WorldWideScience

Sample records for aircraft fuels

  1. Alternate Fuels for Use in Commercial Aircraft

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  2. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  3. Effect of broadened-specification fuels on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.

  4. Development of fuel cell systems for aircraft applications based on synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pasel, J.; Samsun, R.C.; Doell, C.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    At present, in the aviation sector considerable scientific project work deals with the development of fuel cell systems based on synthetic fuels to be integrated in future aircraft. The benefits of fuel cell systems in aircraft are various. They offer the possibility to simplify the aircraft layout. Important systems, i.e. the gas turbine powered auxiliary power unit (APU) for electricity supply, the fuel tank inserting system and the water tank, can be substituted by one single system, the fuel cell system. Additionally, the energy demand for ice protection can be covered assisted by fuel cell systems. These measures reduce the consumption of jet fuel, increase aircraft efficiency and allow the operation at low emissions. Additionally, the costs for aircraft related investments, for aircraft maintenance and operation can be reduced. On the background of regular discussions about environmental concerns (global warming) of kerosene Jet A-1 and its availability, which might be restricted in a few years, the aircraft industry is keen to employ synthetic, sulfur-free fuels such as Fischer-Tropsch fuels. These comprise Bio-To-Liquid and Gas-To-Liquid fuels. Within this field of research the Institute of Energy Research (IEF-3) in Juelich develops complete and compact fuel cell systems based on the autothermal reforming of these kinds of fuels in cooperation with industry. This paper reports about this work. (orig.)

  5. Alternate aircraft fuels prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  6. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  7. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  8. Comparison of alternate fuels for aircraft

    Science.gov (United States)

    Witcofski, R. D.

    1979-01-01

    A comparison of candidate alternate fuels for aircraft is presented. The fuels discussed include liquid hydrogen, liquid methane, and synthetic aviation kerosene. Each fuel is evaluated from the standpoint of production, transmission, airport storage and distribution facilities, and use in aircraft. Technology deficient areas for cryogenic fuels, which should be advanced prior to the introduction of the fuels into the aviation industry, are identified, as are the cost and energy penalties associated with not achieving those advances. Environmental emissions and safety aspects of fuel selection are discussed. A detailed description of the various fuel production and liquefaction processes and their efficiencies and economics is given.

  9. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    Science.gov (United States)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  10. Enabling alternate fuels for commercial aircraft

    OpenAIRE

    Daggett, D.

    2010-01-01

    The following reports on the past four years of work to examine the feasibility, sustainability and economic viability of developing a renewable, greenhouse-gas-neutral, liquid biofuel for commercial aircraft. The sharp increase in environmental concerns, such as global warming, as well as the volatile price fluctuations of fossil fuels, has ignited a search for alternative transportation fuels. However, commercial aircraft can not use present alternative fuels that are designed for ground...

  11. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  12. Alternate aircraft fuels: Prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  13. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit fuel tanks containing a mixture of anhydrous hydrazine and monomethyl hydrazine (M86 fuel) and designed...

  14. Impact of future fuel properties on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  15. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    Science.gov (United States)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  16. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  17. Study of advanced fuel system concepts for commercial aircraft

    Science.gov (United States)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  18. Fuel property effects on Navy aircraft fuel systems

    Science.gov (United States)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  19. CFD analysis of aircraft fuel tanks thermal behaviour

    Science.gov (United States)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  20. Study of LH2 fueled subsonic passenger transport aircraft

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1976-01-01

    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

  1. Fuel characteristics pertinent to the design of aircraft fuel systems

    Science.gov (United States)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  2. Environmental compatibility of CRYOPLANE the cryogenic-fuel aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H.G. [Daimler Benz Aerospace Airbus, Hamburg (Germany)

    1997-12-31

    `CRYOPLANE` is the project name for an aircraft powered by cryogenic fuel, either liquid natural gas (LNG, mainly consisting of methane) or liquid hydrogen (LH{sub 2}). Emission of CO{sub 2}, unburnt hydrocarbons, soot and sulfur will be completely avoided by hydrogen combustion: LH{sub 2} is an extremely pure liquid. Emission of water as a primary combustion product is increased by a factor of 2.6. Exhaust gases behind hydrogen engines contain more water than behind kerosene engines, and hence can form contrails under a wider range of atmospheric conditions. Liquid hydrogen fueled aircraft promise big advantages relative to kerosene aircraft in terms of environmental compatibility. (R.P.)

  3. Environmental compatibility of CRYOPLANE the cryogenic-fuel aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H G [Daimler Benz Aerospace Airbus, Hamburg (Germany)

    1998-12-31

    `CRYOPLANE` is the project name for an aircraft powered by cryogenic fuel, either liquid natural gas (LNG, mainly consisting of methane) or liquid hydrogen (LH{sub 2}). Emission of CO{sub 2}, unburnt hydrocarbons, soot and sulfur will be completely avoided by hydrogen combustion: LH{sub 2} is an extremely pure liquid. Emission of water as a primary combustion product is increased by a factor of 2.6. Exhaust gases behind hydrogen engines contain more water than behind kerosene engines, and hence can form contrails under a wider range of atmospheric conditions. Liquid hydrogen fueled aircraft promise big advantages relative to kerosene aircraft in terms of environmental compatibility. (R.P.)

  4. Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels

    Science.gov (United States)

    Pasion, A. J.; Thomas, I.

    1977-01-01

    An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.

  5. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    Science.gov (United States)

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  6. Analysis of Virtual Sensors for Predicting Aircraft Fuel Consumption

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous research described the use of machine learning algorithms to predict aircraft fuel consumption. This technique, known as Virtual Sensors, models fuel...

  7. Fuel cell APU for commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daggett, D.L. [Boeing Commercial Airplane, Seattle, WA (United States); Lowery, N. [Princeton Univ., Princeton, NJ (United States); Wittmann, J. [Technische Univ. Muenchen (Germany)

    2005-07-01

    The Boeing Company has always sought to improve fuel efficiency in commercial aircraft. An opportunity now exists to explore technology that will allow fuel efficiency improvements to be achieved while simultaneously reducing emissions. Replacing the current aircraft gas turbine-powered Auxiliary Power Unit with a hybrid Solid Oxide Fuel Cell is anticipated to greatly improve fuel efficiency, reduce emissions and noise as well as improve airplane performance. However, there are several technology hurdles that need to be overcome. If SOFC technology is to be matured for the betterment of the earth community, the fuel cell industry, aerospace manufacturers and other end users all need to work together to overcome these challenges. Aviation has many of the same needs in fuel cell technology as other sectors, such as reducing cost and improving reliability and fuel efficiency in order to commercialize the technology. However, there are other distinct aerospace needs that will not necessarily be addressed by the industrial sector. These include development of lightweight materials and small-volume fuel cell systems that can reform hydrocarbon fuels. Aviation also has higher levels of safety requirements. Other transportation modes share the same requirement for vibration and shock tolerant fuel cell stacks. Lastly, as fuel cells are anticipated to be operated in flight, they must be capable of operating over a wide range of atmospheric conditions. By itself, the aviation sector does not appear to offer enough of a potential market to justify the investment required by any one manufacturer to develop fuel cells for APU replacements. Therefore, means must be found to modularize components and make SOFC stacks sufficiently similar to industrial units so that manufacturing economy of scales can be brought to bear. Government R and D and industry support are required to advance the technology. Because aerospace fuel cells will be higher performing units, the benefits of

  8. Study of advanced fuel system concepts for commercial aircraft and engines

    Science.gov (United States)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  9. Microbial penetration and utilization of organic aircraft fuel-tank coatings.

    Science.gov (United States)

    Crum, M G; Reynolds, R J; Hedrick, H G

    1967-11-01

    Microorganisms have been found as contaminants in various types of aircraft fuel tanks. Their presence introduces problems in the operation of the aircraft, including destruction of components such as the organic coatings used as protective linings in the fuel tanks. Microbial penetration and utilization of the currently used organic coatings, EC 776, DV 1180, PR 1560, and DeSoto 1080, were determined by changes in electrical resistances of the coatings; mycelial weight changes; growth counts of the bacteria; and manometric determinations on Pseudomonas aeruginosa (GD-FW B-25) and Cladosporium resinae (QMC-7998). The results indicate EC 776 and DV 1180 to be less resistant to microbial degradation than the other coatings. Organic coatings, serving as a source of nutrition, would be conducive to population buildups in aircraft fuel tanks.

  10. Multi-Fuel Rotary Engine for General Aviation Aircraft

    Science.gov (United States)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  11. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  12. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    Science.gov (United States)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  13. A fuel cell driven aircraft baggage tractor

    Energy Technology Data Exchange (ETDEWEB)

    Sterkenburg, Stefan van [HAN Univ. of Applied Sciences (Netherlands); Rijs, Aart van; Hupkens, Huib [Silent Motor Company, Arnhem (Netherlands)

    2010-07-01

    Silent Motor Company and the HAN University of Applied Science collaborate in the development of an aircraft baggage tractor. The baggage tractor is equipped with an 8kW fuel cell stack connected to a 26kWh battery-pack. The control system implemented minimizes the start-up time of the fuel cell system, protects the fuel cell against overload and underload and controls the State of Charge (SOC) of the battery to its optimum value. A practical SOC-determination method is implemented which does not need detailed knowledge about the batteries applied. This paper presents a description of the fuel cell system, its energy management system and SOC-determination method and the results of first test measurements. (orig.)

  14. Fuel-conservative guidance system for powered-lift aircraft

    Science.gov (United States)

    Erzberger, H.; Mclean, J. D.

    1979-01-01

    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.

  15. Analysis and design of insulation systems for LH2-fueled aircraft

    Science.gov (United States)

    Cunnington, G. R., Jr.

    1979-01-01

    An analytical program was conducted to evaluate the performance of 15 potential insulations for the fuel tanks of a subsonic LH2-fueled transport aircraft intended for airline service in the 1990-1995 time period. As a result, two candidate insulation systems are proposed for subsonic transport aircraft applications. Both candidates are judged to be the optimum available and should meet the design requirements. However, because of the long-life cyclic nature of the application and the cost sensitivity of airline operations, an experimental tank/insulation development or proof-of-concept program is recommended. This program should be carried out with a nearly full-scale system which would be subjected to the cyclic thermal and mechanical inputs anticipated in aircraft service.

  16. MATHEMATICAL ASPECTS OF AIRCRAFT ENGINES RUNNING OPTIMIZATION FOR MINIMUM FUEL CONSUMPTION WHILE LANDING

    Directory of Open Access Journals (Sweden)

    Yuriy Michaylovich Chinyuchin

    2017-01-01

    Full Text Available The consistency of the potential increase of fuel efficiency, based on aircraft maintenance optimization, is mathe- matically proved. The mathematical apparatus and a set mathematical model of aircraft spatial motion allow to analyze aircraft behavior on the stage before landing and to draw optimal flight path for minimum fuel consumption with fixed time.For effective problem solving the choice and realization of optimal flight paths are made. The algorithm for the problem of optimal civil aircraft flight control aimed at the most accurate realization of chosen soft path under limited time conditions is proposed. The optimization of the given process is made by solving a point-to-point boundary canonical sys- tem based on the Pontryagin maximum principle.The necessary initial data and conditions for the statement of problem are given. The mathematical model for the simplification of calculations is created and its equivalent representation is given by uniting problems of controls by thrust channels and the angle of attack as the thrust control function. The boundary-value problem is mathematically composed and the analytical apparatus of its solution is presented. Optimal aircraft landing paths reflecting the behavior of the angle of attack and thrust are constructed. The potential of this method is proved by the economic justifiability and its effectiveness, in particular the compar- ison of total aircraft fuel consumption on obtained optimal path to the classic path on which there are rectilinear sections what allowed to confirm the conclusion about the economical expedience and effectiveness of the method of aircraft con- stant landing while making flights.

  17. Inerting of a Vented Aircraft Fuel Tank Test Article with Nitrogen-Enriched Air

    National Research Council Canada - National Science Library

    Burns, Michael

    2001-01-01

    ...) required to inert a vented aircraft fuel tank. NEA, generated by a hollow fiber membrane gas separation system, was used to inert a laboratory fuel tank with a single vent on top designed to simulate a transport category airplane fuel tank...

  18. THE KINETICS OF CONTAMINANTS ACCUMULATION IN THE JET FUEL DURING THE TECHNOLOGICAL PROCESS OF ITS PREPARATION FOR AIRCRAFT REFUELING

    OpenAIRE

    A. A. Brailko

    2017-01-01

    Much attention is payed to the tasks for ensuring domestic and international aircraft safety and regularity, which are multifaceted and complex. One of them is the system of ensuring the quality of aviation fuel for refueling aircraft at airports. A significant influence of the quality, chemical composition and fuel range on the reliability and lifetime of components and parts of the aircraft fuel system was studied in the process of development and experience accumulation of aircraft operati...

  19. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  20. THE KINETICS OF CONTAMINANTS ACCUMULATION IN THE JET FUEL DURING THE TECHNOLOGICAL PROCESS OF ITS PREPARATION FOR AIRCRAFT REFUELING

    Directory of Open Access Journals (Sweden)

    A. A. Brailko

    2017-01-01

    Full Text Available Much attention is payed to the tasks for ensuring domestic and international aircraft safety and regularity, which are multifaceted and complex. One of them is the system of ensuring the quality of aviation fuel for refueling aircraft at airports. A significant influence of the quality, chemical composition and fuel range on the reliability and lifetime of components and parts of the aircraft fuel system was studied in the process of development and experience accumulation of aircraft operating, processes of aviation fuel production, as well as during storage, quality control, transportation, refueling preparation and aircraft refueling. Currently, work is being done to study the influence of fuel quality on the units of the technological scheme of fuel-filling complexes, which provide the required cleanliness of the fuel according to the regulations. The article describes the trend level of aviation fuel cleanliness at the stages from receipt to issuance to the refueling station. The evaluation of compliance with existing regulations on the level of jet fuel cleanliness and the efficiency of fuel cleaning facilities is carried out. It is stated that one of the problems of insufficient level of aviation fuel cleaning quality is a violation of the acceptable contamination level of the fuel before the filter. It was found that the disadvantage of the used filter paper is the fiber wash out process. According to this research it was found that while cleaning fuel from mechanical admixtures it is necessary to take into account the technical condition of the filtering element, and proposal was developed for fuel-filling systems to ensure aviation fuel cleanliness in compliance with regulations.

  1. RF Coupling into the Fuel Tank of a Large Transport Aircraft from Intentionally Transmitting Peds in the Passenger Cabin

    Science.gov (United States)

    Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Ely, Jay J.; Richardson, Robert E.; Hatfield, Michael O.

    2000-01-01

    An investigation was performed to study the potential for radio frequency (RF) power radiated from Portable Electronic Devices (PEDs) to create an arcing/sparking event within the fuel tank of a large transport aircraft. This paper describes the experimental methods used for measuring RF coupling to the fuel tank and Fuel Quantity Indication System (FQIS) wiring from PED sources located in the passenger cabin. To allow comparison of voltage/current data obtained in a laboratory chamber FQIS installation to an actual aircraft FQIS installation, aircraft fuel tank RF reverberation characteristics were also measured. Results from the measurements, along with a survey of threats from typical intentional transmitting PEDs are presented. The resulting worst-case power coupled onto fuel tank FQIS wiring is derived. The same approach can be applied to measure RF coupling into various other aircraft systems.

  2. MODELING OF THE FUNCTIONING UNITS OF FUEL SYSTEM OF GAS TURBINE ENGINE AIRCRAFT IN VIEW OF AVIATION FUEL QUALITY CHANGES

    OpenAIRE

    I. I. Zavyalik; V. S. Oleshko; V. M. Samoylenko; E. V. Fetisov

    2016-01-01

    The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  3. MODELING OF THE FUNCTIONING UNITS OF FUEL SYSTEM OF GAS TURBINE ENGINE AIRCRAFT IN VIEW OF AVIATION FUEL QUALITY CHANGES

    Directory of Open Access Journals (Sweden)

    I. I. Zavyalik

    2016-01-01

    Full Text Available The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  4. Ways of formation(training of water-fuel mixes both accumulation settling-vat water and their property in fuel tanks aircraft

    Directory of Open Access Journals (Sweden)

    М. Д. Туз

    2000-12-01

    Full Text Available Investigated are the conditions and mechanisms of accumulation of free water in aircraft torsion-box fuel systems. Determined is a quantitative balance between phases and conditions in the torsion-box fuel tanks at every stage of operation

  5. ON THE ISSUE OF AIRCRAFT MAITENANCE PROCESS OPTIMIZATION ON THE CRITERION OF MINIMUM FUEL CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Victor Alexandrovich Belkin

    2017-01-01

    Full Text Available Potentially new ways to improve civil aircraft fuel efficiency, based on the aircraft maintenance process optimiza- tion are considered. The data confirming the advisability of their further in-depth study and implementation in civil aviation airlines activity is given.It is shown that one of the reasons provoking the increase of fuel consumption at the cruising flight stage might be the necessity of the bypass of meteorological areas and of the flight altitude or airspeed change. These events are occasional. At the same time the most advantageous methods aimed at improving fuel efficiency are continuous aircraft climb or descent.One of these research directions is the implementation of continuous descent mode, rational routes of approach to the airfield, climb, choice of optimal flight modes in flights. This program is called “SESAR”. While its realization within the framework of the EC it is planned to reduce fuel consumption by 5 million tons a year due to its economy by 10 % after each flight. The similar program “NextGen” of air traffic optimization is accepted and is realized nowadays in the USA. The purpose of this program is annual improvement of fuel efficiency not less than by 2 % a year.Based on the conducted research the expanded list of recommendations for the realization of aircraft continuous descent system in flight, providing renunciation of horizontal flight areas at idling engines is presented.

  6. Aircraft Fuel Systems, AFSC 2A6X4, OSSN 2317

    National Research Council Canada - National Science Library

    1998-01-01

    The Air Force Specialty Code (AFSC) 2A6X4, Aircraft Fuel Systems, career ladder was surveyed to obtain occupational data for use in evaluating and revising current career ladder documents and training programs...

  7. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the

  8. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    Science.gov (United States)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  9. Comparison of alternate fuels for aircraft. [liquid hydrogen, liquid methane, and synthetic aviation kerosene

    Science.gov (United States)

    Witcofski, R. D.

    1979-01-01

    Liquid hydrogen, liquid methane, and synthetic aviation kerosene were assessed as alternate fuels for aircraft in terms of cost, capital requirements, and energy resource utilization. Fuel transmission and airport storage and distribution facilities are considered. Environmental emissions and safety aspects of fuel selection are discussed and detailed descriptions of various fuel production and liquefaction processes are given. Technological deficiencies are identified.

  10. Fire deaths in aircraft without the crashworthy fuel system.

    Science.gov (United States)

    Springate, C S; McMeekin, R R; Ruehle, C J

    1989-10-01

    Cases reported to the Armed Forces Institute of Pathology were examined for occupants of helicopters without the crashworthy fuel system (CWFS) who survived crashes but died as a result of postcrash fires. There were 16 fire deaths in the 9 such accidents which occurred between January 1976 and April 1984. All of these victims would have survived if there had been no postcrash fire. Partial body destruction by fire probably prevented inclusion of many other cases. The dramatic reduction in fire deaths and injuries due to installation of the CWFS in Army helicopters is discussed. The author concludes that fire deaths and injuries in aircraft accidents could almost be eliminated by fitting current and future aircraft with the CWFS.

  11. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  12. Investigation of fuel savings for an aircraft due to optimization of the center of gravity

    Science.gov (United States)

    Liu, Yitao; Yang, Zhenbo; Deng, Junxiang; Zhu, Junjie

    2018-03-01

    The aircraft’s center of gravity (CG) has a significant influence on the safety and efficiency, which are determined to a large degree by keeping the CG position within the forward and aft limits. Improper loading reduces the aerodynamics efficiency of an aircraft, resulting in higher flight drag. This paper focuses on the theoretical analysis of the influence of variable CG parameter on the fuel consumption. A new model is developed to predict the fuel consumption rate for an aircraft with it’s CG at different position. The numerical result indicates that a more aft CG position produces less drag and, in turn, requires less fuel consumption.

  13. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  14. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    Science.gov (United States)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  15. Flying without fuel. Minimalism in aircraft construction; Fliegen ohne Sprit. Minimalisten im Flugzeugbau

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, W.

    1997-05-01

    The article describes the solar aircraft `Icare`` which was constucted in a joint project by engineers and scientists of Stuttgart university. The aircraft requires slightly more than one kW for staying up. The theoretical fundamentals are presented in the dissertation of Peer Frank, ``Aircraft design for minimum fuel consumption` (Institute of Aircraft Engineering, Stuttgart, 1992). (orig.) [Deutsch] Allein mit Sonnenkraft kann das Flugzeug `Icare` fliegen. Es entstand in Gemeinschaftsarbeit von Ingenieuren und Wissenschaftlern der Stuttgarter Universitaet. Das Solarflugzeug Icare benoetigt etwas ueber ein Kilowatt, um oben zu bleiben. In seiner Doktorarbeit `Die Auslegung von Flugzeugen mit geringstem Antriebsleistungsbedarf` (Institut fuer Flugzeugbau, Stuttgart, 1992) hat der Duesseldorfer Peer Frank die theoretischen Grundlagen dazu behandelt. (orig.)

  16. Experimental study of an aircraft fuel tank inerting system

    Directory of Open Access Journals (Sweden)

    Cai Yan

    2015-04-01

    Full Text Available In this work, a simulated aircraft fuel tank inerting system has been successfully established based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air, inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effectiveness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.

  17. Preliminary Study on Effect of Aviation Fuel in the Safety Evaluation of Nuclear Power Plant Crashed by Aircraft

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Jeon, Se Jin; Lee, Yun Seok; Kim, Young Jin

    2011-01-01

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments are actively in progress. The large civil aircraft are being operated with a large amount of fuel and the fuel can be assumed to contribute to the impact loads at the impact. The fuel, i.e., the internal liquid can be considered as added masses classically in the evaluation of the impact load. According to the recent experimental research, it has been shown that the impact load of high speed impacting body with internal liquid is much higher than that of the mass-equivalent impacting body. In this study, the impact loads according to the existence of the internal liquid are computed by numerical methods and the safety assessment of nuclear power plant crashed by large civil aircraft are performed as an application

  18. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    Science.gov (United States)

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.

  19. A New Methodology for Fuel Mass Computation of an operating Aircraft

    Directory of Open Access Journals (Sweden)

    M Souli

    2016-03-01

    Full Text Available The paper performs a new computational methodology for an accurate computation of fuel mass inside an aircraft wing during the flight. The computation is carried out using hydrodynamic equations, classically known as Navier-Stokes equations by the CFD community. For this purpose, a computational software is developed, the software computes the fuel mass inside the tank based on experimental data of pressure gages that are inserted in the fuel tank. Actually and for safety reasons, Optical fiber sensor for fluid level sensor detection is used. The optical system consists to an optically controlled acoustic transceiver system which measures the fuel level inside the each compartment of the fuel tank. The system computes fuel volume inside the tank and needs density to compute the total fuel mass. Using optical sensor technique, density measurement inside the tank is required. The method developed in the paper, requires pressure measurements in each tank compartment, the density is then computed based on pressure measurements and hydrostatic assumptions. The methodology is tested using a fuel tank provided by Airbus for time history refueling process.

  20. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    Science.gov (United States)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  1. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    Science.gov (United States)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  2. Potential for Fuel Tank Fire and Hydrodynamic Ram from Uncontained Aircraft Engine Debris

    Science.gov (United States)

    1997-01-01

    This report addresses the potential consequences of the impact and penetration of fuel tanks by debris from uncontained engine failures on commercial jet aircraft. The report presents a brief review of accident data and of the pertinent technical lit...

  3. Understanding electrostatic charge behaviour in aircraft fuel systems

    Science.gov (United States)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  4. Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance Remotely- Operated Aircraft

    Science.gov (United States)

    Millis, Marc G.; Tornabene, Robert T.; Jurns, John M.; Guynn, Mark D.; Tomsik, Thomas M.; VanOverbeke, Thomas J.

    2009-01-01

    Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.

  5. Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft

    Science.gov (United States)

    Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae

    2017-06-01

    In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.

  6. 77 FR 70114 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-11-23

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel... Modification Do not incorporate Cessna Aircraft Company Engine Fuel Return System Modification Kit MK 172-28-01...

  7. Fuel cell climatic tests designed for new configured aircraft application

    International Nuclear Information System (INIS)

    Begot, Sylvie; Harel, Fabien; Candusso, Denis; Francois, Xavier; Pera, Marie-Cecile; Yde-Andersen, Steen

    2010-01-01

    The implementation of Fuel Cell (FC) systems in transportation systems, as aircrafts, requires some better understanding and mastering of the new generator behaviours in low temperature environments. To this end, a PEMFC stack is tested and characterised in a climatic chamber. The impacts of the low temperatures over different FC operation and start-up conditions are estimated using a specific test bench developed in-lab. Some descriptions concerning the test facilities and the experimental set-up are given in the paper, as well as some information about the test procedures applied. Some examples of test results are shown and analysed. The experiments are derived from aircraft requirements and are related with different scenarios of airplane operation. Finally, some assessments concerning the FC system behaviour in low temperature conditions are made, especially with regard to the constraints to be encountered by the next embedded FC generators.

