Sample records for airway epithelial non-heme

  1. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  2. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Verghese Margrith W


    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  3. Molecular mechanisms of epithelial host defense in the airways

    Vos, Joost Bastiaan


    Airway epithelial cells are indispensable for the host defense system in the lungs. Various strategies by which epithelial cells protect the lungs against inhaled pathogens have been described. In spite of that, the molecular mechanisms by which epithelial cells initiate and control the host defense response have not been explored systematically. In this thesis, the molecular mechanisms underlying the initiation and regulation of the early epithelial host defense response in the airways were ...

  4. Epithelial injury and repair in airways diseases.

    Grainge, Christopher L; Davies, Donna E


    Asthma is a common chronic disease characterized by variable respiratory distress with underlying airway inflammation and airflow obstruction. The incidence of asthma has risen inexorably over the past 50 years, suggesting that environmental factors are important in its etiology. All inhaled environmental stimuli interact with the lung at the respiratory epithelium, and it is a testament to the effectiveness of the airway innate defenses that the majority of inhaled substances are cleared without the need to elicit an inflammatory response. However, once this barrier is breached, effective communication with immune and inflammatory cells is required to protect the internal milieu of the lung. In asthma, the respiratory epithelium is known to be structurally and functionally abnormal. Structurally, the epithelium shows evidence of damage and has more mucus-producing cells than normal airways. Functionally, the airway epithelial barrier can be more permeable and more sensitive to oxidants and show a deficient innate immune response to respiratory virus infection compared with that in normal individuals. The potential of a susceptible epithelium and the underlying mesenchyme to create a microenvironment that enables deviation of immune and inflammatory responses to external stimuli may be crucial in the development and progression of asthma. In this review, we consider three important groups of environmental stimuli on the epithelium in asthma: oxidants, such as environmental pollution and acetaminophen; viruses, including rhinovirus; and agents that cause barrier disruption, such as house dust mite allergens. The pathology associated with each stimulus is considered, and potential future treatments arising from research on their effects are presented. PMID:24297122

  5. Regulated Mucin Secretion from Airway Epithelial Cells



    Full Text Available Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3x10^6 D per monomer whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ~1 um in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among MARCKS, cysteine string protein (CSP, HSP70 and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG. Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the

  6. Ion transport in epithelial spheroids derived from human airway cells

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H;


    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  7. Polarized Airway Epithelial Models for Immunological Co-Culture Studies

    Papazian, Dick; Würtzen, Peter A; Hansen, Søren Werner Karlskov


    epithelial response towards environmental antigens and genetic susceptibility, resulting in inflammation and T cell-derived immune responses. In vivo animal models have long been used to study immune homeostasis of the airways but are limited by species restriction and lack of exposure to a natural...

  8. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein


    X, Bao; T, Liu; L, Spetch; D, Kolli; R.P, Garofalo; A, Casola


    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immuno-modulatory mediators. PMID:17655903

  10. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Steve N. Georas


    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epi...

  11. c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse.

    Volckaert, Thomas; Campbell, Alice; De Langhe, Stijn


    During lung development, Fibroblast growth factor 10 (Fgf10), which is expressed in the distal mesenchyme and regulated by Wnt signaling, acts on the distal epithelial progenitors to maintain them and prevent them from differentiating into proximal (airway) epithelial cells. Fgf10-expressing cells in the distal mesenchyme are progenitors for parabronchial smooth muscle cells (PSMCs). After naphthalene, ozone or bleomycin-induced airway epithelial injury, surviving epithelial cells secrete Wnt7b which then activates the PSMC niche to induce Fgf10 expression. This Fgf10 secreted by the niche then acts on a subset of Clara stem cells to break quiescence, induce proliferation and initiate epithelial repair. Here we show that conditional deletion of the Wnt target gene c-Myc from the lung mesenchyme during development does not affect proper epithelial or mesenchymal differentiation. However, in the adult lung we show that after naphthalene-mediated airway epithelial injury c-Myc is important for the activation of the PSMC niche and as such induces proliferation and Fgf10 expression in PSMCs. Our data indicate that conditional deletion of c-Myc from PSMCs inhibits airway epithelial repair, whereas c-Myc ablation from Clara cells has no effect on airway epithelial regeneration. These findings may have important implications for understanding the misregulation of lung repair in asthma and COPD. PMID:23967208

  12. Non-heme iron enzymes: Contrasts to heme catalysis

    Solomon, Edward I.; Decker, Andrea; Lehnert, Nicolai


    Non-heme iron enzymes catalyze a wide range of O2 reactions, paralleling those of heme systems. Non-heme iron active sites are, however, much more difficult to study because they do not exhibit the intense spectral features characteristic of the porphyrin ligand. A spectroscopic methodology was developed that provides significant mechanistic insight into the reactivity of non-heme ferrous active sites. These studies reveal a general mechanistic strategy used by these enzymes and differences i...

  13. Aldose reductase inhibition prevents metaplasia of airway epithelial cells.

    Umesh C S Yadav

    Full Text Available BACKGROUND: Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR regulates the mucus cell metaplasia in vitro and in vivo. METHODOLOGY/FINDINGS: Metaplasia in primary human small airway epithelial cells (SAEC was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE. CONCLUSIONS: The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors

  14. Linoleic acid metabolite drives severe asthma by causing airway epithelial injury

    Mabalirajan, Ulaganathan; Rehman, Rakhshinda; Ahmad, Tanveer; Kumar, Sarvesh; Singh, Suchita; Leishangthem, Geeta D.; Aich, Jyotirmoi; Kumar, Manish; Khanna, Kritika; Singh, Vijay P.; Dinda, Amit K; Biswal, Shyam; Agrawal, Anurag; Ghosh, Balaram


    Airway epithelial injury is the hallmark of various respiratory diseases, but its mechanisms remain poorly understood. While 13-S-hydroxyoctadecadienoic acid (13-S-HODE) is produced in high concentration during mitochondrial degradation in reticulocytes little is known about its role in asthma pathogenesis. Here, we show that extracellular 13-S-HODE induces mitochondrial dysfunction and airway epithelial apoptosis. This is associated with features of severe airway obstruction, lung remodeling...

  15. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    Joan G Clark

    Full Text Available Airway epithelial cells (AEC are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium.

  16. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    Clark, Joan G; Kim, Kyoung-Hee; Basom, Ryan S; Gharib, Sina A


    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  17. Airway epithelial NF-κB activation promotes Mycoplasma pneumoniae clearance in mice.

    Di Jiang

    Full Text Available Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD. Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB. We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1 serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-(CAIKKβ with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+, but not transgene negative (Tg- mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.

  18. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  19. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells.

    Yoshie, Susumu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Ikeda, Masakazu; Nomoto, Yukio; Wada, Ikuo; Omori, Koichi


    Airway epithelial cells derived from induced pluripotent stem (iPS) cells are expected to be a useful source for the regeneration of airway epithelium. Our preliminary study of embryoid body (EB) formation and the air-liquid interface (ALI) method suggested that mouse iPS cells can differentiate into airway epithelial cells. However, whether the cells generated from mouse iPS cells had the character and phenotype of native airway epithelial cells remained uninvestigated. In this study, we generated airway epithelial cells from EBs by culturing them under serum-free conditions supplemented with Activin and bFGF and by the ALI method and characterized the iPS cell-derived airway epithelial cells in terms of their gene expression, immunoreactivity, morphology, and function. Analysis by quantitative real-time reverse transcription-polymerase chain reaction(RT-PCR) revealed that the expression of the undifferentiated cell marker Nanog decreased time-dependently after the induction of differentiation, whereas definitive endoderm markers Foxa2 and Cxcr4 were transiently up-regulated. Thereafter, the expression of airway epithelium markers such as Tubb4a, Muc5ac, and Krt5 was detected by RT-PCR and immunostaining. The formation of tight junctions was also confirmed by immunostaining and permeability assay. Analysis by hematoxylin and eosin staining and scanning electron microscopy indicated that the cells generated from mouse iPS cells formed airway-epithelium-like tissue and had cilia, the movement of which was visualized and observed to be synchronized. These results demonstrate that the airway epithelial cells generated by our method have native characteristics and open new perspectives for the regeneration of injured airway epithelium. PMID:26590823

  20. Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells.

    Cavet, M E; West, M.; Simmons, N L


    Although fluoroquinolone antibiotics such as ciprofloxacin are able to gain access to lung tissue and both pleural and bronchial secretions, the characteristics of transport and cellular uptake of ciprofloxacin in human epithelial lung tissue remain obscure. We have chosen human airway epithelial (Calu-3) cells, reconstituted as functional epithelial layers grown on permeable filter supports, as a model with which to assess both transepithelial transport and cellular uptake of ciprofloxacin. ...

  1. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    McCarthy J


    the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact that they may have the ability to affect epithelial cell function and physiological processes on their own.Keywords: CFTR, cystic fibrosis transmembrane conductance regulator, ion channels, K+ channels, lung cells, polystyrene nanoparticle 

  2. Generation of ESC-derived Mouse Airway Epithelial Cells Using Decellularized Lung Scaffolds.

    Shojaie, Sharareh; Lee, Joyce; Wang, Jinxia; Ackerley, Cameron; Post, Martin


    Lung lineage differentiation requires integration of complex environmental cues that include growth factor signaling, cell-cell interactions and cell-matrix interactions. Due to this complexity, recapitulation of lung development in vitro to promote differentiation of stem cells to lung epithelial cells has been challenging. In this protocol, decellularized lung scaffolds are used to mimic the 3-dimensional environment of the lung and generate stem cell-derived airway epithelial cells. Mouse embryonic stem cell are first differentiated to the endoderm lineage using an embryoid body (EB) culture method with activin A. Endoderm cells are then seeded onto decellularized scaffolds and cultured at air-liquid interface for up to 21 days. This technique promotes differentiation of seeded cells to functional airway epithelial cells (ciliated cells, club cells, and basal cells) without additional growth factor supplementation. This culture setup is defined, serum-free, inexpensive, and reproducible. Although there is limited contamination from non-lung endoderm lineages in culture, this protocol only generates airway epithelial populations and does not give rise to alveolar epithelial cells. Airway epithelia generated with this protocol can be used to study cell-matrix interactions during lung organogenesis and for disease modeling or drug-discovery platforms of airway-related pathologies such as cystic fibrosis. PMID:27214388

  3. Epithelial mesenchymal transition in smokers: large versus small airways and relation to airflow obstruction

    Mahmood MQ


    Full Text Available Malik Quasir Mahmood,1,* Sukhwinder Singh Sohal,1,2,* Shakti Dhar Shukla,1 Chris Ward,3 Ashutosh Hardikar,4 Wan Danial Noor,1 Hans Konrad Muller,1 Darryl A Knight,5 Eugene Haydn Walters1 1NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia; 2School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS, Australia; 3Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK; 4Royal Hobart Hospital, Hobart, TAS, Australia; 5School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia *These authors contributed equally to this work Background: Small airway fibrosis is the main contributor in airflow obstruction in chronic obstructive pulmonary disease. Epithelial mesenchymal transition (EMT has been implicated in this process, and in large airways, is associated with angiogenesis, ie, Type-3, which is classically promalignant. Objective: In this study we have investigated whether EMT biomarkers are expressed in small airways compared to large airways in subjects with chronic airflow limitation (CAL and what type of EMT is present on the basis of vascularity. Methods: We evaluated epithelial activation, reticular basement membrane fragmentation (core structural EMT marker and EMT-related mesenchymal biomarkers in small and large airways from resected lung tissue from 18 lung cancer patients with CAL and 9 normal controls. Tissues were immunostained for epidermal growth factor receptor (EGFR; epithelial activation marker, vimentin (mesenchymal marker, and S100A4 (fibroblast epitope. Type-IV collagen was stained to demonstrate vessels. Results: There was increased expression of EMT-related markers in CAL small airways compared to controls: EGFR (P<0.001, vimentin (P<0.001, S100A4 (P<0.001, and fragmentation (P<0.001, but this was less than that in large airways

  4. β-catenin/Tcf Signaling in Squamous Differentiation of Porcine Airway Epithelial Cells

    Wenshu CHEN; Renliang WU; Xi WANG


    For a preliminary study of the role of β-catenin/Tcf signaling in squamous differentiation of airway (tracheobronchial) epithelial cells, a stable mutant of β-catenin was transfected into primarily cultured porcine airway epithelial cells. Western blotting revealed that exogenous protein was observed in large quantity in cytoplasm and nucleus. When co-transfected with Tcf luciferase reporter plasmids, β-catenin mutant increased the reporter's transcriptional activities. However, mRNA ex pression of a squamous differentiation marker, small proline-rich protein (SPRP), was not elevated, as shown by reverse transcription-polymerase chain reaction. These findings suggest that β-catenin/Tcf signaling may not be directly involved in the squamous differentiation of porcine airway epithelial cells.

  5. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells.

    White, Steven R; Martin, Linda D; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A


    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  6. Wound repair and anti-oxidative capacity is regulated by ITGB4 in airway epithelial cells.

    Liu, Chi; Liu, Hui-jun; Xiang, Yang; Tan, Yu-rong; Zhu, Xiao-lin; Qin, Xiao-qun


    Integrin beta 4 (ITGB4) is a structural adhesion molecule which engages in maintaining the integrity of airway epithelial cells. Its specific cytomembrane structural feature strongly indicates that ITGB4 may engage in many signaling pathways and physiologic processes. However, in addition to adhesion, the specific biologic significance of ITGB4 in airway epithelial cells is almost unknown. In this article, we investigated the expression and functional properties of ITGB4 in airway epithelial cells in vivo and in vitro. Human bronchial epithelial cell line (16HBE14O-cells) and primary rat tracheal epithelial cells (RTE cells) were used to determine ITGB4 expression under ozone tress or mechanical damage, respectively. An ovalbumin (OVA)-challenged asthma model was used to investigate ITGB4 expression after antigen exposure in vivo. In addition, an ITGB4 overexpression vector and ITGB4 silence virus vector were constructed and transfected into RTE cells. Then, wound repair ability and anti-oxidation capacity was evaluated. Our results demonstrated that, on the edge of mechanically wounded cell areas, ITGB4 expression was increased after mechanical injury. After ozone stress, upregulation expression of ITGB4 was also detected. In the OVA-challenged asthma model, ITGB4 expression was decreased on airway epithelial cells accompanying with structural disruption and damage of anti-oxidation capacity. Besides, our study revealed that upregulation of ITGB4 promotes wound repair ability and anti-oxidative ability, while such abilities were blocked when ITGB4 was silenced. Taken together, these results showed that ITGB4 was a new interesting molecule involved in the regulation of wound repair and anti-oxidation processes for airway epithelial cells. PMID:20364299

  7. Surfactant Protein D modulates allergen particle uptake and inflammatory response in a human epithelial airway model

    Schleh Carsten


    Full Text Available Abstract Background Allergen-containing subpollen particles (SPP are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated. Methods SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells, human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4+ T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array. Results SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake and led to a decreased secretion of pro-inflammatory cytokines. Conclusion These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.

  8. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows

    Higuita-Castro, Natalia; Mihai, Cosmin; Hansford, Derek J.


    Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation. PMID:25213636

  9. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling.

    Rock, Jason R; Randell, Scott H; Hogan, Brigid L M


    The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease. PMID:20699479

  10. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N


    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma. PMID:24665390

  11. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States); Boyaka, Prosper N. [Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210 (United States); Cormet-Boyaka, Estelle, E-mail: [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States)


    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  12. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    Highlights: ► Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. ► Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. ► Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. ► Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-κB dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  13. Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma.

    Samanta, Krishna; Parekh, Anant B


    The epithelial cells of the lung are at the interface of a host and its environment and are therefore directly exposed to the inhaled air-borne particles. Rather than serving as a simple physical barrier, airway epithelia detect allergens and other irritants and then help organize the subsequent immune response through release of a plethora of secreted signals. Many of these signals are generated in response to opening of store-operated Ca(2+) channels in the plasma membrane. In this review, we describe the properties of airway store-operated channels and their role in regulating airway epithelial cell function.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377718

  14. Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice

    Ju-Hyun Gong


    Full Text Available Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20 μM suppressed the LPS-induced IL-8 production through the TLR4 activation, inhibiting eotaxin-1 induction. The in vivo study explored the demoting effects of kaempferol on asthmatic inflammation in BALB/c mice sensitized with ovalbumin (OVA. Mouse macrophage inflammatory protein-2 production and CXCR2 expression were upregulated in OVA-challenged mice, which was attenuated by oral administration of ≥10 mg/kg kaempferol. Kaempferol allayed the airway tissue levels of eotaxin-1 and eotaxin receptor CCR3 enhanced by OVA challenge. This study further explored the blockade of Tyk-STAT signaling by kaempferol in both LPS-stimulated BEAS-2B cells and OVA-challenged mice. LPS activated Tyk2 responsible for eotaxin-1 induction, while kaempferol dose-dependently inhibited LPS- or IL-8-inflamed Tyk2 activation. Similar inhibition of Tyk2 activation by kaempferol was observed in OVA-induced mice. Additionally, LPS stimulated the activation of STAT1/3 signaling concomitant with downregulated expression of Tyk-inhibiting SOCS3. In contrast, kaempferol encumbered STAT1/3 signaling with restoration of SOCS3 expression. Consistently, oral administration of kaempferol blocked STAT3 transactivation elevated by OVA challenge. These results demonstrate that kaempferol alleviated airway inflammation through modulating Tyk2-STAT1/3 signaling responsive to IL-8 in endotoxin-exposed airway epithelium and in asthmatic mice. Therefore, kaempferol may be a therapeutic agent targeting asthmatic diseases.

  15. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4–33 nm), two preparations of CeO2 NPs (9–36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15–240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured

  16. Polarization Affects Airway Epithelial Conditioning of Monocyte-Derived Dendritic Cells

    Papazian, Dick; Chhoden, Tashi; Arge, Maria;


    Airway epithelial cells (AECs) form polarized barriers that interact with inhaled allergens and are involved in immune homeostasis. We examined how monocyte-derived dendritic cells (MDDCs) are affected by contact with the airway epithelium. In traditional setups, bronchial epithelial cell lines...... were allowed to polarize on filter inserts, and MDDCs were allowed to adhere to the epithelial basal side. In an optimized setup, the cell application was reversed, and the culture conditions were modified to preserve cellular polarization and integrity. These two parameters were crucial for the MDDCs....... In conclusion, we determined that AEC conditioning favoring cellular integrity leads to a tolerogenic MDDC phenotype, which is likely to be important in regulating immune responses against commonly inhaled allergens....

  17. 1,25-Dihydroxyvitamin D3 prevents toluene diisocyanate-induced airway epithelial barrier disruption.

    Li, Wenjia; Dong, Hangming; Zhao, Haijin; Song, Jiafu; Tang, Haixiong; Yao, Lihong; Liu, Laiyu; Tong, Wancheng; Zou, Mengchen; Zou, Fei; Cai, Shaoxi


    The loss of airway epithelial integrity contributes significantly to asthma pathogenesis. Evidence suggests that vitamin D plays an important role in the prevention and treatment of asthma. However, its role in airway epithelial barrier function remains uncertain. We have previously demonstrated impaired epithelial junctions in a model of toluene diisocyanate (TDI)-induced asthma. In the present study, we hypothesized that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] may prevent TDI-induced epithelial barrier disruption. Male BALB/c mice were dermally sensitized and then challenged with TDI. The mice were then administered 1,25(OH)2D3 intraperitoneally prior to challenge with TDI. For in vitro experiments, 16HBE bronchial epithelial cells were cultured and stimulated with TDI-human serum albumin (HSA). The results revealed that the mice treated with 1,25(OH)2D3 displayed decreased airway hyperresponsiveness (AHR), suppressed neutrophil and eosinophil infiltration into the airways, as well as an increased E-cadherin and zonula occludens-1 (ZO-1) expression at the cell-cell contact sites. In vitro, exposure of the cells to TDI-HSA induced a rapid decline in transepithelial electrical resistance (TER) and an increase in cell permeability, followed by a decrease in occludin expression and the redistribution of E-cadherin, accompanied by a significant upregulation in the levels of phosphorylated extracellular signal-regulated kinase (ERK)1/2. These effects were all partly reversed by treatment with either 1,25(OH)2D3 or an ERK1/2 inhibitor. In conclusion, the findings of our study demonstrate that 1,25(OH)2D3 prevents TDI-induced epithelial barrier disruption, and that the ERK1/2 pathway may play a role in this process. PMID:25998793

  18. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation.

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A; Korfhagen, Thomas R; Whitsett, Jeffrey A


    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef(-/-) mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  19. Interleukin-1β mediates human airway epithelial cell migration via NF-κB

    White, Steven R.; Fischer, Bernard M.; Marroquin, Bertha A.; Stern, Randi


    Migration of airway epithelial cells (AEC) is a necessary component of airway mucosal repair after injury. The cytokine IL-1β, present in airway inflammation, has protean effects on constituent cells within the mucosa, but its effects on epithelial repair are not known. We examined migration in differentiated primary human AEC grown in air-liquid interface culture for up to 3 wk and in the 16HBE14o− cell line. Wounds were created by mechanical abrasion and followed to closure using digital microscopy. Concurrent treatment with IL-1β (≤10 ng/ml) significantly accelerated migration in primary differentiated cells and in the 16HBE14o− cell line but did not accelerate migration in primary differentiated AEC collected from asthmatic donors. IL-1β treatment did not augment phosphorylation of stress-activated protein kinases normally activated by mechanical injury, such as heat shock protein 27, ERK1/2, and JNK, and did not elicit phosphorylation of signal transducer and activator of transcription-3. However, introduction of a silencing RNA to block expression of the p65 component of NF-κB blocked IL-1β-accelerated migration substantially. Our data demonstrate that IL-1β accelerates migration of normal, but not asthmatic, differentiated AEC by a mechanism that requires activation of the NF-κB signaling complex and suggests a trophic role for this cytokine in airway epithelial repair after injury. PMID:18849440

  20. The effect of N-acetylcysteine on chloride efflux from airway epithelial cells.

    Varelogianni, Georgia; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie


    Defective chloride transport in epithelial cells increases mucus viscosity and leads to recurrent infections with high oxidative stress in patients with CF (cystic fibrosis). NAC (N-acetylcysteine) is a well known mucolytic and antioxidant drug, and an indirect precursor of glutathione. Since GSNO (S-nitrosoglutathione) previously has been shown to be able to promote Cl- efflux from CF airway epithelial cells, it was investigated whether NAC also could stimulate Cl- efflux from CF and non-CF epithelial cells and through which mechanisms. CFBE (CF bronchial epithelial cells) and normal bronchial epithelial cells (16HBE) were treated with 1 mM, 5 mM, 10 mM or 15 mM NAC for 4 h at 37 degrees C. The effect of NAC on Cl- transport was measured by Cl- efflux measurements and by X-ray microanalysis. Cl- efflux from CFBE cells was stimulated by NAC in a dose-dependent manner, with 10 mM NAC causing a significant increase in Cl- efflux with nearly 80% in CFBE cells. The intracellular Cl- concentration in CFBE cells was significantly decreased up to 60% after 4 h treatment with 10 mM NAC. Moreover immunocytochemistry and Western blot experiments revealed expression of CFTR channel on CFBE cells after treatment with 10 mM NAC. The stimulation of Cl- efflux by NAC in CF airway epithelial cells may improve hydration of the mucus and thereby be beneficial for CF patients. PMID:19947928

  1. Expression of Leukemia Inhibitory Factor in Airway Epithelial Tissue of Asthmatic Rats

    XIONG Weining; ZENG Daxiong; XU Yongjian; XIONG Shengdao; FANG Huijuan; CAO Yong; SONG Qingfeng; CAO Chao


    In order to investigate the expression of leukemia inhibitory factor (LIF) in airway epithelial tissues of normal and asthmatic rats, the influence of dexamethasone and the role of LIF in pathogenesis of asthma, 30 Sprague-Dawley (SD) rats were randomly divided into 3 groups (10 for each group): normal group, asthma model group, and dexamethasone-interfered group. In asthmamodel group and dexamethasone-interfered group, asthma rat models were established by intraperitoneal (i.p.) injection of 10% ovalbumin (OVA) and challenge with 1% OVA via inhalation. Rats in dexamethasone-interfered group were pretreated with dexamethasone (2 mg/kg, i.p) 30 min before each challenge. The expression of LIF protein in lung was detected by immunohistochemistry. The results showed that LIF protein was mainly expressed in cytoplasm of bronchial epithelial cells. The expression of LIF protein in the airway epithelial tissue of asthma model group was significantly higher than that in normal group and dexamethasone-interfered group (P<0.01), but there was no significant difference between normal group and dexamethasone-interfered group (P>0.05). It was concluded that the expression of LIF was increased significantly in the airway epithelial tissue of the asthma rats, and dexamethasone could down-regulate the expression of LIF. It was suggested that LIF might play an important role in the pathogenesis of asthma as an inflammation regulator.

