered with vegetation to the middle from all sides, and on the north side of 20-25 m to the top. The vegetation cover of the lower and middle tiers of all the exposures range in 70-80%. Projective vegetation cover of upper tiers of the northern, north-eastern and north-western exposures are in the range of 20-40%, other – 5-10%. We revealed some 38 algae species as a result of our research in southern, northern, western, and eastern slopes of the blade “Western”. The highest species diversity has Chlorophyta - 14 species (36.8% of the total number of species, then Cyanophyta - 9 (23,7%, Bacillariophyta - 7 (18,4%, Xantophyta - 5 (13.2%, and Eustigmatophyta - 3 (7.9%. The dominants are represented by Hantzschia amphyoxys (Ehrenberg Grunow in Cleve et Grunow, Bracteacoccus aerius, Klebsormidium flaccidum (Kützing Silva et al., Phormidium autumnale, Pinnularia borealis Ehrenberg, Planothidium lanceolatum (Brebisson in Kützing Bukhtiyarova, Xanthonema exile (Klebs Silva.It should be noted that the species composition of algae groups in different slopes of the blade was significantly different. Jacquard coefficient was calculated for algae communities varied in the range of 15,4-39,1%. The smallest number of algae species was observed on the southern slope of the blade (14 species, maximum was registered in the areas of north and west slopes. Differences in the species composition of algae were also observed in three

  6. Errors When Extracting Oil from Algae

    Science.gov (United States)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  7. Sprectroradiometric characteristics of inland water bodies infestated by Oscillatoria rubescens algae

    Science.gov (United States)

    Ciraolo, Giuseppe; La Loggia, Goffredo; Maltese, Antonino

    2010-10-01

    In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 μgl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in

  8. Induced modifications on algae photosynthetic activity monitored by pump-and-probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R; Colao, F; Fantoni, R; Palucci, A; Ribezzo, S [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Tarzillo, G; Carlozzi, P; Pelosi, E [CNR, Florence (Italy). Centro Studi Microorganismi Autotrofi

    1995-12-01

    The lidar fluorosensor system available at ENEA Frascati has been used for a series of laboratory measurements on brackish-water and marine phytoplankton grown in laboratory with the proper saline solution. The system, already used to measure the laser induced fluorescence spectra of different algae species and their detection limits, has been upgraded with a short pulse Nd:YAG laser and rearranged to test a new technique based on laser pump and probe excitation. Results of this new technique for remote monitoring of the in-vivo photosynthetic activity will be presented, as measured during a field campaign carried out in Florence during the Autumn 1993, where the effects of an actinic saturating light and different chemicals have also been checked.

  9. Red algae and their use in papermaking.

    Science.gov (United States)

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.

    Science.gov (United States)

    Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu

    2017-04-01

    Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

  11. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  12. Marine Algae: a Source of Biomass for Biotechnological Applications.

    Science.gov (United States)

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  13. Estrogenic activity in extracts and exudates of cyanobacteria and green algae

    Czech Academy of Sciences Publication Activity Database

    Sychrová, E.; Štěpánkdová, T.; Nováková, K.; Bláha, Luděk; Giesy, J.P.; Hilscherová, K.

    2012-01-01

    Roč. 39, č. 1 (2012), s. 134-140 ISSN 0160-4120 R&D Projects: GA ČR GA524/08/0496 Institutional support: RVO:67985939 Keywords : cyanobacteria * endocrine disruption * estrogenicity * algae * phytoplankton Subject RIV: EF - Botanics Impact factor: 6.248, year: 2012

  14. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  15. Biodegradation of an oily bilge waste using algae

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.J.

    1987-01-01

    A mixed community of microogranisms was collected from the harbor at the North Island Navy Base and was monitored in a test ecosystem containing an oily bilge waste obtained from off-loading ships. Cultures were examined in the presence and absence of the algae. It was thought that the algae might enhance the degradation of the oil waste by providing oxygen and possibly a nutrient source from dying phytoplankton for the bacterial community. The change in community structure was monitored by isolating the various groups of organisms and determining the biomass change over time for the algae, bacteria and yeasts/fungi subjected to the bilge waste. The biomass (i.e., colony forming units) of the yeasts and fungi increased 100 fold in a 6 week test period. The community containing only the bacteria and fungi/yeasts lost the fungal component of the population, although active bacteria biomass increased more than 10 fold during exposure to the waste. The test ecosystem was subjected to a radiolabeled compound (/sup 14/C-phenol) and bilge waste mixture to ascertain the ability of the communities to mineralize the phenol and/or assimilate the labeled hydrocarbon. The community containing the algae started mineralizing the phenol (measure by /sup 14/CO/sub 2/ production) 24 hours after exposure to the waste/phenol mixture. The bacteria/yeast-fungi community had a lag period of 384 hours before extensive catabolism of the labeled compound occurred. Current data indicate algae may enhance the biodegradation rate of oil bilge waste in a mixed microbial community.

  16. DISTRIBUTIONAND DIVERSITY OF MACRO ALGAE COMMUNITIES IN THE AMBON BAY

    Directory of Open Access Journals (Sweden)

    Christina Litaay

    2014-11-01

    Full Text Available Water conditions affected by natural and anthropogenic parameters such as sedimentation and solid waste disposal can influence the growth and distribution of macro algae. Sustainable management efforts can reduce damage on the Gulf coast of Ambon due to human activities and land clearing. This study was conducted in October 2008 using the transect method with 3 replicates in five locations i.e., Tantui, Air Salobar, Hative Besar, Halong, and Lateri. The interior and exterior waters of Ambon Bay contained different habitat conditions due to  sedimentation processes. The purpose of this study was to determine the distribution and diversity of macro algae communities in the Ambon Bay. The results found 21 species of macro- algae consisting of 10 species of Rhodhophyceae, 6 species of Chlorophyceae, and 5 species of Phaeophyceae. The highest density value of seaweed in Tantui was 389.0 g/m² of Chlorophyceae of Halimeda genus. In Air Salobar and Halong, the highest density value was Rhodophyceae of Gracilaria genus of 172.0 g/m² and 155.0 g/m², respectively. For the other genus in the Tantui and Lateri regions were dominated by Ulva at 92.10 gr/m2 and Padina of 20.0 gr/m2, respectively. The highest dominance of macro algae in the Hative Besar was found Chlorophyceae of Halimeda genus of 2.93 %, in the Air Salobar of Phaeophyceae of Turbinaria genus of 1.43 %. The difference values in density and the dominance of macro algae indicated an influence of habitat and environment due to seasons, sediment, and solid waste disposal to the diversity of macro algae. Keywords: Diversity, macro algae, Ambon Bay.

  17. Cerium-loaded algae exoskeletons for active corrosion protection of coated AA2024-T3

    International Nuclear Information System (INIS)

    Denissen, Paul J.; Garcia, Santiago J.

    2017-01-01

    Highlights: •Nanoporous diatom algae exoskeletons allow for local inhibitor loading. •Cerium loaded exoskeletons show diffusion controlled release from coatings. •In-situ opto-electrochemical analysis allows for accurate corrosion evaluation. •Raman spectroscopy allows for precise identification of Ce at IMs in a scribe. •High levels of protection were obtained with the Ce-diatom coatings. -- Abstract: The use of micron sized nanoporous diatom algae exoskeletons for inhibitor storage and sustained corrosion protection of coated aluminium structures upon damage is presented. In this concept the algae exoskeleton allows local inhibitor loading, limits the interaction between the cerium and the epoxy/amine coating and allows for diffusion-controlled release of the inhibitor when needed. The inhibitor release and corrosion protection by loaded exoskeletons was evaluated by UV/Vis spectrometry, a home-built optical-electrochemical setup, and Raman spectroscopy. Although this concept has been proven for a cerium-epoxy-aluminium alloy system the main underlying principle can be extrapolated to other inhibitor-coating-metal systems.

  18. Application of radiation degraded carbohydrates for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Yoshu, F.

    1999-01-01

    Radiation degraded carbohydrates such as chitosan, sodium alginate, carageenan, cellulose, pectin, etc. were applied for plant cultivation. Chitosan (poly-β -D-glucosamine) was easily degraded by irradiation and induced various kinds of biological activities such as anti-microbacterial activity, promotion of plant growth, suppression of heavy metal stress on plants, phytoalexins induction, etc. Pectic fragments obtained from degraded pectin also induced the phytoalexins such as glyceollins in soybean and pisafin in pea. The irradiated chitosan shows the higher elicitor activity for pisafin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. The hot water and ethanol extracts from EFB and sugar cane bagasse were increased by irradiation. These extracts promoted the growth of plants and suppressed the damage on barley with salt and Zn stress. The results show that the degraded polysaccharides by radiation have the potential to induce various biological activities and the products can be use for agricultural and medical fields

  19. Chemical examination of the brown alga Stoechospermum marginatum (C. Agardh)

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The crude methalonic extract of marine algae Stoechospermum marginatum from west coast of India was found to have spasmolytic activity. Search for the pharmacologically active compounds led to the isolation of steroids, fatty acids and an ester...

  20. Accumulation of polycyclic arenes in Baltic Sea algae

    Energy Technology Data Exchange (ETDEWEB)

    Veldre, I.A.; Itra, A.R.; Paal' me, L.P.; Kukk, Kh.A.

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Kaesmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  1. Neutron activation analysis for development of mercury sorbent based on blue-green alga salipriina palatinates

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.; Kirkesali, E.I.; Aksenova, N.G.; Mosulishvili, L.M.; Belokobylsky, A.I.; Khizanishvili, A.I.

    2005-01-01

    Epithermal neutron activation analysis was used to study interaction of blue-green alga Spirulina platensis with toxic metal mercury. Various concentrations of Hg(II) were added to cell cultures in a nutrient medium. The dynamic of accumulation of Hg was investigated over days in relation to Spirulina biomass growth. The process of Hg adsorption by Spirulina biomass was studied in short-time experiments. The isotherm of adsorption was / out in Freindlich coordinates. Natural Spirulina biomass has potential to be used in the remediation of sewage waters at Hg concentrations ∼ 100 μg/1

  2. Ten years of investigation on radioactive contamination of the marine environment. Incorporation, by marine algae and animals, of hydrogen-3 and other radionuclides present in effluents of nuclear or industrial origin

    International Nuclear Information System (INIS)

    Bonotto, S.; Colard, J.; Koch, G.; Kirchmann, R.; Strack, S.; Luettke, A.; Carraro, G.

    1981-01-01

    Several marine plants and animals were investigated for their capability of incorporating the main radionuclides present in selected effluents. Accumulation factors are reported for 3 H, 134 Cs, 136 Cs, 137 Cs, 58 Co, 60 Co, 54 Mn, 131 I 226 Ra and 124 Sb. Marine algae, which are involved in food chains leading to man, show the highest accumulation factors. The stable element composition of the alga Acetabularia was determined by gamma-activation analysis. The preferential accumulation of particular radionuclides by marine organisms suggests that they may have a significant role in the turnover rate of elements in the marine environment. (author)

  3. Composting of waste algae: a review.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  5. Evidence for widespread exonic small RNAs in the glaucophyte alga Cyanophora paradoxa.

    Directory of Open Access Journals (Sweden)

    Jeferson Gross

    Full Text Available RNAi (RNA interference relies on the production of small RNAs (sRNAs from double-stranded RNA and comprises a major pathway in eukaryotes to restrict the propagation of selfish genetic elements. Amplification of the initial RNAi signal by generation of multiple secondary sRNAs from a targeted mRNA is catalyzed by RNA-dependent RNA polymerases (RdRPs. This phenomenon is known as transitivity and is particularly important in plants to limit the spread of viruses. Here we describe, using a genome-wide approach, the distribution of sRNAs in the glaucophyte alga Cyanophora paradoxa. C. paradoxa is a member of the supergroup Plantae (also known as Archaeplastida that includes red algae, green algae, and plants. The ancient (>1 billion years ago split of glaucophytes within Plantae suggests that C. paradoxa may be a useful model to learn about the early evolution of RNAi in the supergroup that ultimately gave rise to plants. Using next-generation sequencing and bioinformatic analyses we find that sRNAs in C. paradoxa are preferentially associated with mRNAs, including a large number of transcripts that encode proteins arising from different functional categories. This pattern of exonic sRNAs appears to be a general trend that affects a large fraction of mRNAs in the cell. In several cases we observe that sRNAs have a bias for a specific strand of the mRNA, including many instances of antisense predominance. The genome of C. paradoxa encodes four sequences that are homologous to RdRPs in Arabidopsis thaliana. We discuss the possibility that exonic sRNAs in the glaucophyte may be secondarily derived from mRNAs by the action of RdRPs. If this hypothesis is confirmed, then transitivity may have had an ancient origin in Plantae.

  6. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    María Esther Pérez-Pérez

    2017-07-01

    Full Text Available Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1 and TOR complex 2 (TORC2. While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  7. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  8. Recent Advances in Outdoor High-Density Cultivation of Novelty Micro-Algae Strain with High Content of Lipids

    OpenAIRE

    Kaštánek, Petr

    2012-01-01

    The objective of the study was the pilot plant examination of a newly developed integrated process for autotrophic cultivation of useful micro-algae. The process utilizes waste carbon dioxide as a source of carbon and yields simultaneously products that can be utilized in food and cosmetic industries, turned into biodiesel and/or used as a supplement in animal feed. At present, the cultivation of micro-algae merely for the production of biofuels is not economically viable. In the proposed pr...

  9. ALGAE PROLIFERATION ON SUBSTRATES IMMERSED IN BIOLOGICALLY TREATED SEWAGE

    Directory of Open Access Journals (Sweden)

    Tomasz Garbowski

    2017-01-01

    Full Text Available Due fast biomass production, high affinity for N and P and possibilities to CO2 sequestration microalgae are currently in the spotlight, especially in renewable energy technologies sector. The majority of studies focus their attention on microalgae cultivation with respect to biomass production. Fuel produced from algal biomass can contribute to reducing consumption of conventional fossil fuels and be a remedy for a rising energy crisis and global warming induced by air pollution. Some authors opt for possibilities of using sewage as a nutrient medium in algae cultivation. Other scientists go one step further and present concepts to introduce microalgal systems as an integral part of wastewater treatment plants. High costs of different microalgal harvesting methods caused introduction of the idea of algae immobilization in a form of periphyton on artificial substrates. In the present study the attention has focused on possibilities of using waste materials as substrates to proliferation of periphyton in biologically treated sewage that contained certain amounts of nitrogen and phosphorus.

  10. Cars will be fed on algae

    International Nuclear Information System (INIS)

    Peltier, G.

    2012-01-01

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  11. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  12. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    Science.gov (United States)

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  14. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics

    Directory of Open Access Journals (Sweden)

    Sijia Wei

    2017-05-01

    Full Text Available Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmella formation of D. salina using dimethyl labeling and Ti4+-immobilized metal ion affinity chromatography (IMAC proteomic approaches. We found that 151 salinity-responsive proteins and 35 salinity-responsive phosphoproteins were involved in multiple signaling and metabolic pathways upon palmella formation. Taken together with photosynthetic parameters and enzyme activity analyses, the patterns of protein accumulation and phosphorylation level exhibited the mechanisms upon palmella formation, including dynamics of cytoskeleton and cell membrane curvature, accumulation and transport of exopolysaccharides, photosynthesis and energy supplying (i.e., photosystem II stability and activity, cyclic electron transport, and C4 pathway, nuclear/chloroplastic gene expression regulation and protein processing, reactive oxygen species homeostasis, and salt signaling transduction. The salinity-responsive protein–protein interaction (PPI networks implied that signaling and protein synthesis and fate are crucial for modulation of these processes. Importantly, the 3D structure of phosphoprotein clearly indicated that the phosphorylation sites of eight proteins were localized in the region of function domain.

  15. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses

    OpenAIRE

    Nam, Sun-Hwa; Il Kwak, Jin; An, Youn-Joo

    2018-01-01

    Soil algae, which have received attention for their use in a novel bioassay to evaluate soil toxicity, expand the range of terrestrial test species. However, there is no information regarding the toxicity of nanomaterials to soil algae. Thus, we evaluated the effects of silver nanoparticles (0–50 mg AgNPs/kg dry weight soil) on the soil alga Chlamydomonas reinhardtii after six days, and assessed changes in biomass, photosynthetic activity, cellular morphology, membrane permeability, esterase ...

  16. Algae production for energy and foddering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Attila; Jobbagy, Peter; Durko, Emilia [University of Debrecen, Faculty of Applied Economics and Rural Development (UD-FAERD), Centre for Agricultural and Applied Economic Sciences, Debrecen (Hungary)

    2011-09-15

    This study not only presents the results of our own experiments in alga production, but also shows the expected economic results of the various uses of algae (animal feed, direct burning, pelleting, bio-diesel production), the technical characteristics of a new pelleting method based on literature, and also our own recommended alga production technology. In our opinion, the most promising alternative could be the production of alga species with high levels of oil content, which are suitable for utilization as by-products for animal feed and in the production of bio-diesel, as well as for use in waste water management and as a flue gas additive. Based on the data from our laboratory experiments, of the four species we analyzed, Chlorella vulgaris should be considered the most promising species for use in large-scale experiments. Taking expenses into account, our results demonstrate that the use of algae for burning technology purposes results in a significant loss under the current economic conditions; however, the utilization of algae for feeding and bio-diesel purposes - in spite of their innovative nature - is nearing the level needed for competitiveness. By using the alga production technology recommended by us and described in the present study in detail, with an investment of 545 to 727 thousand EUR/ha, this technology should be able to achieve approximately 0-29 thousand EUR/ha net income, depending on size. More favorable values emerge in the case of the 1-ha (larger) size, thanks to the significant savings on fixed costs (depreciation and personnel costs). (orig.)

  17. Hydrothermal liquefaction of municipal wastewater cultivated algae: Increasing overall sustainability and value streams of algal biofuels

    Science.gov (United States)

    Roberts, Griffin William

    The forefront of the 21st century presents ongoing challenges in economics, energy, and environmental remediation, directly correlating with priorities for U.S. national security. Displacing petroleum-derived fuels with clean, affordable renewable fuels represents a solution to increase energy independence while stimulating economic growth and reducing carbon-based emissions. The U.S. government embodied this goal by passing the Energy Independence and Security Act (EISA) in 2007, mandating 36 billion gallons of annual biofuel production by 2022. Algae possess potential to support EISA goals and have been studied for the past 30-50 years as an energy source due to its fast growth rates, noncompetitive nature to food markets, and ability to grow using nutrient waste streams. Algae biofuels have been identified by the National Research Council to have significant sustainability concerns involving water, nutrient, and land use. Utilizing municipal wastewater to cultivate algae provides both water and nutrients needed for growth, partially alleviating these concerns. This dissertation demonstrates a pathway for algae biofuels which increases both sustainability and production of high-value products. Algae are cultivated in pilot-scale open ponds located at the Lawrence Wastewater Treatment Plant (Lawrence, KS) using solely effluent from the secondary clarifier, prior to disinfection and discharge, as both water and nutrient sources. Open ponds were self-inoculated by wastewater effluent and produced a mixed-species culture of various microalgae and macroalgae. Algae cultivation provided further wastewater treatment, removing both nitrogen and phosphorus, which have devastating pollution effects when discharged to natural watersheds, especially in large draining watersheds like the Gulf Coast. Algae demonstrated significant removal of other trace metals such as iron, manganese, barium, aluminum, and zinc. Calcium did not achieve high removal rate but did present a

  18. Are algae relevant to the detritus-based food web in tank-bromeliads?

    Directory of Open Access Journals (Sweden)

    Olivier Brouard

    Full Text Available We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼10(2 to 10(4 cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter, our results indicate that primary producers (i.e., autochtonous organic matter are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web.

  19. Shewanella algae in acute gastroenteritis

    Directory of Open Access Journals (Sweden)

    S Dey

    2015-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. Previously reported cases of S. algae have mainly been associated with direct contact with seawater. Here we report the isolation of S. algae as the sole etiological agent from a patient suffering from acute gastroenteritis with bloody diarrhoea. The bacterium was identified by automated identification system and 16S rRNA gene sequence analysis. Our report highlights the importance of looking for the relatively rare aetiological agents in clinical samples that does not yield common pathogens. It also underscores the usefulness of automated systems in identification of rare pathogens.

  20. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    Bouveret, T.

    2013-01-01

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  1. Economic evaluation of algae biodiesel based on meta-analyses

    Science.gov (United States)

    Zhang, Yongli; Liu, Xiaowei; White, Mark A.; Colosi, Lisa M.

    2017-08-01

    The objective of this study is to elucidate the economic viability of algae-to-energy systems at a large scale, by developing a meta-analysis of five previously published economic evaluations of systems producing algae biodiesel. Data from original studies were harmonised into a standardised framework using financial and technical assumptions. Results suggest that the selling price of algae biodiesel under the base case would be 5.00-10.31/gal, higher than the selected benchmarks: 3.77/gal for petroleum diesel, and 4.21/gal for commercial biodiesel (B100) from conventional vegetable oil or animal fat. However, the projected selling price of algal biodiesel (2.76-4.92/gal), following anticipated improvements, would be competitive. A scenario-based sensitivity analysis reveals that the price of algae biodiesel is most sensitive to algae biomass productivity, algae oil content, and algae cultivation cost. This indicates that the improvements in the yield, quality, and cost of algae feedstock could be the key factors to make algae-derived biodiesel economically viable.

  2. In silico identification and analysis of phytoene synthase genes in plants.

    Science.gov (United States)

    Han, Y; Zheng, Q S; Wei, Y P; Chen, J; Liu, R; Wan, H J

    2015-08-14

    In this study, we examined phytoene synthetase (PSY), the first key limiting enzyme in the synthesis of carotenoids and catalyzing the formation of geranylgeranyl pyrophosphate in terpenoid biosynthesis. We used known amino acid sequences of the PSY gene in tomato plants to conduct a genome-wide search and identify putative candidates in 34 sequenced plants. A total of 101 homologous genes were identified. Phylogenetic analysis revealed that PSY evolved independently in algae as well as monocotyledonous and dicotyledonous plants. Our results showed that the amino acid structures exhibited 5 motifs (motifs 1 to 5) in algae and those in higher plants were highly conserved. The PSY gene structures showed that the number of intron in algae varied widely, while the number of introns in higher plants was 4 to 5. Identification of PSY genes in plants and the analysis of the gene structure may provide a theoretical basis for studying evolutionary relationships in future analyses.

  3. Thicker three-dimensional tissue from a "symbiotic recycling system" combining mammalian cells and algae.

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-31

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro "symbiotic recycling system" composed of mammalian cells and algae.

  4. Natural depuration rate and concentration of cesium-137 radionuclide in black SEA macro algae

    International Nuclear Information System (INIS)

    Topcuoglu, S.; Kuecuekcezzar, R.; Kut, D.; Esen, N.; Gueven, K.C.

    1996-01-01

    Cesium-137 concentrations in red, brown and green algae have been studied for the calculation of natural depuration rates. The algae species were collected from the same population of the Black Sea stations during the period of 1986-1995. The natural depuration rates are estimated as biological half-lives. The pattern of depuration results represented by a single component for each algae division. The biological half-lives of 137 Cs in red (Phyllophora nervosa), green (Chaetomorpha linum) and brown (cystoceira barbata) algae are estimated to be 18.5, 21.6 and 29.3 months, respectively. 137 Cs and 40 K activity levels and their ratios in algae species in two stations in Black Sea region of Turkey have been determined during the period of 1990-1995. The results showed that the Sinop region was more contaminated than the Sile region on the Black Sea coast of Turkey from the Chernobyl accident. (author). 10 refs., 2 figs., 2 tabs

  5. Plant Research '75

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Research is reported on stomatal regulation of the gas exchanges between plant and environment; inhibitory effects in flower formation; plant growth and development through hormones; hormone action; development and nitrogen fixation in algae; primary cell wall glycoprotein ectensin; enzymic mechanisms and control of polysaccharide and glycoprotein synthesis; molecular studies of membrane studies; sensory transduction in plants; regulation of formation of protein complexes and enzymes in higher plant cell and mechanism of sulfur dioxide toxicity in plants. (PCS)

  6. Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing.

    Science.gov (United States)

    Braun, M; Limbach, C

    2006-12-01

    Gravitropically tip-growing rhizoids and protonemata of characean algae are well-established unicellular plant model systems for research on gravitropism. In recent years, considerable progress has been made in the understanding of the cellular and molecular mechanisms underlying gravity sensing and gravity-oriented growth. While in higher-plant statocytes the role of cytoskeletal elements, especially the actin cytoskeleton, in the mechanisms of gravity sensing is still enigmatic, there is clear evidence that in the characean cells actin is intimately involved in polarized growth, gravity sensing, and the gravitropic response mechanisms. The multiple functions of actin are orchestrated by a variety of actin-binding proteins which control actin polymerisation, regulate the dynamic remodelling of the actin filament architecture, and mediate the transport of vesicles and organelles. Actin and a steep gradient of cytoplasmic free calcium are crucial components of a feedback mechanism that controls polarized growth. Experiments performed in microgravity provided evidence that actomyosin is a key player for gravity sensing: it coordinates the position of statoliths and, upon a change in the cell's orientation, directs sedimenting statoliths to specific areas of the plasma membrane, where contact with membrane-bound gravisensor molecules elicits short gravitropic pathways. In rhizoids, gravitropic signalling leads to a local reduction of cytoplasmic free calcium and results in differential growth of the opposite subapical cell flanks. The negative gravitropic response of protonemata involves actin-dependent relocation of the calcium gradient and displacement of the centre of maximal growth towards the upper flank. On the basis of the results obtained from the gravitropic model cells, a similar fine-tuning function of the actomyosin system is discussed for the early steps of gravity sensing in higher-plant statocytes.