  8. Fuel cell climatic tests designed for new configured aircraft application

    Energy Technology Data Exchange (ETDEWEB)

    Begot, Sylvie; Pera, Marie-Cecile [FC LAB, Rue Thierry Mieg, F 90010 Belfort Cedex (France); Franche-Comte Electronique Mecanique Thermique et Optique - Sciences et Technologies (FEMTO-ST), Departement energie et ingenierie des systemes multiphysiques (ENISYS), Unite Mixte de Recherche (UMR) du Centre National de la Recherche Scientifique (CNRS) 6174, University of Franche-Comte (UFC) (France); Harel, Fabien; Candusso, Denis [FC LAB, Rue Thierry Mieg, F 90010 Belfort Cedex (France); The French National Institute for Transport and Safety Research (INRETS), Transports and Environment Laboratory (LTE), Laboratory for New Technologies (LTN) (France); Francois, Xavier [FC LAB, Rue Thierry Mieg, F 90010 Belfort Cedex (France); FC LAB, University of Technology Belfort-Montbeliard (UTBM) (France); Yde-Andersen, Steen [IRD Fuel Cells A/S, Kullinggade 31, 5700 Svendborg (Denmark)

    2010-07-15

    The implementation of Fuel Cell (FC) systems in transportation systems, as aircrafts, requires some better understanding and mastering of the new generator behaviours in low temperature environments. To this end, a PEMFC stack is tested and characterised in a climatic chamber. The impacts of the low temperatures over different FC operation and start-up conditions are estimated using a specific test bench developed in-lab. Some descriptions concerning the test facilities and the experimental set-up are given in the paper, as well as some information about the test procedures applied. Some examples of test results are shown and analysed. The experiments are derived from aircraft requirements and are related with different scenarios of airplane operation. Finally, some assessments concerning the FC system behaviour in low temperature conditions are made, especially with regard to the constraints to be encountered by the next embedded FC generators. (author)

  9. Design and simulation of a fuel cell hybrid emergency power system for a more electric aircraft: Evaluation of energy management schemes

    Science.gov (United States)

    Njoya Motapon, Souleman

    As the aircraft industries are moving toward more electric aircraft (MEA), the electrical peak load seen by the main and emergency generators becomes higher than in conventional aircraft. Consequently, there is a major concern regarding the aircraft emergency system, which consists of a ram air turbine (RAT) or air driven generator (ADG), to fulfill the load demand during critical situations; particularly at low aircraft speed where the output power is very low. A potential solution under study by most aircraft manufacturers is to replace the air turbine by a fuel cell hybrid system, consisting of fuel cell combined with other high power density sources such as supercapacitors or lithium-ion batteries. To ensure the fuel cell hybrid system will be able to meet the load demand, it must be properly designed and an effective energy management strategy must be tested with real situations load profile. This work aims at designing a fuel cell emergency power system of a more electric aircraft and comparing different energy management schemes (EMS); with the goal to ensure the load demand is fully satisfied within the constraints of each energy source. The fuel cell hybrid system considered in this study consists of fuel cell, lithium-ion batteries and supercapacitors, along with associated DC-DC and DC-AC converters. The energy management schemes addressed are state-of-the-art, most commonly used energy management techniques in fuel cell vehicle applications and include: the state machine control strategy, the rule based fuzzy logic strategy, the classical PI control strategy, the frequency decoupling/fuzzy logic control strategy and the equivalent consumption minimization strategy (ECMS). Moreover, a new optimal scheme based on maximizing the instantaneous energy of batteries/supercapacitors, to improve the fuel economy is proposed. An off-line optimization based scheme is also developed to ascertain the validity of the proposed strategy in terms of fuel consumption

  10. System for indicating fuel-efficient aircraft altitude

    Science.gov (United States)

    Gary, B. L. (Inventor)

    1984-01-01

    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  11. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    Science.gov (United States)

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  12. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    Science.gov (United States)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  13. Biocidal properties of anti-icing additives for aircraft fuels.

    Science.gov (United States)

    Neihof, R A; Bailey, C A

    1978-04-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol.

  14. The impact of the fuel chemical composition on volatile organic compounds emitted by an in-service aircraft gas turbine engine

    Science.gov (United States)

    Setyan, A.; Kuo, Y. Y.; Brem, B.; Durdina, L.; Gerecke, A. C.; Heeb, N. V.; Haag, R.; Wang, J.

    2017-12-01

    Aircraft emissions received increased attention recently because of the steady growth of aviation transport in the last decades. Aircraft engines substantially contribute to emissions of particulate matter and gaseous pollutants in the upper and lower troposphere. Among all the pollutants emitted by aircrafts, volatile organic compounds (VOCs) are particularly important because they are mainly emitted at ground level, posing a serious health risk for people living or working near airports. A series of measurements was performed at the aircraft engine testing facility of SR Technics (Zürich airport, Switzerland). Exhausts from an in-service turbofan engine were sampled at the engine exit plane by a multi-point sampling probe. A wide range of instruments was connected to the common sampling line to determine physico-chemical characteristics of non-volatile particulate matter and gaseous pollutants. Conventional Jet A-1 fuel was used as the base fuel, and measurements were performed with the base fuel doped with two different mixtures of aromatic compounds (Solvesso 150 and naphthalene-depleted Solvesso 150) and an alternative fuel (hydro-processed esters and fatty acids [HEFA] jet fuel). During this presentation, we will show results obtained for VOCs. These compounds were sampled with 3 different adsorbing cartridges, and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS, for Tenax TA and Carboxen 569) and by ultra-performance liquid chromatography/ mass spectrometry (UPLC/MS, for DNPH). The total VOC concentration was also measured with a flame ionization detector (FID). In addition, fuel samples were also analyzed by GC/MS, and their chemical compositions were compared to the VOCs emitted via engine exhaust. Total VOCs concentrations were highest at ground idle (>200 ppm C at 4-7% thrust), and substantially lower at high thrust (engine were mainly constituted of alkanes, oxygenated compounds, and aromatics. More than 50 % of the

  15. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    Science.gov (United States)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  16. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  17. 77 FR 50054 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-08-20

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe Condition... Fuel Return System Modification Do not install Cessna Aircraft Company Service Bulletin SB 04- 28-03...

  18. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    Science.gov (United States)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  19. DEVICE FOR CONTINUOUS MONITORING OF AVIATION FUEL PURITY IN THE TECHNOLOGICAL SCHEME OF AIRCRAFT FUEL SUPPLY

    Directory of Open Access Journals (Sweden)

    A. A. Brailko

    2017-01-01

    Full Text Available Currently, special attention is paid to the aircraft fuel quality as a component of safety to ensure trouble-free operation of the fuel system. The existing system of quality control involves periodic sampling of the fuel in the container and their subsequent control by the normalized quality indicators that do not identify possible reasons for the deterioration of these indicators to remove them for trouble-free operation and do not identify the factors of pollution sources. The monitoring system generally ensures the implementation of measures to preserve the quality of aviation fuel and flight safety of serviced civil aviation airlines at current level according to regulatory requirements. The article describes the mathematical model for calculation parameters of indicator filtering partitions based on cascade filtration theoretical studies of mechanical impurities. Pores of indicator filtering partitions calculated by means of mathematical model have been experimentally tested on simulator stand and showed a good convergence of calculated and experimental results. The use of cascade filtration of fuel with different indicator partitions parameters made it possible to develop a device for fuel purity monitoring, allowing continuous (inline monitoring the level of liquid flow contamination at various points of technological equipment (for example, after the pump, at the inlet and outlet of tanks and units, the output of the filter, etc. and to carry out functional diagnostics of units condition process equipment by monitoring changes of particle parameters and the wear occurrence.

  20. Technology assessment on a hydrogen fueled aircraft system; 1980 nendo suiso nenryo kokuki system ni kansuru technology assissment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper describes technology assessment on a hydrogen fueled aircraft system. Indispensable as technological assignments are structuring different safety systems including prevention of leakage and ignition, not to speak of developing an airframe structure that considers cryogenic and brittle nature of liquefied hydrogen. Operation related industries would be subjected to increased burdens, such as purchase and servicing of new implements and materials, but the liquefied hydrogen industry will have a chance of growing largely with wide repercussions. In the environmental aspect, the aircraft will have less CO and SOx emission in exhaust gas and lower noise than the conventional jet aircraft. Technological problems to be solved in the development include the safety of fuel tanks, safety assurance measures, and liquefied hydrogen of the required amount to be supplied easily and at low cost. To meet these requirements, noticeable progress is demanded in hydrogen manufacturing technologies. What is also required is explosion-proof safety that does not have to require crews to take special considerations in take-off and landing, not to speak of during flight. This also applies to fuel feeding and servicing on the ground. Considerations must be given that rise in operation cost should not be excessive. (NEDO)

  1. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  2. Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines

    Science.gov (United States)

    2017-05-01

    Engineering Chemistry Fundamentals, Vol. 5, No. 3, 1966, pp. 356–363. [14] Burns, R. A., Development of scalar and velocity imaging diagnostics...in an Aero- Engine Model Combustor at Elevated Pressure Using URANS and Finite- Rate Chemistry ,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference...FINAL REPORT Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines SERDP Project WP-2151

  3. Airline view of LH2 as a fuel for commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, K.G.

    1983-01-01

    Fuel for air transport is a particularly important matter, because it is an energy-intensive form of transport. Price and energy density are therefore correspondingly critical. Airlines views tend to be short term because there is no future if they do not survive tomorrow. Thus, although petroleum supply and price has been unstable since 1973, airlines' primary concern has been with economizing the use of fuel and specifying more fuel economic equipment for the future, rather than serious pursuit of more radical solutions. LH2 gives promise of being a serious candidate for the longer term, but there is not yet convincing proof that cheaper seat mile costs could be produced in today's circumstances. The situation could be changed by the realization of laminar flow by surface cooling at subsonic speeds. There is a strong case for a modest programme of carefully aimed research on an international basis to fill the most important gaps in our knowledge on the design of LH2 fueled aircraft. Future crises in energy supplies may well raise questions of transport fuel strategy which will heed this background for wise decision-making. Particular significance attaches to the place of nuclear power in world energy policy since this dominates the question of LH2 availability and price. 2 references, 2 figures.

  4. Draining Water from Aircraft Fuel Using Nitrogen Enriched Air

    Directory of Open Access Journals (Sweden)

    Michael Frank

    2018-04-01

    Full Text Available This paper concerns a computational study of the process of removing water from an aircraft’s fuel tank by pumping nitrogen enriched air (NEA from the bottom of the tank. This is an important procedure for the smooth, efficient, and safe operation of the aircraft’s engine. Due to the low partial pressure of water in the pumped NEA, it absorbs water from the fuel. The water-laden bubbles enter the ullage, the empty space above the fuel, and escape into the environment. The effects of the number of NEA inlets and the NEA mass flow rate on the timescale of the NEA pumping were investigated using Computational Fluid Dynamics. The results reveal that the absorption of water by the NEA bubbles is low and is not affected by the number of the inlets used. Yet, the water content in the fuel decreases fast during the procedure, which is the desired outcome. We show that this is due to the relatively dry NEA entering the ullage and displacing the moist air, thus reducing the partial pressure of water at the fuel/ullage interface. This shift from equilibrium conditions forces water to evaporate from the fuel’s entire surface. Furthermore, the amount of water migrating from the fuel directly into the ullage is significantly greater than that absorbed by the rising bubbles. In turn, the rate of decrease of the water content in the ullage is determined by the total NEA mass flow rate and this is the dominant contributor to the draining time, with the number of NEA nozzles playing a minor role. We confirmed this by pumping NEA directly into the ullage, where we observe a significant decrease of water even when the NEA is not pumped through the fuel. We also show that doubling the mass flow rate halves the draining time. When considering the capability of most modern aircraft to pump NEA through the fuel as part of their inerting system, the proposed method for removing water is particularly attractive, requiring very little (if at all design modification.

  5. Design of a fuel-efficient guidance system for a STOL aircraft

    Science.gov (United States)

    Mclean, J. D.; Erzberger, H.

    1981-01-01

    In the predictive mode, the system synthesizes a horizontal path from an initial aircraft position and heading to a desired final position and heading and then synthesizes a fuel-efficient speed-altitude profile along the path. In the track mode, the synthesized trajectory is reconstructed and tracked automatically. An analytical basis for the design of the system is presented and a description of the airborne computer implementation is given. A detailed discussion of the software, which should be helpful to those who use the actual software developed for these tests, is also provided.

  6. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  7. Intelligent Materials Used in Hydraulic, Fuel, and Rudder Control Systems of Aircrafts

    Directory of Open Access Journals (Sweden)

    D. B. Chernov

    2017-01-01

    Full Text Available The device is really intelligent, only if it is capable to respond to changing external conditions. The devices, which "feel" the external environment and can change their characteristics, have many advantages compared to the conventional devices: they are more efficient, wear out more slowly, and have lower operating costs.The scope of smart products is truly infinite. Alloys with memory effect also apply to intellectual content. Natural piezoelectric crystals such as silicon dioxide (intellectual material have been known for over a hundred years. They have greater stiffness and can be used at high operating frequencies. Due to the direct piezoelectric effect, they have been successfully used as a strain gage. Later came artificial ceramic piezoelectric materials; they are used as mechanical transducers. Thus, an inverse piezoelectric effect is usually used. It consists in the change of dimensions when an electric field is applied. Control of intellectual structure can be provided by heat fluxes, electromagnetic, hydraulic or piezoelectric forces and through application of electro-rheological, and magneto-rheological fluids. The article examines the intellectual materials and technologies that are already in place or will find its application in aviation hydraulic and fuel systems and control systems of rudders (CSR of aircrafts in the near future.The paper considers in detail the shape memory effect alloys (SMEA as "intelligent" materials. Actuators made from SMEA have a number of advantages: high working power; large recoverable deformation; different types of strain (tensile, compressive, bending and torsional; most specific value of the work per unit mass. All the SMEA advantages may be well used for the so-called thermo-mechanical connections (TMС of pipelines where SMEA drawbacks in this application, practically, do not affect the quality of TMC. In aircraft engineering the TMC were first used in hydraulic systems of the aircraft TU204

  8. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  9. Mathematical model of an indirect action fuel flow controller for aircraft jet engines

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.

  10. 77 FR 72250 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-12-05

    ... Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe Condition This AD was prompted by reports of chafing of a new... flight, reinstall the fuel return line assembly (Cessna P/N 0516031-1) following Cessna Aircraft Company...

  11. Study of LH2-fueled topping cycle engine for aircraft propulsion

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  12. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  13. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  14. Fuel dispersal in high-speed aircraft/soil impact scenarios

    International Nuclear Information System (INIS)

    Tieszen, S.R.; Attaway, S.W.

    1996-01-01

    The objective of this study is to determine how the jet fuel contained in aircraft wing tanks disperses on impact with a soft terrain, i.e., soils, at high impact velocities. The approach used in this study is to combine experimental and numerical methods. Tests were conducted with an approximately 1/42 linear-scale mass-model of a 1/4 span section of a C-141 wing impacting a sand/clay mixture. The test results showed that within the uncertainty of the data, the percentage of incident liquid mass remaining in the crater is the same as that qualitatively described in earlier napalm bomb development studies. Namely, the percentage of fuel in the crater ranges from near zero for grazing impacts to 25%--50% for high angles of impact. To support a weapons system safety assessment (WSSA), the data from the current study have been reduced to correlations. The numerical model used in the current study is a unique coupling of a Smooth Particle Hydrodynamics (SPH) method with the transient dynamics finite element code PRONTO. Qualitatively, the splash, erosion, and soil compression phenomena are all numerically predicted. Quantitatively, the numerical method predicted a smaller crater cross section than was observed in the tests

  15. Fuel containment, lightning protection and damage tolerance in large composite primary aircraft structures

    Science.gov (United States)

    Griffin, Charles F.; James, Arthur M.

    1985-01-01

    The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.

  16. A Study on External Fire Damage of Structures subjected to Aircraft Impact

    International Nuclear Information System (INIS)

    Shin, Sang Shup; Hahm, Daegi; Kim, Min Kyu

    2015-01-01

    A large commercial aircraft consists of various components as fuselage, wings, fuel tank, engine etc. During a collision of the aircraft, the fuel tank with a large amount of jet fuel have a significant effect on the total load of the aircraft as well as causing explosive fire and smoke which affect the safety of the structure and equipment. US Sandia National Laboratories and Finland VTT etc. performed the test and simulation studies to evaluate the dispersion range of the fluid after the crash of liquid filled cylinder missiles. The test condition and results have been referred in this paper. The fluid modeling approach using SPH is applied to evaluate the dispersing range of the fluid, and is compared with the Brown's results. The jet fuel is idealized as particles contained in an aluminum cylinder missile, where those particles can be dispersed to the surrounding area after the missile crashes into a rigid target. The fluid model using the SPH method is briefly verified through comparison with test results, and then the modelling method is applied to a jet fuel model in an aircraft model. The dispersion analysis of jet fuel caused by aircraft impact is performed using an aircraft model for the determination of fire duration and fire affected zone in a nuclear power plant. Finally, the structural integrity of the roof of the structure during a jet fuel fire is evaluated. In this study, the filled jet fuel was modeled by using smooth particle hydrodynamics technique; jet fuel spread area following an aircraft crash was analyzed

  17. A Study on External Fire Damage of Structures subjected to Aircraft Impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup [Hanyang University, Seoul (Korea, Republic of); Hahm, Daegi; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A large commercial aircraft consists of various components as fuselage, wings, fuel tank, engine etc. During a collision of the aircraft, the fuel tank with a large amount of jet fuel have a significant effect on the total load of the aircraft as well as causing explosive fire and smoke which affect the safety of the structure and equipment. US Sandia National Laboratories and Finland VTT etc. performed the test and simulation studies to evaluate the dispersion range of the fluid after the crash of liquid filled cylinder missiles. The test condition and results have been referred in this paper. The fluid modeling approach using SPH is applied to evaluate the dispersing range of the fluid, and is compared with the Brown's results. The jet fuel is idealized as particles contained in an aluminum cylinder missile, where those particles can be dispersed to the surrounding area after the missile crashes into a rigid target. The fluid model using the SPH method is briefly verified through comparison with test results, and then the modelling method is applied to a jet fuel model in an aircraft model. The dispersion analysis of jet fuel caused by aircraft impact is performed using an aircraft model for the determination of fire duration and fire affected zone in a nuclear power plant. Finally, the structural integrity of the roof of the structure during a jet fuel fire is evaluated. In this study, the filled jet fuel was modeled by using smooth particle hydrodynamics technique; jet fuel spread area following an aircraft crash was analyzed.

  18. Systems Analysis Developed for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  19. Reduction environmental effects of civil aircraft through multi-objective flight plan optimisation

    International Nuclear Information System (INIS)

    Lee, D S; Gonzalez, L F; Walker, R; Periaux, J; Onate, E

    2010-01-01

    With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO 2 ) and nitrogen oxides (NO x ) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO 2 ) and NO x using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NO x with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NO x with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NO x and CO 2 (minimum mission fuel weight).

  20. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  1. Fuel leak detection on large transport airplanes

    OpenAIRE

    Behbahani-Pour, M.J.; Radice, G.

    2016-01-01

    Fuel leakage has the risk of being ignited by external ignition sources, and therefore it is important to detect\\ud any fuel leakage before the departure of the aircraft. Currently, there are no fuel leak detection systems installed\\ud on commercial aircrafts, to detect fuel tank leakage, while only a small number of more recent aircraft, have a fuel\\ud monitoring system, that generates a fuel leak-warning message in cockpit in the case of fuel imbalance between the\\ud tanks. The approach pro...

  2. Study of a LH2-fueled topping cycle engine for aircraft propulsion

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine. Previously announced in STAR as N83-34942

  3. Responding effectively to fuel spills at airports

    International Nuclear Information System (INIS)

    Williams, L.E.

    1991-01-01

    Fuel spills are among the most frequent causes of emergency calls faced by airport firefighters. Most fuel spills are a result of human error and careless procedures. They always constitute an emergency and require fast, efficient action to prevent disaster. A fuel spill is an accidental release of fuel, in this case, from an aircraft fuel system, refueling vehicle or refueling system. A normal release of a few drops of fuel associated with a disconnection or other regular fueling operations should not be classified as a fuel spill. However, anytime fuel must be cleaned up and removed from an area, a fuel spill has occurred. Volatile fuels pose significant threats to people, equipment, facilities and cargo when they are released. Anyone near a spill, including ramp workers, fueling personnel and aircraft occupants, are in danger if the fuel ignites. Buildings and equipment in a spill area, such as terminals, hangars, aircraft, fuel trucks and service equipment also are at risk. An often neglected point is that aircraft cargo also is threatened by fuel spills

  4. Fuel cells for naval aviation

    International Nuclear Information System (INIS)

    Satzberg, S.; Field, S.; Abu-Ali, M.

    2003-01-01

    Recent advances in fuel cell technology have occurred which make fuel cells increasingly attractive for electric power generation on future naval and commercial aircraft applications. These advances include significant increases in power density, the development of compact fuel reformers, and cost reductions due to commercialization efforts. The Navy's interest in aircraft fuel cells stems from their high energy efficiency (up to 40-60% for simple cycle; 60-70% for combined gas turbine/fuel cell hybrid cycles), and their negligible NOx and hydrocarbon emissions compared to conventional generators. While the U.S. Navy has been involved with fuel cell research and development as early as the 1960s, many of the early programs were for special warfare or undersea applications. In 1997, the Office of Naval Research (ONR) and Naval Sea Systems Command (NAVSEA) initiated a program to marinize commercial fuel cell technology for future Navy shipboard applications. The power density of fuel cell power systems is approaching the levels necessary for serious consideration for aircraft suitability. ONR and Naval Air Systems Command (NAVAIR) are initiating a program to develop a fuel cell power system suitable for future Navy aircraft applications, utilizing as much commercially-available technology as possible. (author)

  5. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    Science.gov (United States)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  6. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  7. Structural evaluation of spent nuclear fuel storage facilities under aircraft crash impact (2). Horizontal impact test onto reduced scale metal cask due to aircraft engine missile

    International Nuclear Information System (INIS)

    Namba, Kosuke; Shirai, Koji; Saegusa, Toshiari

    2009-01-01

    In this study, to confirm the sealing performance of a metal cask subjected to impact force due to possible commercial aircraft crash against a spent fuel storage facility, the horizontal impact test was carried out. In the test, an aircraft engine missile with a speed of 57.3 m/s attacked the reduced scale metal cask containing helium gas, which stands vertically. Then the leak rate and sliding displacement of the lid were measured. The leak rate increased rapidly and reached to 4.0 x 10 -6 Pa·m 3 /sec. After that, the leak rate decreased slowly and converged to 1.0x10 -6 Pa·m 3 /sec after 20 hours from the impact test. The leak rate of a full scale cask was evaluated using that of reduced scale cask obtained by the test. Then the leak rate of the full scale cask was 3.5x10 -5 Pa·m 3 /sec. This result showed that the sealing performance of the full scale metal cask would not be affected immediately by the horizontal impact of the aircraft engine with a speed of 57.3 m/s. (author)

  8. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    Science.gov (United States)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  9. 78 FR 9796 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2013-02-12

    ... (2) Model 172S, S/N l72S11074 through 172S11193. (d) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe... Airworthiness Directives; Cessna Aircraft Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT...

  10. 76 FR 70379 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2011-11-14

    ...) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code Fuel, 28...-1245; Directorate Identifier 2011-CE-033-AD; RIN 2120-AA64] Airworthiness Directives; Cessna Aircraft... certain Cessna Aircraft Company (Cessna) Models 172R and 172S airplanes. The existing AD requires you to...

  11. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Research Team . Volume 2; Appendices

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.

  12. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  13. 14 CFR 29.979 - Pressure refueling and fueling provisions below fuel level.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.979 Pressure refueling and fueling provisions below fuel level. (a) Each fueling connection... from that tank in case of malfunction of the fuel entry valve. (b) For systems intended for pressure...

  14. Commercial Aircraft Airframe Fuel Systems Survey and Analysis.

    Science.gov (United States)

    1982-07-01

    Type of Report end Period Covered Ag Sponsorin ncy Na.e and Address FINAL REPORT U.S. DEPARTMENT OF TRANSPORTATION October, 1980 - June, 1982 FEDERAL...Philadelphia, Pennsylvania Weybridge, Surry England KT130SF Mr. Roy Riseley Mr. William Miles de Havilland Aircraft Cessna Aircraft Company Garratt Blvd. Wallace...Guido F. Pesotti Mr. Frank C. Davis Technical Director Engineering Specialist Empresa Brasileira Aeronautica, S.A. Garrett Turbine Engine Company

  15. Aircraft Crash Survival Design Guide. Volume 5. Aircraft Postcrash Survival

    Science.gov (United States)

    1980-01-01

    neck Access door toprille capm enrFuel tank Figue 3. Fangblefiler eckinsalgbelati n. A-j L)n wal Aircraft skin Frangible filler neck Failure plane...This is because a number of major assumptions must be made in the extrapolation: the smoke generated is uniformly distri- buted and is independent

  16. Design for air-to-air refuelling operations; new passenger and tanker aircraft design for AAR scenarios

    NARCIS (Netherlands)

    Li, M.O.

    2014-01-01

    Air-to-air refuelling is a way to improve fuel efficiency of the overall transport system without waiting for the improvement of basic aviation technology. To take full advantage of such an operation, both passenger aircraft and tanker aircraft (which deliver required fuel to the passenger aircraft

  17. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    Science.gov (United States)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  18. 77 FR 5418 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-02-03

    ...) Subject Joint Aircraft Service Component (JASC) Code: 2800, Fuel system. Issued in Fort Worth, Texas, on... aft fuel system 40 micron fuel filter element with a 10 micron fuel filter element. This proposed AD... AD for the Sikorsky Model S-61A, D, E, L, N, NM, R, and V helicopters with a fuel system 40 micron...

  19. Alternative general-aircraft engines

    Science.gov (United States)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  20. 14 CFR 33.35 - Fuel and induction system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel and induction system. 33.35 Section 33... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.35 Fuel and induction system. (a) The fuel system of the engine must be designed and constructed to supply an...

  1. Commercial Aircraft Trajectory Planning based on Multiphase Mixed-Integer Optimal Control

    OpenAIRE

    Soler Arnedo, Manuel Fernando

    2017-01-01

    The main goal of this dissertation is to develop optimal control techniques for aircraft trajectory planning looking at reduction of fuel consumption, emissions and overfly charges in flight plans. The calculation of a flight plan involves the consideration of multiple factors. They can be classified as either continuous or discrete, and include nonlinear aircraft performance, atmospheric conditions, wind conditions, airspace structure, amount of departure fuel, and operational...