  2. Asthma-associated allergen Alternaria induces STAT6 dependent epithelial FIZZ1 that promotes airway fibrosis

    Khorram, Naseem Melissa


    Alternaria is a fungal allergen whereby sensitization to it serves as a risk factor for the development, persistence, and severity of asthma. Naïve WT C57/B6 mice received one intranasal challenge with Alternaria, Candida, or Aspergillus allergen extracts and airway eosinophil numbers analyzed 24 hours later. RNA from airway epithelial cells was processed for gene microarray analysis. Lung cells from naïve WT and collagen-1 GFP mice were incubated with rFIZZ1, stained for cell type, and analy...

  3. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  4. 6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NFκB activation in airway epithelial cells

    Kurakula, Kondababu; Hamers, Anouk A.; van Loenen, Pieter; de Vries, Carlie J. M.


    Background Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown. Methods Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with...

  5. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury.

    Volckaert, Thomas; Dill, Erik; Campbell, Alice; Tiozzo, Caterina; Majka, Susan; Bellusci, Saverio; De Langhe, Stijn P


    During lung development, parabronchial SMC (PSMC) progenitors in the distal mesenchyme secrete fibroblast growth factor 10 (Fgf10), which acts on distal epithelial progenitors to promote their proliferation. β-catenin signaling within PSMC progenitors is essential for their maintenance, proliferation, and expression of Fgf10. Here, we report that this Wnt/Fgf10 embryonic signaling cascade is reactivated in mature PSMCs after naphthalene-induced injury to airway epithelium. Furthermore, we found that this paracrine Fgf10 action was essential for activating surviving variant Clara cells (the cells in the airway epithelium from which replacement epithelial cells originate) located at the bronchoalveolar duct junctions and adjacent to neuroendocrine bodies. After naphthalene injury, PSMCs secreted Fgf10 to activate Notch signaling and induce Snai1 expression in surviving variant Clara cells, which subsequently underwent a transient epithelial to mesenchymal transition to initiate the repair process. Epithelial Snai1 expression was important for regeneration after injury. We have therefore identified PSMCs as a stem cell niche for the variant Clara cells in the lung and established that paracrine Fgf10 signaling from the niche is critical for epithelial repair after naphthalene injury. These findings also have implications for understanding the misregulation of lung repair in asthma and cancer. PMID:21985786

  6. Intelectin is required for IL-13-induced monocyte chemotactic protein-1 and -3 expression in lung epithelial cells and promotes allergic airway inflammation

    Gu, Naibing; Kang, Guannan; Jin, Chang'E; Xu, Yongjian; ZHANG, ZHENXIANG; Erle, David J.; Zhen, Guohua


    Asthma is characterized by airway inflammation, mucus overproduction, airway hyperreactivity, and peribronchial fibrosis. Intelectin has been shown to be increased in airway epithelium of asthmatics. However, the role of intelectin in the pathogenesis of asthma is unknown. Airway epithelial cells can secrete chemokines such as monocyte chemotactic protein (MCP)-1 and -3 that play crucial roles in asthmatic airway inflammation. We hypothesized that intelectin plays a role in allergic airway in...

  7. Response of airway epithelial cells to double-stranded RNA in an allergic environment

    Herbert, Cristan; Zeng, Qing-Xiang; Shanmugasundaram, Ramesh; Garthwaite, Linda; Oliver, Brian G.; Kumar, Rakesh K.


    Background Respiratory viral infections are the most common trigger of acute exacerbations in patients with allergic asthma. The anti-viral response of airway epithelial cells (AEC) may be impaired in asthmatics, while cytokines produced by AEC may drive the inflammatory response. We investigated whether AEC cultured in the presence of Th2 cytokines associated with an allergic environment exhibited altered responses to double-stranded RNA, a virus-like stimulus. Methods We undertook prelimina...

  8. Copper Oxide Nanoparticles Induce Oxidative Stress and Cytotoxicity in Airway Epithelial Cells

    Fahmy, Baher; Cormier, Stephania A


    Metal oxide nanoparticles are often used as industrial catalysts and elevated levels of these particles have been clearly demonstrated at sites surrounding factories. To date, limited toxicity data on metal oxide nanoparticles are available. To understand the impact of these airborne pollutants on the respiratory system, airway epithelial (HEp-2) cells were exposed to increasing doses of silicon oxide (SiO2), ferric oxide (Fe2O3) and copper oxide (CuO) nanoparticles, the leading metal oxides ...

  9. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    Erle, David J.


    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID

  10. An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening

    Jacob, A. M.; Gaver, D. P.


    The goal of this study is to assess the local mechanical environment of the pulmonary epithelium in a computational model of airway reopening. To this end, the boundary element method (BEM) in conjunction with lubrication theory is implemented to assess the stationary-state behavior of a semi-infinite bubble traveling through a liquid-occluded parallel plate flow chamber lined with epithelial cells. The fluid occlusion is assumed to be Newtonian and inertia is neglected. The interactions between the microgeometry of the model airway's walls and the interfacial kinematics surrounding the bubble's tip result in a complex, spatially and temporally dependent stress distribution. The walls' nonplanar topography magnifies the normal and shear stresses and stress gradients. We find that decreasing the bubble's speed serves to increase the maximum normal stress and stress gradient but decrease the maximum shear stress and stress gradient. Our results give credence to the pressure-gradient-induced epithelial damage theory recently proposed by Bilek et al. [J. Appl. Physiol. 94, 770 (2003)] and Kay et al. [J. Appl. Physiol. 97, 269 (2004)]. We conclude that the amplified pressure gradients found in this study may be even more detrimental to the airway's cellular epithelium during airway reopening.

  11. Role of mitochondrial hydrogen peroxide induced by intermittent hypoxia in airway epithelial wound repair in vitro.

    Hamada, Satoshi; Sato, Atsuyasu; Hara-Chikuma, Mariko; Satooka, Hiroki; Hasegawa, Koichi; Tanimura, Kazuya; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Muro, Shigeo; Mishima, Michiaki; Chin, Kazuo


    The airway epithelium acts as a frontline barrier against various environmental insults and its repair process after airway injury is critical for the lung homeostasis restoration. Recently, the role of intracellular reactive oxygen species (ROS) as transcription-independent damage signaling has been highlighted in the wound repair process. Both conditions of continuous hypoxia and intermittent hypoxia (IH) induce ROS. Although IH is important in clinical settings, the roles of IH-induced ROS in the airway repair process have not been investigated. In this study, we firstly showed that IH induced mitochondrial hydrogen peroxide (H2O2) production and significantly decreased bronchial epithelial cell migration, prevented by catalase treatment in a wound scratch assay. RhoA activity was higher during repair process in the IH condition compared to in the normoxic condition, resulting in the cellular morphological changes shown by immunofluorescence staining: round cells, reduced central stress fiber numbers, pronounced cortical actin filament distributions, and punctate focal adhesions. These phenotypes were replicated by exogenous H2O2 treatment under the normoxic condition. Our findings confirmed the transcription-independent role of IH-induced intracellular ROS in the bronchial epithelial cell repair process and might have significant implications for impaired bronchial epithelial cell regeneration. PMID:27093911

  12. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.


    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.

  13. Absence of inflammatory response from upper airway epithelial cells after X irradiation.

    Reiter, R; Deutschle, T; Wiegel, T; Riechelmann, H; Bartkowiak, D


    Radiotherapy of head and neck tumors causes adverse reactions in normal tissue, especially mucositis. The dose- and time-dependent response of upper airway cells to X radiation should be analyzed in terms of the pro-inflammatory potential. Immortalized BEAS-2B lung epithelial cells were treated with 2, 5 and 8 Gy. Out of 1232 genes, those that were transcribed differentially after 2, 6 and 24 h were assigned to biological themes according to the Gene Ontology Consortium. Enrichment of differentially regulated gene clusters was determined with GOTree ( ). Eleven cytokines were measured in culture supernatants. The cell cycle response up to 24 h and induction of apoptosis up to 4 days after exposure were determined by flow cytometry. A significant dose- and time-dependent gene activation was observed for the categories response to DNA damage, oxidative stress, cell cycle arrest and cell death/apoptosis but not for immune/inflammatory response. This correlated with functional G(2) arrest and apoptosis. Pro-inflammatory cytokines accumulated in supernatants of control cells but not of X-irradiated cells. The complex gene expression pattern of X-irradiated airway epithelial cells is accompanied by cell cycle arrest and induction of apoptosis. In vivo, this may impair the epithelial barrier. mRNA and protein expression suggest at most an indirect contribution of epithelial cells to early radiogenic mucositis. PMID:19267554

  14. Gene Transfer by Guanidinium-Cholesterol Cationic Lipids into Airway Epithelial Cells in vitro and in vivo

    Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre


    Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.

  15. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells.

    Suzukawa, Maho; Koketsu, Rikiya; Baba, Shintaro; Igarashi, Sayaka; Nagase, Hiroyuki; Yamaguchi, Masao; Matsutani, Noriyuki; Kawamura, Masafumi; Shoji, Shunsuke; Hebisawa, Akira; Ohta, Ken


    There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation. PMID:26276826

  16. CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium.

    Liqun Zhang


    Full Text Available Dysfunction of CFTR in cystic fibrosis (CF airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL, mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE was used to test whether a human parainfluenza virus (PIV vector engineered to express CFTR (PIVCFTR could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl(- and Na(+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%-65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients

  17. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  18. Bat airway epithelial cells: a novel tool for the study of zoonotic viruses.

    Isabella Eckerle

    Full Text Available Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat and Eidolon helvum (Straw-colored fruit bat, were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells.

  19. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine.

    Ghisalberti, Carlo A; Borzì, Rosa M; Cetrullo, Silvia; Flamigni, Flavio; Cairo, Gaetano


    A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases. PMID:27375482

  20. Insulin receptor substrate-1/2 mediates IL-4-induced migration of human airway epithelial cells

    White, Steven R.; Martin, Linda D.; Abe, Mark K.; Marroquin, Bertha A.; Stern, Randi; Fu, Xiaoying


    Migration of airway epithelial cells (AEC) is an integral component of airway mucosal repair after injury. The inflammatory cytokine IL-4, abundant in chronic inflammatory airways diseases such as asthma, stimulates overproduction of mucins and secretion of chemokines from AEC; these actions enhance persistent airway inflammation. The effect of IL-4 on AEC migration and repair after injury, however, is not known. We examined migration in primary human AEC differentiated in air-liquid interface culture for 3 wk. Wounds were created by mechanical abrasion and followed to closure using digital microscopy. Concurrent treatment with IL-4 up to 10 ng/ml accelerated migration significantly in fully differentiated AEC. As expected, IL-4 treatment induced phosphorylation of the IL-4 receptor-associated protein STAT (signal transducer and activator of transcription)6, a transcription factor known to mediate several IL-4-induced AEC responses. Expressing a dominant negative STAT6 cDNA delivered by lentivirus infection, however, failed to block IL-4-stimulated migration. In contrast, decreasing expression of either insulin receptor substrate (IRS)-1 or IRS-2 using a silencing hairpin RNA blocked IL-4-stimulated AEC migration completely. These data demonstrate that IL-4 can accelerate migration of differentiated AEC after injury. This reparative response does not require STAT6 activation, but rather requires IRS-1 and/or IRS-2. PMID:19447894

  1. IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit.

    Hill, Alison R; Donaldson, Jessica E; Blume, Cornelia; Smithers, Natalie; Tezera, Liku; Tariq, Kamran; Dennison, Patrick; Rupani, Hitasha; Edwards, Matthew J; Howarth, Peter H; Grainge, Christopher; Davies, Donna E; Swindle, Emily J


    The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) which controls the airway microenvironment. We hypothesized that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1α which was unaffected by the presence of fibroblasts. Blockade of IL-1 signaling with IL-1 receptor antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study provides the first direct evidence of integrated IL-1 signaling within the EMTU to propagate inflammatory responses to viral infection. PMID:27583193

  2. Effect of Cigarette Smoke Extract on the Proliferation of Human Airway Epithelial Cells and Expression and Activation of FAK

    XU Li; ZHANG Zhenxiang; XU Yongjian


    Summary: The effect of cigarette smoke extract (CSE) on the proliferation of human airway epithelial cells and the possible mechanism was studied. After airway epithelial cells were treated with different concentrations of CSE for 24 h, the cell proliferation was measured by MTT and the distribution of different cell cycles by flow cytometry. The FAK expression level was detected by Western blot and the degree of tyrosine phosphorylation by immunoprecipitation. The results showed that CSE could inhibit the proliferation of human airway epithelial cells, arrest the epithelial cells in G1 phase of cell cycle, dramatically decrease the number of epithelial cells in S and G2 phases; Meanwhile CSE could decrease the expression level of FAK and the degree of its tyrosine phosphorylation. The above effects of CSE were concentration-dependent. The expression of FAK and the degree of its phosphorylation was positively correlated to the increased number of epithelial cells in G1 phase, and negatively to the number of epithelial cells in S and G2 phases. It was concluded that the mechanism by which CSE could inhibit the proliferation of human epithelial cells was contributed to the increased expression and activation of FAK.

  3. Activity of Matrix Metalloproteinase in Airway Epithelial Cells of COPD Patients


    To examine the mRNA expression of matrix metalloproteinase 9 (MMP-9) and the gelatinase activity of its inhibitor, tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) in the primary epithelial cells of patients with COPD, airway epithelial cells were taken from 15 COPD patients and cultured in vitro. The patients were divided into three groups, COPD group, normal smoking control group and non-smoking control group, with 5 subjects in each group, on basis of the smoking history and lung function. The semi-qualitative RT-PCR was employed to determine the mRNA levels of MMP 9 and TIMP-1 and SDS PAGE was used for the determination of the gelatinase activity of MMP-9 and TIMP-1. Our result showed that the mRNA of MMP-9 and TIMP-1 in epithelial cells of the non-smoking subjects was at a low level The mRNA of MMP 9 and TIMP-1 in COPD patients and smokers was significantly higher than that in non-smokers (P<0.05). No significant difference was found in the levels of MMP-9 and TIMP-1 in epithelial cells between the COPD patients and smokers. The MMP-9/TIMP-1 ratios in COPD patients and smokers were significantly lower than that of non-smokers (P<0.05). The gelatinase activity in the epithelial cells of both COPD patients and normal smokers was increased (P<0.05), but no difference existed in the gelatinase activity in the epithelial cells between COPD patients and normal smokers. It is concluded that the transcription of MMP-9 and TIMP-1 and the gelatinase activity of MMP-9 and MMP-2 in the epithelial cells in COPD patients were increased, which resulted in an imbalance of MMP-9/TIMP-1, thereby causing pulmonary fibrosis. These factors play important roles in the pathogenesis of COPD.

  4. Nitric oxide gas phase release in human small airway epithelial cells

    Suresh Vinod


    Full Text Available Abstract Background Asthma is a chronic airway inflammatory disease characterized by an imbalance in both Th1 and Th2 cytokines. Exhaled nitric oxide (NO is elevated in asthma, and is a potentially useful non-invasive marker of airway inflammation. However, the origin and underlying mechanisms of intersubject variability of exhaled NO are not yet fully understood. We have previously described NO gas phase release from normal human bronchial epithelial cells (NHBEs, tracheal origin. However, smaller airways are the major site of morbidity in asthma. We hypothesized that IL-13 or cytomix (IL-1β, TNF-α, and IFN-γ stimulation of differentiated small airway epithelial cells (SAECs, generation 10–12 and A549 cells (model cell line of alveolar type II cells in culture would enhance NO gas phase release. Methods Confluent monolayers of SAECs and A549 cells were cultured in Transwell plates and SAECs were allowed to differentiate into ciliated and mucus producing cells at an air-liquid interface. The cells were then stimulated with IL-13 (10 ng/mL or cytomix (10 ng/mL for each cytokine. Gas phase NO release in the headspace air over the cells was measured for 48 hours using a chemiluminescence analyzer. Results In contrast to our previous result in NHBE, baseline NO release from SAECs and A549 is negligible. However, NO release is significantly increased by cytomix (0.51 ± 0.18 and 0.29 ± 0.20, respectively reaching a peak at approximately 10 hours. iNOS protein expression increases in a consistent pattern both temporally and in magnitude. In contrast, IL-13 only modestly increases NO release in SAECs reaching a peak (0.06 ± 0.03 more slowly (30 to 48 hours, and does not alter NO release in A549 cells. Conclusion We conclude that the airway epithelium is a probable source of NO in the exhaled breath, and intersubject variability may be due, in part, to variability in the type (Th1 vs Th2 and location (large vs small airway

  5. T lymphocytes promote the antiviral and inflammatory responses of airway epithelial cells.

    Lan Jornot

    Full Text Available HYPOTHESIS: T cells modulate the antiviral and inflammatory responses of airway epithelial cells to human rhinoviruses (HRV. METHODS: Differentiated primary human nasal epithelial cells (HNEC grown on collagen-coated filters were exposed apically to HRV14 for 6 h, washed thoroughly and co-cultured with anti-CD3/CD28 activated T cells added in the basolateral compartment for 40 h. RESULTS: HRV14 did not induce IFNγ, NOS2, CXCL8 and IL-6 in HNEC, but enhanced expression of the T cell attractant CXCL10. On the other hand, HNEC co-cultured with activated T cells produced CXCL10 at a level several orders of magnitude higher than that induced by HRV14. Albeit to a much lower degree, activated T cells also induced CXCL8, IL-6 and NOS2. Anti-IFNγ antibodies and TNF soluble receptor completely blocked CXCL10 upregulation. Furthermore, a significant correlation was observed between epithelial CXCL10 mRNA expression and the amounts of IFNγ and TNF secreted by T cells. Likewise, increasing numbers of T cells to a constant number of HNEC in co-cultures resulted in increasing epithelial CXCL10 production, attaining a plateau at high IFNγ and TNF levels. Hence, HNEC activation by T cells is induced mainly by IFNγ and/or TNF. Activated T cells also markedly inhibited viral replication in HNEC, partially through activation of the nitric oxide pathway. CONCLUSION: Cross-talk between T cells and HNEC results in activation of the latter and increases their contribution to airway inflammation and virus clearance.

  6. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  7. Response of cultured human airway epithelial cells to X-rays and energetic α-particles

    Radon and its progeny, which emit α-particles during decay, may play an important role in inducing human lung cancer. To gain a better understanding of the biological effects of α-particles in human lung we studied the response of cultured human airway epithelial cells to X-rays and monoenergetic helium ions. Experimental results indicated that the radiation response of primary cultures was similar to that for airway epithelial cells that were transformed with a plasmid containing an origin-defective SV40 virus. The RBE for cell inactivation determined by the ratio of D0 for X-rays to that for 8 MeV helium ions was 1.8-2.2. The cross-section for helium ions, calculated from the D0 value, was about 24 μm2 for cells of the primary culture. This cross-section is significantly smaller than the average geometric nuclear area (∼ 180 μm2), suggesting that an average of 7.5 α-particles (8 MeV helium ions) per cell nucleus are needed to induce a lethal lesion. (author)

  8. Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells.

    Jairaman, Amit; Maguire, Chelsea H; Schleimer, Robert P; Prakriya, Murali


    Aberrant immune responses to environmental allergens including insect allergens from house dust mites and cockroaches contribute to allergic inflammatory diseases such as asthma in susceptible individuals. Airway epithelial cells (AECs) play a critical role in this process by sensing the proteolytic activity of allergens via protease-activated receptors (PAR2) to initiate inflammatory and immune responses in the airway. Elevation of cytosolic Ca(2+) is an important signaling event in this process, yet the fundamental mechanism by which allergens induce Ca(2+) elevations in AECs remains poorly understood. Here we find that extracts from dust mite and cockroach induce sustained Ca(2+) elevations in AECs through the activation of Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by Orai1 and STIM1. CRAC channel activation occurs, at least in part, through allergen mediated stimulation of PAR2 receptors. The ensuing Ca(2+) entry then activates NFAT/calcineurin signaling to induce transcriptional production of the proinflammatory cytokines IL-6 and IL-8. These findings highlight a key role for CRAC channels as regulators of allergen induced inflammatory responses in the airway. PMID:27604412

  9. Pseudomonas aeruginosa pyocyanin modulates mucin glycosylation with sialyl-Lewis(x) to increase binding to airway epithelial cells.

    Jeffries, J L; Jia, J; Choi, W; Choe, S; Miao, J; Xu, Y; Powell, R; Lin, J; Kuang, Z; Gaskins, H R; Lau, G W


    Cystic fibrosis (CF) patients battle life-long pulmonary infections with the respiratory pathogen Pseudomonas aeruginosa (PA). An overabundance of mucus in CF airways provides a favorable niche for PA growth. When compared with that of non-CF individuals, mucus of CF airways is enriched in sialyl-Lewis(x), a preferred binding receptor for PA. Notably, the levels of sialyl-Lewis(x) directly correlate with infection severity in CF patients. However, the mechanism by which PA causes increased sialylation remains uncharacterized. In this study, we examined the ability of PA virulence factors to modulate sialyl-Lewis(x) modification in airway mucins. We found pyocyanin (PCN) to be a potent inducer of sialyl-Lewis(x) in both mouse airways and in primary and immortalized CF and non-CF human airway epithelial cells. PCN increased the expression of C2/4GnT and ST3Gal-IV, two of the glycosyltransferases responsible for the stepwise biosynthesis of sialyl-Lewis(x), through a tumor necrosis factor (TNF)-α-mediated phosphoinositol-specific phospholipase C (PI-PLC)-dependent pathway. Furthermore, PA bound more efficiently to airway epithelial cells pre-exposed to PCN in a flagellar cap-dependent manner. Importantly, antibodies against sialyl-Lewis(x) and anti-TNF-α attenuated PA binding. These results indicate that PA secretes PCN to induce a favorable environment for chronic colonization of CF lungs by increasing the glycosylation of airway mucins with sialyl-Lewis(x). PMID:26555707

  10. Effect of JAK Inhibitors on Release of CXCL9, CXCL10 and CXCL11 from Human Airway Epithelial Cells.

    Peter S Fenwick

    Full Text Available CD8+ T-cells are located in the small airways of COPD patients and may contribute to pathophysiology. CD8+ cells express the chemokine receptor, CXCR3 that binds CXCL9, CXCL10 and CXCL11, which are elevated in the airways of COPD patients. These chemokines are released from airway epithelial cells via activation of receptor associated Janus kinases (JAK. This study compared the efficacy of two structurally dissimilar pan-JAK inhibitors, PF956980 and PF1367550, and the glucocorticosteroid dexamethasone, in BEAS-2B and human primary airway epithelial cells from COPD patients and control subjects.Cells were stimulated with either IFNγ alone or with TNFα, and release of CXCL9, CXCL10 and CXCL11 measured by ELISA and expression of CXCL9, CXCL10 and CXCL11 by qPCR. Activation of JAK signalling was assessed by STAT1 phosphorylation and DNA binding.There were no differences in the levels of release of CXCL9, CXCL10 and CXCL11 from primary airway epithelial cells from any of the subjects or following stimulation with either IFNγ alone or with TNFα. Dexamethasone did not inhibit CXCR3 chemokine release from stimulated BEAS-2B or primary airway epithelial cells. However, both JAK inhibitors suppressed this response with PF1367550 being ~50-65-fold more potent than PF956980. The response of cells from COPD patients did not differ from controls with similar responses regardless of whether inhibitors were added prophylactically or concomitant with stimuli. These effects were mediated by JAK inhibition as both compounds suppressed STAT1 phosphorylation and DNA-binding of STAT1 and gene transcription.These data suggest that the novel JAK inhibitor, PF1367550, is more potent than PF956980 and that JAK pathway inhibition in airway epithelium could provide an alternative anti-inflammatory approach for glucocorticosteroid-resistant diseases including COPD.