  7. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2007-05-01

    Full Text Available Abstract Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales and the sarcinoid Chlorokybus atmophyticus (Chlorokybales represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag, two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean

  8. Pengaruh Pemberian Alga Coklat (Sargassum sp. Terhadap Enzim Katalase Kelenjar Submandibularis Tikus Rattus Norvegicus Strain Wistar Akibat Iradiasi Linear Energy Transfer (LET Rendah

    Directory of Open Access Journals (Sweden)

    sariano ferni

    2017-07-01

    Full Text Available Background: Background: Intraoral radiography use some lower LET (Linear Energy Transfer and could penetrate submandibular salivary gland. Radiography have negative impact which is decrease catalase enzyme of human body. Brown algae (Sargassum sp. has a flavonoid antioxidant, polysaccharides as Fucoidan and alginat (Na-alginat can be used for immunomodulator, antioxidative and activation modulation of immune. Purpose: To knowing effectiveness of brown algae (Sargassum sp. on activity catalase enzyme submandibular salivary gland Rattus Novergicus strain Wistar with irradiation low LET. Material and Methods: 28 samples of Rattus Novergicus strain Wistar, weight 200gr, age 2-3months, gender male, sample divide into 4 groups, K1 (control with brown algae dosage 0,018mg/kgbw K2 (use brown algae and irradiation 4 times, K3 (use brown algae and irradiation 8 times, K4 (use brown algae and irradiation 14 times. Brown algae been given 7days before apply irradiotion on day 8, then did euthanasia and took submandibular salivary gland. After that did measurement activity of catalase enzyme and counted by spectrophotometer with 240 λ. Result: Data were analyze by Shapiro-wilk, One Way ANOVA and Bonferroni. The activity of catalase enzyme have increased; 0,2586 ± 0,1050 (K1, 0,2595 ± 0,0630 (K2, 0,3252 ± 0,1663 (K3, 0,3668 ± 0,0852 (K4 but theres no significant differences  activity of catalase enzyme between one group to other group. Conclusion: Brown algae dosage 0,018mg/kgbw can’t increase activity of catalase enzyme on Rattus Novergicus strain Wistar.

  9. Screening of marine algae (Padina sp. from the Lengeh Port, Persian Gulf for antibacterial and antifungal activities

    Directory of Open Access Journals (Sweden)

    Azadeh Taherpour

    2016-09-01

    Full Text Available Objective: To evaluate the antibacterial efficacy of different solvent extracts of Padina sp. against selected human pathogenic bacteria and fungi species such as Escherichia coli, Shigella sp., Staphylococcus aureus (S. aureus, Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans. Methods: Various solvents including methanol, ethyl acetate, chloroform and hexane were used to acquire crude extracts from marine algae Padina sp. After crude preparation, antibacterial and antifungal activities were screened against clinically important human pathogenic bacteria using disc and well diffusion methods. For all the bacterial species used in this research, minimum inhibitory concentration was undertaken considering various solvent extracts of Padina sp. To ensure the accuracy of experiments, a positive control was also included. Results: Confirmed that hexane is the best solvent to extract antimicrobial agents from Padina sp. Among selected bacteria, S. aureus was the most sensitive test microorganism. While, all other microorganisms showed resistance against methanol, ethyl acetate, chloroform extracts. In fact, by increasing concentration of hexane extract, inhibition of S. aureus growth or antimicrobial activity was increased. Growth inhibition zone in well method showed better results compared to disc diffusion method. The minimum inhibitory concentration and minimum bactericidal concentration of hexane extract were 15 and 30 mg/mL against S. aureus, respectively. All Padina sp. extracts did not reveal any antifungal activities against fungi species in this study. Conclusions: Brown algae extracts showed sufficient antibacterial properties against S. aureus. Therefore, Padina sp. in this research can be a good candidate to design and manufacture novel antibacterial agents used in pharmaceutical industries.

  10. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Yohei; Nagamatsu, Yusuke [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Miyamoto, Tomofumi [Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan); Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ito, Makoto, E-mail: makotoi@agr.kyushu-u.ac.jp [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  11. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    International Nuclear Information System (INIS)

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi; Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko; Ito, Makoto

    2014-01-01

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria

  12. Site-Specific Variability in the Chemical Diversity of the Antarctic Red Alga Plocamium cartilagineum

    Directory of Open Access Journals (Sweden)

    Ryan M. Young

    2013-06-01

    Full Text Available Plocamium cartilagineum is a common red alga on the benthos of Antarctica and can be a dominant understory species along the western Antarctic Peninsula. Algae from this region have been studied chemically, and like “P. cartilagineum” from other worldwide locations where it is common, it is rich in halogenated monoterpenes, some of which have been implicated as feeding deterrents toward sympatric algal predators. Secondary metabolites are highly variable in this alga, both qualitatively and quantitatively, leading us to probe individual plants to track the possible link of variability to genetic or other factors. Using cox1 and rbcL gene sequencing, we find that the Antarctic alga divides into two closely related phylogroups, but not species, each of which is further divided into one of five chemogroups. The chemogroups themselves, defined on the basis of Bray-Curtis similarity profiling of GC/QqQ chromatographic analyses, are largely site specific within a 10 km2 area. Thus, on the limited geographical range of this analysis, P. cartilagineum displays only modest genetic radiation, but its secondary metabolome was found to have experienced more extensive radiation. Such metabogenomic divergence demonstrated on the larger geographical scale of the Antarctic Peninsula, or perhaps even continent-wide, may contribute to the discovery of cryptic speciation.

  13. Growth-suppressing and algicidal properties of an extract from Arundo donax, an invasive riparian plant, against Prymnesium parvum, an invasive harmful alga

    Science.gov (United States)

    Patino, Reynaldo; Rashel, Rakib H.; Rubio, Amede; Longing, Scott

    2018-01-01

    This study examined the ability of acidic and neutral/alkaline fractions of a methanolic extract from giant reed (Arundo donax) and of two of its constituents, gramine and skatole, to inhibit growth of the ichthyotoxic golden alga (Prymnesium parvum) in batch culture. For this study, growth suppression was defined as inhibition of maximum cell density, algicidal activity as early occurrence of negative growth, and algistatic activity as lack of net growth. The acidic fraction did not affect algal growth. The neutral/alkaline fraction showed growth-suppressing and algicidal activities but no signs of algistatic activity – namely, cells in cultures surviving a partial-algicidal exposure concentration (causing transient negative growth) were later able to initiate positive growth but at higher concentrations, algicidal activity was full and irreversible. Gramine suppressed growth more effectively than skatole and at the highest concentration tested, gramine also showed partial-algicidal and algistatic activity. While the partial-algicidal activities of the neutral/alkaline fraction and of gramine were short-lived (≤6 days) and thus may share similar mechanisms, algistatic activity was unique to gramine and persisted for >3 weeks. Given gramine’s reported concentration in the neutral/alkaline fraction, its corresponding level of algicidal activity is much lower than the fraction’s suggesting the latter contains additional potent algicides. Inhibition of maximum cell density by all test compounds was associated with reductions in exponential growth rate, and in the case of the neutral/alkaline fraction and gramine also reductions in early (pre-exponential) growth. These results indicate that giant reed is a potential source of natural products to control golden alga blooms. Giant reed is an invasive species in North America, thus also providing incentive for research into strategies to couple management efforts for both species.

  14. Post-translational control of nitrate reductase activity responding to light and photosynthesis evolved already in the early vascular plants.

    Science.gov (United States)

    Nemie-Feyissa, Dugassa; Królicka, Adriana; Førland, Nina; Hansen, Margarita; Heidari, Behzad; Lillo, Cathrine

    2013-05-01

    Regulation of nitrate reductase (NR) by reversible phosphorylation at a conserved motif is well established in higher plants, and enables regulation of NR in response to rapid fluctuations in light intensity. This regulation is not conserved in algae NR, and we wished to test the evolutionary origin of the regulatory mechanism by physiological examination of ancient land plants. Especially a member of the lycophytes is of interest since their NR is candidate for regulation by reversible phosphorylation based on sequence analysis. We compared Selaginella kraussiana, a member of the lycophytes and earliest vascular plants, with the angiosperm Arabidopsis thaliana, and also tested the moss Physcomitrella patens. Interestingly, optimization of assay conditions revealed that S. kraussiana NR used NADH as an electron donor like A. thaliana, whereas P. patens NR activity depended on NADPH. Examination of light/darkness effects showed that S. kraussiana NR was rapidly regulated similar to A. thaliana NR when a differential (Mg(2+) contra EDTA) assay was used to reveal activity state of NR. This implies that already existing NR enzyme was post-translationally activated by light in both species. Light had a positive effect also on de novo synthesis of NR in S. kraussiana, which could be shown after the plants had been exposed to a prolonged dark period (7 days). Daily variations in NR activity were mainly caused by post-translational modifications. As for angiosperms, the post-translational light activation of NR in S. kraussiana was inhibited by 3-(3,4-dichlorophenyl)-1*1-dimethylurea (DCMU), an inhibitor of photosynthesis and stomata opening. Evolutionary, a post-translational control mechanism for NR have occurred before or in parallel with development of vascular tissue in land plants, and appears to be part of a complex mechanisms for coordination of CO2 and nitrogen metabolism in these plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Accumulation and loss of technetium by macrophytic algae

    International Nuclear Information System (INIS)

    Benco, C.; Cannarsa, S.; Ceppodomo, I.; Zattera, A.

    1986-01-01

    Preliminary results are presented of a study of the accumulation of Tc by four species of brown algae (Sargassum vulgare, Cystoseira complexa, Dictyopteris membranacea, Dictyota dichotama implexa) and one species of green algae (Chlorophyta, Ulva rigida). With the exception of Cystoseira complexa, the accumulation was very rapid, and concentration factors decreased from Sargassum vulgare to Ulva rigida. Young stipes of Cystoseira complexa concentrated twice as much more Tc than cylindrical main axes. Attempts were made to understand the mechanism of Tc accumulation by brown seaweed. Fucoidan, a pool of high molecular weight polysaccharides extracted from Fucus sp. was put with sup(95m)Tc in seawater for 48 h and then dialysed, but no activity was retained by Fucoidan. (UK)

  16. Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta, with emphasis on the role of expansin

    Directory of Open Access Journals (Sweden)

    Leliaert Frederik

    2011-09-01

    Full Text Available Abstract Background Streptophyte green algae share several characteristics of cell growth and cell wall formation with their relatives, the embryophytic land plants. The multilobed cell wall of Micrasterias denticulata that rebuilds symmetrically after cell division and consists of pectin and cellulose, makes this unicellular streptophyte alga an interesting model system to study the molecular controls on cell shape and cell wall formation in green plants. Results Genome-wide transcript expression profiling of synchronously growing cells identified 107 genes of which the expression correlated with the growth phase. Four transcripts showed high similarity to expansins that had not been examined previously in green algae. Phylogenetic analysis suggests that these genes are most closely related to the plant EXPANSIN A family, although their domain organization is very divergent. A GFP-tagged version of the expansin-resembling protein MdEXP2 localized to the cell wall and in Golgi-derived vesicles. Overexpression phenotypes ranged from lobe elongation to loss of growth polarity and planarity. These results indicate that MdEXP2 can alter the cell wall structure and, thus, might have a function related to that of land plant expansins during cell morphogenesis. Conclusions Our study demonstrates the potential of M. denticulata as a unicellular model system, in which cell growth mechanisms have been discovered similar to those in land plants. Additionally, evidence is provided that the evolutionary origins of many cell wall components and regulatory genes in embryophytes precede the colonization of land.

  17. Radioactive contamination of filamentous green algae in the Hungarian reach of the river Danube

    International Nuclear Information System (INIS)

    Holland, E.; Sztanyik, L.B.; Vanicsek, L.

    1982-01-01

    In accordance with the Hungarian nuclear power program, river water monitoring techniques should be developed. From among algae of various species of river Danube the localized and well-propagating filamentous green algae (Cladophora sp.; Vaucheria sp.) were investigated. The activity concentration of gamma-radiating nuclides absorbed by algae was determined with a Canberra 8100 type Ge(Li)-spectrometer. This apparatus facilitated radioactivity measurements on wet samples or samples subjected to simple physical preparation. The metabolic character and accumulative abilities of filamentous green algae showed that they are suitable indicators of radionuclide contamination of the water ecosystem. 131 I nuclide at min. 72.5 mBq/g to max. 5440.0 mBq/g, and other fission products from 55 mBq/g to 929 mBq/g were observed. (author)

  18. Radioactive contamination of filamentous green algae in the Hungarian reach of the river Danube

    Energy Technology Data Exchange (ETDEWEB)

    Holland, E.; Sztanyik, L.B.; Vanicsek, L. (Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary))

    1982-01-01

    In accordance with the Hungarian nuclear power program, river water monitoring techniques should be developed. From among algae of various species of river Danube the localized and well-propagating filamentous green algae (Cladophora sp.; Vaucheria sp.) were investigated. The activity concentration of gamma-radiating nuclides absorbed by algae was determined with a Canberra 8100 type Ge(Li)-spectrometer. This apparatus facilitated radioactivity measurements on wet samples or samples subjected to simple physical preparation. The metabolic character and accumulative abilities of filamentous green algae showed that they are suitable indicators of radionuclide contamination of the water ecosystem. /sup 131/I nuclide at min. 72.5 mBq/g to max. 5440.0 mBq/g, and other fission products from 55 mBq/g to 929 mBq/g were observed.

  19. Bioavailability of mineral-bound iron to a snow algae-bacteria co-culture and implications for albedo-altering snow algae blooms.

    Science.gov (United States)

    Harrold, Z R; Hausrath, E M; Garcia, A H; Murray, A E; Tschauner, O; Raymond, J; Huang, S

    2018-01-26

    Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo, increase local melt rates, and may impact the global heat budget and water cycle. Yet, underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algae blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe) -bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite and pyrite as Fe sources for a Chloromonas brevispina - bacteria co-culture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted co-cultures. Fo 90 -bearing systems also exhibited a decrease in bacteria:algae ratios compared to Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina co-culture also increased the rate of Fo 90 dissolution relative to an abiotic control. Analysis of 16S rRNA genes in the co-culture identified Gammaproteobacteria , Betaprotoeobacteria and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (> 1 %) OTUs. These data provide unequivocal evidence that mineral dust can support elevated snow algae growth under otherwise Fe-depleted growth conditions, and that snow algae can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algae blooms. The laboratory experiments described herein allow for a systematic investigation of snow algae-bacteria-mineral interactions and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and

  20. On reproduction in red algae: further research needed at the molecular level

    Science.gov (United States)

    García-Jiménez, Pilar; Robaina, Rafael R.

    2015-01-01

    Multicellular red algae (Rhodophyta) have some of the most complex life cycles known in living organisms. Economically valuable seaweeds, such as phycocolloid producers, have a triphasic (gametophyte, carposporophyte, and tetrasporophyte) life cycle, not to mention the intricate alternation of generations in the edible “sushi-alga” nori. It is a well-known fact that reproductive processes are controlled by one or more abiotic factor(s), including day length, light quality, temperature, and nutrients. Likewise, endogenous chemical factors such as plant growth regulators have been reported to affect reproductive events in some red seaweeds. Still, in the genomic era and given the high throughput techniques at our disposal, our knowledge about the endogenous molecular machinery lags far behind that of higher plants. Any potential effective control of the reproductive process will entail revisiting most of these results and facts to answer basic biological questions as yet unresolved. Recent results have shed light on the involvement of several genes in red alga reproductive events. In addition, a working species characterized by a simple filamentous architecture, easy cultivation, and accessible genomes may also facilitate our task. PMID:25755663

  1. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    Directory of Open Access Journals (Sweden)

    Fernando Norambuena

    Full Text Available Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet of algae in fish feed (aquafeed resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal, Verdemin (derived from Ulva ohnoi and Rosamin (derived from diatom Entomoneis spp. for their possible inclusion into diet of Atlantic Salmon (Salmo salar. Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination, in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA content in whole body of fish fed 5% Rosamin was observed.

  2. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae.

    Science.gov (United States)

    Deniaud-Bouët, Estelle; Kervarec, Nelly; Michel, Gurvan; Tonon, Thierry; Kloareg, Bernard; Hervé, Cécile

    2014-10-01

    Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please

  3. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    Science.gov (United States)

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.

  4. PLANT DIVERSITY OF THE ZHELTOKAMENSKIY OPEN CAST MINES

    Directory of Open Access Journals (Sweden)

    Yarova T.A.

    2012-11-01

    Full Text Available Floristic structure data of soil algae, lichens, mosses, and vascular plants are given. Rare plant species which are protected at the Ukrainian, European, and International levels were revealed. The species list of trees and bushes was conducted. The soil analysis was carried out by such parameters: pH-value, the maintenance of hygroscopic water, the maintenance of mineral substances. Vegetation biomass on the open cast mines sample areas is defined. Ecological analysis of the biotopes of registered algae species was performed. The ecological analysis of the vascular plants species biotopes was carried out.The estimation of the perspective vegetation pattern was suggested for natural restoration of the open cast mines. The plant species are selected according to the ecological and morphological characteristics for plant rehabilitation and planting of open cast mines.

  5. Environmentally friendly inhibition of pathogenic bacteria and algae propagation due phthalocyanine agents

    International Nuclear Information System (INIS)

    Rihova Ambrozova, J.; Bezdekova, E.; Louckova, E.; Nekovarova, J.

    2007-01-01

    From 2004, in the laboratory of The Institute of Chemical Technology in Prague is being solved the project FT-TA/034 'Environmentally friendly inhibition of pathogenic bacteria and algae propagation in the circulatory cooling systems of nuclear power stations and in other similar technological facilities' to determine effects of phthalocyanine agents. The project bearer is VUOS, Inc. in Rybitvi (Research Institute for Organic Synthesis Inc.), where are the new phthalocyanines synthesized. The aimed goal of the research is environmentally friendly liquidation of bacteria and algae by means of photodynamic generated singlet oxygen through impact of solar radiation in the circulation cooling waters of various technical and technological systems. The principle of the problem outlined is the applying of phthalocyanine agents on samples of pure bacterial, anabaenas and algae cultures to estimate the inhibition effect on the organism exposed. In the course of solution, it is assumed that in such way conducted inhibition of bacteria, anabaenas and algae as well of their proliferation would replace routinely used bactericidal and algicidal preparations, which demand permanent dosing into circulating waters or perhaps from time to time an application of shocking doses. The particular algicidal and bactericidal agents represents in this case in situ emerging singlet oxygen, that is harmless to water biocenoses and whose presence in the water is no reason to ban the outflow of waters treated in such a way into water streams. The goal should be also a direct estimation of the effect those agents on cooling waters samples e. g. from the nuclear power plant systems. The purpose of the tests performance is also elimination of filamentous green algae, emerging in the systems cooling towers. The applied preparations are not toxic and do not burden the living environment, they contain no substances interacting with surface materials of structures in the circulatory cooling circuit

  6. Biokinetic aspects of tissue-bound tritium in algae

    International Nuclear Information System (INIS)

    Strack, S.; Kistner, G.

    1978-01-01

    For the estimate of the radiation exposure of man and for the calculation of the risk of artificial tritium from nuclear power plants, organic tissue-bound tritium is of decisive importance. In model experiments, a tritium incorporation of 61 to 71% was found from tritiated water (HTO) into organic matter of planctonic algae under reproducible conditions and this was related to the theoretical value. In further experiments the tritium release from these high tritiated algae was of interest. Kept in darkness in tritium-free, non-sterile river water, so that autolytic processes and bacterial decomposition could occur, the concentration of HTO was measured over a period of three weeks. A relatively long half-life of tissue-bound tritium was found under various temperature conditions. Therefore it must be considered that a significant retention of tritium in biological matter has to be taken into account in a natural ecosystem. In streams into which the cooling water of a nuclear reactor is released all conditions are found already for a long turnover and cycling of artificial tritium in living organisms as well as the conditions for a favourable transport of tritium by food chains to man. (Auth.)

  7. Herbivorous snails can increase water clarity by stimulating growth of benthic algae.

    Science.gov (United States)

    Zhang, Xiufeng; Taylor, William D; Rudstam, Lars G

    2017-11-01

    Eutrophication in shallow lakes is characterized by a switch from benthic to pelagic dominance of primary productivity that leads to turbid water, while benthification is characterized by a shift in primary production from the pelagic zone to the benthos associated with clear water. A 12-week mesocosm experiment tested the hypothesis that the herbivorous snail Bellamya aeruginosa stimulates the growth of pelagic algae through grazing on benthic algae and through accelerating nutrient release from sediment. A tube-microcosm experiment using 32 P-PO 4 as a tracer tested the effects of the snails on the release of sediment phosphorus (P). The mesocosm experiment recorded greater total nitrogen (TN) concentrations and a higher ratio of TN:TP in the overlying water, and a higher light intensity and biomass of benthic algae as measured by chlorophyll a (Chl a) in the snail treatment than in the control. Concentrations of total phosphorus (TP), total suspended solids (TSSs), and inorganic suspended solids (ISSs) in the overlying water were lower in the snail treatment than in the control, though no significant difference in Chl a of pelagic algae between the snail treatment and control was observed. In the microcosm experiment, 32 P activity in the overlying water was higher in the snail treatment than in the control, indicating that snails accelerated P release from the sediment. Our interpretation of these results is that snails enhanced growth of benthic algae and thereby improved water clarity despite grazing on the benthic algae and enhancing P release from the sediment. The rehabilitation of native snail populations may therefore enhance the recovery of eutrophic shallow lakes to a clear water state by stimulating growth of benthic algae.

  8. Algae to Economically Viable Low-Carbon-Footprint Oil.

    Science.gov (United States)

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  9. Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-01

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro “symbiotic recycling system” composed of mammalian cells and algae. PMID:28139713

  10. Screening of proteins based on macro-algae from West Java coast in Indonesian marine as a potential anti-aging agent

    Science.gov (United States)

    Putri, Arlina Prima; Dewi, Rizna Triana; Handayani, Aniek Sri; Harjanto, Sri; Chalid, Mochamad

    2018-02-01

    Algae has been known as one of the potential marine bio-resources that have been used in many fields such as bio-energy, food, pharmaceutical and medical applications. Study of macro-algae or seaweed for medicine application, in particular, highlights to empower their ingredients as a promising antioxidant like anti-aging agent due to their diversity in biological activity. The tropical climate of Indonesia with the highest marine biodiversity puts this country an auspicious source of numerous alga species as a novel antioxidant source. A Sample of 29 species of macroalgae has been collected from Coast of Pari Island as a part of Seribu Islands, Indonesia. Screening and extracting of aqueous tropical marine alga protein as a potential source for an antioxidant agent has been done by using 2,2-diphenyl-1-picrylhydrazyl scavenging method, and protein contents have been determined by Lowry method. Sample number 26 of the phylum Rhodophyta have 9.00±0.03 % protein content, which is potential for nutritional food in form of nutraceutical. That sample demonstrated the maximum DPPH scavenging activity 79.27±1.81 %. Moreover, crude extract from another species from phylum Rhodophyta had the very lower IC50 (3.4333±0.29 mg/ml) followed by Chlorophyta species (7.1069±1.78 mg/ml). In general, this study found that algae from phylum Rhodophyta possess a high content of protein, high activity towards free radical. Nevertheless, algae acquire the lowest IC50 value not only dominated by Rhodophyta but also from phylum Chlorophyta. The conclusion of this study leads to empowering high antioxidant activity algae as an anti-aging agent, which can be used in pharmaceutical applications. Therefore, the next study should be concerned on the properties of the algae which has been known to be suitable for pharmaceutical fields.

  11. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  12. On the uptake and binding of uranium (VI) by the green alga Chlorella Vulgaris

    International Nuclear Information System (INIS)

    Vogel, Manja

    2011-01-01

    Uranium could be released into the environment from geogenic deposits and from former mining and milling areas by weathering and anthropogenic activities. The elucidation of uranium behavior in geo- and biosphere is necessary for a reliable risk assessment of radionuclide migration in the environment. Algae are widespread in nature and the most important group of organisms in the aquatic habitat. Because of their ubiquitous occurrence in nature the influence of algae on the migration process of uranium in the environment is of fundamental interest e.g. for the development of effective and economical remediation strategies for contaminated waters. Besides, algae are standing at the beginning of the food chain and play an economically relevant role as food and food additive. Therefore the transfer of algae-bound uranium along the food chain could arise to a serious threat to human health. Aim of this work was the quantitative and structural characterization of the interaction between U(VI) and the green alga Chlorella vulgaris in environmental relevant concentration and pH range with special emphasis on metabolic activity. Therefore a defined medium was created which assures the survival/growth of the algae as well as the possibility to predict the uranium speciation. The speciation of uranium in the mineral medium was calculated and experimentally verified by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results of the sorption experiments showed that both metabolic active and inactive algal cells bind uranium in significant amounts of around 14 mg U/g dry biomass and 28 mg U/g dry biomass, respectively. Another interesting observation was made during the growth of Chlorella cells in mineral medium at the environmental relevant uranium concentration of 5 μM. Under these conditions and during ongoing cultivation a mobilization of the algae-bound uranium occurred. At higher uranium concentrations this effect was not observed due to the die off of

  13. Combined production of fish and plants in recirculating water

    Energy Technology Data Exchange (ETDEWEB)

    Naegel, L.C.A.