  2. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  3. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  4. Study on afterburner of aircraft engine

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1991-07-01

    Study on the afterburner for aircraft engines was reported which is used as an optimum means to produce the supersonic capability of military aircrafts. The basic principle and types of the afterburner were outlined, and as the major problem concerning turbofan afterburners, a combustion capacity at low temperature in fan air flow was discussed, in particular, flame stabilization and combustion efficiency. Basic studies were conducted by fuel spray test, combustion stability test, sector model combustion test and numerical analysis of afterburner internal flow. As a result, a mixing spray fuel injection system with injection of a small amount of fuel into flameholder wake resulted in broadening of a combustible region, and an original flameholder combined with a scoop and double gutters caused a high combustion efficiency. The prototype afterburner was developed for F3 turbofan engines in association with Japan Defence Agency, and a combustion efficiency of 74% was obtained in on-engine running test. 4 refs., 14 figs.

  5. 14 CFR 34.11 - Standard for fuel venting emissions.

    Science.gov (United States)

    2010-01-01

    ... Emissions (New and In-Use Aircraft Gas Turbine Engines) § 34.11 Standard for fuel venting emissions. (a) No fuel venting emissions shall be discharged into the atmosphere from any new or in-use aircraft gas... include one of the following: (1) Incorporation of an FAA-approved system that recirculates the fuel back...

  6. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  7. Aircraft Nuclear Propulsion Program: Quarterly Progress Report for Period Ending December 31, 1956, Part 1 - 5

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cramer, S. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, A. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1957-03-12

    This quarterly progress report of the Aircraft Nuclear Propulsion Project at ORNL records the technical progress of the research on circulating-fuel reactors and other ANP research at the Laboratory under its Contract W-7405-eng-26. The report is divided into five major parts: 1. Aircraft Reactor Engineering, 2. Chemistry, 3. Metallurgy, 4. Heat Transfer and Physical Properties, Radiation Damage, and Fuel Recovery and Reprocessing, and 5. Reactor Shielding. The ANP Project is comprised of about 550 technical and scientific personnel engaged in many phases of research directed toward the achievement of nuclear propulsion of aircraft. A considerable portion of this research is performed in support of the work of other organizations participating in the national ANP effort. However, the bulk of the ANP research at ORNL is directed toward the development of a circulating-fuel type of reactor. The design, construction, and operation of the Aircraft Reactor Test (ART), with the cooperation of the Pratt & Whitney Aircraft Division, are the current objectives of the project. The ART is to be a power plant system that will include a 60-Mw circulating fuel reflector-moderator reactor and adequate means for heat disposal. Operation of the system will be for the purpose of determining feasibility and for studying the problems associated with the design, construction, and operation of a high-power circulating-fuel refIector-moderated aircraft reactor system.

  8. Application of powered lift and mechanical flap concepts for civil short-haul transport aircraft design

    Science.gov (United States)

    Conlon, J. A.; Bowles, J. V.

    1977-01-01

    The objective of this paper is to determine various design and performance parameters, including wing loading and thrust loading requirements, for powered-lift and mechanical flap conceptual aircraft constrained by field length and community noise impact. Mission block fuel and direct operating costs (DOC) were found for optimum designs. As a baseline, the design and performance parameters were determined for the aircraft using engines without noise suppression. The constraint of the 90 EPNL noise contour being less than 2.6 sq km (1.0 sq mi) in area was then imposed. The results indicate that for both aircraft concepts the design gross weight, DOC, and required mission block fuel decreased with field length. At field lengths less than 1100 m (3600 ft) the powered lift aircraft had lower DOC and block fuel than the mechanical flap aircraft but produced higher unsuppressed noise levels. The noise goal could easily be achieved with nacelle wall treatment only and thus resulted in little or no performance or weight penalty for all studied aircraft.

  9. Wide Body Aircraft Demand Potential at Washington National Airport,

    Science.gov (United States)

    1977-09-01

    the city-pair markets. Probably the most important feature of FA-7 is the fact that it allows for investigation of the behavior of airlines to changes...FINANCIAL INFORMfATION YLIGHTS BY AIRCRAFT TPE ~.4/J \\ FUEL COSUMED PASSENGERS UARRIED BY TOA IR F FLIGHITS TOTAL AIRCRAFT USAGE coded data. Sample...the various levels of operations. Similar behavior can be identified in the simultaneous increase of both types of aircraft at Dulles. Tables lAthrough

  10. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  11. Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending December 31, 1956

    Energy Technology Data Exchange (ETDEWEB)

    NA, NA [ORNL

    1957-03-12

    This quarterly progress report of the Aircraft Nuclear Propulsion Project at ORNL records the technical progress of research on circulating-fuel reactors and other ANP research at the Laboratory. The report is divided into five major parts: 1) Aircraft Reactor Engineering, 2) Chemistry, and 3) Metallurgy, 4) Heat Transfer and Physical Properties, Radiation Damage, and Fuel Recovery and Reprocessing, and 5) Reactor Shielding.

  12. On using PEMFC for Electrical Power Generation on More Electric Aircraft

    OpenAIRE

    Jenica Ileana Corcau; Liviu Dinca

    2012-01-01

    The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing elect...

  13. Hydrogen aircraft and airport safety

    International Nuclear Information System (INIS)

    Schmidtchen, U.; Behrend, E.; Pohl, H.-W.; Rostek, N.

    1997-01-01

    First flight tests with a hydrogen demonstrator aircraft, currently under investigation in the scope of the German-Russia Cryoplane project, are scheduled for 1999. Regular service with regional aircraft may begin around 2005, followed by larger Airbus-type airliners around 2010-2015. The fuel storage aboard such airliners will be of the order of 15 t or roughly 200 m 3 LH 2 . This paper investigates a number of safety problems associated with the handling and air transport of so much hydrogen. The same is done for the infrastructure on the airport. Major risks are identified, and appropriate measures in design and operation are recommended. It is found that hydrogen aircraft are no more dangerous than conventional ones - safer in some respects. (author)

  14. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  15. Determination of the Minimum Use Level of Fuel System Icing Inhibitor (FSII) in JP-8 That Will Provide Adquate Icing Inhibition and Biostatic Protection for Air Force Aircraft

    Science.gov (United States)

    2013-12-01

    filter element or specific component when subjected to ice blockage . This condition was referred to as “Component Testing” in the previous version...of the ARP (SAE ARP 1401A). For evaluation of a FSII effectiveness to prevent blockage due to icing, the Filter Bypass Function Operation regime is...are well- maintained. Once the fuel is on-board the aircraft, the only viable mechanism for water to enter the aircraft is by condensation of water

  16. Energy optimization analysis of the more electric aircraft

    Science.gov (United States)

    Liu, Yitao; Deng, Junxiang; Liu, Chao; Li, Sen

    2018-02-01

    The More Electric Aircraft (MEA) underlines the utilization of the electrical power to drive the non-propulsive aircraft systems. The critical features of the MEA including no-bleed engine architecture and advanced electrical system are introduced. Energy and exergy analysis is conducted for the MEA, and comparison of the effectiveness and efficiency of the energy usage between conventional aircraft and the MEA is conducted. The results indicate that one of the advantages of the MEA architecture is the greater efficiency gained in terms of reduced fuel consumption.

  17. Analysis and design of hybrid electric regional turboprop aircraft

    NARCIS (Netherlands)

    Voskuijl, M.; van Bogaert, J.; Gangoli Rao, A.

    2017-01-01

    The potential environmental benefits of hybrid electric regional turboprop aircraft in terms of fuel consumption are investigated. Lithium–air batteries are used as energy source in combination with conventional fuel. A validated design and analysis framework is extended with sizing and analysis

  18. Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion

    Science.gov (United States)

    Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.

    2015-01-01

    Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.

  19. Design and Optimisation of Fuel Tanks for BWB Configurations

    Directory of Open Access Journals (Sweden)

    Goraj Zdobyslaw

    2016-12-01

    Full Text Available This paper describes assumptions, goals, methods, results and conclusions related to fuel tank arrangement of a flying wing passenger airplane configuration. A short overview of various fuel tank systems in use today of different types of aircraft is treated as a starting point for designing a fuel tank system to be used on very large passenger airplanes. These systems may be used to move fuel around the aircraft to keep the centre of gravity within acceptable limits, to maintain pitch and lateral balance and stability. With increasing aircraft speed, the centre of lift moves aft, and for trimming the elevator or trimmer must be used thereby increasing aircraft drag. To avoid this, the centre of gravity can be shifted by pumping fuel from forward to aft tanks. The lesson learnt from this is applied to minimise trim drag by moving the fuel along the airplane. Such a task can be done within coming days if we know the minimum drag versus CG position and weight value. The main part of the paper is devoted to wing bending moment distribution. A number of arrangements of fuel in airplane tanks are investigated and a scenario of refuelling - minimising the root bending moments - is presented. These results were obtained under the assumption that aircraft is in long range flight (14 hours, CL is constant and equal to 0.279, Specific Fuel Consumption is also constant and that overall fuel consumption is equal to 20 tons per 1 hour. It was found that the average stress level in wing structure is lower if refuelling starts from fuel tanks located closer to longitudinal plane of symmetry. It can influence the rate of fatigue.

  20. Fuel Reduction for the Mobility Air Forces: Executive Summary

    Science.gov (United States)

    2015-01-01

    to reduce fuel consumption. These measures include technology improvements ( aerodynamics , aircraft weight, propulsion, etc.) and fleet, flight, and...calculate fuel savings from an enterprise perspective. For example, there is significant literature on drag reduction of winglets ; however, most of this...an aircraft. If the weight of the paint can be reduced, then the fuel burn can also be reduced. • Microvanes. Microvanes are small aerodynamic

  1. Fuel Burn Estimation Using Real Track Data

    Science.gov (United States)

    Chatterji, Gano B.

    2011-01-01

    A procedure for estimating fuel burned based on actual flight track data, and drag and fuel-flow models is described. The procedure consists of estimating aircraft and wind states, lift, drag and thrust. Fuel-flow for jet aircraft is determined in terms of thrust, true airspeed and altitude as prescribed by the Base of Aircraft Data fuel-flow model. This paper provides a theoretical foundation for computing fuel-flow with most of the information derived from actual flight data. The procedure does not require an explicit model of thrust and calibrated airspeed/Mach profile which are typically needed for trajectory synthesis. To validate the fuel computation method, flight test data provided by the Federal Aviation Administration were processed. Results from this method show that fuel consumed can be estimated within 1% of the actual fuel consumed in the flight test. Next, fuel consumption was estimated with simplified lift and thrust models. Results show negligible difference with respect to the full model without simplifications. An iterative takeoff weight estimation procedure is described for estimating fuel consumption, when takeoff weight is unavailable, and for establishing fuel consumption uncertainty bounds. Finally, the suitability of using radar-based position information for fuel estimation is examined. It is shown that fuel usage could be estimated within 5.4% of the actual value using positions reported in the Airline Situation Display to Industry data with simplified models and iterative takeoff weight computation.

  2. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  3. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  4. Alternate-Fueled Combustor-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  5. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  6. Spray sealing: A breakthrough in integral fuel tank sealing technology

    Science.gov (United States)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  7. 14 CFR 25.995 - Fuel valves.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 25.995 Section 25.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition...

  8. 14 CFR 29.995 - Fuel valves.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 29.995 Section 29.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.995 Fuel valves. In addition...

  9. 14 CFR 27.991 - Fuel pumps.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 27.991 Section 27.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.991 Fuel pumps. Compliance with...

  10. 14 CFR 29.991 - Fuel pumps.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 29.991 Section 29.991 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.991 Fuel pumps. (a...

  11. 14 CFR 29.963 - Fuel tanks: general.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  12. 14 CFR 25.963 - Fuel tanks: general.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: general. 25.963 Section 25.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.963 Fuel tanks: general. (a) Each fuel...

  13. 14 CFR 27.963 - Fuel tanks: general.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  14. In Situ Multi-Species (O2, N2, Fuel, Other) Fiber Optic Sensor for Fuel Tank Ullage

    Science.gov (United States)

    Nguyen, Quang-Viet

    2007-01-01

    A rugged and compact fiber optic sensor system for in situ real-time measurement of nitrogen (N2), oxygen (O2), hydrocarbon (HC) fuel vapors, and other gases has been developed over the past several years at Glenn Research Center. The intrinsically-safe, solid-state fiber optic sensor system provides a 1% precision measurement (by volume) of multiple gases in a 5-sec time window. The sensor has no consumable parts to wear out and requires less than 25 W of electrical power to operate. The sensor head is rugged and compact and is ideal for use in harsh environments such as inside an aircraft fuel tank, or as a feedback sensor in the vent-box of an on-board inert gas generation system (OBIGGS). Multiple sensor heads can be monitored with a single optical detection unit for a cost-effective multi-point sensor system. The present sensor technology is unique in its ability to measure N2 concentration directly, and in its ability to differentiate different types of HC fuels. The present sensor system provides value-added aircraft safety information by simultaneously and directly measuring the nitrogen-oxygen-fuel triplet, which provides the following advantages: (1) information regarding the extent of inerting by N2, (2) information regarding the chemical equivalence ratio, (3) information regarding the composition of the aircraft fuel, and (4) by providing a self-consistent calibration by utilizing a singular sensor for all species. Using the extra information made available by this sensor permits the ignitability of a fuel-oxidizer mixture to be more accurately characterized, which may permit a reduction in the amount of inerting required on a real-time basis, and yet still maintain a fire-safe fuel tank. This translates to an increase in fuel tank fire-safety through a better understanding of the physics of fuel ignition, and at the same time, a reduction in compressed bleed air usage and concomitant aircraft operational costs over the long-run. The present fiber

  15. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-01-01

    Full Text Available Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays. To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground operations as major driver for airline punctuality. Aircraft ground trajectories primarily consists of handling processes at the stand (deboarding, catering, fueling, cleaning, boarding, unloading, loading, which are defined as the aircraft turnaround. Turnaround processes are mainly controlled by ground handling, airport, or airline staff, except the aircraft boarding, which is driven by passengers’ experience and willingness/ability to follow the proposed boarding procedures. This paper provides an overview of the research done in the field of aircraft boarding and introduces a reliable, calibrated, and stochastic aircraft boarding model. The stochastic boarding model is implemented in a simulation environment to evaluate specific boarding scenarios using different boarding strategies and innovative technologies. Furthermore, the potential of a connected aircraft cabin as sensor network is emphasized, which could provide information on the current and future status of the boarding process.

  16. 77 FR 45921 - Alaskan Fuel Hauling as a Restricted Category Special Purpose Flight Operation

    Science.gov (United States)

    2012-08-02

    ... operations, each aircraft used to transport fuel will be required to receive FAA certification for the... regulations. The special purpose of Alaskan fuel hauling was considered for aircraft type-certificated under... required for this special purpose. The fuel hauling system must be shown to meet the applicable...

  17. 14 CFR 29.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.952 Fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 29.952... of fuel fires to occupants following an otherwise survivable impact (crash landing), the fuel systems...

  18. 14 CFR 27.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.952 Fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 27.952... of fuel fires to occupants following an otherwise survivable impact (crash landing), the fuel systems...

  19. 14 CFR 27.995 - Fuel valves.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 27.995 Section 27.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.995 Fuel valves. (a) There must...

  20. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot

  1. 14 CFR 27.971 - Fuel tank sump.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  2. 14 CFR 25.971 - Fuel tank sump.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  3. 14 CFR 29.971 - Fuel tank sump.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  4. 14 CFR 29.965 - Fuel tank tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  5. 14 CFR 27.965 - Fuel tank tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  6. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  7. Alternative Aviation Fuel Experiment (AAFEX)

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; hide

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  8. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  9. 14 CFR 25.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 25.954...

  10. 14 CFR 27.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 27.954...

  11. 14 CFR 29.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 29.954...

  12. Structural analysis of a metal spent-fuel storage cask in an aircraft crash for risk assessment

    International Nuclear Information System (INIS)

    Almomani, Belal; Lee, Sanghoon; Kang, Hyun Gook

    2016-01-01

    Highlights: • Several engine-applied loads with different locations of impact on the storage cask body were implemented. • Cask structural responses due to the influence of engine impact loadings were analyzed. • Leakage path areas from lid closure openings were numerically calculated. • Release fractions that depend on the generated seal opening areas and fuel damage ratios were estimated. - Abstract: Evaluations of the impact resistance of a dry storage cask under mechanical impact loadings resulting from a large commercial aircraft crash have become an important issue for designers and evaluators, in order to promote interim dry storage activities and to evaluate design safety margins. This study presents a method to evaluate the structural integrity of a generic metal cask subjected to various mechanical loading conditions, which represent aircraft engine impacts, on different locations of the cask body. Thirty representative impact conditions are analyzed to provide a comprehensive evaluation of cask damage response. The applied engine impact load–time functions were carefully re-derived by utilizing CRIEPI’s proposed curve through Riera’s approach for six impact velocities, and applied to five locations on a freestanding cask: lateral impacts on the lower half, center of gravity, and upper half of the cask body, corner impact on the lid closure, and vertical impact on the center of the lid closure. A nonlinear dynamic finite element analysis is performed to evaluate the dynamic response of the cask lid closure system and to calculate the lid gaps. The release fractions from the cask to the environment for each impact condition are preliminarily estimated by referring to a proposed methodology from literature. It is believed that this paper presents a systematic process to connect the mechanical analysis of a cask response at the moment of aircraft engine impact with its radiological consequence analysis.

  13. Structural analysis of a metal spent-fuel storage cask in an aircraft crash for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Belal, E-mail: balmomani@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Sanghoon, E-mail: shlee1222@kmu.ac.kr [Department of Mechanical and Automotive Engineering, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-11-15

    Highlights: • Several engine-applied loads with different locations of impact on the storage cask body were implemented. • Cask structural responses due to the influence of engine impact loadings were analyzed. • Leakage path areas from lid closure openings were numerically calculated. • Release fractions that depend on the generated seal opening areas and fuel damage ratios were estimated. - Abstract: Evaluations of the impact resistance of a dry storage cask under mechanical impact loadings resulting from a large commercial aircraft crash have become an important issue for designers and evaluators, in order to promote interim dry storage activities and to evaluate design safety margins. This study presents a method to evaluate the structural integrity of a generic metal cask subjected to various mechanical loading conditions, which represent aircraft engine impacts, on different locations of the cask body. Thirty representative impact conditions are analyzed to provide a comprehensive evaluation of cask damage response. The applied engine impact load–time functions were carefully re-derived by utilizing CRIEPI’s proposed curve through Riera’s approach for six impact velocities, and applied to five locations on a freestanding cask: lateral impacts on the lower half, center of gravity, and upper half of the cask body, corner impact on the lid closure, and vertical impact on the center of the lid closure. A nonlinear dynamic finite element analysis is performed to evaluate the dynamic response of the cask lid closure system and to calculate the lid gaps. The release fractions from the cask to the environment for each impact condition are preliminarily estimated by referring to a proposed methodology from literature. It is believed that this paper presents a systematic process to connect the mechanical analysis of a cask response at the moment of aircraft engine impact with its radiological consequence analysis.

  14. 14 CFR 25.952 - Fuel system analysis and test.

    Science.gov (United States)

    2010-01-01

    ... using the airplane fuel system or a test article that reproduces the operating characteristics of the... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.952 Fuel system...

  15. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  16. Aircraft anti-ice system: Evaluation of system performance with a new time dependent mathematical model

    International Nuclear Information System (INIS)

    Zilio, Claudio; Patricelli, Luca

    2014-01-01

    The anti-ice systems are critical for airplane safety, but are also strongly affecting the fuel consumption of the aircraft. A complete model of this system allows the designers to investigate all possible combination of external parameters and improve the design of current anti-ice systems. The dynamic model of an anti-ice system is presented and the results of the model are validated thanks to a series of experimental tests. The model has been used to analyze the behavior of an anti-ice system at extreme high bleed air temperature which are typical of new generation aircraft engines. An innovative architecture for anti-ice system is studied and the benefits on aircraft fuel consumption for a standard day mission are shown. -- Highlights: • A detailed mathematical model of an anti-ice valves has been created. • Experimental results confirm the goodness of the developed model. • Instability of the valves has been studied. • A new architecture for the anti-ice systems is proposed and the impacts on the aircraft fuel consumption are analyzed

  17. Calculation of odour emissions from aircraft engines at Copenhagen Airport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Morten; Kousgaard, Uffe [National Environmental Research Institute, Frederiksborgvej 399, 4000 Roskilde (Denmark); Oxboel, Arne [FORCE Technology, Park Alle 345, 2605 Broendby (Denmark)

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future. (author)

  18. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    Science.gov (United States)

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  19. Alternate-Fueled Combustion-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  20. Aircraft Wing Fuel Tank Environmental Simulator Tests for Evaluation of Antimisting Fuels.

    Science.gov (United States)

    1984-10-01

    C.*: % _ _ _.__ _ o During boost pump operation, strands of a gel-like, semi-transparent material were observed on the free surface of the fuel and...Boeing Materials Technology (BMT) laboratory to measure the water content of the fuel samples is described in appendix C. 2.5.3 Water Ingestion Results...Jet A pump at 8 gpm 32 .. . . ... . . . . . . . -%tr. go*7 .*.**.*.*..* -*.... * . . recuroed for each fueling increment. From these data a height

  1. Thermal design of linear induction and synchronous motor for electromagnetic launch of civil aircraft

    OpenAIRE

    Bertola, Luca; Cox, Tom; Wheeler, Patrick; Garvey, Seamus D.; Morvan, Herve

    2017-01-01

    The engine size of modern passenger transport aircraft is principally determined by take-off conditions, since initial acceleration requires maximum engine power. An elec¬tromagnetic launch (EML) system could provide some or all of the energy required at takeoff so that the aircraft engine power requirement and fuel consumption may be significantly reduced. So far, EML for aircraft has been adopted only for military applications to replace steam catapults on the deck of aircraft carriers. Thi...

  2. 14 CFR 27.967 - Fuel tank installation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  3. 14 CFR 29.967 - Fuel tank installation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  4. 14 CFR 25.967 - Fuel tank installations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  5. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  6. Aircraft engine pollution reduction.

    Science.gov (United States)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  7. Selected Aircraft Throttle Controller With Support Of Fuzzy Expert Inference System

    Directory of Open Access Journals (Sweden)

    Żurek Józef

    2014-12-01

    Full Text Available The paper describes Zlin 143Lsi aircraft engine work parameters control support method – hourly fuel flow as a main factor under consideration. The method concerns project of aircraft throttle control support system with use of fuzzy logic (fuzzy inference. The primary purpose of the system is aircraft performance optimization, reducing flight cost at the same time and support proper aircraft engine maintenance. Matlab Software and Fuzzy Logic Toolbox were used in the project. Work of the system is presented with use of twenty test samples, five of them are presented graphically. In addition, system control surface, included in the paper, supports system all work range analysis.

  8. 14 CFR 23.965 - Fuel tank tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  9. 14 CFR 23.971 - Fuel tank sump.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  10. 14 CFR 23.963 - Fuel tanks: General.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  11. 14 CFR 25.959 - Unusable fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Unusable fuel supply. 25.959 Section 25.959 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.959 Unusable fuel supply. The unusable...

  12. 14 CFR 25.981 - Fuel tank ignition prevention.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...

  13. 14 CFR 27.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 27.961...

  14. 14 CFR 29.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 29.961...

  15. Energy conservation aircraft design and operational procedures

    Energy Technology Data Exchange (ETDEWEB)

    Poisson-Quinton, P.

    1978-01-01

    The paper reviews studies associated with improved fuel efficiency. Several aircraft design concepts are described including: (1) increases in aerodynamic efficiency through decreased friction drag, parasitic drag, and drag due to lift, (2) structural efficiency and the implementation of composite materials, (3) active control technology, (4) the optimization of airframe-engine integration, and (5) VTOL and STOL concepts. Consideration is also given to operational procedures associated with flight management, terminal-area operations, and the influence of environmental noise constraints on fuel economy.

  16. 14 CFR 25.965 - Fuel tank tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  17. 150 Passenger Commercial Aircraft

    Science.gov (United States)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  18. Fuels and Lubricants Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Modern naval aircraft and turbine-powered craft require reliable and high-quality fuels and lubricants to satisfy the demands imposed upon them for top performance...

  19. 14 CFR 23.959 - Unusable fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Unusable fuel supply. 23.959 Section 23.959 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Unusable fuel supply. (a) The unusable fuel supply for each tank must be established as not less than that...

  20. On-Line Fuel Deoxygenation for Coke Suppression ASME GT-2002-30071

    National Research Council Canada - National Science Library

    Spadaccini, Louis

    2002-01-01

    Fuel deoxygenation is being developed as a means for suppressing autoxidative coke formation in aircraft fuel systems, thereby increasing the exploitable cooling capacity of the fuel, enabling major...

  1. 14 CFR 25.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  2. 14 CFR 29.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  3. 14 CFR 25.1161 - Fuel jettisoning system controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel jettisoning system controls. 25.1161... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1161 Fuel jettisoning system controls. Each fuel jettisoning system control must have guards...

  4. Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment

    Science.gov (United States)

    Anderson, Bruce E.

    2015-01-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.

  5. Refining and blending of aviation turbine fuels.

    Science.gov (United States)

    White, R D

    1999-02-01

    Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements.

  6. 14 CFR 23.993 - Fuel system lines and fittings.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 23.993... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.993 Fuel system lines and fittings. (a) Each fuel line must be installed...

  7. 14 CFR 25.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  8. 14 CFR 25.993 - Fuel system lines and fittings.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 25.993...

  9. 14 CFR 27.993 - Fuel system lines and fittings.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 27.993...

  10. 14 CFR 23.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  11. 14 CFR 29.993 - Fuel system lines and fittings.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.993 Fuel system lines and fittings. (a) Each fuel line must be installed and supported to prevent excessive... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 29.993...

  12. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    Science.gov (United States)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-10-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  13. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  14. 14 CFR 27.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  15. 14 CFR 27.969 - Fuel tank expansion space.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  16. 14 CFR 25.969 - Fuel tank expansion space.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  17. 14 CFR 29.969 - Fuel tank expansion space.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  18. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  19. Aeroelastic tailoring of composite aircraft wings

    Science.gov (United States)

    Mihaila-Andres, Mihai; Larco, Ciprian; Rosu, Paul-Virgil; Rotaru, Constantin

    2017-07-01

    The need of a continuously increasing size and performance of aerospace structures has settled the composite materials as the preferred materials in aircraft structures. Apart from the clear capacity to reduce the structural weight and with it the manufacture cost and the fuel consumption while preserving proper airworthiness, the prospect of tailoring a structure using the unique directional stiffness properties of composite materials allows an aerospace engineer to optimize aircraft structures to achieve particular design objectives. This paper presents a brief review of what is known as the aeroelastic tailoring of airframes with the intent of understanding the evolution of this research topic and at the same time providing useful references for further studies.