  11. IL-13 Augments Compressive Stress-Induced Tissue Factor Expression in Human Airway Epithelial Cells.

    Mitchel, Jennifer A; Antoniak, Silvio; Lee, Joo-Hyeon; Kim, Sae-Hoon; McGill, Maureen; Kasahara, David I; Randell, Scott H; Israel, Elliot; Shore, Stephanie A; Mackman, Nigel; Park, Jin-Ah


    Tissue factor (TF) is best known as a cellular initiator of coagulation, but it is also a multifunctional protein that has been implicated in multiple pathophysiologic conditions, including asthma. In the lung, airway epithelial cells express TF, but it is unknown how TF expression is regulated by asthma-associated mediators. We investigated the role of IL-13, a type 2 cytokine, alone and in combination with compressive stress, which mimics asthmatic bronchoconstriction, on TF expression and release of TF-positive extracellular vesicles from primary normal human bronchial epithelial cells. Well-differentiated normal human bronchial epithelial cells were treated with IL-13 and compressive stress, alone and in combination. TF mRNA, protein and activity were measured in the cells and conditioned media. TF was also measured in the bronchoalveolar lavage (BAL) fluid of allergen-challenged mice and patients with asthma. IL-13 and compressive stress increased TF expression, but only compressive stress induced TF-positive extracellular vesicle release. Pretreatment with IL-13 augmented compressive stress-induced TF expression and release. TF protein and activity in BAL fluid were increased in allergen-sensitized and -challenged mice. TF was elevated in the BAL fluid of patients with mild asthma after an allergen challenge. Our in vitro and in vivo data indicate close cooperation between mechanical and inflammatory stimuli on TF expression and release of TF-positive extracellular vesicles in the lungs, which may contribute to pathophysiology of asthma. PMID:26407210

  12. Airway Epithelial Orchestration of Innate Immune Function in Response to Virus Infection. A Focus on Asthma.

    Ritchie, Andrew I; Jackson, David J; Edwards, Michael R; Johnston, Sebastian L


    Asthma is a very common respiratory condition with a worldwide prevalence predicted to increase. There are significant differences in airway epithelial responses in asthma that are of particular interest during exacerbations. Preventing exacerbations is a primary aim when treating asthma because they often necessitate unscheduled healthcare visits and hospitalizations and are a significant cause of morbidity and mortality. The most common cause of asthma exacerbations is a respiratory virus infection, of which the most likely type is rhinovirus infection. This article focuses on the role played by the epithelium in orchestrating the innate immune responses to respiratory virus infection. Recent studies show impaired bronchial epithelial cell innate antiviral immune responses, as well as augmentation of a pro-Th2 response characterized by the epithelial-derived cytokines IL-25 and IL-33, crucial in maintaining the Th2 cytokine response to virus infection in asthma. A better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to highlight current knowledge regarding the role of viruses and immune modulation in the asthmatic epithelium and to discuss exciting areas for future research and novel treatments. PMID:27027954

  13. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors.

    Homma, Tetsuya; Kato, Atsushi; Sakashita, Masafumi; Norton, James E; Suh, Lydia A; Carter, Roderick G; Schleimer, Robert P


    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  14. Non-heme iron availability of usual and improved meals from selected regions in the Philippines

    The availability of non-heme iron in 12 usual and 12 improved meals from four selected regions in the Philippines was determined using in-vitro radiochemical method. Geometric mean values of 5.8 and 6.4% non-heme iron availability were obtained from one-day usual meals and meals improved to correct nutritional deficiencies, respectively. Comparison between usual and improved meals (breakfast, lunch and dinner) for each region showed significant differences in non-heme iron availability for breakfast (Central Luzon, P.05). (author). 26 refs.; 3 tabs

  15. Non Heme System Asymmetric Epoxidation Reaction Made Progress


    Funded by the National Natural Science Foundation of China and the Chinese Academy of Sciences "Hundred Talents Program", the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Oxo Synthesis and Selective Oxidation State Key Laboratory of biological and Biomimetic Catalytic task group has recently developed a new type of non heme enzyme simulation system, the system uses the benz- imidazole instead of four nitrogen ligands pyridine units, natural proline derivatives two amine instead of HMDA skeleton, the manganese complexes in asymmetric epoxidation reaction shown high activity, but in 1/10000 the amount of catalyst under conditions of high selectivity to obtain corresponding product, TON (Turnover numbers) up to 9600, TOF (Turnover frequency) up to 59000 h-1. It is currently reported the highest activity in epoxidation catalyst. Use the H202/AcOH or peracetic acid as oxidant, 180 isotope la- beling experiments, were found different degrees of 180 isotope labeling of epoxy products, won the first direct evidence of response is obtained by the high Mn O intermediates in the process, the work was pub- lished recently in Chem. Eur. J. (Chem. Eur. J. 2012, 18, 6750--6753. ).

  16. Air pollution particles activate NF-κB on contact with airway epithelial cell surfaces

    Air pollution particles (PM) are known to elicit an acute inflammatory response in vivo that is mediated in part through PM-induced activation of the NF-κB signaling pathway. Many of the details of this process and particularly where in the cell it occurs are unclear. To determine whether contact of PM particles with an epithelial cell surface activates NF-κB, rat tracheal explants were exposed to Ottawa Urban Air Particles or iron-loaded fine TiO2, a model PM particle, for up to 2 h. During this period, there was no evidence of particle entry into the tracheal epithelial cells by light or electron microscopy, but both types of particle activated NF-κB as assayed by gel shifts. NF-κB activation could be inhibited by the active oxygen species scavenger, tetramethylthiourea; the redox-inactive metal chelator, deferoxamine; the Src inhibitor, PP2; and the epidermal growth factor (EGF) receptor inhibitor AG1478. An iron-containing citrate extract of both dusts also produced NF-κB activation. Both dusts and a citrate extract caused phosphorylation of the EGF receptor on tyrosine 845, an indicator of Src activity. We conclude that iron-containing PM particles can activate NF-κB via a pathway involving Src and the EGF receptor. This process does not require entry of particles into the airway epithelial cells but is dependent on the presence of iron and generation of active oxygen species by the dusts. These findings imply that even brief contact of PM with a pulmonary epithelial cell surface may produce deleterious effects in vivo

  17. Effects of Cigarette Smoke Extract on E-cadherin Expression in Cultured Airway Epithelial Cells

    WANG Xi; WU Renling; CHEN Fang; HAO Tianling


    To investigate whether the change of E-cadherin (ECD) expression plays a role in the injury and repair of airway epithelial cells (AEC) caused by smoking, porcine AECs were cultured by using an enzyme-dispersed method. After exposure of the AECs to cigarette smoke extract(CSE), the ECD expression in the cells was detected by using immunocytochemistry and in situ hybridization. The results showed that ECD was distributed on the plasma membrane at the cell junctions of AECs. After exposure to 20% CSE, the membranous ECD expression was decreased, the cytoplasmic ECD expression was increased (P<0.01) as the exposure time went on.But the content of ECD mRNA in the AECs did not chang. It suggests that the change of ECD expression is regulated at the posttranslational level and plays a role in the injury and repair of AEC caused by smoking.

  18. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Ming-Wei Chang


    Full Text Available The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM, with coarse particles (2.5–10 μm having higher endotoxin levels than did fine particles (0.5–2.5 μm. After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL-6 release and activated epidermal growth factor receptor (EGFR, transforming growth factor (TGF-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1 gene expression, but not of matrix metallopeptidase (MMP-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  19. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron


    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  20. Ex Vivo and In Vivo Lentivirus-Mediated Transduction of Airway Epithelial Progenitor Cells.

    Leoni, Giulia; Wasowicz, Marguerite Y; Chan, Mario; Meng, Cuixiang; Farley, Raymond; Brody, Steven L; Inoue, Makoto; Hasegawa, Mamoru; Alton, Eric W F W; Griesenbach, Uta


    A key challenge in pulmonary gene therapy for cystic fibrosis is to provide long-term correction of the genetic defect. This may be achievable by targeting airway epithelial stem/progenitor cells with an integrating vector. Here, we evaluated the ability of a lentiviral vector, derived from the simian immunodeficiency virus and pseudotyped with F and HN envelope proteins from Sendai virus, to transduce progenitor basal cells of the mouse nasal airways. We first transduced basal cell-enriched cultures ex vivo and confirmed efficient transduction of cytokeratin-5 positive cells. We next asked whether progenitor cells could be transduced in vivo. We evaluated the transduction efficiency in mice pretreated by intranasal administration of polidocanol to expose the progenitor cell layer. Compared to control mice, polidocanol treated mice demonstrated a significant increase in the number of transduced basal cells at 3 and 14 days post vector administration. At 14 days, the epithelium of treated mice contained clusters (4 to 8 adjacent cells) of well differentiated ciliated, as well as basal cells suggesting a clonal expansion. These results indicate that our lentiviral vector can transduce progenitor basal cells in vivo, although transduction required denudation of the surface epithelium prior to vector administration. PMID:26471068

  1. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Hu Jim


    Full Text Available Abstract Background The cationic lipid Genzyme lipid (GL 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. Methods Anti-lacZ and ENaC (epithelial sodium channel siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. Results In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. Conclusion This study suggests that although siRNAs and asODNs can be developed to inhibit

  2. Airway epithelial cells activate Th2 cytokine production in mast cells via IL-1 and thymic stromal lymphopoietin

    Nagarkar, Deepti R.; Poposki, Julie A.; Comeau, Michael R.; Biyasheva, Assel; Avila, Pedro C.; Schleimer, Robert P.; Kato, Atsushi


    Background Airway epithelial cells are important regulators of innate and adaptive immunity. Although mast cells are known to play a central role in manifestations of allergic inflammation and are found in the epithelium in Th2-related diseases, their role is incompletely understood. Objectives The objective of this study was to investigate the role of airway epithelial cells in production of Th2 cytokines in mast cells. Methods Normal human bronchial epithelial cells (NHBE) were stimulated with TNF, IL-4, IFN-γ, IL -17A and dsRNA alone or in combination. Human mast cells were stimulated with epithelial cell-derived supernatants, or co-cultured with NHBE. Th2 cytokine responses were blocked with neutralizing antibodies. Results Supernatants from IL-4 and dsRNA stimulated NHBE significantly enhanced Th2 cytokine production from mast cells. The combination of IL-4 and dsRNA itself or supernatants from NHBE stimulated with other cytokines did not activate mast cells, suggesting that mast cell responses were induced by epithelial cell factors that were only induced by IL-4 and dsRNA. Epithelial supernatant-dependent Th2 cytokine production in mast cells was suppressed by anti-IL-1 and anti-TSLP, and was enhanced by anti-IL-1Ra. Similar results were observed in co-culture experiments. Finally, we found dsRNA-dependent production of IL-1, TSLP, and IL-1Ra in NHBE was regulated by Th cytokines, and their ratio in NHBE correlated with Th2 cytokine production in mast cells. Conclusions Pathogens producing dsRNA, such as respiratory viral infections, may amplify local Th2 inflammation in asthmatics via the production of TSLP and IL-1 by epithelial cells and subsequent activation of Th2 cytokine production by mast cells in the airways. PMID:22633328

  3. Agonist binding to β-adrenergic receptors on human airway epithelial cells inhibits migration and wound repair.

    Peitzman, Elizabeth R; Zaidman, Nathan A; Maniak, Peter J; O'Grady, Scott M


    Human airway epithelial cells express β-adrenergic receptors (β-ARs), which regulate mucociliary clearance by stimulating transepithelial anion transport and ciliary beat frequency. Previous studies using airway epithelial cells showed that stimulation with isoproterenol increased cell migration and wound repair by a cAMP-dependent mechanism. In the present study, impedance-sensing arrays were used to measure cell migration and epithelial restitution following wounding of confluent normal human bronchial epithelial (NHBE) and Calu-3 cells by electroporation. Stimulation with epinephrine or the β2-AR-selective agonist salbutamol significantly delayed wound closure and reduced the mean surface area of lamellipodia protruding into the wound. Treatment with the β-AR bias agonist carvedilol or isoetharine also produced a delay in epithelial restitution similar in magnitude to epinephrine and salbutamol. Measurements of extracellular signal-regulated kinase phosphorylation following salbutamol or carvedilol stimulation showed no significant change in the level of phosphorylation compared with untreated control cells. However, inhibition of protein phosphatase 2A activity completely blocked the delay in wound closure produced by β-AR agonists. In Calu-3 cells, where CFTR expression was inhibited by RNAi, salbutamol did not inhibit wound repair, suggesting that β-AR agonist stimulation and loss of CFTR function share a common pathway leading to inhibition of epithelial repair. Confocal images of the basal membrane of Calu-3 cells labeled with anti-β1-integrin (clone HUTS-4) antibody showed that treatment with epinephrine or carvedilol reduced the level of activated integrin in the membrane. These findings suggest that treatment with β-AR agonists delays airway epithelial repair by a G protein- and cAMP-independent mechanism involving protein phosphatase 2A and a reduction in β1-integrin activation in the basal membrane. PMID:26491049

  4. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells.

    Christian Schwarzer

    Full Text Available Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11 with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells. PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins and massively (10-80 fold increase, termed "swarming", but transiently (random swimming after 15 mins, to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii PA use pili to bind to epithelial cells near wounds.

  5. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  6. Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells

    Kode, Aruna; Yang, Se-Ran; Rahman, Irfan


    BACKGROUND:Cigarette smoke mediated oxidative stress and inflammatory events in the airway and alveolar epithelium are important processes in the pathogenesis of smoking related pulmonary diseases. Previously, individual cell lines were used to assess the oxidative and proinflammatory effects of cigarette smoke with confounding results. In this study, a panel of human and rodent transformed epithelial cell lines were used to determine the effects of cigarette smoke extract (CSE) on oxidative ...

  7. Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells

    Rahman Irfan; Yang Se-Ran; Kode Aruna


    Abstract Background Cigarette smoke mediated oxidative stress and inflammatory events in the airway and alveolar epithelium are important processes in the pathogenesis of smoking related pulmonary diseases. Previously, individual cell lines were used to assess the oxidative and proinflammatory effects of cigarette smoke with confounding results. In this study, a panel of human and rodent transformed epithelial cell lines were used to determine the effects of cigarette smoke extract (CSE) on o...

  8. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure.

    Tyrrell, Jean; Qian, Xiaozhong; Freire, Jose; Tarran, Robert


    Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Recent studies have shown that cigarette smoke (CS) induces cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, which leads to airway-surface liquid (ASL) dehydration. This in turn contributes to the mucus dehydration and impaired mucociliary clearance that are seen in the chronic bronchitis form of COPD. Roflumilast is a phosphodiesterase 4 inhibitor that may improve lung function and reduce the frequency of exacerbations in patients with COPD. Although roflumilast can affect cAMP metabolism, little is known about the downstream pharmacological effects in the airways. We hypothesized that roflumilast would increase ASL rehydration in human bronchial epithelial cultures (HBECs) after chronic CS exposure. cAMP production was measured by Förster resonance energy transfer in HEK293T cells and by ELISA in HBECs. ASL height was measured by xz-confocal microscopy after air exposure or following HBEC exposure to freshly produced CS. Roflumilast had little effect on cAMP or ASL height when applied on its own; however, roflumilast significantly potentiated adenosine-induced increases in cAMP and ASL height in CS-exposed HBECs. Roflumilast increased the rate of ASL height recovery in cultures after CS exposure compared with controls. In contrast, the β2-adrenergic receptor agonists isoproterenol and salmeterol failed to increase ASL height after CS exposure. Our data suggest that roflumilast can increase ASL hydration in CS-exposed HBECs, which is predicted to be beneficial for the treatment of mucus dehydration/mucus stasis in patients with COPD chronic bronchitis. PMID:25795727

  9. Inhibition of Toll-Like Receptor 2-Mediated Interleukin-8 Production in Cystic Fibrosis Airway Epithelial Cells via the α7-Nicotinic Acetylcholine Receptor

    Shane J. O'Neill; McElvaney, Noel G; Wells, Robert J.; Hugh Ramsay; Greene, Catherine M


    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as ...

  10. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.

  11. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells

    West, Kip A.; Brognard, John; Clark, Amy S.; Linnoila, Ilona R.; Yang, Xiaowei; Swain, Sandra M.; Harris, Curtis; Belinsky, Steven; Dennis, Phillip A.


    Tobacco-related diseases such as lung cancer cause over 4.2 million deaths annually, with approximately 400,000 deaths per year occurring in the US. Genotoxic effects of tobacco components have been described, but effects on signaling pathways in normal cells have not been described. Here, we show activation of the serine/threonine kinase Akt in nonimmortalized human airway epithelial cells in vitro by two components of cigarette smoke, nicotine and the tobacco-specific carcinogen 4-(methylni...

  12. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma.

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A B; Jarjour, Nizar N; Ackerman, Steven J; Natarajan, Viswanathan; Christman, John W; Park, Gye Young


    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  13. Synergistic up-regulation of CXCL10 by virus and IFN γ in human airway epithelial cells.

    Karen L Oslund

    Full Text Available Airway epithelial cells are the first line of defense against viral infections and are instrumental in coordinating the inflammatory response. In this study, we demonstrate the synergistic stimulation of CXCL10 mRNA and protein, a key chemokine responsible for the early immune response to viral infection, following treatment of airway epithelial cells with IFN γ and influenza virus. The synergism also occurred when the cells were treated with IFN γ and a viral replication mimicker (dsRNA both in vitro and in vivo. Despite the requirement of type I interferon (IFNAR signaling in dsRNA-induced CXCL10, the synergism was independent of the IFNAR pathway since it wasn't affected by the addition of a neutralizing IFNAR antibody or the complete lack of IFNAR expression. Furthermore, the same synergistic effect was also observed when a CXCL10 promoter reporter was examined. Although the responsive promoter region contains both ISRE and NFκB sites, western blot analysis indicated that the combined treatment of IFN γ and dsRNA significantly augmented NFκB but not STAT1 activation as compared to the single treatment. Therefore, we conclude that IFN γ and dsRNA act in concert to potentiate CXCL10 expression in airway epithelial cells via an NFκB-dependent but IFNAR-STAT independent pathway and it is at least partly regulated at the transcriptional level.

  14. Dexamethasone protects airway epithelial cell line NCI-H292 against lipopolysaccharide induced endoplasmic reticulum stress and apoptosis

    SHANG Yan; WANG Fang; BAI Chong; HUANG Yi; ZHAO Li-jun; YAO Xiao-peng; LI Qiang; SUN Shu-han


    Background Endoplasmic reticulum (ER) stress and ER stress-mediated apoptosis were reported to be involved in the pathogenesis of several diseases. In a recent study, it was reported that the ER stress pathway was activated in the lungs of lipopolysaccharide (LPS)-treated mice. It was also found that the C/EBP homologous protein (CHOP), an apoptosis-related molecule, played a key role in LPS-induced lung damage. The aim of this study was to verify whether LPS could activate the ER stress response in airway epithelial cells and which molecule was involved in the pathway.This study was also aimed at finding new reagents to protect the airway epithelial cells during LPS injury.Methods ER stress markers were observed in LPS-incubated NCI-H292 cells. SiRNA-MUC5AC was transfected into NCI-H292 cells. The effects of dexamethasone and erythromycin were observed in LPS-induced NCI-H292 cells.Results LPS incubation increased the expression of ER stress markers at the protein and mRNA levels. The knockout of MUC5AC in cells attenuated the increase in ER stress markers after incubation with LPS. Dexamethasone and erythromycin decreased caspase-3 activity in LPS-induced NCI-H292 cells.Conclusions LPS may activate ER stress through the overexpression of MUC5AC. Dexamethasone may protect human airway epithelial cells against ER stress-related apoptosis by attenuating the overload of MUC5AC.

  15. Airway epithelial cell PPARγ modulates cigarette smoke-induced chemokine expression and emphysema susceptibility in mice.

    Solleti, Siva Kumar; Simon, Dawn M; Srisuma, Sorachai; Arikan, Meltem C; Bhattacharya, Soumyaroop; Rangasamy, Tirumalai; Bijli, Kaiser M; Rahman, Arshad; Crossno, Joseph T; Shapiro, Steven D; Mariani, Thomas J


    Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation. PMID:26024894

  16. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  17. Effect of guaifenesin on mucin production, rheology, and mucociliary transport in differentiated human airway epithelial cells.

    Seagrave, JeanClare; Albrecht, Helmut; Park, Yong Sung; Rubin, Bruce; Solomon, Gail; Kim, K Chul


    Guaifenesin is widely used to alleviate symptoms of excessive mucus accumulation in the respiratory tract. However, its mechanism of action is poorly understood. The authors hypothesized that guaifenesin improves mucociliary clearance in humans by reducing mucin release, by decreasing mucus viscoelasticity, and by increasing mucociliary transport. To test these hypotheses, human differentiated airway epithelial cells, cultured at an air-liquid interface, were treated with clinically relevant concentrations of guaifenesin by addition to the basolateral medium. To evaluate the effect on mucin secretion, the authors used an anzyme-linked immunosorbent assay (ELISA) to measure the amounts of MUC5AC protein in apical surface fluid and cell lysates. To measure mucociliary transportability, additional cultures were treated for 1 or 6 hours with guaifenesin, and the movement of cell debris was measured from video data. Further, the authors measured mucus dynamic viscoelasticity using a micro cone and plate rheometer with nondestructive creep transformation. Guaifenesin suppressed mucin production in a dose-dependent manner at clinically relevant concentrations. The reduced mucin production was associated with increased mucociliary transport and decreased viscoelasticity of the mucus. Viability of the cultures was not significantly affected. These results suggest that guaifenesin could improve mucociliary clearance in humans by reducing the release and/or production of mucins, thereby altering mucus rheology. PMID:22044398

  18. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells.

    Poghosyan, Anna; Patel, Jamie K; Clifford, Rachel L; Knox, Alan J


    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. PMID:27240956

  19. TLR-2 is involved in airway epithelial cell response to air pollution particles

    Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of several oxidant stress response genes. Components of ambient air PM responsible for stimulating epithelial cells have not been conclusively identified, although metal contaminants, benzo[a]pyrene and biological matter have been implicated. Stimulation of IL-8 release from NHBE with coarse (PM2.5-10), fine (PM2.5), and UF particle fractions has shown that the coarse particle fraction has the greatest effect on the epithelial cells as well as alveolar macrophages (AM). Since this fraction concentrates fugitive dusts and particle-associated microbial matter, it was hypothesized that NHBE may recognize PM through microbial pattern recognition receptors TLR2 and TLR4, as has been previously shown with AM. NHBE were shown to release IL-8 when exposed to a Gram-positive environmental isolate of Staphylococcus lentus, and lower levels when exposed to Gram-negative Pseudomonas spp. Comparison of TLR2 and TLR4 mRNA expression in NHBE and AM showed that NHBE express similar levels of TLR2 mRNA as the AM, but expressed very low levels of TLR4. When NHBE were stimulated with PM2.5-10, PM2.5, and UF PM, in the presence or absence of inhibitors of TLR2 and TLR4 activation, a blocking antibody to TLR2 inhibited production of IL-8, while TLR4 antagonist E5531 or the LPS inhibitor Polymixin B had no effect. Furthermore, effects on expression of TLR2 and TLR4 mRNA, as well as the stress protein HSP70 was assessed in NHBE exposed to PM. TLR4 expression was increased in these cells while TLR2 mRNA levels were unchanged. Hsp70 was increased by PM2.5-10 > PM2.5 > UF PM suggesting the possibility of indirect activation of TLR pathway by this endogenous TLR2/4 agonist

  20. Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses.