    1977-01-01

    A pilot plant of ca 2000 l of recirculating fresh water for intensive fish production was constructed in a controlled-environment greenhouse. The feasibility was examined of using nutrients from fish wastewater, mainly oxidized nitrogenous compounds, for plant production, combined with an activated sludge system for water purification. The reduction of nitrates, formed during the extended aeration process by nitrifying bacteria, was not sufficient by higher plants and unicellular algae alone to reduce the nitrate concentration in our system significantly. An additional microbial denitrification step had to be included to effect maximal decrease in nitrogenous compounds. For fish culture in the pilot plant Tilapia mossambica and Cyprinus carpio were chosen as experimental fishes. Both fish species showed significant weight increases during the course of the experiment. Ice-lettuce and tomatoes were tested both in recirculating water and in batch culture. The unicellular algae Scenedesmus spp. were grown in a non-sterile batch culture. All plants grew well in the wastewater without additional nutrients. Determination of the physical and chemical parameters for optimum water purification, the most suitable ratio of denitrification by plants and by microorganisms, and the most favourable fish and plant species for combined culture in recirculating water are important and of current interest in view of the increasing demand for clean, fresh water, and the pressing need to find new ways of producing protein for human nutrition under prevailing conditions of an exponentially expanding world population.

  14. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    Science.gov (United States)

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

  15. Ecological-floristic analysis of soil algae and cyanobacteria on the Tra-Tau and Yurak-Tau Mounts, Bashkiria

    Science.gov (United States)

    Bakieva, G. R.; Khaibullina, L. S.; Gaisina, L. A.; Kabirov, R. R.

    2012-09-01

    The species composition of the soil algae and cyanobacteria in the Tra-Tau and Yurak-Tau mountains is represented by 136 species belonging to five phyla: Cyanobacteria (56 species), Chlorophyta (52 species), Xanthophyta (13 species), Bacillariophyta (12 species), and Eustigmatophyta (3 species). Hantzschia amphioxys var. amphioxys, Hantzschia amphioxys var. constricta, Klebsormidium flaccidum, Leptolyngbya foveolarum, Luticola mutica, Navicula minima var. minima, Nostoc punctiforme, Phormidium jadinianum, Phormidium autumnale, and Pinnularia borealis were identified more often than other species. The composition of the algal flora depended on the soil properties; the higher plants also had a significant influence on the species composition of the soil algae.

  16. Comparing the Effects of Symbiotic Algae (Symbiodinium) Clades C1 and D on Early Growth Stages of Acropora tenuis

    Science.gov (United States)

    Yuyama, Ikuko; Higuchi, Tomihiko

    2014-01-01

    Reef-building corals switch endosymbiotic algae of the genus Symbiodinium during their early growth stages and during bleaching events. Clade C Symbiodinium algae are dominant in corals, although other clades — including A and D — have also been commonly detected in juvenile Acroporid corals. Previous studies have been reported that only molecular data of Symbiodinium clade were identified within field corals. In this study, we inoculated aposymbiotic juvenile polyps with cultures of clades C1 and D Symbiodinium algae, and investigated the different effect of these two clades of Symbiodinium on juvenile polyps. Our results showed that clade C1 algae did not grow, while clade D algae grew rapidly during the first 2 months after inoculation. Polyps associated with clade C1 algae exhibited bright green fluorescence across the body and tentacles after inoculation. The growth rate of polyp skeletons was lower in polyps associated with clade C1 algae than those associated with clade D algae. On the other hand, antioxidant activity (catalase) of corals was not significantly different between corals with clade C1 and clade D algae. Our results suggested that clade D Symbiodinium algae easily form symbiotic relationships with corals and that these algae could contribute to coral growth in early symbiosis stages. PMID:24914677

  17. Method and apparatus for lysing and processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  18. Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae en el porcentaje de remoción de cromo en laboratorio The effect of chromium removal by Algae-bacteria Bostrychia calliptera (Rhodomelaceae consortia under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Ana Lucía Rengifo-Gallego

    2012-09-01

    Full Text Available Para determinar el porcentaje de remoción de cromo en la asociación alga-bacteria, se tomaron ejemplares del alga Bostrychia calliptera de pneumatóforos de Avicennia germinans y Rizophora mangle, en la desembocadura del Río Dagua, Pacífico colombiano. El ensayo se realizó in vitro en agua marina sintética a dos concentraciones de cromo 5 y 10mg/L, empleando biorreactores con cuatro tratamientos; i material Alga-Bacteria (AB, ii material algal con antibiótico Alga-antibiótico (AA, iii consorcio bacteriano natural (CBN y iv control sin presencia de B. calliptera ni bacteria. Se monitoreó el comportamiento de poblaciones bacterianas y el porcentaje de disminución de cromo mediante AAS (Espectroscopía de absorción atómica. Se obtuvo diferencias significativas entre los tratamientos Alga-bacteria (AB y el consorcio bacteriano natural (CBN, siendo Alga-bacteria más eficiente a 10mg/L (87%. El consorcio bacteriano natural CBN obtuvo mayor porcentaje de remoción a bajas concentraciones de cromo a 5ppm (62.85%. Los resultados mostraron una interacción positiva entre las bacterias asociadas (CBN a la superficie del alga roja B. calliptera en su proceso acumulativo de cromo.Water pollution is one of the most important environmental problems worldwide. Recently, biotechnology studies have oriented efforts to study algae-bacterium consortia with the aim to understand the mechanisms to find a possible solution in environmental sciences. This study determined the percentage of chromium removal by the alga-bacterium association exposed to a set of different chromium concentrations under controlled in vitro conditions. Wild plants of Bostrychia calliptera associated with bacterial populations were collected from Dagua River, Pacific coast of Colombia, and were monitored in the laboratory. The trial was conducted with synthetic seawater in bioreactors at two chromium levels: 5 and 10mg/L, and four different experimental treatments: i algae

  19. Prospective Source of Antimicrobial Compounds From Pigment Produced by Bacteria associated with Brown Alga ( Phaeophyceae ) Isolated from Karimunjawa island, Indonesia

    Science.gov (United States)

    Lunggani, A. T.; Darmanto, Y. S.; Radjasa, O. K.; Sabdono, A.

    2018-02-01

    Brown algae or Phaeophyceae characterized by their natural pigments that differ from other important algal classes. Several publications proves that brown algae - associated bacteria have great potential in developing marine pharmaceutical industry since they are capable to synthesized numerous bioactive metabolite compounds. However the potency of marine pigmented microbes associated with brown alga to produce natural pigments and antimicrobials has been less studied. Marine pigmented bacteria associated with brown algae collected from Karimunjawa Island were successfully isolated and screened for antimicrobial activity. The aim of this research was evaluated of the antimicrobial activity of pigments extracted from culturable marine pigmented bacteria on some pathogenic bacteria and yeast. The results showed that all isolates had antimicrobial activity and could be prospectively developed as antimicrobial agent producing pigments. The 6 marine pigmented bacteria was identified to genus level as Pseudoalteromonas, Sphingomonas, Serratia, Paracoccus, Vibrio.

  20. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-01-01

    Full Text Available Abstract Background The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. Results The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology

  1. Phthalate esters in marine algae

    OpenAIRE

    Gezgin, Tuncay; Güven, Kasim Cemal; Akçin, Göksel

    2001-01-01

    Abstract o-Phthalate esters as diethyl phthalate, dibutyl phthalate, di-isobutyl phthalate and diethylhexyl phthalate were identified at surface and inner part of algae collected in the Bosphorus, as Ulva lactuca, Enteromorpha linza, Cystoseria barbata, Pterocladia capillaceaeand Ceramium rubrum. The same esters were also detected in seawater samples taken from the same area. Thus parallelism in pollution was noted between the algae and the surrounding seawater,

  2. Adsorption of copper onto char derived macro alga, Undaria pinnatifida

    International Nuclear Information System (INIS)

    Cho, Hye Jung; Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; BAe, Yoon Ju; Kim, Jung Hwan; Park, Young-Kwon

    2010-01-01

    Full text: A release of heavy metals into the environment by industrial activities raises much environmental problems because they tend to remain indefinitely, circulating and eventually accumulating throughout the food chain. Copper is essential to human life and health but, like all heavy metals, is potentially toxic as well. The excessive intakes of copper result in its accumulation in the liver and produce gastrointestinal problems, kidney damage, anemia, and continued inhalation of copper-containing sprays is linked with an increase in lung cancer among exposed people. Consequently, we need to eliminate the copper in drinking water. Also, growth rates of marine macro algae far exceed those of terrestrial biomass, without water limitations, so annual primary production rates are higher for the major marine macro algae than for most terrestrial biomass. According to these reasons, we try to use the macro alga, Undaria pinnatifida. Adsorption of heavy metals is one of the possible technologies involved in the removal of toxic metals from industrial waste streams and mining waste water using low-cost adsorbents. In recent years, many low-cost adsorbents such as seaweeds, activated carbon, etc. have been investigated, but the char by macro alga, Undaria pinnatifida, have not proven to be the most effective and promising substrates. The aim of this study is to remove copper from its aqueous solution by Undaria pinnatifida char for various parameters like pH, contact time, and Cu(II) concentration. The adsorption capacity of Cu(II) by Undaria pinnatifida char was investigated as a function of pH, contact time, and Cu(II) concentration at room temperature. And it was verified using equilibrium studies. (author)

  3. Composition of phytoplankton algae in Gubi Reservoir, Bauchi ...

    African Journals Online (AJOL)

    Studies on the distribution, abundance and taxonomic composition of phytoplankton algae in Gubi reservoir were carried out for 12 months (from January to December 1995). Of the 26 algal taxa identified, 14 taxa belonged to the diatoms, 8 taxa were green algae while 4 taxa belonged to the blue-green algae. Higher cell ...

  4. Aquatic plant surface as a niche for methanotrophs

    Directory of Open Access Journals (Sweden)

    Naoko eYoshida

    2014-02-01

    Full Text Available This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7 – 37 μmol⋅h-1⋅g-1 dry weight, which was ca 5.7-370 fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105 to 107 copies⋅g-1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86-89% to Methylocaldum gracile.

  5. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  6. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    Science.gov (United States)

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Physical structure and algae community of summer upwelling off eastern Hainan

    Science.gov (United States)

    Xu, H.; Liu, S.; Xie, Q.; Hong, B.; Long, T.

    2017-12-01

    The upwelling system is the most productive ecosystem along the continental shelf of the northern South China Sea Shelf. It brings nutrient from bottom to surface and blooms biotic community driven by summer monsoon. In this study, we present observed results of physical and biotic community structures during August, 2015 in the upwelling system along Hainan eastern coast, which is one the strongest upwelling systems in the northern South China Sea. By using hydrological data collected by CTD, we found a significant cold water tongue with high salinity which extended from offshore to 100 m isobaths. However, dissolved oxygen (DO) showed a sandwich structure in which high core of DO concentration appeared at the layer from 5 m to 30 m. It possibly was caused by the advection transport of high DO from adjacent area. Basically, this upwelling system was constrained at northern area of 18.8ºN in horizontal due to the weakening summer monsoon in August. In addition, we collected water sample at the upwelling area and measured algae categories and concentration by high performance liquid chromatography (HPLC). Results show the biotic community was dominated by five types of algae mainly, they were diatoms, dinoflagellates, green algae, prokaryotes and prochlorococcus. And different patterns of different algae were demonstrated. In the upwelling area, diatoms and prokaryotes show opposite structures, and more complex pattern for the rest three algae indicating an active biotic community in the upwelling system.

  8. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  9. Antinociceptive and Anti-Inflammatory Activity from Algae of the Genus Caulerpa

    Directory of Open Access Journals (Sweden)

    Bárbara Viviana de Oliveira Santos

    2011-03-01

    Full Text Available Marine natural products have been the focus of discovery for new products of chemical and pharmacological interest. The aim of this study was to evaluate the antinociceptive activity of the methanolic (ME, acetate (AE, hexanic (HE and chloroform (CE extracts obtained from Caulerpa mexicana, and ME, CE and HE obtained from Caulerpa sertularioides. These marine algae are found all over the world, mainly in tropical regions. Models such as the writhing test, the hot plate test and formalin-induced nociception test were used to evaluate antinociceptive activity in laboratory mice. In the writhing test, all the extracts were administered orally at a concentration of 100 mg/kg, and induced high peripheral antinociceptive activity, with a reduction in the nociception induced by acetic acid above 65%. In the hot plate test, treatment with extracts from C. sertularioides (100 mg/kg, p.o. did not significantly increase the latency of response, although the ME, AE and HE from C. mexicana showed activity in this model. This result suggests that these extracts exhibit antinociceptive activity. In the formalin test, it was observed that ME, AE and HE obtained from C. mexicana reduced the effects of formalin in both phases. On the other hand only CE from C. sertularioides induced significant inhibition of the nociceptive response in the first phase. To better assess the potential anti-inflammatory activity of the extracts, the carrageenan-induced peritonitis test was used to test Caulerpa spp. extracts on cell migration into the peritoneal cavity. In this assay, all extracts evaluated were able to significantly inhibit leukocyte migration into the peritoneal cavity in comparison with carrageenan. These data demonstrate that extracts from Caulerpa species elicit pronounced antinociceptive and anti-inflamatory activity against several nociception models. However, pharmacological and chemical studies are continuing in order to characterize the mechanism

  10. Antimalarial Activity of Plant Metabolites.

    Science.gov (United States)

    Pan, Wen-Hui; Xu, Xin-Ya; Shi, Ni; Tsang, Siu Wai; Zhang, Hong-Jie

    2018-05-06

    Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum . As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002) reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  11. Antimalarial Activity of Plant Metabolites

    Directory of Open Access Journals (Sweden)

    Wen-Hui Pan

    2018-05-01

    Full Text Available Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum. As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002 reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  12. Method and apparatus for processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  13. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    International Nuclear Information System (INIS)

    Deng Lin; Wang Hongli; Deng Nansheng

    2006-01-01

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (λ=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL -1 and initial algae concentration ranged from ABS algae (the absorbency of algae)=0.025 to ABS algae =0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V 0 =kC 0 0.1718 A algae 0.5235 (C 0 was initial concentration of Cr(VI); A algae was initial concentration of algae) under the condition of pH 4

  14. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savcenco, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  15. Plutonium sorption by the green algae Scenedesmus obliquus (Tuerp) Kuetz

    International Nuclear Information System (INIS)

    Tkacik, M.F.; Giesy, J.P.; Corey, J.C.

    1978-01-01

    As part of the continuing study of the possible impact of released radioisotopes to the Savannah River Plant (SRP) environment, the interaction between a biological system and plutonium was investigated. Specifically, an algal culture, Scenedesmus obliquus, was exposed to the +4 and +6 oxidation states of 238 Pu and 239-240 Pu at three plutonium concentration levels. There was no significant different (p 3) 0.05) between 238 Pu and 239-240 Pu accumulation by the algae at equivalent concentrations or at different oxidation states

  16. Using algae and submerged calcifying water flora for treating neutral to alkaline uranium-contaminated water

    International Nuclear Information System (INIS)

    Dienemann, C.; Dienemann, H.; Stolz, L.; Dudel, E.G.

    2005-01-01

    Elimination of uranium from neutral to alkaline water is a complex technical process involving decarbonation, usually with HCl, followed by uranium removal by adding alkaline substances. In passive water treatment systems, uranium species - which often consist of a combination of oxidation and reduction stages - are not sufficiently considered. Algae and submerged water plants provide a natural alternative. They remove carbon dioxides or hydrogen carbonate, depending on the species, thus reducting the concentrations of the carbonate species. As the uranium species in alkaline water are coupled on the one hand to the carbonate species and on the other hand on the earth alkali metals, algae and submerged calcifying water plants are an excellent preliminary stage as a supplement to conventional passive water treatment systems. For a quantification of this effect, laboratory experiments were made with Cladophara spec. and with uranium concentrations of 100, 250 and 1000 μg U.L -1 at pH 8.3. The pH was adjusted with NaOH resp. Na2CO3 resulting in different uranium species. After 20 minutes, there was a difference in self-absorption between the different species (higher uranium concentration for NaOH than for Na2CO3), which was no longer observeable after 24 h. On the basis of data on the biomass development of macrophytic algae (Cladophora and Microspora) in a flowing river section near Neuensalz/Vogtland district, the final dimensions of a purification stage of this type are assessed. (orig.)

  17. Non-destructive alpha-particle activation analysis of P, Cl, K and Ca in marine macro-alga samples using synthetic multielement reference material as comparative standard

    International Nuclear Information System (INIS)

    Iwata, Y.; Naitoh, H.; Suzuki, N.

    1992-01-01

    A Synthetic Reference Material (SyRM) composed with accurately known amounts of 12 elements has been prepared. The elemental composition of the SyRM is closely similar to that of marine macro-algae sample. The elemental composition of the SyRM was regulated by the starting materials used for the synthesis. The SyRM was used as a comparative standard for non-destructive alpha-particle activation analysis of marine macro-alga samples. P, Cl, K and Ca were determined simultaneously without correction for alpha range due to difference in the elemental composition between the analytical samples and the comparative standard. (author) 19 refs.; 4 tabs

  18. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, J.

    1978-01-01

    Fluorescence emission spectra at 77K of isolated heterocysts of Anabaena L-31 do not show F685-695 but rather F715-730, thus confirming the absence of photosystem II and the presence of photosystem I. Recent work using radioactive nitrogen has been collated and a tentative scheme is outlined indicating the location of the enzymes and the pathways involved in the initial assimilation of nitrogen in blue-green algae. Glutamine synthetase extracted from heterocysts of Anabaena L-31 does not exhibit the adenylylation/deadenylylation phenomenon characteristic of the enzyme from bacteria. Our recent experiments suggest that nitrogenase in Anabaena is under dual control by glutamic acid and aspartic acid, the former inhibiting the enzyme synthesis and the latter relieving the inhibition. Two extracellular polypeptides have been obtained from this alga, one of which inhibits heterocyst formation whereas the other enhances heterocyst formation and partially relieves the inhibitory effect of the former. An extracellular substance, possibly a glycopeptide, has been obtained from A. torulosa, which stimulates sporulation. Studies with 24 Na and 22 Na indicate that A. torulosa, an alga from saline habitats, has an active photosynthesis-linked mechanism for the extrusion of sodium. Sodium is essential for optimum nitrogenase activity and growth. In field experiments inoculation with Nostoc 4 resulted in substantial increase in soil nitrogen. Paddy yield was comparable to those plots where 80kg N/ha of urea was used. (author)

  19. Co-liquefaction of micro algae with coal. 2; Bisai sorui to sekitan no kyoekika hanno. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, C.; Matsui, T.; Otsuki, M.; Ikenaga, N.; Suzuki, T. [Kansai University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    For the removal and recycle of CO2, a global warming gas, utilization of photosynthesis by micro algae is investigated. Formed micro algae are decomposed into CO2, H2O and CH4 again, which does not result in the permanent fixation. For the effective utilization of these micro algae, creation of petroleum alternate energy was tried through the co-liquefaction of micro algae with coal. Were investigated influences of the reaction temperature during the co-liquefaction and influences of catalysts, such as Fe(CO)5-S, Ru(CO)12, and Mo(CO)6-S, which are effective for the coal liquefaction. Micro algae, such as chlorella, spirulina, and littorale, and Yallourn brown coal were tested. It was found that co-liquefaction of micro algae with coal can be successfully proceeded under the same conditions as the liquefaction of coal. The oil yield obtained from the co-liquefaction in the presence of Fe(CO)5-S, an effective catalyst for coal liquefaction, agreed appropriately with the arithmetical mean value from separate liquefaction of coal and micro algae. It was suggested that pyrrhotite, an active species for coal liquefaction, was sufficiently formed by increasing the addition of sulfur. 2 refs., 7 figs., 1 tab.

  20. Aquatic macro algae of a region under Almirante Alvaro Alberto nuclear power plant influence. I. Spatial seasonal evaluation

    International Nuclear Information System (INIS)

    Pedrini, A.G.; Universidade Santa Ursula, Rio de Janeiro, RJ; Cassano, V.; Coelho, L.G.; Labronici, G.J.

    1994-01-01

    Marine macro algae from the area which is under in fluence of the heated and chlorate liquid effluent to the CNAAA were observed (1981-1983) at 3 collection points: Pingo Dagua, Velho Beach, discharge point. A total of 121 taxa were found: 29 Chlorophyta, 26 Phaeophyta and 66 Rhodophyta. The spring season was the richest in taxa (78) while autumn was the poorest (85). Overall, the data suggest that the point A (Pingo Dagua) macro algae community (which is similar to the discharge point (0,80) is adequate for the control of the CNAAA effluent impact ad Piraquara de Fora. (author). 11 refs, 5 figs, 1 tab

  1. UV-A/blue-light responses in algae

    Energy Technology Data Exchange (ETDEWEB)

    Senger, H.; Hermsmeier, D. [Philipps-Universitaet Marburg (Germany)

    1994-12-31

    All life on earth depends on light. A variety of photoreceptors capture the light for a wide range of reactions. Photosynthetic organisms absorb the light necessary for energy transformation and charge separation facilitating photosynthesis. In addition to the bulk pigments there are a great diversity of photoreceptors present in minute concentrations that control development, metabolism and orientation of plants and microorganisms. Based on its spectral absorbance, the well-studied phytochrome system acts in the RL region as well as in the UV-A/BL region where the above mentioned reactions are mediated by a variety of photoreceptors whose natures are largely unknown. Phyllogenetically the UV-A/BL photoreceptors seem to be more ancient pigments that eventually were replaced by the phytochrome system. However, there are many reports that suggest a coaction between the UV-A/BL receptors and the phytochrome system. In several cases the UV-A/BL activation is the prerequisite for the phytochrome reaction. Historically it was the German botanist Julius Sachs who first discovered in 1864 that phototropism in plants was due to BL reactions. It took over 70 years until Bunning (1937) and Galston and Baker (1949) rediscovered the BL response. Since then, an ever-increasing attention has been paid to this effect. Two international conferences in 1979 and 1983 have been entirely dedicated to the BL phenomenon. In this contribution, the general aspect of UV-A/BL responses and especially the responsiveness of algae will be covered. There are numerous review articles covering the various aspects of UV-A/BL action and the photoreceptors involved.

  2. Bio-reduction of plutonyl and neptunyl by Shewanella alga

    International Nuclear Information System (INIS)

    Reed, D.T.; Lucchini, J.F; Rittmann, B.E.; Songkasiri, W.

    2005-01-01

    Full text of publication follows: The results of a concurrent experimental and modeling study to investigate the bio-reduction of higher-valent plutonium and neptunium by Shewanella alga strain BrY are presented. S. Alga, as a facultative metal reducer, is representative of bacteria that will be important in defining the mobility of plutonium and neptunium species as they migrate from oxic to anoxic zones. This is also an important consideration in defining the long-term stability of bio-precipitated 'immobilized' plutonium phases under changing redox conditions in biologically active systems and subsequently the effectiveness of remediation/containment approaches used for bio-remediation. Neptunium (VI) is readily reduced in groundwaters by many organics. In biologically active systems, it is unlikely, for this reason, that this oxidation state of neptunium will be important. Under all conditions investigated, neptunium (V) was reduced to neptunium (IV) when anaerobic conditions were established for a wide variety of electron donors. This was evidences by 3-4 orders of magnitude reduction in solution concentration and confirmed by XANES analysis. This led to high bio-association and/or precipitation of the neptunium. Plutonium (VI), as was the case with neptunium (VI) was reduced by the organics typically present in biologically active systems. Analogous bio-reduction experiments with plutonium (V) and plutonium (VI) are in progress and are expected to show that bio-reduction will predominate under anaerobic conditions, as was the case with neptunium. These results for neptunium and plutonium show S. Alga to be an effective microbe for the bio-reduction, and consequently the immobilization, of these important actinide contaminants. (authors)

  3. Po-210 high levels in aquatic plants of the Carapebus sandbank, RJ, Brazil

    International Nuclear Information System (INIS)

    Kelecom, Alphonse; Santos, Pedro Lopes dos; Gouvea, Rita de Cassis S.; Dutra, Iedo Ramos; Fevereiro, Paulo Cesar Ayres

    1999-01-01

    210 Po concentration have been determined in one green alga and in five freshwater plants grown in a pond of the Carapebus restinga (state of Rio de Janeiro). The alga Chara sp showed elevated concentration of 210 Po, similar to that observed in marine algae. All the other plants had the lowest concentration of 210 Po in the stems and the highest in the roots. Intermediate values were observed in the leaves. The unexpected high concentration of 210 Po in the roots, even superior to reported values for roots of plants from high radioactive background areas, must be due to the elevated levels of this radionuclide in associated soils that are known to be rich in humic organic material. There seem to have no translocation of this radionuclide from the roots to the other parts of the plants. (author)

  4. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  5. Hepatoprotective efficiency of methanol extract of red algae against chromium-induced oxidative damage in Wistar rats

    Directory of Open Access Journals (Sweden)

    Murugesan Subbiah

    2016-07-01

    Full Text Available Objective: To investigate the hepatoprotective activity of red algae Portieria hornemannii (Lyngbye Silva (P. hornemannii and Spyridia fusiformis Boergesen (S. fusiformis by using the chromium treated rat liver as the animal model. Methods: The extract of red algae at a dosage of 0.200 g/kg of whole body weight was orally administrated to Cr (VI intoxicated rats for 28 consecutive days. The effect of drug in rats was evaluated by comparing the degree of the production of enzymes responsible for antioxidant activity such lipid peroxidase, superoxide dismutase, catalase and reduced glutathione with Cr (VI analogs in the absence of any secondary treatment. The overall damage of liver was detected by measuring serum enzymes such as aspartate amino transferase and alanine aminotransferase activities which released into the blood from the damaged cells. Results: It was observed that these enzyme levels were noticed in the animals treated with methanol extracts of red algae (200 mg/kg through preventing the leakage of the above enzymes into the blood. The hepatoprotection obtained using LIV 52 (standard reference drug appeared relatively higher. The antihepatotoxic potential of red algae P. hornemannii and S. fusiformis might be due to their antioxidative and membrane stabilizing activities. Conclusions: Our results indicated that the extract of P. hornemannii and S. fusiformis obtained from methanol could be a promising hepatoprotective agent against chromium (VI-induced liver damage.