  20. Practical application of AMLCDs for tactical fighter aircraft

    Science.gov (United States)

    McClaskey, Paul; Craddock, Roger

    1995-06-01

    Development and testing of an AMLCD-display to replace a dichroic display in a fighter aircraft environment has presented a unique set of technical challenges. This paper addresses design concepts used on the Engine Fuel Display and proposes design guidelines generally applicable for AMLCD projects.

  1. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    Science.gov (United States)

    1994-01-01

    Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The

  2. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    Science.gov (United States)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  3. 14 CFR 23.969 - Fuel tank expansion space.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  4. Acoustical design economic trade off for transport aircraft

    Science.gov (United States)

    Benito, A.

    The effects of ICAO fixed certification limits and local ordinances on acoustic emissions from jets on commercial transport aircraft and costs of operations are explored. The regulations effectively ban some aircraft from operation over populated areas, impose curfews on airports and, in conjunction with local civil aviation rules, levy extra taxes and quotas on noisier equipment. Jet engine manufacturers have attempted to increase the flow laminarity, decrease the exhaust speed and develop acoustic liners for selected duct areas. Retrofits are, however, not usually cost effective due to increased operational costs, e.g., fuel consumption can increase after engine modification because of increased weight. Finally, an attempt is made to assess, monetarily, the costs of noise pollution, wherein fines are levied for noisy aircraft and the money is spent insulating homes from noise.

  5. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  6. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    With an objective to utilize hydrogen fuel in aircraft engines, a conceptual design survey was carried out on medium size transport aircraft. Large size long-distance aircraft and SST loaded with a great amount of fuel have the jet fuel (JP) increase take-off weight, affecting largely the selection of wing area and engine thrust. If the hydrogen fuel can be liquefied, large reduction can be achieved and the economic effect can be increased. However, for short-distance transport aircraft, the fuel weight ratio is small, where no large advantage is anticipated even if hydrogen is liquefied. Nevertheless, considering oil depletion in the future, a conceptual design was performed on the YX2688 short-medium distance aircraft being discussed of development. Even the short-medium distance aircraft that can be developed and commercialized as civilian use aircraft has a number of common points with large aircraft development, such as hydrogen fuel using technologies and safety. Although the advantage of using liquefied hydrogen as fuel may of course be smaller in the short-medium distance aircraft than in larger aircraft, the trend of using hydrogen fuel is historical necessity, whose development plans should be moved forward. (NEDO)

  7. Investigation of the behaviour of a LILW superficial repository under aircraft impact

    International Nuclear Information System (INIS)

    Lo Frano, Rosa; Stefanini, Lorenzo

    2016-01-01

    Highlights: • Safety assessment of a LILW superficial repository. • Investigation of the consequences of an aircraft impact with fuel burning. • Experimental material properties. • Numerical simulation of aircraft impact with fuel burning accident by MSC.MARC"© code. • Demonstration that the overall integrity resulted is guaranteed. - Abstract: Safety and security are the two fundamental aspects to guarantee when designing a LILW superficial repository. Because of its safety concern, we have to prove, and build confidence in, the primary and secondary consequences of the crashing will be acceptable. These goals are obtained generally by means of safety assessment supported by calculations. This study is intended to investigate the performance of a superficial repository subjected to aircraft impact and fuel burning. To the purpose a superficial repository similar to that of El Cabril has been considered. Moreover to be confident the facility is safe and that the consequences of such a type of accident on the environment and humans are negligible, an appropriate safety assessment was carried out. The potential damage that aircraft impact could bring into the repository has been therefore analysed and discussed. To attain the intent load functions, calculated according to the Riera approach, and the maximum temperature reached by fuel during its combustion have been considered. FEM (thermo-mechanical) simulations have been done, by MSC"© Marc code, assuming damaging phenomena of concrete and material properties variation with the temperature. The obtained results showed that an empty superficial repository with a wall thickness, ranging from 0.7 to 1 m, is not sufficient to avoid penetration. Nevertheless even in presence of a reduced strength and of (cone) cracking and plugging, the overall integrity resulted guaranteed.

  8. Investigation of the behaviour of a LILW superficial repository under aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Stefanini, Lorenzo

    2016-04-15

    Highlights: • Safety assessment of a LILW superficial repository. • Investigation of the consequences of an aircraft impact with fuel burning. • Experimental material properties. • Numerical simulation of aircraft impact with fuel burning accident by MSC.MARC{sup ©} code. • Demonstration that the overall integrity resulted is guaranteed. - Abstract: Safety and security are the two fundamental aspects to guarantee when designing a LILW superficial repository. Because of its safety concern, we have to prove, and build confidence in, the primary and secondary consequences of the crashing will be acceptable. These goals are obtained generally by means of safety assessment supported by calculations. This study is intended to investigate the performance of a superficial repository subjected to aircraft impact and fuel burning. To the purpose a superficial repository similar to that of El Cabril has been considered. Moreover to be confident the facility is safe and that the consequences of such a type of accident on the environment and humans are negligible, an appropriate safety assessment was carried out. The potential damage that aircraft impact could bring into the repository has been therefore analysed and discussed. To attain the intent load functions, calculated according to the Riera approach, and the maximum temperature reached by fuel during its combustion have been considered. FEM (thermo-mechanical) simulations have been done, by MSC{sup ©} Marc code, assuming damaging phenomena of concrete and material properties variation with the temperature. The obtained results showed that an empty superficial repository with a wall thickness, ranging from 0.7 to 1 m, is not sufficient to avoid penetration. Nevertheless even in presence of a reduced strength and of (cone) cracking and plugging, the overall integrity resulted guaranteed.

  9. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  10. Landing on empty: estimating the benefits from reducing fuel uplift in US Civil Aviation

    International Nuclear Information System (INIS)

    Ryerson, Megan S; Hansen, Mark; Hao, Lu; Seelhorst, Michael

    2015-01-01

    Airlines and Air Navigation Service Providers are united in their goal to reduce fuel consumption. While changes to flight operations and technology investments are the focus of a number of studies, our study is among the first to investigate an untapped source of aviation fuel consumption: excess contingency fuel loading. Given the downside risk of fuel exhaustion of diverting to an alternate airport, airline dispatchers may load excess fuel onto an aircraft. Such conservatism comes at a cost of consuming excess fuel, as fuel consumed is a function of, among other factors, aircraft weight. The aim of this paper is to quantify, on a per-flight basis, the fuel burned due to carrying fuel beyond what is needed for foreseeable contingencies, and thereby motivate research, federal guidance, and investments that allow airline dispatchers to reduce fuel uplift while maintaining near zero risks of fuel exhaustion. We merge large publicly available aviation and weather databases with a detailed dataset from a major US airline. Upon estimating factors that capture the quantity fuel consumed due to carrying a pound of weight for a range of aircraft types, we calculate the cost and greenhouse gas emissions from carrying unused fuel on arrival and additional contingency fuel above a conservative buffer for foreseeable contingencies. We establish that the major US carrier does indeed load fuel conservatively. We find that 4.48% of the fuel consumed by an average flight is due to carrying unused fuel and 1.04% of the fuel consumed by an average flight is due to carrying additional contingency fuel above a reasonable buffer. We find that simple changes in flight dispatching that maintain a statistically minimal risk of fuel exhaustion could result in yearly savings of 338 million lbs of CO 2 , the equivalent to the fuel consumed from 4760 flights on midsized commercial aircraft. Moreover, policy changes regarding maximum fuel loads or investments that reduce uncertainty or

  11. Inflight fuel tank temperature survey data

    Science.gov (United States)

    Pasion, A. J.

    1979-01-01

    Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.

  12. A Study of Transport Airplane Crash-Resistant Fuel Systems

    National Research Council Canada - National Science Library

    Robertson, S

    2002-01-01

    ...), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S...

  13. Investigating the air quality in aircraft cabins

    International Nuclear Information System (INIS)

    Nilsen, Steinar K.

    2002-01-01

    In recent years, there has been increasing concern about the air quality in aircraft cabins and its effects on health and safety for crew and passengers. Some of the major worries are risk of communication of infectious diseases, high incidence of respiratory diseases caused by low air moisture, and increased concentration of carbon dioxide from exhaled air due to the cabin air being recirculated. It also happens that fumes and gases enter the cabin by way of the ventilation system. This article describes the EU-funded research programme called CabinAir. The project aims to: (1) establish the current level of air quality in aircraft cabins, (2) establish the relationship between cabin air quality and the performance of environmental control and filtration systems, the air distribution, the energy consumption and the environmental impact of fuel burn. (3) develop new designs and technical solutions to improve the environmental control system and cabin air distribution/control systems, (4) optimise air quality in the cabin and minimise fuel consumption and environmental impacts, (5) develop performance specifications for the components, (6) draft European Pre-Normative Standards

  14. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  15. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  16. Computational modelling of an Organic Rankine Cycle (ORC waste heat recovery system for an aircraft engine

    Directory of Open Access Journals (Sweden)

    Saadon S.

    2018-01-01

    Full Text Available Escalating fuel prices and carbon dioxide emission are causing new interest in methods to increase the thrust force of an aircraft engine with limitation of fuel consumption. One viable means is the conversion of exhaust engine waste heat to a more useful form of energy or to be used in the aircraft environmental system. A one-dimensional analysis method has been proposed for the organic Rankine cycle (ORC waste heat recovery system for turbofan engine in this paper. The paper contains two main parts: validation of the numerical model and a performance prediction of turbofan engine integrated to an ORC system. The cycle is compared with industrial waste heat recovery system from Hangzhou Chinen Steam Turbine Power CO., Ltd. The results show that thrust specific fuel consumption (TSFC of the turbofan engine reach lowest value at 0.91 lbm/lbf.h for 7000 lbf of thrust force. When the system installation weight is applied, the system results in a 2.0% reduction in fuel burn. Hence implementation of ORC system for waste heat recovery to an aircraft engine can bring a great potential to the aviation industry.

  17. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  18. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  19. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  20. Solar Airplanes and Regenerative Fuel Cells

    Science.gov (United States)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of

  1. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Science.gov (United States)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  2. RISK CONNECTED WITH AIRCRAFT PRODUCTION IN ACCORDANCE WITH MINIMUM EQUIPMENT LIST (MEL

    Directory of Open Access Journals (Sweden)

    R. V. Enikeev

    2014-01-01

    Full Text Available The article covers the problem of understanding of risk assessment necessity connected with aircraft production in accordance with Minimum Equipment List (MEL. The article presents calculation of fail-safe performance probability of Airbus A320 Family fuel system in the event of defect which rectification is postponed in accordance with MEL. The article also presents the results of risk assessment connected with aircraft production in accordance with MEL.

  3. Modelling and Evaluation of Aircraft Emissions. Final report

    International Nuclear Information System (INIS)

    Savola, M.

    1996-01-01

    An application was developed to calculate the emissions and fuel consumption of a jet and turboprop powered aircraft in Finnair's scheduled and charter traffic both globally and in the Finnish flight information regions. The emissions calculated are nitrogen oxides, unburnt hydrocarbons and carbon monoxide. The study is based on traffic statistics of one week taken from three scheduled periods in 1993. Each flight was studied by dividing the flight profile into sections. The flight profile data are based on aircraft manufacturers' manuals, and they serve as initial data for engine manufacturers' emission calculation programs. In addition, the study includes separate calculations on air traffic emissions at airports during the so-called LTO cycle. The fuel consumption calculated for individual flights is 419,395 tonnes globally, and 146,142 tonnes in the Finnish flight information regions. According to Finnair's statistics the global fuel consumption is 0.97-fold compared with the result given by the model. The results indicate that in 1993 the global nitrogen oxide emissions amounted to 5,934 tonnes, the unburnt hydrocarbon emissions totalled 496 tonnes and carbon monoxide emissions 1,664 tonnes. The corresponding emissions in the Finnish flight information regions were as follows: nitrogen oxides 2,105 tonnes, unburnt hydrocarbons 177 tonnes and carbon monoxide 693 tonnes. (orig.)

  4. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    Science.gov (United States)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum

  5. Analysis and Design of Fuel Cell Systems for Aviation

    Directory of Open Access Journals (Sweden)

    Thomas Kadyk

    2018-02-01

    Full Text Available In this paper, the design of fuel cells for the main energy supply of passenger transportation aircraft is discussed. Using a physical model of a fuel cell, general design considerations are derived. Considering different possible design objectives, the trade-off between power density and efficiency is discussed. A universal cost–benefit curve is derived to aid the design process. A weight factor w P is introduced, which allows incorporating technical (e.g., system mass and efficiency as well as non-technical design objectives (e.g., operating cost, emission goals, social acceptance or technology affinity, political factors. The optimal fuel cell design is not determined by the characteristics of the fuel cell alone, but also by the characteristics of the other system components. The fuel cell needs to be designed in the context of the whole energy system. This is demonstrated by combining the fuel cell model with simple and detailed design models of a liquid hydrogen tank. The presented methodology and models allows assessing the potential of fuel cell systems for mass reduction of future passenger aircraft.

  6. Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

    Directory of Open Access Journals (Sweden)

    J.-K. Mueller

    2018-01-01

    Full Text Available Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

  7. Probabilistic risk assessment of aircraft impact on a spent nuclear fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Belal, E-mail: balmomani@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Sanghoon, E-mail: shlee1222@kmu.ac.kr [Department of Mechanical and Automotive Engineering, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu (Korea, Republic of); Jang, Dongchan, E-mail: dongchan.jang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kang, Hyun Gook, E-mail: kangh6@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2017-01-15

    Highlights: • A new risk assessment frame is proposed for aircraft impact into an interim dry storage. • It uses event tree analysis, response-structural analysis, consequence analysis, and Monte Carlo simulation. • A case study of the proposed procedure is presented to illustrate the methodology’s application. - Abstract: This paper proposes a systematic risk evaluation framework for one of the most significant impact events on an interim dry storage facility, an aircraft crash, by using a probabilistic approach. A realistic case study that includes a specific cask model and selected impact conditions is performed to demonstrate the practical applicability of the proposed framework. An event tree analysis of an occurred aircraft crash that defines a set of impact conditions and storage cask response is constructed. The Monte-Carlo simulation is employed for the probabilistic approach in consideration of sources of uncertainty associated with the impact loads onto the internal storage casks. The parameters for representing uncertainties that are managed probabilistically include the aircraft impact velocity, the compressive strength of the reinforced concrete wall, the missile shape factor, and the facility wall thickness. Failure probabilities of the impacted wall and a single storage cask under direct mechanical impact load caused by the aircraft crash are estimated. A finite element analysis is applied to simulate the postulated direct engine impact load onto the cask body, and a source term analysis for associated releases of radioactive materials as well as an off-site consequence analysis are performed. Finally, conditional risk contribution calculations are represented by an event tree model. Case study results indicate that no severe risk is presented, as the radiological consequences do not exceed regulatory exposure limits to the public. This risk model can be used with any other representative detailed parameters and reference design concepts for

  8. Aircraft transporting container for nuclear fuel

    International Nuclear Information System (INIS)

    Kurakami, Jun-ichi; Kubo, Minoru.

    1991-01-01

    The present invention concerns an air craft transporting container for nuclear fuels. A sealing container that seals a nuclear fuel container and constitutes a sealed boundary for the transporting container is incorporated in an inner container. Shock absorbers are filled for absorbing impact shock energy in the gap between the inner container and the sealing container. The inner container is incorporated with wooden impact shock absorbers being filled so that it is situated in a substantially central portion of an external container. Partitioning cylinders are disposed coaxially in the cylindrical layer filled with wooden impact shock absorbers at an intermediate portion between the outer and the inner containers. Further, a plurality of longitudinally intersecting partitioning disks are disposed each at a predetermined distance in right and left cylindrical wooden impact shock absorbing layers which are in contact with the end face of the inner container. Accordingly, the impact shock energy can be absorbed by the wooden impact shock absorbers efficiently by a plurality of the partitioning disks and the partitioning cylinders. (I.N.)

  9. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  10. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  11. 14 CFR 23.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  12. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  13. Methanol commercial aviation fuel

    International Nuclear Information System (INIS)

    Price, R.O.

    1992-01-01

    Southern California's heavy reliance on petroleum-fueled transportation has resulted in significant air pollution problems within the south Coast Air Basin (Basin) which stem directly from this near total dependence on fossil fuels. To deal with this pressing issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may exceed emission gains achieved in the ground transportation sector. This paper addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin and the need to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine engines

  14. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, facts and analysis

    Science.gov (United States)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, at 1810 P.d.t., NASA 712, a Convair 990 aircraft, was destroyed by fire at March Air Force Base, California. The fire started during the rollout after the pilot rejected the takeoff on runway 32. The rejected takeoff was initiated during the takeoff roll because of blown tires on the right landing gear. During the rollout, fragments of either the blown tires or the wheel/brake assemblies penetrated a right-wing fuel tank forward of the right main landing gear. Leaking fuel ignited while the aircraft was rolling, and fire engulfed the right wing and the fuselage after the aircraft was stopped on the runway. The 4-man flightcrew and the 15 scientists and technicians seated in the cabin evacuated the aircraft without serious injury. The fire was not extinguished by crash/rescue efforts and the aircraft was destroyed.

  15. Fuel conservation: the airline - ATC

    Energy Technology Data Exchange (ETDEWEB)

    Grundy, P.M.

    1982-05-01

    The air traffic control system has a greater impact on fuel conservation than any other factor in aviation, the most energy intensive industry in the world. The article discusses various measures that could be adopted by airlines and air traffic controllers to increase fuel conservation. These include: reducing operating empty weights, flying at optimum altitude, direct routing, linear holding, speed control, flight planning, loading for favorable center of gravity to reduce trim drag, minimizing route mileage, and clearance priorities for more fuel demanding aircraft during landing.

  16. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  17. Systematic analysis of aircraft separation requirements

    Science.gov (United States)

    Ennis, Rachelle Lea

    2005-12-01

    Minimum separation standards are necessary for safety in the air traffic control system. At the same time, minimum separation standards constrain the flow of air traffic and cause delays that translate to millions of dollars in fuel costs. Two necessary separation standards are defined. Then, practical methods for calculating the minimum required size of these separation standards are presented. First, the protected zone is considered. The protected zone represents a region around a given aircraft that no other aircraft should penetrate for the safety of both aircraft. It defines minimum separation requirements. Three major components of the protected zone and their interplays are identified: a vortex region, a safety buffer region, and a state-uncertainty region. A systematic procedure is devised for the analysis of the state-uncertainty region. In particular, models of trajectory controls are developed that can be used to represent different modes of pilot and/or autopilot controls, such as path feedback and non-path feedback. Composite protected zones under various conditions are estimated, and effective ways to reduce sizes of protected zones for advanced air traffic management are examined. In order to maintain minimum separation standards between two aircraft, proper avoidance maneuvers must be initiated before their relative separation reaches the minimum separation due to aircraft dynamics, controller and pilot response delays, etc. The concept of the required action threshold is presented. It is defined as the advanced time for which the conflict resolution process must begin in order to maintain minimum separation requirements. Five main segments in the process of conflict resolution are identified, discussed, and modeled: state information acquisition, comprehension and decision, communication, pilot response, and aircraft maneuver. Each of the five segments is modeled via a time constant. Time estimates for the first four segments are obtained from

  18. An Investigation of EME as a Potential Cause of Fuel Tank Ignition

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    NASA researchers were tasked to study the potential for radio signals to excite an aircraft fuel quantity indication system (FQIS) enough to cause arcing, sparking or excessive heating within a fuel tank. Computational techniques were used to determine the threat from external high intensity radiated field (HIRF) transmitters nearby, like shipboard and airborne RADAR systems. Experimental methods were used to determine the threat from Portable Electronic Devices (PEDs) carried aboard by passengers. To support this work, unique electromagnetic coupling measurements were performed on a retired Boeing 747 aircraft, and new test and analysis methods were developed that may be applied to other FQIS designs as well as other aircraft electronic systems.

  19. An investigation of the accuracy of empirical aircraft design for the development of an unmanned aerial vehicle intended for liquid hydrogen fuel

    Science.gov (United States)

    Chaney, Christopher Scott

    A study was conducted to assess the accuracy of empirical techniques used for the calculation of flight performance for unmanned aerial vehicles. This was achieved by quantifying the error between a mathematical model developed with these techniques and experimental test data taken using an unmanned aircraft. The vehicle utilized for this study was developed at Washington State University for the purpose of flying using power derived from hydrogen stored as a cryogenic liquid. The vehicle has a mass of 32.8 kg loaded and performed a total of 14 flights under battery power for 3.58 total flight hours. Over these flights, the design proved it is capable of sustaining level flight from the power available from a PEM fuel cell propulsion system. The empirical techniques used by the model are explicitly outlined within. These yield several performance metrics that are compared to measurements taken during flight testing. Calculations of required thrust for steady flight over all airspeeds and rates of climb modeled are found to have a mean percent error of 3.2%+/-7.0% and a mean absolute percent error of 34.6%+/-5.1%. Comparison of the calculated and measured takeoff distance are made and the calculated thrust required to perform a level turn at a given rate is compared to flight test data. A section of a test flight is analyzed, over which the vehicle proves it can sustain level flight under 875 watts of electrical power. The aircraft's design is presented including the wing and tail, propulsion system, and build technique. The software and equipment used for the collection and analysis of flight data are given. Documentation and validation is provided of a unique test rig for the characterization of propeller performance using a car. The aircraft remains operational to assist with research of alternative energy propulsion systems and novel fuel storage techniques. The results from the comparison of the mathematical model and flight test data can be utilized to assist

  20. Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks

    Science.gov (United States)

    Nguyen, Quang-Viet

    2008-01-01

    A fiber-optic sensor system has been developed that can remotely measure the concentration of molecular oxygen (O2), nitrogen (N2), hydrocarbon vapor, and other gases (CO2, CO, H2O, chlorofluorocarbons, etc.) in the ullage of a liquid-fuel tank. The system provides an accurate and quantitative identification of the above gases with an accuracy of better than 1 percent by volume (for O2 or N2) in real-time (5 seconds). In an effort to prevent aircraft fuel tank fires or explosions similar to the tragic TWA Flight 800 explosion in 1996, OBIGGS are currently being developed for large commercial aircraft to prevent dangerous conditions from forming inside fuel tanks by providing an inerting gas blanket that is low in oxygen, thus preventing the ignition of the fuel/air mixture in the ullage. OBIGGS have been used in military aircraft for many years and are now standard equipment on some newer large commercial aircraft (such as the Boeing 787). Currently, OBIGGS are being developed for retrofitting to existing commercial aircraft fleets in response to pending mandates from the FAA. Most OBIGGS use an air separation module (ASM) that separates O2 from N2 to make nitrogen-enriched air from compressed air flow diverted from the engine (bleed air). Current OBIGGS systems do not have a closed-loop feedback control, in part, due to the lack of suitable process sensors that can reliably measure N2 or O2 and at the same time, do not constitute an inherent source of ignition. Thus, current OBIGGS operate with a high factor-of-safety dictated by process protocol to ensure adequate fuel-tank inerting. This approach is inherently inefficient as it consumes more engine bleed air than is necessary compared to a closed-loop controlled approach. The reduction of bleed air usage is important as it reduces fuel consumption, which translates to both increased flight range and lower operational costs. Numerous approaches to developing OBIGGS feedback-control sensors have been under

  1. Fuel shipment experience, fuel movements from the BMI-1 transport cask

    International Nuclear Information System (INIS)

    Bauer, Thomas L.; Krause, Michael G.

    1986-01-01

    The University of Texas at Austin received two shipments of irradiated fuel elements from Northrup Aircraft Corporation on April 11 and 16, 1985. A total of 59 elements consisting of standard and instrumented TRIGA fuel were unloaded from the BMI-1 shipping cask. At the time of shipment, the Northrup core burnup was approximately 50 megawatt days with fuel element radiation levels, after a cooling time of three months, of approximately 1.75 rem/hr at 3 feet. In order to facilitate future planning of fuel shipment at the UT facility and other facilities, a summary of the recent transfer process including several factors which contributed to its success are presented. Numerous color slides were made of the process for future reference by UT and others involved in fuel transfer and handling of the BMI-1 cask

  2. Aircraft-crash-protected roof design for the European SBWR

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1995-01-01

    The European utility requirement document (EURD) places significant emphasis on aircraft crash protection of the reactor building - Alternative concepts were evaluated for protecting the dry-well head and the fuel pool from the effect of the spalling concrete for the General Electric Company's European simplified boiling water reactor (ESBWR) designs

  3. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  4. Aircraft Impact Assessment of APR1400 Reactor Containment Building

    International Nuclear Information System (INIS)

    Moon, Il Hwan; Kim, Do Yeon; Kim, Jae Hee; Kim, Sang Yun

    2011-01-01

    The implementation of a protection to withstand aircraft impact on safety-related structures and systems is basically based on a probabilistic evaluation for each site, if the licensing body doesn't require a deterministic approach. Existing nuclear power plants in Korea were designed based on the probabilistic approach, and the aircraft impact hazard remained less than a probability of 10 -7 . However, a man-made aircraft impact have been considered as a possible external accident for the nuclear power plant. New plant designs that are to be constructed in the U.S. after July 2009 must consider the effect of impact from a large commercial aircraft according to the requirements of 10 CFR 50.150. Especially, Reactor Containment Building (RCB) housing the safety-related equipment and fuels should be protected safely against aircraft crash without perforation and scabbing failure of external wall. APR1400 RCB is constructed as a prestressed concrete containment vessel (PCCV) which is surrounded by the auxiliary building housing additional safety-related equipment and other systems. In this study, the aircraft impact analyses for the RCB are carried out using Riera forcing function and aircraft model. Considered external wall thickness is 4 ft 6 in. for the cylindrical wall and 4 ft for the dome. Actual strengths of concrete and steel are considered as the material properties. For these analyses, the dynamic increment factor and concrete aging effect are considered in accordance with NEI 07-13(2011)

  5. Study of a very low cost air combat maneuvering trainer aircraft

    Science.gov (United States)

    Hill, G. C.; Bowles, J. V.