    Darsaniya Punyadarsaniya

    Full Text Available BACKGROUND: Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. METHODOLOGY/PRINCIPAL FINDINGS: To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7 was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. CONCLUSIONS/SIGNIFICANCE: Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones of swine.

  1. Regulation of epithelium-specific Ets-like factors ESE-1 and ESE-3 in airway epithelial cells:potential roles in airway inflammation

    Jing Wu; Martin Post; A Keith Tanswell; Jim Hu; Rongqi Duan; Huibi Cao; Deborah Field; Catherine M Newnham; David R Koehler; Noe Zamel; Melanie A Pritchard; Paul Hertzog


    Airway inflammation is the hallmark of many respiratory disorders,such as asthma and cystic fibrosis.Changes in airway gene expression triggered by inflammation play a key role in the pathogenesis of these diseases.Genetic linkage studies suggest that ESE-2 and ESE-3,which encode epithelium-specific Ets-domain-containing transcription factors,are candidate asthma susceptibility genes.We report here that the expression of another member of the Ets family transcription factors ESE-1,as well as ESE-3,is upregulated by the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-a (TNF-a) in bronchial epithelial cell lines.Treatment of these cells with IL-1β and TNF-a resulted in a dramatic increase in mRNA expression for both ESE-1 and ESE-3.We demonstrate that the induced expression is mediated by activation of the transcription factor NF-kB.We have characterized the ESE-1 and ESE-3 promoters and have identified the NF-kB binding sequences that are required for the cytokine-induced expression.In addition,we also demonstrate that ESE-1 upregulates ESE-3 expression and downregulates its own induction by cytokines.Finally,we have shown that in Elf3 (homologous to human ESE-1) knockout mice,the expression of the inflammatory cytokine interleukin-6 (IL-6) is downregulated.Our findings suggest that ESE-1 and ESE-3 play an important role in airway inflammation.

  2. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  3. Mucin glycosylation and sulphation in airway epithelial cells is not influenced by cystic fibrosis transmembrane conductance regulator expression.

    Leir, Shih-Hsing; Parry, Simon; Palmai-Pallag, Timea; Evans, Joanne; Morris, Howard R; Dell, Anne; Harris, Ann


    Abnormalities in mucus properties and clearance make a major contribution to the pathology of cystic fibrosis (CF). Our aim was to test the hypothesis that the defects in CF mucus are a direct result of mutations in the CF transmembrane conductance regulator (CFTR) protein. We evaluated a single mucin molecule MUC1F/5ACTR that carries tandem repeat sequence from MUC5AC, a major secreted airway mucin, in a MUC1 mucin vector. To establish whether the presence of mutant or normal CFTR directly influences the O-glycosylation and sulphation of mucins in airway epithelial cells, we used the CFT1-LC3 (DeltaF508 CFTR mutant) and CFT1-LCFSN (wild-type CFTR corrected) human airway epithelial cell lines. MUC1F/5ACTR mucin was immunoprecipitated, centricon purified, and O-glycosylation was evaluated by Matrix-assisted laser desorption ionization and electrospray tandem mass spectrometry to determine the composition of different carbohydrate structures. Mass spectrometry data showed the same O-glycans in both CFTR mutant and wild-type CFTR corrected cells. Metabolic labeling assays were performed to evaluate gross glycosylation and sulphation of the mucins and showed no significant difference in mucin synthesized in six independent clones of these cell lines. Our results show that the absence of functional CFTR protein causes neither an abnormality in mucin O-glycosylation nor an increase in mucin sulphation. PMID:15677769

  4. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology

    McKiernan PJ


    Full Text Available Paul J McKiernan,2 Orla Cunninghamm,1,2 Catherine M Greenem,2 Sally-Ann Cryan1,31School of Pharmacy, Royal College of Surgeons in Ireland, 2Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, 3Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, IrelandAbstract: Cystic fibrosis (CF is an inherited disorder characterized by chronic airway inflammation. microRNAs (miRNAs are endogenous small RNAs which act on messenger (mRNA at a post transcriptional level, and there is a growing understanding that altered expression of miRNA is involved in the CF phenotype. Modulation of miRNA by replacement using miRNA mimics (premiRs presents a new therapeutic paradigm for CF, but effective and safe methods of delivery to the CF epithelium are limiting clinical translation. Herein, polymeric nanoparticles are investigated for delivery of miRNA mimics into CF airway epithelial cells, using miR-126 as a proof-of-concept premiR cargo to determine efficiency. Two polymers, polyethyleneimine (PEI and chitosan, were used to prepare miRNA nanomedicines, characterized for their size, surface (zeta potential, and RNA complexation efficiency, and screened for delivery and cytotoxicity in CFBE41o- (human F508del cystic fibrosis transmembrane conductance regulator bronchial epithelial cells using a novel high content analysis method. RNA extraction was carried out 24 hours post transfection, and miR-126 and TOM1 (target of Myb1 expression (a validated miR-126 target was assessed. Manufacture was optimized to produce small nanoparticles that effectively complexed miRNA. Using high content analysis, PEI-based nanoparticles were more effective than chitosan-based nanoparticles in facilitating uptake of miRNA into CFBE41o- cells and this was confirmed in miR-126 assays. PEI-premiR-126 nanoparticles at low nitrogen/phosphate (N/P ratios resulted in significant knockdown of

  5. Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells

    Rahman Irfan


    Full Text Available Abstract Background Cigarette smoke mediated oxidative stress and inflammatory events in the airway and alveolar epithelium are important processes in the pathogenesis of smoking related pulmonary diseases. Previously, individual cell lines were used to assess the oxidative and proinflammatory effects of cigarette smoke with confounding results. In this study, a panel of human and rodent transformed epithelial cell lines were used to determine the effects of cigarette smoke extract (CSE on oxidative stress markers, cell toxicity and proinflammatory cytokine release and compared the effects with that of primary human small airway epithelial cells (SAEC. Methods Primary human SAEC, transformed human (A549, H1299, H441, and rodent (murine MLE-15, rat L2 alveolar epithelial cells were treated with different concentrations of CSE (0.2–10% ranging from 20 min to 24 hr. Cytotoxicity was assessed by lactate dehydrogenase release assay, trypan blue exclusion method and double staining with acridine orange and ethidium bromide. Glutathione concentration was measured by enzymatic recycling assay and 4-hydroxy-2-nonenal levels by using lipid peroxidation assay kit. The levels of proinflammatory cytokines (e.g. IL-8 and IL-6 were measured by ELISA. Nuclear translocation of the transcription factor, NF-κB was assessed by immunocytochemistry and immunoblotting. Results Cigarette smoke extract dose-dependently depleted glutathione concentration, increased 4-hydroxy-2-nonenal (4-HNE levels, and caused necrosis in the transformed cell lines as well as in SAEC. None of the transformed cell lines showed any significant release of cytokines in response to CSE. CSE, however, induced IL-8 and IL-6 release in primary cell lines in a dose-dependent manner, which was associated with the nuclear translocation of NF-κB in SAEC. Conclusion This study suggests that primary, but not transformed, lung epithelial cells are an appropriate model to study the inflammatory

  6. Nickel Mobilizes Intracellular Zinc to Induce Metallothionein in Human Airway Epithelial Cells

    Nemec, Antonia A.; Leikauf, George D.; Pitt, Bruce R.; Wasserloos, Karla J.; Barchowsky, Aaron


    We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release. PMID:19097988

  7. Primary airway epithelial cell culture and asthma in children-lessons learnt and yet to come.

    McLellan, Kirsty; Shields, Mike; Power, Ultan; Turner, Steve


    Until recently the airway epithelial cell (AEC) was considered a simple barrier that prevented entry of inhaled matter into the lung parenchyma. The AEC is now recognized as having an important role in the inflammatory response of the respiratory system to inhaled exposures, and abnormalities of these responses are thought to be important to asthma pathogenesis. This review first explores how the challenges of studying nasal and bronchial AECs in children have been addressed and then summarizes the results of studies of primary AEC function in children with and without asthma. There is good evidence that nasal AECs may be a suitable surrogate for the study of certain aspects of bronchial AEC function, although bronchial AECs remain the gold standard for asthma research. There are consistent differences between children with and without asthma for nasal and bronchial AEC mediator release following exposure to a range of pro-inflammatory stimulants including interleukins (IL)-1β, IL-4, and IL-13. However, there are inconsistencies between studies, e.g., release of IL-6, an important pro-inflammatory cytokine, is not increased in children with asthma relative to controls in all studies. Future work should expand current understanding of the "upstream" signalling pathways in AEC, study AEC from children before the onset of asthma symptoms and in vitro models should be developed that replicate the in vivo status more completely, e.g., co-culture with dendritic cells. AECs are difficult to obtain from children and collaboration between centers is expected to yield meaningful advances in asthma understanding and ultimately help deliver novel therapies. PMID:26178976

  8. 21 CFR 862.1410 - Iron (non-heme) test system.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Iron (non-heme) test system. 862.1410 Section 862.1410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  9. Non-heme iron catalysts for the benzylic oxidation : a parallel ligand screening approach

    Klopstra, M; Hage, R; Kellogg, R.M.; Feringa, B.L.


    Ethylbenzene and 4-ethylanisole were used as model substrates for benzylic oxidation with H2O2 or O-2 using a range of non-heme iron catalysts following a parallel ligand screening approach. Effective oxidation was found for Fe complexes based on tetra- and pentadentate nitrogen ligands affording th

  10. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression.

    Oglesby, Irene K


    Cystic fibrosis (CF) is one of the most common lethal genetic diseases in which the role of microRNAs has yet to be explored. Predicted to be regulated by miR-126, TOM1 (target of Myb1) has been shown to interact with Toll-interacting protein, forming a complex to regulate endosomal trafficking of ubiquitinated proteins. TOM1 has also been proposed as a negative regulator of IL-1beta and TNF-alpha-induced signaling pathways. MiR-126 is highly expressed in the lung, and we now show for the first time differential expression of miR-126 in CF versus non-CF airway epithelial cells both in vitro and in vivo. MiR-126 downregulation in CF bronchial epithelial cells correlated with a significant upregulation of TOM1 mRNA, both in vitro and in vivo when compared with their non-CF counterparts. Introduction of synthetic pre-miR-126 inhibited luciferase activity in a reporter system containing the full length 3\\'-untranslated region of TOM1 and resulted in decreased TOM1 protein production in CF bronchial epithelial cells. Following stimulation with LPS or IL-1beta, overexpression of TOM1 was found to downregulate NF-kappaB luciferase activity. Conversely, TOM1 knockdown resulted in a significant increase in NF-kappaB regulated IL-8 secretion. These data show that miR-126 is differentially regulated in CF versus non-CF airway epithelial cells and that TOM1 is a miR-126 target that may have an important role in regulating innate immune responses in the CF lung. To our knowledge, this study is the first to report of a role for TOM1 in the TLR2\\/4 signaling pathways and the first to describe microRNA involvement in CF.

  11. A novel electrospun biphasic scaffold provides optimal three-dimensional topography for in vitro co-culture of airway epithelial and fibroblast cells

    Conventional airway in vitro models focus upon the function of individual structural cells cultured in a two-dimensional monolayer, with limited three-dimensional (3D) models of the bronchial mucosa. Electrospinning offers an attractive method to produce defined, porous 3D matrices for cell culture. To investigate the effects of fibre diameter on airway epithelial and fibroblast cell growth and functionality, we manipulated the concentration and deposition rate of the non-degradable polymer polyethylene terephthalate to create fibres with diameters ranging from nanometre to micrometre. The nanofibre scaffold closely resembles the basement membrane of the bronchiole mucosal layer, and epithelial cells cultured at the air–liquid interface on this scaffold showed polarized differentiation. The microfibre scaffold mimics the porous sub-mucosal layer of the airway into which lung fibroblast cells showed good penetration. Using these defined electrospinning parameters we created a biphasic scaffold with 3D topography tailored for optimal growth of both cell types. Epithelial and fibroblast cells were co-cultured onto the apical nanofibre phase and the basal microfibre phase respectively, with enhanced epithelial barrier formation observed upon co-culture. This biphasic scaffold provides a novel 3D in vitro platform optimized to mimic the different microenvironments the cells encounter in vivo on which to investigate key airway structural cell interactions in airway diseases such as asthma. (paper)

  12. The Effects of Gas Humidification with High-Flow Nasal Cannula on Cultured Human Airway Epithelial Cells

    Aaron Chidekel


    Full Text Available Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH 90% (HFNC for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n=6/condition. Transepithelial resistance and cell viability decreased over time (P<0.001 between HFNC and dry groups (P<0.001. Total protein secretion increased at 8 hours in the dry group (P<0.001. Secretion of interleukin (IL-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P<0.001. Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  13. Human leukocyte antigen-G expression in differentiated human airway epithelial cells: lack of modulation by Th2-associated cytokines

    White Steven R


    Full Text Available Abstract Background Human leukocyte antigen (HLA-G is a nonclassical class I antigen with immunomodulatory roles including up-regulation of suppressor T regulatory lymphocytes. HLA-G was recently identified as an asthma susceptibility gene, and expression of a soluble isoform, HLA-G5, has been demonstrated in human airway epithelium. Increased presence of HLA-G5 has been demonstrated in bronchoalveolar lavage fluid recovered from patients with mild asthma; this suggests a role for this isoform in modulating airway inflammation though the mechanisms by which this occurs is unclear. Airway inflammation associated with Th2 cytokines such as IL-4 and IL-13 is a principal feature of asthma, but whether these cytokines elicit expression of HLA-G is not known. Methods We examined gene and protein expression of both soluble (G5 and membrane-bound (G1 HLA-G isoforms in primary differentiated human airway epithelial cells collected from normal lungs and grown in air-liquid interface culture. Cells were treated with up to 10 ng/ml of either IL-4, IL-5, or IL-13, or 100 ng/ml of the immunomodulatory cytokine IL-10, or 10,000 U/ml of the Th1-associated cytokine interferon-beta, for 24 hr, after which RNA was isolated for evaluation by quantitative PCR and protein was collected for Western blot analysis. Results HLA-G5 but not G1 was present in dAEC as demonstrated by quantitative PCR, western blot and confocal microscopy. Neither G5 nor G1 expression was increased by the Th2-associated cytokines IL-4, IL-5 or IL-13 over 24 hr, nor after treatment with IL-10, but was increased 4.5 ± 1.4 fold after treatment with 10,000 U/ml interferon-beta. Conclusions These data demonstrate the constitutive expression of a T lymphocyte regulatory molecule in differentiated human airway epithelial cells that is not modulated by Th2-associated cytokines.

  14. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R.


    Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we ...

  15. S-nitrosothiols regulate cell-surface pH buffering by airway epithelial cells during the human immune response to rhinovirus.

    Carraro, Silvia; Doherty, Joseph; Zaman, Khalequz; Gainov, Iain; Turner, Ronald; Vaughan, John; Hunt, John F; Márquez, Javier; Gaston, Benjamin


    Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation. PMID:16603595

  16. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others


    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  17. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Westre, T.E.


    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s{yields}3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  18. Mechanistic Investigation of a Non-Heme Iron Enzyme Catalyzed Epoxidation in (-)-4'-Methoxycyclopenin Biosynthesis.

    Chang, Wei-Chen; Li, Jikun; Lee, Justin L; Cronican, Andrea A; Guo, Yisong


    Mechanisms have been proposed for α-KG-dependent non-heme iron enzyme catalyzed oxygen atom insertion into an olefinic moiety in various natural products, but they have not been examined in detail. Using a combination of methods including transient kinetics, Mössbauer spectroscopy, and mass spectrometry, we demonstrate that AsqJ-catalyzed (-)-4'-methoxycyclopenin formation uses a high-spin Fe(IV)-oxo intermediate to carry out epoxidation. Furthermore, product analysis on (16)O/(18)O isotope incorporation from the reactions using the native substrate, 4'-methoxydehydrocyclopeptin, and a mechanistic probe, dehydrocyclopeptin, reveals evidence supporting oxo↔hydroxo tautomerism of the Fe(IV)-oxo species in the non-heme iron enzyme catalysis. PMID:27442345

  19. Effect of different drinks on the absorption of non-heme iron from composite meals.

    Hallberg, L; Rossander, L


    A study was made on the effect of various drinks on the absorption on non-heme iron. The drinks were taken with standard meals composed of a hamburger, string beans and mashed potatoes. In each series identical meals were served to the same subject either with water or with the drink under study, labelling the meals with two different radio-iron isotopes. A reduction in iron absorption was seen when serving tea (62 per cent) or coffee (35 per cent) with the meals. Orange juice increased the iron absorption (85 per cent). Pure alcohol and wine increased only slightly the percentage absorbed. Wine often has a high iron content, which increased significantly the amount of iron absorbed (three times). Milk and beer have no significant effect. Coca-Cola increased only slightly the absorption. The present studies clearly shows that the choice of drink drunk with a meal can markedly affect the absorption of non-heme iron. PMID:6896705


    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. BrombergCenter fo...

  1. The surface charge of liposomal adjuvants is decisive for their interactions with the Calu-3 and A549 airway epithelial cell culture models

    Ingvarsson, Pall Thor; Rasmussen, Ida Svahn; Viaene, Michelle; Irlik, Przemyslaw Jedrzej; Nielsen, Hanne Mørck; Foged, Camilla


    potential for mucosal vaccination via the airways. The purpose of this study was to investigate the importance of the liposomal surface charge on the interaction with lung epithelial cells. Thus, the cationic DDA in the liposomes was subjected to a step-wise replacement with the zwitterionic...

  2. Arsenic alters ATP-dependent Ca²+ signaling in human airway epithelial cell wound response.

    Sherwood, Cara L; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott


    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca²+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  3. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Sandifer Tracy


    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  4. Inflammatory infiltration of the upper airway epithelium during Sendai virus infection: involvement of epithelial dendritic cells.

    McWilliam, A S; Marsh, A.M.; Holt, P G


    We undertook the present study to determine the nature of the cellular inflammatory response within the epithelial lining of the rat trachea during a Sendai virus infection. In particular, we aimed to investigate changes in the resident population of epithelial dendritic cells. Rats were infected with Sendai virus, and tracheal tissue was examined immunohistochemically at various times with a panel of cell-specific monoclonal antibodies. We found that Sendai virus infection was restricted to ...

  5. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  6. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells

    Yadav, Umesh CS; Ramana, KV; Srivastava, SK


    Aldose reductase (AR), a glucose metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30μM) than glucose. Acrolein, a major endogenous lipid peroxidation product as well as component of environmental pollutant and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders but the mechanism of acrolein-induced cytotoxicity is not clea...

  7. Characterising the mechanism of airway smooth muscle β2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells.

    David Van Ly

    Full Text Available Rhinovirus (RV infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC. RV infection of primary human bronchial epithelial cells (HBEC for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF2α and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor

  8. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs.

    Suzuki, Shingo; Sargent, R Geoffrey; Illek, Beate; Fischer, Horst; Esmaeili-Shandiz, Alaleh; Yezzi, Michael J; Lee, Albert; Yang, Yanu; Kim, Soya; Renz, Peter; Qi, Zhongxia; Yu, Jingwei; Muench, Marcus O; Beyer, Ashley I; Guimarães, Alessander O; Ye, Lin; Chang, Judy; Fine, Eli J; Cradick, Thomas J; Bao, Gang; Rahdar, Meghdad; Porteus, Matthew H; Shuto, Tsuyoshi; Kai, Hirofumi; Kan, Yuet W; Gruenert, Dieter C


    Cystic fibrosis (CF) is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs) have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs) and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ~100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt) airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways. PMID:26730810

  9. Protein effects in non-heme iron enzyme catalysis: insights from multiscale models.

    Proos Vedin, Nathalie; Lundberg, Marcus


    Many non-heme iron enzymes have similar sets of ligands but still catalyze widely different reactions. A key question is, therefore, the role of the protein in controlling reactivity and selectivity. Examples from multiscale simulations, primarily QM/MM, of both mono- and binuclear non-heme iron enzymes are used to analyze the stability of these models and what they reveal about the protein effects. Consistent results from QM/MM modeling are the importance of the hydrogen bond network to control reactivity and electrostatic stabilization of electron transfer from second-sphere residues. The long-range electrostatic effects on reaction barriers are small for many systems. In the systems where large electrostatic effects have been reported, these lead to higher barriers. There is thus no evidence of any significant long-range electrostatic effects contributing to the catalytic efficiency of non-heme iron enzymes. However, the correct evaluation of electrostatic contributions is challenging, and the correlation between calculated residue contributions and the effects of mutation experiments is not very strong. The largest benefits of QM/MM models are thus the improved active-site geometries, rather than the calculation of accurate energies. Reported differences in mechanistic predictions between QM and QM/MM models can be explained by differences in hydrogen bonding patterns in and around the active site. Correctly constructed cluster models can give results with similar accuracy as those from multiscale models, but the latter reduces the risk of drawing the wrong mechanistic conclusions based on incorrect geometries and are preferable for all types of modeling, even when using very large QM parts. PMID:27364958

  10. 1α,25-dihydroxyvitamin D₃ counteracts the effects of cigarette smoke in airway epithelial cells.

    Zhang, Ruhui; Zhao, Haijin; Dong, Hangming; Zou, Fei; Cai, Shaoxi


    Cigarette smoke extracts (CSE) alter calpain-1 expression via ERK signaling pathway in bronchial epithelial cells. 1α,25-dihydroxyvitamin D3 (1,25D3) inhibits cigarette smoke-induced epithelial barrier disruption. This study was aimed to explore whether the 1,25D3 counteracted the CSE effects in a human bronchial epithelial cell line (16HBE). In particular, transepithelial electrical resistance (TER) and permeability, expression and distribution of E-cadherin and β-catenin, calpain-1 expression, and ERK phosphorylation were assessed in the CSE-stimulated 16HBE cells. The CSE induced the ERK phosphorylation, improved the calpain-1 expression, increased the distribution anomalies and the cleaving of E-cadherin and β-catenin, and resulted in the TER reduction and the permeability increase. The 1,25D3 reduced these pathological changes. The 1,25D3 mediated effects were associated with a reduced ERK phosphorylation. In conclusion, the present study provides compelling evidences that the 1,25D3 may be considered a possible valid therapeutic option in controlling the cigarette smoke-induced epithelial barrier disruption. PMID:25880105

  11. Efficient intratracheal delivery of airway epithelial cells in mice and pigs.

    Gui, Liqiong; Qian, Hong; Rocco, Kevin A; Grecu, Loreta; Niklason, Laura E


    Cellular therapy via direct intratracheal delivery has gained interest as a novel therapeutic strategy for treating various pulmonary diseases including cystic fibrosis lung disease. However, concerns such as insufficient cell engraftment in lungs and lack of large animal model data remain to be resolved. This study aimed to establish a simple method for evaluating cell retention in lungs and to develop reproducible approaches for efficient cell delivery into mouse and pig lungs. Human lung epithelial cells including normal human bronchial/tracheal epithelial (NHBE) cells and human lung epithelial cell line A549 were infected with pSicoR-green fluorescent protein (GFP) lentivirus. GFP-labeled NHBE cells were delivered via a modified intratracheal cell instillation method into the lungs of C57BL/6J mice. Two days following cell delivery, GFP ELISA-based assay revealed a substantial cell-retention efficiency (10.48 ± 2.86%, n = 7) in mouse lungs preinjured with 2% polidocanol. When GFP-labeled A549 cells were transplanted into Yorkshire pig lungs with a tracheal intubation fiberscope, a robust initial cell attachment (22.32% efficiency) was observed at 24 h. In addition, a lentiviral vector was developed to induce the overexpression and apical localization of cystic fibrosis transmembrane conductance regulator (CFTR)-GFP fusion proteins in NHBE cells as a means of ex vivo CFTR gene transfer in nonprogenitor (relatively differentiated) lung epithelial cells. These results have demonstrated the convenience and efficiency of direct delivery of exogenous epithelial cells to lungs in mouse and pig models and provided important background for future preclinical evaluation of intratracheal cell transplantation to treat lung diseases. PMID:25416381

  12. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models

    Li, Encheng; Xu, Zhiyun; Zhao, Hui; Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; GAO, ZHANCHENG; Wang, Qi


    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation...