  6. Pretreatment of algae-laden and manganese-containing waters by oxidation-assisted coagulation: Effects of oxidation on algal cell viability and manganese precipitation.

    Science.gov (United States)

    Lin, Jr-Lin; Hua, Lap-Cuong; Wu, Yuting; Huang, Chihpin

    2016-02-01

    Preoxidation is manipulated to improve performance of algae and soluble manganese (Mn) removal by coagulation-sedimentation for water treatment plants (WTPs) when large amount of soluble Mn presents in algae-laden waters. This study aimed to investigate the effects of preoxidation on the performance of coagulation-sedimentation for the simultaneous removal of algae and soluble Mn, including ionic and complexed Mn. NaOCl, ClO2, and KMnO4 were used to pretreat such algae-laden and Mn containing waters. The variation of algal cell viability, residual cell counts, and concentrations of Mn species prior to and after coagulation-sedimentation step were investigated. Results show that NaOCl dosing was effective in reducing the viability of algae, but precipitated little Mn. ClO2 dosing had a strongest ability to lower algae viability and oxidize ionic and complexed soluble Mn, where KMnO4 dosing oxidized ionic and complexed Mn instead of reducing the viability of cells. Preoxidation by NaOCl only improved the algae removal by sedimentation, whereas most of soluble Mn still remained. On the other hand, ClO2 preoxidation substantially improved the performance of coagulation-sedimentation for simultaneous removal of algae and soluble Mn. Furthermore, KMnO4 preoxidation did improve the removal of algae by sedimentation, but left significant residual Mn in the supernatant. Images from FlowCAM showed changes in aspect ratio (AR) and transparency of algae-Mn flocs during oxidation-assisted coagulation, and indicates that an effective oxidation can improve the removal of most compact algae-Mn flocs by sedimentation. It suggests that an effective preoxidation for reducing algal cell viability and the concentration of soluble Mn is a crucial step for upgrading the performance of coagulation-sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  8. Accumulation of 210Po by benthic marine algae

    International Nuclear Information System (INIS)

    Gouvea, R.C.; Branco, M.E.C.; Santos, P.L.

    1988-01-01

    The accumulation of polonium 210 Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of 210 Po. The algae collected in open sea, revealed greater concentration factors of 210 Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium. (author)

  9. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Hongli [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)]. E-mail: nsdengwhu@163.com

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps ({lambda}=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL{sup -1} and initial algae concentration ranged from ABS{sub algae} (the absorbency of algae)=0.025 to ABS{sub algae}=0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V{sub 0}=kC{sub 0}{sup 0.1718}A{sub algae}{sup 0.5235} (C{sub 0} was initial concentration of Cr(VI); A{sub algae} was initial concentration of algae) under the condition of pH 4.

  10. New methodologies for integrating algae with CO2 capture

    NARCIS (Netherlands)

    Hernandez Mireles, I.; Stel, R.W. van der; Goetheer, E.L.V.

    2014-01-01

    It is generally recognized, that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  11. Diel tuning of photosynthetic systems in ice algae at Saroma-ko Lagoon, Hokkaido, Japan

    Science.gov (United States)

    Aikawa, Shimpei; Hattori, Hiroshi; Gomi, Yasushi; Watanabe, Kentaro; Kudoh, Sakae; Kashino, Yasuhiro; Satoh, Kazuhiko

    Ice algae are the major primary producers in seasonally ice-covered oceans during the cold season. Diurnal change in solar radiation is inevitable for ice algae, even beneath seasonal sea ice in lower-latitude regions. In this work, we focused on the photosynthetic response of ice algae under diurnally changing irradiance in Saroma-ko Lagoon, Japan. Photosynthetic properties were assessed by pulse-amplitude modulation (PAM) fluorometry. The species composition remained almost the same throughout the investigation. The maximum electron transport rate ( rETRmax), which indicates the capacity of photosynthetic electron transport, increased from sunrise until around noon and decreased toward sunset, with no sign of the afternoon depression commonly observed in other photosynthetic organisms. The level of non-photochemical quenching, which indicates photoprotection activity by dissipating excess light energy via thermal processes, changed with diurnal variations in irradiance. The pigment composition appeared constant, except for xanthophyll cycle pigments, which changed irrespective of irradiance. These results indicate that ice algae tune their photosynthetic system harmonically to achieve efficient photosynthesis under diurnally changing irradiance, while avoiding damage to photosystems. This regulation system may be essential for productive photosynthesis in ice algae.

  12. A Cytotoxic Hydroperoxy Sterol from the Brown Alga, Nizamuddinia Zanardinii

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2013-03-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae.Methods:Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC. In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines.Results:Although 24(R-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively. HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL assay suggesting it a candidate for further apoptotic studies.Conclusions:Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma.

  13. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Byung Chull An; Jae-Sung Kim; Seung Sik Lee; Shyamkumar Barampuram; Eun Mi Lee; Byung Yeoup Chung

    2007-01-01

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  14. Indigenous algae: Potential factories for biodiesel production

    CSIR Research Space (South Africa)

    Maharajh, Dheepak M

    2008-11-01

    Full Text Available advantages. Approximately 30% of South African environments favourable for isolating algae have been sampled. Samples were enriched, purified and assessed for lipid content, resulting in a database of indigenous algae. Positive isolates were grown under...

  15. Phospholipids of New Zealand Edible Brown Algae.

    Science.gov (United States)

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  16. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Evolutionary relationships and functional diversity of plant sulfate transporters.

    Science.gov (United States)

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  18. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  19. Methane production by anaerobic digestion of algae. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nyns, E.J.; Naveau, H.P.

    Methane is produced experimentally by anaerobic fermentation of algae, principally of species Hydrodictyon and Cladophora, grown in cooling water from nuclear power plants. The accumulation of fatty acids, by-products of fermentation, is found to have an inhibitory effect on methane production. Methods to remove fatty acids and stabilise the reaction are investigated. An economic analysis is presented using a financial model processor based on data from experimental digesters. The experimental work is described and the results are presented in an Appendix (in French). Seven relevant papers, of which two are in French are also annexed.

  20. Scenario studies for algae production

    OpenAIRE

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass productivity and energy consumption, while considering the uncertainty and complexity in such large-scale systems. In this thesis frameworks are developed to assess 1) the productivity during algae culti...

  1. Elemental concentrations of aquatic insect larvae and attached algae on tone surfaces in an uncontaminated stream

    International Nuclear Information System (INIS)

    Momoshima, N.; Sugihara, S.; Hibino, K.; Nakamura, Y.

    2009-01-01

    Elemental concentrations of aquatic insect larvae and attached algae in an uncontaminated river were analyzed by instrumental neutron activation analysis (INAA) via the k 0 -standardization method. The aquatic insect larvae found were all intolerant species. No significant difference was observed int he elemental concentrations of aquatic insect larvae and attached algae long the river. Similar elemental concentrations were observed in the aquatic insect larvae collected at a fixed sampling point for two years. An analysis by the ratio-matching technique indicated a higher generic relationship between aquatic insect larvae and attached algae than river water. (author)

  2. How to Identify and Control Water Weeds and Algae.

    Science.gov (United States)

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  3. Agricultural importance of algae | Abdel-Raouf | African Journal of ...

    African Journals Online (AJOL)

    Algae are a large and diverse group of microorganisms that can carry out photosynthesis since they capture energy from sunlight. Algae play an important role in agriculture where they are used as biofertilizer and soil stabilizers. Algae, particularly the seaweeds, are used as fertilizers, resulting in less nitrogen and ...

  4. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    Science.gov (United States)

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-α) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Biogeochemical cycling of metals in freshwater algae from Manaus and Carajas, Brazil

    International Nuclear Information System (INIS)

    Konhauser, K.O.; Fyfe, W.S.

    1993-01-01

    Freshwater algae were analyzed in different riverine environments in Manaus and Carajas, Brazil. Filamentous algae from both locations were characterized by enhanced levels of a wide array of heavy metals. A comparison of the two main rivers in the Manaus area indicated that the algal samples from the solute-rich waters of the Rio Solimoes consistently contained higher metal concentrations than in the solute-deficient waters of the Rio Negro. A similar relationship also existed between algal samples collected from forested regions relative to adjacent deforested regions in the Carajas area. In the Rio Negro, diatoms were shown to be the most prolific eucaryotic microorganisms found in the study area. These siliceous algae were found adhering to a variety of submerged solid substrates, including wood, rocks, and leaves. The abundance of these unicellular micro-organisms suggested that the dissolved silicon levels of the Rio Negro were influenced by biological activity

  6. 21 CFR 73.185 - Haematococcus algae meal.

    Science.gov (United States)

    2010-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with haematococcus algae... in color additive mixtures for coloring foods. (b) Specifications. Haematococcus algae meal shall... salmonid fish in accordance with the following prescribed conditions: (1) The color additive is used to...

  7. Proposals to clarify and enhance the naming of fungi under the International Code of Nomenclature for algae, fungi, and plants.

    Science.gov (United States)

    Hawksworth, David L

    2015-06-01

    Twenty-three proposals to modify the International Code of Nomenclature for algae, fungi, and plants adopted in 2011 with respect to the provisions for fungi are made, in accordance with the wishes of mycologists expressed at the 10(th) International Mycological Congress in Bangkok in 2014, and with the support of the International Commission on the Taxonomy of Fungi (ICTF), the votes of which are presented here. The proposals relate to: conditions for epitypification, registration of later typifications, protected lists of names, removal of exemptions for lichen-forming fungi, provision of a diagnosis when describing a new taxon, citation of sanctioned names, avoiding homonyms in other kingdoms, ending preference for sexually typified names, and treatment of conspecific names with the same epithet. These proposals are also being published in Taxon, will be considered by the Nomenclature Committee for Fungi and General Committee on Nomenclature, and voted on at the 19(th) International Botanical Congress in Shenzhen, China, in 2017.

  8. Determination of essential elements in edible seaweed by neutron activation analysis; Determinacao de elementos essenciais em algas marinhas comestiveis por analise por ativacao neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Cassio Bessa Lima; Maihara, Vera Akiko, E-mail: cassio_man@hotmail.com, E-mail: vmaihara@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Comestible marine algae are gaining wider global trade, not only because of the taste but also the nutritional quality they present. They are rich in protein, fiber, vitamins and are excellent sources of essential elements due to their ability to absorb substances storing them in their bodies. its chemical composition varies according to the species, habitat, maturity and environmental conditions which are submitted. The method of Neutron Activation Analysis was used to determine the essential elements Cl, K, Mg, Mn and Na present in marine algae from different countries, which are sold in the city of Sao Paulo. A total of 6 samples of marine algae were analyzed, 4 species of Nori (Porphyra umbilicates) from China, Korea, Japan and USA; 1 of Hijiki (Hijikia fusiforme) species from Japan; and 1 species of Kombu (Laminaria sp.) of South Korea. To validate the methodology used was the reference material NIST SRM 1577b Bovine Liver. The concentrations range from 5265-1175 μg/g to CL; from 14413-90261 μg/g to K; from 3007-7091 μg/g to Mg; from 2,3-33,8 μg/g to Mn and from 5161-24973 μg/g to Na.

  9. Radionuclides and trace metals in eastern Mediterranean Sea algae

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mamish, S.; Budier, Y.

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that 137 Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg -1 dry weight) while the levels of naturally occurring radionuclides, such as 210 Po and 210 Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg -1 dry weight) for 210 Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate 210 Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br

  10. Macro-economics of algae products : Output WP2A7.02

    NARCIS (Netherlands)

    Voort, van der M.P.J.; Vulsteke, E.; Visser, de C.L.M.

    2015-01-01

    This report is part of the EnAlgae Workpackage 2, Action 7, directed at the economics of algae production. The goal of this report is to highlight potential markets for algae. Per type of algae market the market size, product alternatives, constraints and prices are highlighted. Based on these

  11. Toward a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom.

    Science.gov (United States)

    Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  12. Towards a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom

    Directory of Open Access Journals (Sweden)

    Philipp eJanitza

    2012-12-01

    Full Text Available The mitogen-activated protein kinase (MAPK pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and dicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as MHKs. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  13. Influence of carbon dioxide, temperature, medium kind and light intensity on the growth of algae Chlamydomonas reinhardtii and Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    Olejnik Przemysław Piotr

    2016-01-01

    Full Text Available Microalgae attracts the attention of scientists because of the possibility of using in the energy industry as one of the substrates for the production of renewable energy. So far, the greatest emphasis was put on attempts to obtain strains, and technologies of their culturing, in order to efficiently acquire fat from cells and its further conversion to biodiesel using transesterification reaction. Increasingly, algae are considered also as an efficient biomass producer, which can be used as a substrate for methane production in biogas plants. In this study the influence of different physical and chemical conditions, on the growth of two algae species: Chlamydomonasreinhardtii and Scenedesmus obliquus was investigated. Based on the literature and the data obtained for the algae growth on the standard medium and the digestate remaining after fermentation, one may suggest further investigations on the use of other liquid waste from agriculture and industry for algae breeding, including chemical. analysis and supplementation of these mediums so as to provide the best conditions for their growth.

  14. Red Algae (Rhodophyta from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products

    Directory of Open Access Journals (Sweden)

    Marie Pascaline Rahelivao

    2015-07-01

    Full Text Available Several species of red algae (Rhodophyta from the coastal regions of Madagascar have been investigated for their natural products. The most abundant compound was cholesterol (5 in combination with a series of oxidized congeners. The brominated indoles 1–3 along with the sesquiterpene debilone (4 have been isolated from Laurencia complanata. For the first time, debilone (4 has been obtained from a marine plant. From the methanol extract of Calloseris sp., we have achieved the second isolation of the unusual A-ring contracted steroids (−-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9 and phorbasterone B (10. The crude extracts of Laurencia complanata exhibited antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, and Candida albicans.

  15. Red Algae (Rhodophyta) from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products.

    Science.gov (United States)

    Rahelivao, Marie Pascaline; Gruner, Margit; Andriamanantoanina, Hanta; Andriamihaja, Bakolinirina; Bauer, Ingmar; Knölker, Hans-Joachim

    2015-07-07

    Several species of red algae (Rhodophyta) from the coastal regions of Madagascar have been investigated for their natural products. The most abundant compound was cholesterol (5) in combination with a series of oxidized congeners. The brominated indoles 1-3 along with the sesquiterpene debilone (4) have been isolated from Laurencia complanata. For the first time, debilone (4) has been obtained from a marine plant. From the methanol extract of Calloseris sp., we have achieved the second isolation of the unusual A-ring contracted steroids (-)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9) and phorbasterone B (10). The crude extracts of Laurencia complanata exhibited antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, and Candida albicans.

  16. LIPIDS OF BLACK SEA ALGAE: UNVEILING THEIR POTENTIAL FOR PHARMACEUTICAL AND COSMETIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Veselina Panayotova

    2017-11-01

    Full Text Available Background: Bulgarian Black Sea coast is rich in algae, regarding biomass and algal biodiversity. The red algae Gelidium crinale (Rhodophyta and brown algae Cystoseira barbata (Phaeophytes are among the most abundant species along the Bulgarian Black Sea shore. Yet information about their lipid composition is limited. Purpose: Present study was conducted to investigate biologically active substances in two underexplored seaweed lipids. Total lipids, total phospholipids, fat soluble vitamins and carotenoids were analysed. In addition, the specific distribution of fatty acids group among the total lipids and total phospholipids were elucidated. Material/Methods: The saponifiable lipid fraction was derivatized into fatty acid methyl esters (FAMEs and analysed by gas chromatography–mass spectrometry (GC-MS to identify and quantify the fatty acids. The fat soluble non-saponifiable lipids were identified by high-pressure liquid chromatography coupled with UV/Vis and fluorescence detectors (HPLC-UV-FL. Results: Results showed that Rhodophyta and Phaeophytes have high concentrations of polyunsaturated fatty acids (PUFA, particularly from the n-3 series, thereby being a good source of these compounds. They presented a “healthy” n-6/n-3 ratio. Both seaweed species showed considerably high amounts of α-tocopherol, β-carotene and astaxanthin. Conclusions: The study reveals that lipids from Black Sea algae have a high potential as natural sources of biologically active ingredients. They are balanced source of fatty acids and contained beneficial antioxidants, such as α-tocopherol, β-carotene and astaxanthin.

  17. Uptake of Iodine-131 in mussel (Mytilus smaragdinns) and algae (caulerpa racemosa)

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Banzon, R.B.; de la Mines, A.S.; Bautista, E.Rb.

    1982-01-01

    The behavior of radionuclides in the environment has been the subject of research. Iodine-131, a beta emitter as one of the radionuclides has been studied. This study describes Iodine-131 uptake in mussel and algae. The bioaccumulation factor C was determined which gave the relationship between the concentration of radioactivity in biota relative to the water environment. Results of the experiments showed that the mussels steadily accumulated I-131 from radioactive medium. Much higher bioaccumulation factor was obtained in algae than in mussel. No attempt was made to measure activity in the soft parts. (ELC)

  18. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  19. Thermal algae in certain radioactive springs in Japan, (3)

    International Nuclear Information System (INIS)

    Mifune, Masaaki; Hirose, Hiroyuki.

    1982-01-01

    Shikano Hot Springs are located at five km to the south of Hamamura Station on the Sanin Line in Tottori Prefecture. The water temperature and the pH of the springs are 40.2 - 61.2 0 C, and 7.5 - 7.8, respectively. They belong to simple thermals. Hamamura Hot Springs are located in the neighbourhood of Hamamura Station. The highest radon content of the hot springs is 175.1 x 10 -10 Ci/l, and the great part of the springs belong to radioactive ones. From the viewpoint of the major ionic constituents, they are also classified under weak salt springs, sulfated salt springs, and simple thermals. Regarding the habitates of the algal flora, the water temperature and the pH of the springs are 28.0 - 68.0 0 C, and 6.8 - 7.4, respectively. The thermal algae found by Ikoma and Doi at Hamamura Hot Springs were two species of Cyanophyceae. By the authors, nine species and one variety of Cyanophyceae including Ikoma and Doi's two species were newly found at Shikano and Hamamura Hot Springs. Chlorophyceous alga was not found. The dominant thermal algae of these hot springs were Mastigocladus laminosus, and the other algae which mainly consist of Oscillatoriaceous algae. From these points, it seems that the thermal algae of Shikano and Hamamura Hot Springs belong to the normal type of thermal algae, and they are different from the thermal algae of Ikeda Mineral Springs and Masutomi Hot Springs which belong to strongly radioactive springs. (author)

  20. Evolution of green plants as deduced from 5S rRNA sequences.

    Science.gov (United States)

    Hori, H; Lim, B L; Osawa, S

    1985-02-01

    We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other.

  1. Cytoplasmic streaming velocity as a plant size determinant.

    Science.gov (United States)

    Tominaga, Motoki; Kimura, Atsushi; Yokota, Etsuo; Haraguchi, Takeshi; Shimmen, Teruo; Yamamoto, Keiichi; Nakano, Akihiko; Ito, Kohji

    2013-11-11

    Cytoplasmic streaming is active transport widely occurring in plant cells ranging from algae to angiosperms. Although it has been revealed that cytoplasmic streaming is generated by organelle-associated myosin XI moving along actin bundles, the fundamental function in plants remains unclear. We generated high- and low-speed chimeric myosin XI by replacing the motor domains of Arabidopsis thaliana myosin XI-2 with those of Chara corallina myosin XI and Homo sapiens myosin Vb, respectively. Surprisingly, the plant sizes of the transgenic Arabidopsis expressing high- and low-speed chimeric myosin XI-2 were larger and smaller, respectively, than that of the wild-type plant. This size change correlated with acceleration and deceleration, respectively, of cytoplasmic streaming. Our results strongly suggest that cytoplasmic streaming is a key determinant of plant size. Furthermore, because cytoplasmic streaming is a common system for intracellular transport in plants, our system could have applications in artificial size control in plants. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  3. Growth and carbon fixation rate of calcareous algae cricosphaera carterae. Sekkaiso cricosphaera carterae no zoshoku to tanso kotei sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Seki, M; Furusaki, S [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Shigematsu, K [Sumitomo Chemical Co. Ltd., Osaka (Japan); Shigeta, K [Kanagawa Prefectural Office, Yokohama (Japan)

    1993-09-10

    Notice has been given on a calcareous alga among micro marine algae that play an important role in carbon circulation, and the representative alga, Cricosphaera carterae was cultured to discuss growth and carbon fixation rate experimentally. It was found that nutrient salt is taken in more actively in the bright period during which no fission occurs, and less actively during the growth stage in the dark period. Dependence of nitrate concentration on specific growth rate was measured with semi-continuous culture and two formulas were formulated. The specific growth rate was 0.53/d at an average nitrogen concentration on the ocean surface of 15 mg/m[sup 3]. The maximum specific growth rate was 0.9/d, and the fixing ratio of inorganic carbon to organic carbon was roughly 0.1. Further, the alga was cultured with CO2 concentration doubled (to 715 ppm), where no large difference was discovered in the growth and the inorganic carbon fixation. From these findings, the carbon fixation amount due to algae on the entire earth was calculated to roughly 4 billion tons per year. 23 refs., 10 figs., 4 tabs.

  4. Impact of well intake systems on bacterial, algae, and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah; Almashharawi, Samir; Kammourie, Nizar; Missimer, Thomas M.

    2014-01-01

    natural filtration and biological treatment of the feed water prior to the entry of the water into the desalination plant. The use of subsurface intakes normally improves the raw water quality by reducing suspended solids, algae, bacterial, and dissolved

  5. (a red alga) against Jurkat and molt-4 human cancer cell lines

    African Journals Online (AJOL)

    hope&shola

    2010-10-04

    Oct 4, 2010 ... 2The Persian Gulf Tropical and Infectious Disease Research Center, Bushehr University of ... active substances from various marine algae, however ... algal clarified crude extract was sterilized by millipore filter with 0.22.

  6. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  7. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  8. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  9. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus

    Energy Technology Data Exchange (ETDEWEB)

    Dewez, David [Departement de Chimie et de Biochimie, Centre TOXEN, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada); Geoffroy, Laure [Laboratoire d' Eco-Toxicologie, Unite de recherche ' Vignes et Vins de Champagne' , UPRES-EA 2069, Universite de Reims Champagne-Ardenne BP 1039, F51687 REIMS CEDEX 2 (France); Vernet, Guy [Laboratoire d' Eco-Toxicologie, Unite de recherche ' Vignes et Vins de Champagne' , UPRES-EA 2069, Universite de Reims Champagne-Ardenne BP 1039, F51687 REIMS CEDEX 2 (France); Popovic, Radovan [Departement de Chimie et de Biochimie, Centre TOXEN, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada)]. E-mail: popovic.radovan@uqam.ca

    2005-08-30

    Modulated PAM fluorometry and Plant Efficiency Analyser methods were used to investigate photosynthetic fluorescence parameters of alga Scenedesmus obliquus exposed to inhibitory effect of fungicides copper sulphate and fludioxonil (N-(4-nitrophenyl)-N'-propyl-uree). The change of those parameters were studied when alga S. obliquus have been exposed during 48 h to different concentrations of fungicides (1, 2 and 3 mg l{sup -1}). Under the same condition, enzymatic activities of catalase, ascorbate peroxidase, glutathione reductase and glutathione S-transferase were investigated to evaluate antioxidative response to fungicides effects. The change of sensitivity of those parameters was dependent to the mode of fungicide action, their concentration and time of exposure. For copper effects, the most indicative photosynthetic biomarkers were parameters Q {sub N} as non-photochemical fluorescence quenching, Q {sub Emax} as the proton induced fluorescence quenching and ABS/RC as the antenna size per photosystem II reaction center. Copper induced oxidative stress was indicated by increased activity of catalase serving as the most sensitive and valuable enzymatic biomarker. On the other hand, fludioxonil effect on photosynthetic parameters was very negligible and consequently not very useful as biomarkers. However, fludioxonil induced strong antioxidative activities associated with cytosol enzymes, as we found for catalase, ascorbate peroxidase and glutathione S-transferase activities. By obtained results, we may suggest for the activation of those enzymes to be sensitive and valuable biomarkers of oxidative stress induced by fludioxonil. Determination of biomarkers sensitivity may offer advantages in providing real criteria to use them for ecotoxicological diagnostic studies.