    1976-01-01

    A very low cost aircraft for performing Air Combat Maneuvering (ACM) training was studied using the BD-5J sport plane as a point of departure. The installation of a larger engine and increased fuel capacity were required to meet the performance and mission objectives. Reduced wing area increased the simulation of the ACM engagement, and a comparison with current tactical aircraft is presented. Other factors affecting the training transfer are considered analytically, but a flight evaluation is recommended to determine the concept utility.

  6. Study of Hydrogen As An Aircraft Fuel

    National Research Council Canada - National Science Library

    Ciaravino, J

    2003-01-01

    .... The biggest obstacle to using hydrogen is its very low density, a property that even combined with hydrogen's high heat of combustion still results in very large fuel tanks. Liquid hydrogen (LH2...

  7. Morphing Wing Weight Predictors and Their Application in a Template-Based Morphing Aircraft Sizing Environment II. Part 2; Morphing Aircraft Sizing via Multi-level Optimization

    Science.gov (United States)

    Skillen, Michael D.; Crossley, William A.

    2008-01-01

    This report presents an approach for sizing of a morphing aircraft based upon a multi-level design optimization approach. For this effort, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and/or increasing aspect ratio by as much as 200% from the lowest possible value. The top-level optimization problem seeks to minimize the gross weight of the aircraft by determining a set of "baseline" variables - these are common aircraft sizing variables, along with a set of "morphing limit" variables - these describe the maximum shape change for a particular morphing strategy. The sub-level optimization problems represent each segment in the morphing aircraft's design mission; here, each sub-level optimizer minimizes fuel consumed during each mission segment by changing the wing planform within the bounds set by the baseline and morphing limit variables from the top-level problem.

  8. 75 FR 22439 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Science.gov (United States)

    2010-04-28

    ... piston-engine aircraft as well as certain high performance engines such as race cars. \\33\\ See http://www... for all remaining uses, including use as fuel in aircraft, racing cars, and nonroad engines such as.... These include the voluntary partnership between EPA and the National Association for Stock Car Auto...

  9. Resistance ability evaluation of safety-related structures for the simulated aircraft accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Sung Woon; Choi, Jang Kyu [Daewoo E and C Co., Ltd., Suwon (Korea, Republic of)] (and others)

    2003-03-15

    Aircraft accidents on nuclear safety-related structures can cause severe damage to the safety of NPP(Nuclear Power Plant)s. To assess the safety of nuclear safety-related structures, the local damage and the dynamic response of global structures should be investigated together. This study have compared several local damage assessment formulas suggested for aircraft as an impactor, and have set the assessment system of local damage for impact-proof design of NPP containment buildings. And the local damage of nuclear safety-related structures in operation in Korea for commercial aircraft as impactor have been estimated. Impact load-time functions of the aircraft crash have been decided to assessment the safety of nuclear safety-related structures against the intentional colliding of commercial aircraft. Boeing 747 and Boeing 767 is selected as target aircraft based on the operation frequencies and weights. Comparison of the fire analysis methods showed that the method considering heat convection and radiation is adequate for the temperature analysis of the aircraft fuel fire. Finally, the study covered the analysis of the major structural drawings and design drawings with which three-dimensional finite element model analysis is expected to be performed.

  10. Commercial jet fuel quality control

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, K.H.

    1995-05-01

    The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.

  11. Conceptual study of an advanced VTOL transport aircraft; Kosoku VTOL ki no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Watanabe, M; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-05-01

    The concept of the advanced 100-passenger class VTOL aircraft equipped with new lift fan engines was clarified as domestic passenger aircraft for the 21st century. Under the assumption of a total weight of 40 tons, a seat fuselage diameter of 3.3m as small as possible and a short seat pitch, the airframe shape satisfying a target performance was obtained without any problems about aerodynamic stability, operability and control capability, and noise lower than that of small helicopters was also estimated. In the case of 10 tons in airframe payload and 8 tons in fuel, even if light-weight composite materials were used for most of parts including fuselage structure, a total weight summed to 42.3 tons exceeding a target by 2.3 tons. As this VTOL aircraft was limited to domestic flight use only, the total weight could be reduced without any change in airframe shape and number of passengers by reducing the payload (baggage weight can be probably reduced by 2 tons/100 passengers in the future domestic flight) and fuel (cruising range around 2500km can be secured even if fuel is reduced by 0.3 tons). In conclusion, this concept was thus technologically reasonable. 6 refs., 15 figs., 6 tabs.

  12. Shock vibration and damage responses of primary auxiliary buildings from aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup [Korea Atomic Energy Research Institute, 1045 Daeduk-daero, Dukjin-dong, Yuseong-gu, Daejeon 305-303 (Korea, Republic of); Department of Civil and Environmental Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Hahm, Daegi [Korea Atomic Energy Research Institute, 1045 Daeduk-daero, Dukjin-dong, Yuseong-gu, Daejeon 305-303 (Korea, Republic of); Park, Taehyo, E-mail: cepark@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2016-12-15

    Highlights: • Aircraft impact analyses of PABs were performed using both the force-time history method and missile-target interaction method. • The jet fuel was considered by using the added mass modeling method and SPH method, respectively. • The FRS and the structural integrity of the external wall of the PABs against an aircraft impact were analyzed. - Abstract: Safety assessments on nuclear power plants (NPPs) subjected to an aircraft impact (AI) caused by terrorists are pivotal focuses for amelioration of present. To date, most studies have mainly focused on structure responses and the integrity of the containment building at a nuclear island (NI) subjected to AI. However, the safety assessment of internal equipment and components by shock vibration as well as the structure damage induced by AI are also important. In this study, aircraft impact analyses (AIA) of primary auxiliary buildings (PABs) were carried out using both the force–time history method and the missile–target interaction method. For the AIA, the jet fuel was taken into account by using the added mass modeling method and the smooth particles hydrodynamics (SPH) method, respectively. In addition, the floor response spectra (FRS) and the structural integrity of the external wall of the PAB against an AI were analyzed. Finally, the difference in the FRS at the location of the components on both sides of the bay was analyzed.

  13. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu (furoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    This paper introduces two out of six theses related to hydrogen fueled aircraft engines presented at the First World Hydrogen Energy Conference held in Miami in March 1976. One thesis mentions several initial prospects related to terrestrial requirements on hydrogen fueled transport aircraft. Liquefied hydrogen is attractive for large long-distance transport aircraft. Its high energy content can reduce the take-off full load weight by more than 30%, enhancing the economic effect of the aircraft. Saving fossil fuels will require national policy decisions in the near future, where introduction of liquefied hydrogen is more advantageous for long-distance aircraft. However, its introduction into wide-body transport aircraft being the major consumer requires transportation companies and airport authorities to carry out joint development with transport aircraft makers and liquefied hydrogen suppliers. The second thesis describes special natures of fuel subsystems for liquefied hydrogen fueled aircraft. Requirements to major fuel system elements and operation characteristics require evaluation as a comprehensive system, rather than as individual component criteria. In addition, hardware, experience and fuel systems as they are now in space development may not necessarily serve for the purpose. (NEDO)

  14. Field Trial Measurements to Validate a Stochastic Aircraft Boarding Model

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-03-01

    Full Text Available Efficient boarding procedures have to consider both operational constraints and the individual passenger behavior. In contrast to the aircraft handling processes of fueling, catering and cleaning, the boarding process is more driven by passengers than by airport or airline operators. This paper delivers a comprehensive set of operational data including classification of boarding times, passenger arrival times, times to store hand luggage, and passenger interactions in the aircraft cabin as a reliable basis for calibrating models for aircraft boarding. In this paper, a microscopic approach is used to model the passenger behavior, where the passenger movement is defined as a one-dimensional, stochastic, and time/space discrete transition process. This model is used to compare measurements from field trials of boarding procedures with simulation results and demonstrates a deviation smaller than 5%.

  15. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation

    Science.gov (United States)

    Dyson, Rodger W.

    2016-01-01

    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  16. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    Science.gov (United States)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  17. Trends in aircraft engines. Trends in aircraft gas turbines and subsonic engines

    Energy Technology Data Exchange (ETDEWEB)

    Murashima, Kanji

    1988-06-10

    While the emphasis of commercial, large aircraft engines is placed on low fuel consumption at high subsonic flight and the turbofan engines with high bypass ratio are dominating, high speed turboprop (ATP) of Mach 0.85 class with low fuel consumption are emerging. UHB with bypass ratio of 15 - 20 are planned with expection for application to intermediate size commercial planes. The pressure ratio is continuously rizing for improved cycle efficiency, reaching 35 - 40 in highest cases. Trends in design technique include: Use of computational aerodynamics and application of two-dimensional structural analysis and the digital simulation of engine characteristics. In the field of large, high bypass turbofan, serious competition is seen between GE and PNA at the thrust level of 5 - 60,000 pounds. Several engines for fighting planes have been approved in the type test and accepted as candidates for next generation of fighting planes including Japan. (15 figs, 36 refs)

  18. Aircraft emission inventories for scheduled air traffic for the 1976-92 time period. Historical trends

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S L; Henderson, S C; Tritz, T G [Boeing Co., Seattle, WA (United States)

    1998-12-31

    Emission inventories of fuel burned, NO{sub x}, CO, and hydrocarbons have been calculated for scheduled air traffic in 1976, 1984, 1990 and 1992 on a 1 deg latitude x 1 deg longitude x 1 km pressure altitude grid. Using this database, the seasonal variation and historical trends in aircraft emissions have been calculated for selected geographical regions (e.g., North Atlantic, Europe, North America, North Pacific). The trend in emissions is a combination of the effects of passenger demand growth, improved aircraft efficiency, changes in combustor characteristics, and aircraft size. (author) 8 refs.

  19. Aircraft emission inventories for scheduled air traffic for the 1976-92 time period. Historical trends

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S.L.; Henderson, S.C.; Tritz, T.G. [Boeing Co., Seattle, WA (United States)

    1997-12-31

    Emission inventories of fuel burned, NO{sub x}, CO, and hydrocarbons have been calculated for scheduled air traffic in 1976, 1984, 1990 and 1992 on a 1 deg latitude x 1 deg longitude x 1 km pressure altitude grid. Using this database, the seasonal variation and historical trends in aircraft emissions have been calculated for selected geographical regions (e.g., North Atlantic, Europe, North America, North Pacific). The trend in emissions is a combination of the effects of passenger demand growth, improved aircraft efficiency, changes in combustor characteristics, and aircraft size. (author) 8 refs.

  20. Integration, Testing, and Validation of a Small Hybrid-Electric Remotely-Piloted Aircraft

    Science.gov (United States)

    2012-03-22

    unmanned aircraft offers the capability to unrelentingly pursue a target in a way the stamina of a human pilot simply cannot match. Unmanned systems can...electricity in these examples is provided by batteries, other hybrid-electric systems use generators, solar cells , or even hydrogen fuel cells ... cells , or solar panels. Throughout this paper, HE-RPA will refer specifically to the battery and fossil fuel combination. Usually, the secondary energy

  1. Development of oxygen scavenger additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, B.D.; Demunshi, R.; Sharief, V.; Tian, D.; Teng, Y. [Duquesne Univ., Pittsburgh, PA (United States)

    1995-05-01

    Our current research program is in response to the US Air Force`s FY93 New Initiative entitled {open_quotes}Advanced Fuel Composition and Use.{close_quotes} The critical goal of this initiative is to develop aircraft fuels which can operate at supercritical conditions. This is a vital objective since future aircraft designs will transfer much higher heat loads into the fuel as compared with current heat loads. In this paper it is argued that the thermal stability of most jet fuels would be dramatically improved by the efficient in flight-removal of a fuel`s dissolved oxygen. It is proposed herein to stabilize the bulk fuel by the addition of an additive which will be judiciously designed and programmed to react with oxygen and produce an innocuous product. It is envisioned that a thermally activated reaction will occur, between the oxygen scavenging additive and dissolved oxygen, in a controlled and directed manner. Consequently formation of insoluble thermal degradation products will be limited. It is believed that successful completion of this project will result in the development of a new type of jet fuel additive which will enable current conventional jet fuels to obtain sufficient thermal stability to function in significantly higher temperature regimes. In addition, it is postulated that the successful development of thermally activated oxygen scavengers will also provide the sub-critical thermal stability necessary for future development of endothermic fuels.

  2. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - implications for cyclone induced rapid lift and TIL physico-chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, Hans; Aufmhoff, Heinfried; Baumann, Robert; Schumann, Ulrich [DLR IPA, Oberpfaffenhofen (Germany); Arnold, Frank [MPI Kernphysik, Heidelberg (Germany); DLR IPA, Oberpfaffenhofen (Germany); Simgen, Hardy; Lindemann, Siegfried; Rauch, Ludwig; Kaether, Frank [MPI Kernphysik, Heidelberg (Germany); Pirjola, Liisa [University of Helsinki, Helsinki (Finland)

    2013-07-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of polluted planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO{sub 2} and other species), which had increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important impact of East-Asian cyclone induced pollutants transport to the TIL. This impact includes particularly aerosol formation.

  3. Terminal Control Area Aircraft Scheduling and Trajectory Optimization Approaches

    Directory of Open Access Journals (Sweden)

    Samà Marcella

    2017-01-01

    Full Text Available Aviation authorities are seeking optimization methods to better use the available infrastructure and better manage aircraft movements. This paper deals with the realtime scheduling of take-off and landing aircraft at a busy terminal control area and with the optimization of aircraft trajectories during the landing procedures. The first problem aims to reduce the propagation of delays, while the second problem aims to either minimize the travel time or reduce the fuel consumption. Both problems are particularly complex, since the first one is NP-hard while the second one is nonlinear and a combined solution needs to be computed in a short-time during operations. This paper proposes a framework for the lexicographic optimization of the two problems. Computational experiments are performed for the Milano Malpensa airport and show the existing gaps between the performance indicators of the two problems when different lexicographic optimization approaches are considered.

  4. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    Science.gov (United States)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  5. Studying impact damage on carbon-fiber reinforced aircraft composite panels with sonicir

    International Nuclear Information System (INIS)

    Han Xiaoyan; Zhang Ding; He Qi; Song Yuyang; Lubowicki, Anthony; Zhao Xinyue; Newaz, Golam.; Favro, Lawrence D.; Thomas, Robert L.

    2011-01-01

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

  6. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    Science.gov (United States)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger

  7. Evaluation of all-electric secondary power for transport aircraft

    Science.gov (United States)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  8. Parametric Study on Important Variables of Aircraft Impact to Prestressed Concrete Containment Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sangshup; Hahm, Daegi; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this paper, to find the damage parameter, it is necessary to use many analysis cases and the time reduction. Thus, this paper uses a revised version of Riera's method. Using this method, the response has been found a Prestressed Concrete Containments Vessels (PCCVs) subject to impact loading, and the results of the velocity and mass of the important parameters have been analyzed. To find the response of the PCCVs subjected to aircraft impact load, it is made that a variable forcing functions depending on the velocity and fuel in the paper. The velocity variation affects more than fuel percentage, and we expect that the severe damage of the PCCVs with the same material properties is subject to aircraft impact load (more than 200m/s and 70%)

  9. THE FUTURE OF PASSENGER AIR TRANSPORT – VERY LARGE AIRCRAFT AND OUT KEY HUMAN FACTORS AFFECTING THE OPERATION AND SAFETY OF PASSENGER AIR TRANSPORT

    Directory of Open Access Journals (Sweden)

    Petra Skolilova

    2017-12-01

    Full Text Available The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.

  10. Site Assessment Report/Corrective Action Plan Fuel Hydrant System (Site SS-41) Project DKFX937081R1, Charleston Air Force Base, South Carolina

    National Research Council Canada - National Science Library

    1996-01-01

    ... #4 and the aircraft apron. Limited investigations were performed on those portions of the fuel hydrant system located on the west side of the drainage ditch due to ongoing Navy fuel hydrant system and aircraft apron renovation projects...

  11. Comprehensive analysis of transport aircraft flight performance

    Science.gov (United States)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  12. Impact of pulsed jet actuators on aircraft mass and fuel consumption

    NARCIS (Netherlands)

    Bertels, F.G.A.; van Dijk, R.E.C.; Elmendorp, R.J.M.; Vos, R.

    2016-01-01

    Pulsed jet actuators (PJAs) are one of the candidate technologies to be integrated in Fowler flaps to increase the maximum lift coefficient of transport aircraft in the landing configuration. The total system consists of the actuators plus sensors, a piping system to supply pressurized air and a

  13. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  14. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    Science.gov (United States)

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  15. Compatibility of elastomers in alternate jet fuels

    Science.gov (United States)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  16. Conceptual Design Tool for Fuel-Cell Powered Micro Air Vehicles

    Science.gov (United States)

    2010-03-01

    Electrolyte Membrane PEMFC PEM Fuel Cell RAM Rapid Aircraft Modeler R/C Radio Controlled RMFC Reformed Methanol Fuel Cell SBIR Small Business...of rechargeable batteries, the Proton Exchange Membrane Fuel Cell ( PEMFC ) is only limited by the amount of hydrogen it can store, and can be...of fuel cells within MAVs through the creation of the Hornet. This slightly heavier, 380 g MAV integrated a 10 W PEMFC into the wing surface for a

  17. Improving Fuel Statistics for Danish Aviation

    DEFF Research Database (Denmark)

    Winther, M.

    This report contains fuel use figures for Danish civil aviation broken down into domestic and international numbers from 1985 to 2000, using a refined fuel split procedure and official fuel sale totals. The results from two different models are used. The NERI (National Environmental Research...... Institute) model estimates the fuel use per flight for all flights leaving Danish airports in 1998, while the annual Danish CORINAIR inventories are based on improved LTO/aircraft type statistics. A time series of fuel use from 1985 to 2000 is also shown for flights between Denmark and Greenland/the Faroe...... Islands, obtained with the NERI model. In addition a complete overview of the aviation fuel use from the two latter areas is given, based on fuel sale information from Statistics Greenland and Statistics Faroe Islands, and fuel use data from airline companies. The fuel use figures are presented on a level...

  18. 26 CFR 48.4041-7 - Dual use of taxable liquid fuel.

    Science.gov (United States)

    2010-04-01

    ... taxable liquid fuel. Tax applies to all taxable liquid fuel sold for use or used as a fuel in the motor which is used to propel a diesel-powered vehicle or in the motor used to propel a motor vehicle... vehicle, motorboat, or aircraft. Thus, if the motor of a diesel-powered highway vehicle or a motorboat...

  19. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  20. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen engine for aircraft); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kokukiyo suiso engine ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-01

    This report summarizes the research results on (1) the prospect of an aviation system based on hydrogen energy, (2) the total system of aircraft based on hydrogen energy, and (3) the performance, structure and specifications of airplanes and engines using synthetic fuel such as hydrogen. In (1), study was made on air transport energy, and prediction was made on the demand of liquid hydrogen assuming conversion of petroleum fuel into hydrogen fuel in the future. In (2), the supply system of liquid hydrogen is essential in conversion of current aircraft fuel into liquid hydrogen. Such supply system over the world is also necessary in conversion into liquid hydrogen for both domestic and international airlines. In (3), in order to discuss the feasibility of liquid hydrogen fuel aircraft, the merit of such aircraft as compared with current aircraft using JP fuel, and whether designing a new airframe or modifying existing airframes, study was made conceptually on the size and capacity of airframe by statistical treatment and analysis of previous conceptual designs. (NEDO)

  1. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  2. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  3. Integrated Design of a Long-Haul Commercial Aircraft Optimized for Formation Flying

    NARCIS (Netherlands)

    Dijkers, H.P.A.; Van Nunen, R.; Bos, D.A.; Gutleb, T.L.M.; Herinckx, L.E.; Radfar, H.; Van Rompuy, E.; Sayin, S.E.; De Wit, J.; Beelaerts van Blokland, W.W.A.

    2011-01-01

    The airline industry is under continuous pressure to reduce emissions and costs. This paper investigates the feasibility for commercial airlines to use formation flight to reduce emissions and fuel burn. To fly in formation, an aircraft needs to benefit from the wake vortices of the preceding

  4. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  5. Hydrant refueling system as an optimisation of aircraft refuelling

    Directory of Open Access Journals (Sweden)

    Martin HROMÁDKA

    2015-09-01

    Full Text Available At large international airports, aircraft can be refuelled either by fuel trucks or using dedicated underground pipeline systems. The latter, hydrant refuelling, is considered to be an optimal fuelling method as it increases safety, shortens the aircraft turnaround time and cuts the overall costs. However, at smaller airports, implementation of this system can lead to high investment costs. Thus, the paper discusses the airport size from which this system may be efficient to implement. Various definitions of term “airport size” are assessed. Based on data collection, the hydrant system model is created within the paper. As a result, methodology for assessing the suitability of hydrant system implementation is set. This methodology can be used at every airport using three simple inputs.

  6. Ignition behavior of aviation fuels and some hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, F.

    1975-01-01

    Air relighting of jet engines is an important contribution to the operation safety of aircraft engines. Reignition is influenced by fuel properties in addition to the engine design. A survey is presented on the problems, considering the specific fuel properties. Investigations were made on the ignition behavior of aviation fuels and hydrocarbons in a simplified model combustion chamber. Air inlet conditions were 200 to 800 mbar and 300 to 500 K. Correlation between physical and chemical properties and ignitability is discussed.

  7. QUALITY INFLUENCE OF SURFACE ON AIRCRAFT TAKE-OFF

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article considers quality impact influence of surface on aircraft take-off. It considers the IL-114 takeoff with all the operating engines. The goal of this research is to conduct calculating experiment to determine quality influence of surface on alteration of IL-114 takeoff characteristics during operation. Researches were carried out using the system of mathematical modeling of a flight dynamics. The main part of the system is a unit for calculating increments of aerodynam- ic coefficients caused with changing of technical condition of the surface of the airframe (roughness, waviness, available protruding elements on the airframe surface, etc. and residual deformation of the wing, fuselage, vertical and horizontal tail, as well as the difference between the rods symmetrically operating engines. In order to compute loss of rod and an increase in engine fuel consumption due to engine operation time during operation, an integral factor of thrust loss and increase in fuel consumption coefficient were introduced. Research proved that the individual characteristics of the aircraft, due to loss of engine power and increase in drag do not affect the assigned level of flight safety. The plane has a considera- ble reserve as for unsafe takeoff speed and the full gradient of climb, that ensures safety of operation.

  8. Active Duty C-17 Aircraft Commander Fuel Efficiency Metrics and Goal Evaluation

    Science.gov (United States)

    2015-03-26

    options. Finally, Nicholson’s (2009:1-61) work was primarily focused on cost-effectiveness of replacing petroleum-based fuel with biodiesel . Fuel...Gillson, A. “Flight Fuel Planning Policy Letter,” HQ AMC/A3V, 2014. Hileman, J.I., R.W. Stratton. “Alternative jet fuel feasibility,” Transport Policy

  9. Thrust Performance Evaluation of a Turbofan Engine Based on Exergetic Approach and Thrust Management in Aircraft

    Science.gov (United States)

    Yalcin, Enver

    2017-05-01

    The environmental parameters such as temperature and air pressure which are changing depending on altitudes are effective on thrust and fuel consumption of aircraft engines. In flights with long routes, thrust management function in airplane information system has a structure that ensures altitude and performance management. This study focused on thrust changes throughout all flight were examined by taking into consideration their energy and exergy performances for fuel consumption of an aircraft engine used in flight with long route were taken as reference. The energetic and exergetic performance evaluations were made under the various altitude conditions. The thrust changes for different altitude conditions were obtained to be at 86.53 % in descending direction and at 142.58 % in ascending direction while the energy and exergy efficiency changes for the referenced engine were found to be at 80.77 % and 84.45 %, respectively. The results revealed here can be helpful to manage thrust and reduce fuel consumption, but engine performance will be in accordance with operation requirements.

  10. Organic positive ions in aircraft gas-turbine engine exhaust

    Science.gov (United States)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  11. Fuel and Combustor Concerns for Future Commercial Combustors

    Science.gov (United States)

    Chang, Clarence T.

    2017-01-01

    Civil aircraft combustor designs will move from rich-burn to lean-burn due to the latter's advantage in low NOx and nvPM emissions. However, the operating range of lean-burn is narrower, requiring premium mixing performance from the fuel injectors. As the OPR increases, the corresponding combustor inlet temperature increase can benefit greatly with fuel composition improvements. Hydro-treatment can improve coking resistance, allowing finer fuel injection orifices to speed up mixing. Selective cetane number control across the fuel carbon-number distribution may allow delayed ignition at high power while maintaining low-power ignition characteristics.

  12. Transient performance simulation of aircraft engine integrated with fuel and control systems

    International Nuclear Information System (INIS)

    Wang, C.; Li, Y.G.; Yang, B.Y.

    2017-01-01

    Highlights: • A new performance simulation method for engine hydraulic fuel systems is introduced. • Time delay of engine performance due to fuel system model is noticeable but small. • The method provides details of fuel system behavior in engine transient processes. • The method could be used to support engine and fuel system designs. - Abstract: A new method for the simulation of gas turbine fuel systems based on an inter-component volume method has been developed. It is able to simulate the performance of each of the hydraulic components of a fuel system using physics-based models, which potentially offers more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV) method. A proportional-integral (PI) control strategy is used for the simulation of engine controller. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation system has been applied to a model aero engine. The results show that the delay of the engine transient response due to the inclusion of the fuel system model is noticeable although relatively small. The developed method is generic and can be applied to any other gas turbines and their control and fuel systems.

  13. EVALUATION OF THE IMPACT OF OIL PRESENCE IN THE AVIATION FUEL ON PARTICLE SIZE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Remigiusz JASIŃSKI

    2017-03-01

    Full Text Available Emissions from aircraft engines represent a highly complex and important issue, which is related to the risk to human health. Particles emitted in urban areas and in the vicinity of airports affect air quality and have a particularly negative impact on airport workers. The development of measurement techniques and the methodology for evaluating exhaust emissions have allowed for the elaboration of appropriate procedures for the certification of aircraft and the enhancement of existing standards. Particulate matter emissions depend, among other things, on the composition of the fuel used and its additives. Some aircraft engine designs require a fuel additive in the form of oil, which ensures the proper operation of the fuel supply system. This article presents the results of studies conducted on jet engines powered by clean aviation fuel and fuel with the addition of oil. The aim of the study was to evaluate the effect of the addition of oil on the size distribution and concentration of emitted particles. It was found that, for small values of thrust, oil additive increases the concentration of particles. With an increase in the thrust force, the reduction of particles concentration was recorded in the case of the engine powered by fuel with oil additive. There was no significant effect of oil additive on the size distribution of emitted particles.