  13. Structures of the multicomponent Rieske non-heme iron toluene 2, 3-dioxygenase enzyme system

    The crystal structures of the three-component toluene 2, 3-dioxygenase system provide a model for electron transfer among bacterial Rieske non-heme iron dioxygenases. Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2, 3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe–2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe–2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed

  14. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    Greene, Catherine M


    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  15. The phosphorylation of endogenous Nedd4-2 In Na+—absorbing human airway epithelial cells

    Ismail, Noor A.S.; Baines, Deborah L.; Wilson, Stuart M.


    Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na+ channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser221, -Ser327 and -Thr246. This Nedd4-2 inactivation process is thought to be central to the hormonal control of Na+ absorption. The present study of H441 human airway epithelial cells therefore explores the effects of SGK1 and / or PKA upon the phosphorylation / abundance of endogenous Nedd4-2; the surface expression of ENaC subunits, and electrogenic Na+ transport. Effects on Nedd4-2 phosphorylation/abundance and the surface expression of ENaC were monitored by western analysis, whilst Na+ absorption was quantified electrometrically. Acutely (20 min) activating PKA in glucocorticoid-deprived (24 h) cells increased the abundance of Ser221-phosphorylated, Ser327-phosphorylated and total Nedd4-2 without altering the abundance of Thr246-phosphorylated Nedd4-2. Activating PKA under these conditions did not cause a co-ordinated increase in the surface abundance of α-, β- and γ-ENaC and had only a very small effect upon electrogenic Na+ absorption. Activating PKA (20 min) in glucocorticoid-treated (0.2 µM dexamethasone, 24 h) cells, on the other hand, increased the abundance of Ser221-, Ser327- and Thr246-phosphorylated and total Nedd4-2; increased the surface abundance of α-, β- and γ-ENaC and evoked a clear stimulation of Na+ transport. Chronic glucocorticoid stimulation therefore appears to allow cAMP-dependent control of Na+ absorption by facilitating the effects of PKA upon the Nedd4-2 and ENaC subunits. PMID:24657276

  16. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells.

    Bruce A Stanton

    Full Text Available P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF. Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770.F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR.The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.

  17. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells.

    Emily F A van 't Wout


    Full Text Available Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA. Efficient functioning of the endoplasmic reticulum (ER is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to "ER stress" and activation of the "unfolded protein response" (UPR. Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host.

  18. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells.

    van 't Wout, Emily F A; van Schadewijk, Annemarie; van Boxtel, Ria; Dalton, Lucy E; Clarke, Hanna J; Tommassen, Jan; Marciniak, Stefan J; Hiemstra, Pieter S


    Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to "ER stress" and activation of the "unfolded protein response" (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host. PMID:26083346

  19. Peroxo-Type Intermediates in Class I Ribonucleotide Reductase and Related Binuclear Non-Heme Iron Enzymes

    Kepp, Kasper Planeta; Bell, Caleb B.; Clay, MIchael D.;


    We have performed a systematic study of chemically possible peroxo-type intermediates occurring in the non-heme di-iron enzyme class la ribonucleotide reductase, using spectroscopically calibrated computational chemistry. Density functional computations of equilibrium structures, Fe-O and O...... carboxylate conformations occurring during the O-2 reaction of this class of non-heme iron enzymes. Our procedure identifies and characterizes various possible candidates for peroxo intermediates experimentally observed along the ribonucleotide reductase dioxygen activation reaction. The study explores how...... a proton to a terminal carboxylate. ligand in the site which increases the electron affinity and triggers electron transfer to form X. Both pathways provide a mechanism for the activation of peroxy intermediates in binuclear non-heme iron enzymes for reactivity. The studies further show that water...

  20. Fluid absorption related to ion transport in human airway epithelial spheroids

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L;


    difference and changes in potential difference in response to passage of current pulses were recorded, and epithelial resistance and the equivalent short-circuit current were calculated. Non-CF control potential difference and short-circuit current values were significantly lower than the CF values, and...... amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level in...

  1. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N


    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size. PMID:25045158

  2. Vanilloid receptor activation by 2- and 10-μm particles induces responses leading to apoptosis in human airway epithelial cells

    Exposure to airborne particulate matter (PM) is associated with increased mortality and morbidity. It has been previously shown that PMs and synthetic particles (PC10 and PC2) that have similar characteristics to PMs induced depolarizing currents and increases in intracellular calcium ([Ca2+]i) in capsaicin- and acid-sensitive sensory neurons and in TRPV1-expressing HEK 293 cells. To determine whether such mechanisms also underlie PM-induced toxicity in epithelial cells lining the human airways, we tested the responses of PCs on BEAS-2B (immortalized human bronchial epithelial cells), NHBE (normal human bronchial/tracheal epithelial cells), and SAEC (normal human small airway epithelial cells from the distal airways). RT-PCR revealed that all these cell types expressed TRPV1 (VR1), ASIC1a, and ASIC3 subunits of proton-gated ion channels. Calcium imaging studies revealed that in all three cell types ∼30% were activated by both capsaicin and acid. In these cells, PCs induced an increase in [Ca2+]i that was inhibited by capsazepine, a TRPV1 antagonist, and/or by amiloride, an ASIC antagonist. The capsazepine-sensitive contribution to PC-induced increases in [Ca2+]i was ∼70%. Measurements of apoptosis revealed that exposure to PCs induced a time-dependent increase in the number of apoptotic cells. After incubation for 24 (PC10) or 48 h (PC2) ∼60% of these cells were apoptotic. Pretreatment with capsazepine as well as removal of external calcium completely (∼100%) prevented PC-induced apoptosis. These data suggest that pharmacological inhibition of calcium-permeable vanilloid receptors could be used to prevent some of the pathological actions of PMs

  3. 3-Ketosteroid 9 alpha-hydroxylase enzymes : Rieske non-heme monooxygenases essential for bacterial steroid degradation

    Petrusma, Mirjan; van der Geize, Robert; Dijkhuizen, Lubbert


    Various micro-organisms are able to use sterols/steroids as carbon- and energy sources for growth. 3-Ketosteroid 9 alpha-hydroxylase (KSH), a two component Rieske non-heme monooxygenase comprised of the oxygenase KshA and the reductase KshB, is a key-enzyme in bacterial steroid degradation. It initi

  4. Roflumilast N-oxide prevents cytokine secretion induced by cigarette smoke combined with LPS through JAK/STAT and ERK1/2 inhibition in airway epithelial cells.

    Tatiana Victoni

    Full Text Available Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD. Airway epithelial cells and macrophages are the first defense cells against cigarette smoke and these cells are an important source of pro-inflammatory cytokines. These cytokines play a role in progressive airflow limitation and chronic airways inflammation. Furthermore, the chronic colonization of airways by Gram-negative bacteria, contributes to the persistent airways inflammation and progression of COPD. The current study addressed the effects of cigarette smoke along with lipolysaccharide (LPS in airway epithelial cells as a representative in vitro model of COPD exacerbations. Furthermore, we evaluated the effects of PDE4 inhibitor, the roflumilast N-oxide (RNO, in this experimental model. A549 cells were stimulated with cigarette smoke extract (CSE alone (0.4% to 10% or in combination with a low concentration of LPS (0.1 µg/ml for 2 h or 24 h for measurement of chemokine protein and mRNAs and 5-120 min for protein phosphorylation. Cells were also pre-incubated with MAP kinases inhibitors and Prostaglandin E2 alone or combined with RNO, before the addition of CSE+LPS. Production of cytokines was determined by ELISA and protein phosphorylation by western blotting and phospho-kinase array. CSE did not induce production of IL-8/CXCL8 and Gro-α/CXCL1 from A549 cells, but increase production of CCL2/MCP-1. However the combination of LPS 0.1 µg/ml with CSE 2% or 4% induced an important production of these chemokines, that appears to be dependent of ERK1/2 and JAK/STAT pathways but did not require JNK and p38 pathways. Moreover, RNO associated with PGE2 reduced CSE+LPS-induced cytokine release, which can happen by occur through of ERK1/2 and JAK/STAT pathways. We report here an in vitro model that can reflect what happen in airway epithelial cells in COPD exacerbation. We also showed a new pathway where CSE+LPS can induce cytokine release from A549 cells, which is

  5. Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells

    Phillip A. Wages


    Full Text Available Human exposure to particulate matter (PM is a global environmental health concern. Zinc (Zn2+ is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn2+ toxicity is not fully understood. H2O2 and Zn2+ have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn2+ to cause cellular H2O2 production. To determine the role of Zn2+-induced H2O2 production in the human airway epithelial cell response to Zn2+ exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2 or roGFP2 (EGSH in the cytosol or mitochondria were exposed to 50 µM Zn2+ for 5 min in the presence of 1 µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn2+ exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn2+-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn2+-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn2+ leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms.

  6. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model

    Musso Claudia


    Full Text Available Abstract Background Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. Results Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 μm and nano-sized (0.078 μm polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 μm and titanium dioxide (0.02–0.03 μm nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials to induce a cellular response was determined by measurements of the tumour necrosis factor-α in the supernatants. We measured a 2–3 fold increase of tumour necrosis factor-α in the supernatants after applying 1 μm polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. Conclusion Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular

  7. Apical Localization of Zinc Transporter ZnT4 in Human Airway Epithelial Cells and Its Loss in a Murine Model of Allergic Airway Inflammation

    Chiara Murgia


    Full Text Available The apical cytoplasm of airway epithelium (AE contains abundant labile zinc (Zn ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

  8. Amniotic Mesenchymal Stem Cells: A New Source for Hepatocyte-Like Cells and Induction of CFTR Expression by Coculture with Cystic Fibrosis Airway Epithelial Cells

    Valentina Paracchini


    Full Text Available Cystic fibrosis (CF is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR gene, with lung and liver manifestations. Because of pitfalls of gene therapy, novel approaches for reconstitution of the airway epithelium and CFTR expression should be explored. In the present study, human amniotic mesenchymal stem cells (hAMSCs were isolated from term placentas and characterized for expression of phenotypic and pluripotency markers, and for differentiation potential towards mesoderm (osteogenic and adipogenic lineages. Moreover, hAMSCs were induced to differentiate into hepatocyte-like cells, as demonstrated by mixed function oxidase activity and expression of albumin, alpha1-antitrypsin, and CK19. We also investigated the CFTR expression in hAMSCs upon isolation and in coculture with CF airway epithelial cells. Freshly isolated hAMSCs displayed low levels of CFTR mRNA, which even decreased with culture passages. Following staining with the vital dye CM-DiI, hAMSCs were mixed with CFBE41o- respiratory epithelial cells and seeded onto permeable filters. Flow cytometry demonstrated that 33–50% of hAMSCs acquired a detectable CFTR expression on the apical membrane, a result confirmed by confocal microscopy. Our data show that amniotic MSCs have the potential to differentiate into epithelial cells of organs relevant in CF pathogenesis and may contribute to partial correction of the CF phenotype.

  9. Pore-forming virulence factors of Staphylococcus aureus destabilize epithelial barriers-effects of alpha-toxin in the early phases of airway infection

    Jan-Peter Hildebrandt


    Full Text Available Staphylococcus aureus (S. aureus is a human commensal and an opportunistic pathogen that may affect the gastrointestinal tract, the heart, bones, skin or the respiratory tract. S. aureus is frequently involved in hospital- or community-acquired lung infections. The pathogenic potential is associated with its ability to secrete highly effective virulence factors. Among these, the pore-forming toxins Panton-Valentine leukocidin (PVL and hemolysin A (Hla are the important virulence factors determining the prognosis of pneumonia cases. This review focuses on the structure and the functions of S. aureus hemolysin A and its sub-lethal effects on airway epithelial cells. The hypothesis is developed that Hla may not just be a tissue-destructive agent providing the bacteria with host-derived nutrients, but may also play complex roles in the very early stages of interactions of bacteria with healthy airways, possibly paving the way for establishing acute infections.

  10. Role of Aspergillus fumigatus in Triggering Protease-Activated Receptor-2 in Airway Epithelial Cells and Skewing the Cells toward a T-helper 2 Bias.

    Homma, Tetsuya; Kato, Atsushi; Bhushan, Bharat; Norton, James E; Suh, Lydia A; Carter, Roderick G; Gupta, Dave S; Schleimer, Robert P


    Aspergillus fumigatus (AF) infection and sensitization are common and promote Th2 disease in individuals with asthma. Innate immune responses of bronchial epithelial cells are now known to play a key role in determination of T cell responses upon encounter with inhaled pathogens. We have recently shown that extracts of AF suppress JAK-STAT signaling in epithelial cells and thus may promote Th2 bias. To elucidate the impact of AF on human bronchial epithelial cells, we tested the hypothesis that AF can modulate the response of airway epithelial cells to favor a Th2 response and explored the molecular mechanism of the effect. Primary normal human bronchial epithelial (NHBE) cells were treated with AF extract or fractionated AF extract before stimulation with poly I:C or infection with human rhinovirus serotype 16 (HRV16). Expression of CXCL10 mRNA (real-time RT-PCR) and protein (ELISA) were measured as markers of IFN-mediated epithelial Th1-biased responses. Western blot was performed to evaluate expression of IFN regulatory factor-3 (IRF-3), NF-κB, and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11), which are other markers of Th1 skewing. Knockdown experiments for protease-activated receptor-2 (PAR-2) and PTPN11 were performed to analyze the role of PAR-2 in the mechanism of suppression by AF. AF and a high-molecular-weight fraction of AF extract (HMW-AF; > 50 kD) profoundly suppressed poly I:C- and HRV16-induced expression of both CXCL10 mRNA and protein from NHBE cells via a mechanism that relied upon PAR-2 activation. Both AF extract and a specific PAR-2 activator (AC-55541) suppressed the poly I:C activation of phospho-IRF-3 without affecting activation of NF-κB. Furthermore, HMW-AF extract enhanced the expression of PTPN11, a phosphatase known to inhibit IFN signaling, and concurrently suppressed poly I:C-induced expression of both CXCL10 mRNA and protein from NHBE cells. These results show that exposure of bronchial epithelial cells to AF extract

  11. Postnatal remodeling of the neural components of the epithelial-mesenchymal trophic unit in the proximal airways of infant rhesus monkeys exposed to ozone and allergen

    Nerves and neuroendocrine cells located within the airway epithelium are ideally situated to sample a changing airway environment, to transmit that information to the central nervous system, and to promote trophic interactions between epithelial and mesenchymal cellular and acellular components. We tested the hypothesis that the environmental stresses of ozone (O3) and house dust mite allergen (HDMA) in atopic infant rhesus monkeys alter the distribution of airway nerves. Midlevel bronchi and bronchioles from 6-month-old infant monkeys that inhaled filtered air (FA), house dust mite allergen HDMA, O3, or HDMA + O3 for 11 episodes (5 days each, 0.5 ppm O3, 8 h/day followed by 9 days recovery) were examined using immunohistochemistry for the presence of Protein gene product 9.5 (PGP 9.5), a nonspecific neural indicator, and calcitonin gene-related peptide (CGRP). Along the axial path between the sixth and the seventh intrapulmonary airway generations, there were small significant (P 3, while in monkeys exposed to HDMA + O3 there was a greater significant (P 3 or HDMA + O3 there was a significant increase in the number of PGP 9.5 positive/CGRP negative cells that were anchored to the basal lamina and emitted projections in primarily the lateral plain and often intertwined with projections and cell bodies of other similar cells. We conclude that repeated cycles of acute injury and repair associated with the episodic pattern of ozone and allergen exposure alter the normal development of neural innervation of the epithelial compartment and the appearance of a new population of undefined PGP 9.5 positive cells within the epithelium

  12. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents.

    Zaccone, Eric J; Goldsmith, W Travis; Shimko, Michael J; Wells, J R; Schwegler-Berry, Diane; Willard, Patsy A; Case, Shannon L; Thompson, Janet A; Fedan, Jeffrey S


    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  13. Dipeptidyl peptidase-4 is highly expressed in bronchial epithelial cells of untreated asthma and it increases cell proliferation along with fibronectin production in airway constitutive cells

    Shiobara, Taichi; Chibana, Kazuyuki; Watanabe, Taiji; Arai, Ryo; Horigane, Yukiko; Nakamura, Yusuke; Hayashi, Yumeko; Shimizu, Yasuo; Takemasa, Akihiro; Ishii, Yoshiki


    Background Type 2 helper T-cell cytokines including IL-13 play a central role in the pathogenesis of bronchial asthma (BA). During the course of our research, our attention was drawn to dipeptidyl peptidase-4 (DPP4) as one of the molecules that were induced from bronchial epithelial cells (BECs) by IL-13 stimulation. DPP4 could become a new biomarker or therapeutic target. The aim of this study was to investigate the expression of DPP4 in the asthmatic airway, and its role in the pathophysiol...

  14. PEI-engineered respirable particles delivering a decoy oligonucleotide to NF-κB: inhibiting MUC2 expression in LPS-stimulated airway epithelial cells.

    Francesca Ungaro

    Full Text Available A specific and promising approach to limit inflammation and mucin iperproduction in chronic lung diseases relies on specific inhibition of nuclear Factor-κB (NF-κB by a decoy oligonucleotide (dec-ODN. To fulfill the requirements dictated by translation of dec-ODN therapy in humans, inhalable dry powders were designed on a rational basis to provide drug protection, sustained release and to optimize pharmacological response. To this end, large porous particles (LPP for dec-ODN delivery made of a sustained release biomaterial (poly(lactic-co-glycolic acid, PLGA and an "adjuvant" hydrophilic polymer (polyethylenimine, PEI were developed and their effects on LPS-stimulated human airway epithelial cells evaluated. The composite PLGA/PEI particles containing dec-ODN (i.e., LPP(PEI were successfully engineered for widespread deposition in the lung and prolonged release of intact dec-ODN in vitro. LPP(PEI caused a prolonged inhibition of IL-8 and MUC2 expression in CF human bronchial epithelial cells and human epithelial pulmonary NCI-H292 cells, respectively, as compared to naked dec-ODN. Nonetheless, as compared to previously developed LPP, the presence of PEI was essential to construct a dec-ODN delivery system able to act in mucoepidermoid lung epithelial cells. In perspective, engineering LPP with PEI may become a key factor for tuning carrier properties, controlling lung inflammation and mucin production which, in turn, can foster in vivo translation of dec-ODN therapy.

  15. Rieske business: Structure-function of Rieske non-heme oxygenases

    Rieske non-heme iron oxygenases (RO) catalyze stereo- and regiospecific reactions. Recently, an explosion of structural information on this class of enzymes has occurred in the literature. ROs are two/three component systems: a reductase component that obtains electrons from NAD(P)H, often a Rieske ferredoxin component that shuttles the electrons and an oxygenase component that performs catalysis. The oxygenase component structures have all shown to be of the α3 or α3β3 types. The transfer of electrons happens from the Rieske center to the mononuclear iron of the neighboring subunit via a conserved aspartate, which is shown to be involved in gating electron transport. Molecular oxygen has been shown to bind side-on in naphthalene dioxygenase and a concerted mechanism of oxygen activation and hydroxylation of the ring has been proposed. The orientation of binding of the substrate to the enzyme is hypothesized to control the substrate selectivity and regio-specificity of product formation

  16. Mono- and binuclear non-heme iron chemistry from a theoretical perspective.

    Rokob, Tibor András; Chalupský, Jakub; Bím, Daniel; Andrikopoulos, Prokopis C; Srnec, Martin; Rulíšek, Lubomír


    In this minireview, we provide an account of the current state-of-the-art developments in the area of mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, mostly from a theoretical and computational perspective. The sheer complexity, and at the same time the beauty, of the NHFe(2) world represents a challenge for experimental as well as theoretical methods. We emphasize that the concerted progress on both theoretical and experimental side is a conditio sine qua non for future understanding, exploration and utilization of the NHFe(2) systems. After briefly discussing the current challenges and advances in the computational methodology, we review the recent spectroscopic and computational studies of NHFe(2) enzymatic and inorganic systems and highlight the correlations between various experimental data (spectroscopic, kinetic, thermodynamic, electrochemical) and computations. Throughout, we attempt to keep in mind the most fascinating and attractive phenomenon in the NHFe(2) chemistry, which is the fact that despite the strong oxidative power of many reactive intermediates, the NHFe(2) enzymes perform catalysis with high selectivity. We conclude with our personal viewpoint and hope that further developments in quantum chemistry and especially in the field of multireference wave function methods are needed to have a solid theoretical basis for the NHFe(2) studies, mostly by providing benchmarking and calibration of the computationally efficient and easy-to-use DFT methods. PMID:27229513

  17. Structure/function correlations over binuclear non-heme iron active sites.

    Solomon, Edward I; Park, Kiyoung


    Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed. PMID:27369780

  18. Divergent non-heme iron enzymes in the nogalamycin biosynthetic pathway.

    Siitonen, Vilja; Selvaraj, Brinda; Niiranen, Laila; Lindqvist, Ylva; Schneider, Gunter; Metsä-Ketelä, Mikko


    Nogalamycin, an aromatic polyketide displaying high cytotoxicity, has a unique structure, with one of the carbohydrate units covalently attached to the aglycone via an additional carbon-carbon bond. The underlying chemistry, which implies a particularly challenging reaction requiring activation of an aliphatic carbon atom, has remained enigmatic. Here, we show that the unusual C5''-C2 carbocyclization is catalyzed by the non-heme iron α-ketoglutarate (α-KG)-dependent SnoK in the biosynthesis of the anthracycline nogalamycin. The data are consistent with a mechanistic proposal whereby the Fe(IV) = O center abstracts the H5'' atom from the amino sugar of the substrate, with subsequent attack of the aromatic C2 carbon on the radical center. We further show that, in the same metabolic pathway, the homologous SnoN (38% sequence identity) catalyzes an epimerization step at the adjacent C4'' carbon, most likely via a radical mechanism involving the Fe(IV) = O center. SnoK and SnoN have surprisingly similar active site architectures considering the markedly different chemistries catalyzed by the enzymes. Structural studies reveal that the differences are achieved by minor changes in the alignment of the substrates in front of the reactive ferryl-oxo species. Our findings significantly expand the repertoire of reactions reported for this important protein family and provide an illustrative example of enzyme evolution. PMID:27114534

  19. Down-regulation of IL-8 expression in human airway epithelial cells through helper-dependent adenoviral-mediated RNA interference

    Huibi CAO; Anan WANG; Bernard MARTIN; David R.KOEHLER; Pamela L.ZEITLIN; A.Keith TANAWELL; Jim HU


    Interleukin (IL)-8 is a potent neutrophil chemotactic factor and a crucial mediator in neutrophil-dependent inflammation.Various cell types produce IL-8, either in response to external stimuli such as cytokines or bacterial infection, or after malignant transformation. Anti-IL-8 strategies have been considered for anti-inflammatory therapy. In this paper we demonstrate that the RNA interference technique can be used to efficiently down-regulate IL-8 protein expression in airway epithelial cells. We used a helper-dependent adenoviral vector to express a small hairpin (sh)RNA targeting human IL-8 in cultured airway epithelial cells (IB3-1, Cftr-/-; C38, Cftr-corrected) stimulated with TNF-α, IL-1 β or heat-inactivated Burkholderia cenocepacia. Stimulated IL-8 expression in IB3-1 and C38 cells was significantly reduced by shRNA expression. The shRNA targeting IL-8 had no effect on the activation of NF-κB, or on the protein levels of Iκ B or IL-6, suggesting that this anti-IL-8 strategy was highly specific, and therefore may offer potential for the treatment of inflammatory diseases.