  10. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Dewez, David; Geoffroy, Laure; Vernet, Guy; Popovic, Radovan

    2005-01-01

    Modulated PAM fluorometry and Plant Efficiency Analyser methods were used to investigate photosynthetic fluorescence parameters of alga Scenedesmus obliquus exposed to inhibitory effect of fungicides copper sulphate and fludioxonil (N-(4-nitrophenyl)-N'-propyl-uree). The change of those parameters were studied when alga S. obliquus have been exposed during 48 h to different concentrations of fungicides (1, 2 and 3 mg l -1 ). Under the same condition, enzymatic activities of catalase, ascorbate peroxidase, glutathione reductase and glutathione S-transferase were investigated to evaluate antioxidative response to fungicides effects. The change of sensitivity of those parameters was dependent to the mode of fungicide action, their concentration and time of exposure. For copper effects, the most indicative photosynthetic biomarkers were parameters Q N as non-photochemical fluorescence quenching, Q Emax as the proton induced fluorescence quenching and ABS/RC as the antenna size per photosystem II reaction center. Copper induced oxidative stress was indicated by increased activity of catalase serving as the most sensitive and valuable enzymatic biomarker. On the other hand, fludioxonil effect on photosynthetic parameters was very negligible and consequently not very useful as biomarkers. However, fludioxonil induced strong antioxidative activities associated with cytosol enzymes, as we found for catalase, ascorbate peroxidase and glutathione S-transferase activities. By obtained results, we may suggest for the activation of those enzymes to be sensitive and valuable biomarkers of oxidative stress induced by fludioxonil. Determination of biomarkers sensitivity may offer advantages in providing real criteria to use them for ecotoxicological diagnostic studies

  11. Production of marine plant biomass: Management, cultivation, and genetic modification of macrophytic algae

    Science.gov (United States)

    Vandermeer, J. P.

    1982-12-01

    Every second of every day, the Sun's fusion reactions convert thousands of tons of hydrogen into helium with the release of almost unimaginable amounts of energy. Through the photosynthetic activity of plants, both aquatic and terrestrial, a small fraction of this energy is trapped and stored as plant biomass. The oceans cover a greater fraction of the globe than do the land masses, making it appropriate to consider their contribution to the total biomass production, and their potential as a source of raw materials for the extraction of chemicals and fuels. A rather broad synthesis, convering the total seaweed resource and some of the constraints placed on harvesting these plants, attempts to farm the oceans to increase the supply of desirable species, attempts to cultivate seaweeds in enclosures where environmental parameters are controlled, and finally, the limited amount of genetic manipulation that was applied to these plants was presented. Only the larger red and brown seaweeds were considered because they represent the bulk of the biomass.

  12. Mg-lattice associations in red coralline algae

    Science.gov (United States)

    Kamenos, N. A.; Cusack, M.; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons ( L. glaciale & P. calcareum) and thallus areas ( P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  13. Longitudinal patterns and response lengths of algae in riverine ecosystems: A model analysis emphasising benthic-pelagic interactions.

    Science.gov (United States)

    Jäger, Christoph G; Borchardt, Dietrich

    2018-04-07

    In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our

  14. Broad phylogenomic sampling and the sister lineage of land plants.

    Directory of Open Access Journals (Sweden)

    Ruth E Timme

    Full Text Available The tremendous diversity of land plants all descended from a single charophyte green alga that colonized the land somewhere between 430 and 470 million years ago. Six orders of charophyte green algae, in addition to embryophytes, comprise the Streptophyta s.l. Previous studies have focused on reconstructing the phylogeny of organisms tied to this key colonization event, but wildly conflicting results have sparked a contentious debate over which lineage gave rise to land plants. The dominant view has been that 'stoneworts,' or Charales, are the sister lineage, but an alternative hypothesis supports the Zygnematales (often referred to as "pond scum" as the sister lineage. In this paper, we provide a well-supported, 160-nuclear-gene phylogenomic analysis supporting the Zygnematales as the closest living relative to land plants. Our study makes two key contributions to the field: 1 the use of an unbiased method to collect a large set of orthologs from deeply diverging species and 2 the use of these data in determining the sister lineage to land plants. We anticipate this updated phylogeny not only will hugely impact lesson plans in introductory biology courses, but also will provide a solid phylogenetic tree for future green-lineage research, whether it be related to plants or green algae.

  15. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  16. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  17. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Science.gov (United States)

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  18. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    Directory of Open Access Journals (Sweden)

    Monika Hlavová

    Full Text Available DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.

  19. Accumulation of 95mTc by marine algae and sea urchin

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Nakahara, Motokazu; Matsuba, Mitsue; Suzuki, Yuzuru

    1994-01-01

    It is necessary to investigate the accumulation of technetium by marine algae popular in Japan and it is also important to examine the contribution of food to the accumulation of the nuclide by sea urchin which grazes algae. In the laboratory tracer experiment, some species of algae and sea urchin were kept separately for 7 days in sea water containing 95m Tc (uptake experiment) and then transferred into non-radioactive sea water to be held for 28 days with the frequent renewal of the sea water (excretion experiment). No food was given during the uptake experiment to prevent the urchins from accumulating 95m Tc through food. Another experiment was done by feeding urchins with 95m Tc labeled algae in the non-radioactive sea water. Five species of brown algae showed CFs in the range of 900 and 35000 but CFs of green and red algae were 1-4. Sea urchin accumulated more 95m Tc through food (brown algae) than directly from sea water, so that the main pathway of technetium accumulation by sea urchin was estimated to be brown algae which were the most favorite food of the organism. (author)

  20. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  1. Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae

    International Nuclear Information System (INIS)

    Fasahati, Peyman; Liu, J. Jay

    2015-01-01

    This study evaluates the impact of alcohol recovery technology on the economics, energy consumption, and environment of bioethanol production from brown algae. The process under consideration is the anaerobic digestion of brown algae to produce VFAs (volatile fatty acids), which are then hydrogenated to produce mixed alcohols. Three alternative processes, i.e., hybrid pervaporation/distillation (PV), hybrid vapor-permeation/distillation (VP), and classical molecular-sieves/distillation (classical), are considered for the dehydration and recovery of ethanol. The alternatives are analyzed in terms of product value (i.e., minimum ethanol selling price – MESP), capital costs, energy consumption, and carbon footprint. For a plant scale of 400,000 ton/year of dry brown algae, the MESPs for the PV (Pervaporation), VP (vapor permeation), and classical processes were calculated to be $1.06/gal, $1.08/gal, and $1.24/gal, respectively. Results show that the PV, VP, and classical processes have $2.0, $2.6, and $4.6 million/year utility costs, respectively, for the recovery of alcohols and produce 23.1, 30.2, and 62.2 kton CO_2-eq/year greenhouse gases. Therefore, PV is more economical and environmentally friendly process, with lower MESP, CO_2 emissions, and utility requirements. A sensitivity analysis indicates that the selling price of the heavier alcohols and biomass price have the highest impact on the economics of bioethanol production from brown algae. - Highlights: • Biofuel production through anaerobic digestion of brown algae is assessed. • Three alternative dehydration technologies were considered for ethanol recovery. • MESP for PV, VP, and classic processes are 1.06, 1.08, and 1.24$/gal, respectively. • PV and VP were superior over classic process in terms of energy and GHG emissions. • PV has an energy cost of 20.2 mm$/y and GHG emissions of 23.1 kton CO_2-eq/year.

  2. Management of autotrophic mass cultures of micro-algae

    CSIR Research Space (South Africa)

    Toerien, DF

    1987-01-01

    Full Text Available Interest in the mass cultivation of micro-algae as feed and foodstuff has existed since the turn of the century (Robinson and Toerien, 1962). Experiments using algae in photosynthetic research (Warburg, 1919) also led to an appreciation...

  3. Influence of Algae Age and Population on the Response to TiO₂ Nanoparticles.

    Science.gov (United States)

    Metzler, David M; Erdem, Ayca; Huang, Chin Pao

    2018-03-25

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO₂ NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3-4.2 × 10⁶ cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO₂ NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  4. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  5. Combining of radionuclides with constituent materials of marine algae

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Nakahara, Motokazu; Ishii, Toshiaki; Ueda, Taishi; Shimizu, Chiaki.

    1979-01-01

    The relations between the accumulation-elimination of radionuclides and the constituent materials of marine algae were studied to determine more precisely the mechanism of the radioactive contamination of marine organisms. This will increase the information about the behavior of radionuclides in marine organisms in relation to the environmental conditions (temperature, physico-chemical state of radioisotope, and so on) and the biological conditions (feeding habits, species, and so on). Eisenia contaminated by 137 Cs and 106 Ru- 106 Rh was fractionated by solvent extraction into 6 fractions. The largest portion of 137 Cs was in the boiling water fraction; 106 Ru- 106 Rh was most extracted by 24% KOH solution. Elution patterns by Sephadex G-100 gel-filtration of samples differed largely from each other, both among the 3 kinds of radionuclides and between the 2 species of the algae. Therefore, the accumulation of the radionuclides by the marine algae was proved to be not only due to a physical absorption to the surface of the algae but also to the biological combining of the radionuclides with the constituents of the algae. Furthermore, it was found that radionuclides which combine with a few constituents of alga are not eliminated equally. This is considered to be useful for the physiological analysis of elimination curves. (author)

  6. Investigation about Role of Algae in Kazeroon Sasan Spring Odor

    Directory of Open Access Journals (Sweden)

    A Hamzeian

    2016-05-01

    Full Text Available Introduction: As odor for potable water is unpleasant for costumers, it needs to do researches for finding the reasons of odorous water. Sasan spring that is located in, near kazeroon city, Fars, Iran, is potable water resource for Kazeroon and Booshehr city and many other villages. Water in Sasan spring has the odor problem. With regards to important   role of algae on ado r problems in this study the role of algae on   odor was investigated. Methods: After regular sampling, the TON (threshold odor number was indicated and algae species was distinguished and the number of total algae and any species  of algae was numbers by microscopic direct numbering method .as the algae mass  is related to nitrogen and phosphor concentration, results of concentration Of nitrogen and phosphor in this spring that was examined regularity by water company was investigated and compared to concentration of these component that are need for algae growing.   Results: results shows that TON was in range  of 4.477 to 6.2 that indicated  oderous limit . Regression and diagram between TON and number of total algae showed the linear relationship. The concentration of nitrogen and phosphor, showed adequate condition for algal grow. Result of determination of algae species showed high population of Oscilatoria and Microcystis species, which are known as essential case of mold odor in water resources. Investigation on geological maps in the region around the Sasan spring, show alluvium source and is effected by surface part of it’s around land. Conclusion: because of the algae was determined as the essential cause of odor   in the spring, and algal growth is related to nutrients, and because of the surface pollution can penetrate in the alluvium lands around the spring, and effect the water in spring, so nutrient control and management is the essential way for odor control in the spring.

  7. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Wu, Huanyang

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation.

  8. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Huanyang Wu

    2016-01-01

    Full Text Available Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation.

  9. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  10. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis.

    Science.gov (United States)

    Sun, Li; Tian, Yu; Zhang, Jun; Li, Lipin; Zhang, Jian; Li, Jianzheng

    2018-03-01

    This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Two-step evolution of endosymbiosis between hydra and algae.

    Science.gov (United States)

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu

    2016-07-09

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  13. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  14. Impact of e-publication changes in the International Code of Nomenclature for algae, fungi and plants (Melbourne Code, 2012) - did we need to "run for our lives"?

    Science.gov (United States)

    Nicolson, Nicky; Challis, Katherine; Tucker, Allan; Knapp, Sandra

    2017-05-25

    At the Nomenclature Section of the XVIII International Botanical Congress in Melbourne, Australia (IBC), the botanical community voted to allow electronic publication of nomenclatural acts for algae, fungi and plants, and to abolish the rule requiring Latin descriptions or diagnoses for new taxa. Since the 1st January 2012, botanists have been able to publish new names in electronic journals and may use Latin or English as the language of description or diagnosis. Using data on vascular plants from the International Plant Names Index (IPNI) spanning the time period in which these changes occurred, we analysed trajectories in publication trends and assessed the impact of these new rules for descriptions of new species and nomenclatural acts. The data show that the ability to publish electronically has not "opened the floodgates" to an avalanche of sloppy nomenclature, but concomitantly neither has there been a massive expansion in the number of names published, nor of new authors and titles participating in publication of botanical nomenclature. The e-publication changes introduced in the Melbourne Code have gained acceptance, and botanists are using these new techniques to describe and publish their work. They have not, however, accelerated the rate of plant species description or participation in biodiversity discovery as was hoped.

  15. Final Report: Connecting genomic capabilities to physiology and response: Systems biology of the widespread alga Micromonas

    Energy Technology Data Exchange (ETDEWEB)

    Worden, Alexandra Z. [Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA (United States); Callister, Stephen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stuart, Joshua [Univ. of California, Santa Cruz, CA (United States); Smith, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    Increased stratification, less mixing and reduced nutrient concentrations in marine surface waters are predicted under a number of climate-change scenarios. These conditions are considered favorable for tiny photosynthetic algae (picophytoplankton), shaping their role in mediating future CO2 conditions. One possibility is that picophytoplankton such as Micromonas that have broad geographical ranges will more successfully adapt to changing environmental conditions. However, their capacity to thrive under the multi-factorial impacts of low pH, low nutrients, increasing temperature and changes in community composition is not known. Here, we developed the dual-Micromonas model system, which entailed generating optimized genomic information for two Micromonas species and developing a highperformance chemostat system in which both CO2 and nutrients could be consistently manipulated. This system is now fully operational. Project results are available in several publications will others are still in the analysis phase. Overall, our results show that Micromonas primary production will likely decrease under predicted future climate conditions. Furthermore, our studies on Micromonas provide new insights to the land plant ancestor, including the discovery of conserved signaling mechanisms (known to be essential to plant development) as well as the discovery of widespread chemical-sensing molecular switches. Collectively, this research highlights Micromonas as an important new model green alga for understanding plant gene networks and evolution as well as for investigating perturbation effects on marine primary production.

  16. Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2016-10-01

    Full Text Available The aim of the field trials was to determine the influence of supercritical algal extracts on the growth and development of winter wheat (variety Akteur. As a raw material for the supercritical fluid extraction (SFE, the biomass of microalga Spirulina plantensis, brown seaweed – Ascophyllum nodosum and Baltic green macroalgae was used. Forthial and Asahi SL constituted the reference products. It was found that the tested biostimulants did not influence statistically significantly the plant height, length of ear and shank length. The ear number per square meter was the highest in the group where the Baltic macroalgae extract was applied in the dose 1.0 L/ha (statistically significant differences. Number of grains in ear (statistically significant differences and shank length was the highest in the group treated with Spirulina at the dose 1.5 L/ha. In the group with Ascophyllum at the dose 1.0 L/ha, the highest length of ear was observed. The yield was comparable in all the experimental groups (lack of statistically significant differences.Among the tested supercritical extracts, the best results were obtained for Spirulina (1.5 L/ha. The mass of 1000 grains was the highest for extract from Baltic macroalgae and was 3.5% higher than for Asahi, 4.0% higher than for Forthial and 18.5% higher than for the control group (statistically significant differences. Future work is needed to fully characterize the chemical composition of the applied algal extracts. A special attention should be paid to the extracts obtained from Baltic algae because they are inexpensive source of naturally occurring bioactive compounds, which can be used in sustainable agriculture and horticulture.

  17. Evaluation of Supercritical Extracts of Algae as Biostimulants of Plant Growth in Field Trials.

    Science.gov (United States)

    Michalak, Izabela; Chojnacka, Katarzyna; Dmytryk, Agnieszka; Wilk, Radosław; Gramza, Mateusz; Rój, Edward

    2016-01-01

    The aim of the field trials was to determine the influence of supercritical algal extracts on the growth and development of winter wheat (variety Akteur ). As a raw material for the supercritical fluid extraction, the biomass of microalga Spirulina plantensis , brown seaweed - Ascophyllum nodosum and Baltic green macroalgae was used. Forthial and Asahi SL constituted the reference products. It was found that the tested biostimulants did not influence statistically significantly the plant height, length of ear, and shank length. The ear number per m 2 was the highest in the group where the Baltic macroalgae extract was applied in the dose 1.0 L/ha (statistically significant differences). Number of grains in ear (statistically significant differences) and shank length was the highest in the group treated with Spirulina at the dose 1.5 L/ha. In the group with Ascophyllum at the dose 1.0 L/ha, the highest length of ear was observed. The yield was comparable in all the experimental groups (lack of statistically significant differences). Among the tested supercritical extracts, the best results were obtained for Spirulina (1.5 L/ha). The mass of 1000 grains was the highest for extract from Baltic macroalgae and was 3.5% higher than for Asahi, 4.0% higher than for Forthial and 18.5% higher than for the control group (statistically significant differences). Future work is needed to fully characterize the chemical composition of the applied algal extracts. A special attention should be paid to the extracts obtained from Baltic algae because they are inexpensive source of naturally occurring bioactive compounds, which can be used in sustainable agriculture and horticulture.

  18. Unraveling the Photoprotective Response of Lichenized and Free-Living Green Algae (Trebouxiophyceae, Chlorophyta to Photochilling Stress

    Directory of Open Access Journals (Sweden)

    Fátima Míguez

    2017-07-01

    Full Text Available Lichens and free-living terrestrial algae are widespread across many habitats and develop successfully in ecosystems where a cold winter limits survival. With the goal of comparing photoprotective responses in free-living and lichenized algae, the physiological responses to chilling and photochilling conditions were studied in three lichens and their isolated algal photobionts together as well as in a fourth free-living algal species. We specifically addressed the following questions: (i Are there general patterns of acclimation in green algae under chilling and photochilling stresses? (ii Do free-living algae exhibit a similar pattern of responses as their lichenized counterparts? (iii Are these responses influenced by the selection pressure of environmental conditions or by the phylogenetic position of each species? To answer these questions, photosynthetic fluorescence measurements as well as pigment and low molecular weight carbohydrate pool analyses were performed under controlled laboratory conditions. In general, photochemical efficiency in all free-living algae decreased with increasing duration of the stress, while the majority of lichens maintained an unchanged photochemical activity. Nevertheless, these patterns cannot be generalized because the alga Trebouxia arboricola and the lichen Ramalina pollinaria (associated with Trebouxia photobionts both showed a similar decrease in photochemical efficiency. In contrast, in the couple Elliptochloris bilobata-Baeomyces rufus, only the algal partner exhibited a broad physiological performance under stress. This study also highlights the importance of the xanthophyll cycle in response to the studied lichens and algae to photochilling stress, while the accumulation of sugars was not related to cold acclimation, except in the alga E. bilobata. The differences in response patterns detected among species can be mainly explained by their geographic origin, although the phylogenetic position should

  19. USAGE OF ALGAE SPECIES CHAETOMORPHA GRACILIS AND CH. AEREA FOR DEPURATION PROCESS OF THE RESIDUAL WATERS

    Directory of Open Access Journals (Sweden)

    SALARU VICTOR

    2008-11-01

    Full Text Available Rapid increase of the population on the globe scale imposes maximum exploration of the natural resources and first of all of the aquatic resources. As a result are obtained an enormous quantity of residual waters which pollute the waters from rivers, lakes, freatic and underground waters. Elaboration of the depuration methods for residual waters the quantity of which grows continuously, is one of the most up to dated issue of the world. The physical-chemical depuration methods of the residual waters are very expensive and lack the efficiency we would like to have. The most efficient method proved to be the biological method using some species of algae and superior aquatic plants. In our experiences we have involved filamentous green algae Chaetomorpha gracilis and Ch. aerea for depuration of the sewerage water from town Cimishlia. The concentration of the mineral nitrogen compounds in the residual water is around 92,5 mg/l, and of the phosphates 10,1 mg/l. There were used the following concentration of the sewerage water: 10%, 25% and 50%. The most intense development of algae Chaetomorpha aerea was observed in the variant with 10% of residual water, in which the total concentration of the nitrogen was 10,24 mg/l, and of the phosphates 1,05 mg/l. For this variant the depuration water level was about 56,9%. For the case with Chaetomorpha gracilis, the depuration level for the same concentration of the residual water constituted 55,9 %. Increase of the concentration of the polluted water inhibits development of the algae reducing to the minimum their capacity to assimilate the nitrogen and the phosphor. In the solutions with 50 % of residual waters, the algae didn't die, but at the same time they didn't develop. From this results that both algae may be used in the phytoamelioration of the residual waters being diluted at 10% with purified water.

  20. Periphyton density is similar on native and non-native plant species

    NARCIS (Netherlands)

    Grutters, B.M.C.; Gross, Elisabeth M.; van Donk, E.; Bakker, E.S.

    2017-01-01

    Non-native plants increasingly dominate the vegetation in aquatic ecosystems and thrive in eutrophic conditions. In eutrophic conditions, submerged plants risk being overgrown by epiphytic algae; however, if non-native plants are less susceptible to periphyton than natives, this would contribute to

  1. The role of chemical antifouling defence in the invasion success of Sargassum muticum: A comparison of native and invasive brown algae.

    Directory of Open Access Journals (Sweden)

    Nicole Schwartz

    Full Text Available Competition and fouling defence are important traits that may facilitate invasions by non-indigenous species. The 'novel weapons hypothesis' (NWH predicts that the invasive success of exotic species is closely linked to the possession of chemical defence compounds that the recipient community in the new range is not adapted to. In order to assess whether chemical defence traits contribute to invasion success, anti-bacterial, anti-quorum sensing, anti-diatom, anti-larval and anti-algal properties were investigated for the following algae: a the invasive brown alga Sargassum muticum from both, its native (Japan and invasive (Germany range, b the two non- or weak invasive species Sargassum fusiforme and Sargassum horneri from Japan, and c Fucus vesiculosus, a native brown alga from Germany. Crude and surface extracts and lipid fractions of active extracts were tested against common fouling organisms and zygotes of a dominant competing brown alga. Extracts of the native brown alga F. vesiculosus inhibited more bacterial strains (75% than any of the Sargassum spp. (17 to 29%. However, Sargassum spp. from Japan exhibited the strongest settlement inhibition against the diatom Cylindrotheca closterium, larvae of the bryozoan Bugula neritina and zygotes of the brown alga F. vesiculosus. Overall, extracts of S. muticum from the invasive range were less active compared to those of the native range suggesting an adaptation to lower fouling pressure and competition in the new range resulting in a shift of resource allocation from costly chemical defence to reproduction and growth. Non-invasive Sargassum spp. from Japan was equally defended against fouling and competitors like S. muticum from Japan indicating a necessity to include these species in European monitoring programs. The variable antifouling activity of surface and crude extracts highlights the importance to use both for an initial screening for antifouling activity.

  2. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  3. Investigations on the biokinetics of carbon 14 in algae cultures

    International Nuclear Information System (INIS)

    Leister, W.

    1981-01-01

    The uptake of 14 C by Scenedesmus quadricauda is quantitatively investigated by simulation models of radio ecological relevance. Due to the complexing of the procedures in the natural ecosystem, it was only possible to consider idealized conditions. The batch culture ressembles the conditons of still waters or relatively still waters without notable water exchange. The effect of the 14 C enrichment, as well as the drastic carbon reduction in the substrate as a result of algae growth, was avoided in the modified batch culture under conditions of simultaneous substrate diffusion by means of a permeation system. The 14 C and 12 C uptake of the cells thus took place solely under the conditions of constant concentration in the culture medium. The consequences for flowing water resulting from a nuclear power plant accident are to be simulated for the extent of the 14 C uptake by green algae using the continuous culture model with dynamic 14 C exposure. The continuous infusion of 14 C in the continuous culture corresponds to the possible cases where 14 C escapes into a flowing water at a constant rate over a long period of time, whether this may be via chronical release from a nuclear power plant or by 'fallout' resulting from nuclear arms testing. The results shown lead to the conclusion that the emission of 14 C to the environment, which according to prognoses will be considerably higher after the year 2000, presents a serious radioactivity potential which man and environment will have to live with should these developments continue and the prognoses come true. (orig./MG) [de

  4. Algae as a Biofuel: Renewable Source for Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Vijay Kant Pandey

    2016-09-01

    Full Text Available Biofuels produced by algae may provide a feasible alternative to fossil fuels like petroleum sourced fuels. However, looking to limited fossil fuel associated with problems, intensive efforts have been given to search for alternative biofuels like biodiesel. Algae are ubiquitous on earth, have potential to produce biofuel. However, technology of biofuel from algae facing a number of hurdles before it can compete in the fuel market and be broadly organized. Different challenges include strain identification and improvement of algal biomass, both in terms of biofuel productivity and the production of other products to improve the economics of the entire system. Algal biofuels could be made more cost effective by extracting other valuable products from algae and algal strains. Algal oil can be prepared by culture of algae on municipal and industrial wastewaters. Photobioreactors methods provide a controlled environment that can be tailored to the specific demands of high production of algae to attain a consistently good yield of biofuel. The algal biomass has been reported to yield high oil contents and have good amount of the biodiesel production capacity. In this article, it has been attempted to review to elucidate the approaches for making algal biodiesel economically competitive with respect to petrodiesel. Consequently, R & D work has been carried out for the growth, harvesting, oil extraction and conversion to biodiesel from algal sources.