  14. 26 CFR 48.4041-14 - Exemption for sale to or use by certain aircraft museums.

    Science.gov (United States)

    2010-04-01

    ... TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Special Fuels § 48... aircraft of the type used for combat or transport in World War II. (2) In the case of liquid sold for use...

  15. TECHNICAL EFFICIENCY AND TECHNICAL LEVEL INDICATORS APPLICATION FOR CIVIL AIRCRAFT FUNCTIONAL PROPERTIES ANALYSIS

    Directory of Open Access Journals (Sweden)

    Vadim V. Efimov

    2018-01-01

    Full Text Available Functional properties characterize the purpose of the aircraft and are described by its flight performance characteristics such as range and cruising speed, payload, runway characteristics, etc. Functional properties also characterize the aircraft efficiency that determines the objective need for their analysis by both aircraft designers and operators in conditions of permanent and systematic efficiency increase necessity. When choosing the aircraft, it is important for the operator to make sure that a selected aircraft type has a high level of functional properties, which will allow it to provide high operational efficiency without obsolescence in the long term. However, when choosing from several aircraft types the operator has to face the fact that some characteristics of considered aircraft variants are better and the others are worse that does not allow to definitely determine what aircraft type has a higher level of functional properties.The possibility of applying technical efficiency indicators and a generalized technical level indicator for analyzing the functional properties of civil aviation aircraft is explored in this article. Fuel, weight and target efficiency values as well as the previously improved technical level indicator value were calculated for the different generations and modifications of Boeing 737 and Airbus A320 families of medium-range airplanes, which was followed by the results interpretation within one airplane generation and when moving historically from one airplane generation to another. According to analysis results it is concluded that it is impossible to define the change of the aircraft functional properties level by the change in the values of separate technical efficiency indicators. Thus, it is proposed to use a generalized technical level indicator that determines the level of aircraft technical perfection for purpose and to use efficiency indicators to analyze the cost of providing this level of

  16. Modeling the impact of improved aircraft operations technologies on the environment and airline behavior

    Science.gov (United States)

    Foley, Ryan Patrick

    so that the demand and airline operations evolve over time. The studies indicate that, despite an increased cost, improved equipage provides benefits to airline profits as long as equipped airports are available. Improved equipage also reduces fuel burn on a per-flight basis, but depending on the percentage of equipped aircraft in the fleet, the overall airline fuel burn may increase. Improved equipage does increase capacity at busy airports - such as Chicago O'Hare - allowing a greater number of aircraft to operate at the airport on any given day. A sensitivity study indicates that, in the FLEET model, airline profits are most sensitive to changes in the underlying demand for air travel, followed by the price of jet fuel. Equipage related factors, such as the number of equipped airports in the network or the cost of improved equipage, have a comparatively minor influence on airline profit. Of these secondary factors, the assumed decrease in trip or segment distance enabled by improved equipage systems has the greatest impact on profit. Ability to retrofit aircraft and entry-in-service date of equipped aircraft has the greatest impact on the number of equipped aircraft in the fleet.

  17. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  18. Developments in the LM2500 and LM5000 aircraft derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Honebrink, R W; Nichols, T B; Spector, R B; Sailer, E D

    1983-03-01

    When first introduced into industrial service in 1970, the General Electric LM2500 (the first of the second generation aircraft derivative units to enter industrial service) represented a significant advance in gas turbine technology in the areas of improved simple cycle efficiency--now up to 37 per cent on natural gas fuel--on site maintenance capability and high levels of reliability/availability. During the 11 years since initial introduction numerous product improvements have been introduced to expand the power range, extend the scheduled maintenance levels, further improve reliability/availability and increase the application flexibility of the LM2500. The higher power LM5000 gas turbine, which is derived from the CF6-50 aircraft turbofan engine, is also described in this article.

  19. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  20. Piston Aviation Fuel Initiative (PAFI) – A Review

    Science.gov (United States)

    Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.

    2018-05-01

    Aviation gasoline (Avgas) has remained unchanged for seventy years and the existing fleet of piston aircraft was designed to be compatible with its chemical and physical properties to achieve superior levels of safety. Tetra-ethyl lead (TEL) is an octane-enhancing metal additive used in aviation gasoline to prevent knocking. Studies have shown that lead causes brain damage in children reducing their IQ and cardiovascular difficulties and kidney failure in adults. Friends of the Earth (FOE) petitioned the Environmental Protection Agency (EPA) in 2006 to make a finding that lead emissions from general aviation (GA) aircraft cause to public health endangerment or carry out studies and issue a report on its findings. PAFI was set up by Federal Aviation Administration (FAA) to find most suitable unleaded replacements for Avgas to recognize best unleaded fuel that have the capacity to in fact satisfy the requirements of the present aircraft fleet while additionally considering the creation, dispersion, cost, availability, environmental impacts. This study will technically review PAFI and broaden the limited knowledge on piston aviation fuels in Malaysia by giving a comprehensive analysis and possible gap in reciprocation aviation engine market in Malaysia.

  1. A novel hovering type of fixed wing aircraft with stealth capability

    Directory of Open Access Journals (Sweden)

    Valeriu DRĂGAN

    2010-12-01

    Full Text Available The tactical need for fixed wing aircraft with hovering capably has long been recognized bythe military for two reasons: increased safety when landing on aircraft carriers and higher velocitiesthat the ones obtainable with rotary wing aircraft.Thus far, the only concept governing the field of vertical flight was to use thrust either from a liftfan-F35, puffer ducts –Harrier or smaller jet engines-D0 31 or Yak-141, i.e. direct lift thrust.In this paper we will look at the prospect of using a combination of the Coanda effect with theVenturi effect to generate lift by so- called “supercirculation”. This novel approach can yield manyadvantages to conventional vertical lifting by providing a more stable platform and requiring lowerpower settings – and thus lower fuel consumption.The aircraft has a fixed, negatively sweped wing that uses circulation control to achieve lift atzero air speed. The fluid used for supercirculation will come from the fan thrust reversers – which, ifcorrectly managed, can give a sufficient flow for lifting the craft and also a negative thrust componentto compensate for the positive thrust of the primary flow (not diverted.

  2. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  3. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  4. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  5. Empirical analysis of the effect of descent flight path angle on primary gaseous emissions of commercial aircraft.

    Science.gov (United States)

    Turgut, Enis T; Usanmaz, Oznur; Rosen, Marc A

    2018-05-01

    In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NO x and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NO x . For a five-tonne aircraft mass increase, the average change in emissions indices are found to be -4.1% and -5.7% (CO), -5.4% and -8.2% (HC), and +1.1% and +1.6% (NO x ) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NO x during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7-8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NO x ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  7. Experimental Study of an On-board Fuel Tank Inerting System

    Science.gov (United States)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  8. Design and evaluation of combustors for reducing aircraft engine pollution

    Science.gov (United States)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Various techniques and test results are briefly described and referenced for detail. The effort arises from the increasing concern for the measurement and control of emissions from gas turbine engines. The greater part of this research is focused on reducing the oxides of nitrogen formed during takeoff and cruise in both advanced CTOL, high pressure ratio engines, and advanced supersonic aircraft engines. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization, water injection, and gaseous fuels. In the experiments conducted to date, some of these techniques were more successful than others in reducing oxides of nitrogen emissions. Tests are being conducted on full-annular combustors at pressures up to 6 atmospheres and on combustor segments at pressures up to 30 atmospheres.

  9. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  10. Radiation survey of aircraft and heavy machinery scrap.

    Science.gov (United States)

    Idriss, Hajo; Salih, Isam; Gumaa, Elsadig; Yassin, Abbas; Yousif, E H; Abdel Hamid, Saad Eldeen M; Sam, A K

    2012-12-01

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of (90)Sr and one of (226)Ra in aircraft scrap. Of course, (90)Sr sources are used in military aircraft as temperature sensors while (226)Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1m from the source fall within the range of 25.1-40.2 μSv/h with an average value of 33.52 ± 4.06 μSv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    Science.gov (United States)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  12. Optimization Of Fuel Consumption Using Atmospheric Vertical Air Currents, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — DynSan proposes to develop a flight controller that will preserve the aircraft trajectory while directing to sources of potential updrafts to optimize fuel...

  13. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    Science.gov (United States)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  14. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    Science.gov (United States)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  15. Radiation survey of aircraft and heavy machinery scrap

    International Nuclear Information System (INIS)

    Idriss, Hajo; Salih, Isam; Gumaa, Elsadig; Yassin, Abbas; Yousif, E.H.; Abdel Hamid, Saad Eldeen M.; Sam, A.K.

    2012-01-01

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of 90 Sr and one of 226 Ra in aircraft scrap. Of course, 90 Sr sources are used in military aircraft as temperature sensors while 226 Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1 m from the source fall within the range of 25.1–40.2 μSv/h with an average value of 33.52±4.06 μSv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing. - Highlights: ► Sealed radioactive sources ( 90 Sr and 226 Ra) were detected in aircraft scrap. ► No source was detected in heavy machine scrap. ► Radiation dose measured at 0.1 m from the source can be used to estimate exposure to public. ► Monitoring of scrap was found to be useful for protection (from orphan sources).

  16. Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A cradle-to-grave life cycle assessment (LCA of structural aircraft materials has been utilised to assess and compare the total emissions produced during manufacturing, use and disposal of aerospace materials and their selected components. First, a comparison of aluminium, GLARE and carbon fibre reinforced polymer (CFRP plates was performed to investigate the potential of lightweight composites in reducing aviation emissions. Subsequently, a case study is presented on a tubular component for which more accurate manufacturing data were directly available. A structural steel tube was replaced with a composite tubular component. The analysis has shown that once the composite material is used as a component in the aircraft, there is a cumulative saving of aircraft fuel and emissions, in particular from CFRP structures. The environmental analysis included the long-term use predictions for CFRPs, involving detailed raw materials production, use and operation, and disposal scenarios.

  17. Advanced transport aircraft technology

    Energy Technology Data Exchange (ETDEWEB)

    Winblade, R L

    1980-06-01

    Various elements of the NASA aircraft energy efficiency program are described. Regarding composite structures, the development of three secondary and three medium-primary components to validate structural and fabrication technology is discussed. In laminar flow control, the design of advanced airfoils having large regions of supercritical flow with features which simplify laminarization are considered. Emphasis is placed on engine performance improvement, directed at developing advanced components to reduce fuel consumption in current production engines, and engine diagnostics aimed at identifying the sources and causes of performance deterioration in high-bypass turbofan engines. In addition, the results of propeller aerodynamic and acoustic tests have substantiated the feasibility of achieving the propeller efficiency goal of 80% and confirmed that the effect of blade sweep on reducing propeller source noise was 5-6 dB.

  18. Advantages of the use of hydrogen fuel as compared to kerosene

    International Nuclear Information System (INIS)

    Koroneos, C.; Dompros, A.; Roumbas, G.; Moussiopoulos, N.

    2005-01-01

    A life cycle assessment (LCA) study has been carried out to investigate the environmental aspects of two types of aviation fuel, kerosene that is presently used and hydrogen. Hydrogen is selected as a future aircraft fuel because of the absence of CO 2 emissions from its use, its high energy content and its combustion kinetics. The life cycle of aviation fuel includes the production and the use of the aviation fuel in different types of aircraft. Hydrogen production by natural gas steam reforming and production upon renewable energy sources (RES) are examined. A very large number of environmental burdens result from the operation of the different fuel cycles. Air pollution is by far the biggest environmental problem that is resulting from hydrogen and kerosene production and use. This work has been mainly concentrated with this environmental impact category. It is shown that the production of hydrogen from RES has significantly lower environmental impact as compared to that of kerosene. However, the use of different RES carries different environmental impacts among them. The production of hydrogen resulting from the use of photovoltaics to capture solar energy carries the biggest environmental impact among the other RES, wind, hydropower, biomass and solar thermal

  19. Floor Response Evaluation for Auxiliary Building Subjected to Aircraft Impact Loading

    International Nuclear Information System (INIS)

    Shin, Sang Shup; Hahm, Daegi; Choi, Inkil

    2014-01-01

    These studies have been aimed to verify and ensure the safety of the targeted walls and structures especially in the viewpoint of the deterministic approach. However, a probabilistic safety assessment as well as deterministic approach for the damage of the internal component in the nuclear power plants (NPPs) subjected to aircraft crash is also needed. A probabilistic safety assessment for aircraft crash includes many uncertainties such as impact velocity, mass, impact location, shape, size, material etc. of aircraft. In this paper, an impact location was selected among the various parameters. This paper found the acceleration floor response spectra at specified locations (safety related components) on the target structure that assumed to be impact velocity 150m/s and maximum fuel for the specified aircraft model. In order to obtain the floor response in case of the crash with a various locations, the analyses for the auxiliary building subjected to aircraft impact were performed using Riera force history method and missile-target interaction method. The difference between responses in case of the building floor subjected to impact was occurred. Thus, in order to obtain the more accurate results, missile-target interaction method was used. This paper found the response at the selected point (node point No. 51). In order to probabilistic assessment for the safety related components, the assessment for a various parameters (velocity, mass, materials etc.) as well as impact locations should be needed

  20. Supercharging system behavior for high altitude operation of an aircraft 2-stroke Diesel engine

    International Nuclear Information System (INIS)

    Carlucci, Antonio Paolo; Ficarella, Antonio; Laforgia, Domenico; Renna, Alessandro

    2015-01-01

    Highlights: • Different supercharging architectures have been compared for an aircraft 2T engine. • The supercharging architectures are compared to minimize the fuel consumption. • The architecture with the highest conversion efficiency was determined. - Abstract: Different studies on both 2- and 4-stroke engines have shown how the choice of different supercharging architectures can influence engine performance. Among them, architectures coupling one turbocharger with a mechanical compressor or two turbochargers are found to be the most performing in terms of engine output power and efficiency. However, defining the best supercharging architecture for aircraft 2-stroke engines is a quite complex task because the supercharging system as well as the ambient conditions influence the engine performance/efficiency. This is due to the close interaction between supercharging, trapping, scavenging and combustion processes. The aim of the present work is the comparison between different architectures (single turbocharger, double turbocharger, single turbocharger combined with a mechanical compressor, single turbocharger with an electrically-assisted turbocharger, with intercooler or aftercooler) designed to supercharge an aircraft 2-stroke Diesel engine for general aviation and unmanned aerial vehicles characterized by a very high altitude operation and long fuel distance. A 1D model of the engine purposely designed has been used to compare the performance of the different supercharging systems in terms of power, fuel consumption, and their effect on trapping and scavenging efficiency at different altitudes. The analysis shows that the engine target power is reached by a 2 turbochargers architecture; in this way, in fact, the cylinder filling, and consequently the engine performance, are maximized. Moreover, it is shown that the performance of a 2 turbochargers architecture performance can be further improved connecting electrically and not mechanically the low

  1. A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories

    Directory of Open Access Journals (Sweden)

    Sigrun Matthes

    2017-08-01

    Full Text Available Comprehensive assessment of the environmental aspects of flight movements is of increasing interest to the aviation sector as a potential input for developing sustainable aviation strategies that consider climate impact, air quality and noise issues simultaneously. However, comprehensive assessments of all three environmental aspects do not yet exist and are in particular not yet operational practice in flight planning. The purpose of this study is to present a methodology which allows to establish a multi-criteria environmental impact assessment directly in the flight planning process. The method expands a concept developed for climate optimisation of aircraft trajectories, by representing additionally air quality and noise impacts as additional criteria or dimensions, together with climate impact of aircraft trajectory. We present the mathematical framework for environmental assessment and optimisation of aircraft trajectories. In that context we present ideas on future implementation of such advanced meteorological services into air traffic management and trajectory planning by relying on environmental change functions (ECFs. These ECFs represent environmental impact due to changes in air quality, noise and climate impact. In a case study for Europe prototype ECFs are implemented and a performance assessment of aircraft trajectories is performed for a one-day traffic sample. For a single flight fuel-optimal versus climate-optimized trajectory solution is evaluated using prototypic ECFs and identifying mitigation potential. The ultimate goal of such a concept is to make available a comprehensive assessment framework for environmental performance of aircraft operations, by providing key performance indicators on climate impact, air quality and noise, as well as a tool for environmental optimisation of aircraft trajectories. This framework would allow studying and characterising changes in traffic flows due to environmental optimisation, as well

  2. Estimated revenues of VAT and fuel tax on aviation

    Energy Technology Data Exchange (ETDEWEB)

    Korteland, M.; Faber, J.

    2013-07-15

    International aviation is exempt from VAT, both on their inputs (e.g. on fuel or aircraft) and on their revenues (e.g. on tickets). In the EU, aviation fuel is also exempt from the minimum fuel excise tariffs. This report calculates the potential revenues of VAT on tickets and fuel tax on jet fuel. If VAT were to be levied on tickets while other aviation taxes were simultaneously abolished, this would yield revenues in the order of EUR 7 billion. Excise duty on jet fuel would raise revenues in the order of EUR 20 billion. These figures do not take into account the impact of the cost increases on demand for aviation into account. Since higher costs will reduce demand, the estimates can be considered an upper bound.

  3. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  4. Multi-Objective Climb Path Optimization for Aircraft/Engine Integration Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Aristeidis Antonakis

    2017-04-01

    Full Text Available In this article, a new multi-objective approach to the aircraft climb path optimization problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for aircraft–engine integration studies. This considers a combination of a simulation with a traditional Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes. A two-level optimization scheme is employed and is shown to improve search performance compared to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting, on average, in 15% faster climbs with 20% less fuel.

  5. 26 CFR 48.4041-5 - Sales of diesel and special motor fuels and fuel for use in aircraft; rules of general application.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Sales of diesel and special motor fuels and fuel... AND RETAILERS EXCISE TAXES Special Fuels § 48.4041-5 Sales of diesel and special motor fuels and fuel... of a diesel-powered highway vehicle, or of special motor fuel to an owner, lessee, or other operator...

  6. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  7. Design definition study of a life/cruise fan technology V/STOL aircraft. Volume 2, addendum 2: Program risk assessment

    Science.gov (United States)

    1975-01-01

    The results are presented of a risk assessment study conducted on two technology aircraft. The aircraft system components were reviewed and assessed for risk based on: (1) complexity relative to state-of-the-art, (2) manufacturing and qualification testing, (3) availability and delays, and (4) cost/schedule impact. These assessments were based on five risk nomenclatures: low, minor, moderate, high, and extreme. Each aircraft system was assigned an overall risk rating depending upon its contribution to the capability of the aircraft to achieve the performance goals. The slightly lower Sabreliner performance margin is due to the restricted flight envelope, the fixed landing gear, and internal fuel capacity. The Sabreliner with retractable gear and allowed to fly at its best speed and altitude would reflect performance margins similar to the New Airframe. These significant margins, inherent with the MCAIR three gas generator/three fan propulsion system, are major modifiers to risk assessment of both aircraft. The estimated risk and the associated key system and performance areas are tabulated.

  8. Study on afterburner of aircraft engine. Koku engine yo afterburner no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1991-03-01

    This paper explains concepts of aircraft engine afterburner, and describes history of afterburner study, and describe the result of major research items. An afterburner is located down stream of a fan, compressor, burner, and turbine in a jet engine. Its basic principle is that fuel is injected into turbine exhaust and fan air flows from an fuel injector, ignited by a spark plug using oxygen remaining in the exhaust gas flow, burned and flame-held by a flame stabilizer. The combustion gas of high temperature (1,700 to 1,800 {degree}c) thus generated is jetted out from an exhaust nozzle to increase the thrust. The prototype afterburner is featured by adoption of a mixed type fuel injection system that provides wide stable combustion range, and flame stabilizer with a scoop aimed at improving the ignition performance and combustion efficiency. A confirmation test verified smooth ignition and wide air to fuel ratio for stabilized combustion. 4 refs., 16 figs.

  9. Scenarios for global emissions from air traffic. The development of regional and gridded (5 degrees x 5 degrees) emissions scenarios for aircraft and for surface sources, based on CPB scenarios and existing emission inventories for aircraft and surface sources

    NARCIS (Netherlands)

    Olivier JGJ; LAE

    1995-01-01

    An estimate was made of present global emissions from air traffic using statistical information on fuel consumption, aircraft types and applying emission factors for various compounds. To generate scenarios for future emissions from air traffic, assumptions were used regarding the development of the

  10. Aircraft Gas Turbine Engine Health Monitoring System by Real Flight Data

    Directory of Open Access Journals (Sweden)

    Mustagime Tülin Yildirim

    2018-01-01

    Full Text Available Modern condition monitoring-based methods are used to reduce maintenance costs, increase aircraft safety, and reduce fuel consumption. In the literature, parameters such as engine fan speeds, vibration, oil pressure, oil temperature, exhaust gas temperature (EGT, and fuel flow are used to determine performance deterioration in gas turbine engines. In this study, a new model was developed to get information about the gas turbine engine’s condition. For this model, multiple regression analysis was carried out to determine the effect of the flight parameters on the EGT parameter and the artificial neural network (ANN method was used in the identification of EGT parameter. At the end of the study, a network that predicts the EGT parameter with the smallest margin of error has been developed. An interface for instant monitoring of the status of the aircraft engine has been designed in MATLAB Simulink. Any performance degradation that may occur in the aircraft’s gas turbine engine can be easily detected graphically or by the engine performance deterioration value. Also, it has been indicated that it could be a new indicator that informs the pilots in the event of a fault in the sensor of the EGT parameter that they monitor while flying.

  11. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    International Nuclear Information System (INIS)

    Kurniawan, Jermanto S.; Khardi, S.

    2011-01-01

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly or indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.

  12. Preliminary ecotoxicity assessment of new generation alternative fuels in seawater.

    Science.gov (United States)

    Rosen, Gunther; Dolecal, Renee E; Colvin, Marienne A; George, Robert D

    2014-06-01

    The United States Navy (USN) is currently demonstrating the viability of environmentally sustainable alternative fuels to power its fleet comprised of aircraft and ships. As with any fuel used in a maritime setting, there is potential for introduction into the environment through transport, storage, and spills. However, while alternative fuels are often presumed to be eco-friendly relative to conventional petroleum-based fuels, their environmental fate and effects on marine environments are essentially unknown. Here, standard laboratory-based toxicity experiments were conducted for two alternative fuels, jet fuel derived from Camelina sativa (wild flax) seeds (HRJ5) and diesel fuel derived from algae (HRD76), and two conventional counterparts, jet fuel (JP5) and ship diesel (F76). Initial toxicity tests performed on water-accommodated fractions (WAF) from neat fuels partitioned into seawater, using four standard marine species in acute and chronic/sublethal tests, indicate that the alternative fuels are significantly less toxic to marine organisms. Published by Elsevier Ltd.

  13. Simulating the Use of Alternative Fuels in a Turbofan Engine

    Science.gov (United States)

    Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan

    2013-01-01

    The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.

  14. Methods for reducing pollutant emissions from jet aircraft

    Science.gov (United States)

    Butze, H. F.

    1971-01-01

    Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

  15. X-36 Tailless Fighter Agility Research Aircraft in flight

    Science.gov (United States)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  16. The Aircraft Electric Taxi System: A Qualitative Multi Case Study

    Science.gov (United States)

    Johnson, Thomas Frank

    The problem this research addresses is the airline industry, and the seemingly unwillingness attitude towards adopting ways to taxi aircraft without utilizing thrust from the main engines. The purpose of the study was to get a better understanding of the decision-making process of airline executives, in respect to investing in cost saving technology. A qualitative research method is used from personal interviews with 24 airline executives from two major U.S. airlines, related industry journal articles, and aircraft performance data. The following three research questions are addressed. RQ1. Does the cost of jet fuel influence airline executives' decision of adopting the aircraft electric taxi system technology? RQ2 Does the measurable payback period for a return on investment influence airline executives' decision of adopting ETS technology? RQ3. Does the amount of government assistance influence airline executives' decision of adopting ETS technology? A multi case research study design is used with a triangulation technique. The participant perceptions indicate the need to reduce operating costs, they have concerns about investment risk, and they are in favor of future government sponsored performance improvement projects. Based on the framework, findings and implications of this study, a future research paper could focus on the positive environmental effects of the ETS application. A study could be conducted on current airport area air quality and the effects that aircraft main engine thrust taxiing has on the surrounding air quality.

  17. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  18. Deep desulfurization of jet fuel for applications in mobile fuel cell systems; Tiefentschwefelung von Flugturbinenkraftstoffen fuer die Anwendung in mobilen Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong

    2012-07-01

    Fuel cell powered APUs are promising for the on-board electricity supply in heavy vehicles, aircraft and ships because of their high efficiency and low emission of pollutants. The catalytical reforming with subsequent gas processing units is applied to operate the fuel cell system with onboard available fuels. Within the reformer the liquid fuel is converted into a hydrogen-rich synthesis gas in the presence of metal catalysts. However, an on-board desulfurization of fuels is required to avoid the deactivation of catalysts in the fuel processing unit as well as in the fuel cell. The present work aims at developing a technically feasible deep desulfurization process for fuel cell powered APUs with theoretical and experimental study as well as procedural analysis. The focus of the work is on the desulfurization of jet fuels in liquid phase, since the reformer currently developed in IEK-3 is designed for aviation applications of fuel cell APUs and it can only be operated by liquid jet fuels. In addition, the desulfurization of marine gas oil was investigated to fulfill the sulfur requirement of the fuels for the application of fuel cell A PUs for inland navigation. In the petroleum industry, low-sulfur fuels are often obtained by hydrodesulfurization and the S-Zorb Process. However, these conventional methods are highly inconvenient for reducing sulfur compounds to the desired level in a mobile fuel cell system, since improvements of the desulfurization efficiency are limited by increasingly severe operating conditions and escalating costs. Moreover, the hydrodesulfurization and the S-Zorb Process are not suitable for mobile applications, since hydrogen recycling is required, which is not possible with H{sub 2} syngas. To this end, a large number of processes discussed in the literature were assessed with regard to their application in fuel cell APUs. Three potentially suitable processes were selected: pervaporation, adsorption, and hydrodesulfurization with pre

  19. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Christopher Winnefeld

    2018-01-01

    Full Text Available In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

  20. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  1. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1996-01-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  2. Aircraft Emission Inventories Projected in Year 2015 for a High Speed Civil Transport (HSCT) Universal Airline Network. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S.L.; Henderson, S.C.