  20. Feasibility of combining spectra with texture data of multispectral imaging to predict heme and non-heme iron contents in pork sausages.

    Ma, Fei; Qin, Hao; Shi, Kefu; Zhou, Cunliu; Chen, Conggui; Hu, Xiaohua; Zheng, Lei


    To precisely determine heme and non-heme iron contents in meat product, the feasibility of combining spectral with texture features extracted from multispectral imaging data (405-970 nm) was assessed. In our study, spectra and textures of 120 pork sausages (PSs) treated by different temperatures (30-80 °C) were analyzed using different calibration models including partial least squares regression (PLSR) and LIB support vector machine (Lib-SVM) for predicting heme and non-heme iron contents in PSs. Based on a combination of spectral and textural features, optimized PLSR models were obtained with determination coefficient (R(2)) of 0.912 for heme and of 0.901 for non-heme iron prediction, which demonstrated the superiority of combining spectra with texture data. Results of satisfactory determination and visualization of heme and non-heme iron contents indicated that multispectral imaging could serve as a feasible approach for online industrial applications in the future. PMID:26212953


    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  2. The impact of oil spill to lung health--Insights from an RNA-seq study of human airway epithelial cells.

    Liu, Yao-Zhong; Roy-Engel, Astrid M; Baddoo, Melody C; Flemington, Erik K; Wang, Guangdi; Wang, He


    The Deepwater Horizon oil spill (BP oil spill) in the Gulf of Mexico was a unique disaster event, where a huge amount of oil spilled from the sea bed and a large volume of dispersants were applied to clean the spill. The operation lasted for almost 3 months and involved >50,000 workers. The potential health hazards to these workers may be significant as previous research suggested an association of persistent respiratory symptoms with exposure to oil and oil dispersants. To reveal the potential effects of oil and oil dispersants on the respiratory system at the molecular level, we evaluated the transcriptomic profile of human airway epithelial cells grown under treatment of crude oil, the dispersants Corexit 9500 and Corexit 9527, and oil-dispersant mixtures. We identified a very strong effect of Corexit 9500 treatment, with 84 genes (response genes) differentially expressed in treatment vs. control samples. We discovered an interactive effect of oil-dispersant mixtures; while no response gene was found for Corexit 9527 treatment alone, cells treated with Corexit 9527+oil mixture showed an increased number of response genes (46 response genes), suggesting a synergic effect of 9527 with oil on airway epithelial cells. Through GO (gene ontology) functional term and pathway-based analysis, we identified upregulation of gene sets involved in angiogenesis and immune responses and downregulation of gene sets involved in cell junctions and steroid synthesis as the prevailing transcriptomic signatures in the cells treated with Corexit 9500, oil, or Corexit 9500+oil mixture. Interestingly, these key molecular signatures coincide with important pathological features observed in common lung diseases, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Our study provides mechanistic insights into the detrimental effects of oil and oil dispersants to the respiratory system and suggests significant health impacts of the recent BP oil spill to those people

  3. Induction of regulator of G-protein signaling 2 expression by long-acting β2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells.

    Holden, Neil S; George, Tresa; Rider, Christopher F; Chandrasekhar, Ambika; Shah, Suharsh; Kaur, Manminder; Johnson, Malcolm; Siderovski, David P; Leigh, Richard; Giembycz, Mark A; Newton, Robert


    In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 mRNA and protein were synergistically induced in response to combinations of long-acting β2-adrenoceptor agonist (LABA) (salmeterol, formoterol) plus glucocorticoid (dexamethasone, fluticasone propionate, budesonide). Equivalent responses occurred in primary human bronchial epithelial cells. Concentrations of glucocorticoid plus LABA required to induce RGS2 expression in BEAS-2B cells were consistent with the levels achieved therapeutically in the lungs. As RGS2 is a GTPase-activating protein that switches off Gαq, intracellular free calcium ([Ca(2+)]i) flux was used as a surrogate of responses induced by histamine, methacholine, and the thromboxane receptor agonist U46619 [(Z)-7-[(1S,4R,5R,6S)-5-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid]. This was significantly attenuated by salmeterol plus dexamethasone pretreatment, or RGS2 overexpression, and the protective effect of salmeterol plus dexamethasone was abolished by RGS2 RNA silencing. Although methacholine and U46619 induced interleukin-8 (IL-8) release and this was inhibited by RGS2 overexpression, the repression of U46619-induced IL-8 release by salmeterol plus dexamethasone was unaffected by RGS2 knockdown. Given a role for Gαq-mediated pathways in inducing IL-8 release, we propose that RGS2 acts redundantly with other effector processes to repress IL-8 expression. Thus, RGS2 expression is a novel effector mechanism in the airway epithelium that is induced by glucocorticoid/LABA combinations. This could contribute to the efficacy of glucocorticoid/LABA combinations in asthma and

  4. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    Kan-o, Keiko [Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Matsumoto, Koichiro, E-mail: [Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi [Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inoue, Hiromasa [Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)


    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB.

  5. In Vitro Analysis of Tobramycin-Treated Pseudomonas aeruginosa Biofilms on Cystic Fibrosis-Derived Airway Epithelial Cells▿ †

    Anderson, Gregory G.; Moreau-Marquis, Sophie; Stanton, Bruce A.; O'Toole, George A.


    P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatm...

  6. Acute damage by naphthalene triggers expression of the neuroendocrine marker PGP9.5 in airway epithelial cells

    Poulsen, T.T.; Naizhen, X.; Linnoila, R.I.;


    Protein Gene Product 9.5 (PGP9.5) is highly expressed in nervous tissue. Recently PGP9.5 expression has been found to be upregulated in the pulmonary epithelium of smokers and in non-small cell lung cancer, suggesting that it also plays a role in carcinogen-inflicted lung epithelial injury and...... neuroendocrine markers was found in the non-neuroendocrine epithelial cells after naphthalene exposure. In contrast, immunostaining for the cell cycle regulator p27(Kip1), which has previously been associated with PGP9.5 in lung cancer cells, revealed transient downregulation of p27(Kip1) in naphthalene exposed...... further strengthens the accumulating evidence of PGP9.5 as a central player in lung epithelial damage and early carcinogenesis Udgivelsesdato: 2008/9/26...

  7. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes.

    Sallenave, J M; Shulmann, J; Crossley, J; Jordana, M; Gauldie, J


    The regulation of the activity of potentially harmful proteinases secreted by neutrophils during inflammation is important for the prevention of excessive tissue injury. Secretory leukocyte proteinase inhibitor (SLPI), also called antileukoprotease (ALP) or mucus proteinase inhibitor (MPI), is a serine proteinase inhibitor that has been found in a variety of mucous secretions and that is secreted by bronchial epithelial cells. We recently reported the presence of SLPI and of an elastase-specific inhibitor (ESI), also called elafin, in the supernatants of two cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. We showed in addition that epithelial cell lines produce the elastase-specific inhibitor as a 12 to 16 kD precursor of the elafin molecule (6 kD) called pre-elafin. In the present study, we show that NCI-H322 cells produced higher amounts of both inhibitors than A549 cells and that basal production of SLPI in both cell lines is higher than the production of elafin/pre-elafin. In addition, we show that interleukin-1 beta and tumor necrosis factor induce significant SLPI expression and are major inducers of elafin/pre-elafin expression. Moreover, induction is greater in A549 cells than in NCI-H322 cells. The implications of these findings for the peripheral airways are twofold: (1) alveolar epithelial cells may respond to cytokines secreted during the onset of inflammation by increasing their antiprotease shield; (2) elafin/pre-elafin seems to be a true local "acute phase reactant" whereas SLPI, in comparison, may be less responsive to local inflammatory mediators. PMID:7946401

  8. A novel dissociative steroid VBP15 reduces MUC5AC gene expression in airway epithelial cells but lacks the GRE mediated transcriptional properties of dexamethasone.

    Garvin, Lindsay M; Chen, Yajun; Damsker, Jesse M; Rose, Mary C


    Overproduction of secretory mucins contributes to morbidity/mortality in inflammatory lung diseases. Inflammatory mediators directly increase expression of mucin genes, but few drugs have been shown to directly repress mucin gene expression. IL-1β upregulates the MUC5AC mucin gene in part via the transcription factors NFκB while the glucocorticoid Dexamethasone (Dex) transcriptionally represses MUC5AC expression by Dex-activated GR binding to two GRE cis-sites in the MUC5AC promoter in lung epithelial cells. VBP compounds (ReveraGen BioPharma) maintain anti-inflammatory activity through inhibition of NFκB but exhibit reduced GRE-mediated transcriptional properties associated with adverse side-effects and thus have potential to minimize harmful side effects of long-term steroid therapy in inflammatory lung diseases. We investigated VBP15 efficacy as an anti-mucin agent in two types of airway epithelial cells and analyzed the transcription factor activity and promoter binding associated with VBP15-induced MUC5AC repression. VBP15 reduced MUC5AC mRNA abundance in a dose- and time-dependent manner similar to Dex in the presence or absence of IL-1β in A549 and differentiated human bronchial epithelial cells. Repression was abrogated in the presence of RU486, demonstrating a requirement for GR in the VBP15-induced repression of MUC5AC. Inhibition of NFκB activity resulted in reduced baseline expression of MUC5AC indicating that constitutive activity maintains MUC5AC production. Chromatin immunoprecipitation analysis demonstrated lack of GR and of p65 (NFκB) binding to composite GRE domains in the MUC5AC promoter following VBP15 exposure of cells, in contrast to Dex. These data demonstrate that VBP15 is a novel anti-mucin agent that mediates the reduction of MUC5AC gene expression differently than the classical glucocorticoid, Dex. PMID:27133900

  9. The "innocent" role of Sc3+ on a non-heme Fe catalyst in an O2 environment

    Poater, Albert


    Density functional theory calculations have been used to investigate the reaction mechanism proposed for the formation of an oxoiron(iv) complex [Fe IV(TMC)O]2+ (P) (TMC = 1,4,8,11-tetramethylcyclam) starting from a non-heme reactant complex [FeII(TMC)]2+ (R) and O2 in the presence of acid H+ and reductant BPh4 -. We also addressed the possible role of redox-inactive Sc3+ as a replacement for H+ acid in this reaction to trigger the formation of P. Our computational results substantially confirm the proposed mechanism and, more importantly, support that Sc 3+ could trigger the O2 activation, mainly dictated by the availability of two electrons from BPh4 -, by forming a thermodynamically stable Sc3+-peroxo-Fe3+ core that facilitates O-O bond cleavage to generate P by reducing the energy barrier. These insights may pave the way to improve the catalytic reactivity of metal-oxo complexes in O2 activation at non-heme centers. This journal is © the Partner Organisations 2014.

  10. The FTO (fat mass and obesity associated gene codes for a novel member of the non-heme dioxygenase superfamily

    Andrade-Navarro Miguel A


    Full Text Available Abstract Background Genetic variants in the FTO (fat mass and obesity associated gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II- and 2-oxoglutarate-dependent dioxygenases superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans.

  11. Signal Transducer and Activator of Transcription 1 (STAT1) is Essential for Chromium Silencing of Gene Induction in Human Airway Epithelial Cells

    Nemec, Antonia A.; Barchowsky, Aaron


    Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)–dependent pathway to silence nickel (Ni)–induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase–activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1α (HIF-1α) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1α activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells. PMID:19403854

  12. Engineering Airway Epithelium

    John P. Soleas


    Full Text Available Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990. In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium.

  13. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endpoints of inflammation, and oxidant stress. Separation of Chapel Hill PM 10 into fine and coarse size particles revealed that the main proinflammatory response (TNF, IL-6, COX-2) in AM was driven by material present in the coarse PM, containing 90-95% of the stimulatory material in PM10. The particles did not affect expression of hemoxygenase-1 (HO-1), a sensitive marker of oxidant stress. Primary cultures of normal human bronchial epithelial cells (NHBE) also responded to the coarse fraction with higher levels of IL-8 and COX-2, than induced by fine or ultrafine PM. All size PM induced oxidant stress in NHBE, while fine PM induced the highest levels of HO-1 expression. The production of cytokines in AM by both coarse and fine particles was blocked by the toll like receptor 4 (TLR4) antagonist E5531 involved in the recognition of LPS and Gram negative bacteria. The NHBE were found to recognize coarse and fine PM through TLR2, a receptor with preference for recognition of Gram positive bacteria. Compared to ambient PM, diesel PM induced only a minimal cytokine response in both AM and NHBE. Instead, diesel suppressed LPS-induced TNF and IL-8 release in AM. Both coarse and fine ambient air PM were also found to inhibit LPS-induced TNF release while silica, volcanic ash or carbon black had no inhibitory effect. Diesel particles did not affect cytokine mRNA induction nor protein accumulation but interfered with the release of cytokine from the cells. Ambient coarse and fine PM, on the other hand, inhibited both mRNA induction and protein production. Exposure to coarse and fine PM decreased the expression of TLR4 in the macrophages. Particle-induced decrease in TLR4 and hyporesponsiveness to LPS

  14. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  15. Modulation of airway epithelial cell functions by Pidotimod: NF-kB cytoplasmatic expression and its nuclear translocation are associated with an increased TLR-2 expression


    Background Recurrent respiratory infections are one of the most important causes of morbidity in childhood. When immune functions are still largely immature, the airway epithelium plays a primary defensive role since, besides providing a physical barrier, it is also involved in the innate and the adaptive immune responses. A study was therefore designed to evaluate in vitro whether pidotimod, a synthetic dipeptide able to stimulate the inflammatory and immune effector cells, could activate bronchial epithelial cell functions involved in response to infections. Methods BEAS-2B cell line (human bronchial epithelial cells infected with a replication-defective Adenovirus 12-SV40 virus hybrid) were cultured in the presence of pidotimod, with or without tumor necrosis factor (TNF)-α or zymosan to assess: a) intercellular adhesion molecule (ICAM)-1 expression, by flow cytometry; b) toll-like receptor (TLR)-2 expression and production, by immunofluorescence flow cytometry and western blotting; d) interleukin (IL)-8 release, by enzyme-linked immunosorbent assay (ELISA); e) activated extracellular-signal-regulated kinase (ERK1/2) phosphorylation and nuclear factor-kappa B (NF-kB) activation, by western blotting. Results The constitutive expression of ICAM-1 and IL-8 release were significant up-regulated by TNF-α (ICAM-1) and by TNF-α and zymosan (IL-8), but not by pidotimod. In contrast, an increased TLR-2 expression was found after exposure to pidotimod 10 and 100 μg/ml (p NF-kB protein expression in the cytoplasm and its nuclear translocation. Conclusion Through different effects on ERK1/2 and NF-kB, pidotimod was able to increase the expression of TLR-2 proteins, surface molecules involved in the initiation of the innate response to infectious stimuli. The lack of effect on ICAM-1 expression, the receptor for rhinovirus, and on IL-8 release, the potent chemotactic factor for neutrophils (that are already present in sites of infection), may represent protective

  16. Cleavage of endogenous γENaC and elevated abundance of αENaC are associated with increased Na+ transport in response to apical fluid volume expansion in human H441 airway epithelial cells

    Tan, Chong D.; Selvanathar, Indusha A.; Baines, Deborah L.


    Using human H441 airway epithelial cells cultured at air–liquid interface (ALI), we have uniquely correlated the functional response to apical fluid volume expansion with the abundance and cleavage of endogenous α- and γENaC proteins in the apical membrane. Monolayers cultured at ALI rapidly elevated I sc when inserted into fluid-filled Ussing chambers. The increase in I sc was not significantly augmented by the apical addition of trypsin, and elevation was abolished by the protease inhibitor...

  17. Let-7a modulates particulate matter (≤ 2.5 μm)-induced oxidative stress and injury in human airway epithelial cells by targeting arginase 2.

    Song, Lei; Li, Dan; Gu, Yue; Li, Xiaoping; Peng, Liping


    Epidemiological studies show that particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm (PM2.5) is associated with cardiorespiratory diseases via the induction of excessive oxidative stress. However, the precise mechanism underlying PM2.5-mediated oxidative stress injury has not been fully elucidated. Accumulating evidence has indicated the microRNA let-7 family might play a role in PM-mediated pathological processes. In this study, we investigated the role of let-7a in oxidative stress and cell injury in human bronchial epithelial BEAS2B (B2B) cells after PM2.5 exposure. The let-7a level was the most significantly decreased in B2B cells after PM2.5 exposure. The overexpression of let-7a suppressed intracellular reactive oxygen species levels and the percentage of apoptotic cells after PM2.5 exposure, while the let-7a level decreased arginase 2 (ARG2) mRNA and protein levels in B2B cells by directly targeting the ARG2 3'-untranslated region. ARG2 expression was upregulated in B2B cells during PM2.5 treatment, and ARG2 knockdown could remarkably reduce oxidative stress and cellular injury. Moreover, its restoration could abrogate the protective effects of let-7a against PM2.5-induced injury. In conclusion, let-7a decreases and ARG2 increases resulting from PM2.5 exposure may exacerbate oxidative stress, cell injury and apoptosis of B2B cells. The let-7a/ARG2 axis is a likely therapeutic target for PM2.5-induced airway epithelial injury. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26989813

  18. Characterization of the 2009 pandemic A/Beijing/501/2009 H1N1 influenza strain in human airway epithelial cells and ferrets.

    Penghui Yang

    Full Text Available BACKGROUND: A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1 has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood. METHODOLOGY/PRINCIPAL FINDING: In this study, we showed that a 2009 A (H1N1 influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1 influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms. CONCLUSION/SIGNIFICANCE: Our understanding of the pathogenesis of the 2009 A (H1N1 influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe.

  19. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn2+. Zn2+ exposure resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional regulation. This was supported by the observation of increased COX-2 promoter activity in Zn2+-treated BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the κB-binding sites in the COX-2 promoter markedly reduced COX-2 promoter activity induced by Zn2+. Inhibition of NFκB activation did not block Zn2+-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn2+ exposure impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn2+ exposure was shown to be dependent on the integrity of the 3'-untranslated region found in the COX-2 transcript. Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced in BEAS-2B cells exposed to extracellular Zn2+

  20. Store-Operated Ca2+ Release-Activated Ca2+ Channels Regulate PAR2-Activated Ca2+ Signaling and Cytokine Production in Airway Epithelial Cells.

    Jairaman, Amit; Yamashita, Megumi; Schleimer, Robert P; Prakriya, Murali


    The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines. PMID:26238490

  1. X-ray absorption spectroscopy of soybean lipoxygenase-1 : Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site

    Vliegenthart, J.F.G.; Heijdt, L.M. van der; Feiters, M.C.; Navaratnam, S.; Nolting, H.-F.; Hermes, C.; Veldink, G.A.


    X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 23 eV

  2. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies

    Bruijnincx, P.C.A.; van Koten, G.; Klein Gebbink, R.J.M.


    Iron-containing enzymes are one of Nature’s main means of effecting key biological transformations. The mononuclear non-heme iron oxygenases and oxidases have received the most attention recently, primarily because of the recent availability of crystal structures of many different enzymes and the st

  3. Inclusion of guava enhances non-heme iron bioavailability but not fractional zinc absorption from a rice-based meal in adolescents

    Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run...


    Asthma is a chronic inflammatory disorder of the airways affecting nearly 15 million individuals nationally. Within the inflamed asthmatic airway there exist complex interactions between many cells and the cytokines they release, in particular mast cells, eosinophils, T-lymphocy...

  5. Cold-inducible RNA binding protein regulates mucin expression induced by cold temperatures in human airway epithelial cells.

    Ran, DanHua; Chen, LingXiu; Xie, WenYue; Xu, Qing; Han, Zhong; Huang, HuaPing; Zhou, XiangDong


    Mucus overproduction is an important manifestation of chronic airway inflammatory diseases, however, the mechanisms underlying the association between cold air and mucus overproduction remain unknown. We found that the expression of the cold-inducible RNA binding protein (CIRP) was increased in patients with chronic obstructive pulmonary disease (COPD). In the present study, we tested whether CIRP was involved in inflammatory factors and mucin5AC (MUC5AC) expression after cold stimulation and investigated the potential signaling pathways involved in this process. We found that CIRP was highly expressed in the bronchi of COPD patients. The expression of CIRP, interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were increased, and the CIRP was localized in cytoplasm after cold stimulation. MUC5AC mRNA and protein expression levels were elevated in a temperature- and time-dependent manner after cold stimulation and were associated with the phosphorylation of ERK and NF-κB, which reflected their activation. These responses were suppressed by knockdown of CIRP with a specific siRNA or the ERK and NF-κB inhibitors. These results demonstrated that CIRP was expressed in the bronchi of human COPD patients and was involved in inflammatory factors and MUC5AC expression after cold stimulation through the ERK and NF-κB pathways. PMID:27184164

  6. Mucolytic treatment with N-acetylcysteine L-lysinate metered dose inhaler in dogs: airway epithelial function changes.

    Tomkiewicz, R P; App, E M; Coffiner, M; Fossion, J; Maes, P; King, M


    N-acetylcysteine L-lysinate Nacystelyn (L-NAC) is a newly synthesized mucolytic agent, of which the action in vivo has not been well defined. In six healthy mongrel dogs, the rheological properties of mucus, its mucociliary and cough clearability, and the transepithelial potential difference (PD) of the tracheobronchial epithelium were evaluated after placebo and L-NAC metered dose inhaler (MDI) aerosols. The principal index of mucus rigidity, log G*, decreased at all airway sites with L-NAC administration, i.e. the mucus became less rigid and more deformable (the overall change in G* was 0.29 log units, i.e. ca. twofold decrease). The viscoelasticity-derived mucus transportability parameters, mucociliary (MCI) and cough (CCI) clearability indices, increased with L-NAC MDI, particularly CCI, which predicts the effect of mucus rheology on cough clearability. PD increased significantly with L-NAC administration at all measurement sites, which appears to be a novel effect for a direct acting mucolytic agent. Tracheal mucus linear velocity (TMV) increased after L-NAC compared with placebo, as did the normalized frog palate transport rate (NFPTR). The increase in NFPTR was greater than that predicted from the mucus rheological properties alone, suggesting that L-NAC still resident in the collected mucus stimulated the frog palate cilia. The index of mucus flux, the collection rate in mg.min-1, was higher with L-NAC compared with placebo. From our results, we conclude that L-NAC shows potential benefit in terms of improving mucus rheological properties and clearability. It may act, in part, by stimulating the fresh secretion of mucus of lower viscoelasticity. The stimulation of mucociliary clearance could be related to ion flux changes, as indicated by the increase in PD. PMID:8143836

  7. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models

    Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; Gao, Zhancheng; Wang, Qi


    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis. PMID:25823926

  8. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose–response cell proliferation assay showed that low doses of ND-MWCNT (1.2 μg/ml) or MWCNT-7 (0.12 μg/ml) increased cellular proliferation, while the highest dose of 120 μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6 h and were internalized by 24 h. ROS were elevated at 6 and 24 h in ND-MWCNT exposed cells, but only at 6 h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2 μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects

  9. Bioelectric and Morphological Response of Liquid-Covered Human Airway Epithelial Calu-3 Cell Monolayer to Periodic Deposition of Colloidal 3-Mercaptopropionic-Acid Coated CdSe-CdS/ZnS Core-Multishell Quantum Dots.

    Aizat Turdalieva

    Full Text Available Lung epithelial cells are extensively exposed to nanoparticles present in the modern urban environment. Nanoparticles, including colloidal quantum dots (QDs, are also considered to be potentially useful carriers for the delivery of drugs into the body. It is therefore important to understand the ways of distribution and the effects of the various types of nanoparticles in the lung epithelium. We use a model system of liquid-covered human airway epithelial Calu-3 cell cultures to study the immediate and long-term effects of repeated deposition of colloidal 3-mercaptopropionic-acid coated CdSe-CdS/ZnS core-multishell QDs on the lung epithelial cell surface. By live confocal microscope imaging and by QD fluorescence measurements we show that the QD permeation through the mature epithelial monolayers is very limited. At the time of QD deposition, the transepithelial electrical resistance (TEER of the epithelial monolayers transiently decreased, with the decrement being proportional to the QD dose. Repeated QD deposition, once every six days for two months, lead to accumulation of only small amounts of the QDs in the cell monolayer. However, it did not induce any noticeable changes in the long-term TEER and the molecular morphology of the cells. The colloidal 3-mercaptopropionic-acid coated CdSe-CdS/ZnS core-multishell QDs could therefore be potentially used for the delivery of drugs intended for the surface of the lung epithelia during limited treatment periods.

  10. Structural and electronic characterization of non-heme Fe(II)-nitrosyls as biomimetic models of the Fe(B) center of bacterial nitric oxide reductase.

    Berto, Timothy C; Hoffman, Melissa B; Murata, Yuki; Landenberger, Kira B; Alp, E Ercan; Zhao, Jiyong; Lehnert, Nicolai


    The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) has gained much attention as this reaction provides a paradigm as to how NO can be detoxified anaerobically in cells. However, a clear mechanistic picture of how the heme/non-heme active site of NorBC activates NO is lacking, mostly as a result of insufficient knowledge about the properties of the non-heme iron(II)-NO adduct. Here we report the first biomimetic model complexes for this species that closely resemble the coordination environment found in the protein, using the ligands BMPA-Pr and TPA. The systematic investigation of these compounds allowed us to gain key insight into the electronic structure and geometric properties of high-spin non-heme iron(II)-NO adducts. In particular, we show how small changes in the ligand environment of iron could be used by NorBC to greatly modulate the properties, and hence, the reactivity of this species. PMID:21630658

  11. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  12. The Protease Allergen Pen c 13 Induces Allergic Airway Inflammation and Changes in Epithelial Barrier Integrity and Function in a Murine Model*

    Chen, Jui-Chieh; Chuang, Jiing-Guang; Su, Yu-Yi; Chiang, Bor-Luen; Lin, You-Shuei; Chow, Lu-Ping


    Fungal allergens are associated with the development of asthma, and some have been characterized as proteases. Here, we established an animal model of allergic airway inflammation in response to continuous exposure to proteolytically active Pen c 13, a major allergen secreted by Penicillium citrinum. In functional analyses, Pen c 13 exposure led to increased airway hyperresponsiveness, significant inflammatory cell infiltration, mucus overproduction, and collagen deposition in the lung, drama...

  13. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    Keglowich, L F; Borger, P


    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet ...

  14. The three A's in asthma - airway smooth muscle, airway remodeling & angiogenesis

    Keglowich, L F; Borger, P


    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet ...

  15. Inclusion of Guava Enhances Non-Heme Iron Bioavailability but Not Fractional Zinc Absorption from a Rice-Based Meal in Adolescents12

    Nair, Krishnapillai Madhavan; Brahmam, Ginnela N.V.; Radhika, Madhari S.; Dripta, Roy Choudhury; Ravinder, Punjal; Balakrishna, Nagalla; Chen, Zhensheng; Hawthorne, Keli M.; Steven A. Abrams


    Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run residential schools. Participants were given a standardized rice meal (regular) and the same meal with 100 g of guava fruit (modified) with 57Fe on 2 consecutive days. A single oral dose of 58Fe i...

  16. Non-Heme Iron Absorption and Utilization from Typical Whole Chinese Diets in Young Chinese Urban Men Measured by a Double-Labeled Stable Isotope Technique

    Yang, Lichen; Zhang, Yuhui; Wang, Jun; Huang, Zhengwu; Gou, Lingyan; Wang, Zhilin; Ren, Tongxiang; Piao, Jianhua; Yang, Xiaoguang


    Background This study was to observe the non-heme iron absorption and biological utilization from typical whole Chinese diets in young Chinese healthy urban men, and to observe if the iron absorption and utilization could be affected by the staple food patterns of Southern and Northern China. Materials and Methods Twenty-two young urban men aged 18–24 years were recruited and randomly assigned to two groups in which the staple food was rice and steamed buns, respectively. Each subject received 3 meals containing approximately 3.25 mg stable 57FeSO4 (the ratio of 57Fe content in breakfast, lunch and dinner was 1:2:2) daily for 2 consecutive days. In addition, approximately 2.4 mg 58FeSO4 was administered intravenously to each subject at 30–60 min after dinner each day. Blood samples were collected from each subject to measure the enrichment of the 57Fe and 58Fe. Fourteen days after the experimental diet, non-heme iron absorption was assessed by measuring 57Fe incorporation into red blood cells, and absorbed iron utilization was determined according to the red blood cell incorporation of intravenously infused 58Fe SO4. Results Non-heme iron intake values overall, and in the rice and steamed buns groups were 12.8 ±2.1, 11.3±1.3 and 14.3±1.5 mg, respectively; the mean 57Fe absorption rates were 11±7%, 13±7%, and 8±4%, respectively; and the mean infused 58Fe utilization rates were 85±8%, 84±6%, and 85±10%, respectively. There was no significantly difference in the iron intakes, and 57Fe absorption and infused 58Fe utilization rates between rice and steamed buns groups (all P>0.05). Conclusion We present the non-heme iron absorption and utilization rates from typical whole Chinese diets among young Chinese healthy urban men, which was not affected by the representative staple food patterns of Southern and Northern China. This study will provide a basis for the setting of Chinese iron DRIs. PMID:27099954

  17. A new compound, 1H,8H-pyrano[3,4-c]pyran-1,8-dione, suppresses airway epithelial cell inflammatory responses in a murine model of asthma.

    Lee, H; Han, A R; Kim, Y; Choi, S H; Ko, E; Lee, N Y; Jeong, J H; Kim, S H; Bae, H


    Clinical and experimental studies have established eosinophilia as a sign of allergic disorders. Activation of eosinophils in the airways is believed to cause epithelial tissue injury, contraction of airway smooth muscle and increased bronchial responsiveness. As part of the search for new antiasthmatic agents produced by medicinal plants, the effects of 270 standardized medicinal plant extracts on cytokine-activated A549 human lung epithelial cells were evaluated. After several rounds of activity-guided screening, the new natural compound, 1H,8H-Pyrano[3,4-c]pyran-1,8-dione (PPY), was isolated from Vitex rotundifolia L. To elucidate the mechanism by which the anti-asthmatic responses of PPY occurred in vitro, lung epithelial cells (A549 cell) were stimulated with TNF-alpha, IL-4 and IL-1beta to induce the expression of chemokines and adhesion molecules involved in eosinophil chemotaxis. PPY treatments reduced the expression of eotaxin, IL-8, IL-16 and VCAM-1 mRNA significantly. Additionally, PPY reduced eotaxin secretion in a dose-dependent manner and significantly inhibited eosinophil migration toward A549 medium. In addition, PPY treatment suppressed the phosphorylation of p65 and ERK1/2, suggesting that it can inhibit the MAPK/NF-KB pathway. To clarify the anti-inflammatory and antiasthmatic effects of PPY in vivo, we examined the influence of PPY on the development of pulmonary eosinophilic inflammation in a murine model of asthma. To accomplish this, mice were sensitized and challenged with ovalbumin (OVA) and then examined for the following typical asthmatic reactions: an increase in the number of eosinophils in BALF; the presence of Th2 cytokines such as IL-4 and IL-5 in the BALF; the presence of allergen-specific IgE in the serum; and a marked influx of inflammatory cells into the lung. Taken together, our results revealed that PPY exerts profound inhibitory effects on the accumulation of eosinophils into the airways while reducing the levels of IL-4, IL-5

  18. Eosinophils Promote Epithelial to Mesenchymal Transition of Bronchial Epithelial Cells

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N.


    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was a...

  19. 木材烟雾凝集物刺激人气道上皮细胞发生转分化样改变%Wood smoke condensate induced epithelial-mesenchymal transition in human airway epithelial cells

    李雯曦; 邹威凤; 李冰; 冉丕鑫


    Objective To observe the detrimental effects of wood smoke condensate (WSC) exposure on human bronchial epithelial cells (HBEC),and to explore the expression of epithelialmesenchymal transition (EMT) markers in HBEC exposed to WSC.Methods HBEC were exposed respectively to 5,10,20,40 and 50 mg/L of WSC/CSC for 7 days,with control groups only in cell culture medium at the same time,then the total cytoactivity was detected by cell counting kit-8.After observing the cellular morphology of WSC-stimulated HBEC.Western blot and immunofluorescence method were used to evaluate the expression levels of type Ⅰ collagen,vimentin,E-cad and MMP-9 in HBEC exposed to WSC (10 mg/L) and cigarette smoke condensate (CSC) (10 mg/L) for 7 days.Statistical evaluation of the continuous data was performed by ANOVA.Independent-Samples t-test for between-group comparisons.Results After 7 days of exposure to WSC,HBEC manifested a morphological characteristic of loss of cellcell contact and elongated shape.The level of E-cad was decreased in WSC exposure groups (Western blot:0.30 ± 0.05,F =22.07,P < 0.05) compared with the groups without WSC exposure (Western blot:0.59 ± 0.08,F =22.07,P < 0.05).In contrast,an upregulation in expression of type Ⅰ collagen (Western blot:0.58 ± 0.04 vs 0.26 ± 0.02,F =119.72,P < 0.05) and MMP-9 (0.56 ± 0.08 vs 0.19 ± 0.03,F =21.79,P < 0.05) was observed in the presence of WSC,compared with the control groups.Immunofluorescence analysis showed that after a 7-day exposure to WSC in these cells,the E-cad protein was lost whereas type Ⅰ collagen,vimentin and MMP-9 were acquired.Both Western blot and immunofluorescence analysis showed no difference in expression levels of E-cad,type Ⅰ collagen,vimentin and MMP-9 between WSC and CSC exposure groups.Conclusion WSC exposure could induce EMT-like process in human airway epithelial cells.%目的 观察木材烟雾凝集物(WSC)对人支气管上皮细胞(HBEC)间充质转分

  20. Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung cancer

    Sohal, Sukhwinder Singh; Mahmood, Malik Quasir; Walters, Eugene Haydn


    Unfortunately, the research effort directed into chronic obstructive pulmonary disease (COPD) has been disproportionately weak compared to its social importance, and indeed it is the least researched of all common chronic conditions. Tobacco smoking is the major etiological factor. Only 25% of smokers will develop “classic” COPD; in these vulnerable individuals the progression of airways disease to symptomatic COPD occurs over two or more decades. We know surprisingly little about the pathobi...

  1. A comparison of a new mucolytic N-acetylcysteine L-lysinate with N-acetylcysteine: airway epithelial function and mucus changes in dog.

    Tomkiewicz, R P; App, E M; De Sanctis, G T; Coffiner, M; Maes, P; Rubin, B K; King, M


    A newly synthesized mucolytic agent, N-acetylcysteine L-lysinate (Nacystelyn) was studied. Tracheal mucus velocity (TMV), transepithelial potential difference (PD), rheological properties, and ion content of collected airway secretions were evaluated in six healthy mongrel dogs after placebo, Nacystelyn (NAL) and acetylcysteine (NAC) metered dose inhaler (MDI) aerosols. Although TMV was increased and viscoelasticity decreased after both treatments, the treatment effect with NAL was significantly greater. Furthermore, NAL increased the negative PD and CI- content of secretions in the trachea, an effect not observed after NAC. Both compounds increased ciliary beat frequency (CBF) on the frog palate at a concentration range similar to that approximated in dog airways. The increased mucociliary clearance could be partially explained by favourable rheological changes combined with stimulation of CBF. Since both compounds break disulfide bonds in mucus polymers, the greater change in mucus rheology and clearance rate after NAL, without change in water content, could be explained by the increase in CI- content. Nacystelyn appears to combine different modes of action which synergistically cause an increase in the clearance rate of airway secretions. PMID:8819180

  2. IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells

    Johnson, Jill R.; Nishioka, Michiyoshi; Chakir, Jamila; Risse, Paul-André; Almaghlouth, Ibrahim; Bazarbashi, Ahmad N; Plante, Sophie; Martin, James G.; Eidelman, David; Hamid, Qutayba


    Background Allergic asthma is characterized by airway inflammation in response to antigen exposure, leading to airway remodeling and lung dysfunction. Epithelial-mesenchymal transition (EMT) may play a role in airway remodeling through the acquisition of a mesenchymal phenotype in airway epithelial cells. TGF-β1 is known to promote EMT; however, other cytokines expressed in severe asthma with extensive remodeling, such as IL-22, may also contribute to this process. In this study, we evaluated...

  3. Epithelial expression of mRNA and protein for IL-6, IL-10 and TNF-α in endobronchial biopsies in horses with recurrent airway obstruction

    Art Tatiana


    Full Text Available Abstract Background The aim of this study was to evaluate the contribution of bronchial epithelium to airway inflammation, with focus on mRNA and protein expression of cytokines of innate immunity IL-6, IL-10 and TNF-α, in horses with Recurrent Airway Obstruction (RAO during exacerbation and in remission. Results Despite marked clinical and physiologic alterations between exacerbation and after remission in the RAO horses no differences were detected in either cytokine mRNA or protein levels. Moreover, the expression of investigated cytokines in RAO horses on pasture did not differ from controls. In comparing real-time PCR analysis to results of immunohistochemistry only IL-10 mRNA and protein levels in RAO horses on pasture were significantly correlated (rs = 0.893, p = 0.007. Curiously, in controls examined on pasture the TNF-α protein level was positively correlated to IL-10 mRNA expression (rs = 0.967, p = 0.007 and negatively correlated to IL-6 mRNA expression (rs = -0.971, p = 0.001. Conclusion Given the complementary relationship of assessing cytokines directly by immunohistochemistry, or indirectly by PCR to mRNA, the lack of significant changes in either mRNA or protein levels of IL-6, IL-10 or TNF-α mRNA in RAO horses in exacerbation suggests that these particular cytokines in bronchial tissue may not play a substantive role in the active inflammation of this disease. To support this contention further studies examining time dependency of expression of IL-6, IL-10 or TNF-α are needed, as is expansion of the range of cytokines to include other key regulators of airway inflammation.

  4. Airway epithelial cells initiate the allergen response through transglutaminase 2 by inducing IL-33 expression and a subsequent Th2 response

    Oh, Keunhee; Seo, Myung Won; Lee, Ga Young; Byoun, Ok-Jin; Kang, Hye-Ryun; Cho, Sang-Heon; Lee, Dong-Sup


    Background Transglutaminase 2 (TG2) is a post-translational protein-modifying enzyme that catalyzes the transamidation reaction, producing crosslinked or polyaminated proteins. Increased TG2 expression and activity have been reported in various inflammatory conditions, such as rheumatoid arthritis, inflammation-associated pulmonary fibrosis, and autoimmune encephalitis. In particular, TG2 from epithelial cells is important during the initial inflammatory response in the lung. In this study, w...

  5. Origins of increased airway smooth muscle mass in asthma.

    Berair, Rachid; Saunders, Ruth; Brightling, Christopher E


    Asthma is characterized by both chronic inflammation and airway remodeling. Remodeling--the structural changes seen in asthmatic airways--is pivotal in the pathogenesis of the disease. Although significant advances have been made recently in understanding the different aspects of airway remodeling, the exact biology governing these changes remains poorly understood. There is broad agreement that, in asthma, increased airway smooth muscle mass, in part due to smooth muscle hyperplasia, is a very significant component of airway remodeling. However, significant debate persists on the origins of these airway smooth muscle cells. In this review article we will explore the natural history of airway remodeling in asthma and we will discuss the possible contribution of progenitors, stem cells and epithelial cells in mesenchymal cell changes, namely airway smooth muscle hyperplasia seen in the asthmatic airways. PMID:23742314

  6. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    Atsushi Yasukawa

    Full Text Available Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  7. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II and 2-oxoglutarate-dependent dioxygenase EctD.

    Klaus Reuter

    Full Text Available As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD is a member of the non-heme iron(II-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11. These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe(3+ at a resolution of 1.85 A. Like other non-heme iron(II and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded beta-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family.

  8. Steady-state kinetics and spectroscopic characterization of enzyme-tRNA interactions for the non-heme diiron tRNA-monooxygenase, MiaE.

    Subedi, Bishnu P; Corder, Andra L; Zhang, Siai; Foss, Frank W; Pierce, Brad S


    MiaE [2-methylthio-N(6)-isopentenyl-adenosine(37)-tRNA monooxygenase] isolated from Salmonella typhimurium is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide (ms(2)i(6)A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N(6)-(4-hydroxyisopentenyl)-adenosine(37). In this work, isopentenylated tRNA substrates for MiaE were produced from small RNA oligomers corresponding to the anticodon stem loop (ACSL) region of tRNA(Trp) using recombinant MiaA and dimethylallyl pyrophosphate. Steady-state rates for MiaE-catalyzed substrate hydroxylation were determined using recombinant ferredoxin (Fd) and ferredoxin reductase (FdR) to provide a catalytic electron transport chain (ETC) using NADPH as the sole electron source. As with previously reported peroxide-shunt assays, steady-state product formation retains nearly stoichiometric (>98%) E stereoselectivity. MiaE-catalyzed i(6)A-ACSL(Trp) hydroxylation follows Michaelis-Menten saturation kinetics with kcat, KM, and V/K determined to be 0.10 ± 0.01 s(-1), 9.1 ± 1.5 μM, and ∼11000 M(-1) s(-1), respectively. While vastly slower, MiaE-catalyzed hydroxylation of free i(6)A nucleoside could also be observed using the (Fd/FdR)-ETC assay. By comparison to the V/K determined for i(6)A-ACSL substrates, an ∼6000-fold increase in enzymatic efficiency is imparted by ACSL(Trp)-MiaE interactions. The impact of substrate tRNA-MiaE interactions on protein secondary structure and active site electronic configuration was investigated using circular dichroism, dual-mode X-band electron paramagnetic resonance, and Mössbauer spectroscopies. These studies demonstrate that binding of tRNA to MiaE induces a protein conformational change that influences the electronic structure of the diiron site analogous to what has been observed for various bacterial multicomponent diiron monooxygenases upon titration with their corresponding effector

  9. The Glandular Stem/Progenitor Cell Niche in Airway Development and Repair

    Liu, Xiaoming; Engelhardt, John F.


    Airway submucosal glands (SMGs) are major secretory structures that lie beneath the epithelium of the cartilaginous airway. These glands are believed to play important roles in normal lung function and airway innate immunity by secreting antibacterial factors, mucus, and fluid into the airway lumen. Recent studies have suggested that SMGs may additionally serve as a protective niche for adult epithelial stem/progenitor cells of the proximal airways. As in the case of other adult stem cell nic...

  10. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Romain Ferru-Clément

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR is a chloride channel that is expressed on the apical plasma membrane (PM of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o- expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  11. Antimicrobial Peptide P60.4Ac-Containing Creams and Gel for Eradication of Methicillin-Resistant Staphylococcus aureus from Cultured Skin and Airway Epithelial Surfaces.

    Haisma, Elisabeth M; Göblyös, Anikó; Ravensbergen, Bep; Adriaans, Alwin E; Cordfunke, Robert A; Schrumpf, Jasmijn; Limpens, Ronald W A L; Schimmel, Kirsten J M; den Hartigh, Jan; Hiemstra, Pieter S; Drijfhout, Jan Wouter; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H


    We previously found the LL-37-derived peptide P60.4Ac to be effective against methicillin-resistant Staphylococcus aureus (MRSA) on human epidermal models (EMs). The goal of this study was to identify the preferred carrier for this peptide for topical application on skin and mucosal surfaces. We prepared P60.4Ac in three formulations, i.e., a water-in-oil cream with lanolin (Softisan 649), an oil-in-water cream with polyethylene glycol hexadecyl ether (Cetomacrogol), and a hydroxypropyl methylcellulose (hypromellose) 4000 gel. We tested the antimicrobial efficacy of the peptide in these formulations against mupirocin-resistant and -sensitive MRSA strains on EMs and bronchial epithelial models (BEMs). The cytotoxic effects of formulated P60.4Ac on these models were determined using histology and WST-1 and lactate dehydrogenase assays. Moreover, we assessed the stability of the peptide in these formulations with storage for up to 3 months. Killing of MRSA by P60.4Ac in the two creams was less effective than that by P60.4Ac in the hypromellose gel. In agreement with those findings, P60.4Ac in the hypromellose gel was highly effective in eradicating the two MRSA strains from EMs. We found that even 0.1% (wt/wt) P60.4Ac in the hypromellose gel killed >99% of the viable planktonic bacteria and >85% of the biofilm-associated bacteria on EMs. Hypromellose gels containing 0.1% and 0.5% (wt/wt) P60.4Ac effectively reduced the numbers of viable MRSA cells from BEMs by >90%. No cytotoxic effects of P60.4Ac in the hypromellose gel with up to 2% (wt/wt) P60.4Ac on keratinocytes in EMs and in the hypromellose gel with up to 0.5% (wt/wt) P60.4Ac on epithelial cells in BEMs were observed. High-performance liquid chromatography analysis showed that P60.4Ac was stable in the Softisan cream and the hypromellose gel but not in the Cetomacrogol cream. We conclude that P60.4Ac formulated in hypromellose gel is both stable and highly effective in eradicating MRSA from colonized EMs and

  12. Lipids in airway secretions

    Lipids form a significant portion of airway mucus yet they have not received the same attention that epithelial glycoproteins have. We have analysed, by thin layer chromatography, lipids present in airway mucus under 'normal' and hypersecretory (pathological) conditions.The 'normals' included (1) bronchial lavage obtained from healthy human volunteers and from dogs and (2) secretions produced ''in vitro'' by human (bronchial) and canine (tracheal) explants. Hypersecretory mucus samples included (1) lavage from dogs made bronchitic by exposure to SO2, (2) bronchial aspirates from acute and chronic tracheostomy patients, (3) sputum from patients with cystic fibrosis and chronic bronchitis and (4) postmortem secretions from patients who died from sudden infant death syndrome (SIDS) or from status asthmaticus. Cholesterol was found to be the predominant lipid in 'normal' mucus with lesser amounts of phospholipids. No glycolipids were detected. In the hypersecretory mucus, in addition to neutral and phospholipids, glycolipids were present in appreciable amounts, often the predominant species, suggesting that these may be useful as markers of disease. Radioactive precursors 14C acetate and 14C palmitate were incorporated into lipids secreted ''in vitro'' by canine tracheal explants indicating that they are synthesised by the airway. (author)

  13. Lipids in airway secretions

    Bhaskar, K.R.; DeFeudis O' Sullivan, D.; Opaskar-Hincman, H.; Reid, L.M.


    Lipids form a significant portion of airway mucus yet they have not received the same attention that epithelial glycoproteins have. We have analysed, by thin layer chromatography, lipids present in airway mucus under 'normal' and hypersecretory (pathological) conditions.The 'normals' included (1) bronchial lavage obtained from healthy human volunteers and from dogs and (2) secretions produced ''in vitro'' by human (bronchial) and canine (tracheal) explants. Hypersecretory mucus samples included (1) lavage from dogs made bronchitic by exposure to SO/sub 2/, (2) bronchial aspirates from acute and chronic tracheostomy patients, (3) sputum from patients with cystic fibrosis and chronic bronchitis and (4) postmortem secretions from patients who died from sudden infant death syndrome (SIDS) or from status asthmaticus. Cholesterol was found to be the predominant lipid in 'normal' mucus with lesser amounts of phospholipids. No glycolipids were detected. In the hypersecretory mucus, in addition to neutral and phospholipids, glycolipids were present in appreciable amounts, often the predominant species, suggesting that these may be useful as markers of disease. Radioactive precursors /sup 14/C acetate and /sup 14/C palmitate were incorporated into lipids secreted ''in vitro'' by canine tracheal explants indicating that they are synthesised by the airway.