  5. Potential of brown algae for sustainable electricity production through anaerobic digestion

    International Nuclear Information System (INIS)

    Fasahati, Peyman; Saffron, Christopher M.; Woo, Hee Chul; Liu, J. Jay

    2017-01-01

    Highlights: • Electricity production through anaerobic digestion of brown algae was assessed. • Breakeven electricity selling price of 18.81 ¢/kWh was calculated. • AD unit has highest energy consumption of 14% of generated electricity. • Seaweed cost has largest cost contribution of 11.95 ¢/kWh to the calculated BESP. • Impact of economic and process parameters on BESP was assessed. - Abstract: This paper assesses the economics of heat and power production from the anaerobic digestion (AD) of brown algae (Laminaria japonica) at a plant scale of 400,000 dry tons/year. The conversion process was simulated in Aspen Plus v.8.6 to obtain rigorous heat and material balance for energy assessments and the development of a techno-economic model. The breakeven electricity selling price (BESP) was found to be 18.81 ¢/kWh assuming 30 years of plant life and a 10% internal rate of return. The results show that the AD unit has the highest energy demand in the entire process and consumes approximately 14% of all electricity produced. In addition, the seaweed cost of 11.95 ¢/kWh is the largest cost component that contributes to the calculated BESP, which means that a reduction in the cost of seaweed cultivation can significantly decrease the electricity production cost. A sensitivity analysis was performed on the economic and process parameters in order to assess the impact of possible variations and uncertainties in these parameters. Results showed that solids loading, anaerobic digestion yield, and time, respectively, have the highest impact on BESP.

  6. KAROTENOID PADA ALGAE: KAJIAN TENTANG BIOSINTESIS, DISTRIBUSI SERTA FUNGSI KAROTENOID

    OpenAIRE

    Merdekawati, Windu; Karwur, Ferry F.; Susanto, A. B.

    2017-01-01

    ABSTRAK   Karotenoid terdistribusi pada archaea, bakteri, jamur, tumbuhan, hewan serta algae. Karotenoid dihasilkan dari komponen isopentenyl pyrophosphate (IPP) yang mengalami proses secara bertahap untuk membentuk beragam jenis karotenoid. Terdapat dua kelompok karotenoid yaitu karoten dan xantofil dengan berbagai jenis turunannya. Struktur kimia pada karotenoid algae yaitu allene, acetylene serta acetylated carotenoids. Algae mempunyai karotenoid spesifik yang menarik untuk dipe...

  7. [Characteristics of heavy metals enrichment in algae ano its application prospects].

    Science.gov (United States)

    Lu, Kaixing; Tang, Jian-jun; Jiang, De'an

    2006-01-01

    Using algae to bio-remedy heavy metals-contaminated waters has become an available and practical approach for environmental restoration. Because of its special cell wall structure, high capacity of heavy metal-enrichment, and easy to desorption, algae has been considered as an ideal biological adsorbent. This paper briefly introduced the structural and metabolic characteristics adapted for heavy metals enrichment of algae, including functional groups on cell wall, extracellular products, and intracellular heavy metals-chelating proteins, discussed the enrichment capability of living, dead and immobilized algae as well as the simple and convenient ways for desorption, and analyzed the advantages and disadvantages of using algae for bioremediation of polluted water, and its application prospects.

  8. The marine alga Gelidium amansii promotes the development and complexity of neuronal cytoarchitecture.

    Science.gov (United States)

    Hannan, Abdul; Kang, Ji-Young; Hong, Yong-Ki; Lee, Hyunsook; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2013-01-01

    Neurotrophic factors are vital not only to support neuronal development but also to protect mature neurons from atrophy in neurodegenerative diseases. As an effort to explore natural sources that possess neurotrophic activity, we screened common marine algae for their neuritogenic activity in the developing rat hippocampal neurons in culture. Of the 22 seaweed species examined, ethanol extracts of Gelidium amansii (GAE) exhibited potent neuritogenic activity, followed by Undaria pinnatifida and Sargassum fulvellum extracts. The effects of GAE were dose dependent with an optimum concentration of 15 µg/mL. The GAE significantly promoted the initial neuronal differentiation from the stage I into the stage II and increased the indices of axonal and dendritic development such as the length, the numbers of primary processes, and branching frequencies by a minimum of twofold compared with the vehicle control. These results show that marine algae are promising candidates for neurotrophic potentials. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Freshwater algae competition and correlation between their growth and microcystin production.

    Science.gov (United States)

    Álvarez, Xana; Valero, Enrique; Cancela, Ángeles; Sánchez, Ángel

    2016-11-01

    There are some different freshwater algae in Eutrophic reservoirs which bloom with specific environmental conditions, and some of them are cyanobacteria. In this investigation, we have cultivated microalgae present in natural water samples from a eutrophic reservoir. Variations in temperature and light were evaluated, as well as the competition among different green algae and cyanobacteria. There were three different freshwater algae growing together, Scenedesmus sp., Kirchneriella sp. and Microcystis aeruginosa, this cyanobacterium was the algae that reached the highest development and growth during the culture. While the algae grew, the concentration of toxin (microcystin-LR) increased until it reached the highest levels at 570 μg g -1 . Blooms occurred at temperatures of 28 ± 1.5 °C and light cycles of longer hours of light than dark. This took place during the summer months, from June to September (in the study area). At temperatures below 18 °C, algae did not grow. Blooms were reproduced to a laboratory scale in different conditions in order to understand the development of freshwater algae, as well as to help decision-making about water supply from that reservoir.

  10. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  11. Plants and men in space - A new field in plant physiology

    Science.gov (United States)

    Andre, M.; Macelroy, R. D.

    1990-01-01

    Results are presented on a comparison of nutritional values of and human psychological responses to algae and of higher plants considered for growth as food on long-term missions in space, together with the technological complexities of growing these plants. The comparison shows the advantages of higher plants, with results suggesting that a high level of material recycling can be obtained. It is noted that the issue of space gravity may be not a major problem for plants because of the possibility that phototropism can provide an alternative sense of direction. Problems of waste recycling can be solved in association with plant cultivation, and a high degree of autonomy of food production can be obtained.

  12. Control of cytokinin and auxin homeostasis in cyanobacteria and algae

    Czech Academy of Sciences Publication Activity Database

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre; Přibyl, Pavel; Šimura, J.; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    Roč. 119, č. 1 (2017), s. 151-166 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA16-14649S; GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : solid-phase extraction * performance liquid-chromatography * yucca flavin monooxygenases * tandem mass-spectrometry * abscisic-acid * arabidopsis-thaliana * indole-3-acetic-acid iaa * endogenous cytokinins * chlorella-vulgaris * phenylacetic acid * Cytokinin * auxin * cyanobacteria * algae * metabolism * cytokinin oxidase/dehydrogenase * cytokinin 2-methylthioderivatives * trans-zeatin * indole-3-acetic acid * tRNA Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  13. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.

    Science.gov (United States)

    Antal, Taras K; Krendeleva, Tatyana E; Rubin, Andrew B

    2011-01-01

    Hydrogen is definitely one of the most acceptable fuels in the future. Some photosynthetic microorganisms, such as green algae and cyanobacteria, can produce hydrogen gas from water by using solar energy. In green algae, hydrogen evolution is coupled to the photosynthetic electron transport in thylakoid membranes via reaction catalyzed by the specific enzyme, (FeFe)-hydrogenase. However, this enzyme is highly sensitive to oxygen and can be quickly inhibited when water splitting is active. A problem of incompatibility between the water splitting and hydrogenase reaction can be overcome by depletion of algal cells of sulfur which is essential element for life. In this review the mechanisms underlying sustained hydrogen photoproduction in sulfur deprived C. reinhardtii and the recent achievements in studying of this process are discussed. The attention is focused on the biophysical and physiological aspects of photosynthetic response to sulfur deficiency in green algae.

  14. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Brian [Touchstone Research Laboratory Ltd, Triadelphia, WV (United States)

    2014-03-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were

  15. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    only in C. clavulatum, Sargassum cinereum and Padina tetrastromatica whilst mycelial fungi occurred in all. Growth experiments in the laboratory indicated that the growth of thraustochytrids was inhibited on live algae, whereas killed algae supported...

  16. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.

    Science.gov (United States)

    Luo, Zhuanxi; Wang, Zhenhong; Yan, Yameng; Li, Jinli; Yan, Changzhou; Xing, Baoshan

    2018-07-01

    The effect of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioaccumulation and biotransformation of arsenic (As) remains largely unknown. In this study, we exposed two freshwater algae (Microcystis aeruginosa and Scenedesmus obliquus) to inorganic As (arsenite and arsenate) with the aim of increasing our understanding on As bioaccumulation and methylation in the presence of nano-TiO 2 . Direct evidence from transmission electron microscope (TEM) images show that nano-TiO 2 (anatase) entered exposed algae. Thus, nano-TiO 2 as carriers boosted As accumulation and methylation in these two algae species, which varied between inorganic As speciation and algae species. Specifically, nano-TiO 2 could markedly enhance arsenate (As(V)) accumulation in M. aeruginosa and arsenite (As(III)) accumulation in S. obliquus. Similarly, we found evidence of higher As methylation activity in the M. aeruginosa of As(III) 2 mg L -1 nano-TiO 2 treatment. Although this was also true for the S. obliquus (As(V)) treatment, this species exhibited higher As methylation compared to M. aeruginosa, being more sensitive to As associated with nano-TiO 2 compared to M. aeruginosa. Due to changes in pH levels inside these exposed algae, As dissociation from nano-TiO 2 inside algal cells enhanced As methylation. Accordingly, the potential influence of nanoparticles on the bioaccumulation and biotransformation of their co-contaminants deserves more attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The biology of marine plants

    National Research Council Canada - National Science Library

    Dring, M.J

    1982-01-01

    Since over 90% of the species of marine plants are algae, most of the book is devoted to the marine representatives of this group, with examples from all oceans and coasts of the world where detailed work has been done...

  18. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  19. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae.

    Science.gov (United States)

    Enberg, Sara; Piiparinen, Jonna; Majaneva, Markus; Vähätalo, Anssi V; Autio, Riitta; Rintala, Janne-Markus

    2015-10-01

    The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih

    2011-01-01

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO 2 , CO, H 2 , and CH 4 .The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume

  1. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    Science.gov (United States)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-05

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A review of the taxonomical and ecological studies on Netherlands’ Algae

    NARCIS (Netherlands)

    Koster, Joséphine Th.

    1939-01-01

    The earliest account of the Netherlands’ Algae appeared in 1781 in D. de Gorter, Flora VII Prov. Belgii foederati indigen. Here, however, in the Algae lichens and liverworts have been incorporated. The true Algae, of which 35 are enumerated, are principally marine, though also aërophytical and

  3. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    Science.gov (United States)

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  5. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    David M. Metzler

    2018-03-01

    Full Text Available This work shows the influence of algae age (at the time of the exposure and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs. The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL at a constant NP concentration (100 mg/L caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  6. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    Science.gov (United States)

    Metzler, David M.; Erdem, Ayca; Huang, Chin Pao

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae. PMID:29587381

  7. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    Science.gov (United States)

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  8. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  9. [Peculiarities of growth of the monocellular green algae culture after the influence of electromagnetic field in deuterated water-containing media].

    Science.gov (United States)

    Semenov, K T; Aslanian, R R

    2013-01-01

    Exposing the inoculum of monocellular green algae Dunalialla tertiolecta and Tetraselmis viridis to 50 Hz electromagnetic field for several hours resulted in a reduced growth rate in both cultures. It was ascertained that heavy water inhibited growth of algae Dunaliella tertiolecta. The light water activated growth of the culture in the exponential phase only.

  10. Harvesting, oil extraction, and conversion of local filamentous algae growing in wastewater into biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Grayburn, W.S.; Holbrook, G.P. [Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115 (United States); Tatara, R.A. [Department of Technology, Northern Illinois University, DeKalb, IL 60115 (United States); Rosentrater, K.A. [Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-07-01

    Algae are known to be a potential feedstock in the production of biodiesel fuel. Although much of the focus has been on microalgal species, macroalgae are also suitable as a source of lipids. In this study, a locally abundant (central Illinois) filamentous algae has been harvested from a water treatment plant; dried to about 10% of its initial weight; pulverized in a hammermill; and treated with methanol to extract the oil. The algae are a combination of several coexisting species including Cladophora sp. and Rhizoclonium. Oil yields ranged from 3% to 6%, by weight, of the dried mass. This oil was reacted by transesterification to yield fatty acid methyl esters (biodiesel fuel) with an overall mass conversion efficiency of 68%. A B5 blend of this algal biodiesel and petrodiesel was run in a 13.4-kW test engine. Measurements indicated similar performance compared to pure petrodiesel in terms of fuel efficiency and carbon dioxide and carbon monoxide exhaust emissions. Significantly, there was a 22% reduction in nitrogen oxides when using the B5 fuel. It has been demonstrated that filamentous macroalgae may be cultivated as biodiesel feedstock and have inherent advantages such as an ability to remove phosphorus and nitrogen compounds from wastewater, simplicity of harvesting, and natural resistance to local aquatic grazers and competing organisms.

  11. Bacterial community changes in an industrial algae production system.

    Science.gov (United States)

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  12. P-32 uptake in lentic algae

    International Nuclear Information System (INIS)

    Strange, J.R.; Williamson, G.D.; Fletcher, D.J.

    1975-01-01

    A study of the Flat Creek Embayment of Lake Sidney Lanier near Gainesville, Georgia revealed three genera of algae, Chlorococcum, Fragillaria and Nostoc, to be prominent in this eutrophic region of the lake. The algae was grown in phosphate-rich media and subsequently labelled with P-32. All species incorporated luxury amounts of phosphorus as determined by the uptake of P-32. The results indicate that the P-32 uptake is proportional to the surface-per-volume ratio. The higher surface-per-volume ratio resulted in greater uptake of P-32

  13. Algas: cosmética y salud

    OpenAIRE

    Arenas, Patricia Marta; Guayta, Silvina L.

    1998-01-01

    El uso de las algas con fines estéticos y terapéuticos tiene su origen en tiempos muy antiguos. El auge de la utilización de “productos naturales” ha llevado a sobrevalorar las propiedades de los vegetales en general y de las algas en particular. Por tal razón, las mismas gozan de un elevado prestigio, incluso cuando las propiedades reales son en gran medida superadas por las popularmente atribuidas. De allí que surja la necesidad de abordar estudios interdisciplinarios y de naturaleza aplica...

  14. Algae Production from Wastewater Resources: An Engineering and Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan [Longitude 122 West, Inc.; Efroymson, Rebecca Ann [ORNL

    2018-03-01

    Co-locating algae cultivation ponds near municipal wastewater (MWW) facilities provides the opportunity to make use of the nitrogen and phosphorus compounds in the wastewater as nutrient sources for the algae. This use benefits MWW facilities, the algae biomass and biofuel or bioproduct industry, and the users of streams where treated or untreated waste would be discharged. Nutrient compounds can lead to eutrophication, hypoxia, and adverse effects to some organisms if released downstream. This analysis presents an estimate of the cost savings made possible to cultivation facilities by using the nutrients from wastewater for algae growth rather than purchase of the nutrients. The analysis takes into consideration the cost of pipe transport from the wastewater facility to the algae ponds, a cost factor that has not been publicly documented in the past. The results show that the savings in nutrient costs can support a wastewater transport distance up to 10 miles for a 1000-acre-pond facility, with potential adjustments for different operating assumptions.

  15. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Sosa-Hernández, Juan Eduardo; Raza, Ali; Nabeel, Faran; Iqbal, Hafiz M N

    2018-02-19

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  16. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Raza, Ali; Nabeel, Faran

    2018-01-01

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed. PMID:29463058

  17. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal

    2018-02-01

    Full Text Available In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  18. Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis

    Directory of Open Access Journals (Sweden)

    Gianluca Pane

    2015-10-01

    Full Text Available External otitis is a diffuse inflammation around the external auditory canal and auricle, which is often occurred by microbial infection. This disease is generally treated using antibiotics, but the frequent occurrence of antibiotic resistance requires the development of new antibiotic agents. In this context, unexplored bioactive natural candidates could be a chance for the production of targeted drugs provided with antimicrobial activity. In this paper, microbial pathogens were isolated from patients with external otitis using ear swabs for over one year, and the antimicrobial activity of the two methanol extracts from selected marine (Dunaliella salina and freshwater (Pseudokirchneriella subcapitata microalgae was tested on the isolated pathogens. Totally, 114 bacterial and 11 fungal strains were isolated, of which Staphylococcus spp. (28.8% and Pseudomonas aeruginosa (P. aeruginosa (24.8% were the major pathogens. Only three Staphylococcus aureus (S. aureus strains and 11 coagulase-negative Staphylococci showed resistance to methicillin. The two algal extracts showed interesting antimicrobial properties, which mostly inhibited the growth of isolated S. aureus, P. aeruginosa, Escherichia coli, and Klebsiella spp. with MICs range of 1.4 × 109 to 2.2 × 1010 cells/mL. These results suggest that the two algae have potential as resources for the development of antimicrobial agents.

  19. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    OpenAIRE

    David M. Metzler; Ayca Erdem; Chin Pao Huang

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 ...

  20. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  1. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  2. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas.

    Science.gov (United States)

    Im, Sungoh; Lee, Ha-Nul; Jung, Hyun Shin; Yang, Sunghwan; Park, Eun-Jeong; Hwang, Mi Sook; Jeong, Won-Joong; Choi, Dong-Woog

    2017-06-01

    Pyropia tenera (Kjellman) are marine red algae that grow in the intertidal zone and lose more than 90% of water during hibernal low tides every day. In order to identify the desiccation response gene (DRG) in P. tenera, we generated 1,444,210 transcriptome sequences using the 454-FLX platform from the gametophyte under control and desiccation conditions. De novo assembly of the transcriptome reads generated 13,170 contigs, covering about 12 Mbp. We selected 1160 differentially expressed genes (DEGs) in response to desiccation stress based on reads per kilobase per million reads (RPKM) expression values. As shown in green higher plants, DEGs under desiccation are composed of two groups of genes for gene regulation networks and functional proteins for carbohydrate metabolism, membrane perturbation, compatible solutes, and specific proteins similar to higher plants. DEGs that show no significant homology with known sequences in public databases were selected as DRGs in P. tenera. PtDRG2 encodes a novel polypeptide of 159 amino acid residues locating chloroplast. When PtDRG2 was overexpressed in Chlamydomonas, the PtDRG2 confer mannitol and salt tolerance in transgenic cells. These results suggest that Pyropia may possess novel genes that differ from green plants, although the desiccation tolerance mechanism in red algae is similar to those of higher green plants. These transcriptome sequences will facilitate future studies to understand the common processes and novel mechanisms involved in desiccation stress tolerance in red algae.

  3. Concentration factors for Cs-137 in marine algae from Japanese coastal waters

    International Nuclear Information System (INIS)

    Tateda, Yutaka; Koyanagi, Taku.

    1994-01-01

    Concentration factors (CF: Bq·kg -1 in wet algae/Bq·kg -1 in filtered seawater) for Cs-137 in Japanese coastal algae, were investigated during 1984-1990. Cs-137/Cs (stable) atom ratios were also examined to clarify the distribution equilibrium of Cs-137 in marine algae and sea water. The CFs in marine algae were within the range of 5.4-92, and the geometric mean of CF was 28±2 (standard error) in Japanese coastal species. The CFs in edible species were within the range of 5.4-67, and the geometric means of CF was 26±4 (standard error). The values of Cs-137/Cs atom ratios in marine algae and sea water indicated that Cs-137 reached an equilibrium state in partition between algae and sea water. Therefore, the CF value obtained in the present study can be regarded as an equilibrated value. Our results showed that hte CF for Cs-137 in Japanese coastal algae were consistent with the Japanese guideline CFs, but were smaller than the recommended value by IAEA. (author)

  4. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    Science.gov (United States)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  5. Marine algae as attractive source to skin care.

    Science.gov (United States)

    Berthon, Jean-Yves; Nachat-Kappes, Rachida; Bey, Mathieu; Cadoret, Jean-Paul; Renimel, Isabelle; Filaire, Edith

    2017-06-01

    As the largest organ in the human body, the skin has multiple functions of which one of the most important is the protection against various harmful stressors. The keratinised stratified epidermis and an underlying thick layer of collagen-rich dermal connective tissues are important components of the skin. The environmental stressors such as ultraviolet radiation (UVR) and pollution increase the levels of reactive oxygen species (ROS), contributing to clinical manifestations such as wrinkle formation and skin aging. Skin aging is related to the reduction of collagen production and decrease of several enzymatic activities including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis; and tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. In addition to alterations of DNA, signal transduction pathways, immunology, UVR, and pollution activate cell surface receptors of keratinocytes and fibroblasts in the skin. This action leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. Therefore, an efficient antioxidants strategy is of major importance in dermis and epidermis layers. Marine resources have been recognised for their biologically active substances. Among these, marine algae are rich-sources of metabolites, which can be used to fight against oxidative stress and hence skin aging. These metabolites include, among others, mycosporine-like amino acids (MAAs), polysaccharides, sulphated polysaccharides, glucosyl glycerols, pigments, and polyphenols. This paper reviews the role of oxidative processes in skin damage and the action of the compounds from algae on the physiological processes to maintain skin health.

  6. Rare species of fungi parasiting on algae. III.

    OpenAIRE

    Joanna Z. Kadłubowska

    2014-01-01

    The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995) parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  7. Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission

    Science.gov (United States)

    Gregory, James A.; Li, Fengwu; Tomosada, Lauren M.; Cox, Chesa J.; Topol, Aaron B.; Vinetz, Joseph M.; Mayfield, Stephen

    2012-01-01

    Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus

  8. The role of algae in agriculture: a mathematical study.

    Science.gov (United States)

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  9. Desiccation induces accumulations of antheraxanthin and zeaxanthin in intertidal macro-alga Ulva pertusa (Chlorophyta.

    Directory of Open Access Journals (Sweden)

    Xiujun Xie

    Full Text Available For plants and algae, exposure to high light levels is deleterious to their photosynthetic machineries. It also can accelerate water evaporation and thus potentially lead to drought stress. Most photosynthetic organisms protect themselves against high light caused photodamages by xanthophyll cycle-dependent thermal energy dissipation. It is generally accepted that high light activates xanthophyll cycle. However, the relationship between xanthophyll cycle and drought stress remains ambiguous. Herein, Ulva pertusa (Chlorophyta, a representative perennial intertidal macro-algae species with high drought-tolerant capabilities and simple structures, was used to investigate the operation of xanthophyll cycle during desiccation in air. The results indicate that desiccation under dim light induced accumulation of antheraxanthin (Ax and zeaxanthin (Zx at the expense of violaxanthin (Vx. This accumulation could be arrested by dithiothreitol completely and by uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone partially, implying the participation of Vx de-epoxidase in conversion of Vx to Ax and Zx. Treatment with inhibitors of electron transport along thylakoid membrane, e.g. DCMU, PG and DBMIB, did not significantly arrest desiccation-induced accumulation of Ax and Zx. We propose that for U. pertusa, besides excess light, desiccation itself could also induce accumulation of Ax and Zx. This accumulation could proceed without electron transport along thylakoid membrane, and is possibly resulting from the reduction of thylakoid lumen volume during desiccation. Considering the pleiotropic effects of Ax and Zx, accumulated Ax and Zx may function in protecting thylakoid membrane and enhancing thermal quenching during emersion in air.

  10. The economics of producing biodiesel from algae

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Brian J. [Ecotonics Environmental Scientists, 1801 Century Park East, Suite 2400, Los Angeles, CA 90067 (United States)

    2011-01-15

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  11. The economics of producing biodiesel from algae

    International Nuclear Information System (INIS)

    Gallagher, Brian J.

    2011-01-01

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  12. IRON REDUCTASE SYSTEMS ON THE PLANT PLASMA-MEMBRANE - A REVIEW

    NARCIS (Netherlands)

    MOOG, PR; BRUGGEMANN, W

    1994-01-01

    Higher plant roots, leaf mesophyll tissue, protoplasts as well as green algae are able to reduce extra-cellular ferricyanide and ferric chelates. In roots of dicotyledonous and nongraminaceous, monocotyledonous plants, the rate of ferric reduction is increased by iron deficiency. This reduction is

  13. RNase P RNA from the Recently Evolved Plastid of Paulinella and from Algae

    Directory of Open Access Journals (Sweden)

    Pilar Bernal-Bayard

    2014-11-01

    Full Text Available The RNase P RNA catalytic subunit (RPR encoded in some plastids has been found to be functionally defective. The amoeba Paulinella chromatophora contains an organelle (chromatophore that is derived from the recent endosymbiotic acquisition of a cyanobacterium, and therefore represents a model of the early steps in the acquisition of plastids. In contrast with plastid RPRs the chromatophore RPR retains functionality similar to the cyanobacterial enzyme. The chromatophore RPR sequence deviates from consensus at some positions but those changes allow optimal activity compared with mutated chromatophore RPR with the consensus sequence. We have analyzed additional RPR sequences identifiable in plastids and have found that it is present in all red algae and in several prasinophyte green algae. We have assayed in vitro a subset of the plastid RPRs not previously analyzed and confirm that these organelle RPRs lack RNase P activity in vitro.

  14. Algae: America's Pathway to Independence

    National Research Council Canada - National Science Library

    Custer, James

    2007-01-01

    .... Oil dependency is an unacceptable risk to U.S. national strategy. This paper advocates independence from foreign oil by converting the national transportation fleet to biodiesel derived from algae...