    1995-07-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT`s) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT`s. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.

  3. Automatic Flight Control System Design of Level Change Mode for a Large Aircraft

    Directory of Open Access Journals (Sweden)

    Huajun Gong

    2013-02-01

    Full Text Available The level change mode is an essential part of large civil aircraft automatic flight control systems. In cruise, with the decrease of the plane's weight caused by fuel consumption and the influence of bad weather, such as thunderstorms, the level change mode is required to solve this problem. This work establishes a nonlinear model of large aircraft, takes level changed from 9500m to 10100m as an example to design control laws for the level change mode in cruise. The classical engineering method is used to design longitudinal and lateral control laws synthetically. The flight qualities are considered in the design process. Simulation results indicate the control laws can meet design requirements and have a good anti-gust performance.

  4. Predicting visibility of aircraft.

    Directory of Open Access Journals (Sweden)

    Andrew Watson

    Full Text Available Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO. In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  5. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    Science.gov (United States)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  6. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  7. Fuel cell added value for early market applications

    Science.gov (United States)

    Hardman, Scott; Chandan, Amrit; Steinberger-Wilckens, Robert

    2015-08-01

    Fuel Cells are often considered in the market place as just power providers. Whilst fuel cells do provide power, there are additional beneficial characteristics that should be highlighted to consumers. Due to the high price premiums associated with fuel cells, added value features need to be exploited in order to make them more appealing and increase unit sales and market penetration. This paper looks at the approach taken by two companies to sell high value fuel cells to niche markets. The first, SFC Energy, has a proven track record selling fuel cell power providers. The second, Bloom Energy, is making significant progress in the US by having sold its Energy Server to more than 40 corporations including Wal-Mart, Staples, Google, eBay and Apple. Further to these current markets, two prospective added value applications for fuel cells are discussed. These are fuel cells for aircraft APUs and fuel cells for fire prevention. These two existing markets and two future markets highlight that fuel cells are not just power providers. Rather, they can be used as solutions to many needs, thus being more cost effective by replacing a number of incumbent systems at the same time.

  8. Aircraft to aircraft intercomparison during SEMAPHORE

    Science.gov (United States)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  9. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    Science.gov (United States)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft in it's hangar at NASA Dryden Flight Research Center, Edwards, California, following its arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  10. Numerical study of influence of biofuels on the combustion characteristics and performance of aircraft engine system

    International Nuclear Information System (INIS)

    Zhou, Li; Liu, Zeng-wen; Wang, Zhan-xue

    2015-01-01

    The atomization and combustion flowfield of the combustion chamber with swirl-nozzle were simulated using different biofuels; the thermodynamic cycle of the aircraft engine system were also analyzed, influences of biofuels on the combustion characteristics and performance of aircraft engine system were explored. Results show that viscosity and caloric value are key factors affecting the atomization and combustion characteristics of biofuels, and then dominate the distribution of the temperature and NO concentration. Due to the characteristic of low viscosity and low caloric value for biofuels adopted, the biofuels accumulate near the head of combustion chamber, and the corresponding NO emission is lower than that it has for conventional kerosene. When biofuels with low caloric value are used under the operation condition which is same as the condition for the conventional kerosene, lower turbine inlet temperature, lower thrust and higher specific fuel consumption would be achieved for the aircraft engine. - Highlights: • Influences of biofuels properties on combustion characteristic are explored. • Effects of biofuels on cycle parameters of aircraft engine are discussed. • Viscosity and caloric value are key factors affecting combustion of biofuels. • NO emission becomes lower when biofuels with low caloric value is adopted. • The performance of aircraft engine becomes worse for biofuels with low caloric value.

  11. DoD Can Save Millions by Using Energy Efficient Centralized Aircraft Support Systems.

    Science.gov (United States)

    1982-05-07

    recommends that the Secretary of the Air Force: -- Reevaluate the decision not to install centralized systems at tactical bases. If the systems can be...discontinue using the aircraft’s onboard auxillary power units. These units consume tremendous amounts of jet fuel in providing cabin air-conditioning...requirements. Each command has been asked to analyze its bases to determine if centralized systems should be installed. Although a final decision has not

  12. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    International Nuclear Information System (INIS)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D.; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  13. Modeling and control for a blended wing body aircraft a case study

    CERN Document Server

    Schirrer, Alexander

    2015-01-01

    This book demonstrates the potential of the blended wing body (BWB) concept for significant improvement in both fuel efficiency and noise reduction and addresses the considerable challenges raised for control engineers because of characteristics like open-loop instability, large flexible structure, and slow control surfaces. This text describes state-of-the-art and novel modeling and control design approaches for the BWB aircraft under consideration. The expert contributors demonstrate how exceptional robust control performance can be achieved despite such stringent design constraints as guaranteed handling qualities, reduced vibration, and the minimization of the aircraft’s structural loads during maneuvers and caused by turbulence. As a result, this innovative approach allows the building of even lighter aircraft structures, and thus results in considerable efficiency improvements per passenger kilometer. The treatment of this large, complex, parameter-dependent industrial control problem highlights relev...

  14. FY 1998 Report on technical results. Part 2 of 2. Research and development of supersonic transportation aircraft propulsion systems (Development of methane-fueled aircraft engines); 1998 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 2/2. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The research and development project is conducted for (1) ramjet systems, (2) high-performance turbojet systems, (3) instrumentation/control systems and (4) total systems, in order to develop methane-fueled supersonic transportation aircraft engines, and the intended targets are achieved. This project has ended with preparation of the overall plans of the target engine. Described herein is the R and D of the combined cycle engine, following the results described in Part 1 of 2. This program includes designs and development of (1) the turbojet engine, and (2) combined cycle engine. The item (1) includes studies on cycles, preparation of the overall plans and studies on the systems, and the item (2) includes the designs, ground and altitudes function tests, and ground noise tests. (NEDO)

  15. Failure of the pressure bulkhead of a passenger aircraft - a Case Study

    International Nuclear Information System (INIS)

    Salam, I.; Khan, A.N.; Farooque, M.

    2011-01-01

    The pressure bulkhead of a passenger aircraft ruptured when the aircraft was cruising at a height of 28,000 ft. Because of the sudden rupture, the rear toilets disintegrated and things like toilet rolls, tissue papers, towels, were sucked into the stabilizer compartment, where the entire tail control system was located. The debris damaged the green hydraulic system, ruptured fuel line and jammed the control cables. The damage resulted in the aircraft going into pitch-up mode (take-off position) and almost approached stalling position. The failed part was located near the toilets. Water from the toilets reached in this region due to leakage and penetrated inside the sheets and corrosion started in the presence of stagnant water. This was supplemented by the stresses present on the structure during flight. Stress corrosion started from inner sheet and led to initiation of fatigue. The combined effect of stress corrosion cracking and fatigue resulted in the failure of this sheet. No third stage (catastrophic) failure was observed in the fracture. The absence of catastrophic failure mode in the fractured sheet showed that it stood up to last stage. (author)

  16. Computation of load functions for different types of aircraft

    International Nuclear Information System (INIS)

    Siefert, Alexander; Henkel, Fritz-Otto

    2013-01-01

    In the presentation the influence of different parameters on the Ft-function were shown. The increase of the impact velocity shows for all aircraft a higher maximal load value and a reduced impact time. Due to the structural setup of the aircraft's the intensity is of these effects different. Comparing the Ft-function of A320, A340 and A380 for an impact velocity of 100 and 175 m/s no constant relation between them can be determined. • The variation of the flight direction with respect to the vertical axis shows a great influence on the Ft-function. A approximation by the cosine is especially for bigger rotations not correct. The influence of the rotation about the horizontal axis can be neglected. Finally the SPH-method was applied for the modelling of the fuel. The comparison to the discrete modelling approach was carried out for the Phantom F4. Thereby no big influence on the Ft-function is observed. For the evaluation of this modelling approach on the local damage the loaded area must be determined in further investigations

  17. Study of advanced rotary combustion engines for commuter aircraft

    Science.gov (United States)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  18. Structureborne noise measurements on a small twin-engine aircraft

    Science.gov (United States)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  19. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  20. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  1. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  2. Costs of mitigating CO2 emissions from passenger aircraft

    Science.gov (United States)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  3. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    Science.gov (United States)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  4. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  5. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  6. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  7. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  9. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  10. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  11. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    Science.gov (United States)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  12. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  13. Greenhouse effects of aircraft emissions

    International Nuclear Information System (INIS)

    Fortuin, J.P.F.; Wauben, W.M.F.; Dorland, R. van; Kelder, H.

    1996-01-01

    Ranges for direct and indirect greenhouse effects due to present day aircraft emissions are quantified for northern midlatitudes, using the concept of fixed temperature (FT) radiative forcing as calculated with a radiative transfer model. The direct greenhouse effects considered here are from emissions of carbon dioxide, water vapor, and nitrogen dioxide. To calculate the concentration increases of carbon dioxide and stratospheric water vapor, an analytical expression is developed based on a linear approximation of global fuel burn versus time. Unlike the expressions currently used in the literature, the authors' expression does not account for emission rates only, but also for a loss term--hence making it more suitable for shorter lived emittants. For midlatitude summer conditions, a total radiative forcing ranging from 0.04 to 0.09 Wm -2 is calculated for the direct greenhouse effects, whereas for midlatitude winter the range is 0.07 to 0.26 Wm -2 . The indirect greenhouse effects considered here are sulfate aerosol formation from sulfur dioxide emissions, contrail formation from emitted water vapor and condensation nuclei, and ozone formation from NO x emissions. The total radiative forcing coming from these indirect effects range from -0.67 to 0.25 Wm -2 in summer a/nd from -0.36 to 0.21 Wm -2 in winter. Further, the global distribution of NO x and ozone increases from aircraft emissions world-wide are simulated with a three-dimensional chemistry transport model for January and July. The geographical distribution of the radiative forcing associated with the simulated ozone increases is also calculated for these months

  14. Optimization of ramp area aircraft push back time windows in the presence of uncertainty

    Science.gov (United States)

    Coupe, William Jeremy

    It is well known that airport surface traffic congestion at major airports is responsible for increased taxi-out times, fuel burn and excess emissions and there is potential to mitigate these negative consequences through optimizing airport surface traffic operations. Due to a highly congested voice communication channel between pilots and air traffic controllers and a data communication channel that is used only for limited functions, one of the most viable near-term strategies for improvement of the surface traffic is issuing a push back advisory to each departing aircraft. This dissertation focuses on the optimization of a push back time window for each departing aircraft. The optimization takes into account both spatial and temporal uncertainties of ramp area aircraft trajectories. The uncertainties are described by a stochastic kinematic model of aircraft trajectories, which is used to infer distributions of combinations of push back times that lead to conflict among trajectories from different gates. The model is validated and the distributions are included in the push back time window optimization. Under the assumption of a fixed taxiway spot schedule, the computed push back time windows can be integrated with a higher level taxiway scheduler to optimize the flow of traffic from the gate to the departure runway queue. To enable real-time decision making the computational time of the push back time window optimization is critical and is analyzed throughout.

  15. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    Science.gov (United States)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  16. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    Science.gov (United States)

    Becker, Keith Frederick

    -processing, which does not capture physical interdependencies that may arise at the aircraft-level. The goal of the work that has been conducted here was the development of a methodology to develop surrogate fleet approaches that leverage the capability of physics-based aircraft models and the development of connectivity to fleet-level analysis tools to enable rapid evaluation of fuel burn and emissions metrics. Instead of requiring development of an individual physics-based model for each vehicle in the fleet, the surrogate fleet approaches seek to reduce the number of such models needed while still accurately capturing performance of the fleet. By reducing the number of models, both development time and execution time to generate fleet-level results may also be reduced. The initial steps leading to surrogate fleet formulation were a characterization of the commercial fleet into groups based on capability followed by the selection of a reference vehicle model and a reference set of operations for each group. Next, three potential surrogate fleet approaches were formulated. These approaches include the parametric correction factor approach, in which the results of a reference vehicle model are corrected to match the aggregate results of each group; the average replacement approach, in which a new vehicle model is developed to generate aggregate results of each group, and the best-in-class replacement approach, in which results for a reference vehicle are simply substituted for the entire group. Once candidate surrogate fleet approaches were developed, they were each applied to and evaluated over the set of reference operations. Then each approach was evaluated for their ability to model variations in operations. Finally, the ability of each surrogate fleet approach to capture implementation of different technology suites along with corresponding interdependencies between fuel burn and emissions was evaluated using the concept of a virtual fleet to simulate the technology response

  17. Mechanical guided waves for fuel level monitoring system

    Directory of Open Access Journals (Sweden)

    Tiberiu Adrian SALAORU

    2017-09-01

    Full Text Available The mechanical guided waves have a wide range of applications in many types of equipment and devices. The fuel level is an important parameter which needs to be monitored for a vehicle which can be a space vehicle, an aircraft or any other. For this purpose mechanical guided waves can be used as they have several major advantages over any other methods. There are a wide ultrasonic sensors used for this purpose but in the most cases the mechanical waves are traveling through air or fuel for measuring their level. In general the wave propagation through a single media at a time is utilized. The method described in this work uses the propagation of the mechanical guided waves through two different media in the same time. The propagating media is the container wall and the other is the fuel. One of the advantages of this method is the reduction of the measurement errors when the incident angle to the fuel level surface is different from 90 degree. These situations could occur when the fuel tank is tilted or when the fuel surface is not flat. This measurement method will not be affected by these conditions.

  18. Adapting existing training standards for unmanned aircraft: finding ways to train staff for unmanned aircraft operations

    CSIR Research Space (South Africa)

    Burger, CR

    2011-09-01

    Full Text Available - unmanned aircraft; pilot training. I. INTRODUCTION Unmanned aircraft offer flexibility not found in manned aircraft. They can be made smaller and cheaper to operate. They offer payload advantages relative to small manned aircraft. They can also perform... certificate to non-state users. To facilitate useful operations by UAs, future operations must be subject to no more than routine notification (e.g. an ATC flight plan), just like manned aircraft already are. Before such operations can be established, some...

  19. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  20. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  1. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  2. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S; Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  3. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    Science.gov (United States)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  4. A miniature powerplant for very small, very long range autonomous aircraft. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tad McGeer

    1999-09-29

    The authors have developed a new piston engine offering unprecedented efficiency for a new generation of miniature robotic aircraft. Following Phase 1 preliminary design in 1996--97, they have gone forward in Phase 2 to complete detail design, and are nearing completion of a first batch of ten engines. A small-engine dynamometer facility has been built in preparation for the test program. Provisions have been included for supercharging, which will allow operation at ceilings in the 10,000 m range. Component tests and detailed analysis indicate that the engine will achieve brake-specific fuel consumption well below 300 gm/kWh at power levels of several hundred watts. This level of performance opens the door to development of tabletop-sized aircraft having transpacific range and multi-day endurance, which will offer extraordinary new capabilities for meteorology, geomagnetic, and a variety of applications in environmental monitoring and military operations.

  5. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    Science.gov (United States)

    Taylor, Brian R.; Yoo, Seung Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  6. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  7. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  8. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    Science.gov (United States)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  9. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M H; Umar, S; Nauman, S

    2014-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  10. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    achieved. Moreover, some parts of the flap system can be made to have a high frequency response for roll control, gust load alleviation, and aeroservoelastic (ASE) modal suppression control. Abstract The aeroelastic model of the ESAC is based on one-dimensional structural dynamic theory that captures the aeroelastic deformation of a wing structure in a combined motion that involves flapwise bending, chordwise bending, and torsion. The model includes the effect of aircraft propulsion due to wing flexibility which causes the propulsive forces and moments to couple with the wing elastic motion. Engine mass is also accounted in the model. A fuel management model is developed to describe the wing mass change due to fuel usage in the main tank and wing tanks during cruise. Abstract The model computes both static and dynamic responses of the wing structures. The static aeroelastic deflections are used to estimate the effect of wing flexibility on induced drag and the potential drag reduction by the VCCTE flap system. A flutter analysis is conducted to estimate the flutter speed boundary. Gust load alleviation via adaptive control has been recently investigated to address flexibility of aircraft structures. A multi-objective flight control approach is presented for drag reduction control. The approach is based on an optimal control framework using a multi-objective cost function. Future studies will demonstrate the potential benefits of the approach.

  11. Cryogenic Fuel Tank Draining Analysis Model

    Science.gov (United States)

    Greer, Donald

    1999-01-01

    One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

  12. Winglets Save Billions of Dollars in Fuel Costs

    Science.gov (United States)

    2010-01-01

    The upturned ends now featured on many airplane wings are saving airlines billions of dollars in fuel costs. Called winglets, the drag-reducing technology was advanced through the research of Langley Research Center engineer Richard Whitcomb and through flight tests conducted at Dryden Flight Research Center. Seattle-based Aviation Partners Boeing -- a partnership between Aviation Partners Inc., of Seattle, and The Boeing Company, of Chicago -- manufactures Blended Winglets, a unique design featured on Boeing aircraft around the world. These winglets have saved more than 2 billion gallons of jet fuel to date, representing a cost savings of more than $4 billion and a reduction of almost 21.5 million tons in carbon dioxide emissions.

  13. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    Science.gov (United States)

    Bowe, Aisha Ruth; Santiago, Confesor

    2012-01-01

    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  14. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  15. Performance assessment of a Multi-fuel Hybrid Engine for Future Aircraft

    NARCIS (Netherlands)

    Yin, F.; Gangoli Rao, A.

    2016-01-01

    This paper presents performance assessment of the proposed hybrid engine concept using Liquid Natural Gas (LNG) and kerosene. The multi-fuel hybrid engine is a new engine concept integrated with contra rotating fans, sequential dual combustion chambers to facilitate “Energy Mix” in aviation and a

  16. Performance assessment of a multi-fuel hybrid engine for future aircraft

    NARCIS (Netherlands)

    Yin, F.; Gangoli Rao, A.; Bhat, Abhishek; Chen, Min

    2018-01-01

    This paper presents the performance assessment of a novel turbofan engine using two energy sources: Liquid Natural Gas (LNG) and kerosene, called Multi-Fuel Hybrid Engine (MFHE). The MFHE is a new engine concept consisting of several novel features, such as a contra-rotating fan to sustain

  17. Performance Evaluation of Individual Aircraft Based Advisory Concept for Surface Management

    Science.gov (United States)

    Gupta, Gautam; Malik, Waqar; Tobias, Leonard; Jung, Yoon; Hong, Ty; Hayashi, Miwa

    2013-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASA's Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas/Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45% in medium scenarios and 60% in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23% in medium traffic and 33% in heavy. TMI compliance appeared unaffected by the advisory

  18. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  19. Trends in aircraft emissions. Simulation of two air traffic scenarios in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Larson, L.G.; Palsson, A. [The Aeronautical Research Inst. of Sweden, Bromma (Sweden). The Swedish Civil Aviation Administration

    1997-12-31

    The developing trends of emissions from aviation in Sweden have been studied by means of flight and emissions simulation. The objective was to investigate whether technical improvements will allow Swedish air traffic to increase, without exceeding national regulations for pollution in the future. It was found that, due to development of aircraft engines and, to some extent, improvement of aerodynamic designs, the fuel consumption and thus the emissions of carbon dioxide will decrease in the future. The decrease of nitrous oxides is predicted to be significant due to advances in engine technology. (author) 4 refs.

  20. Trends in aircraft emissions. Simulation of two air traffic scenarios in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Larson, L G; Palsson, A [The Aeronautical Research Inst. of Sweden, Bromma (Sweden). The Swedish Civil Aviation Administration

    1998-12-31

    The developing trends of emissions from aviation in Sweden have been studied by means of flight and emissions simulation. The objective was to investigate whether technical improvements will allow Swedish air traffic to increase, without exceeding national regulations for pollution in the future. It was found that, due to development of aircraft engines and, to some extent, improvement of aerodynamic designs, the fuel consumption and thus the emissions of carbon dioxide will decrease in the future. The decrease of nitrous oxides is predicted to be significant due to advances in engine technology. (author) 4 refs.

  1. Charging process analysis of an opposed-piston two-stroke aircraft Diesel engine

    Directory of Open Access Journals (Sweden)

    Grabowski Łukasz

    2017-01-01

    Full Text Available This paper presents the research results on a 1D model of an opposed-piston two-stroke aircraft Diesel engine. The research aimed at creating a model of the engine in question to investigate how engine performance is affected by the compressor gear ratio. The power was constant at all the operating points. The research results are presented as graphs of power consumed by the compressor, compressor efficiency and brake specific fuel consumption. The optimal range of compressor gear ratio in terms of engine efficiency was defined from the research results.

  2. Aircraft Capability Management

    Science.gov (United States)

    Mumaw, Randy; Feary, Mike

    2018-01-01

    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  3. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  4. Development of a probabilistic safety assessment framework for an interim dry storage facility subjected to an aircraft crash using best-estimate structural analysis

    International Nuclear Information System (INIS)

    Almomani, Belal; Jang, Dong Chan; Lee, Sang Hoon; Kang, Hyun Gook

    2017-01-01

    Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose–risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research

  5. Development of a Probabilistic Safety Assessment Framework for an Interim Dry Storage Facility Subjected to an Aircraft Crash Using Best-Estimate Structural Analysis

    Directory of Open Access Journals (Sweden)

    Belal Almomani

    2017-03-01

    Full Text Available Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose–risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research.

  6. Development of a probabilistic safety assessment framework for an interim dry storage facility subjected to an aircraft crash using best-estimate structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Belal; Jang, Dong Chan [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of); Kang, Hyun Gook [Dept. of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy (United States)

    2017-03-15

    Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose–risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research.

  7. Single Fuel Concept for Croatian Army Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Robert Spudić

    2008-05-01

    Full Text Available During the process of approaching the European associationsand NATO the Republic of Croatia has accepted the singlefuel concept for all ground vehicles of the Croatian Army.Croatia has also undertaken to insure that all aircraft, motorvehicles and equipment with turbo-engines or with pressurizedfuel injection, for participation in NATO and PfP led operationscan • operate using the kerosene-based aviation fuel(NATO F-34. The paper gives a brief overview and the resultsof the earned out activities in the Armed Forces of the Republicof Croatia, the expected behaviour of the motor vehicle andpossible delays caused by the use of kerosene fuel (NATOF-34 as fuel for motor vehicles. The paper also gives the advantagesand the drawbacks of the single fuel concept. By acquiringnew data in the Croatian Armed Forces and experienceexchange with other nations about the method of using fuelF-34, the development of the technologies of engine manufacturingand its vital parts or by introducing new standards in theproductjon of fuels and additives new knowledge will certainlybe acquired for providing logistics support in the area of operations,and its final implementation will be a big step forward forthe Republic of Croatia towards Europe and NATO.

  8. FUEL CONSUMPTION EFFECT OF COMMERCIAL TURBOFANS ON GLOBAL WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Onder Turan; T. Hikmet Karakoc [School of Civil Aviation, Anadolu University, Eskisehir (Turkey)

    2008-09-30

    The main objective pursued in this study is to parametrically investigate the fuel consumption effect of commercial turbofans on global warming. In this regard, Of the important parameters, specific fuel consumption of a commercial turbofans is taken into consideration. In order to minimize the effect of fuel consumption on global warming, the values of engine design parameters are optimized for maintaining minimum specific fuel consumption of high bypass turbofan engine under different flight conditions and design criteria. The backbones of optimization approach consisted of elitism-based genetic algorithm coupled with real parametric cycle analysis of a turbofan engine. For solving optimization problem a new software program is developed in MATLAB, while objective function is determined for minimizing the specific fuel consumption by considering the following parameters such as the fan pressure ratio ({pi}{sub f}), bypass ratio ({alpha}) and the fuel heating value [h{sub PR}-(kJ/kg)]. Accordingly, it may be concluded that the software program developed can successfully solve optimization problems at 1.2{le}{pi}{sub f}{le}2, 2{le}{alpha}{le}10 and 23000{le}h{sub PR}{le}120000 with aircraft flight Mach number {le}0.8. Fuel types used in preliminary engine cycle analysis were JP-4, JP-5, JP-8 and hydrogen in this paper.

  9. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    Science.gov (United States)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  10. The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft

    Science.gov (United States)

    Ko, Yan-Yee Andy

    The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a distributed propulsion blended-wing-body (BWB) aircraft. The BWB is a hybrid shape resembling a flying wing, placing the payload in the inboard sections of the wing. The distributed propulsion concept involves replacing a small number of large engines with many smaller engines. The distributed propulsion concept considered here ducts part of the engine exhaust to exit out along the trailing edge of the wing. The distributed propulsion concept affects almost every aspect of the BWB design. Methods to model these effects and integrate them into an MDO framework were developed. The most important effect modeled is the impact on the propulsive efficiency. There has been conjecture that there will be an increase in propulsive efficiency when there is blowing out of the trailing edge of a wing. A mathematical formulation was derived to explain this. The formulation showed that the jet 'fills in' the wake behind the body, improving the overall aerodynamic/propulsion system, resulting in an increased propulsive efficiency. The distributed propulsion concept also replaces the conventional elevons with a vectored thrust system for longitudinal control. An extension of Spence's Jet Flap theory was developed to estimate the effects of this vectored thrust system on the aircraft longitudinal control. It was found to provide a reasonable estimate of the control capability of the aircraft. An MDO framework was developed, integrating all the distributed propulsion effects modeled. Using a gradient based optimization algorithm, the distributed propulsion BWB aircraft was optimized and compared with a similarly optimized conventional BWB design. Both designs are for an 800 passenger, 0.85 cruise Mach number and 7000 nmi mission. The MDO results found that the distributed propulsion BWB aircraft has a 4% takeoff gross weight and a 2% fuel weight. Both designs have similar planform shapes

  11. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems

    Science.gov (United States)

    Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.

    2005-01-01

    Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.