  14. APO-9′-Fucoxanthinone Extracted from Undariopsis peteseniana Protects Oxidative Stress-Mediated Apoptosis in Cigarette Smoke-Exposed Human Airway Epithelial Cells

    Jun-Ho Jang


    Full Text Available Long-term cigarette smoking increases the risk for chronic obstructive pulmonary disease (COPD, characterized by irreversible expiratory airflow limitation. The pathogenesis of COPD involves oxidative stress and chronic inflammation. Various natural marine compounds possess both anti-oxidant and anti-inflammatory properties, but few have been tested for their efficacy in COPD models. In this study, we conducted an in vitro screening test to identify natural compounds isolated from various brown algae species that might provide protection against cigarette smoke extract (CSE-induced cytotoxicity. Among nine selected natural compounds, apo-9′-fucoxanthinone (Apo9F exhibited the highest protection against CSE-induced cytotoxicity in immortalized human bronchial epithelial cells (HBEC2. Furthermore, the protective effects of Apo9F were observed to be associated with a significant reduction in apoptotic cell death, DNA damage, and the levels of mitochondrial reactive oxygen species (ROS released from CSE-exposed HBEC2 cells. These results suggest that Apo9F protects against CSE-induced DNA damage and apoptosis by regulating mitochondrial ROS production.

  15. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin.

    Erik Richter

    Full Text Available Responsiveness of cells to alpha-toxin (Hla from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of the epidermal growth factor receptor EGFR and mitogen-activated protein kinases MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects.

  16. Infection of human airway epithelial cells by different subtypes of Dobrava-Belgrade virus reveals gene expression patterns corresponding to their virulence potential.

    Witkowski, Peter T; Bourquain, Daniel; Bankov, Katrin; Auste, Brita; Dabrowski, Piotr W; Nitsche, Andreas; Krüger, Detlev H; Schaade, Lars


    Dobrava-Belgrade virus (DOBV) is a pathogen causing hemorrhagic fever with renal syndrome in Europe. Virulence and case fatality rate are associated with virus genotype; however the reasons for these differences are not well understood. In this work we present virus-specific effects on the gene expression profiles of human lung epithelial cells (A549) infected with different genotypes of DOBV (Dobrava, Kurkino, and Sochi), as well as the low-virulent Tula virus (TULV). The data was collected by whole-genome gene expression microarrays and confirmed by quantitative real-time PCR. Despite their close genetic relationship, the expression profiles induced by infection with different hantaviruses are significantly varying. Major differences were observed in regulation of immune response genes, which were especially induced by highly virulent DOBV genotypes Dobrava and Sochi in contrast to less virulent DOBV-Kurkino and TULV. This work gives first insights into the differences of virus - host interactions of DOBV on genotype level. PMID:27058765

  17. Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+

    Epidemiological studies have implicated zinc (Zn2+) in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads to Src-dependent activation of EGFR signaling in B82 and A431 cells. In order to elucidate the mechanism of Zn2+-induced EGFR activation in HAEC, we treated HAEC with 500 μM ZnSO4 for 5-20 min and measured the state of activation of EGFR, c-Src and PTPs. Western blots revealed that exposure to Zn2+ results in increased phosphorylation at both trans- and autophosphorylation sites in the EGFR. Zn2+-mediated EGFR phosphorylation did not require ligand binding and was ablated by the EGFR kinase inhibitor PD153035, but not by the Src kinase inhibitor PP2. Src activity was inhibited by Zn2+ treatment of HAEC, consistent with Src-independent EGFR transactivation in HAEC exposed to Zn2+. The rate of exogenous EGFR dephosphorylation in lysates of HAEC exposed to Zn2+ or V4+ was significantly diminished. Moreover, exposure of HAEC to Zn2+ also resulted in a significant impairment of dephosphorylation of endogenous EGFR. These data show that Zn2+-induced activation of EGFR in HAEC involves a loss of PTP activities whose function is to dephosphorylate EGFR in opposition to baseline EGFR kinase activity. These findings also suggest that there are marked cell-type-specific differences in the mechanism of EGFR activation induced by Zn2+ exposure

  18. Inhibition of airway surface fluid absorption by cholinergic stimulation

    Nam Soo Joo; Krouse, Mauri E.; Jae Young Choi; Hyung-Ju Cho; Wine, Jeffrey J.


    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated ...

  19. A hybrid density functional study of O-O bond cleavage and phenyl ring hydroxylation for a biomimetic non-heme iron complex.

    Borowski, Tomasz; Bassan, Arianna; Siegbahn, Per E M


    Density functional calculations using the B3LYP functional have been used to study the reaction mechanism of [Fe(Tp(Ph2))BF] (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate; BF = benzoylformate) with dioxygen. This mononuclear non-heme iron(II) complex was recently synthesized, and it proved to be the first biomimetic complex reproducing the dioxygenase activity of alpha-ketoglutarate-dependent enzymes. Moreover, the enthalpy and entropy of activation for this biologically interesting process were derived from kinetic experiments offering a unique possibility for direct comparison of theoretical and experimental data. The results reported here support a mechanism in which oxidative decarboxylation of the keto acid is the rate-limiting step. This oxygen activation process proceeds on the septet potential energy surface through a transition state for a concerted O-O and C-C bond cleavage. In the next step, a high-valent iron-oxo species performs electrophilic attack on the phenyl ring of the Tp(Ph2) ligand leading to an iron(III)-radical sigma-complex. Subsequent proton-coupled electron-transfer yields an iron(II)-phenol intermediate, which can bind dioxygen and reduce it to a superoxide radical. Finally, the protonated superoxide radical leaves the first coordination sphere of the iron(III)-phenolate complex and dismutates to dioxygen and hydrogen peroxide. The calculated activation barrier (enthalpy and entropy) and the overall reaction energy profile agree well with experimental data. A comparison to the enzymatic process, which is suggested to occur on the quintet surface, has been made. PMID:15132638

  20. Emergency airway puncture

    Emergency airway puncture is the placement of a hollow needle through the throat into the airway. It ... Emergency airway puncture is done in an emergency situation, when someone is choking and all other efforts ...

  1. Measuring the Orientation of Taurine in the Active Site of the Non-Heme Fe (II)/α-Ketoglutarate Dependent Taurine Hydroxylase (TauD) using Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy

    Casey, Thomas M.; Grzyska, Piotr K.; Hausinger, Robert P.; McCracken, John


    The position and orientation of taurine near the non-heme Fe(II) center of the α-ketoglutarate (α-KG) dependent taurine hydroxylase (TauD) was measured using Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy. TauD solutions containing Fe(II), α-KG, and natural abundance taurine or specifically deuterated taurine were prepared anaerobically and treated with nitric oxide (NO) to make an S=3/2 {FeNO}7 complex that is suitable for robust analysis with EPR spectroscopy. Using ratios of E...

  2. Ozone Enhances Diesel Exhaust Particles (DEP-Induced Interleukin-8 (IL-8 Gene Expression in Human Airway Epithelial Cells through Activation of Nuclear Factors- κB (NF-κB and IL-6 (NF-IL6

    James Kelley


    Full Text Available Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM2.5-10, including diesel exhaust particles (DEP has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8 gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr significantly increased DEP-induced IL-8 gene expression in A549 cells (117 ± 19 pg/ml, n = 6, p < 0.05 as compared to cultures treated with DEP (100 μg/ml x 4 hr alone (31 ± 3 pg/ml, n = 6, or cultures exposed to purified air (24 ± 6 pg/ml, n = 6. The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF-κB and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung.

  3. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation

    Nassini, Romina; Pedretti, Pamela; Moretto, Nadia;


    inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express...... functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells...... (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves.Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1...

  4. Transient Receptor Potential Ankyrin 1 Channel Localized to Non-Neuronal Airway Cells Promotes Non-Neurogenic Inflammation

    Nassini, Romina; Pedretti, Pamela; Moretto, Nadia;


    inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express...... functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells...... (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves.Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1...

  5. LIGHT is a crucial mediator of airway remodeling.

    Hung, Jen-Yu; Chiang, Shyh-Ren; Tsai, Ming-Ju; Tsai, Ying-Ming; Chong, Inn-Wen; Shieh, Jiunn-Min; Hsu, Ya-Ling


    Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease are major health problems globally. Airway epithelial cells play important role in airway remodeling, which is a critical process in the pathogenesis of diseases. This study aimed to demonstrate that LIGHT, an inflammatory factor secreted by T cells after allergen exposure, is responsible for promoting airway remodeling. LIGHT increased primary human bronchial epithelial cells (HBECs) undergoing epithelial-mesenchymal transition (EMT) and expressing MMP-9. The induction of EMT was associated with increased NF-κB activation and p300/NF-κB association. The interaction of NF-κB with p300 facilitated NF-κB acetylation, which in turn, was bound to the promoter of ZEB1, resulting in E-cadherin downregulation. LIGHT also stimulated HBECs to produce numerous cytokines/chemokines that could worsen airway inflammation. Furthermore, LIGHT enhanced HBECs to secrete activin A, which increased bronchial smooth muscle cell (BSMC) migration. In contrast, depletion of activin A decreased such migration. The findings suggest a new molecular determinant of LIGHT-mediated pathogenic changes in HBECs and that the LIGHT-related vicious cycle involving HBECs and BSMCs may be a potential target for the treatment of chronic inflammation airway diseases with airway remodeling. PMID:25251281

  6. Ciliated epithelial cell lifespan in the mouse trachea and lung

    Rawlins, Emma L.; Brigid L M Hogan


    The steady-state turnover of epithelial cells in the lung and trachea is highly relevant to investigators who are studying endogenous stem cells, manipulating gene expression in vivo, or using viral vectors for gene therapy. However, the average lifetime of different airway epithelial cell types has not previously been assessed using currently available genetic techniques. Here, we use Cre/loxP genetic technology to indelibly label a random fraction of ciliated cells throughout the airways of...

  7. Respiratory epithelial cells orchestrate pulmonary innate immunity

    Whitsett, Jeffrey A.; Alenghat, Theresa


    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of ...

  8. Airway management in trauma

    Rashid M Khan


    Full Text Available Trauma has assumed epidemic proportion. 10% of global road accident deaths occur in India. Hypoxia and airway mismanagement are known to contribute up to 34% of pre-hospital deaths in these patients. A high degree of suspicion for actual or impending airway obstruction should be assumed in all trauma patients. Objective signs of airway compromise include agitation, obtundation, cyanosis, abnormal breath sound and deviated trachea. If time permits, one should carry out a brief airway assessment prior to undertaking definitive airway management in these patients. Simple techniques for establishing and maintaining airway patency include jaw thrust maneuver and/or use of oro- and nas-opharyngeal airways. All attempts must be made to perform definitive airway management whenever airway is compromised that is not amenable to simple strategies. The selection of airway device and route- oral or -nasal, for tracheal intubation should be based on nature of patient injury, experience and skill level.

  9. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    Whitsett, Jeffrey A; Alenghat, Theresa


    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  10. Interleukin-20 promotes airway remodeling in asthma.

    Gong, Wenbin; Wang, Xin; Zhang, Yuguo; Hao, Junqing; Xing, Chunyan; Chu, Qi; Wang, Guicheng; Zhao, Jiping; Wang, Junfei; Dong, Qian; Liu, Tian; Zhang, Yuanyuan; Dong, Liang


    Previous studies have demonstrated that interleukin-20 (IL-20) is a pro-inflammatory cytokine, and it has been implicated in psoriasis, lupus nephritis, rheumatoid arthritis, atherosclerosis, and ulcerative colitis. Little is known about the effects of IL-20 in airway remodeling in asthma. The aim of our study was to demonstrate the function of IL-20 in airway remodeling in asthma. To identify the expression of IL-20 and its receptor, IL-20R1/IL-20R2, in the airway epithelium in bronchial tissues, bronchial biopsy specimens were collected from patients and mice with asthma and healthy subjects and stained with specific antibodies. To characterize the effects of IL-20 in asthmatic airway remodeling, we silenced and stimulated IL-20 in cell lines isolated from mice by shRNA and recombinant protein approaches, respectively, and detected the expression of α-SMA and FN-1 by Western blot analysis. First, overexpression of IL-20 and its receptor, IL-20R1/IL-20R2, was detected in the airway epithelium collected from patients and mice with asthma. Second, IL-20 increased the expression of fibronectin-1 and α-SMA, and silencing of IL-20 in mouse lung epithelial (MLE)-12 cells decreased the expression of fibronectin-1 and α-SMA. IL-20 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting IL-20 and/or its receptors may be a new therapeutic strategy for asthma. PMID:25028099

  11. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis.

    Keglowich, L F; Borger, P


    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  12. Biomechanics of liquid-epithelium interactions in pulmonary airways

    Ghadiali, Samir N.; Gaver, Donald P.


    The delicate structure of the lung epithelium makes it susceptible to surface tension induced injury. For example, the cyclic reopening of collapsed and/or fluid-filled airways during the ventilation of injured lungs generates hydrodynamic forces that further damage the epithelium and exacerbate lung injury. The interactions responsible for epithelial injury during airway reopening are fundamentally multiscale, since air-liquid interfacial dynamics affect global lung mechanics, while surface ...

  13. Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma

    SUN Yong-chang; ZHOU Qing-tao; YAO Wan-zhen


    @@ Asthma is a chronic inflammatory airway disease characterized by the involvement of many cells (including eosinophils, mast cells, T cells, neutrophils and airway epithelial cells) and their cellular components.1 While airway eosinophilic inflammation is considered as a characteristic of asthma, our previous reports2,3 and other recent studies4,5 have demonstrated that neutrophils may play important roles in airway inflammation, or even in airway remodeling, particularly in severe asthma. The mechanisms underlying the neutrophil accumulation in asthmatic airway remain to be elucidated. Interleukin-8 (IL-8) is a potent chemotactic factor for neutrophils, and was demonstrated to be increased in asthmatic airways.6,7 More recent studies have shown that T-cell derived IL-17 can accumulate neutrophils via a IL-8 dependent pathway.8,9 Whether IL-17/IL-8 mechanism is involved in airway inflammation in severe asthma is not clear.

  14. Rapid improvement in abnormal pulmonary epithelial permeability after stopping cigarettes

    Minty, Barbara D; Jordan, C.; Jones, J G


    A new, non-invasive method of measuring pulmonary epithelial damage in man was compared with traditional tests of small-airway function. Pulmonary epithelial permeability was expressed as the half-time clearance from the lung into blood of 99mTc-diethylene triaminepenta-acetic acid (99mTc-DTPA) deposited predominantly in the alveoli from an inhaled aerosol.

  15. Airways microbiota: Hidden Trojan horses in asbestos exposed individuals?

    Magouliotis, Dimitrios E; Tasiopoulou, Vasiliki S; Molyvdas, Paschalis-Adam; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G


    Malignant pleura mesothelioma (MPM) is a rare type of cancer with devastating prognosis, which develops in the pleural cavity from transformed mesothelium. MPM has been directly associated with asbestos exposure however there are aspects of the pathophysiology involved in the translocation of asbestos fibers in the pleura that remain unclear. Here, we propose and discuss that certain proteins secreted by airways symbiotic microbiota create membrane pores to the airway epithelial cells, through which asbestos fibers can penetrate the lung parenchyma and reach the sub-pleural areas. We evaluate this hypothesis using data from the published literature regarding the airways microbiota toxins such as cholesterol-dependent cytolysins (CDCs). PMID:25262213

  16. Effects of dynamic compression on lentiviral transduction in an in vitro airway wall model

    Tomei, A. A.; Choe, M. M.; Swartz, M. A.


    Asthmatic patients are more susceptible to viral infection, and we asked whether dynamic strain on the airway wall (such as that associated with bronchoconstriction) would influence the rate of viral infection of the epithelial and subepithelial cells. To address this, we characterized the barrier function of a three-dimensional culture model of the bronchial airway wall mucosa, modified the culture conditions for optimization of ciliogenesis, and compared epithelial and subepithelial green f...

  17. Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features

    Skevaki Chrysanthi L; Psarras Stelios; Volonaki Eleni; Pratsinis Harris; Spyridaki Irini S; Gaga Mina; Georgiou Vassiliki; Vittorakis Stylianos; Telcian Aurica G; Maggina Paraskevi; Kletsas Dimitris; Gourgiotis Dimitrios; Johnston Sebastian L; Papadopoulos Nikolaos G


    Abstract Background Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. Methods Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovirus infection of bronchial epithelial cells. The profibrotic effect of epithelial products was assessed by D...

  18. Superoxide Dismutase Inactivation in Pathophysiology of Asthmatic Airway Remodeling and Reactivity

    Comhair, Suzy A.A.; Xu, Weiling; Ghosh, Sudakshina; Thunnissen, Frederik B. J. M.; Almasan, Alexandru; Calhoun, William J.; Janocha, Allison J.; Zheng, Lemin; Hazen, Stanley L.; Erzurum, Serpil C.


    Airway hyperresponsiveness and remodeling are defining features of asthma. We hypothesized that impaired superoxide dismutase (SOD) antioxidant defense is a primary event in the pathophysiology of hyperresponsiveness and remodeling that induces apoptosis and shedding of airway epithelial cells. Mechanisms leading to apoptosis were studied in vivo and in vitro. Asthmatic lungs had increased apoptotic epithelial cells compared to controls as determined by terminal dUTP nick-end labeling-positiv...

  19. Upper airway test (image)

    An upper airway biopsy is obtained by using a flexible scope called a bronchoscope. The scope is passed down through ... may be performed when an abnormality of the upper airway is suspected. It may also be performed as ...

  20. Characterization of Side Population Cells from Human Airway Epithelium

    Hackett, Tillie-Louise; Shaheen, Furquan; Johnson, Andrew; Wadsworth, Samuel; Pechkovsky, Dmitri V; Jacoby, David B.; Kicic, Anthony; Stick, Stephen M.; Knight, Darryl A.


    The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelia...

  1. Human parainfluenza virus type 3 (HPIV3) induces production of IFNγ and RANTES in human nasal epithelial cells (HNECs)

    Lewandowska-Polak, Anna; Brauncajs, Małgorzata; Paradowska, Edyta; Jarzębska, Marzanna; Kurowski, Marcin; Moskwa, Sylwia; Leśnikowski, Zbigniew J.; Kowalski, Marek L


    Background Human parainfluenza virus type 3 (HPIV3), while infecting lower airway epithelial cells induces pneumonia and bronchiolitis in infants and children, and may lead to asthma exacerbations in children and adults. Respiratory viruses invading the airway epithelium activate innate immune response and induce inflammatory cytokine release contributing to the pathophysiology of upper and lower airway disorders. However, the effects of HPIV3 infection on nasal epithelial cells have not been...

  2. The Physiologically Difficult Airway

    Jarrod M. Mosier


    Full Text Available Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation.

  3. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease.

    Royce, Simon G; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Ricardo, Sharon D; Samuel, Chrishan S


    This study determined if the anti-fibrotic drug, serelaxin (RLN), could augment human bone marrow-derived mesenchymal stem cell (MSC)-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR) associated with chronic allergic airways disease (AAD/asthma). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9-11. Changes in airway inflammation (AI), epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF)-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP) expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p<0.05 vs OVA group). RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p<0.05 vs OVA group). Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p<0.05 vs either treatment alone), and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs. PMID:26426509

  4. TGF-β1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Doerner, Astrid M; Zuraw, Bruce L


    Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment o...

  5. Engineering Airway Epithelium

    John P. Soleas; Paz, Ana; Marcus, Paula; McGuigan, Alison; Waddell, Thomas K.


    Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and fun...

  6. Conquering the difficult airway.

    Gandy, William E


    Every medic should practice regularly for the inevitable difficult airway case. Practice should include review of the causes of difficult airways, as well as skill practice. Having a preassembled airway kit can make your response to an unexpected difficult situation easier. Of all the devices mentioned, the bougie is the airway practitioner's best friend. Using the BURP technique, if not contraindicated, together with the bougie will enable you to intubate many difficult patients with confidence. Remember, "If your patient cannot breathe, nothing else matters. PMID:18251307

  7. Discovery of a Promiscuous Non-Heme Iron Halogenase in Ambiguine Alkaloid Biogenesis: Implication for an Evolvable Enzyme Family for Late-Stage Halogenation of Aliphatic Carbons in Small Molecules.

    Hillwig, Matthew L; Zhu, Qin; Ittiamornkul, Kuljira; Liu, Xinyu


    The elucidation of enigmatic enzymatic chlorination timing in ambiguine indole alkaloid biogenesis led to the discovery and characterization of AmbO5 protein as a promiscuous non-heme iron aliphatic halogenase. AmbO5 was shown capable of selectively modifying seven structurally distinct ambiguine, fischerindole and hapalindole alkaloids with chlorine via late-stage aliphatic C-H group functionalization. Cross-comparison of AmbO5 with a previously characterized aliphatic halogenase homolog WelO5 that has a restricted substrate scope led to the identification of a C-terminal sequence motif important for substrate tolerance and specificity. Mutagenesis of 18 residues of WelO5 within the identified sequence motif led to a functional mutant with an expanded substrate scope identical to AmbO5, but an altered substrate specificity from the wild-type enzymes. These observations collectively provide evidence on the evolvable nature of AmbO5/WelO5 enzyme duo in the context of hapalindole-type alkaloid biogenesis and implicate their promise for the future development of designer biocatalysis for the selective late-stage modification of unactivated aliphatic carbon centers in small molecules with halogens. PMID:27027281

  8. Temporal and Spatial Expression of Transforming Growth Factor-β after Airway Remodeling to Tobacco Smoke in Rats.

    Hoang, Laura L; Nguyen, Yen P; Aspeé, Rayza; Bolton, Sarah J; Shen, Yi-Hsin; Wang, Lei; Kenyon, Nicholas J; Smiley-Jewell, Suzette; Pinkerton, Kent E


    Airway remodeling is strongly correlated with the progression of chronic obstructive pulmonary disease (COPD). In this study, our goal was to characterize progressive structural changes in site-specific airways, along with the temporal and spatial expression of transforming growth factor (TGF)-β in the lungs of male spontaneously hypertensive rats exposed to tobacco smoke (TS). Our studies demonstrated that TS-induced changes of the airways is dependent on airway generation and exposure duration for proximal, midlevel, and distal airways. Stratified squamous epithelial cell metaplasia was evident in the most proximal airways after 4 and 12 weeks but with minimal levels of TGF-β-positive epithelial cells after only 4 weeks of exposure. In contrast, epithelial cells in midlevel and distal airways were strongly TGF-β positive at both 4 and 12 weeks of TS exposure. Airway smooth muscle volume increased significantly at 4 and 12 weeks in midlevel airways. Immunohistochemistry of TGF-β was also found to be significantly increased at 4 and 12 weeks in lymphoid tissues and alveolar macrophages. ELISA of whole-lung homogenate demonstrated that TGF-β2 was increased after 4 and 12 weeks of TS exposure, whereas TGF-β1 was decreased at 12 weeks of TS exposure. Airway levels of messenger RNA for TGF-β2, as well as platelet-derived growth factor-A, granulocyte-macrophage colony-stimulating factor, and vascular endothelial growth factor-α, growth factors regulated by TGF-β, were significantly decreased in animals after 12 weeks of TS exposure. Our data indicate that TS increases TGF-β in epithelial and inflammatory cells in connection with airway remodeling, although the specific role of each TGF-β isoform remains to be defined in TS-induced airway injury and disease. PMID:26637070

  9. Airway distensibility in Chronic Obstructive Airway Disease

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger; Petersen, Jens; De Bruijne, Marleen


    airway distensibility, defined as the ratio of relative change in lumen diameter to the relative change in total lung volume (TLV) divided by predicted total lung capacity (pTLC) . Methods – We included 1900 participants from the Danish Lung Cancer Screening Trial (DLCST); all randomized to annual low......-dose CT for a period of 5 years (table 1). Images were reconstructed both with high contrast resolution (3 mm, kernel C) for emphysema analysis and with high spatial resolution (1 mm, kernel D) for airway analysis. Images were analysed by in-house developed software designed to segment lungs and localize......), 10-20% (mild), 20%-30% (moderate) or >30% (severe). Spirometry was performed annually and participants were divided into severity groups according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Data were analysed in a mixed effects regression model with log(airway lumen...

  10. Dedifferentiation of committed epithelial cells into stem cells in vivo

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj


    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...