  15. Characteristics of Red Algae Bioplastics/Latex Blends under Tension

    Directory of Open Access Journals (Sweden)

    M. Nizar Machmud

    2013-10-01

    Full Text Available Cassava, corn, sago and the other food crops have been commonly used as raw materials to produce green plastics. However, plastics produced from such crops cannot be tailored to fit a particular requirement due to their poor water resistance and mechanical properties. Nowadays, researchers are hence looking to get alternative raw materials from the other sustainable resources to produce plastics. Their recent published studies have reported that marine red algae, that has been already widely used as a raw material for producing biofuels, is one of the potential algae crops that can be turned into plastics. In this work, Eucheuma Cottonii, that is one of the red alga crops, was used as raw material to produce plastics by using a filtration technique. Selected latex of Artocarpus altilis and Calostropis gigantea was separately then blended with bioplastics derived from the red algae, to replace use of glycerol as plasticizer. Role of the glycerol and the selected latex on physical and mechanical properties of the red algae bioplastics obtained under a tensile test performed at room temperature are discussed. Tensile strength of some starch-based plastics collected from some recent references is also presented in this paperDoi: 10.12777/ijse.5.2.81-88 [How to cite this article: Machmud, M.N., Fahmi, R.,  Abdullah, R., and Kokarkin, C.  (2013. Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering, 5(2,81-88. Doi: 10.12777/ijse.5.2.81-88

  16. A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes

    OpenAIRE

    Mukherjee, Krishanu; Brocchieri, Luciano; B?rglin, Thomas R.

    2009-01-01

    The full complement of homeobox transcription factor sequences, including genes and pseudogenes, was determined from the analysis of 10 complete genomes from flowering plants, moss, Selaginella, unicellular green algae, and red algae. Our exhaustive genome-wide searches resulted in the discovery in each class of a greater number of homeobox genes than previously reported. All homeobox genes can be unambiguously classified by sequence evolutionary analysis into 14 distinct classes also charact...

  17. Chemical and radioactivity study of sea alga distribution along the Syrian coast

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, S.; Budeir, Y.

    2001-11-01

    Three types of sea alga distributed along the Syrian coast have been studied from the chemical and radioactivity point of view. Results have shown the metals that red alga contains the highest levels of Ca and Mg while brown alga were found to contain relatively high concentrations of other elements and non metals such as Cl, I and Br. In addition, 137 Cs concentrations in all the analyzed sample were low while the levels of naturally occurring radionuclides such as 210 Po, 210 Pb and radium isotopes were found to be high in red alga which indicates their selectivity to these isotopes. On the other hand, brown alga and especially Cysteseira has shown a clear selectivity for some trace elements such as As, Cr, Cd, Cu and Co, this selectivity may encourage the use of brown alga as biological indicator for trace elements pollution. (author)

  18. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith

    2012-09-01

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  19. Photobiological hydrogen production with switchable photosystem-II designer algae

    Science.gov (United States)

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  20. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    Energy Technology Data Exchange (ETDEWEB)

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  1. Algae biotechnology: products and processes

    National Research Council Canada - National Science Library

    Bux, F; Chisti, Yusuf

    2016-01-01

    This book examines the utilization of algae for the development of useful products and processes with the emphasis towards green technologies and processes, and the requirements to make these viable...

  2. Adsorption Studies of Lead by Enteromorpha Algae and Its Silicates Bonded Material

    Directory of Open Access Journals (Sweden)

    Hassan H. Hammud

    2014-01-01

    Full Text Available Lead adsorption by green Enteromorpha algae was studied. Adsorption capacity was 83.8 mg/g at pH 3.0 with algae (E and 1433.5 mg/g for silicates modified algae (EM. FTIR and thermal analysis of algae materials were studied. Thomas and Yoon-Nelson column model were best for adsorbent (E and algae after reflux (ER and Yan model for (EM with capacity 76.2, 71.1, and 982.5 mg/g, respectively. (ER and (EM show less swelling and better flow rate control than (E. Nonlinear methods are more appropriate technique. Error function calculations proved valuable for predicting the best adsorption isotherms, kinetics, and column models.

  3. Rare species of fungi parasiting on algae. III.

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995 parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  4. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  5. Competitive interactions between corals and turf algae depend on coral colony form.

    Science.gov (United States)

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.

  6. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    Science.gov (United States)

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  7. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian

    2014-09-16

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  8. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  9. Neutron activation analysis of several elements in the unicellular alga Cyanidium caldarium irradiated by α particles from neutron captured boron

    International Nuclear Information System (INIS)

    Yamaguchi, Shuho; Oota, Tadachika; Otani, Mayumi; Aso, Sueo

    1984-01-01

    The TRIGA MARK 2 atomic reactor was used not only for instrumental neutron activation analysis (INAA) but also as the irradiation source of α particles derived from the 10 B(n, α) 7 Li reaction for biological samples. The acidophilic and thermophilic unicellular alga (Cyanidium caldarium Geitler) was incubated for 20 hours after irradiation and then its elemental concentrations were analysed by INAA. An increase in the quantities of 56 Mn, 28 Al and 38 Cl, and a decrease of 27 Mg and 42 K were detected in the irradiated cells in contrast to non-irradiated cells. (author)

  10. 75 FR 35375 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Roswell...

    Science.gov (United States)

    2010-06-22

    ... southeast New Mexico and southwest Texas. This basin has abundant ``karst'' topography (landscape created by... plants, indicating that they probably feed on a surface film of algae, diatoms, bacteria, and fungi... vegetation and decaying organic matter; (b) A surface film of algae, diatoms, bacteria, and fungi; and (c...

  11. Cultivation of macroscopic marine algae and freshwater aquatic weeds. Progress report, May 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.

    1977-01-01

    Research was divided between basic physiological studies of the growth and nutrient-uptake kinetics of macroscopic marine algae and the more applied problems involved in the selection of species and the development of inexpensive, non-energy intensive culture methods for growing seaweeds and freshwater plants as a biomass source for conversion to energy. Best growth of the seaweeds occurs at low (0.1 to 1.0 ..mu..molar) concentration of major nutrients, with ammonia as a nitrogen source, with rapid exchange of the culture medium (residence time of 0.05 days or less). Of 43 species of seaweeds evaluated, representatives of the large red alga genus Gracilaria appear most promising with potential yields, in a highly intensive culture system under optimal conditions, of some 129 metric dry tons per hectare per year (about half of which is organic). Non-intensive culture methods have yielded one-third to one-half that figure. Unexplained periodicity of growth and overgrowth by epiphytes remain the most critical constraint to large-scale seaweed culture. Freshwater weed species in culture include water hyacinth (Eichhornia crassipes), duckweed (Lemna minor), and Hydrilla vertecillata, with yields to date averaging 15, 4, and 8 g dry wt/m/sup 2//day, respectively. However, these plants have not yet been grown through the winter, so average annual yields are expected to be lower. In contrast to the seaweeds, the freshwater plants grow well at high nutrient concentrations and slow culture volume exchange rates (residence time ca. 20 days or more). Experiments were initiated on the recycling of digester residues from the fermentation of the freshwater and marine plants as a possible nutrient source for growth of the same species.

  12. Antibacterial and Antioxidant Activity of Green Algae Halimeda gracilis from Seribu Island District

    Directory of Open Access Journals (Sweden)

    Abdul Basir

    2017-08-01

    Full Text Available Seaweeds have ecological functions as primary producers in marine waters. It also has an important economic value as a producer of hydrocolloids (alginate, agar and carrageenan that is used in various industries of food and pharmaceuticals. This study aimed to determine the antibacterial and antioxidant activity of green algae Halimeda gracilis. The study was conducted in several stages, sample collection and preparation, extraction of bioactive compound, fractionation, antibacterial and antioxidant test, and phytochemical. Extraction was done by maceration method using methanol and concentrated by rotary evaporator. The methanol extracts of H. gracilis were tested against Staphylococcus aureus and Escherichia coli. Methanol extract of H. gracilis formed inhibition zone against the test bacteria with diameter of inhibition zone was 10 mm and 6 mm, respectively. After liquid-liquid partition (water: ethyl acetate, inhibition zone was only seen in the ethyl acetate fraction of H. gracilis with diameter of inhibition zone was 6 mm and 7.50±1.71 mm, respectively. Antioxidant test methanol extracts and ethyl acetate fractions of H. gracilis each show IC50 value of 290.49 ppm and 375.50 ppm. Phytochemical test showed methanol extract of H. gracilis contains phenols and steroids.

  13. Benthic Algae Communities in the Rivers of Different Water Quality in Lithuania

    Directory of Open Access Journals (Sweden)

    Irma Vitonytė

    2011-04-01

    Full Text Available Investigation into benthic algae communities was carried out in the Lithuanian rivers of different water quality during the period 2004–2006. The structure of benthic algae communities in the rivers of different water quality slightly differs. The community of Cladophora glomerata–Vaucheria sessilis–Fontinalis antipyretica mainly dominated in the rivers. Algae communities reiterate in unpolluted rivers (II class, according to biogenes such as Akmena, Babrungas, Bražuolė and Siesartis where Cladophora glomerata–Fontinalis antipyretica, Amblystegium riparium–Cladophora glomerata, and Fontinalis antipyretica–Cladophora glomerata communities predominate. In slightly and moderately polluted rivers, algae communities are unreiteratable. Differences in river water quality could be better determined by frequently appearing algae species in algae communities: in unpolluted rivers – Hildenbrandia rivularis, Audouinella chalybea and A. Hermanii, in slightly polluted – Vaucheria sessilis and Fontinalis antipyretica, and in moderately polluted – Stigeoclonium nanum, S. tenue, Aulacoseira islandica and Melosira varians.The variety of the structure of benthic algae communities could be determined by abiotic environmental factors such as the heterogenity of substratum, stream velocity and depth, the intensity of light and biogenes concentration.Article in Lithuanian

  14. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  15. Studies on allergenic algae of Delhi area: botanical aspects.

    Science.gov (United States)

    Mittal, A; Agarwal, M K; Shivpuri, D N

    1979-04-01

    To study distribution of algae in and around Delhi aerobiological surveys were undertaken for two consecutive years (September, 1972, to August, 1974). The surveys were accomplished by (a) slide exposure method and (b) culture plate exposure method. A total of 850 slides were exposed using Durham's gravity sampling device. Of these, 560 slides were exposed during 1973 (272 slides at two meter and 288 at ten meter height) and the rest (290 slides) were exposed during 1974 at ten meter height. A total of 858 culture plates were exposed (276 for one hour and 282 for two hours) during 1973 and the rest (300 culture plates) were exposed during 1974 at ten meter height for two hours duration only. Air was found to be rich in algae flora during the months of September to November. The dominant forms of algae present were all blue greens. This might be due to the relative greater resistance of blue green algae to unfavorable conditions.

  16. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  17. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora

    DEFF Research Database (Denmark)

    Manefield, M.; Welch, M.; Givskov, Michael Christian

    2001-01-01

    The plant pathogen Erwinia carotovora regulates expression of virulence factors and antibiotic production via an N-3- oxohexanoyl-L-homoserine lactone (3-oxo-C6-HSL) dependent quorum sensing mechanism. The marine alga Delisea pulchra produces halogenated furanones known to antagonise 3-oxo-C6-HSL...

  18. BEBERAPA MARGA ALGA BENANG DAN HUBUNGANNYA DENGAN KEBERADAAN VEKTOR MALARIA DI BALI UTARA

    Directory of Open Access Journals (Sweden)

    I. G. Seregeg

    2012-09-01

    Full Text Available A study of filamentous algae and its relation to malaria vector control was conducted during the dry season in several lagoons at the north coast of Bali. Floating masses of these algae under the sunshine barricated the spread of solar-triton larvicide, reducing tremendously the effectiveness of the larvicide. Identification of the genera of these algae under the subphyllum of CYANOPHYTA (Blue Algae in the family of Cyanophyceae were Oscillatoria, Spirulina, Phormidium, Rivularia, Nostoc, and Anabaena; under the subphyllum of CHLOROPHYTA (Green Algae in the family of Chlorophyceae were Enteromorpha, Spirogyra, Mougeotia, Zygnema, and Oedogonium. The surface of water in between the floating masses of algae were an exellent breeding place of mosquitoes mainly Anopheles sundaicus. The density of Enteromorpha, the main attractant of An sundaicus compared to other filamantous algae, has no direct relation on the density of An. sundaicus larva. Hence Enteromorpha could only be considered as the indicator of the presence of larvae and not as the indicator of population densities of larvae Lagoons surrounded with mangrove plantations did not harbour filamentous algae and larvae of An. sundaicus were not found.

  19. Antimicrobial activity of ethanolic extracts from algae against Penicillium expansum Link (Trichocomaceae, Ascomycota

    Directory of Open Access Journals (Sweden)

    Argus Cezar da Rocha Neto

    2015-12-01

    Full Text Available Penicillium expansum is a cosmopolitan, highly aggressive pathogen that causes blue mold, a disease of great importance that leads to losses in quality and quantity of harvested fruits. The application of chemicals is traditionally used as a control method. However, algae bioprospecting has revealed many antifungal compounds that can be used to control pathogens. Thus, the objective of this study was to evaluate the effects of ethanolic extracts from seven microalgae and five macroalgae against P. expansum. The antifungal potential was evaluated by analyzing germination percentage, the size of the germ tube, minimum inhibitory concentration (MIC, and the median effective concentration (EC50. The spectrophotometric profile was determined for extracts that showed an inhibitory effect. Among the investigated algae, the Chlorella sp. and H. pluvialis extracts, which had final concentrations of 18.8 and 125.95mg.mL-1, inhibited 100% and 91% germination, respectively. The EC50 was 2.93 and 61.20 mg.mL-1 for Chlorella sp. and H. pluvialis, respectively. Chlorella sp. showed absorption peaks in the range of chlorophyll-a and H. pluvialis presented a peak in the range of phenolic compounds. Although further studies are required to characterize the extracts, Chlorella sp. and H. pluvialis showed promising antifungal effects on the control of P. expansum.

  20. First Report of Pseudobodo sp, a New Pathogen for a Potential Energy-Producing Algae: Chlorella vulgaris Cultures

    Science.gov (United States)

    Zhang, Bangzhou; Yang, Luxi; Zhang, Huajun; Zhang, Jingyan; Li, Yi; Zheng, Wei; Tian, Yun; Liu, Jingwen; Zheng, Tianling

    2014-01-01

    Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4–5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant. PMID:24599263

  1. First report of Pseudobodo sp, a new pathogen for a potential energy-producing algae: Chlorella vulgaris cultures.

    Directory of Open Access Journals (Sweden)

    Zhangran Chen

    Full Text Available Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4-5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant.

  2. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... aminotransferase (AMT) domains of the mycE and ndaF genes (Jungblut et al., 2006) allowing detection of microcystin and nodularin-producing cyanobacteria. MATERIALS AND METHODS. Isolation and cultivation of blue green algae. Blue green algae had been isolated from soil of Rice field in river.

  3. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    Science.gov (United States)

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A mathematical model for 137Cs uptake and release by filamentous algae

    International Nuclear Information System (INIS)

    Svadlenkova, M.; Dvorak, Z.; Slavik, O.; Institute of Hygiene and Epidemiology, Prague; Jaslovske Bohunice

    1989-01-01

    A mathematical model of the dynamics of radiocaesium transport in the aquatic phase-algae system is suggested in this work. Allowance is made for algae growth and for both reversible and irreversible absorption of this radionuclide by the algae. The algae biomass is divided hypothetically into two compartments with different exchange kinetics. The parameters of the model are time dependent. The model is quantified using experimental data for the concentrations of 137 Cs in Cladophora glomerata filamentous algae and in water, obtained in situ in the environment of a nuclear power station. The model fits the data resonably well and can be applied, for example, in bioindication of radioactivity in aquatic recipients in the environment of nuclear power stations. (author)

  5. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  6. New records of marine algae in Vietnam

    Science.gov (United States)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  7. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, Joseph

    1977-01-01

    Recent work using radioactive nitrogen on the blue-green algae of paddy fields has been reviewed. These algae fix dinitrogen and photoassimilate carbon evolving oxygen, thereby augmenting nitrogen and carbon status of the soil and also providing oxygen to the water-logged rice paddies. Further studies using radioactive isotopes 13 N, 24 Na and 22 Na on their nitrogen fixation, nitrogen assimilation pathways; regulation of nitrogenase, heterocysts production and sporulation and sodium transport and metabolism have been carried out and reported. The field application of blue green algae for N 2 fixation was found to increase the status of soil nitrogen and yield of paddy. (M.G.B.)

  8. Field Keys to Common Hawaiian Marine Animals and Plants.

    Science.gov (United States)

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Presented are keys for identifying common Hawaiian marine algae, beach plants, reef corals, sea urchins, tidepool fishes, and sea cucumbers. Nearly all species considered can be distinguished by characteristics visible to the naked eye. Line drawings illustrate most plants and animals included, and a list of suggested readings follows each…

  9. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Bo Mi [Department of Chemistry, Pukyoung National University, Busan 608-737 (Korea, Republic of); Qian Zhongji [Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Moon-Moo [Department of Chemistry, Dong-Eui University, Busan 614-714 (Korea, Republic of); Nam, Ki Wan [Department of Marine Biology, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Se-Kwon [Department of Chemistry, Pukyoung National University, Busan 608-737 (Korea, Republic of); Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of)], E-mail: sknkim@pknu.ac.kr

    2009-02-15

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as {alpha}-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  10. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    International Nuclear Information System (INIS)

    Ryu, Bo Mi; Qian Zhongji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-01-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging

  11. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    Science.gov (United States)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-02-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  12. Active Subspaces for Wind Plant Surrogate Modeling

    Energy Technology Data Exchange (ETDEWEB)

    King, Ryan N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Adcock, Christiane [Massachusetts Institute of Technology

    2018-01-12

    Understanding the uncertainty in wind plant performance is crucial to their cost-effective design and operation. However, conventional approaches to uncertainty quantification (UQ), such as Monte Carlo techniques or surrogate modeling, are often computationally intractable for utility-scale wind plants because of poor congergence rates or the curse of dimensionality. In this paper we demonstrate that wind plant power uncertainty can be well represented with a low-dimensional active subspace, thereby achieving a significant reduction in the dimension of the surrogate modeling problem. We apply the active sub-spaces technique to UQ of plant power output with respect to uncertainty in turbine axial induction factors, and find a single active subspace direction dominates the sensitivity in power output. When this single active subspace direction is used to construct a quadratic surrogate model, the number of model unknowns can be reduced by up to 3 orders of magnitude without compromising performance on unseen test data. We conclude that the dimension reduction achieved with active subspaces makes surrogate-based UQ approaches tractable for utility-scale wind plants.

  13. Algae of economic importance that accumulate cadmium and lead: a review

    Directory of Open Access Journals (Sweden)

    Priscila O. Souza

    2012-08-01

    Full Text Available Currently, algae and algae products are extensively applied in the pharmaceutical, cosmetic and food industries. Algae are the main organisms that take up and store heavy metals. Therefore, the use of compounds derived from algae by the pharmaceutical industry should be closely monitored for possible contamination. The pollution generated by heavy metals released by industrial and domestic sources causes serious changes in the aquatic ecosystem, resulting in a loss of biological diversity and a magnification and bioaccumulation of toxic agents in the food chain. Since algae are at the bottom of the aquatic food chain, they are the most important vector for transfer of pollution to upper levels of the trophic chain in aquatic environments. Moreover, microalgae are also used for the bioremediation of wastewater, a process that does not produce secondary pollution, that enables efficient recycling of nutrients and that generates biomass useful for the production of bioactive compounds and biofuel.

  14. Algae of economic importance that accumulate cadmium and lead: a review

    Directory of Open Access Journals (Sweden)

    Priscila O. Souza

    2012-06-01

    Full Text Available Currently, algae and algae products are extensively applied in the pharmaceutical, cosmetic and food industries. Algae are the main organisms that take up and store heavy metals. Therefore, the use of compounds derived from algae by the pharmaceutical industry should be closely monitored for possible contamination. The pollution generated by heavy metals released by industrial and domestic sources causes serious changes in the aquatic ecosystem, resulting in a loss of biological diversity and a magnification and bioaccumulation of toxic agents in the food chain. Since algae are at the bottom of the aquatic food chain, they are the most important vector for transfer of pollution to upper levels of the trophic chain in aquatic environments. Moreover, microalgae are also used for the bioremediation of wastewater, a process that does not produce secondary pollution, that enables efficient recycling of nutrients and that generates biomass useful for the production of bioactive compounds and biofuel.

  15. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  16. Cultivation Strategy for Freshwater Macro- and Micro-Algae as Biomass Stock for Lipid Production

    Directory of Open Access Journals (Sweden)

    Marieska Verawaty

    2017-07-01

    Full Text Available In this research, an algae cultivation strategy was studied. Integrating algae cultivation with wastewater treatment is currently seen as one of the most economical ways of producing algae biomass. A combination of an anaerobic baffled reactor (ABR and a constructed wetland (CW was applied for treating domestic wastewater with an additional collection tank for improving effluent quality. The effluent produced from the three stages was used as algae cultivation media and suplemented with 10% bold basal medium (BBM. The results showed both micro- and macro-algae growth and their lipid contents were higher when they were grown in effluent-BBM (9:1 v/v media. The lipid content of the micro-algae mixed culture was 16.5% while for macro-algae Oedogonium sp and Cladophora sp it was 6.90% and 6.75% respectively.

  17. Investigation of hydrological and pollution problems with nuclear power plants

    International Nuclear Information System (INIS)

    Nilsen, G.

    1974-12-01

    The results of a number of investigations designed to form a basis for the prediction of the effects of the thermal effluents from a nuclear power plant on the marine environment, which have been carried out in the Oslofjord district in the period 1973-1974 are reported. The effects of temperature increases on the predominantly arctic fauna of the deep water zones and the increase of green algae at the expense of brown algae form the main aspects. The decomposition in sediments and deep water, with evolution of hypoxic conditions is also discussed, as is hydrochemistry. Finally a brief evaluation of the suitability of the areas investigated as recipients of thermal discharges from nuclear power plants is presented. (JIW)

  18. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice

    DEFF Research Database (Denmark)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.

    2018-01-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light......, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties...... for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with approximate to 1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (...

  19. Wide bandgap engineering of (AlGa)2O3 films

    International Nuclear Information System (INIS)

    Zhang, Fabi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Guo, Qixin; Arita, Makoto

    2014-01-01

    Bandgap tunable (AlGa) 2 O 3 films were deposited on sapphire substrates by pulsed laser deposition (PLD). The deposited films are of high transmittance as measured by spectrophotometer. The Al content in films is almost the same as that in targets. The measurement of bandgap energies by examining the onset of inelastic energy loss in core-level atomic spectra using X-ray photoelectron spectroscopy is proved to be valid for determining the bandgap of (AlGa) 2 O 3 films as it is in good agreement with the bandgap values from transmittance spectra. The measured bandgap of (AlGa) 2 O 3 films increases continuously with the Al content covering the whole Al content range from about 5 to 7 eV, indicating PLD is a promising growth technology for growing bandgap tunable (AlGa) 2 O 3 films.

  20. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  1. Discovering novel enzymes by functional screening of plurigenomic libraries from alga-associated Flavobacteriia and Gammaproteobacteria.

    Science.gov (United States)

    Martin, Marjolaine; Vandermies, Marie; Joyeux, Coline; Martin, Renée; Barbeyron, Tristan; Michel, Gurvan; Vandenbol, Micheline

    2016-01-01

    Alga-associated microorganisms, in the context of their numerous interactions with the host and the complexity of the marine environment, are known to produce diverse hydrolytic enzymes with original biochemistry. We recently isolated several macroalgal-polysaccharide-degrading bacteria from the surface of the brown alga Ascophyllum nodosum. These active isolates belong to two classes: the Flavobacteriia and the Gammaproteobacteria. In the present study, we constructed two "plurigenomic" (with multiple bacterial genomes) libraries with the 5 most interesting isolates (regarding their phylogeny and their enzymatic activities) of each class (Fv and Gm libraries). Both libraries were screened for diverse hydrolytic activities. Five activities, out of the 48 previously identified in the natural polysaccharolytic isolates, were recovered by functional screening: a xylanase (GmXyl7), a beta-glucosidase (GmBg1), an esterase (GmEst7) and two iota-carrageenases (Fvi2.5 and Gmi1.3). We discuss here the potential role of the used host-cell, the average DNA insert-sizes and the used restriction enzymes on the divergent screening yields obtained for both libraries and get deeper inside the "great screen anomaly". Interestingly, the discovered esterase probably stands for a novel family of homoserine o-acetyltransferase-like-esterases, while the two iota-carrageenases represent new members of the poorly known GH82 family (containing only 19 proteins since its description in 2000). These original results demonstrate the efficiency of our uncommon "plurigenomic" library approach and the underexplored potential of alga-associated cultivable microbiota for the identification of novel and algal-specific enzymes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Evolution and Expansion of the Prokaryote-Like Lipoxygenase Family in the Brown Alga Saccharina japonica

    Directory of Open Access Journals (Sweden)

    Linhong Teng

    2017-11-01

    Full Text Available Lipoxygenase (LOX plays important roles in fatty acid oxidation and lipid mediator biosynthesis. In this study, we give first insights into brown algal LOX evolution. Whole genome searches revealed four, three, and eleven LOXs in Ectocarpus siliculosus, Cladosiphon okamuranus, and Saccharina japonica, respectively. In phylogenetic analyses, LOXs from brown algae form a robust clade with those from prokaryotes, suggesting an ancestral origin and slow evolution. Brown algal LOXs were divided into two clades, C1 and C2 in a phylogenetic tree. Compared to the two species of Ectocarpales, LOX gene expansion occurred in the kelp S. japonica through tandem duplication and segmental duplication. Selection pressure analysis showed that LOX genes in brown algae have undergone strong purifying selection, while the selective constraint in the C2 clade was more relaxed than that in the C1 clade. Furthermore, within each clade, LOXs of S. japonica evolved under more relaxed selection constraints than E. siliculosus and C. okamuranus. Structural modeling showed that unlike LOXs of plants and animals, which contain a β barrel in the N-terminal part of the protein, LOXs in brown algae fold into a single domain. Analysis of previously published transcriptomic data showed that LOXs in E. siliculosus are responsive to hyposaline, hypersaline, oxidative, and copper stresses. Moreover, clear divergence of expression patterns was observed among different life stages, as well as between duplicate gene pairs. In E. siliculosus, all four LOXs are male-biased in immature gametophytes, and mature gametophytes showed significantly higher LOX mRNA levels than immature gametophytes and sporophytes. In S. japonica, however, our RNA-Seq data showed that most LOXs are highly expressed in sporophytes. Even the most recently duplicated gene pairs showed divergent expression patterns, suggesting that functional divergence has likely occurred since LOX genes duplicated, which

  3. Persistence and proliferation of some unicellular algae in drinking ...

    African Journals Online (AJOL)

    Drinking water systems have a complex structure and are characterised by the absence of light, the presence of disinfectants and by low levels of nutrients. Several kinds of bacteria, protozoa, algae and fungi can be found in tap water. Little is known about the ecology of algae in drinking water systems, although their ...

  4. The Halogenated Metabolism of Brown Algae (Phaeophyta, Its Biological Importance and Its Environmental Significance

    Directory of Open Access Journals (Sweden)

    Stéphane La Barre

    2010-03-01

    Full Text Available Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  5. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K. L.

    2001-06-22

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  6. Antibacterial activity of selected Myanmar medicinal plants

    International Nuclear Information System (INIS)

    Nwe Yee Win; Nyunt Wynn; Mar Mar Nyein; Win Myint; Saw Hla Myint; Myint Khine

    2001-01-01

    Thirteen plants which are traditionally used for the treatment of dysentery and diarrhoea in Myanmar were selected and tested for antibacterial activity by using agar disc diffusion technique. Polar and nonpolar solvents were employed for extraction of plants. The minimum inhibitory concentration (MIC) of the extracts with the most significant predominant activity were evaluated by plate dilution method. The plants Eugenia jambolana, Quisqualis indica, Leucaena glauca and Euphorbia splendens var. 1 were found to show significant antibacterial activity. It was also observed that extracts using nonpolar solvents did not show any antibacterial activity and extracts using polar solvents showed antibacterial activity on tested bacteria, indicating that the active chemical compound responsible for the antibacterial action must be a polar soluble compound. (author)

  7. The study of LED light source illumination conditions for ideal algae cultivation

    Science.gov (United States)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  8. Meteorological effects on variation of airborne algae in Mexico

    Science.gov (United States)

    Rosas, Irma; Roy-Ocotla, Guadalupe; Mosiño, Pedro

    1989-09-01

    Sixteen species of algae were collected from 73.8 m3 of air. Eleven were obtained in Minatitlán and eleven in México City. The data show that similar diversity occurred between the two localities, in spite of the difference in altitude. This suggests that cosmopolitan airborne microorganisms might have been released from different sources. Three major algal divisions (Chlorophyta, Cyanophyta and Chrysophyta) formed the airborne algal group. Also, a large concentration of 2220 algae m-3 was found near sea-level, while lower amounts were recorded at the high altitude of México City. The genera Scenedesmus, Chlorella and Chlorococcum dominated. Striking relationships were noted between the concentration of airborne green and blue-green algae, and meteorological conditions such as rain, vapour pressure, temperature and winds for different altitudes. In Minatitlán a linear relationship was established between concentration of algae and both vapour pressure (mbar) and temperature (° C), while in México City the wind (m s-1) was associated with variations in the algal count.

  9. The Distribution of Microalgae in a Stabilization Pond System of a Domestic Wastewater Treatment Plant in a Tropical Environment (Case Study: Bojongsoang Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Herto Dwi Ariesyady

    2016-02-01

    Full Text Available The Bojongsoang Wastewater Treatment Plant (WWTP serves to treat domestic wastewater originating from Bandung City, West Java, Indonesia. An abundant amount of nutrients as a result of waste decomposition increases the number of microalgae populations present in the pond of the wastewater treatment plant, thereby causing a population explosion of microalgae, also called algal blooming. In a stabilization pond system, the presence of algal blooming is not desirable because it can decrease wastewater treatment performance. More knowledge about the relationship between the nutrients concentration and algae blooming conditions, such as microalgae diversity, is needed to control and maintain the performance of the wastewater treatment plant. Therefore this study was conducted, in order to reveal the diversity of microalgae in the stabilization pond system and its relationship with the water characteristics of the comprising ponds. The results showed that the water quality in the stabilization pond system of Bojongsoang WWTP supported rapid growth of microalgae, where most rapid microbial growth occurred in the anaerobic pond. The microalgae diversity in the stabilization ponds was very high, with various morphologies, probably affiliated with blue-green algae, green algae, cryptophytes, dinoflagellates and diatoms. This study has successfully produced information on microalgae diversity and abundance profiles in a stabilization pond system.

  10. Transforming a School Learning Exercise into a Public Engagement Event: "The Good, the Bad and the Algae"

    Science.gov (United States)

    Redfern, James; Burdass, Dariel; Verran, Joanna

    2013-01-01

    School science laboratory classes and hands-on public engagement activities share many common aims and objectives in terms of science learning and literacy. This article describes the development and evaluation of a microbiology public engagement activity, "The Good, the Bad and the Algae", from a school laboratory activity. The school…

  11. NON-GENICULATE CORALLINE ALGAE (CORALLINALES, RHODOPHYTA FROM THE LOWER OLIGOCENE OF POLJŠICA PRI PODNARTU (NORTHERN SLOVENIA

    Directory of Open Access Journals (Sweden)

    LUKA GALE

    2009-03-01

    Full Text Available Despite their increasing importance in sedimentology and palaeoecology, non-geniculate coralline algae remain virtually overlooked in Slovenia. Though these plants are present or even abundant in the Cretaceous and Cainozoic strata, they have never been studied in detail with notable exception of corallines from the Lower Oligocene beds in the area of Gornji Grad. Poljšica pri Podnartu is another locality where Lower Oligocene beds are exposed, considered as equivalent to the former. The studied profile consists of pebbly limestone, mudstone, sandstone and limestone. Limestones contain abundant non-geniculate coralline algae. Nine species from six genera of these corallines have been identified: Lithoporella melobesioides (Foslie Foslie, 1909, Neogoniolithon contii (Mastrorilli Quaranta et al., 2007, Spongites sp., Lithothamnion sp. 1, Lithothamnion sp. 2, Mesophyllum sp. 1, Mesophyllum sp. 2, Mesophyllum sp. 3 and Sporolithon sp. Some of these species are described from Slovenia for the first time. 

  12. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Fangel, Jonatan Ulrik; Mikkelsen, Maria Dalgaard

    2015-01-01

    organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion...... have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying......The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise...

  13. Design and construction of the microalgal pilot facility AlgaePARC

    NARCIS (Netherlands)

    Bosma, R.; Vree, de J.H.; Slegers, P.M.; Janssen, M.G.J.; Wijffels, R.H.; Barbosa, M.J.

    2014-01-01

    Microalgae gained much interest from industry as promising sustainable feedstock for the production of food, feed, bulk chemicals, and biofuels. Pilot scale research on microalgae is needed to bridge the gap between laboratory scale research and commercial applications. The AlgaePARC (Algae

  14. Efficiency of using green algae as biological controllers against toxic ...

    African Journals Online (AJOL)

    Efficiency of using green algae as biological controllers against toxic algal taxa in cultured ... of two green algal species as biological control of the growth of toxic blue-green algae. ... African Journal of Aquatic Science 2014, 39(4): 443–450 ...

  15. Antimicrobial activity of some Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  16. Radiokinetic study in betony marine algae

    International Nuclear Information System (INIS)

    Azevedo Gouvea, V. de.

    1981-01-01

    The influx and outflux kinetics of some radionuclides in algae of the Rio de Janeiro coastline, were studied in order to select bioindicators for radioactive contamination in aquatic media, due to the presence of Nuclear Power Stations. Bioassays of the concentration and loss of radionuclides such as 137 Cs, 51 Cr, 60 Co and 131 I were performed in 1000cm 3 aquarium under controlled laboratory conditions, using a single channel gamma counting system, to study the species of algae most frequently found in the region. The concentration and loss parameters for all the species and radionuclides studied were obtained from the normalized results. The loss parameters were computerwise adjusted using Powell's multiparametric method. (author)

  17. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  18. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Energy Technology Data Exchange (ETDEWEB)

    Volland, Stefanie, E-mail: Stefanie.Volland@stud.sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria); Luetz, Cornelius, E-mail: cornelius.luetz@uibk.ac.at [Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck (Austria); Michalke, Bernhard, E-mail: bernhard.michalke@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Luetz-Meindl, Ursula, E-mail: ursula.luetz-meindl@sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria)

    2012-03-15

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 {mu}M Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  19. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  20. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?

    Science.gov (United States)

    Vo Hoang Nhat, P; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Nguyen, P D; Bui, X T; Zhang, X B; Guo, J B

    2018-05-01

    Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L -1 ) compared to fossil fuel's price of $1 L -1 , it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    Science.gov (United States)

    2015-09-21

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC50 for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC50 for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes. Water Environ. Res., 87 (2015).

  2. Antibacterial and antifungal activities of some Mexican medicinal plants.

    Science.gov (United States)

    Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E

    2009-12-01

    In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.

  3. Combining of some trace elements with constituent materials of marine algae

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi

    1981-01-01

    Two radionuclides ( 137 Cs and 106 Ru- 106 Rh) were extracted from a brown alg a (Eisenta bicyclis) into 5 solvents (Ethyl ethel, 80% Ethyl alcohol, boiled water, 0.2% NaOH and 24% KOH) in different proportions, suggesting that both radionuclides do not combine with fats and pigments, and that 137 Cs associates maybe with dextrans and monosaccharides, while, 106 Ru- 106 Rh mainly combines with the cell wall polysaccharides such as alginic acid and fucoidan. In order to obtain information from extracts of algae, gel filtration was carried out on 2 species of algae (Ulva pertusa and Eisenia bicyclis) using Sephadex G-100 and G-25. Gel filtration profile gave only one peak for 137 Cs, 2 for 106 Ru- 106 Rh and 125 I, and 3 for 60 Co corresponding to positions where saccharides of the algae appeared. As the result, it was found that different radionuclides combined with different constituent materials of an alga, to some extent. Gel filtration profiles of 125 I were compared with each other among several species of marine algae. They were different from one another among classes of green, brown and red algae, though they were similar in a class. Gel filtration profiles of 125 I were also varied between 2 chemical forms of 125 I (Na 125 I and Na 125 IO 3 ). (J.P.N.)

  4. Codigestion of Taihu blue algae with swine manure for biogas production

    International Nuclear Information System (INIS)

    Miao, Hengfeng; Wang, Shouquan; Zhao, Mingxing; Huang, Zhenxing; Ren, Hongyan; Yan, Qun; Ruan, Wenquan

    2014-01-01

    Highlights: • Codigestion of blue algae with swine manure has the highest CH 4 yield at ISR 2.0. • pH, TAN, N-NH 3 and VFAs confirmed the appropriate stability of the codigestion. • 35.44% VS reduction was achieved by codigestion of blue algae with swine manure. • Three key enzyme characteristics demonstrated the higher efficiencies of codigestion. - Abstract: Anaerobic digestion (AD) of Taihu blue algae and its codigestion with swine manure was evaluated at different inoculum substrate ratios (ISRs) from 0.5 to 3.0. Results showed that codigestion of blue algae with swine manure led to the highest methane (CH 4 ) production of 212.7 mL g −1 VS at ISR 2.0, while digestion of blue algae inoculated with granular sludge brought out the optimized CH 4 production of 73.5 mL g −1 VS at ISR 3.0. The values of pH, total ammonia nitrogen (TAN), free ammonia nitrogen (N-NH 3 ) and volatile fatty acids (VFAs) showed no significant difference between the digestion and codigestion, confirming the appropriate stability of the two batch anaerobic processes. Closer examination of VS removal rates and key enzymes variation proved codigestion had higher efficiencies in biodegradation and methanation, which demonstrated that AD of blue algae with swine manure was a promising technology for both solid wastes treatment and renewable-energy production

  5. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  6. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  7. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales

    Directory of Open Access Journals (Sweden)

    Rafael de Felício

    Full Text Available Abstract Marine environment is one of the most important sources regarding natural products research. Besides, marine microorganisms have been denominated as a talented natural source for discovery of new leads. Although the association of macroalgae and fungi has been described regarding ecological issues, there is a lack of studies about marine seaweed endophytic fungi. In this context, the goal of this study was to evaluate cytotoxic, antifungal and antibacterial activities of endophytic fungi isolated from the Brazilian marine seaweed Bostrychia tenella (J.V. Lamouroux J. Agardh (Ceramiales, Rhodophyta. Forty-five endophytic microorganism strains were isolated from B. tenella. Crude extracts and organic fractions of ten selected strains were obtained after growth in rice medium. Samples were evaluated for cytotoxicity, antifungal and antibacterial assays. Penicillium strains showed positive results in a diversity of assays, and other five strains were active in at least one test. In addition, cytochalasin D was isolated from Xylaria sp. This alga is composed of a microbiological potential, since its endophytic strains exhibited remarkable biological properties. Moreover, cytochalasin D isolation has confirmed chemical potential of marine endophytic strains. This is the first study in which cultured fungi isolates from the Brazilian macroalga B. tenella were evaluated concerning biological properties. Results corroborated that this species could be a pharmaceutical source from marine environment. Furthermore, Acremonium implicatum is being firstly described as marine endophyte and Xylaria sp., Trichoderma atroviride and Nigrospora oryzae as marine seaweed endophytes. Thus, this work reports the first study relating detailed isolation, cultivation and biological evaluation (cytotoxic, antifungal and antibacterial of endophytes Penicillium decaturense and P. waksmanii from the Brazilian marine red alga B. tenella. We are also reporting the

  8. Cyanobacterial lactate oxidases serve as essential partners in N2-fixation and evolved into photorespiratory glycolate oxidases in plants.

    NARCIS (Netherlands)

    Hackenberg, C.; Kern, R.; Hüge, J; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to

  9. Cyanobacterial lactate oxidases serve as essential partners of N2-fixation and evolved to photorespiratory glycolate oxidases in plants

    NARCIS (Netherlands)

    Hackenberg, C.; Kern, R.; Hüge, J.; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to

  10. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  11. Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants

    Directory of Open Access Journals (Sweden)

    Laura eEmery

    2012-01-01

    Full Text Available Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca2+/Cation Antiporter (CaCA superfamily are involved in the transport of Ca2+ and/or other cations using the counter exchange of another ion such as H+ or Na+. The CaCA superfamily has been previously divided into five transporter families: the YRBG, NCX, NCKX, CAX and CCX families, which include the well-characterized Na+/Ca2+ exchanger (NCX and H+/cation exchanger (CAX transporters. To examine the evolution of CaCA transporters within higher plants and the green plant lineage, CaCA genes were identified from the genomes of sequenced flowering plants, a bryophyte, lycophyte, and freshwater and marine algae, and compared with those from non-plant species. We found evidence of the expansion and increased diversity of flowering plant genes within the CAX and CCX families. Genes related to the NCX family are present in land plant though they encode distinct MHX homologs which probably have an altered transport function. In contrast, the NCX and NCKX genes which are absent in land plants have been retained in many species of algae, especially the marine algae, indicating that these organisms may share ‘animal-like’ characteristics of Ca2+ homeostasis and signaling. A group of genes encoding novel CAX-like proteins containing an EF hand domain were identified from plants and selected algae but appeared to be lacking in any other species. Lack of functional data for most of the CaCA proteins make it impossible to reliably predict substrate specificity and function for many of the groups or individual proteins. The abundance and diversity of CaCA genes throughout all branches of life indicates the importance of this class of cation transporter, and that many transporters with novel functions are waiting to be discovered.

  12. Protein Phylogenetic Analysis of Ca2+/cation Antiporters and Insights into their Evolution in Plants

    Science.gov (United States)

    Emery, Laura; Whelan, Simon; Hirschi, Kendal D.; Pittman, Jon K.

    2012-01-01

    Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca2+/cation antiporter (CaCA) superfamily are involved in the transport of Ca2+ and/or other cations using the counter exchange of another ion such as H+ or Na+. The CaCA superfamily has been previously divided into five transporter families: the YRBG, Na+/Ca2+ exchanger (NCX), Na+/Ca2+, K+ exchanger (NCKX), H+/cation exchanger (CAX), and cation/Ca2+ exchanger (CCX) families, which include the well-characterized NCX and CAX transporters. To examine the evolution of CaCA transporters within higher plants and the green plant lineage, CaCA genes were identified from the genomes of sequenced flowering plants, a bryophyte, lycophyte, and freshwater and marine algae, and compared with those from non-plant species. We found evidence of the expansion and increased diversity of flowering plant genes within the CAX and CCX families. Genes related to the NCX family are present in land plant though they encode distinct MHX homologs which probably have an altered transport function. In contrast, the NCX and NCKX genes which are absent in land plants have been retained in many species of algae, especially the marine algae, indicating that these organisms may share “animal-like” characteristics of Ca2+ homeostasis and signaling. A group of genes encoding novel CAX-like proteins containing an EF-hand domain were identified from plants and selected algae but appeared to be lacking in any other species. Lack of functional data for most of the CaCA proteins make it impossible to reliably predict substrate specificity and function for many of the groups or individual proteins. The abundance and diversity of CaCA genes throughout all branches of life indicates the importance of this class of cation transporter, and that many transporters with novel functions are waiting to be discovered. PMID:22645563

  13. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Anti- Sporothrix spp. activity of medicinal plants

    Directory of Open Access Journals (Sweden)

    Stefanie Bressan Waller

    Full Text Available ABSTRACT Cases of sporotrichosis in humans and animals without satisfactory clinical response have increased, a warning sign of strains resistant to conventional antifungal agents. The urgent search for alternative therapies was an incentive for research on medicinal plants with anti-Sporothrix spp. properties. A bibliographic survey was performed based on scientific papers about in vitro and in vivo antifungal activity of essential oils and extracts of plants in differents solvents against the fungal of the Sporothrix schenckii complex. The study methodology consisted of a literature review in Google Scholar, Science Direct, Pubmed, Bireme and Springer link with papers from 1986 to 2015. We found 141 species of plants that were investigated, of which 100 species were concentrated in 39 botanical families that had confirmed anti-Sporothrix activity. Combretaceae, Asteraceae and Lamiaceae represented the botanical families with the greatest number of plants species with antifungal potential, using different methodologies. However, there are few studies with medicinal plants in experimental infection in animals that prove their activity in the treatment of sporotrichosis. It reinforces the need for further research related to standardization of in vitro methodologies and in vivo studies related to safety and to toxicity potential of these plants with anti-Sporothrix spp. activity.

  15. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis.

    Science.gov (United States)

    Loram, J E; Trapido-Rosenthal, H G; Douglas, A E

    2007-11-01

    The giant sea anemone Condylactis gigantea associates with members of two clades of the dinoflagellate alga Symbiodinium, either singly or in mixed infection, as revealed by clade-specific quantitative polymerase chain reaction of large subunit ribosomal DNA. To explore the functional significance of this molecular variation, the fate of photosynthetically fixed carbon was investigated by (14)C radiotracer experiments. Symbioses with algae of clades A and B released ca. 30-40% of fixed carbon to the animal tissues. Incorporation into the lipid fraction and the low molecular weight fraction dominated by amino acids was significantly higher in symbioses with algae of clade A than of clade B, suggesting that the genetically different algae in C. gigantea are not functionally equivalent. Symbioses with mixed infections yielded intermediate values, such that this functional trait of the symbiosis can be predicted from the traits of the contributing algae. Coral and sea anemone symbioses with Symbiodinium break down at elevated temperature, a process known as 'coral bleaching'. The functional response of the C. gigantea symbiosis to heat stress varied between the algae of clades A and B, with particularly depressed incorporation of photosynthetic carbon into lipid of the clade B algae, which are more susceptible to high temperature than the algae of clade A. This study provides a first exploration of how the core symbiotic function of photosynthate transfer to the host varies with the genotype of Symbiodinium, an algal symbiont which underpins corals and, hence, coral reef ecosystems.

  16. Can stormwater be detected by algae in an urban reef in Hawai‘i?

    International Nuclear Information System (INIS)

    Erin Cox, T.; Smith, Celia M.; Popp, Brian N.; Foster, Michael S.; Abbott, Isabella A.

    2013-01-01

    Highlights: • Invasive and native algae are a part of a reef assemblage located in an urban area. • Algal nitrogen (N) composition tested if N was enriched from storm-drain outlets. • Elevated N values indicated a mixed, high nutrient environment. • Storm-drains as plausible nitrogenous source was not supported. • Temporal and spatial values indicate algae incorporated terrestrial derived N. -- Abstract: Nitrogen (N) enrichment of tropical reefs can result in the dominance of invasive algae. The invasive alga Acanthophora spicifera and the native alga Laurencia nidifica are part of a diverse reef assemblage in ‘Ewa Beach, O‘ahu. Their N contents and δ 15 N values were investigated to determine if N was enriched and to evaluate potential nitrogenous sources near and removed from storm-drain outlets. δ 15 N values of algae (3.8–17.7‰) were within and above the range for algae around the island (1.9–11.9‰). Elevated algae N isotope values (δ 15 N > +7‰, [N] > 1.6%) and seawater nitrate + nitrite levels (0.59–7.93 μM) indicated a mixed, high nutrient environment. The overlap in δ 15 N values with multiple nitrogenous sources precluded identification. However, spatial and temporal patterns did not support stormwater as the dominant, nitrogenous source. Patterns were congruent with algal incorporation of terrestrial derived N, subjected to a high degree of biogeochemical cycling

  17. Biological synthesis of metallic nanoparticles using algae.

    Science.gov (United States)

    Castro, Laura; Blázquez, María Luisa; Muñoz, Jesus Angel; González, Felisa; Ballester, Antonio

    2013-09-01

    The increasing demand and limited natural resources of noble metals make its recovery from dilute industrial wastes attractive, especially when using environmentally friendly methods. Nowadays, the high impact that nanotechnology is having in both science and society offers new research possibilities. Gold and silver nanoparticles were biosynthesised by a simple method using different algae as reducing agent. The authors explored the application of dead algae in an eco-friendly procedure. The nanoparticle formation was followed by UV-vis absorption spectroscopy and transmission electron microscopy. The functional groups involved in the bioreduction were studied by Fourier transform infrared spectroscopy.

  18. Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.

    Directory of Open Access Journals (Sweden)

    Jianfang Xu

    Full Text Available Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known to generally perform C₃ photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may also perform C₄ photosynthesis, so C₄ photosynthesis might be more wide-spread than previously anticipated. Both C₃ and C₄ photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C₄ metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxylase (PEPC, and phosphoenolpyruvate carboxykinase (PCK. To investigate whether the alga operates a C₄-like pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of stress (differing levels of salinity, light intensity, and temperature. The expression of rbcL and PPDK and their enzyme activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and ribulose-1, 5-biphosphate carboxylase (RuBPCase activity was lower, whereas that of PPDK was higher. These results suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C₄-type carbon metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea.

  19. Enhanced high energy efficient steam drying of algae

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2013-01-01

    Highlights: • Brown algae drying processes based on heat circulation technology (HC) were proposed. • HC was developed on exergy recovery through exergy elevation and heat pairing. • The energy efficiency of the proposed drying processes was evaluated. • Significant reduction of energy input and CO 2 emission in drying is readily achieved. - Abstract: State-of-the-art brown algae drying processes based on heat circulation technology were proposed, and their performance with respect to energy consumption was evaluated. Heat circulation technology was developed using the principle of exergy recovery performed through exergy elevation and effective heat pairing for both sensible and latent heat. Two steam drying processes based on heat circulation technology for algae drying were proposed, involving heat circulation with or without steam recirculation. The proposed processes were compared with the conventional heat recovery system employing heat cascade technology. Brown algae Laminaria japonica was selected as the test sample. From the results, it is very clear that both proposed drying processes can reduce the required drying energy significantly by up to 90% of that required in conventional heat recovery drying. Furthermore, the temperature–enthalpy diagram for each process shows that in heat circulation technology based drying, the curves of both hot and cold streams are almost parallel, resulting in the minimization of exergy losses

  20. Propiedades nutritivas y saludables de algas marinas y su potencialidad como ingrediente funcional

    OpenAIRE

    Quitral R, Vilma; Morales G, Carla; Sepúlveda L, Marcela; Schwartz M, Marco

    2012-01-01

    Las algas marinas se han consumido en Asia desde tiempos remotos, mientras que en países occidentales su principal aplicación ha sido como agente gelificante y coloide para la industria de alimentos, farmacéutica y cosmética. Las algas son buena fuente de nutrientes como proteínas, vitaminas, minerales y fibra dietética, al respecto, la fibra dietética de algas es particularmente rica en fracción soluble. Si se comparan las algas con vegetales terrestres, se encuentran más componentes benefic...