  12. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    Science.gov (United States)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  13. An Opportunity for Hydrogen Fueled Supersonic Airliners

    Directory of Open Access Journals (Sweden)

    Alex Forbes

    2011-02-01

    Full Text Available This paper takes a new look at the prospects for developing supersonic civil airliners, considering global demographics, climate change issues, fuel prices and technological advances. Dramatic changes have occurred in the demographics, economics, and market intensity of the Eastern Hemisphere since the 1990s. Carbon reduction imperatives provide a major incentive to invest in developing hydrogen-fueled airliners. The “point-to-point” air route architecture has proved viable with long range mid-size airliners. With a cruise Mach number of 1.4, a large number of destinations become viable for overland supersonic flight. A conceptual design process is used to estimate cost per seat mile for a range of hydrocarbon and hydrogen fuel costs. An argument based on the ideal shape for minimal wave drag, estimates the drag penalty from using hydrogen. Viable aircraft geometries are shown to exist, that match the theoretical ideal shape, showing that the drag estimate is achievable. Conservative design arguments and market estimates suggest that hydrogen-fueled airliners can achieve seat-mile costs low enough to open a large worldwide market and justify a viable fleet size.

  14. Hydrocarbon Biocomponents use in Aviation Fuels - Preliminary Analysis of Issues

    Directory of Open Access Journals (Sweden)

    Gawron Bartosz

    2015-01-01

    Full Text Available Article is related to the aspect of the introduction of biofuels to power turbine aircraft engines. The paper presents the current trends in the use of alternative fuels in aviation and the problems connected with the introduction of hydrocarbon biocomponents. It is pointed to the need to take research and implementation works in the field of the subject, also in Poland.

  15. Fueling our future: Four steps to a new, reliable, cleaner, decentralized energy supply based on hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Evers, A. A. [Arno A. Evers FAIR-PR, Starnberg (Germany)

    2004-07-01

    The necessary preconditions and the driving forces operating to move hydrogen and fuel cells to world-wide commercialization are examined, focusing on trends that impacted the progress of new technologies in the past. The consensus is that consumers have played a vital role in the past, and will continue to play an even more vital role in the future as drivers in the mass market evolution of technological progress. The automobile, aircraft and cell phone industries are examined as examples of consumer influence on technology development. One such scenario, specific to the hydrogen economy is the potential dual role played by fuel cell-powered personal automobiles which may not only provide transportation but also supply electricity and heat to residential and commercial buildings while in a stationary mode. It is suggested that given the size of the population and the current level of economic development in the Peoples' Republic of China, conditions there are most favourable to accelerate the development of a hydrogen and fuel cell-based economy. Details of developments in China and how the hydrogen-fuel cells scenario may develop there, are discussed. 11 figs.

  16. Estimation of nuclear power plant aircraft hazards

    International Nuclear Information System (INIS)

    Gottlieb, P.

    1978-01-01

    The standard procedures for estimating aircraft risk to nuclear power plants provide a conservative estimate, which is adequate for most sites, which are not close to airports or heavily traveled air corridors. For those sites which are close to facilities handling large numbers of aircraft movements (airports or corridors), a more precise estimate of aircraft impact frequency can be obtained as a function of aircraft size. In many instances the very large commercial aircraft can be shown to have an acceptably small impact frequency, while the very small general aviation aircraft will not produce sufficiently serious impact to impair the safety-related functions. This paper examines the in between aircraft: primarily twin-engine, used for business, pleasure, and air taxi operations. For this group of aircraft the total impact frequency was found to be approximately once in one million years, the threshold above which further consideration of specific safety-related consequences would be required

  17. Aircraft Carrier Exposure Testing of Aircraft Materials

    National Research Council Canada - National Science Library

    Lee, Eui

    2004-01-01

    .... Test and control specimens were affixed on exposure racks and installed on aircraft carriers to compare adhesive bonding primers for aluminum and to determine the static property behavior of various...

  18. Measuring Single-Domain Antibody Interactions with Epitopes in Jet Fuel Using Microscale Thermophoresis

    Science.gov (United States)

    2015-01-01

    hearing loss in rats. J. Toxicol. Environ. Health A. 75(5): 299–317. Itah, A. Y., A. A. Brooks, B. O. Ogar, and A. B. Okure. 2009. Biodegradation of...international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems. Bull. Environ. Contam. Toxicol. 83(3

  19. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  20. Development of a three-dimensional inventory of aircraft NOx emissions over China

    International Nuclear Information System (INIS)

    Jianzhong Ma; Xiuji Zhou

    2000-01-01

    A three-dimensional (1 o latitude x 1 o longitude x 1 km altitude) inventory of aircraft NO x emissions over China for a calendar year of 1997-1998 has been developed using the detailed schedule database of the Civil Aviation Administration of China (CAAC). The fuel burned and emissions are calculated according to fuel burn rates and NO x emission indices of different airplane types along each flight path. The calculated total fuel burned and NO x emissions are 9.557 x 10 6 kg day -1 and 1.220 x 10 5 kg day -1 , respectively. Nearly 78% of these emissions occur at an altitude band of 9-12 km. The high emission rates are found in the regions of Beijing, Guangzhou and Shanghai as well as the corridors connecting these three cities. The highest NO x emission rate in these regions can be 3.7 x 10 3 kg day -1 in a column-integrated grid. The seasonal dependence as well as diurnal circle of NO x emission rates is presented. The time resolution of the inventory is as high as 1 h. (author)

  1. 14 CFR 49.11 - FAA Aircraft Registry.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 49.11 Section 49.11... AIRCRAFT TITLES AND SECURITY DOCUMENTS General § 49.11 FAA Aircraft Registry. To be eligible for recording, a conveyance must be mailed to the FAA Aircraft Registry, Department of Transportation, Post Office...

  2. Annoyance by aircraft noise and fear of overflying aircraft in relation to attitudes toward the environment and community

    Science.gov (United States)

    Loeb, M.; Moran, S. V.

    1977-01-01

    It has been suggested that expressions of annoyance attributable to aircraft noise may reflect in part fear of aircraft overflights and possible crashes. If this is true, then residents of areas where crashes have occurred should express more annoyance. To test this hypothesis, 50 residents of an Albany, New York area where an aircraft crash producing fatalities recently occurred and 50 residents of a comparable nearby area without such a history, were asked to respond to a 'Quality of Life Questionnaire.' Among the items were some designed to test annoyance by noise and fear of aircraft overflights. It was predicted that those in the crash area would express more fear and would more often identify aircraft as a noise source. These hypotheses were sustained. A near-replication was carried out in Louisville, Kentucky; results were much the same. Analyses indicated that for the crash-area groups, there was associating of aircraft fear and noise annoyance responses; this was true to an apparently lesser extent for non-crash groups. The greater annoyance of crash groups by aircraft community noise apparently does not carry over to situations in which aircraft noise is assessed in the laboratory.

  3. The Aircraft Morphing Program

    Science.gov (United States)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  4. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  5. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    Science.gov (United States)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  6. 75 FR 41986 - Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to...

    Science.gov (United States)

    2010-07-20

    ...- Sport Aircraft; Modifications to Rules for Sport Pilots and Flight Instructors With a Sport Pilot Rating... rule; OMB approval of information collection. SUMMARY: This document announces the Office of Management... rule, ``Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications...

  7. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    Science.gov (United States)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  8. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  9. Impact analysis of composite aircraft structures

    Science.gov (United States)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  10. 8 CFR 1280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 1280.21 Section 1280... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.21 Seizure of aircraft. Seizure of an aircraft under the... that its value is less than the amount of the fine which may be imposed. If seizure of an aircraft for...

  11. 8 CFR 280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 280.21 Section 280.21... OF FINES § 280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of... than the amount of the fine which may be imposed. If seizure of an aircraft for violation of section...

  12. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    Science.gov (United States)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  13. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    Science.gov (United States)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  14. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    Directory of Open Access Journals (Sweden)

    Stanislav Vladimirovich Daletskiy

    2017-01-01

    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  15. Principles for Aircraft Energy Mapping

    OpenAIRE

    Berg, Frederick T N

    2013-01-01

    An increasing emphasis on energy eciency in aircraft systems has in recentyears led to greater interest in integrated design and optimisation withinthe industry. New tools are needed to understand, compare and manage energyuse of an aircraft throughout its design and operation. This thesis describes a new methodology to meet this need: aircraft exergy mapping.The choice of exergy, a 2nd law metric, to describe the energy ows is fundamental to the methodology, providing numerous advantages ove...

  16. NDT applications in the aircraft industry

    International Nuclear Information System (INIS)

    Aguilar, E.C.

    1994-01-01

    Non-destructive testing (NDT) in the aircraft industry is used primarily to detect process defects in the manufacturing stage and failure defects in the in-service stage. Inspection techniques such as X- or gamma ray radiography are used for examination. Eddy current and ultrasonic are applied for examination, fluorescent penetrant and magnetic particles are applied for examination of aircraft and engine. With the wide scope of application, this paper discussed one type of NDT that is much used in aircraft being the latest technique in aircraft manufacturing. 1 fig

  17. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  18. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  19. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  20. 31 CFR 560.528 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft safety. 560.528 Section 560..., Authorizations and Statements of Licensing Policy § 560.528 Aircraft safety. Specific licenses may be issued on a... the safety of civil aviation and safe operation of U.S.-origin commercial passenger aircraft. ...

  1. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    Science.gov (United States)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X

  2. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    Science.gov (United States)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  3. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokun [Univ. of Nevada, Reno, NV (United States); Li, Teng [Washington State Univ., Pullman, WA (United States); Tang, Kan [Washington State Univ., Pullman, WA (United States); Zhou, Xinpei [Univ. of Nevada, Reno, NV (United States); Lu, Mi [Univ. of Nevada, Reno, NV (United States); Ounkham, Whalmany L. [Univ. of Nevada, Reno, NV (United States); Spain, Stephen M. [Univ. of Nevada, Reno, NV (United States); Frost, Brian J. [Univ. of Nevada, Reno, NV (United States); Lin, Hongfei [Washington State Univ., Pullman, WA (United States)

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reaction mechanism is discussed.

  4. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1995-03-01

    Recently the international relationship has been playing an important role in the research, development and production of the aircraft gas turbine. The YSX, which is supposed to be the 100-seat class commercial aircraft, has been planned by Japan Aircraft Development (JADC) as an international cooperative project. Recently many western aeroengine companies have offered the collaboration of small turbofan engines which would be installed on YSX to Japanese aeroengine companies (IHI, KHI and MHI). The YSX is powered by 16,000-20,000 1bs thrust class engines. As for medium turbofan engine (V2500), the V 2500 family of 22,000 to 30,000 1bs thrust has been developed since 1983 through international collaboration by seven aeroengine companies in five nations. In this paper, the recent Japan`s activities of the research, development and production with viewing the world-wide movement, are described. 6 figs.

  5. Hazards from aircraft

    International Nuclear Information System (INIS)

    Grund, J.E.; Hornyik, K.

    1975-01-01

    The siting of nuclear power plants has created innumerable environmental concerns. Among the effects of the ''man-made environment'' one of increasing importance in recent nuclear plant siting hazards analysis has been the concern about aircraft hazards to the nuclear plant. These hazards are of concern because of the possibility that an aircraft may have a malfunction and crash either near the plant or directly into it. Such a crash could be postulated to result, because of missile and/or fire effects, in radioactive releases which would endanger the public health and safety. The majority of studies related to hazards from air traffic have been concerned with the determination of the probability associated with an aircraft striking vulnerable portions of a given plant. Other studies have focused on the structural response to such a strike. This work focuses on the problem of strike probability. 13 references

  6. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  7. Perspectives on Highly Adaptive or Morphing Aircraft

    Science.gov (United States)

    McGowan, Anna-Maria R.; Vicroy, Dan D.; Busan, Ronald C.; Hahn, Andrew S.

    2009-01-01

    The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.

  8. Aircraft vulnerability analysis by modeling and simulation

    Science.gov (United States)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    Infrared missiles pose a significant threat to civilian and military aviation. ManPADS missiles are especially dangerous in the hands of rogue and undisciplined forces. Yet, not all the launched missiles hit their targets; the miss being either attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft-missile engagement is a complex series of events, many of which are only partially understood. Aircraft and missile designers focus on the optimal design and performance of their respective systems, often testing only in a limited set of scenarios. Most missiles react to the contrast intensity, but the variability of the background is rarely considered. Finally, the vulnerability of the aircraft depends jointly on the missile's performance and the doctrine governing the missile's launch. These factors are considered in a holistic investigation. The view direction, altitude, time of day, sun position, latitude/longitude and terrain determine the background against which the aircraft is observed. Especially high gradients in sky radiance occur around the sun and on the horizon. This paper considers uncluttered background scenes (uniform terrain and clear sky) and presents examples of background radiance at all view angles across a sphere around the sensor. A detailed geometrical and spatially distributed radiometric model is used to model the aircraft. This model provides the signature at all possible view angles across the sphere around the aircraft. The signature is determined in absolute terms (no background) and in contrast terms (with background). It is shown that the background significantly affects the contrast signature as observed by the missile sensor. A simplified missile model is constructed by defining the thrust and mass profiles, maximum seeker tracking rate, maximum

  9. Daedalus Project's Light Eagle - Human powered aircraft

    Science.gov (United States)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  10. Performance Evaluation of SARDA: An Individual Aircraft-Based Advisory Concept for Surface Management

    Science.gov (United States)

    Jung, Yoon; Malik, Waqar; Tobias, Leonard; Gupta, Gautam; Hoang, Ty; Hayashi, Miwa

    2015-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASAs Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas-Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45 in medium scenarios and 60 in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23 in medium traffic and 33 in heavy. TMI compliance appeared unaffected by the advisory.

  11. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  12. Panorama 2009 - aviation and alternative fuels

    International Nuclear Information System (INIS)

    2008-01-01

    Several key priorities have been targeted for development in the aviation industry: diversifying energy resources, keeping consumption levels under control and reducing polluting emissions to improve air quality. Like the road transport sector, the air transport sector is mounting a determined effort to reduce the level of its greenhouse gas emissions. Among the various solutions under consideration, alternative fuels are attracting particular attention. However, not all alternative solutions can be exploited, because of the constraints specific to the use of aircraft. A precise assessment should be made of all possible solutions to determine which ones should take preference

  13. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    OpenAIRE

    Stanislav Vladimirovich Daletskiy; Stanislav Stanislavovich Daletskiy

    2017-01-01

    The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is ...

  14. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  15. The Air Quality and Economic Impact of Atmospheric Lead from General Aviation Aircraft in the United States

    Science.gov (United States)

    Wolfe, P. J.; Selin, N. E.; Barrett, S. R. H.

    2015-12-01

    While leaded fuels for automobiles were phased-out of use in the United States by 1996, lead (Pb) continues to be used as an anti-knock additive for piston-driven aircraft. We model the annual concentration of atmospheric lead attributable to piston driven aircraft emissions in the continental United States using the Community Multi-scale Air Quality (CMAQ) model. Using aircraft emissions inventories for 2008, we then calculate annual economic damages from lead as lifetime employment losses for a one-year cohort exposed to elevated atmospheric lead concentrations using a range of concentration response functions from literature. Mean and median estimates of annual damages attributable to lifetime lost earnings are 1.06 and 0.60 billion respectively. Economy-wide impacts of IQ-deficits on productivity and labor increase expected damages by 54%. Damages are sensitive to background lead concentrations; as emissions decrease from other sources, the damages attributable to aviation are expected to increase holding aviation emissions constant. The monetary impact of General Aviation lead emissions on the environment is the same order of magnitude as noise, climate change, and air quality degradation from all commercial operations.

  16. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  17. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    Dexter, H.B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  18. Durability of commercial aircraft and helicopter composite structures

    Science.gov (United States)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  19. Preliminary studies on readiness of biojet fuel for commercial aviation: The feasibility and potential in Malaysia

    Science.gov (United States)

    Noh, H. Mohd; Mahammad Taher, M. N.; Rodrigo, G. A.; Rahman, N. A. Abdul; Othman, J.; Yahaya, N. H. R.

    2017-12-01

    This paper demonstrates the need for a new alternative energy using biojet fuel in commercial aviation. The demand of air travels leads the authority, airlines and government in seeking for new renewable and sustainable energy for aircraft operation in the future. This study looks into the level of readiness in using biofuel. 40 personnel who are working in the aviation industries have participated and completed the survey questionnaires. The preliminary findings suggest that the impact towards this new fuel will lead to a better environment, less cost, better maintenance and energy sustainability. The usage of biojet fuel seems possible to be pursued in Malaysia.

  20. Aircraft vulnerability analysis by modelling and simulation

    CSIR Research Space (South Africa)

    Willers, CJ

    2014-09-01

    Full Text Available attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft...

  1. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chick, Lawrence A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whyatt, Greg A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  2. Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact on jet engine performance

    International Nuclear Information System (INIS)

    Lokesh, Kadambari; Sethi, Vishal; Nikolaidis, Theoklis; Goodger, Eric; Nalianda, Devaiah

    2015-01-01

    Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This study examines the environmental competence of Bio-Synthetic Paraffinic Kerosene (Bio-SPKs) against conventional Jet-A, through development of a life cycle GHG model (ALCEmB – Assessment of Life Cycle Emissions of Biofuels) from “cradle-grave” perspective. This model precisely calculates the life cycle emissions of the advanced biofuels through a multi-disciplinary study entailing hydrocarbon chemistry, thermodynamic behaviour and fuel combustion from engine/aircraft performance, into the life cycle studies, unlike earlier studies. The aim of this study is predict the “cradle-grave” carbon intensity of Camelina SPK, Microalgae SPK and Jatropha SPK through careful estimation and inclusion of combustion based emissions, which contribute ≈70% of overall life cycle emissions (LCE). Numerical modelling and non-linear/dynamic simulation of a twin-shaft turbofan, with an appropriate airframe, was conducted to analyse the impact of alternative fuels on engine/aircraft performance. ALCEmB revealed that Camelina SPK, Microalgae SPK and Jatropha SPK delivered 70%, 58% and 64% LCE savings relative to the reference fuel, Jet-A1. The net energy ratio analysis indicates that current technology for the biofuel processing is energy efficient and technically feasible. An elaborate gas property analysis infers that the Bio-SPKs exhibit improved thermodynamic behaviour in an operational gas turbine engine. This thermodynamic effect has a positive impact on aircraft-level fuel consumption and emissions characteristics demonstrating fuel savings in the range of 3–3.8% and emission savings of 5.8–6.3% (CO 2 ) and 7.1–8.3% (LTO NOx), relative to that of Jet-A. - Highlights: • Bio-SPKs were determined to deliver “Cradle-Grave” GHG savings of 58–70%. • Bio-SPKs exhibited improved thermodynamic behaviour at integrated system level assessment

  3. Trading off Aircraft Fuel Burn and NO x Emissions for Optimal Climate Policy.

    Science.gov (United States)

    Freeman, Sarah; Lee, David S; Lim, Ling L; Skowron, Agnieszka; De León, Ruben Rodriguez

    2018-03-06

    Aviation emits pollutants that affect the climate, including CO 2 and NO x , NO x indirectly so, through the formation of tropospheric ozone and reduction of ambient methane. To improve the fuel performance of engines, combustor temperatures and pressures often increase, increasing NO x emissions. Conversely, combustor modifications to reduce NO x may increase CO 2 . Hence, a technology trade-off exists, which also translates to a trade-off between short-lived climate forcers and a long-lived greenhouse gas, CO 2 . Moreover, the NO x -O 3 -CH 4 system responds in a nonlinear manner, according to both aviation emissions and background NO x . A simple climate model was modified to incorporate nonlinearities parametrized from a complex chemistry model. Case studies showed that for a scenario of a 20% reduction in NO x emissions the consequential CO 2 penalty of 2% actually increased the total radiative forcing (RF). For a 2% fuel penalty, NO x emissions needed to be reduced by >43% to realize an overall benefit. Conversely, to ensure that the fuel penalty for a 20% NO x emission reduction did not increase overall forcing, a 0.5% increase in CO 2 was found to be the "break even" point. The time scales of the climate effects of NO x and CO 2 are quite different, necessitating careful analysis of proposed emissions trade-offs.

  4. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate

  5. Common factors in the withdrawal of European aircraft manufacturers from the regional aircraft market

    NARCIS (Netherlands)

    Heerkens, Johannes M.G.; de Bruijn, E.J.; Steenhuis, H.J.

    2010-01-01

    We investigate whether there were common causes for the withdrawal from the regional aircraft market of three established manufacturers (BAE Systems, Fokker and Saab), while competitors thrived. We focus on the markets for 50- and 100-seat aircraft. One cause concerning the 50-seat market was the

  6. Review on signal-by-wire and power-by-wire actuation for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Jean-Charles MARÉ

    2017-06-01

    Full Text Available The huge and rapid progress in electric drives offers new opportunities to improve the performances of aircraft at all levels: fuel burn, environmental footprint, safety, integration and production, serviceability, and maintainability. Actuation for safety-critical applications like flight-controls, landing gears, and even engines is one of the major consumers of non-propulsive power. Conventional actuation with centralized hydraulic power generation and distribution and control of power by throttling has been well established for decades, but offers a limited potential of evolution. In this context, electric drives become more and more attractive to remove the natural drawbacks of conventional actuation and to offer new opportunities for improving performance. This paper takes the stock, at both the signal and power levels, of the evolution of actuation for safety-critical applications in aerospace. It focuses on the recent advances and the remaining challenges to be taken toward full electrical actuation for commercial and military aircraft, helicopters, and launchers. It logically starts by emphasizing the specificity of safety-critical actuation for aerospace. The following section addresses in details the evolution of aerospace actuation from mechanically-signaled and hydraulically-supplied to all electric, with special emphasis on research and development programs and on solutions entered into service. Finally, the last section reviews the challenges to be taken to generalize the use of all-electric actuators for future aircraft programs.

  7. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  8. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  9. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  10. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  11. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part II. Mathematical model of the trajectory boost part and computational results

    Science.gov (United States)

    Latypov, A. F.

    2009-03-01

    The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.

  12. Evaluation of sealing performance of metal cask subjected to vertical impact load due to aircraft engine

    International Nuclear Information System (INIS)

    Namba, Kosuke; Shirai, Koji; Saegusa, Toshiari

    2010-01-01

    To confirm the sealing performance of a metal cask subjected to impact force due to commercial aircraft crash against a spent fuel storage facility, a vertical impact test was carried out. In this test, a simplified deformable missile was used by considering the rigidity of the actual aircraft engine and accelerated to the specified impact velocity (60 m/s) to hit the full-scale lid structure with the primary and secondary lids. Then, the leak rate, the inner pressure between the lids, and the displacement of the lids were measured. The leak rate of the secondary lid exceeded 1.0x10 -3 Pa·m 3 /s upon impact. However, because no residual lid opening displacement occurred after loading, the leak rate recovered to less than 1.0x10 -6 Pa·m 3 /s after 3 h from the impact test. In addition, to clarify the impact behaviour of the lid structure, the impact analysis using the LS-DYNA code was executed. It was found that the lid bolts maintained the good tightening force after impact loading, and the sealing performance of the full-scale metal cask would not be affected immediately by the vertical impact of the aircraft engine with a speed of 60 m/s. (author)

  13. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  14. Performance of a Fuel-Cell-Powered, Small Electric Airplane Assessed

    Science.gov (United States)

    Berton, Jeffrey J.

    2004-01-01

    Rapidly emerging fuel-cell-power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and - with the exception of water vapor - zero emissions. An analytical feasibility and performance assessment was conducted by NASA Glenn Research Center's Airbreathing Systems Analysis Office of a fuel-cell-powered, propeller-driven, small electric airplane based on a model of the MCR-01 two-place kitplane (Dyn'Aero, Darois, France). This assessment was conducted in parallel with an ongoing effort by the Advanced Technology Products Corporation and the Foundation for Advancing Science and Technology Education. Their project - partially funded by a NASA grant - is to design, build, and fly the first manned, continuously propelled, nongliding electric airplane. In our study, an analytical performance model of a proton exchange membrane (PEM) fuel cell propulsion system was developed and applied to a notional, two-place light airplane modeled after the MCR-01 kitplane. The PEM fuel cell stack was fed pure hydrogen fuel and humidified ambient air via a small automotive centrifugal supercharger. The fuel cell performance models were based on chemical reaction analyses calibrated with published data from the fledgling U.S. automotive fuel cell industry. Electric propeller motors, rated at two shaft power levels in separate assessments, were used to directly drive a two-bladed, variable-pitch propeller. Fuel sources considered were compressed hydrogen gas and cryogenic liquid hydrogen. Both of these fuel sources provided pure, contaminant-free hydrogen for the PEM cells.

  15. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  16. A Generic Approach to Analyze the Impact of a Future Aircraft Design on the Boarding Process

    Directory of Open Access Journals (Sweden)

    Bekir Yildiz

    2018-01-01

    Full Text Available The turnaround process constitutes an important part of the air transportation system. Airports often represent bottlenecks in air traffic management (ATM, thus operations related to the preparation of the aircraft for the next flight leg have to be executed smoothly and in a timely manner. The ATM significantly depends on a reliable turnaround process. Future paradigm changes with respect to airplane energy sources, aircraft design or propulsion concepts will also influence the airport layout. As a consequence, operational processes associated with the turnaround will be affected. Airlines aim for efficient and timely turnaround operations that are correlated with higher profits. This case study discusses an approach to investigate a new aircraft design with respect to the implications on the turnaround. The boarding process, as part of the turnaround, serves as an example to evaluate the consequences of new design concepts. This study is part of an interdisciplinary research to investigate future energy, propulsion and designs concepts and their implications on the whole ATM system. Due to these new concepts, several processes of the turnaround will be affected. For example, new energy storage concepts will influence the fueling process on the aircraft itself or might lead to a new infrastructure at the airport. This paper aims to evaluate the applied methodology in the case of a new boarding process, due to a new aircraft design, by means of a generic example. An agent-based boarding simulation is applied to assess passenger behavior during boarding, particularly with regard to cabin layout and seat configuration. The results of the generic boarding simulation are integrated into a simplified, deterministic and generic simulation of the turnaround process. This was done to assess the proposed framework for future investigations which on the one hand address the ATM system holistically and on the other, incorporate additional or adapted

  17. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  18. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  19. International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI

  20. International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI.