WorldWideScience

Sample records for aircraft emission inventories

  1. Aircraft emission inventories for scheduled air traffic for the 1976-92 time period. Historical trends

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S L; Henderson, S C; Tritz, T G [Boeing Co., Seattle, WA (United States)

    1998-12-31

    Emission inventories of fuel burned, NO{sub x}, CO, and hydrocarbons have been calculated for scheduled air traffic in 1976, 1984, 1990 and 1992 on a 1 deg latitude x 1 deg longitude x 1 km pressure altitude grid. Using this database, the seasonal variation and historical trends in aircraft emissions have been calculated for selected geographical regions (e.g., North Atlantic, Europe, North America, North Pacific). The trend in emissions is a combination of the effects of passenger demand growth, improved aircraft efficiency, changes in combustor characteristics, and aircraft size. (author) 8 refs.

  2. Aircraft emission inventories for scheduled air traffic for the 1976-92 time period. Historical trends

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S.L.; Henderson, S.C.; Tritz, T.G. [Boeing Co., Seattle, WA (United States)

    1997-12-31

    Emission inventories of fuel burned, NO{sub x}, CO, and hydrocarbons have been calculated for scheduled air traffic in 1976, 1984, 1990 and 1992 on a 1 deg latitude x 1 deg longitude x 1 km pressure altitude grid. Using this database, the seasonal variation and historical trends in aircraft emissions have been calculated for selected geographical regions (e.g., North Atlantic, Europe, North America, North Pacific). The trend in emissions is a combination of the effects of passenger demand growth, improved aircraft efficiency, changes in combustor characteristics, and aircraft size. (author) 8 refs.

  3. Initial Analysis of VOCs Speciation in CREATE Emissions Inventory using the MAPS-Seoul Aircraft Field Campaign

    Science.gov (United States)

    Bu, C.; Woo, J. H.; Lee, Y.; Kim, J.; Choi, K. C.; Kim, Y.; Kim, J.; Jang, Y. K.; Kim, S.

    2016-12-01

    As the first international cooperative air quality field study, the MAPS-Seoul (Megacity Air Pollution Studies-Seoul) aircraft mission was conducted in May - June 2016 over the South Korea, to understand of climate and atmospheric environment. The aircraft carried observation instruments for measurements of GHGs, ozone and its precursors, aerosols, and chemical tracers. The CREATE (Comprehensive Regional Emissions inventory for Atmospheric Environment) emissions inventory and SMOKE-Asia emission processing system were used to support chemical forecasting and to serve as a priori for evaluation. Initial results of comparison studies show large discrepancies in VOC species over the South Korea - especially over urban regions. Several VOC species observed high near megacities and petro-chemical plants but under-predicted by chemical transport models (CTMs) - possibly due to relatively low emissions. The chemical speciation profiles and emissions inventory for each emission sources, therefore, have to be re-visited to improve emissions information. In this study, we have; 1) re-examined our emissions inventory and emission speciation processes, 2) and tried to find possible missing sources and alternative chemical speciation profiles, to improve our modelling emissions inventory. Initial review of the mapping and classification profiles, the original US chemical speciation profiles were found to be low in partitioning painting and surface coating sources, although they are the very significant contributors. Unlike other major national cities in China, Shanghai's VOC emissions fraction seems very similar to that of Seoul. Continuous analysis of major urban and industrial areas of the country will be presented at site.Acknowledgements : This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment

  4. Development of a three-dimensional inventory of aircraft NOx emissions over China

    International Nuclear Information System (INIS)

    Jianzhong Ma; Xiuji Zhou

    2000-01-01

    A three-dimensional (1 o latitude x 1 o longitude x 1 km altitude) inventory of aircraft NO x emissions over China for a calendar year of 1997-1998 has been developed using the detailed schedule database of the Civil Aviation Administration of China (CAAC). The fuel burned and emissions are calculated according to fuel burn rates and NO x emission indices of different airplane types along each flight path. The calculated total fuel burned and NO x emissions are 9.557 x 10 6 kg day -1 and 1.220 x 10 5 kg day -1 , respectively. Nearly 78% of these emissions occur at an altitude band of 9-12 km. The high emission rates are found in the regions of Beijing, Guangzhou and Shanghai as well as the corridors connecting these three cities. The highest NO x emission rate in these regions can be 3.7 x 10 3 kg day -1 in a column-integrated grid. The seasonal dependence as well as diurnal circle of NO x emission rates is presented. The time resolution of the inventory is as high as 1 h. (author)

  5. Aircraft Emission Inventories Projected in Year 2015 for a High Speed Civil Transport (HSCT) Universal Airline Network. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S.L.; Henderson, S.C.

    1995-07-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT`s) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT`s. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.

  6. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V.; Petry, H.; Ebel, A. [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1997-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  7. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V; Petry, H; Ebel, A [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1998-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  8. Evaluating Global Emission Inventories of Biogenic Bromocarbons

    Science.gov (United States)

    Hossaini, Ryan; Mantle, H.; Chipperfield, M. P.; Montzka, S. A.; Hamer, P.; Ziska, F.; Quack, B.; Kruger, K.; Tegtmeier, S.; Atlas, E.; hide

    2013-01-01

    Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF (National Science Foundation) HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38 %) to 0.78 (115 %) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24 %) to 1.25 (167 %) ppt. We also use aircraft observations made during the 2011 Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) campaign, in the tropical western Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (Br(VSLS/y)). Our simulations show Br(VSLS/y) ranges from approximately 4.0 to 8.0 ppt depending on the inventory. We report an optimized estimate at the lower end of this range (approximately 4 ppt

  9. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    Science.gov (United States)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  10. An emission inventory of sulfur from anthropogenic sources in Antarctica

    Directory of Open Access Journals (Sweden)

    S. V. Shirsat

    2009-05-01

    Full Text Available This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft in Antarctica, covering the 2004–2005 period.

    The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica.

    Depending on the type of operation, emission rates of SO2, and BC (Black Carbon, from shipping only have been calculated using the above technique. However, only results of SO2 emissions from each source are presented here. Emission inventory maps of SO2 depicting the track/path taken by each mobile source are shown. The total annual SO2 is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004–2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong.

  11. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    Science.gov (United States)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  12. Calculation of odour emissions from aircraft engines at Copenhagen Airport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Morten; Kousgaard, Uffe [National Environmental Research Institute, Frederiksborgvej 399, 4000 Roskilde (Denmark); Oxboel, Arne [FORCE Technology, Park Alle 345, 2605 Broendby (Denmark)

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future. (author)

  13. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    Science.gov (United States)

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  14. Understanding Emissions in East Asia - The KORUS 2015 Emissions Inventory

    Science.gov (United States)

    Woo, J. H.; Kim, Y.; Park, R.; Choi, Y.; Simpson, I. J.; Emmons, L. K.; Streets, D. G.

    2017-12-01

    The air quality over Northeast Asia have been deteriorated for decades due to high population and energy use in the region. Despite of more stringent air pollution control policies by the governments, air quality over the region seems not been improved as much - even worse sometimes. The needs of more scientific understanding of inter-relationship among emissions, transport, chemistry over the region are much higher to effectively protect public health and ecosystems. Two aircraft filed campaigns targeting year 2016, MAPS-Seoul and KORUS-AQ, have been organized to study the air quality of over Korea and East Asia relating to chemical evolution, emission inventories, trans-boundary contribution, and satellite application. We developed a new East-Asia emissions inventory, named KORUS2015, based on NIER/KU-CREATE (Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment), in support of the filed campaigns. For anthropogenic emissions, it has 54 fuel classes, 201 sub-sectors and 13 pollutants, including CO2, SO2, NOx, CO, NMVOC, NH3, PM10, and PM2.5. Since the KORUS2015 emissions framework was developed using the integrated climate and air quality assessment modeling framework (i.e. GAINS) and is fully connected with the comprehensive emission processing/modeling systems (i.e. SMOKE, KU-EPS, and MEGAN), it can be effectively used to support atmospheric field campaigns for science and policy. During the field campaigns, we are providing modeling emissions inventory to participating air quality models, such as CMAQ, WRF-Chem, CAMx, GEOS-Chem, MOZART, for forecasting and post-analysis modes. Based on initial assessment of those results, we are improving our emissions, such as VOC speciation, biogenic VOCs modeling. From the 2nditeration between emissions and modeling/measurement, further analysis results will be presented at the conference. Acknowledgements : This subject is supported by Korea Ministry of Environment as "Climate Change

  15. Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements

    Science.gov (United States)

    Petetin, H.; Beekmann, M.; Colomb, A.; Denier van der Gon, H. A. C.; Dupont, J.-C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A.; Sciare, J.; Wiedensohler, A.; Zhang, Q. J.

    2015-09-01

    High uncertainties affect black carbon (BC) emissions, and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris, France, plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows for several error sources (e.g., representativeness, chemistry, plume lateral dispersion) to be minimized in the model used. The procedure is applied with the CHIMERE chemistry-transport model to three inventories - the EMEP inventory and the so-called TNO and TNO-MP inventories - over the month of July 2009. Various systematic uncertainty sources both in the model (e.g., boundary layer height, vertical mixing, deposition) and in observations (e.g., BC nature) are discussed and quantified, notably through sensitivity tests. Large uncertainty values are determined in our results, which limits the usefulness of the method to rather strongly erroneous emission inventories. A statistically significant (but moderate) overestimation is obtained for the TNO BC emissions and the EMEP and TNO-MP NOx emissions, as well as for the BC / NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC / NOx ratio at a ground site in Paris, which additionally suggests a spatially heterogeneous error in BC emissions over the agglomeration.

  16. Impact of a highly detailed emission inventory on modeling accuracy

    Science.gov (United States)

    Taghavi, M.; Cautenet, S.; Arteta, J.

    2005-03-01

    During Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions (ESCOMPTE) campaign (June 10 to July 14, 2001), two pollution events observed during an intensive measurement period (IOP2a and IOP2b) have been simulated. The comprehensive Regional Atmospheric Modeling Systems (RAMS) model, version 4.3, coupled online with a chemical module including 29 species is used to follow the chemistry of a polluted zone over Southern France. This online method takes advantage of a parallel code and use of the powerful computer SGI 3800. Runs are performed with two emission inventories: the Emission Pre Inventory (EPI) and the Main Emission Inventory (MEI). The latter is more recent and has a high resolution. The redistribution of simulated chemical species (ozone and nitrogen oxides) is compared with aircraft and surface station measurements for both runs at regional scale. We show that the MEI inventory is more efficient than the EPI in retrieving the redistribution of chemical species in space (three-dimensional) and time. In surface stations, MEI is superior especially for primary species, like nitrogen oxides. The ozone pollution peaks obtained from an inventory, such as EPI, have a large uncertainty. To understand the realistic geographical distribution of pollutants and to obtain a good order of magnitude in ozone concentration (in space and time), a high-resolution inventory like MEI is necessary. Coupling RAMS-Chemistry with MEI provides a very efficient tool able to simulate pollution plumes even in a region with complex circulations, such as the ESCOMPTE zone.

  17. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling.

    Science.gov (United States)

    Carotenuto, Federico; Gualtieri, Giovanni; Miglietta, Franco; Riccio, Angelo; Toscano, Piero; Wohlfahrt, Georg; Gioli, Beniamino

    2018-02-22

    CO 2 remains the greenhouse gas that contributes most to anthropogenic global warming, and the evaluation of its emissions is of major interest to both research and regulatory purposes. Emission inventories generally provide quite reliable estimates of CO 2 emissions. However, because of intrinsic uncertainties associated with these estimates, it is of great importance to validate emission inventories against independent estimates. This paper describes an integrated approach combining aircraft measurements and a puff dispersion modelling framework by considering a CO 2 industrial point source, located in Biganos, France. CO 2 density measurements were obtained by applying the mass balance method, while CO 2 emission estimates were derived by implementing the CALMET/CALPUFF model chain. For the latter, three meteorological initializations were used: (i) WRF-modelled outputs initialized by ECMWF reanalyses; (ii) WRF-modelled outputs initialized by CFSR reanalyses and (iii) local in situ observations. Governmental inventorial data were used as reference for all applications. The strengths and weaknesses of the different approaches and how they affect emission estimation uncertainty were investigated. The mass balance based on aircraft measurements was quite succesful in capturing the point source emission strength (at worst with a 16% bias), while the accuracy of the dispersion modelling, markedly when using ECMWF initialization through the WRF model, was only slightly lower (estimation with an 18% bias). The analysis will help in highlighting some methodological best practices that can be used as guidelines for future experiments.

  18. Study of carbon dioxide emission inventory from transportation sector at Kualanamu International Airport

    Science.gov (United States)

    Suryati, I.; Indrawan, I.; Alihta, K. N.

    2018-02-01

    Transportation includes sources of greenhouse gas emission contributor in the form of carbon dioxide (CO2). CO2 is one of the air pollutant gases that cause climate change. The source of CO2 emissions at airports comes from road and air transportation. Kualanamu International Airport is one of the public service airports in North Sumatera Province. The purpose of this study is to inventory the emission loads generated by motor vehicles and aircraft and to forecast contributions of CO2 emissions from motor vehicles and aircraft. The research method used is quantitative and qualitative methods. The quantitative method used is to estimate emission loads of motor vehicles based on vehicle volume and emission factors derived from the literature and using the Tier-2 method to calculate the aircraft emission loads. The results for the maximum CO2 concentration were 6,206,789.37 μg/m3 and the minimal CO2 concentration was 4,070,674.84 μg/Nm3. The highest aircraft CO2 emission load is 200,164,424.5 kg/hr (1.75 x 109 ton/year) and the lowest is 38,884,064.5 kg/hr (3.40 x 108 ton/year). Meanwhile, the highest CO2 emission load from motor vehicles was 51,299.25 gr/hr (449,38 ton/year) and the lowest was 38,990.42 gr/hr (341,55 ton/year). CO2 contribution from a motor vehicle is 65% and 5% from aircraft in Kualanamu International Airport.

  19. Air Emission Inventory for the INEEL -- 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  20. Emission Inventory for Fugitive Emissions in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2007. The inventory of fugitive emissions includes CO2, CH4, N2O, NOx, CO, NMVOC, SO2, dioxin, PAH and particulate matter. In 2007 the total Danish emission of greenhouse...

  1. Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories.

    Science.gov (United States)

    Vaughan, Adam R; Lee, James D; Misztal, Pawel K; Metzger, Stefan; Shaw, Marvin D; Lewis, Alastair C; Purvis, Ruth M; Carslaw, David C; Goldstein, Allen H; Hewitt, C Nicholas; Davison, Brian; Beevers, Sean D; Karl, Thomas G

    2016-07-18

    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory.

  2. PM EMISSIONS PRODUCED BY AIRCRAFT UNDER THE OPERATIONS AT THE AIRPORT

    Directory of Open Access Journals (Sweden)

    Oleksandr Zaporozhets

    2016-12-01

    Full Text Available Purpose: The effects of aircraft engine emissions within the planetary boundary layer under the landing/ take-off operations contribute sufficiently to deterioration of air pollution in the vicinity of the airports and nearby residential areas. Currently the primary object of airport air quality are the nitrogen oxides and particle matter (PM10, PM2.5 and ultrafine PM emissions from aircraft engine exhausts as initiators of photochemical smog and regional haze, which may further impact on human health. Analysis of PM emission inventory results at major European airports highlighted on sufficiently high contribution of aircraft engines and APU. The paper aims to summarize the knowledge on particle size distributions, particle effective density, morphology and internal structure of aircraft PM, these properties are critical for understanding of the fate and potential health impact of PM. It also aims to describe the basic methods for calculation of emission and dispersion of PM, produced by aircrafts under the LTO operations. Methods: analytical solution of the atmospheric diffusion equation is used to calculate the maximum PM concentration from point emission source. The PM concentration varies inversely proportional to the wind velocity u1 and directly proportional to the vertical component of the turbulent exchange coefficient k1/u1. The evaluation of non-volatile PM concentration includes the size and shape of PM. PolEmiCa calculates the distributions of PM fractions for aircraft and APU exhausts (height of installation was given H=4,5m like for Tupolev-154. Results: The maximum concentration of PM in exhaust from APU is higher and appropriate distance is less than in case for gas. PM polydispersity leads to the separation of maximums concentration in space for individual fractions on the wind direction and therefore it contributes to the reduction of maximum total concentration. Discussion:But although the APU has contributed significantly to

  3. Danish emission inventory for particular matter (PM)

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Winther, M; Illerup, J B; Hjort Mikkelsen, M

    2003-11-01

    The first Danish emission inventory that was reported in 2002 was a provisional-estimate based on data presently available. This report documents methodology, emission factors and references used for an improved Danish emission inventory for particulate matter. Further results of the improved emission inventory for the year 2000 are shown. The particulate matter emission inventory includes TSP, PM,, and PM, The report covers emission inventories for transport and stationary combustion. An appendix covering emissions from agriculture is also included. For the transport sector, both exhaust and non-exhaust emission such as tyre and break wear and road abrasion are included. (au)

  4. Uncertainties in emission inventories

    NARCIS (Netherlands)

    Aardenne, van J.A.

    2002-01-01

    Emission inventories provide information about the amount of a pollutant that is emitted to the atmosphere as a result of a specific anthropogenic or natural process at a given time or place. Emission inventories can be used for either policy or scientific purposes. For

  5. National Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Emission Inventory contains measured, modeled, and estimated data for emissions of all known source categories in the US (stationary sources, fires,...

  6. A global inventory of aircraft NO{sub x} emissions (ANCAT/EC 2). A revised inventory (1996) by the ECAC/ANCAT and EC working group

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R M [Great Minister House, London (United Kingdom). Dept. of Transfert London

    1998-12-31

    Results of the ANCAT/EC 2 inventory produced by the European ANCAT/EC emissions inventory group is reported. The base year inventory has been completed and is currently being written up for report publication. The ANCAT/EC 2 inventory in the base year, 1991/92, has accounted for a total fuel burn of 132.5 Tg/yr and a NO{sub x} mass of 1.82 Tg/yr. The civil subsonic fleet average emissions index is EI NO{sub x} 13.9. The inventory has accounted for 80% of the IEA refined jet fuel total for 1992. The forecast 2015 inventory accounts for 289.4 Tg/yr fuel and 3.48 Tg/yr NO{sub x}, increases of 118% and 91% respectively. Both datasets will be reported fully in the next few months. (author) 5 refs.

  7. A global inventory of aircraft NO{sub x} emissions (ANCAT/EC 2). A revised inventory (1996) by the ECAC/ANCAT and EC working group

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R.M. [Great Minister House, London (United Kingdom). Dept. of Transfert London

    1997-12-31

    Results of the ANCAT/EC 2 inventory produced by the European ANCAT/EC emissions inventory group is reported. The base year inventory has been completed and is currently being written up for report publication. The ANCAT/EC 2 inventory in the base year, 1991/92, has accounted for a total fuel burn of 132.5 Tg/yr and a NO{sub x} mass of 1.82 Tg/yr. The civil subsonic fleet average emissions index is EI NO{sub x} 13.9. The inventory has accounted for 80% of the IEA refined jet fuel total for 1992. The forecast 2015 inventory accounts for 289.4 Tg/yr fuel and 3.48 Tg/yr NO{sub x}, increases of 118% and 91% respectively. Both datasets will be reported fully in the next few months. (author) 5 refs.

  8. Canada`s greenhouse gas emissions inventory

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, A. [Environment Canada, Ottawa, ON (Canada)

    1998-09-01

    In 1994, Canada was the seventh largest global emitter of CO{sub 2}. The Kyoto Protocol has made it necessary to continue to improve methods for developing emissions inventories. An emissions inventory was defined as `a comprehensive account of air pollutant emissions and associated data from sources within the inventory area over a specified time frame that can be used to determine the effect of emissions on the environment`. The general approach is to compile large-scale emission estimates under averaged conditions for collective sources and sectors, using data that is available on a sectoral, provincial and national basis. Ideally, continuous emission monitors should be used to develop emissions inventories. Other needed improvements include additional research on emissions data, and increased support for international negotiations on reporting policies and related methodologies, verification procedures and adjustments. 1 ref., 5 figs.

  9. Emissions Models and Other Methods to Produce Emission Inventories

    Science.gov (United States)

    An emissions inventory is a summary or forecast of the emissions produced by a group of sources in a given time period. Inventories of air pollution from mobile sources are often produced by models such as the MOtor Vehicle Emission Simulator (MOVES).

  10. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  11. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    International Nuclear Information System (INIS)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources

  12. Atmospheric/climatic effects of aircraft emissions

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1996-01-01

    Exhaust emissions from aircraft include oxides of nitrogen (NO x ), water vapor (H 2 O), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and particles (soot and sulfates). These emissions are small compared to industrial/urban surface emissions. However, because (1) atmospheric residence times of exhaust constituents are longer at altitude, particularly in the stratosphere, than they are in the boundary layer, (2) their background concentrations at altitude are lower than those near the surface, (3) the radiation balance is the more sensitive to atmospheric trace constituents the colder the temperature aloft and (4) inter-hemispheric mixing of aircraft effluents is inhibited, aircraft emissions near and above the tropopause and polewards of 40 degrees latitude can be environmentally critical. That's why atmospheric/climatic effects of aircraft emissions have again received scientific, economic and political scrutiny in the last few years, motivated by growth of subsonic traffic at about 5% per year over the past two decades and the advent of a technologically feasible operation of a supersonic high speed commercial transport (HSCT) fleet

  13. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1998-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  14. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1997-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  15. Annual Danish emissions inventory report to UNECE. Inventory 1990 - 2002

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J B; Nielsen, M; Winther, M; Hjort Mikkelsen, M; Lyck, E; Hoffmann, L; Fauser, P

    2004-05-01

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2004. The report contains information on Denmark's emission inventories regarding emissions of (1) SOx for the years 1980-2002, (2) NOx, CO, NMVOC and NH{sub 3} for the years 1985-2002; (3) Particulate matter: TSP, PM10, PM2.5 for the years 2000-2002, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2002, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2002. Furthermore, the report contains information on background data for emissions inventory. (au)

  16. Annual Danish emissions inventory report to UNECE. Inventory 1990 - 2002

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Nielsen, M.; Winther, M.; Hjort Mikkelsen, M.; Lyck, E.; Hoffmann, L.; Fauser, P.

    2004-05-01

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2004. The report contains information on Denmark's emission inventories regarding emissions of (1) SOx for the years 1980-2002, (2) NOx, CO, NMVOC and NH{sub 3} for the years 1985-2002; (3) Particulate matter: TSP, PM10, PM2.5 for the years 2000-2002, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2002, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2002. Furthermore, the report contains information on background data for emissions inventory. (au)

  17. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  18. Biogenic Emission Inventory System (BEIS)

    Science.gov (United States)

    Biogenic Emission Inventory System (BEIS) estimates volatile organic compound (VOC) emissions from vegetation and nitric oxide (NO) emission from soils. Recent BEIS development has been restricted to the SMOKE system

  19. Inventory of primary particulates emissions; Inventaire des emissions de particules primaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    CITEPA carried out a national inventory on particulate emissions. This report presents the results of this study for a great number of sectors and it covers a larger number of sources than the previous CITEPA inventories on particles and some other inventories carried out by International organisms (TNO, IIASA). In particular, at the present time, fugitive dust emissions for some sources are rarely taken into account in inventories because of poor knowledge and they are still the subject of researches in order to validate the emission results. (author)

  20. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  1. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    International Nuclear Information System (INIS)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory

  2. Gridded National Inventory of U.S. Methane Emissions

    Science.gov (United States)

    Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.; Turner, Alexander J.; Weitz, Melissa; Wirth, Tom; Hight, Cate; DeFigueiredo, Mark; Desai, Mausami; Schmeltz, Rachel; hide

    2016-01-01

    We present a gridded inventory of US anthropogenic methane emissions with 0.1 deg x 0.1 deg spatial resolution, monthly temporal resolution, and detailed scale dependent error characterization. The inventory is designed to be onsistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissionsand Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a widerange of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.

  3. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs)

  4. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  5. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    International Nuclear Information System (INIS)

    1994-06-01

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources

  6. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  7. Scenarios for global emissions from air traffic. The development of regional and gridded (5 degrees x 5 degrees) emissions scenarios for aircraft and for surface sources, based on CPB scenarios and existing emission inventories for aircraft and surface sources

    NARCIS (Netherlands)

    Olivier JGJ; LAE

    1995-01-01

    An estimate was made of present global emissions from air traffic using statistical information on fuel consumption, aircraft types and applying emission factors for various compounds. To generate scenarios for future emissions from air traffic, assumptions were used regarding the development of the

  8. Ammonia emission inventory for the state of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal

  9. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E.W.; Kelder, H.; Velthoven, P.F.J. van; Wauben, W.M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J.P.; Velders, G.J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J.; Scheeren, B.A. [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1997-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  10. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E W; Kelder, H; Velthoven, P F.J. van; Wauben, W M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J P; Velders, G J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J; Scheeren, B A [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1998-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  11. Evaluating Bay Area Methane Emission Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Marc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jeong, Seongeun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    As a regulatory agency, evaluating and improving estimates of methane (CH4) emissions from the San Francisco Bay Area is an area of interest to the Bay Area Air Quality Management District (BAAQMD). Currently, regional, state, and federal agencies generally estimate methane emissions using bottom-up inventory methods that rely on a combination of activity data, emission factors, biogeochemical models and other information. Recent atmospheric top-down measurement estimates of methane emissions for the US as a whole (e.g., Miller et al., 2013) and in California (e.g., Jeong et al., 2013; Peischl et al., 2013) have shown inventories underestimate total methane emissions by ~ 50% in many areas of California, including the SF Bay Area (Fairley and Fischer, 2015). The goal of this research is to provide information to help improve methane emission estimates for the San Francisco Bay Area. The research effort builds upon our previous work that produced methane emission maps for each of the major source sectors as part of the California Greenhouse Gas Emissions Measurement (CALGEM) project (http://calgem.lbl.gov/prior_emission.html; Jeong et al., 2012; Jeong et al., 2013; Jeong et al., 2014). Working with BAAQMD, we evaluate the existing inventory in light of recently published literature and revise the CALGEM CH4 emission maps to provide better specificity for BAAQMD. We also suggest further research that will improve emission estimates. To accomplish the goals, we reviewed the current BAAQMD inventory, and compared its method with those from the state inventory from the California Air Resources Board (CARB), the CALGEM inventory, and recent published literature. We also updated activity data (e.g., livestock statistics) to reflect recent changes and to better represent spatial information. Then, we produced spatially explicit CH4 emission estimates on the 1-km modeling grid used by BAAQMD. We present the detailed activity data, methods and derived emission maps by sector

  12. Danish emission inventories for stationary combustion plants. Inventories until year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Nielsen, Malene; Boll Illerup, J.

    2007-04-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. A considerable decrease of the SO2, NOX and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The emission of CH4 has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. The dioxin emission decreased due to flue gas cleaning on waste incineration plants. Uncertainties for the emissions and trends have been estimated. (au)

  13. Emission inventory for fugitive emissions from fuel in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2013. The inventory of fugitive emissions includes CO2, CH4, N2O, SO2, NOx, NMVOC, CO, particulate matter, Black carbon, heavy metals, dioxin and PAHs. In 2013 the total...... Danish emission of greenhouse gasses was 54 584 Gg CO2 equivalents. Fugitive emissions from fuels account for 387 Gg CO2 equivalents or approximately 1 %. The major part of the fugitive emissions are emitted as CO2 (61 %) mainly from flaring in upstream oil and gas production. The major source...... of fugitive CH4 emission is production of oil and gas in the North Sea, refining of oil and loading of oil onto ships both offshore and onshore. The fugitive emissions of NMVOC originate for the major part from oil and gas production, loading of ships, transmission and distribution of oil, and to a less...

  14. National Emission Inventory (NEI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data exchange allows states to submit data to the US Environmental Protection Agency's National Emissions Inventory (NEI). NEI is a national database of air...

  15. The ABAG biogenic emissions inventory project

    Science.gov (United States)

    Carson-Henry, C. (Editor)

    1982-01-01

    The ability to identify the role of biogenic hydrocarbon emissions in contributing to overall ozone production in the Bay Area, and to identify the significance of that role, were investigated in a joint project of the Association of Bay Area Governments (ABAG) and NASA/Ames Research Center. Ozone, which is produced when nitrogen oxides and hydrocarbons combine in the presence of sunlight, is a primary factor in air quality planning. In investigating the role of biogenic emissions, this project employed a pre-existing land cover classification to define areal extent of land cover types. Emission factors were then derived for those cover types. The land cover data and emission factors were integrated into an existing geographic information system, where they were combined to form a Biogenic Hydrocarbon Emissions Inventory. The emissions inventory information was then integrated into an existing photochemical dispersion model.

  16. Compilation and evaluation of a Paso del Norte emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Funk, T.H.; Chinkin, L.R.; Roberts, P.T. [Sonoma Technology, Inc., 1360 Redwood Way, Suite C, 94954-1169 Petaluma, CA (United States); Saeger, M.; Mulligan, S. [Pacific Environmental Services, 5001 S. Miami Blvd., Suite 300, 27709 Research Triangle Park, NC (United States); Paramo Figueroa, V.H. [Instituto Nacional de Ecologia, Avenue Revolucion 1425, Nivel 10, Col. Tlacopac San Angel, Delegacion Alvaro Obregon, C.P., 01040, D.F. Mexico (Mexico); Yarbrough, J. [US Environmental Protection Agency - Region 6, 1445 Ross Avenue, Suite 1200, 75202-2733 Dallas, TX (United States)

    2001-08-10

    Emission inventories of ozone precursors are routinely used as input to comprehensive photochemical air quality models. Photochemical model performance and the development of effective control strategies rely on the accuracy and representativeness of an underlying emission inventory. This paper describes the tasks undertaken to compile and evaluate an ozone precursor emission inventory for the El Paso/Ciudad Juarez/Southern Dona Ana region. Point, area and mobile source emission data were obtained from local government agencies and were spatially and temporally allocated to a gridded domain using region-specific demographic and land-cover information. The inventory was then processed using the US Environmental Protection Agency (EPA) recommended Emissions Preprocessor System 2.0 (UAM-EPS 2.0) which generates emissions files compatible with the Urban Airshed Model (UAM). A top-down evaluation of the emission inventory was performed to examine how well the inventory represented ambient pollutant compositions. The top-down evaluation methodology employed in this study compares emission inventory ratios of non-methane hydrocarbon (NMHC)/nitrogen oxide (NO{sub x}) and carbon monoxide (CO)/NO{sub x} ratios to corresponding ambient ratios. Detailed NMHC species comparisons were made in order to investigate the relative composition of individual hydrocarbon species in the emission inventory and in the ambient data. The emission inventory compiled during this effort has since been used to model ozone in the Paso del Norte airshed (Emery et al., CAMx modeling of ozone and carbon monoxide in the Paso del Norte airshed. In: Proc of Ninety-Third Annual Meeting of Air and Waste Management Association, 18-22 June 2000, Air and Waste Management Association, Pittsburgh, PA, 2000)

  17. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  18. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  19. Danish emission inventories for stationary combustion plants. Inventories until year 2002

    International Nuclear Information System (INIS)

    Nielsen, M.; Boll Illerup, J.

    2004-01-01

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO 2 , NO X , NMVOC, CH 4 , CO, CO 2 , N 2 O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable decrease of the SO 2 , NO X and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has decreased 1,3% since 1990. The emission of CH 4 , however, has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated. (au)

  20. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  1. African anthropogenic combustion emission inventory: specificities and uncertainties

    Science.gov (United States)

    Sekou, K.; Liousse, C.; Eric-michel, A.; Veronique, Y.; Thierno, D.; Roblou, L.; Toure, E. N.; Julien, B.

    2015-12-01

    Fossil fuel and biofuel emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to the growth of African cities. In addition, African large savannah fires occur each year during the dry season, mainly for socio-economical purposes. In this study, we will present the most recent developments of African anthropogenic combustion emission inventories, stressing African specificities. (1)A regional fossil fuel and biofuel inventory for gases and particulates will be presented for Africa at a resolution of 0.25° x 0.25° from 1990 to 2012. For this purpose, the original database of Liousse et al. (2014) has been used after modification for emission factors and for updated regional fuel consumption including new emitter categories (waste burning, flaring) and new activity sectors (i.e. disaggregation of transport into sub-sectors including two wheel ). In terms of emission factors, new measured values will be presented and compared to litterature with a focus on aerosols. They result from measurement campaigns organized in the frame of DACCIWA European program for each kind of African specific anthropogenic sources in 2015, in Abidjan (Ivory Coast), Cotonou (Benin) and in Laboratoire d'Aérologie combustion chamber. Finally, a more detailed spatial distribution of emissions will be proposed at a country level to better take into account road distributions and population densities. (2) Large uncertainties still remain in biomass burning emission inventories estimates, especially over Africa between different datasets such as GFED and AMMABB. Sensitivity tests will be presented to investigate uncertainties in the emission inventories, applying methodologies used for AMMABB and GFED inventories respectively. Then, the relative importance of each sources (fossil fuel, biofuel and biomass burning inventories) on the budgets of carbon monoxide, nitrogen oxides, sulfur dioxide, black and organic carbon, and volatile

  2. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  3. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  4. Emissions Inventory for the Uinta Basin of Eastern Utah, Winter 2012

    Science.gov (United States)

    Moss, D.; Hall, C. F.; Mansfield, M. L.

    2012-12-01

    We report the results of an emissions inventory for the Uinta Basin, Duchesne and Uintah Counties, Utah, focusing on emissions categories that are poorly represented by existing inventories. We have also focused on wintertime emissions in general and on the winter season of 2012, in particular, in order to have an inventory that is relevant to winter ozone events in the basin. The inventory includes categories such as major and minor point sources, produced water evaporation ponds, wood stoves, mobile emissions, biogenic and agricultural emissions, land fills, etc.

  5. Danish emission inventories for stationary combustion plants. Inventories until year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Boll Illerup, J.

    2004-12-01

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub X}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable decrease of the SO{sub 2}, NO{sub X} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has decreased 1,3% since 1990. The emission of CH{sub 4}, however, has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated. (au)

  6. Danish emission inventories for stationary combustion plants. Inventories until year 2003

    International Nuclear Information System (INIS)

    Nielsen, Malene; Illerup, Jytte B.

    2006-01-01

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO 2 , NO x , NMVOC, CH 4 , CO, CO 2 , N 2 O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption in stationary combustion has increased by 25% - the fossil fuel consumption, however, only by 18%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable decrease of the SO 2 , NO x and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has increased by 11% since 1990 mainly due to increasing export of electricity. The emission of CH 4 has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated. (au)

  7. Danish emission inventories for stationary combustion plants. Inventories until year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Illerup, Jytte B

    2006-01-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption in stationary combustion has increased by 25% - the fossil fuel consumption, however, only by 18%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has increased by 11% since 1990 mainly due to increasing export of electricity. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated. (au)

  8. Danish emission inventories for stationary combustion plants. Inventories until 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, M.; Hjelgaard, K.

    2010-10-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, NH{sub 3}, particulate matter, heavy metals, dioxins, HCB and PAH. The CO{sub 2} emission in 2008 was 16 % lower than in 1990. However, fluctuations in the emission level are large as a result of electricity import/export. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However, the emission has decreased in recent years due to structural changes in the Danish electricity market. The N{sub 2}O emission was higher in 2008 than in 1990 but the fluctuations in the time-series are significant. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants. (Author)

  9. Dioxin air emission inventory 1990-2004

    Energy Technology Data Exchange (ETDEWEB)

    Capral Henriksen, T; Illerup, J B; Nielsen, Ole-Kenneth [DMU, Dept. of Policy Analysis (Denmark)

    2006-12-15

    The present Danish dioxin air emission inventory shows that the emission has been reduced from 68.6 g I-TEQ in 1990 to 22.0 g I-TEQ in 2004, or about 68% over this period. Most of the significant reductions have been achieved in the industrial sector, where emissions have been reduced from 14.67 g I-TEQ in 1990 to 0.17 g I-TEQ in 2004; a reduction of almost 99%. Lower emissions from steel and aluminium reclamation industries form the major part of the reduction within industry. Emissions from waste incineration reduced from 32.5 g I-TEQ in 1990 to 2.1 g ITEQ in 2004; which is approx. 94%. This is due to installation of dioxin abatement equipment in incineration plants. The most important source of emission in 2004 is residential wood combustion, at 8.5 g I-TEQ, or around 40% of the total emission. In 2004, accidental fires, which are estimated to emit 6.1 g I-TEQ/year, are the second most important source, contributing with around 28% of the total emission. The present dioxin emission inventory for Denmark shows how emissions in 2004 come from sources other than waste incineration plants and industry, which were the largest sources in 1990. (au)

  10. Aircraft Piston Engine Exhaust Emission Symposium

    Science.gov (United States)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  11. Evaluation of pollutant emissions in North China Plain using aircraft measurements from the Air Chemistry Research In Asia (ARIAs) campaign

    Science.gov (United States)

    He, H.; Ren, X.; Li, Z.; Dickerson, R. R.

    2017-12-01

    The North China Plain (NCP) is one of the most populated and polluted regions on Earth. With rapid economic development in past decades, air pollution including heavy atmospheric aerosol loadings became severe in this region, leading to environmental and climate problems. An aircraft campaign, Air Chemistry Research In Asia (ARIAs), was conducted in spring 2016 (in parallel to KORUS-AQ) to understand air quality in the NCP and transport of air pollutants from this area. Measurements of trace gases such as O3, CO, and SO2 and aerosol optical properties were analyzed to investigate the anthropogenic emissions in the NCP. Both high-efficiency combustion such as from automobiles and modern power plants as well as low-efficiency combustion such as from biomass burnings were identified. Transformations of primary pollutants and formation of secondary pollutants were simulated using the EPA CMAQ v5.2 model. The global HTAP-EDGAR v4.2 emission inventory of year 2010 was processed with SMOKE v4.5 to drive CMAQ. Modeling results were evaluated with aircraft observations to improve our knowledge of anthropogenic emissions and transport. We also used satellite observations including OMI SO2/NO2 and MODIS AOD to evaluate the model performance in the NCP. Through the comparison, we estimated the changes in emissions of major anthropogenic pollutants from 2010 to 2016. Sensitivity experiments with improved emission inventory were conducted to better investigate the air pollution in the NCP.

  12. 40 CFR 52.2086 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... area is classified as serious and includes the entire state of Rhode Island. (d) Minor revisions to the... inventory for the Providence ozone nonattainment area on January 12, 1993 as a revision to the State... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Emission inventories. 52.2086 Section...

  13. Monitoring and inventorying of the pollutant emissions from thermal power plants

    International Nuclear Information System (INIS)

    Vladescu, Gherghina; Iordache, Daniela; Iordache, Victorita; Ciomaga, Carmencita; Matei, Magdalena; Ilie, Ion; Motiu, Cornel

    2001-01-01

    Pollution due to emissions discharged in atmosphere as a result of human (anthropogenic) activities and the related environmental effects, such as acid depositions, land quality degradation, global warming/climate changes, building degradation, ozone layer depletion required the monitoring and inventorying of the polluting emissions at the local, regional and global levels. The paper briefly presents the international requirements concerning the development of a polluting emission inventory, the European methodologies for air polluting emission inventorying, programs and methodologies used in the Romanian electricity production sector for inventorying the polluting emissions and calculation of the dispersion of the pollutants discharged in the atmosphere. (author)

  14. New national emission inventory for navigation in Denmark

    Science.gov (United States)

    Winther, Morten

    This article explains the new emission inventory for navigation in Denmark, covering national sea transport, fisheries and international sea transport. For national sea transport, the new Danish inventory distinguishes between regional ferries, local ferries and other national sea transport. Detailed traffic and technical data lie behind the fleet activity-based fuel consumption and emission calculations for regional ferries. For local ferries and other national sea transport, the new inventory is partly fleet activity based; fuel consumption estimates are calculated for single years, and full fuel consumption coverage is established in a time series by means of appropriate assumptions. For fisheries and international sea transport, the new inventory remains fuel based, using fuel sales data from the Danish Energy Authority (DEA). The new Danish inventory uses specific fuel consumption (sfc) and NO x emission factors as a function of engine type and production year. These factors, which are used directly for regional ferries and, for the remaining navigation categories, are derived by means of appropriate assumptions, serve as a major inventory improvement, necessary for making proper emission trend assessments. International sea transport is the most important fuel consumption and emission source for navigation, and the contributions are large even compared with the overall Danish totals. If the contributions from international sea transport were included in the Danish all-sector totals, the extra contributions in 2005 from fuel consumption (and CO 2), NO x and SO 2 would be 5%, 34% and 167%, respectively. The 1990-2005 changes in fuel consumption as well as NO x and SO 2 emissions for national sea transport (-45, -45, -81), fisheries (-18, 6, -18) and international sea transport (-14, 1, -14) reflect changes in fleet activity/fuel consumption and emission factors. The 2006-2020 emission forecasts demonstrate a need for stricter fuel quality and NO x emission

  15. Forgotten carbon: indirect CO2 in greenhouse gas emission inventories

    International Nuclear Information System (INIS)

    Gillenwater, Michael

    2008-01-01

    National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO 2 ) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of 'indirect' CO 2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO 2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO 2

  16. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  17. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  18. New developments in emissions inventory activity along the northern border region of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, W.R.; Dickson, R.J.; Creelman, L.W. [Radian International LLC, Sacramento, CA (United States)] [and others

    1996-12-31

    The development and evaluation of emissions data for sources located along the Mexico/US border have accelerated over the past few years. This paper examines several new activities in emissions inventory development for the northern border of Mexico. Reviewed in this paper are the following recent developments that will lead to improved inventories for Mexico: development of inventory educational materials; creation of inventory manuals; estimation of emissions for unique sources; emissions-related studies; and identification of key research needs for Mexico inventories. Some of these activities are building a greater capacity in Mexico to construct emissions estimates. These topics are reviewed from the perspective of improving Mexico emissions inventories and emissions estimation capabilities.

  19. Developing Particle Emission Inventories Using Remote Sensing (PEIRS)

    Science.gov (United States)

    Tang, Chia-Hsi; Coull, Brent A.; Schwartz, Joel; Lyapustin, Alexei I.; Di, Qian; Koutrakis, Petros

    2016-01-01

    Information regarding the magnitude and distribution of PM(sub 2.5) emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially-resolved emission inventories for PM(sub 2.5). This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeast United States during the period of 2002-2013 using high- resolution 1 km x 1 km Aerosol Optical Depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R(sup2) = 0.66 approx. 0.71, CV = 17.7 approx. 20%). Predicted emissions are found to correlate with land use parameters suggesting that our method can capture emissions from land use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively.

  20. Development and improvement of historical emission inventory in Asia

    Science.gov (United States)

    Kurokawa, J. I.; Yumimoto, K.; Itahashi, S.; Maki, T.; Nagashima, T.; Ohara, T.

    2016-12-01

    Due to the rapid growth of economy and population, Asia becomes the largest emitter regions of air pollutants and greenhouse gases in the world. To tackle this problem, it is essential to understand the current status and past trend and to estimate effectiveness of mitigation measures using monitoring data, air quality and climate models, and emission inventories. We developed a historical emission inventory in Asia for 1950-2010 base on Regional Emission Inventory in ASia (REAS) version 2. In these 6 decades, emissions of all species in Asia showed remarkable increases. Recently, the largest emitter country in Asia is China. However, in 1960s, Japan is the largest emitter country for SO2 till about 1970 and NOx till about 1980, respectively. We surveyed effectiveness of abatement measures on NOx emissions in Japan and China. In Japan, the largest effective mitigation measure is regulation for motor vehicles. In 2010, reduced amounts of NOx emissions were estimated to be 2.7 time larger than actual emissions. For China, until 2010, the most effective mitigation measure is low-NOx burner installed in power plants. Regulation of motor vehicles also assumed to reduce NOx emissions from road transport by 40% compared to those without regulations in 2010. We roughly expanded the period of NOx emissions in China and Japan till 2012 and trend between 2008 and 2012 were compared with top-down emissions estimated using inverse modeling technique and satellite observations. Compared to top-down emissions, trends of the bottom-up emissions in China (Japan) overestimated increased (decreased) ratios in 2008-2012. For China, our emissions seem to underestimate the penetration rates of FGD for NOx installed in power plants. On the other hand, decreased rates of NOx emission factors for road vehicles in Japan might be overestimated in our emissions. These differences will be reconsidered to update our bottom-up emission inventory.

  1. 2000 emission inventory for the Lower Fraser Valley airshed

    International Nuclear Information System (INIS)

    2002-10-01

    This emissions inventory is a compilation of all emissions in the Lower Fraser Valley International Airshed. Its objective is to harmonize the inventory data of Canada's Greater Vancouver Regional District (GVRD), the Fraser Valley Regional District (FVRD) and Whatcom County in the United States. It provides an idea of the current state of air emissions on both sides of the Canada-United States border. This inventory provides information regarding the types of emissions sources in the region, their location and the amount of air pollution emitted within a given time frame. It is designed to help manage air quality by identifying sectors which need to be more vigilant. The common air pollutants addressed in the inventory include total particulate matter, nitrogen oxides, sulphur oxides, volatile organic compounds, carbon monoxide, and ammonia. The greenhouse gases include carbon dioxide, methane, and nitrous oxide. The inventory distinguishes between point, area, and mobile sources. Carbon monoxide emissions are found to be dominated by cars, trucks and non-road engines. Nitrogen oxide emissions are also dominated by cars, trucks, marine vessels and non-road engines. Natural sources such as trees and vegetation contribute to volatile organic compounds, as do cars, lights trucks and solvent evaporation from industrial, commercial and consumer products. Marine vessels are the largest contributors of sulphur oxide emissions in the region. In addition, the petroleum industry emits 26 per cent of sulphur oxide emissions in the region. Significant amounts of particulate matter come from area sources such as wind erosion in the agricultural sector. Point sources for PM include bulk shipping terminals and the wood products industry. Agriculture contributes the largest amount of ammonia in the region. refs., tabs., figs

  2. Danish emission inventories for stationary combustion plants. Inventories until year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, M.; Hjelgaard, K.

    2009-10-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO{sub 2} emission in 2007 was 10% lower than in 1990. However fluctuations in the emission level are large as a result of electricity import/export. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However the emission has decreased in recent years due to structural changes in the Danish electricity market. The N{sub 2}O emission was higher in 2007 than in 1990 but the fluctuations in the timeseries are significant. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants. (author)

  3. National inventory report. Greenhouse gas emissions 1990-2009

    Energy Technology Data Exchange (ETDEWEB)

    2011-05-15

    Emissions of the following greenhouse gases are covered in this report: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluoro carbons (PFCs), hydro fluorocarbons (HFCs) and sulphur hexafluoride (SF{sub 6}). In addition, the inventory includes calculations of emissions of the precursors NO{sub x}, NMVOC, and CO, as well as for SO{sub 2}. Indirect CO{sub 2} emissions originating from the fossil part of CH{sub 4} and NMVOC are calculated according to the reporting guidelines to the UNFCCC, and accounted for in the inventory. (AG)

  4. National inventory report. Greenhouse gas emissions 1990-2010

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H.; Gjerald, Eilev; Hoem, Britta; Ramberg, Simen Helgesen; Haugland, Hege; Valved, Hilde; Nelson, George Nicholas; Asphjell, Torgrim; Christophersen, Oeyvind; Gaustad, Alice; Rubaek, Birgitte; Hvalryg, Marte Monsen

    2012-07-01

    Emissions of the following greenhouse gases are covered in this report: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluoro carbons (PFCs), hydro fluorocarbons (HFCs) and sulphur hexafluoride (SF{sub 6}). In addition, the inventory includes calculations of emissions of the precursors NO{sub x}, NMVOC, and CO, as well as for SO{sub 2}. Indirect CO{sub 2} emissions originating from the fossil part of CH{sub 4} and NMVOC are calculated according to the reporting guidelines to the UNFCCC, and accounted for in the inventory.(eb)

  5. Aircraft LTO emissions regulations and implementations at European airports

    Science.gov (United States)

    Yunos, Siti Nur Mariani Mohd; Ghafir, Mohammad Fahmi Abdul; Wahab, Abas Ab

    2017-04-01

    Aviation affects the environment via the emission of pollutants from aircraft, impacting human health and ecosystem. Impacts of aircraft operations at lower ground towards local air quality have been recognized. Consequently, various standards and regulations have been introduced to address the related emissions. This paper discussed both environmental regulations by focusing more on the implementations of LTO emissions charges, an incentive-based regulation introduced in Europe as an effort to fill the gap in addressing the environmental issues related to aviation.

  6. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Science.gov (United States)

    2010-09-20

    ...] Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal Acquisition Service... Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on: Whether this... Inventory pilot, and whether it will have practical utility; whether our estimate of the public burden of...

  7. Greenhouse effects of aircraft emissions

    International Nuclear Information System (INIS)

    Fortuin, J.P.F.; Wauben, W.M.F.; Dorland, R. van; Kelder, H.

    1996-01-01

    Ranges for direct and indirect greenhouse effects due to present day aircraft emissions are quantified for northern midlatitudes, using the concept of fixed temperature (FT) radiative forcing as calculated with a radiative transfer model. The direct greenhouse effects considered here are from emissions of carbon dioxide, water vapor, and nitrogen dioxide. To calculate the concentration increases of carbon dioxide and stratospheric water vapor, an analytical expression is developed based on a linear approximation of global fuel burn versus time. Unlike the expressions currently used in the literature, the authors' expression does not account for emission rates only, but also for a loss term--hence making it more suitable for shorter lived emittants. For midlatitude summer conditions, a total radiative forcing ranging from 0.04 to 0.09 Wm -2 is calculated for the direct greenhouse effects, whereas for midlatitude winter the range is 0.07 to 0.26 Wm -2 . The indirect greenhouse effects considered here are sulfate aerosol formation from sulfur dioxide emissions, contrail formation from emitted water vapor and condensation nuclei, and ozone formation from NO x emissions. The total radiative forcing coming from these indirect effects range from -0.67 to 0.25 Wm -2 in summer a/nd from -0.36 to 0.21 Wm -2 in winter. Further, the global distribution of NO x and ozone increases from aircraft emissions world-wide are simulated with a three-dimensional chemistry transport model for January and July. The geographical distribution of the radiative forcing associated with the simulated ozone increases is also calculated for these months

  8. Inversion Estimate of California Methane Emissions Using a Bayesian Inverse Model with Multi-Tower Greenhouse Gas Monitoring Network and Aircraft Measurements

    Science.gov (United States)

    Cui, Y.; Falk, M.; Chen, Y.; Herner, J.; Croes, B. E.; Vijayan, A.

    2017-12-01

    Methane (CH4) is an important short-lived climate pollutant (SLCP), and the second most important greenhouse gas (GHG) in California which accounts for 9% of the statewide GHG emissions inventory. Over the years, California has enacted several ambitious climate change mitigation goals, including the California Global Warming Solutions Act of 2006 which requires ARB to reduce statewide GHG emissions to 1990 emission level by 2020, as well as Assembly Bill 1383 which requires implementation of a climate mitigation program to reduce statewide methane emissions by 40% below the 2013 levels. In order to meet these requirements, ARB has proposed a comprehensive SLCP Strategy with goals to reduce oil and gas related emissions and capture methane emissions from dairy operations and organic waste. Achieving these goals will require accurate understanding of the sources of CH4 emissions. Since direct monitoring of CH4 emission sources in large spatial and temporal scales is challenging and resource intensive, we developed a complex inverse technique combined with atmospheric three-dimensional (3D) transport model and atmospheric observations of CH4 concentrations from a regional tower network and aircraft measurements, to gain insights into emission sources in California. In this study, develop a comprehensive inversion estimate using available aircraft measurements from CalNex airborne campaigns (May-June 2010) and three years of hourly continuous measurements from the ARB Statewide GHG Monitoring Network (2014-2016). The inversion analysis is conducted using two independent 3D Lagrangian models (WRF-STILT and WRF-FLEXPART), with a variety of bottom-up prior inputs from national and regional inventories, as well as two different probability density functions (Gaussian and Lognormal). Altogether, our analysis provides a detailed picture of the spatially resolved CH4 emission sources and their temporal variation over a multi-year period.

  9. African Anthropogenic Emissions Inventories for gases and particles from 1990 to 2016

    Science.gov (United States)

    Liousse, Catherine; Keita, Sekou; N'Datchoch Touré, Evelyne 1; Doumbia, Thierno; Yoboué, Véronique; Assamoi, Eric; Haslett, Sophie; Roblou, Laurent; Léon, Jean-François; Galy-Lacaux, Corinne; Akpo, Aristide; Coe, Hugh

    2017-04-01

    Presently, there is one African regional inventory dealing with biofuel and fossil fuel emissions (Liousse et al., 2014) and only global emission inventories including Africa. Developing a regional inventory for gases and particles is not an easy task: the DACCIWA project has allowed to organize a framework suitable for this development through regrouping several investigators. The aim is to set an African database on fuel consumption and new emission factor measurements and to include other sources of pollution than biofuel and fossil fuel such as flaring and waste burning yet not negligible in Africa. The inclusion of these sources in the new inventory and also new emissions factor measurements will reduce the uncertainties on anthropogenic emissions in Africa. This work will present the first version of African fossil fuel (FF), biofuel (BF), gas flaring and waste burning emission inventories for the 1990-2016 period for the major atmospheric compounds (gases and particles) provides up to date emission fields at 0.125° x 0.125° spatial resolution and yearly temporal resolution that can be used to model atmospheric composition and impacts over West Africa. New emission factor measurements on ground and in combustion chambers will be discussed. Temporal variability of emissions from 1990 to 2016 will be scrutinized. In parallel, uncertainties on existing biomass burning emission inventories will be presented. New emission inventories based on MODIS burnt area products and AMMABB methodology have been developed for the period 2000-2012. They will be compared with GFED and GFAS products. Finally, tests on these inventories in Regional Climate Model (RegCM) at African scale will be presented for different years.

  10. An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China

    Science.gov (United States)

    Mu, Xilong; Zhu, Xianlei; Wang, Xuesong

    2015-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are among the most dangerous compounds due to their high carcinogenic and mutagenic character. Emission inventory provides the primary data to account for the sources of ambient PAHs and server as a necessary database for effective PAHs pollution control. China is experiencing fast economic growth and large energy consumption, which might result in a large amount of PAHs anthropogenic emissions. Therefore, based on the previous studies and combined recently field emission measurements as well as socio-economic activity data, the development of a nationwide PAHs emission inventory is needed. In this work, the emission inventory of 16 PAHs listed as U.S. Environmental Protection Agency priority pollutants in China in the year 2012 is compiled. The emission amounts of PAHs were estimated as annual rates of emission-related activities multiplied by respective emission factors. The activities such as fuel consumption, including fossil fuel and biofuel, and socio-economic statistics were obtained from yearbook released by Chinese central government and/or provincial governments, as well as related industry reports. Emission factors were derived from the related literature. Recently reported emission factors from local measurements were used. The total emissions of PAHs were 120611 ton in 2012. In China, PAHs were emitted predominantly from domestic combustion of coal and biofuel, coking industry and motor vehicles, accounting for 72% of the total amount. PAHs emission profiles were significantly different between China and the other countries. The emission profile in China featured a relatively higher portion of high molecular weight species with carcinogenic potential due to large contributions of domestic combustion and coking industry. Domestic combustion of straw, coal and firewood emitted 19464 ton, 8831 ton, and 5062 ton of PAHs, respectively, which were much higher than those in other countries. Emission per capita showed

  11. Towards an Integrated Assessment Model for Tropospheric Ozone-Emission Inventories, Scenarios and Emission-control Options

    OpenAIRE

    Olsthoorn, X.

    1994-01-01

    IIASA intends to extend its RAINS model for addressing the issue of transboundary ozone air pollution. This requires the development of a VOC-emissions module, VOCs being precursors in ozone formation. The module should contain a Europe-wide emission inventory, a submodule for developing emission scenarios and a database of measures for VOC-emission control, including data about control effectiveness and control costs. It is recommended to use the forthcoming CORINAIR90 inventory for construc...

  12. The establishment of the atmospheric emission inventories of the ESCOMPTE program

    Science.gov (United States)

    François, S.; Grondin, E.; Fayet, S.; Ponche, J.-L.

    2005-03-01

    Within the frame of the ESCOMPTE program, a spatial emission inventory and an emission database aimed at tropospheric photochemistry intercomparison modeling has been developed under the scientific supervision of the LPCA with the help of the regional coordination of Air Quality network AIRMARAIX. This inventory has been established for all categories of sources (stationary, mobile and biogenic sources) over a domain of 19,600 km 2 centered on the cities of Marseilles-Aix-en-Provence in the southeastern part of France with a spatial resolution of 1 km 2. A yearly inventory for 1999 has been established, and hourly emission inventories for 23 days of June and July 2000 and 2001, corresponding to the intensive measurement periods, have been produced. The 104 chemical species in the inventory have been selected to be relevant with respect to photochemistry modeling according to available data. The entire list of species in the inventory numbers 216 which will allow other future applications of this database. This database is presently the most detailed and complete regional emission database in France. In addition, the database structure and the emission calculation modules have been designed to ensure a better sustainability and upgradeability, being provided with appropriate maintenance software. The general organization and method is summarized and the results obtained for both yearly and hourly emissions are detailed and discussed. Some comparisons have been performed with the existing results in this region to ensure the congruency of the results. This leads to confirm the relevance and the consistency of the ESCOMPTE emission inventory.

  13. Source attribution using FLEXPART and carbon monoxide emission inventories for the IAGOS In-situ Observation database

    Science.gov (United States)

    Fontaine, Alain; Sauvage, Bastien; Pétetin, Hervé; Auby, Antoine; Boulanger, Damien; Thouret, Valerie

    2016-04-01

    Since 1994, the IAGOS program (In-Service Aircraft for a Global Observing System http://www.iagos.org) and its predecessor MOZAIC has produced in-situ measurements of the atmospheric composition during more than 46000 commercial aircraft flights. In order to help analyzing these observations and further understanding the processes driving their evolution, we developed a modelling tool SOFT-IO quantifying their source/receptor link. We improved the methodology used by Stohl et al. (2003), based on the FLEXPART plume dispersion model, to simulate the contributions of anthropogenic and biomass burning emissions from the ECCAD database (http://eccad.aeris-data.fr) to the measured carbon monoxide mixing ratio along each IAGOS flight. Thanks to automated processes, contributions are simulated for the last 20 days before observation, separating individual contributions from the different source regions. The main goal is to supply add-value products to the IAGOS database showing pollutants geographical origin and emission type. Using this information, it may be possible to link trends in the atmospheric composition to changes in the transport pathways and to the evolution of emissions. This tool could be used for statistical validation as well as for inter-comparisons of emission inventories using large amounts of data, as Lagrangian models are able to bring the global scale emissions down to a smaller scale, where they can be directly compared to the in-situ observations from the IAGOS database.

  14. Clearinghouse for Inventories and Emissions Factors

    Science.gov (United States)

    Emissions inventories, modeling, and monitoring are the basis for understanding, controlling and tracking stationary sources of air pollution. This technical site provides access to tools and data to support those efforts.

  15. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China

    Science.gov (United States)

    Saikawa, Eri; Kim, Hankyul; Zhong, Min; Avramov, Alexander; Zhao, Yu; Janssens-Maenhout, Greet; Kurokawa, Jun-ichi; Klimont, Zbigniew; Wagner, Fabian; Naik, Vaishali; Horowitz, Larry W.; Zhang, Qiang

    2017-05-01

    Anthropogenic air pollutant emissions have been increasing rapidly in China, leading to worsening air quality. Modelers use emissions inventories to represent the temporal and spatial distribution of these emissions needed to estimate their impacts on regional and global air quality. However, large uncertainties exist in emissions estimates. Thus, assessing differences in these inventories is essential for the better understanding of air pollution over China. We compare five different emissions inventories estimating emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter of 10 µm or less (PM10) from China. The emissions inventories analyzed in this paper include the Regional Emission inventory in ASia v2.1 (REAS), the Multi-resolution Emission Inventory for China (MEIC), the Emission Database for Global Atmospheric Research v4.2 (EDGAR), the inventory by Yu Zhao (ZHAO), and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS). We focus on the period between 2000 and 2008, during which Chinese economic activities more than doubled. In addition to national totals, we also analyzed emissions from four source sectors (industry, transport, power, and residential) and within seven regions in China (East, North, Northeast, Central, Southwest, Northwest, and South) and found that large disagreements exist among the five inventories at disaggregated levels. These disagreements lead to differences of 67 µg m-3, 15 ppbv, and 470 ppbv for monthly mean PM10, O3, and CO, respectively, in modeled regional concentrations in China. We also find that all the inventory emissions estimates create a volatile organic compound (VOC)-limited environment and MEIC emissions lead to much lower O3 mixing ratio in East and Central China compared to the simulations using REAS and EDGAR estimates, due to their low VOC emissions. Our results illustrate that a better

  16. Uncertainties in the Norwegian greenhouse gas emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Flugsrud, Ketil; Hoem, Britta

    2011-11-15

    The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and from direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements.Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC tier 2 method, as described in the IPCC Good Practice Guidance (IPCC 2000) (IPCC 2000). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry). The uncertainty analysis performed in 2011 is an update of the uncertainty analyses performed for the greenhouse gas inventory in 2006 and 2000. During the project we have been in contact with experts, and have collected information about uncertainty from them. Main focus has been on the source categories where changes have occured since the last uncertainty analysis was performed in 2006. This includes new methodology for several source categories (for example for solvents and road traffic) as well as revised uncertainty estimates. For the installations included in the emission trading system, new information from the annual ETS reports about uncertainty in activity data and CO2 emission factor (and N2O emission factor for nitric acid production) has been used. This has improved the quality of the uncertainty estimates for the energy and manufacturing sectors. The results show that the uncertainty level in the total calculated greenhouse gas emissions for 2009 is around 4 per cent. When including the LULUCF sector, the total uncertainty is around 17 per cent in 2009. The uncertainty estimate is lower now than previous analyses have shown. This is partly due to a considerable work made to improve

  17. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-10-01

    Full Text Available This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow, aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  18. Emission inventory: An urban public policy instrument and benchmark

    International Nuclear Information System (INIS)

    D'Avignon, Alexander; Azevedo Carloni, Flavia; Lebre La Rovere, Emilio; Burle Schmidt Dubeux, Carolina

    2010-01-01

    Global concern with climate change has led to the development of a variety of solutions to monitor and reduce emissions on both local and global scales. Under the United Nations Framework Convention on Climate Change (UNFCCC), both developed and emerging countries have assumed responsibility for developing and updating national inventories of greenhouse gas emissions from anthropic sources. This creates opportunities and incentives for cities to carry out their own local inventories and, thereby, develop air quality management plans including both essential key players and stakeholders at the local level. The aim of this paper is to discuss the role of local inventories as an urban public policy instrument and how this type of local instrument may bring advantages countrywide in enhancing the global position of a country. Local inventories have been carried out in many cities of the world and the main advantage of this is that it allows an overview of emissions produced by different municipal activities, thereby, helps decision makers in the elaboration of efficient air quality management plans. In that way, measures aimed at the reduction of fossil fuel consumption to lower local atmospheric pollution levels can also, in some ways, reduce GHG emissions.

  19. Evaluating policy-relevant emission inventories for transportation and electricity (Invited)

    Science.gov (United States)

    Holloway, T.; Meier, P.; Bickford, E. E.

    2013-12-01

    We explore the challenges and opportunities in evaluating bottom-up emission inventories for transportation and electricity. These anthropogenic emissions respond in complex ways to technology and activity changes. Thus, it is essential that inventories capture historic emissions consistent with observations, as well as future emissions consistent with policy scenarios. For transportation, we focus on freight-related trucking emissions, represented by the Wisconsin Inventory for Freight Emissions (WIFE), developed with activity data from the U.S. Federal Highway Administration Freight Analysis Framework and emission factors from the EPA MOVES model. Because WIFE is linked to commodity flows and roadway speeds, it offers a useful data set to evaluate policy changes such as truck-to-rail modal shifts and alternative fuel choices. However, the value of the inventory in assessing these scenarios depends on its skill in calculating frieght-related emissions. Satellite data of nitrogen dioxide (NO2) from the OMI instrument aboard the NASA Aura satellite is used to evaluate truck and rail NOx emissions, especially on rural highways away from ground-based monitors. For electricity, we use the MyPower electricity dispatch model to calculate emissions and power generation in response to policy and technology changes. These include renewable portfolio standards, conservation, increased natural gas, and response to building demand. To evaluate MyPower, we compare with the Clean Air Markets database, and 2007 calculated daily afternoon emissions with satellite-derived NO2 from OMI. Drawing on the results of these studies, we discuss strategies to meet the information demands of both historically correct air quality inputs and future-relevant policy scenarios.

  20. Emissions inventory for the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, V.H.P.; Renteria, J.S. [Secretaria de Medio Ambiente, Col. Tiacopac San Angel (Mexico); Hernandez, C.G. [Departamento del Distrito Federal, Col. Centro (Mexico)] [and others

    1996-12-31

    The emissions inventory bears a broad relationship to the energy balance, reflecting the dependence of the emissions with reference to the use of energy. Actually the consumption of gasoline and diesel fuel in the transport sector represents collectively, the greatest comparative expense of energy and the major contributor of the ozone precursor pollutants HC, NO{sub x} and CO, relative to the total volume of emissions in the Mexico City Metropolitan Area (MCMA). Also, the industrial sector introduces significant emissions of SO{sub 2} and NO{sub x} due to its energy consumption of fuel oils and natural gas. In contrast, the great majority of suspended particulate in the MCMA emanate from degradation processes of surface soil along the periphery of the urban zone. To the federal and local authorities charged with the design of strategies for prevention and control of atmospheric pollution, the emissions inventory is a strategic tool that reflects the relative intensity of the various emitters to the load capacity of the atmosphere. A comprehensive inventory was compiled for 1995, categorizing the emissions generated by four sectors: industry, services, transport and surface soils and vegetation, considering the following pollutants: TSP, SO{sub 2}, NO{sub x}, HC and CO. The combined pollutant emissions are 4,009,628 tons/year of which 3% are generated by the industry, 10% by the services sector, 75% by the transport sector, and 12% by surface soils and vegetation.

  1. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    International Nuclear Information System (INIS)

    BENKOVITZ, C.M.

    2002-01-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO(sub x), particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations

  2. On the quality of global emission inventories. Approaches, methodologies, input data and uncertainties

    International Nuclear Information System (INIS)

    Olivier, J.G.J.

    2002-01-01

    Four key scientific questions will be investigated: (1) How does a user define the 'quality' of a global (or national) emission inventory? (Chapter 2); (2) What determines the quality of a global emission inventory? (Chapters 2 and 7); (3) How can inventory quality be achieved in practice and expressed in quantitative terms ('uncertainty')? (Chapters 3 to 6); and (4) What is the preferred approach for compiling a global emission inventory, given the practical limitations and the desired inventory quality? (Chapters 7 and 8)

  3. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010

    Science.gov (United States)

    Peng, Shushi; Piao, Shilong; Bousquet, Philippe; Ciais, Philippe; Li, Bengang; Lin, Xin; Tao, Shu; Wang, Zhiping; Zhang, Yuan; Zhou, Feng

    2016-11-01

    Methane (CH4) has a 28-fold greater global warming potential than CO2 over 100 years. Atmospheric CH4 concentration has tripled since 1750. Anthropogenic CH4 emissions from China have been growing rapidly in the past decades and contribute more than 10 % of global anthropogenic CH4 emissions with large uncertainties in existing global inventories, generally limited to country-scale statistics. To date, a long-term CH4 emission inventory including the major sources sectors and based on province-level emission factors is still lacking. In this study, we produced a detailed annual bottom-up inventory of anthropogenic CH4 emissions from the eight major source sectors in China for the period 1980-2010. In the past 3 decades, the total CH4 emissions increased from 24.4 [18.6-30.5] Tg CH4 yr-1 in 1980 (mean [minimum-maximum of 95 % confidence interval]) to 44.9 [36.6-56.4] Tg CH4 yr-1 in 2010. Most of this increase took place in the 2000s decade with averaged yearly emissions of 38.5 [30.6-48.3] Tg CH4 yr-1. This fast increase of the total CH4 emissions after 2000 is mainly driven by CH4 emissions from coal exploitation. The largest contribution to total CH4 emissions also shifted from rice cultivation in 1980 to coal exploitation in 2010. The total emissions inferred in this work compare well with the EPA inventory but appear to be 36 and 18 % lower than the EDGAR4.2 inventory and the estimates using the same method but IPCC default emission factors, respectively. The uncertainty of our inventory is investigated using emission factors collected from state-of-the-art published literatures. We also distributed province-scale emissions into 0.1° × 0.1° maps using socioeconomic activity data. This new inventory could help understanding CH4 budgets at regional scale and guiding CH4 mitigation policies in China.

  4. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    Science.gov (United States)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national

  5. Determining Original Inventory Amount of Radioactive Substances from Unmonitored Radionuclide Emissions

    International Nuclear Information System (INIS)

    Hamilton, J.T.; Blunt, B.C.

    1999-01-01

    The purpose of this document is to determine the air emissions inventory of the Savannah River Site. To satisfy regulatory requirements, a new equation has been developed to determine original inventory amounts from unmonitored radionuclide emissions

  6. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    Science.gov (United States)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  7. Emission inventory estimation of an intercity bus terminal.

    Science.gov (United States)

    Qiu, Zhaowen; Li, Xiaoxia; Hao, Yanzhao; Deng, Shunxi; Gao, H Oliver

    2016-06-01

    Intercity bus terminals are hotspots of air pollution due to concentrated activities of diesel buses. In order to evaluate the bus terminals' impact on air quality, it is necessary to estimate the associated mobile emission inventories. Since the vehicles' operating condition at the bus terminal varies significantly, conventional calculation of the emissions based on average emission factors suffers the loss of accuracy. In this study, we examined a typical intercity bus terminal-the Southern City Bus Station of Xi'an, China-using a multi-scale emission model-(US EPA's MOVES model)-to quantity the vehicle emission inventory. A representative operating cycle for buses within the station is constructed. The emission inventory was then estimated using detailed inputs including vehicle ages, operating speeds, operating schedules, and operating mode distribution, as well as meteorological data (temperature and humidity). Five functional areas (bus yard, platforms, disembarking area, bus travel routes within the station, and bus entrance/exit routes) at the terminal were identified, and the bus operation cycle was established using the micro-trip cycle construction method. Results of our case study showed that switching to compressed natural gas (CNG) from diesel fuel could reduce PM2.5 and CO emissions by 85.64 and 6.21 %, respectively, in the microenvironment of the bus terminal. When CNG is used, tail pipe exhaust PM2.5 emission is significantly reduced, even less than brake wear PM2.5. The estimated bus operating cycles can also offer researchers and policy makers important information for emission evaluation in the planning and design of any typical intercity bus terminals of a similar scale.

  8. Final Rule for Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    EPA adopted emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  9. Multi-objective optimization of aircraft design for emission and cost reductions

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2014-02-01

    Full Text Available Pollutant gases emitted from the civil jet are doing more and more harm to the environment with the rapid development of the global commercial aviation transport. Low environmental impact has become a new requirement for aircraft design. In this paper, estimation method for emission in aircraft conceptual design stage is improved based on the International Civil Aviation Organization (ICAO aircraft engine emissions databank and the polynomial curve fitting methods. The greenhouse gas emission (CO2 equivalent per seat per kilometer is proposed to measure the emissions. An approximate sensitive analysis and a multi-objective optimization of aircraft design for tradeoff between greenhouse effect and direct operating cost (DOC are performed with five geometry variables of wing configuration and two flight operational parameters. The results indicate that reducing the cruise altitude and Mach number may result in a decrease of the greenhouse effect but an increase of DOC. And the two flight operational parameters have more effects on the emissions than the wing configuration. The Pareto-optimal front shows that a decrease of 29.8% in DOC is attained at the expense of an increase of 10.8% in greenhouse gases.

  10. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010

    Directory of Open Access Journals (Sweden)

    S. Peng

    2016-11-01

    Full Text Available Methane (CH4 has a 28-fold greater global warming potential than CO2 over 100 years. Atmospheric CH4 concentration has tripled since 1750. Anthropogenic CH4 emissions from China have been growing rapidly in the past decades and contribute more than 10 % of global anthropogenic CH4 emissions with large uncertainties in existing global inventories, generally limited to country-scale statistics. To date, a long-term CH4 emission inventory including the major sources sectors and based on province-level emission factors is still lacking. In this study, we produced a detailed annual bottom-up inventory of anthropogenic CH4 emissions from the eight major source sectors in China for the period 1980–2010. In the past 3 decades, the total CH4 emissions increased from 24.4 [18.6–30.5] Tg CH4 yr−1 in 1980 (mean [minimum–maximum of 95 % confidence interval] to 44.9 [36.6–56.4] Tg CH4 yr−1 in 2010. Most of this increase took place in the 2000s decade with averaged yearly emissions of 38.5 [30.6–48.3] Tg CH4 yr−1. This fast increase of the total CH4 emissions after 2000 is mainly driven by CH4 emissions from coal exploitation. The largest contribution to total CH4 emissions also shifted from rice cultivation in 1980 to coal exploitation in 2010. The total emissions inferred in this work compare well with the EPA inventory but appear to be 36 and 18 % lower than the EDGAR4.2 inventory and the estimates using the same method but IPCC default emission factors, respectively. The uncertainty of our inventory is investigated using emission factors collected from state-of-the-art published literatures. We also distributed province-scale emissions into 0.1°  ×  0.1° maps using socioeconomic activity data. This new inventory could help understanding CH4 budgets at regional scale and guiding CH4 mitigation policies in China.

  11. Modelling and Evaluation of Aircraft Emissions. Final report

    International Nuclear Information System (INIS)

    Savola, M.

    1996-01-01

    An application was developed to calculate the emissions and fuel consumption of a jet and turboprop powered aircraft in Finnair's scheduled and charter traffic both globally and in the Finnish flight information regions. The emissions calculated are nitrogen oxides, unburnt hydrocarbons and carbon monoxide. The study is based on traffic statistics of one week taken from three scheduled periods in 1993. Each flight was studied by dividing the flight profile into sections. The flight profile data are based on aircraft manufacturers' manuals, and they serve as initial data for engine manufacturers' emission calculation programs. In addition, the study includes separate calculations on air traffic emissions at airports during the so-called LTO cycle. The fuel consumption calculated for individual flights is 419,395 tonnes globally, and 146,142 tonnes in the Finnish flight information regions. According to Finnair's statistics the global fuel consumption is 0.97-fold compared with the result given by the model. The results indicate that in 1993 the global nitrogen oxide emissions amounted to 5,934 tonnes, the unburnt hydrocarbon emissions totalled 496 tonnes and carbon monoxide emissions 1,664 tonnes. The corresponding emissions in the Finnish flight information regions were as follows: nitrogen oxides 2,105 tonnes, unburnt hydrocarbons 177 tonnes and carbon monoxide 693 tonnes. (orig.)

  12. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    International Nuclear Information System (INIS)

    Kurniawan, Jermanto S.; Khardi, S.

    2011-01-01

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly or indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.

  13. Emissions of CH4 from natural gas production in the United States using aircraft-based observations

    Science.gov (United States)

    Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Ryerson, Thomas; Peischl, Jeff; Trainer, Michael; Rella, Chris; Hardesty, Michael; Crosson, Eric; Montzka, Stephen; Tans, Pieter; Shepson, Paul; Kort, Eric

    2014-05-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches in combination with isotopes and light alkanes to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  14. Direct carbon dioxide emissions from civil aircraft

    OpenAIRE

    Grote, Matt; Williams, Ian; Preston, John

    2014-01-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories – policy and legal-related measures, and technological and operational measures. Results of the review are used to develop sever...

  15. Danish emission inventory for agriculture. Inventories 1985 - 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth Mikkelsen, M; Albrektsen, R; Gyldenkaerne, S

    2011-02-15

    By regulations given in international conventions Denmark is obliged to work out an annual emission inventory and document the methodology. The National Environmental Research Institute (NERI) at Aarhus University (AU) in Denmark is responsible for calculating and reporting the emissions. This report contains a description of the emissions from the agricultural sector from 1985 to 2009. Furthermore, the report includes a detailed description of methods and data used to calculate the emissions, which is based on national methodologies as well as international guidelines. For the Danish emissions calculations and data management an Integrated Database model for Agricultural emissions (IDA) is used. The emission from the agricultural sector includes emission of the greenhouse gases methane (CH{sub 4}), nitrous oxide (N{sub 2}O), ammonia (NH{sub 3}), particulate matter (PM), non-methane volatile organic compounds (NMVOC) and other pollutants related to the field burning of agricultural residue such as NO{sub x}, CO{sub 2}, CO, SO{sub 2}, heavy metals, dioxin and PAH. The ammonia emission from 1985 to 2009 has decreased from 119 300 tonnes of NH{sub 3} to 73 800 tonnes NH{sub 3}, corresponding to a 38 % reduction. The emission of greenhouse gases has decreased by 25 % from 12.9 M tonnes CO{sub 2} equivalents to 9.6 M tonnes CO{sub 2} equivalents from 1985 to 2009. Improvements in feed efficiency and utilisation of nitrogen in livestock manure are the most important reasons for the reduction of both the ammonia and greenhouse gas emissions. (Author)

  16. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  17. Global Gridded Emission Inventories of Pentabrominated Diphenyl Ether (PeBDE)

    Science.gov (United States)

    Li, Yi-Fan; Tian, Chongguo; Yang, Meng; Jia, Hongliang; Ma, Jianmin; Li, Dacheng

    2010-05-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants widely used in many everyday products such as cars, furniture, textiles, and other electronic equipment. The commercial PBDEs have three major technical mixtures: penta-(PeBDE), octa-(OBDE) and decabromodiphenyl ethers (DeBDE). PeBDE is a mixture of several BDE congeners, such as BDE-47, -99, and -100, and has been included as a new member of persistent organic pollutants (POPs) under the 2009 Stockholm Convention. In order to produce gridded emission inventories of PeBDE on a global scale, information of production, consumption, emission, and physiochemical properties of PeBDE have been searched for published papers, government reports, and internet publications. A methodology to estimate the emissions of PeBDE has been developed and global gridded emission inventories of 2 major congener in PeBDE mixture, BDE-47 and -99, on a 1 degree by 1degree latitude/longitude resolution for 2005 have been compiled. Using these emission inventories as input data, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP) model was used to simulate the transport of these chemicals and their concentrations in air were calculated for the year of 2005. The modeled air concentration of BDE-47 and -99 were compared with the monitoring air concentrations of these two congeners in the same year obtained from renowned international/national monitoring programs, such as Global Atmospheric Passive Sampling (GAPS), the Integrated Atmospheric Deposition Network (IADN), and the Chinese POPs Soil and Air Monitoring Program (SAMP), and significant correlations between the modeled results and the monitoring data were found, indicating the high quality of the produced emission inventories of BDE-47 and -99. Keywords: Pentabrominated Diphenyl Ether (PeBDE), Emission Inventories, Global, Model

  18. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M; Boll Illerup, J [Aarhus Univ. National Environmental Research Institute (NERI) (Denmark); Kindbom, K; Sjodin, AA [Swedish Environmental Research Institute (IVL) (Sweden); Saarinen, K; Mikkola-Pusa, J [Finlands Miljoecentral (SYKE) (Finland); Aasestad, K [Statistisk Sentralbyraa (SSB) (Norway); Hallsdottir, B [Environmental and Food Agency Iceland (IS); Makela, K [Technical Research Centre of Finland (VTT) (Finland)

    2010-12-15

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions in charge of the work on emission inventories in the Nordic countries have participated in this project together with researchers performing PM measurements in the residential and transport sectors in the Nordic countries in order to increase the quality of the PM national inventories. The ratio between the reported emissions of PM{sub 10} and PM{sub 2.5} was calculated for each country. Norway has the largest share of PM{sub 2.5} compared to PM{sub 10} (88 %), whereas Finland has the lowest (66 %). Denmark and Sweden are right in the middle with 73 and 76 %, respectively. The completeness of the inventories was assessed with particular emphasis on the categories where emissions were reported by one or more countries, while the other categories reported notation keys. It is found that the PM emission inventories generally are complete and that the sources reported as not estimated only are expected to have minor contributions to the total PM emissions. The variability of emission factors for residential wood combustion is discussed and it is illustrated that the emission factors can vary by several orders of magnitude. (Author)

  19. Mobile Source Emissions Regulatory Compliance Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road...

  20. Update and improvement of the global krypton-85 emission inventory

    International Nuclear Information System (INIS)

    Ahlswede, Jochen; Hebel, Simon; Ross, J. Ole; Schoetter, Robert; Kalinowski, Martin B.

    2013-01-01

    Krypton-85 is mainly produced in nuclear reactors by fission of uranium and plutonium and released during chopping and dissolution of spent fuel rods in nuclear reprocessing facilities. As noble gas it is suited as a passive tracer for evaluation of atmospheric transport models. Furthermore, research is ongoing to assess its quality as an indicator for clandestine reprocessing activities. This paper continues previous efforts to compile a comprehensive historic emission inventory for krypton-85. Reprocessing facilities are the by far largest emitters of krypton-85. Information on sources and calculations used to derive the annual krypton-85 emission is provided for all known reprocessing facilities in the world. In addition, the emission characteristics of two plants, Tokai (Japan) and La Hague (France), are analysed in detail using emission data with high temporal resolution. Other types of krypton-85 sources are power reactors, naval reactors and isotope production facilities. These sources contribute only little or negligible amounts of krypton-85 compared to the large reprocessing facilities. Taking the decay of krypton-85 into account, the global atmospheric inventory is estimated to about 5500 PBq at the end of 2009. The correctness if the inventory has been proven by meteorological simulations and its error is assumed to be in the range of a few percent. - Highlights: ► Krypton-85 is mainly produced in nuclear reactors and released during reprocessing. ► Krypten-85 can be possibly used as an indicator for clandestine reprocessing. ► This work provides an up-to-date global krypton-85 emission inventory. ► The inventory includes emissions from all possible artificial sources.

  1. Emissions inventories and options for control. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Swart, R.J.; Van Amstel, A.R.; Van den Born, G.J.; Kroeze, C.

    1995-10-01

    This report is the final summary report of the project `Social causes of the greenhouse effect, emissions inventories and options for control`. The objectives of the project, that started in 1990, were to support the development of a comprehensive Dutch climate policy and to identify gaps in the knowledge about sources of greenhouse gases. The four phases of the project are summarized. In the first phase, a first national inventory of greenhouse gas emissions was made, capturing carbon dioxide (CO{sub 2}), chlorofluorocarbons (CFCs), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and the ozone precursors carbon monoxide (CO), nitrogen oxides (NO{sub x} ) and volatile organic compounds (VOC). In the second phase, the acquired expertise was used to support the development of Guidelines for National Emissions Inventories by the joint OECD/IPCC programme through workshop organization and participation in the international planning group. In the third phase, a detailed analysis was performed of the sources of methane, its current and future emissions and the options for control. Finally, a similar analysis was performed for nitrous oxide. In these studies, it was found that policies not specifically aiming at mitigating climate change, would help to control the emissions of the non-CO{sub 2} greenhouse gases. While for methane, national emissions would even decrease because of measures in the livestock management and waste disposal sectors, for nitrous oxide the reductions in agricultural emissions would be outweighed by increases, especially in the transportation sector. The project shows that the application of more detailed information leads to differences with the Guidelines, both because of the limited number of source categories in the Guidelines and because of different, locally specific emissions factors. 4 figs., 2 tabs., 14 refs.

  2. Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis

    Directory of Open Access Journals (Sweden)

    U. Paliwal

    2016-10-01

    Full Text Available Black carbon (BC emissions from India for the year 2011 are estimated to be 901.11 ± 151.56 Gg yr−1 based on a new ground-up, GIS-based inventory. The grid-based, spatially resolved emission inventory includes, in addition to conventional sources, emissions from kerosene lamps, forest fires, diesel-powered irrigation pumps and electricity generators at mobile towers. The emissions have been estimated at district level and were spatially distributed onto grids at a resolution of 40 × 40 km2. The uncertainty in emissions has been estimated using a Monte Carlo simulation by considering the variability in activity data and emission factors. Monthly variation of BC emissions has also been estimated to account for the seasonal variability. To the total BC emissions, domestic fuels contributed most significantly (47 %, followed by industry (22 %, transport (17 %, open burning (12 % and others (2 %. The spatial and seasonal resolution of the inventory will be useful for modeling BC transport in the atmosphere for air quality, global warming and other process-level studies that require greater temporal resolution than traditional inventories.

  3. A high-resolution regional emission inventory of atmospheric mercury and its comparison with multi-scale inventories: a case study of Jiangsu, China

    Directory of Open Access Journals (Sweden)

    H. Zhong

    2016-12-01

    Full Text Available A better understanding of the discrepancies in multi-scale inventories could give an insight into their approaches and limitations as well as provide indications for further improvements; international, national, and plant-by-plant data are primarily obtained to compile those inventories. In this study we develop a high-resolution inventory of Hg emissions at 0.05°  ×  0.05° for Jiangsu, China, using a bottom-up approach and then compare the results with available global/national inventories. With detailed information on individual sources and the updated emission factors from field measurements applied, the annual Hg emissions of anthropogenic origin in Jiangsu in 2010 are estimated at 39 105 kg, of which 51, 47, and 2 % were Hg0, Hg2+, and Hgp, respectively. This provincial inventory is thoroughly compared to three downscaled national inventories (NJU, THU, and BNU and two global ones (AMAP/UNEP and EDGARv4.tox2. Attributed to varied methods and data sources, clear information gaps exist in multi-scale inventories, leading to differences in the emission levels, speciation, and spatial distributions of atmospheric Hg. The total emissions in the provincial inventory are 28, 7, 19, 22, and 70 % larger than NJU, THU, BNU, AMAP/UNEP, and EDGARv4.tox2, respectively. For major sectors, including power generation, cement, iron and steel, and other coal combustion, the Hg contents (HgC in coals/raw materials, abatement rates of air pollution control devices (APCDs and activity levels are identified as the crucial parameters responsible for the differences in estimated emissions between inventories. Regarding speciated emissions, a larger fraction of Hg2+ is found in the provincial inventory than national and global inventories, resulting mainly from the results by the most recent domestic studies in which enhanced Hg2+ were measured for cement and iron and steel plants. Inconsistent information on large power and industrial plants is

  4. Aviation and climate change : aircraft emissions expected to grow, but technological and operational improvements and government policies can help control emissions

    Science.gov (United States)

    2009-06-01

    A number of policy options to address aircraft emissions are available to governments and can be part of broader policies to address emissions from many sources including aircraft. Market-based measures can establish a price for emissions and provide...

  5. Annual Danish emission inventory report o UNECE. Inventories from the base year of the protocols to year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J B; Nielsen, Ole-Kenneth; Winther, Morten; Hjort Mikkensen, M; Hoffmann, L; Gyldenkaerne, S; Fauser, P

    2006-12-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2006. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2004, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2004; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2004, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2004, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2004. Further, the report contains information on background data for emissions inventory. (au)

  6. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Boll Illerup, J; Nielsen, O -K; Winther, M; Hjorth Mikkelsen, M; Hoffmann, L; Nielsen, Malene; Gyldenkaerne, S; Fauser, P; Tranekjaer Jensen, M; Gundorph Bruun, H

    2007-07-01

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2007. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2005, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2005; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2005, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2005, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2005. Further, the report contains information on background data for emissions inventory. (au)

  7. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J B; Nielsen, Malene; Winther, Morten; Hjorth Mikkelsen, M; Hoffmann, L; Gyldenkaerne, S; Fauser, P; Nielsen, O K

    2005-12-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2005. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2003, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2003; (3) Particulate matter: TSP, PM10, PM2.5 for the years 2000-2003, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2003, and(5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2003. Further, the report contains information on background data for emissions inventory. (au)

  8. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M; Hjorth Mikkelsen, M; Hoffmann, L; Nielsen, Malene; Gyldenkaerne, S; Fauser, P; Tranekjaer Jensen, M; Plejdrup, M S; Boll Illerup, J

    2008-06-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2008. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2006, (2) NO{sub X}, CO, NMVOC and NH{sub 3} for the years 1985-2006; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2006, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2006, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2006. Further, the report contains information on background data for emissions inventory. (au)

  9. Annual Danish emission inventory report o UNECE. Inventories from the base year of the protocols to year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Nielsen, Ole-Kenneth; Winther, Morten; Hjort Mikkensen, M.; Hoffmann, L.; Gyldenkaerne, S.; Fauser, P.

    2006-12-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2006. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2004, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2004; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2004, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2004, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2004. Further, the report contains information on background data for emissions inventory. (au)

  10. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Nielsen, Malene; Winther, Morten; Hjorth Mikkelsen, M.; Hoffmann, L.; Gyldenkaerne, S.; Fauser, P.; Nielsen, O.K.

    2005-12-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2005. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2003, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2003; (3) Particulate matter: TSP, PM10, PM2.5 for the years 2000-2003, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2003, and(5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2003. Further, the report contains information on background data for emissions inventory. (au)

  11. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, Malene; Gyldenkaerne, S.; Fauser, P.; Tranekjaer Jensen, M.; Plejdrup, M.S.; Boll Illerup, J.

    2008-06-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2008. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2006, (2) NO{sub X}, CO, NMVOC and NH{sub 3} for the years 1985-2006; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2006, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2006, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2006. Further, the report contains information on background data for emissions inventory. (au)

  12. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Boll Illerup, J.; Nielsen, O.-K.; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, Malene; Gyldenkaerne, S.; Fauser, P.; Tranekjaer Jensen, M.; Gundorph Bruun, H.

    2007-07-01

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2007. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2005, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2005; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2005, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2005, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2005. Further, the report contains information on background data for emissions inventory. (au)

  13. The IGAC activity for the development of global emissions inventories: Description and initial results

    International Nuclear Information System (INIS)

    Benkovitz, C.M.; Graedel, T.E.

    1992-02-01

    Modeling assessments of the atmospheric chemistry, air quality and climatic conditions of the past, present and future require as input inventories of emissions of the appropriate chemical species constructed on appropriate spatial and temporal scales. The task of the Global Emissions Inventories Activity (GEIA) of the International Global Atmospheric Chemistry Project (IGAC) is the production of global inventories suitable for a range of research applications. Current GEIA programs are generally based on addressing emissions by species; these include CO 2 , NH 3 /N 2 O, SO 2 /NO x , CFC, volatile organic compounds and radioisotopes. In addition a separate program to inventory emissions from biomass burning is also being structured, plus an additional program to address data management issues for all the developing inventories. Program priorities are based on current knowledge and tasks needed to produce the desired inventories. This paper will discuss the different types of global inventories to be developed by the GEIA programs, their key characteristics, and areas to be addressed in the compilation of such inventories. Results of the first GEIA task, a survey of existing inventories and auxiliary data, will be presented. The survey included status assessments for the available inventory information for nineteen different atmospheric species or groups of species on global and regional scales and over time. Of this entire body of information, the only inventory regarded as satisfactory was that for the global emissions of CFCs. An implication of the results of these assessments is that properly gridded emissions inventories are badly needed to support atmospheric modeling calculations on a variety of spatial and temporal scales. Initial studies in the development of global inventories of sulfur dioxide, currently the most advanced GEIA program, will be presented and discussed

  14. Emissions of CH4 from natural gas production in the United States using aircraft-based observations (Invited)

    Science.gov (United States)

    Sweeney, C.; Ryerson, T. B.; Karion, A.; Peischl, J.; Petron, G.; Schnell, R. C.; Tsai, T.; Crosson, E.; Rella, C.; Trainer, M.; Frost, G. J.; Hardesty, R. M.; Montzka, S. A.; Dlugokencky, E. J.; Tans, P. P.

    2013-12-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  15. Global radioxenon emission inventory based on nuclear power reactor reports.

    Science.gov (United States)

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  16. Inventory of U.S. 2012 dioxin emissions to atmosphere.

    Science.gov (United States)

    Dwyer, Henri; Themelis, Nickolas J

    2015-12-01

    In 2006, the U.S. EPA published an inventory of dioxin emissions for the U.S. covering the period from 1987-2000. This paper is an updated inventory of all U.S. dioxin emissions to the atmosphere in the year 2012. The sources of emissions of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), collectively referred to in this paper as "dioxins", were separated into two classes: controlled industrial and open burning sources. Controlled source emissions decreased 95.5% from 14.0 kg TEQ in 1987 to 0.6 kg in 2012. Open burning source emissions increased from 2.3 kg TEQ in 1987 to 2.9 kg in 2012. The 2012 dioxin emissions from 53 U.S. waste-to-energy (WTE) power plants were compiled on the basis of detailed data obtained from the two major U.S. WTE companies, representing 84% of the total MSW combusted (27.4 million metric tons). The dioxin emissions of all U.S. WTE plants in 2012 were 3.4 g TEQ and represented 0.54% of the controlled industrial dioxin emissions, and 0.09% of all dioxin emissions from controlled and open burning sources. Copyright © 2015. Published by Elsevier Ltd.

  17. Application of the emission inventory model TEAM: Uncertainties in dioxin emission estimates for central Europe

    NARCIS (Netherlands)

    Pulles, M.P.J.; Kok, H.; Quass, U.

    2006-01-01

    This study uses an improved emission inventory model to assess the uncertainties in emissions of dioxins and furans associated with both knowledge on the exact technologies and processes used, and with the uncertainties of both activity data and emission factors. The annual total emissions for the

  18. Austrian emission inventory for dust

    International Nuclear Information System (INIS)

    Winiwarter, W.; Trenker, C.; Hoeflinger, W.

    2001-09-01

    For the first time, Austrian emissions of anthropogenic particulate matter emissions to the atmosphere have been estimated. Results have been reported as total suspended particles (TSP) as well as for the fractions of particles smaller than 10 μm or 2.5 μm aerodynamic diameter (PM 10 , PM 2.5 ), respectively. Base years for the inventory were 1990, 1995 and 1999. Excluded from this assessment is wind blown dust, which has been considered a natural source here. National statistics have been applied, specifically those also used previously in the Austrian air pollution inventory (OLI). Emission factors have been taken from literature compilations, only for exceptional cases specific Austrian assessments were performed or original literature on emission measurements was consulted. Resuspension of dust by road traffic emerged as the most important source. For the size fraction of PM 10 this source contributed about half of the emissions, when applying the calculation scheme by the U.S. EPA. While this scheme is widely used and well documented, its validity is currently subject of intense scientific debate. As these results do not seem to coincide with ambient air measurements, resuspension of road dust is considered separately and not now included in the national total. The sum of all other sources increases from 75,000 t of TSP in 1990 and 1995 to 77,000 t in 1999, while both PM 10 and PM 2.5 exhibit decreasing tendency (at 45,000 t and 26,000 t in 1999, respectively). The increase in TSP derives from increasing traffic and friction related emissions (tire wear, break wear), decrease of the finer particulate matter is due to reductions in firewood consumption for domestic heating. Most important source sectors are fugitive emissions from material transfer in industry as well as the building industry and the tilling of agricultural land. Common to these sources is the high uncertainty of available data. Wood combustion is the most important of the non

  19. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China.

    Science.gov (United States)

    Jiang, Wanyanhan; Huang, Tao; Mao, Xiaoxuan; Wang, Li; Zhao, Yuan; Jia, Chenhui; Wang, Yanan; Gao, Hong; Ma, Jianmin

    2017-01-01

    China produces approximately 20%-30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An emission inventory for the central European initiative 1988

    Science.gov (United States)

    Klimont, Z.; Amann, M.; Cofala, J.; Gyárfáŝ, F.; Klaassen, G.; Schöpp, W.

    This paper presents the first consistent inventory of emission of sulphur dioxide (SO 2), nitrogen oxides (NO x), particulate matter (PM), and carbon dioxide (CO 2), for the countries co-operating in the Central European Initiative: Austria, Croatia, Czechoslovakia, Hungary, Italy, Poland and Slovenia. The inventory is based on national and regional statistics as well as on information received from collaborating institutions. National data has been verified and converted into a common format, consistent with the database used by the European Environmental Agency and the European Community (the "CORINAIR" system). The inventory describes emissions in the year 1988, before the restructuring process began in former socialist economies. Data has been collected on the national level, for administrational units and for large point sources. The database on point sources contains specific information on 400 large plants in the region (e.g. capacity, commissioning year, fuel use, production, etc.). Total emissions of SO 2 in the CEI region in 1988 were 10.3 million tons, which accounts for 25% of total European SO 2 emissions. The highest emission densities (more than 100 t km -2) are found in Northern Bohemia (Czech Republic) and Upper Silesia (Poland). The overwhelming majority of SO 2 emissions (70%) originates from combustion of domestic (brown and hard) coal. Across the region, 60% of SO 2 is emitted from the large point sources identified in the study and over 60% of SO 2 emissions from public power plants in the CEI region is produced in plants older than 20 years.

  1. Development of an emissions inventory model for mobile sources

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A W; Broderick, B M [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2000-07-01

    Traffic represents one of the largest sources of primary air pollutants in urban areas. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentrations of a wide range of pollutants. A mutual characteristic of most of these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emissions inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for a wide range of vehicle types. The majority of inventories are compiled using 'passive' data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. Current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this paper. a methodology for estimating emissions from mobile sources using real-time data is described. This methodology is used to calculate emissions of sulphur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), carbon monoxide (CO). volatile organic compounds (VOC), particulate matter less than 10 {mu}m aerodynamic diameter (PM{sub 10}), 1,3-butadiene (C{sub 4}H{sub 6}) and benzene (C{sub 6}H{sub 6}) at a test junction in Dublin. Traffic data, which are required on a street-by-street basis, is obtained from induction loops and closed circuit televisions (CCTV) as well as statistical data. The observed traffic data are compared to simulated data from a travel demand model. As a test case, an emissions inventory is compiled for a heavily trafficked signalized junction in an urban environment using the measured data. In order that the model may be validated, the predicted emissions are employed in a dispersion model along with local meteorological conditions and site geometry. The resultant pollutant concentrations are compared to average ambient kerbside conditions

  2. Verification of Agricultural Methane Emission Inventories

    Science.gov (United States)

    Desjardins, R. L.; Pattey, E.; Worth, D. E.; VanderZaag, A.; Mauder, M.; Srinivasan, R.; Worthy, D.; Sweeney, C.; Metzger, S.

    2017-12-01

    It is estimated that agriculture contributes more than 40% of anthropogenic methane (CH4) emissions in North America. However, these estimates, which are either based on the Intergovernmental Panel on Climate Change (IPCC) methodology or inverse modeling techniques, are poorly validated due to the challenges of separating interspersed CH4 sources within agroecosystems. A flux aircraft, instrumented with a fast-response Picarro CH4 analyzer for the eddy covariance (EC) technique and a sampling system for the relaxed eddy accumulation technique (REA), was flown at an altitude of about 150 m along several 20-km transects over an agricultural region in Eastern Canada. For all flight days, the top-down CH4 flux density measurements were compared to the footprint adjusted bottom-up estimates based on an IPCC Tier II methodology. Information on the animal population, land use type and atmospheric and surface variables were available for each transect. Top-down and bottom-up estimates of CH4 emissions were found to be poorly correlated, and wetlands were the most frequent confounding source of CH4; however, there were other sources such as waste treatment plants and biodigesters. Spatially resolved wavelet covariance estimates of CH4 emissions helped identify the contribution of wetlands to the overall CH4 flux, and the dependence of these emissions on temperature. When wetland contribution in the flux footprint was minimized, top-down and bottom-up estimates agreed to within measurement error. This research demonstrates that although existing aircraft-based technology can be used to verify regional ( 100 km2) agricultural CH4 emissions, it remains challenging due to diverse sources of CH4 present in many regions. The use of wavelet covariance to generate spatially-resolved flux estimates was found to be the best way to separate interspersed sources of CH4.

  3. Development and validation of a lead emission inventory for the Greater Cairo area

    Directory of Open Access Journals (Sweden)

    Zeinab Safar

    2014-09-01

    Full Text Available Studies that investigate the environmental health risks to Cairo residents invariably conclude that lead is one of the area’s major health hazards. The Cairo Air Improvement Project (CAIP, which was implemented by a team led by Chemonics International, funded by USAID in partnership with the Egyptian Environmental Affairs Agency (EEAA, started developing a lead emission inventory for the greater Cairo (GC area in 1998. The inventory contains a list by major source of the annual lead emissions in the GC area. Uses of the inventory and associated database include developing effective regulatory and control strategies, assessing emissions trends, and conducting modeling exercises. This paper describes the development of the current lead emissions inventory (1999–2010, along with an approach to develop site specific emission factors and measurements to validate the inventory. This paper discusses the major sources of lead in the GC area, which include lead smelters, Mazout (heavy fuel oil combustion, lead manufacturing batteries factories, copper foundries, and cement factories. Included will be the trend in the lead emissions inventory with regard to the production capacity of each source category. In addition, the lead ambient measurements from 1999 through 2010 are described and compared with the results of Source Attribution Studies (SAS conducted in 1999, 2002, and 2010. Due to EEAA/CAIP efforts, a remarkable decrease in more than 90% in lead emissions was attained for 2007.

  4. Standardized emissions inventory methodology for open-pit mining areas.

    Science.gov (United States)

    Huertas, Jose I; Camacho, Dumar A; Huertas, Maria E

    2011-08-01

    There is still interest in a unified methodology to quantify the mass of particulate material emitted into the atmosphere by activities inherent to open-pit mining. For the case of total suspended particles (TSP), the current practice is to estimate such emissions by developing inventories based on the emission factors recommended by the USEPA for this purpose. However, there are disputes over the specific emission factors that must be used for each activity and the applicability of such factors to cases quite different to the ones under which they were obtained. There is also a need for particulate matter with an aerodynamic diameter less than 10 μm (PM(10)) emission inventories and for metrics to evaluate the emission control programs implemented by open-pit mines. To address these needs, work was carried out to establish a standardized TSP and PM(10) emission inventory methodology for open-pit mining areas. The proposed methodology was applied to seven of the eight mining companies operating in the northern part of Colombia, home to the one of the world's largest open-pit coal mining operations (∼70 Mt/year). The results obtained show that transport on unpaved roads is the mining activity that generates most of the emissions and that the total emissions may be reduced up to 72% by spraying water on the unpaved roads. Performance metrics were defined for the emission control programs implemented by mining companies. It was found that coal open-pit mines are emitting 0.726 and 0.180 kg of TSP and PM(10), respectively, per ton of coal produced. It was also found that these mines are using on average 1.148 m(2) of land per ton of coal produced per year.

  5. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M; Hjorth Mikkelsen, M; Hoffmann, L; Nielsen, M; Gyldenkaerne, S; Fauser, P; Plejdrup, M S; Albrektsen, R; Hjelgaard, K

    2009-04-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2009. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2007, (2) NO{sub X}, CO, NMVOC and NH{sub 3} for the years 1985-2007, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2007, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2007, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2007 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (au)

  6. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M; Hjorth Mikkelsen, M; Hoffmann, L; Nielsen, Malene; Gyldenkaerne, S; Fauser, P; Plejdrup, M S; Albrektsen, R; Hjelgaard, K

    2010-03-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2010. The report contains information on Denmark's emission inventories regarding emissions of (1) SOX for the years 1980-2008, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2008, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2008, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2008, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3- cd)pyrene for the years 1990-2008 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (author)

  7. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M; Hjorth Mikkelsen, M; Hoffmann, L; Nielsen, Malene; Gyldenkaerne, S; Fauser, P; Plejdrup, M S; Albrektsen, R; Hjelgaard, K; Bruun, H G

    2011-04-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2011. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2009, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2009, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2009, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2009, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2009 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (Author)

  8. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, Malene.; Gyldenkaerne, S.; Fauser, P.; Plejdrup, M.S.; Albrektsen, R.; Hjelgaard, K.

    2010-03-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2010. The report contains information on Denmark's emission inventories regarding emissions of (1) SOX for the years 1980-2008, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2008, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2008, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2008, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3- cd)pyrene for the years 1990-2008 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (author)

  9. Final Rule for Control of Air Pollution from Aircraft and Aircraft Engines: Emission Standards and Test Procedures

    Science.gov (United States)

    EPA is amending the existing emission standards for oxides of nitrogen (NOx) for new commercial aircraft engines. These standards are equivalent to the NOx emission standards of the United Nations International Civil Aviation Organization (ICAO).

  10. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  11. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  12. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  13. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport

    Science.gov (United States)

    Moore, Richard H.; Shook, Michael A.; Ziemba, Luke D.; Digangi, Joshua P.; Winstead, Edward L.; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L.; Crosbie, Ewan C.; Robinson, Claire; Shingler, Taylor J.; Anderson, Bruce E.

    2017-12-01

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016-1017 kg-1 and 1014-1016 kg-1, respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg-1 (except for the GE GEnx engines at 46 mg kg-1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  14. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport.

    Science.gov (United States)

    Moore, Richard H; Shook, Michael A; Ziemba, Luke D; DiGangi, Joshua P; Winstead, Edward L; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L; Crosbie, Ewan C; Robinson, Claire; Shingler, Taylor J; Anderson, Bruce E

    2017-12-19

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO 2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 10 16 -10 17 kg -1 and 10 14 -10 16 kg -1 , respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg -1 (except for the GE GEnx engines at 46 mg kg -1 ). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  15. Annual Danish Informative Inventory Report to UNECE. Emission inventories from the base year of the protocols to year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M. [and others

    2013-03-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2013. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2011, (2) NO{sub X}, CO, NMVOC and NH{sub 3} for the years 1985-2011, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2011, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2011, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene, PCDD/F and HCB for the years 1990-2011. Further, the report contains information on background data for emissions inventory. (Author)

  16. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, M.; Gyldenkaerne, S.; Fauser, P.; Plejdrup, M.S.; Albrektsen, R.; Hjelgaard, K.

    2009-04-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2009. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2007, (2) NO{sub X}, CO, NMVOC and NH{sub 3} for the years 1985-2007, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2007, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2007, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2007 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (au)

  17. Annual Danish Informative Inventory Report to UNECE. Emission inventories from the base year of the protocols to year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M. (and others)

    2012-05-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2012. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2010 (2) NO{sub X} CO NMVOC and NH{sub 3} for the years 1985-2010 (3) Particulate matter: TSP PM{sub 10} PM{sub 2.5} for the years 2000-2010 (L) Heavy Metals: Pb Cd Hg As Cr Cu Ni Se and Zn for the years 1990-2010 (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene benzo(b)fluoranthene benzo(k)fluoranthene and indeno(1 2 3-cd)pyrene PCDD/F and HCB for the years 1990-2010. Further the report contains information on background data for emissions inventory. (Author)

  18. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, Malene; Gyldenkaerne, S.; Fauser, P.; Plejdrup, M.S.; Albrektsen, R.; Hjelgaard, K.; Bruun, H.G.

    2011-04-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2011. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2009, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2009, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2009, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2009, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2009 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (Author)

  19. Proceedings of impact of aircraft emissions upon the atmosphere. V. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The study of the effect of aircraft on atmosphere is a new challenge that the scientific community has to face. This conference`s topics are various aspects of this challenge. The seven sessions of Volume 1 are: Present status and perspectives; Emission and traffic; Physics and chemistry of the aircraft wake; Natural and anthropogenic emissions - specific instrumentation; Global scale - chemistry; Global scale - climate. The 51 papers of Vol. 1. were indexed and abstracted individually for the Energy Database. (R.P.)

  20. Proceedings of impact of aircraft emissions upon the atmosphere. V. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The study of the effect of aircraft on atmosphere is a new challenge that the scientific community has to face. This conference`s topics are various aspects of this challenge. The seven sessions of Volume 1 are: Present status and perspectives; Emission and traffic; Physics and chemistry of the aircraft wake; Natural and anthropogenic emissions - specific instrumentation; Global scale - chemistry; Global scale - climate. The 51 papers of Vol. 1. were indexed and abstracted individually for the Energy Database. (R.P.)

  1. DEVELOPMENT OF SEASONAL AND ANNUAL BIOGENIC EMISSIONS INVENTORIES FOR THE U.S. AND CANADA

    Science.gov (United States)

    The report describes the development of a biogenic emissions inventory for the U.S. and Canada, to assess the role of biogenic emissions in ozone formation. Emission inventories were developed at hourly and grid (1/4 x 116 degree) level from input data at the same scales. Emissio...

  2. Cloud formations caused by emissions from high-flying aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H

    1990-09-01

    Kerosene combustion in aircraft engines leads to the emission of gases such as carbon dioxide, water vapour, carbon monoxide, nitrogen monoxide, sulphur dioxide and poorly or incompletely burnt hydrocarbons, as well as to particulate emissions which mainly consist of carbon black. In higher atmospheric strata with temperatures below -50deg C, these gas and particle emissions are no longer negligible when compared to the concentrations prevailing in the absence of air traffic; i.e. aircraft emissions produce the wellknown condensation trails which persist for a longer period of time. Since these trails are similar to natural ice clouds, their effect on the atmosphere's radiation balance almost invariably is that of an additional greenhouse agent. They change climatic parameters, probably not only locally but alos regionally via feedback mechanisms. After describing efforts aimed at separating the effect of condensation trails from natural variations, this paper will conclude with reduction proposals which will primarily demonstrate that the likelihood of the formation of condensation trails decreases drastically at only slightly lower flying altitudes. (orig.).

  3. Atmospheric emission data inventory for air quality planning at a regional scale

    Energy Technology Data Exchange (ETDEWEB)

    Cosmi, C. [C.N.R., Ist. di Metodologie Avanzate di Analisi Ambientali, Tito Scalo (Italy); Cuomo, V. [Universita degli Studi della Basilicata, Dipt. di Ingegneria e Fisica dell' Ambiente, Potenza (Italy)]|[C.N.R., Ist. di Metodologie Avanzate di Analisi Ambientali, Tito Scalo (Italy); Macchiato, M. [Unita di Napoli, Ist. Nazionale per la Fisica della Materia, Napoli (Italy); Mangiamele, L.; Marmo, G.; Salvia, M. [Universita degli Studi della Basilicata, Dipt. di Ingegneria e Fisica dell' Ambiente, Potenza (Italy)

    1999-07-01

    The inventory of pollutant emissions data and its management is the first step to assess the potential environmental impacts and the social-economic implications of different planning strategies. This requires to prepare a very flexible database which allows the user an easy querying of data, their up-grading, the possibility of comparing different information and to use software tools based on Geographical Information Systems to represent the localisation of emissions sources and their fallout on the territory. This paper describes the pollutant emissions inventory carried out for the Basilicata Region (Southern Italy) in the framework of a regional plan for air quality and environmental recovery. This inventory was built up taking into account the most recent normative framework, and points out the most important features of the emissions sources relatively to the investigated pollutants and to the different territorial areas. (Author)

  4. Development of a non-radiological air emissions inventory for a nuclear industrial facility

    International Nuclear Information System (INIS)

    Patnoe, C.A.; Porter, G.V.; Almquist, R.S.

    1991-01-01

    This paper describes the major issues that impacted the organization and structure of a project for developing a comprehensive non- radiological air emissions inventory for a nuclear weapons facility. The major issues addressed paralleled the development of the inventory project and fall into the following categories: (1) defining the scope of work, (2) developing and managing the air emission inventory project, and (3) field investigations and evaluating operations for air emissions. This paper also describes the lines of communication that were established with state regulators to resolve problems and develop a successful working relationship. This paper illustrates a means to complete a complex air emission inventory with proper organization and cooperation with regulatory agencies. Further, it indicates the need of critical evaluation of project tasks to evaluate their impact on project schedule; it provides a method for implementing a quality assurance program that audits all phases of the emission survey; and it demonstrates a way of effectively managing outside contractors to meet schedule requirements and assure a high quality product. This paper is of value to those undertaking a similar complex air emission survey. 2 refs

  5. National- to port-level inventories of shipping emissions in China

    Science.gov (United States)

    Fu, Mingliang; Liu, Huan; Jin, Xinxin; He, Kebin

    2017-11-01

    Shipping in China plays a global role, and has led worldwide maritime transportation for the last decade. However, without taking national or local port boundaries into account, it is impossible to determine the responsibility that each local authority has on emission controls, nor compare them with land-based emissions to determine the priority for controlling these emissions. In this study, we provide national- to port-level inventories for China. The results show that in 2013, the total emissions of CO, non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NO x ), particulate matter (PM), SO2 and CO2 were 0.0741 ± 0.0004 Tg•yr-1, 0.0691 ± 0.0004 Tg•yr-1, 1.91 ± 0.01 Tg•yr-1, 0.164 ± 0.001 Tg•yr-1, 1.30 ± 0.01 Tg•yr-1 and 86.3 ± 0.3 Tg•yr-1 in China, respectively. By providing high-resolution spatial distribution maps of these emissions, we identify three hotspots, centered on the Bohai Rim Area, the Yangtze River Delta and Pearl River Delta. These three hotspots account for 8% of the ocean area evaluated in this study, but contribute around 37% of total shipping emissions. Compared with on-road mobile source emissions, NO x and PM emissions from ships are equivalent to about 34% and 29% of the total mobile vehicle emissions in China. Moreover, this study provides detailed emission inventories for 24 ports in the country, which also greatly contributes to our understanding of global shipping emissions, given that eight of these ports rank within the top twenty of the port league table. Several ports in China suffer emissions 12-147 times higher than those at Los Angeles port. The ports of Ningbo-Zhou Shan, Shanghai, Hong Kong and Dalian dominate the port-level inventories, with individual emissions accounting for 28%-31%, 10%-14%, 10%-12% and 8%-14% of total emissions, respectively.

  6. High-resolution ammonia emissions inventories in Fujian, China, 2009-2015

    Science.gov (United States)

    Wu, Shui-Ping; Zhang, Yin-Ju; Schwab, James J.; Li, Yang-Fan; Liu, Yuan-Long; Yuan, Chung-Shin

    2017-08-01

    A high-resolution NH3 emission inventory was developed based on the corrected emission factors and county-level activity data. To provide model-ready emission input, the NH3 emission inventory was gridded for the modeling domain at 1 × 1 km resolution using source-based spatial surrogates and a GIS system. The best estimate of total NH3 emission for the province was 228.02 kt in 2015 with a percentage uncertainty of ±16.3%. Four major contributors were farmland ecosystem, livestock wastes, humans and waste treatment, which contributed 39.4%, 43.1%, 4.9%, and 4.2% of the total emissions, respectively. The averaged NH3 emission density for the whole region was 1.88 t km-2 yr-1 and the higher values were found in coastal areas with higher dense populations. The seasonal patterns, with higher emissions in summer, were consistent with the patterns of temperature and planting practices. From 2009 to 2015, annual NH3 emissions increased from 218.49 kt to 228.02 kt. All of these changes are insignificant compared to the estimated overall uncertainties in the analysis, but indicative of changes in the source categories over this period. Between 2009 and 2015, the largest changes occurred in human emissions and waste treatment plants, which were consistent with the process of rapid urbanization. Meanwhile, the decrease of emissions from pigs was slightly higher than the increased emissions from broilers and the increased emissions from meat goats and beef cattle due to the combine effects of increasingly stringent environmental requirements for pig farms and shift away from pork consumption to beef, chicken and mutton. The validity of the estimates was further evaluated using uncertainty analysis, comparison with previous studies, and correlation analysis between emission density and observed ground ammonia. The inventories reflect the changes in economic progress and environmental protection and can provide scientific basis for the establishment of effective PM2.5 control

  7. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-10-31

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 [EPA-HQ-OAR-2010-0687; FRL-9678-1] RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages 36341-36386 in the issue of Monday, June 18, 2012, make the following corrections: Sec. 87.2...

  8. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2008

    Science.gov (United States)

    2010-04-01

    An emissions inventory that identifies and quantifies a country's primary anthropogenic sources and sinks of greenhouse gases is essential for addressing climate change. This inventory adheres to both 1) a comprehensive and detailed set of methodolog...

  9. Development and evaluation of high-resolution regional emission inventory: A case study for Jiangsu Province, China

    Science.gov (United States)

    Zhao, Y.; Mao, P.; Zhou, Y.

    2017-12-01

    Improved emission inventories are crucial for better understanding atmospheric chemistry with air quality simulation at regional or local scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China. Key parameters for over 6000 industrial sources were investigated, compiled and revised at plant level based on various data sources and on-site survey. Totally 56 NMVOCs samples were collected in 9 chemical plants and analyzed with a gas chromatography-mass spectrometry system. Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate, and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Three inventories (national, regional, and provincial by this work) were applied in the Models-3/Community Multi-scale Air Quality (CMAQ) system to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized mean errors (NME) for all the concerned species SO2, NO2, O3 and PM2.5. The result thus implied the advantage of improved emission inventory at local scale for high resolution air quality modeling. Under the unfavorable meteorology in which horizontal and vertical movement of atmosphere was limited, the simulated SO2 concentrations at downtown Nanjing (the capital city of Jiangsu) using the regional or national inventories were much higher than observation, implying overestimated urban emissions when economy or population densities were applied to downscale or allocate the emissions. With more accurate spatial distribution

  10. On the unification of aircraft ultrafine particle emission data

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Busen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Turco, R.P.; Yu Fangqun [California Univ., Los Angeles, CA (United States). Dept. of Atmospheric Sciences; Danilin, M.Y.; Weisenstein, D.K. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miake-Lye, R.C. [Aerodyne Research, Inc., Billerica, MA (United States)

    2000-03-01

    To predict the environmental impacts of future commercial aviation, intensive studies have been launched to measure the properties and effects of aircraft emissions. These observations have revealed an extremely wide variance with respect to the number and sizes of the particles produced in the exhaust plumes. Aircraft aerosol ultimately contributes to the population of cloud-forming nuclei, and may lead to significant global radiative and chemical perturbations. In this paper, recent discoveries are coordinated and unified in the form of a physically consistent plume aerosol model that explains most of the observational variance. Using this new approach, it is now practical to carry out reliable global atmospheric simulations of aircraft effects, as demonstrated by a novel assessment of the perturbation of the stratospheric aerosol layer by a supersonic aircraft fleet. (orig.)

  11. Spatial inter-comparison of Top-down emission inventories in European urban areas

    Science.gov (United States)

    Trombetti, Marco; Thunis, Philippe; Bessagnet, Bertrand; Clappier, Alain; Couvidat, Florian; Guevara, Marc; Kuenen, Jeroen; López-Aparicio, Susana

    2018-01-01

    This paper presents an inter-comparison of the main Top-down emission inventories currently used for air quality modelling studies at the European level. The comparison is developed for eleven European cities and compares the distribution of emissions of NOx, SO2, VOC and PPM2.5 from the road transport, residential combustion and industry sectors. The analysis shows that substantial differences in terms of total emissions, sectorial emission shares and spatial distribution exist between the datasets. The possible reasons in terms of downscaling approaches and choice of spatial proxies are analysed and recommendations are provided for each inventory in order to work towards the harmonisation of spatial downscaling and proxy calibration, in particular for policy purposes. The proposed methodology may be useful for the development of consistent and harmonised European-wide inventories with the aim of reducing the uncertainties in air quality modelling activities.

  12. Implications of emission inventory choice for modeling fire-related pollution in the U.S.

    Science.gov (United States)

    Koplitz, S. N.; Nolte, C. G.; Pouliot, G.

    2017-12-01

    Wildland fires are a major source of fine particulate matter (PM2.5), one of the most harmful ambient pollutants for human health globally. Within the U.S., wildland fires can account for more than 30% of total annual PM2.5 emissions. In order to represent the influence of fire emissions on atmospheric composition, regional and global chemical transport models (CTMs) rely on fire emission inventories developed from estimates of burned area (i.e. fire size and location). Burned area can be estimated using a range of top-down and bottom-up approaches, including satellite-derived remote sensing and on-the-ground incident reports. While burned area estimates agree with each other reasonably well in the western U.S. (within 20-30% for most years during 2002-2014), estimates for the southern U.S. vary by more than a factor of 3. Differences in burned area estimation methods lead to significant variability in the spatial and temporal allocation of emissions across fire emission inventory platforms. In this work, we implement fire emission estimates for 2011 from three different products - the USEPA National Emission Inventory (NEI), the Fire INventory of NCAR (FINN), and the Global Fire Emission Database (GFED4s) - into the Community Multiscale Air Quality (CMAQ) model to quantify and characterize differences in simulated fire-related PM2.5 and ozone concentrations across the contiguous U.S. due solely to the emission inventory used. Preliminary results indicate that the estimated contribution to national annual average PM2.5 from wildland fire in 2011 is highest using GFED4s emissions (1.0 µg m-3) followed by NEI (0.7 µg m-3) and FINN (0.3 µg m-3), with comparisons varying significantly by region and season. Understanding the sensitivity of modeling fire-related PM2.5 and ozone in the U.S. to fire emission inventory choice will inform future efforts to assess the implications of present and future fire activity for air quality and human health at national and global

  13. IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    Science.gov (United States)

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  14. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Science.gov (United States)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  15. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory; ANNUAL

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  16. Compilation of a global inventory of emissions of nitrous oxide

    NARCIS (Netherlands)

    Bouwman, A.F.

    1995-01-01

    A global inventory with 1°x1° resolution was compiled of emissions of nitrous oxide (N 2 O) to the atmosphere, including emissions from soils under natural vegetation, fertilized agricultural land, grasslands and animal excreta, biomass burning, forest clearing,

  17. Development of emissions inventories for the Auto/Oil Air Quality Improvement Research Program

    International Nuclear Information System (INIS)

    Pollack, A.K.; Fieber, J.L.; Lauer, G.; Dunker, A.M.; Noda, A.M.; Schleyer, C.H.; Chock, D.P.; Hertz, M.; Metcalfe, J.E.

    1992-01-01

    The air quality effects of different reformulated gasolines, various other alternative fuels, and developments in automotive technologies are being studied as part of a joint research project conducted by a consortium of three domestic auto companies and fourteen petroleum companies. As part of the air quality modeling effort, emission inventories are being developed in a near-term year (1995), and 21 fuels in a long-term year (2005 or 2010). A distinctive feature of this effort is that these inventories are the first used in an air quality study that treat light duty vehicle emissions by operating mode as well as by class, and base the speciation characteristics of each operating mode on actual vehicle test results. This incorporates an unusual amount of detail on the relative importance of each of the three vehicle exhaust, two evaporative, and running loss operating modes, both in terms of overall mass emission amounts and in terms of the hydrocarbon speciation and ozone reactivity. This study also allows a better estimate of the relative importance of each vehicle class and technology type to an overall emission inventory, and of the differences in the effects of alternative fuels between vehicle technologies and classes. In addition, the role of mobile source emissions relative to other sources of emissions for both short-term and long-term emission projections, and across a wide geographic range is being assessed. This paper first describes the techniques used in developing these emission inventories, and then examines regional, temporal, and fuel/vehicle effects on emissions

  18. Calendar Year 2016 Stationary Source Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    The City of Albuquerque (COA) Environmental Health Department Air Quality Program has issued stationary source permits and registrations the Department of Energy/Sandia Field Office for operations at the Sandia National Laboratories/New Mexico. This emission inventory report meets the annual reporting compliance requirements for calendar year (CY) 2016 as required by the COA.

  19. GHG emission estimates for road transport in national GHG inventories

    NARCIS (Netherlands)

    Pulles, M.P.J.; Yang, H.

    2011-01-01

    The annual reporting procedures of the United Nations Framework Convention on Climate Change (UNFCCC) have now produced greenhouse gas (GHG) emission inventories from 40 so-called Annex I countries for 18 years. This article analyses a subset of these data: emissions from road transport. The article

  20. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  1. Quantifying the uncertainties of China's emission inventory for industrial sources: From national to provincial and city scales

    Science.gov (United States)

    Zhao, Yu; Zhou, Yaduan; Qiu, Liping; Zhang, Jie

    2017-09-01

    A comprehensive uncertainty analysis was conducted on emission inventories for industrial sources at national (China), provincial (Jiangsu), and city (Nanjing) scales for 2012. Based on various methods and data sources, Monte-Carlo simulation was applied at sector level for national inventory, and at plant level (whenever possible) for provincial and city inventories. The uncertainties of national inventory were estimated at -17-37% (expressed as 95% confidence intervals, CIs), -21-35%, -19-34%, -29-40%, -22-47%, -21-54%, -33-84%, and -32-92% for SO2, NOX, CO, TSP (total suspended particles), PM10, PM2.5, black carbon (BC), and organic carbon (OC) emissions respectively for the whole country. At provincial and city levels, the uncertainties of corresponding pollutant emissions were estimated at -15-18%, -18-33%, -16-37%, -20-30%, -23-45%, -26-50%, -33-79%, and -33-71% for Jiangsu, and -17-22%, -10-33%, -23-75%, -19-36%, -23-41%, -28-48%, -45-82%, and -34-96% for Nanjing, respectively. Emission factors (or associated parameters) were identified as the biggest contributors to the uncertainties of emissions for most source categories except iron & steel production in the national inventory. Compared to national one, uncertainties of total emissions in the provincial and city-scale inventories were not significantly reduced for most species with an exception of SO2. For power and other industrial boilers, the uncertainties were reduced, and the plant-specific parameters played more important roles to the uncertainties. Much larger PM10 and PM2.5 emissions for Jiangsu were estimated in this provincial inventory than other studies, implying the big discrepancies on data sources of emission factors and activity data between local and national inventories. Although the uncertainty analysis of bottom-up emission inventories at national and local scales partly supported the ;top-down; estimates using observation and/or chemistry transport models, detailed investigations and

  2. Contact Us About Clearinghouse for Inventories and Emissions Factors

    Science.gov (United States)

    Emissions inventories, modeling, and monitoring are the basis for understanding, controlling and tracking stationary sources of air pollution. This technical site provides access to tools and data to support those efforts.

  3. Greenhouse Gas Emissions in the Netherlands 1990-2006. National Inventory Report 2008

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Ruyssenaars, P.G.; Van den Born, G.J.; Brandes, L.J.; Hoen, A.; Te Molder, R.; Nijdam, D.S.; Olivier, J.G.J.; Peek, C.J.; Coenen, P.W.H.G.; Vreuls, H.H.J.; Van den Berghe, G.; Baas, K.; Guis, B.

    2008-01-01

    This report represents the 2008 Netherlands' annual inventory submission under the Kyoto Protocol and the United Nations Framework Convention on Climate Change (UNFCCC), as well as the European Union's Greenhouse Gas Monitoring Mechanism. It has been prepared following the relevant guidelines, which also refer to Revised 1996 IPCC Guidelines and IPCC Good Practice guidance and Uncertainty Management reports, provide a format for the definition of source categories and for calculation, documentation and reporting of emissions. The guidelines aim at facilitating verification, technical assessment and expert review of the inventory information by independent Expert Review Teams of the UNFCCC. Therefore, the inventories should be transparent, consistent, comparable, complete and accurate as elaborated in the UNFCCC Guidelines for reporting and be prepared using good practice as described in the IPCC Good Practice Guidance. This National Inventory Report (NIR) 2008 therefore provides explanations of the trends in greenhouse gas emissions, activity data and (implied) emission factors for the period 1990-2006. It also summarises descriptions of methods and data sources of Tier 1 assessments of the uncertainty in annual emissions and in emission trends; it presents an assessment of key sources following the Tier 1 and Tier 2 approaches of the IPCC Good Practice Guidance; and describes Quality Assurance and Quality Control activities. This report provides no specific information on the effectiveness of government policies for reducing greenhouse gas emissions. This information can be found in the annual Environmental Balance (in Dutch: 'Milieubalans') prepared by the Netherlands' Environmental Assessment Agency (MNP) and the 4th National Communication (NC4) prepared by the government of the Netherlands. So-called Common Reporting Format (CRF) spreadsheet files, containing data on emissions, activity data and implied emission factors, accompany this report. The complete set

  4. Update and improvement of the global krypton-85 emission inventory.

    Science.gov (United States)

    Ahlswede, Jochen; Hebel, Simon; Ross, J Ole; Schoetter, Robert; Kalinowski, Martin B

    2013-01-01

    Krypton-85 is mainly produced in nuclear reactors by fission of uranium and plutonium and released during chopping and dissolution of spent fuel rods in nuclear reprocessing facilities. As noble gas it is suited as a passive tracer for evaluation of atmospheric transport models. Furthermore, research is ongoing to assess its quality as an indicator for clandestine reprocessing activities. This paper continues previous efforts to compile a comprehensive historic emission inventory for krypton-85. Reprocessing facilities are the by far largest emitters of krypton-85. Information on sources and calculations used to derive the annual krypton-85 emission is provided for all known reprocessing facilities in the world. In addition, the emission characteristics of two plants, Tokai (Japan) and La Hague (France), are analysed in detail using emission data with high temporal resolution. Other types of krypton-85 sources are power reactors, naval reactors and isotope production facilities. These sources contribute only little or negligible amounts of krypton-85 compared to the large reprocessing facilities. Taking the decay of krypton-85 into account, the global atmospheric inventory is estimated to about 5500 PBq at the end of 2009. The correctness if the inventory has been proven by meteorological simulations and its error is assumed to be in the range of a few percent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A 2009 Mobile Source Carbon Dioxide Emissions Inventory for the University of Central Florida.

    Science.gov (United States)

    Clifford, Johanna M; Cooper, C David

    2012-09-01

    A mobile source carbon dioxide (CO2) emissions inventory for the University of Central Florida (UCF) has been completed. Fora large urban university, more than 50% of the CO2 emissions can come from mobile sources, and the vast majority of mobile source emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff and administrators to and from the university as well as on university business trips. In addition to emissions from on-road vehicles, emissions from airplane-based business travel are significant, along with emissions from nonroad equipment such as lawnmowers, leaf blowers, and small maintenance vehicles utilized on campus. UCF has recently become one of the largest universities in the nation (with over 58,000 students enrolled in the fall 2011 semester) and emits a substantial amount of CO2 in the Central Florida area. For this inventory, students, faculty, staff and administrators were first surveyed to determine their commuting distances and frequencies. Information was also gathered on vehicle type and age distribution of the personal vehicles of students, faculty, administrators, and staff as well as their bus, car-pool, and alternate transportation usage. The latest US. Environmental Protection Agency (EPA)-approved mobile source emissions model, Motor Vehicle Emissions Simulator (MOVES2010a), was used to calculate the emissions from on-road vehicles, and UCF fleet gasoline consumption records were used to calculate the emissions from nonroad equipment and from on-campus UCF fleet vehicles. The results of this UCF mobile source emissions inventory were compared with those for another large U.S. university. With the growing awareness of global climate change, a number of colleges/universities and other organizations are completing greenhouse gas emission inventories. Assumptions often are made in order to calculate mobile source emissions, but without field data or valid reasoning, the accuracy of those

  6. Emissions inventories and options for control SUMMARY REPORT

    NARCIS (Netherlands)

    Swart RJ; Amstel AR van; Born GJ van den; Kroeze C; MTV; LAE

    1994-01-01

    This report is the final summary report of the project "Social causes of the greenhouse effect ; emissions inventories and options for control", funded by the National Research Programme on Global Air Pollution and Climate Change (NRP) and the Environment Directorate of the Ministry of Housing,

  7. Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

    Science.gov (United States)

    EPA is proposing to adopt emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  8. The European Dioxin Emission Inventory. Stage II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Quass, U.; Fermann, M.; Broeker, G.

    2001-07-01

    For Stage II of the European Dioxin Project the following objectives were set: - Amendment of existing emission data collected for most relevant emission sources in order to reduce uncertainties of emission estimates. Collecting first emission data from countries not yet performing dioxin emission measurement programs. Extending the inventory of dioxin emissions to ambient air produced in Stage I by a complementary study on emissions to land and water. Extending the regional scope of data collection to countries in Central Europe. The report of Stage II of the European Dioxin Project is presented in 3 Volumes. Volume 1 contains an overview on the background and approach of different activities carried out and on the results obtained. These results are put into a broader view regarding the dioxin reduction measures in Europe leading to conclusions and recommendation for future work. Volume 2 of the report contains a detailed presentation of the sub-projects carried out. The chapters of Volume 2 are structured in a similar manner and start with a short summary in order to allow for a fast cross-reading. In the case of the desk-top studies an overview of the main results or statements is given. Regarding emission measurements details on the experimental set-up and the facilities being investigated are presented. Volume 3 contains a re-evaluation of the dioxin emission inventory presented for the most relevant sources types in the Stage I report. New data gathered from the projects of Stage II as well as from independent activities in the European countries are considered for a revision of the 1995 emission estimates. Additionally, based on current trends and activities the PCDD/F emissions for the years 2000 and 2005 are estimated. Finally, an attempt is made to evaluate the PCDD/F emission reduction rates which might be possible to achieve by the year 2005 compared to 1985. (orig.)

  9. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    Science.gov (United States)

    Waked, Antoine; Afif, Charbel; Seigneur, Christian

    2012-04-01

    A temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 for the year 2010 were 563, 75, 62, 115, 4, 12, and 9 Gg, respectively. About 93% of CO emissions, 67% of NMVOC emissions and 52% of NOx emissions are calculated to originate from the on-road transport sector while 73% of SO2 emissions, 62% of PM10 emissions and 59% of PM2.5 emissions are calculated to originate from power plants and industrial sources. The spatial allocation of emissions shows that the city of Beirut and its suburbs encounter a large fraction of the emissions from the on-road transport sector while urban areas such as Zouk Mikael, Jieh, Chekka and Selaata are mostly affected by emissions originating from the industrial and energy production sectors. Temporal profiles were developed for several emission sectors.

  10. U.S. Airport Greenhouse Gas Emissions Inventories: State of the Practice and Recommendations for Airports.

    Science.gov (United States)

    2016-03-01

    This document presents highlights from five research reports on airport greenhouse gas (GHG) emissions inventories. It presents the most salient findings for policy makers and U.S. airports seeking to better understand and inventory airport GHG emiss...

  11. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2012-01-01

    Full Text Available Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC.

    Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2, 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC.

    For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2, 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and

  12. Methods for reducing pollutant emissions from jet aircraft

    Science.gov (United States)

    Butze, H. F.

    1971-01-01

    Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

  13. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  14. Characteristics of Biogenic VOCs Emission and its High-Resolution Emission Inventory in China

    Science.gov (United States)

    Li, L.; Li, Y.; Xie, S.

    2017-12-01

    Biogenic volatile organic compounds (BVOCs), with high emission and reactivity, can have substantial impacts on the haze and photochemical pollution. It is essential to establish an accurate high-resolution BVOC emission inventory in China for air quality simulation and decision making. Firstly, a semi-static enclosure technique is developed for the field measurements of BVOC emission rates from 50 plant species in China. Using the GC-MS/FID system, 103 VOC species for each plant species are measured. Based on the field measurements in our study and the reported emission rates at home and abroad, a methodology for determining the emission categories of BVOCs is developed using statistical analysis. The isoprene and monoterpene emission rates of 192 plant species/genera in China are determined based on the above emission categories. Secondly, a new vegetation classification with 82 plant functional types (PFTs) is developed based on the most detailed and latest vegetation investigations, China's official statistical data and Vegetation Atlas of China (1:1,000,000). The leaf biomass is estimated based on provincial vegetation volume and production with biomass-apportion models. The WRF model is used to determine meteorological variables at a high spatio-temporal resolution. Using MEAGNv2.1 and the determined emission rates in our study, the high-resolution emission inventories of isoprene, 37 monoterpene species, 32 sesquiterpene species, and other VOCs (OVOCs) from 82 PFTs in China for 1981-2013 are established. The total annual BVOC emissions in 2013 are 55.88 Tg, including 33.87 Tg isoprene, 6.36 Tg monoterpene, 1.29 Tg sesquiterpene, and 14.37 Tg OVOCs. The distribution of isoprene emission fluxes is consistent with the distribution of broadleaf trees, especially tree species with high or higher emission potential. During 1981-2013, China's BVOC emissions have increased by 47.48% at an average rate of 1.80% yr-1. Emissions of isoprene have the largest enhancement

  15. Reconciling Top-Down and Bottom-Up Estimates of Oil and Gas Methane Emissions in the Barnett Shale

    Science.gov (United States)

    Hamburg, S.

    2015-12-01

    Top-down approaches that use aircraft, tower, or satellite-based measurements of well-mixed air to quantify regional methane emissions have typically estimated higher emissions from the natural gas supply chain when compared to bottom-up inventories. A coordinated research campaign in October 2013 used simultaneous top-down and bottom-up approaches to quantify total and fossil methane emissions in the Barnett Shale region of Texas. Research teams have published individual results including aircraft mass-balance estimates of regional emissions and a bottom-up, 25-county region spatially-resolved inventory. This work synthesizes data from the campaign to directly compare top-down and bottom-up estimates. A new analytical approach uses statistical estimators to integrate facility emission rate distributions from unbiased and targeted high emission site datasets, which more rigorously incorporates the fat-tail of skewed distributions to estimate regional emissions of well pads, compressor stations, and processing plants. The updated spatially-resolved inventory was used to estimate total and fossil methane emissions from spatial domains that match seven individual aircraft mass balance flights. Source apportionment of top-down emissions between fossil and biogenic methane was corroborated with two independent analyses of methane and ethane ratios. Reconciling top-down and bottom-up estimates of fossil methane emissions leads to more accurate assessment of natural gas supply chain emission rates and the relative contribution of high emission sites. These results increase our confidence in our understanding of the climate impacts of natural gas relative to more carbon-intensive fossil fuels and the potential effectiveness of mitigation strategies.

  16. An updated emission inventory of vehicular VOCs and IVOCs in China

    Science.gov (United States)

    Liu, Huan; Man, Hanyang; Cui, Hongyang; Wang, Yanjun; Deng, Fanyuan; Wang, Yue; Yang, Xiaofan; Xiao, Qian; Zhang, Qiang; Ding, Yan; He, Kebin

    2017-10-01

    Currently, the emission inventory of vehicular volatile organic compounds (VOCs) is one of those with the largest errors and uncertainties due to suboptimal estimation methods and the lack of first-hand basic data. In this study, an updated speciated emission inventory of VOCs and an estimation of intermediate-volatility organic compounds (IVOCs) from vehicles in China at the provincial level for the year of 2015 are developed based on a set of state-of-the-art methods and an abundance of local measurement data. Activity data for light-duty vehicles are derived from trajectories of more than 70 000 cars for 1 year. The annual mileage of trucks are calculated from reported data by more than 2 million trucks in China. The emission profiles are updated using measurement data. Vehicular tailpipe emissions (VTEs) and four types of vehicular evaporation emissions (VEEs), including refueling, hot soak, diurnal and running loss, are taken into account. Results show that the total vehicular VOC emissions in China are 4.21 Tg (with a 95 % confidence interval range from 2.90 to 6.54 Tg) and the IVOC emissions are 200.37 Gg in 2015. VTEs are still the predominant contributor, while VEEs are responsible for 39.20 % of VOC emissions. The control of VEEs is yet to be optimized in China. Among VTEs, passenger vehicles emissions have the largest share (49.86 %), followed by trucks (28.15 %) and motorcycles (21.99 %). Among VEEs, running loss is the largest contributor (81.05 %). For both VTEs and VEEs, Guangdong, Shandong and Jiangsu province are three of the highest, with a respective contribution of 10.66, 8.85 and 6.54 % to the total amounts of VOCs from vehicles. 97 VOC species are analyzed in this VOC emission inventory. i-Pentane, toluene and formaldehyde are found to be the most abundant species in China's vehicular VOC emissions. The estimated IVOCs are another inconvenient truth, concluding that precursor emissions for secondary organic aerosol (SOA) from vehicles are much

  17. Evaluation of mobile emissions contributions to Mexico City's emissions inventory using on-road and cross-road emission measurements and ambient data

    Science.gov (United States)

    Zavala, M.; Herndon, S. C.; Wood, E. C.; Onasch, T. B.; Knighton, W. B.; Marr, L. C.; Kolb, C. E.; Molina, L. T.

    2009-09-01

    Mobile emissions represent a significant fraction of the total anthropogenic emissions burden in the Mexico City Metropolitan Area (MCMA) and, therefore, it is crucial to use top-down techniques informed by on-road exhaust measurements to evaluate and improve traditional bottom-up official emissions inventory (EI) for the city. We present the measurements of on-road fleet-average emission factors obtained using the Aerodyne mobile laboratory in the MCMA in March 2006 as part of the MILAGRO/MCMA-2006 field campaign. A comparison of our on-road emission measurements with those obtained in 2003 using essentially the same measurement techniques and analysis methods indicates that, in the three year span, NO emission factors remain within the measured variability ranges whereas emission factors of aldehydes and aromatics species were reduced for all sampled driving conditions. We use a top-down fuel-based approach to evaluate the mobile emissions from the gasoline fleet estimated in the bottom-up official 2006 MCMA mobile sources. Within the range of measurement uncertainties, we found probable slight overpredictions of mean EI estimates on the order of 20-28% for CO and 14-20% for NO. However, we identify a probable EI discrepancy of VOC mobile emissions between 1.4 and 1.9; although estimated benzene and toluene mobile emissions in the inventory seem to be well within the uncertainties of the corresponding emissions estimates. Aldehydes mobile emissions in the inventory, however, seem to be underpredicted by factors of 3 for HCHO and 2 for CH3CHO. Our on-road measurement-based estimate of annual emissions of organic mass from PM1 particles suggests a severe underprediction (larger than a factor of 4) of PM2.5 mobile emissions in the inventory. Analyses of ambient CO, NOx and CO/NOx concentration trends in the MCMA indicate that the early morning ambient CO/NOx ratio has decreased at a rate of about 1.9 ppm/ppm/year over the last two decades due to reductions in CO

  18. Modelling African aerosol using updated fossil fuel and biofuel emission inventories for 2005 and 2030

    Science.gov (United States)

    Liousse, C.; Penner, J. E.; Assamoi, E.; Xu, L.; Criqui, P.; Mima, S.; Guillaume, B.; Rosset, R.

    2010-12-01

    A regional fossil fuel and biofuel emission inventory for particulates has been developed for Africa at a resolution of 0.25° x 0.25° for the year 2005. The original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Consumption data were corrected after direct inquiries conducted in Africa, including a new emitter category (i.e. two-wheel vehicles including “zemidjans”) and a new activity sector (i.e. power plants) since both were not considered in the previous emission inventory. Emission factors were measured during the 2005 AMMA campaign (Assamoi and Liousse, 2010) and combustion chamber experiments. Two prospective inventories for 2030 are derived based on this new regional inventory and two energy consumption forecasts by the Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario, where no emission controls beyond those achieved in 2003 are taken into account, and the second is for a "clean" scenario where possible and planned policies for emission control are assumed to be effective. BC and OCp emission budgets for these new inventories will be discussed and compared to the previous global dataset. These new inventories along with the most recent open biomass burning inventory (Liousse et al., 2010) have been tested in the ORISAM-TM5 global chemistry-climate model with a focus over Africa at a 1° x 1° resolution. Global simulations for BC and primary OC for the years 2005 and 2030 are carried out and the modelled particulate concentrations for 2005 are compared to available measurements in Africa. Finally, BC and OC radiative properties (aerosol optical depths and single scattering albedo) are calculated and the direct radiative forcing is estimated using an off line model (Wang and Penner, 2009). Results of sensitivity tests driven with different emission scenarios will be presented.

  19. Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A cradle-to-grave life cycle assessment (LCA of structural aircraft materials has been utilised to assess and compare the total emissions produced during manufacturing, use and disposal of aerospace materials and their selected components. First, a comparison of aluminium, GLARE and carbon fibre reinforced polymer (CFRP plates was performed to investigate the potential of lightweight composites in reducing aviation emissions. Subsequently, a case study is presented on a tubular component for which more accurate manufacturing data were directly available. A structural steel tube was replaced with a composite tubular component. The analysis has shown that once the composite material is used as a component in the aircraft, there is a cumulative saving of aircraft fuel and emissions, in particular from CFRP structures. The environmental analysis included the long-term use predictions for CFRPs, involving detailed raw materials production, use and operation, and disposal scenarios.

  20. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  1. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  2. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    Science.gov (United States)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  3. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    Science.gov (United States)

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  4. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  5. QCGAT aircraft/engine design for reduced noise and emissions

    Science.gov (United States)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  6. Large eddy simulation of air pollution produced by aircraft engine emissions inside the airport

    Energy Technology Data Exchange (ETDEWEB)

    Synylo, Kateryna [National Aviation University (Ukraine)], email: synylo@nau.edu.ua

    2011-07-01

    With the increase of air traffic movement, air pollution from airport emissions has become an important concern. In the past, various research has been undertaken on the impact of aircraft engines on the upper troposphere and lower stratosphere, however the impact that emissions have on airports themselves is not taken into account by the most frequently used monitoring software programs. The aim of this paper is to present the use of a CFD simulation to determine the dynamic and fluid mechanics characteristics of aircraft emissions near the ground. The CFD simulation was carried out using Fluent 6.3 software and the effects of counter-rotating vortices and wind conditions on fulfilled gases jet. It was found that numerical simulation is able to resolve difficult equations and provide realistic results. This study demonstrated that the use of CFD computation could be used to improve local air quality modeling and assessment of the impact of aircraft emissions at airports.

  7. Comparative study of automotive, aircraft and biogenic emissions of aldehydes and aromatic compounds.

    Science.gov (United States)

    Guimarães, C S; Custodio, D; de Oliveira, R C S; Varandas, L S; Arbilla, G

    2010-02-01

    Air samples were collected in three well characterized locations in the city of Rio de Janeiro, Brazil: downtown, the idle and taxi way areas of the national airport and an urban forest, where the main emissions are from vehicular, aircraft and biogenic sources, respectively. Aldehydes and BTEX concentrations show a characteristic profile which may be attributed to the emission sources. Formaldehyde/acetaldehyde ratios, in the early morning, were 1.39, 0.62 and 2.22 in downtown, airport and forest, respectively. Toluene/benzene ratios, for downtown, airport and forest areas, were 1.11, 1.82 and 1.06, respectively. The results show that the impact of the urban emissions on the forest is negligible as well as the impact of aircraft emissions over the urban area.

  8. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  9. Danish emission inventories for road transport and other mobile sources. Inventories until year 2004

    International Nuclear Information System (INIS)

    Winther, M.

    2007-01-01

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results for CO 2 , CH 4 , N 2 O, SO 2 , NO X , NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH are shown from 1985 to 2004. In this period the fuel use and CO 2 emissions for road transport have increased by 48%. The emission decreases for PM (exhaust only), CO, NO X and NMVOC are 35, 58, 34 and 66% respectively, due to the introduction of vehicles complying with gradually stricter emission standards. A N 2 O emission increase of 301% is related to the high emissions from gasoline catalyst cars. For other mobile sources the fuel use and CO 2 emissions have decreased by 15% from 1985 to 2004. The PM, NO x and NMVOC emission declines are 46, 14 and 10%, respectively. For SO 2 the emission drop is 74% from 1985 to 2004, due to gradually lower fuel sulphur contents. For CO the 1985 and 2004 emissions are the same. Uncertainties for the emissions and trends have been estimated. (au)

  10. Danish emission inventories for road transport and other mobile sources. Inventories until year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M. [DMU, Dept. of Policy Analysis (Denmark)

    2007-01-15

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH are shown from 1985 to 2004. In this period the fuel use and CO{sub 2} emissions for road transport have increased by 48%. The emission decreases for PM (exhaust only), CO, NO{sub X} and NMVOC are 35, 58, 34 and 66% respectively, due to the introduction of vehicles complying with gradually stricter emission standards. A N{sub 2}O emission increase of 301% is related to the high emissions from gasoline catalyst cars. For other mobile sources the fuel use and CO{sub 2} emissions have decreased by 15% from 1985 to 2004. The PM, NO{sub x} and NMVOC emission declines are 46, 14 and 10%, respectively. For SO{sub 2} the emission drop is 74% from 1985 to 2004, due to gradually lower fuel sulphur contents. For CO the 1985 and 2004 emissions are the same. Uncertainties for the emissions and trends have been estimated. (au)

  11. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  12. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J; Ebel, A; Lippert, E; Petry, H [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1998-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  13. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1997-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  14. An inventory of potential PCDD and PCDF emission sources in the mainland of China

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun; Xiaoyan, Tang [Peking Univ., Beijing (China); Peng, Hao [Central Univ. for Nationalities, Beijing (China)

    2004-09-15

    Polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofurans (PCDF) are widespread environmental pollutants. A number of countries have developed national inventories of PCDD/F emission, such as USA, EU Nations and Japan. However, due to the lack of PCDD/F data measured in China and the uncertain nature of the documentation available on emission factors, the report on inventories of dioxin emission is absent. With the municipal population growth, economic development and living-standard improvement, China faces many severe environment issues including potential problems related to PCDD/F. The country is aware of potential dioxin sources such as: incineration, iron and steel industry, chemical industry, fires, coal power plant, foundries, PCB in capacitors and transformers, sintering, traffic emission. In 2001, China signed the Stockholm Convention on Persistent Organic Pollutants in Stockholm. Therefore, there is a need for information regarding dioxin emission from these sources for taking actions to reduce and/or eliminate the release of dioxins in China, and reduce human exposure. In this study, we identify those potential PCDD/F emission sources and work out the first inventory on PCDD/F emission into the environment in China.

  15. International Assistance for Low-Emission Development Planning: Coordinated Low Emissions Assistance Network (CLEAN) Inventory of Activities and Tools--Preliminary Trends

    Energy Technology Data Exchange (ETDEWEB)

    Cox, S.; Benioff, R.

    2011-05-01

    The Coordinated Low Emissions Assistance Network (CLEAN) is a voluntary network of international practitioners supporting low-emission planning in developing countries. The network seeks to improve quality of support through sharing project information, tools, best practices and lessons, and by fostering harmonized assistance. CLEAN has developed an inventory to track and analyze international technical support and tools for low-carbon planning activities in developing countries. This paper presents a preliminary analysis of the inventory to help identify trends in assistance activities and tools available to support developing countries with low-emission planning.

  16. Comparison of global inventories of CO_2 emissions from biomass burning during 2002–2011 derived from multiple satellite products

    International Nuclear Information System (INIS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto; Yamaguchi, Yasushi; Chen, Xuehong

    2015-01-01

    This study compared five widely used globally gridded biomass burning emissions inventories for the 2002–2011 period (Global Fire Emissions Database 3 (GFED3), Global Fire Emissions Database 4 (GFED4), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0) and Global Inventory for Chemistry-Climate studies-GFED4 (G-G)). Average annual CO_2 emissions range from 6521.3 to 9661.5 Tg year"−"1 for five inventories, with extensive amounts in Africa, South America and Southeast Asia. Coefficient of Variation for Southern America, Northern and Southern Africa are 30%, 39% and 48%. Globally, the majority of CO_2 emissions are released from savanna burnings, followed by forest and cropland burnings. The largest differences among the five inventories are mainly attributable to the overestimation of CO_2 emissions by FINN1.0 in Southeast Asia savanna and cropland burning, and underestimation in Southern Africa savanna and Amazon forest burning. The overestimation in Africa by G-G also contributes to the differences. - Highlights: • Five widely used global biomass burning emissions inventories were compared. • Global CO_2 emissions compared well while regional differences are large. • The largest differences were found in Southeast Asia and Southern Africa. • Savanna burning emission was the largest contributor to the global emissions. • Variations in savanna burning emission led to the differences among inventories. - Differences of the five biomass burning CO_2 emissions inventories were found in Southeast Asia and Southern Africa due to the variations in savanna burning emissions estimation.

  17. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  18. Aircraft Emissions: Potential Effects on Ozone and Climate - A Review and Progress Report

    Science.gov (United States)

    1977-03-01

    course, continued researc leads to con- vergence of fact and theory. In this area, such continued research is clearly PI essential. In reporting on...with supersonic aircraft operating higher than subsonic aircraft; geo- r~I graphical distribution depends on the markets served. All these factors change...noted above, altitude and geogp’aphical distribution of emissions depends on the types of aircraft assumed and markets served. The aggregation of

  19. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    Science.gov (United States)

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  20. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    NARCIS (Netherlands)

    Steenhuisen, Frits; Wilson, Simon J.

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important

  1. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Science.gov (United States)

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  2. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA experiment

    Directory of Open Access Journals (Sweden)

    G. Pereira

    2016-06-01

    Full Text Available Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM and the Fire Inventory from NCAR (FINN are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP and the Global Fire Assimilation System (GFAS are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September–31 October 2012. Aerosol optical thickness (AOT550 nm derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO emission estimates exhibit significant linear correlations (r, p  >  0.05 level, Student t test between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model

  3. An updated emission inventory of vehicular VOCs and IVOCs in China

    Directory of Open Access Journals (Sweden)

    H. Liu

    2017-10-01

    Full Text Available Currently, the emission inventory of vehicular volatile organic compounds (VOCs is one of those with the largest errors and uncertainties due to suboptimal estimation methods and the lack of first-hand basic data. In this study, an updated speciated emission inventory of VOCs and an estimation of intermediate-volatility organic compounds (IVOCs from vehicles in China at the provincial level for the year of 2015 are developed based on a set of state-of-the-art methods and an abundance of local measurement data. Activity data for light-duty vehicles are derived from trajectories of more than 70 000 cars for 1 year. The annual mileage of trucks are calculated from reported data by more than 2 million trucks in China. The emission profiles are updated using measurement data. Vehicular tailpipe emissions (VTEs and four types of vehicular evaporation emissions (VEEs, including refueling, hot soak, diurnal and running loss, are taken into account. Results show that the total vehicular VOC emissions in China are 4.21 Tg (with a 95 % confidence interval range from 2.90 to 6.54 Tg and the IVOC emissions are 200.37 Gg in 2015. VTEs are still the predominant contributor, while VEEs are responsible for 39.20 % of VOC emissions. The control of VEEs is yet to be optimized in China. Among VTEs, passenger vehicles emissions have the largest share (49.86 %, followed by trucks (28.15 % and motorcycles (21.99 %. Among VEEs, running loss is the largest contributor (81.05 %. For both VTEs and VEEs, Guangdong, Shandong and Jiangsu province are three of the highest, with a respective contribution of 10.66, 8.85 and 6.54 % to the total amounts of VOCs from vehicles. 97 VOC species are analyzed in this VOC emission inventory. i-Pentane, toluene and formaldehyde are found to be the most abundant species in China's vehicular VOC emissions. The estimated IVOCs are another inconvenient truth, concluding that precursor emissions for secondary organic

  4. The Norwegian Emission Inventory 2012. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond (ed.)

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF (land use, land-use change and forestry) is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2012) for documentation on this topic.This report replaces the previous documentation of the emission model (Sandmo 2011), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: Minor NOx emissions from production of rock wool, which previously not have been estimated, have been included, Some factors for estimation of N2O from agriculture have been altered

  5. The Norwegian Emission Inventory 2012. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond [ed.

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF (land use, land-use change and forestry) is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2012) for documentation on this topic.This report replaces the previous documentation of the emission model (Sandmo 2011), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: Minor NOx emissions from production of rock wool, which previously not have been estimated, have been included, Some factors for estimation of N2O from agriculture have been altered, The

  6. Modeling and validation of on-road CO2 emissions inventories at the urban regional scale

    International Nuclear Information System (INIS)

    Brondfield, Max N.; Hutyra, Lucy R.; Gately, Conor K.; Raciti, Steve M.; Peterson, Scott A.

    2012-01-01

    On-road emissions are a major contributor to rising concentrations of atmospheric greenhouse gases. In this study, we applied a downscaling methodology based on commonly available spatial parameters to model on-road CO 2 emissions at the 1 × 1 km scale for the Boston, MA region and tested our approach with surface-level CO 2 observations. Using two previously constructed emissions inventories with differing spatial patterns and underlying data sources, we developed regression models based on impervious surface area and volume-weighted road density that could be scaled to any resolution. We found that the models accurately reflected the inventories at their original scales (R 2 = 0.63 for both models) and exhibited a strong relationship with observed CO 2 mixing ratios when downscaled across the region. Moreover, the improved spatial agreement of the models over the original inventories confirmed that either product represents a viable basis for downscaling in other metropolitan regions, even with limited data. - Highlights: ► We model two on-road CO 2 emissions inventories using common spatial parameters. ► Independent CO 2 observations are used to validate the emissions models. ► The downscaled emissions models capture the urban spatial heterogeneity of Boston. ► Emissions estimates show a strong non-linear relationship with observed CO 2 . ► Our study is repeatable, even in areas with limited data. - This work presents a new, reproducible methodology for downscaling and validating on-road CO 2 emissions estimates.

  7. Comparison of emission inventory and ambient concentration ratios of CO, NMOG, and NOx in California South Coast Air Basin

    International Nuclear Information System (INIS)

    Fujita, E.M.; Croes, B.E.; Bennett, C.L.; Lawson, D.R.; Lurmann, F.W.; Main, H.H.

    1992-01-01

    In the present study, the author performed a top-down validation of the reactive organic gas and carbon monoxide emission inventories for California's South Coast Air Basin by comparing speciation profiles for nonmethane organic gases (NMOG) and ratios of CO/NO x and NMOG/NO x derived from early-morning (0700 to 0800) ambient measurements taken during the 1987 Southern California Air Quality Study with the corresponding ratios and speciation profiles derived from day-specific, hourly, gridded emission inventories. Twenty separate comparisons were considered for each ratio, each representing a different combination of season, emission category, and spatial and temporal averaging of emissions. It was determined that the most appropriate comparison in summer was ambient pollutant ratios with ratios derived from morning on-road motrovehicle emission inventories, and in the fall, ambient ratios with ratios derived from overnight on-road motor vehicle emission inventories with some contribution from overnight stationary-source NO x emission inventories. From these comparisons, the ambient CO/CO x and NMOG/NO x ratios are about 1.5 and 2 to 2.5 times higher, respectively, than the corresponding inventory ratios. On the assumption that inventories of NO x emissions are reasonably correct, these results indicate that on-road motor vehicle CO and NMOG emissions are significantly underestimated. Comparisons of measured CO, NMOG, and NO x concentrations and CO/NO x and NMOG/NO x ratios with air quality model predictions obtained by the California Air Resources Board show similar differences

  8. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    Science.gov (United States)

    Chen, Hui; Meng, Jing

    2017-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012‒2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of- pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  9. Direct Final Rule for Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    This rule will adopt the current voluntary NOx and CO emissions standards of the United Nations International Civil Aviation Organization (ICAO), bringing the United States aircraft standards into alignment with the international standards.

  10. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    Science.gov (United States)

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  11. The Norwegian Emission Inventory 2010. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond (ed.)

    2010-06-15

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency (Klif) and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emissions models like e.g. the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2010) for documentation on this topic. This report replaces the previous documentation of the emission model, (Sandmo 2009), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: Emissions of CH{sub 4} and N{sub 2}O from well testing of crude oil off shore have been included - these have previously not been estimated Emissions of CH{sub 4} from enteric fermentation have increased for the whole

  12. Comparison of models used for national agricultural ammonia emission inventories in Europe

    DEFF Research Database (Denmark)

    Reidy, B; Dämmgen, U; Döhler, H

    2008-01-01

    and harmonized the available knowledge on emission factors (EFs) for nitrogen (N)-flow emission calculation models and initiated a new generation of emission inventories. As a first step in summarizing the available knowledge, six N-flow models, used to calculate national NH3 emissions from agriculture...... the variation in the results generated awareness and consensus concerning available scientific data and the importance of specific processes not yet included in some models...

  13. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    Science.gov (United States)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in

  14. Influence of Plot Size on Efficiency of Biomass Estimates in Inventories of Dry Tropical Forests Assisted by Photogrammetric Data from an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Daud Jones Kachamba

    2017-06-01

    Full Text Available Applications of unmanned aircraft systems (UASs to assist in forest inventories have provided promising results in biomass estimation for different forest types. Recent studies demonstrating use of different types of remotely sensed data to assist in biomass estimation have shown that accuracy and precision of estimates are influenced by the size of field sample plots used to obtain reference values for biomass. The objective of this case study was to assess the influence of sample plot size on efficiency of UAS-assisted biomass estimates in the dry tropical miombo woodlands of Malawi. The results of a design-based field sample inventory assisted by three-dimensional point clouds obtained from aerial imagery acquired with a UAS showed that the root mean square errors as well as the standard error estimates of mean biomass decreased as sample plot sizes increased. Furthermore, relative efficiency values over different sample plot sizes were above 1.0 in a design-based and model-assisted inferential framework, indicating that UAS-assisted inventories were more efficient than purely field-based inventories. The results on relative costs for UAS-assisted and pure field-based sample plot inventories revealed that there is a trade-off between inventory costs and required precision. For example, in our study if a standard error of less than approximately 3 Mg ha−1 was targeted, then a UAS-assisted forest inventory should be applied to ensure more cost effective and precise estimates. Future studies should therefore focus on finding optimum plot sizes for particular applications, like for example in projects under the Reducing Emissions from Deforestation and Forest Degradation, plus forest conservation, sustainable management of forest and enhancement of carbon stocks (REDD+ mechanism with different geographical scales.

  15. The Norwegian Emission Inventory 2011. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2011b) for documentation on this topic. This report replaces the previous documentation of the emission model (Sandmo 2010), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: To define the different economic sectors in the Norwegian emission model, the standard industrial classification SIC2007 has replaced the previous SIC2002 (Appendix F) A new model for calculating emissions to air (HBEFA

  16. The Norwegian Emission Inventory 2011. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2011b) for documentation on this topic. This report replaces the previous documentation of the emission model (Sandmo 2010), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: To define the different economic sectors in the Norwegian emission model, the standard industrial classification SIC2007 has replaced the previous SIC2002 (Appendix F) A new model for calculating emissions to air (HBEFA) from

  17. Inventories and scenarios of nitrous oxide emissions

    International Nuclear Information System (INIS)

    Davidson, Eric A; Kanter, David

    2014-01-01

    Effective mitigation for N 2 O emissions, now the third most important anthropogenic greenhouse gas and the largest remaining anthropogenic source of stratospheric ozone depleting substances, requires understanding of the sources and how they may increase this century. Here we update estimates and their uncertainties for current anthropogenic and natural N 2 O emissions and for emissions scenarios to 2050. Although major uncertainties remain, ‘bottom-up’ inventories and ‘top-down’ atmospheric modeling yield estimates that are in broad agreement. Global natural N 2 O emissions are most likely between 10 and 12 Tg N 2 O-N yr −1 . Net anthropogenic N 2 O emissions are now about 5.3 Tg N 2 O-N yr −1 . Gross anthropogenic emissions by sector are 66% from agriculture, 15% from energy and transport sectors, 11% from biomass burning, and 8% from other sources. A decrease in natural emissions from tropical soils due to deforestation reduces gross anthropogenic emissions by about 14%. Business-as-usual emission scenarios project almost a doubling of anthropogenic N 2 O emissions by 2050. In contrast, concerted mitigation scenarios project an average decline of 22% relative to 2005, which would lead to a near stabilization of atmospheric concentration of N 2 O at about 350 ppb. The impact of growing demand for biofuels on future projections of N 2 O emissions is highly uncertain; N 2 O emissions from second and third generation biofuels could remain trivial or could become the most significant source to date. It will not be possible to completely eliminate anthropogenic N 2 O emissions from agriculture, but better matching of crop N needs and N supply offers significant opportunities for emission reductions. (paper)

  18. Inventory of greenhouse gases emissions from gasoline and diesel ...

    African Journals Online (AJOL)

    Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs) released into the environment through consumption of fuels (gasoline and diesel) in Nigeria from 1980 to 2014. The fuel consumption data ...

  19. Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Hartman, Melannie; Spencer, Shannon; Buendia, Leandro; Butterbach-Bahl, Klaus; Breidt, F Jay; Yagi, Kazuyuki; Nayamuth, Rasack; Wirth, Tom; Smith, Pete

    2013-01-01

    Developing countries face many challenges when constructing national inventories of greenhouse gas (GHG) emissions, such as lack of activity data, insufficient measurements for deriving country-specific emission factors, and a limited basis for assessing GHG mitigation options. Emissions from agricultural production are often significant sources in developing countries, particularly soil nitrous oxide, and livestock enteric and manure methane, in addition to wetland rice methane. Consequently, estimating GHG emissions from agriculture is an important part of constructing developing country inventories. While the challenges may seem insurmountable, there are ways forward such as: (a) efficiently using resources to compile activity data by combining censuses and surveys; (b) using a tiered approach to measure emissions at appropriately selected sites, coupled with modeling to derive country-specific emission factors; and (c) using advanced software systems to guide compilers through the inventory process. With a concerted effort by compilers and assistance through capacity-building efforts, developing country compilers could produce transparent, accurate, complete, consistent and comparable inventories, as recommended by the IPCC (Intergovernmental Panel on Climate Change). In turn, the resulting inventories would provide the foundation for robust GHG mitigation analyses and allow for the development of nationally appropriate mitigation actions and low emission development strategies. (letter)

  20. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China

    Science.gov (United States)

    Zhao, Yu; Zhou, Yaduan; Mao, Pan; Zhang, Jie

    2017-04-01

    Improved emission inventories combining detailed source information are crucial for better understanding the atmospheric chemistry and effectively making emission control policies using air quality simulation, particularly at regional or local scales. With the downscaled inventories directly applied, chemical transport model might not be able to reproduce the authentic evolution of atmospheric pollution processes at small spatial scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China, including SO2, NOx, CO, NH3, volatile organic compounds (VOCs), total suspended particulates (TSP), PM10, PM2.5, black carbon (BC), organic carbon (OC), and CO2. The key parameters relevant to emission estimation for over 6000 industrial sources were investigated, compiled and revised at plant level based on various data sources and on-site survey. As a result, the emission fractions of point sources were significantly elevated for most species. The improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Compared to the downscaled Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of NOX emissions in our provincial inventory was more consistent with summer tropospheric NO2 VCDs observed from OMI, particularly for the grids with moderate emission levels, implying the improved emission estimation for small and medium industrial plants by this work. Three inventories (national, regional, and provincial by this work) were applied in the Models-3/Community Multi-scale Air Quality (CMAQ) system for southern Jiangsu October 2012, to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized mean

  1. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    Science.gov (United States)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  2. Air Emissions Inventory Guidance Document for Mobile Sources at Air Force Installations

    National Research Council Canada - National Science Library

    O'Brien, Robert

    2002-01-01

    .... Inventories are also used in the implementation of various environmental programs, including pollution prevention opportunities, emissions trading, risk assessments, and environmental auditing...

  3. Global gridded anthropogenic emissions inventory of carbonyl sulfide

    Science.gov (United States)

    Zumkehr, Andrew; Hilton, Tim W.; Whelan, Mary; Smith, Steve; Kuai, Le; Worden, John; Campbell, J. Elliott

    2018-06-01

    Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, the inventory is provided as annually varying estimates from years 1980-2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y-1 (range of 223-586 Gg S y-1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Finally, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.

  4. Inventory of volatile organic compound emissions in Finland, 1985

    International Nuclear Information System (INIS)

    Mroueh, U.M.

    1988-01-01

    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive

  5. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    Science.gov (United States)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  6. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Environmental Stewardship Group

    2010-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2009. LANL's 2009 emissions are well below the emission limits in the Title V Operating Permit.

  7. Emissions inventory report summary for Los Alamos National Laboratory for calendar year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2009-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory’s potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2008. LANL’s 2008 emissions are well below the emission limits in the Title V Operating Permit.

  8. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2007-09-28

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. Modification Number 1 to this Title V Operating Permit was issued on June 15, 2006 (Permit No P-100M1) and includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2006. LANL's 2006 emissions are well below the emission limits in the Title V Operating Permit.

  9. Denmark's national inventory report 2009. Emission inventories 1990-2007 - submitted under the United Nations framework convention on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Lyck, E.; Hjorth Mikkelsen, M. (and others)

    2009-04-15

    This report is Denmark's National Inventory Report 2009. The report contains information on Denmark's emission inventories for all years' from 1990 to 2007 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub X}, CO, NMVOC, SO{sub 2}. (au)

  10. Actualization and enlargement of the Upper Austrian emission inventory

    International Nuclear Information System (INIS)

    Winiwarter, W.; Schimak, G.; Raup, N.

    2001-06-01

    The functionality of the Upper Austrian emission inventory has been increased by simplifying the evaluation routines. Thus access to existing data will be simplified. This version 2.0 not only improves evaluation procedures already in place, but also allows to retrieve annual information on point sources, as routinely reported by the individual industrial facilities on an annual basis. In the same way as for such point source information, also statistical information is used to derive annual emission changes. This is currently limited to the sector of domestic heating, where emissions are directly influenced by climate parameters that can be easily obtained. Trend analysis currently is not possible due to the limited number of sectors included. First conclusions on the temporal behavior of emissions are still possible and are discussed here. Likewise, additional plausibility checks are facilitated by using temporal emission changes, which will help improve data quality. (author)

  11. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L; Richardson, Scott; Schuh, Andrew; Cooley, Dan; Breidt, F Jay; West, Tristram O; Heath, Linda S; Smith, James E; McCarty, Jessica L; Gurney, Kevin R; Tans, Pieter; Denning, A Scott

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO 2 concentrations and inverse modeling to verify nationally-reported biogenic CO 2 emissions. The biogenic CO 2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO 2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO 2 that was estimated using the atmospheric CO 2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO 2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  12. An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: emission estimate, uncertainty and sensitivity analysis

    Science.gov (United States)

    Brown, L.; Armstrong Brown, S.; Jarvis, S. C.; Syed, B.; Goulding, K. W. T.; Phillips, V. R.; Sneath, R. W.; Pain, B. F.

    Nitrous oxide emission from UK agriculture was estimated, using the IPCC default values of all emission factors and parameters, to be 87 Gg N 2O-N in both 1990 and 1995. This estimate was shown, however, to have an overall uncertainty of 62%. The largest component of the emission (54%) was from the direct (soil) sector. Two of the three emission factors applied within the soil sector, EF1 (direct emission from soil) and EF3 PRP (emission from pasture range and paddock) were amongst the most influential on the total estimate, producing a ±31 and +11% to -17% change in emissions, respectively, when varied through the IPCC range from the default value. The indirect sector (from leached N and deposited ammonia) contributed 29% of the total emission, and had the largest uncertainty (126%). The factors determining the fraction of N leached (Frac LEACH) and emissions from it (EF5), were the two most influential. These parameters are poorly specified and there is great potential to improve the emission estimate for this component. Use of mathematical models (NCYCLE and SUNDIAL) to predict Frac LEACH suggested that the IPCC default value for this parameter may be too high for most situations in the UK. Comparison with other UK-derived inventories suggests that the IPCC methodology may overestimate emission. Although the IPCC approach includes additional components to the other inventories (most notably emission from indirect sources), estimates for the common components (i.e. fertiliser and animals), and emission factors used, are higher than those of other inventories. Whilst it is recognised that the IPCC approach is generalised in order to allow widespread applicability, sufficient data are available to specify at least two of the most influential parameters, i.e. EF1 and Frac LEACH, more accurately, and so provide an improved estimate of nitrous oxide emissions from UK agriculture.

  13. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    Science.gov (United States)

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions

  14. Water emission inventory for the Federal Republic of Germany; Emissionsinventar Wasser fuer die Bundesrepublik Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, E.; Hillenbrand, T.; Marscheider-Weidemann, F.; Schempp, C. [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Fuchs, S.; Scherer, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Siedlungswasserwirtschaft; Luettgert, M. [RISA Sicherheitsanalysen GmbH, Berlin (Germany)

    2000-11-01

    Within the frame of this project, a concept for setting up exemplary emission inventories for water was put forward. An overview is given of the international activities on emission inventories and the status of national emission inventories. Based on the data situation in Germany, it was necessary to include both plant-specific, aggregated and calculated data of the point sources in the inventories. Due to their increasing significance, diffuse material emissions into water were also taken into account. Based on the conceptual work, exemplary emission inventories were compiled for nitrogen, phosphorous and adsorbable organic combined halides (AOX) as well as the heavy metals arsenic, cadmium, chrome, copper, mercury, nickel, lead and zinc. These were evaluated according to the areas of origin (sectors) or the emission paths as well as according to the large river basins Danube, Rhine, Ems, Weser, Elbe, Oder, North Sea and Baltic Sea. In addition, lists of the ten largest industrial direct dischargers were compiled. (orig.) [German] Im Rahmen dieses Vorhabens wurde ein Konzept fuer die Erstellung von beispielhaften Emissionsinventaren fuer Gewaesser erarbeitet. Es wird ein Ueberblick ueber die internationalen Aktivitaeten zu Emissionsinventaren und den Stand beim Aufbau von nationalen Emissionsinventaren gegeben. Auf Grund der Datensituation in Deutschland war es erforderlich, dass sowohl anlagenspezifische als auch aggregierte sowie berechnete Daten der Punktquellen in die Inventare einbezogen wurden. Wegen ihrer zunehmenden Bedeutung werden die diffusen Stoffeintraege in die Gewaesser ebenfalls beruecksichtigt. Aufbauend auf den konzeptionellen Arbeiten wurden beispielhafte Emissionsinventare fuer Stickstoff, Phosphor und adsorbierbare organisch gebundene Halogene (AOX) sowie die Schwermetalle Arsen, Cadmium, Chrom, Kupfer, Quecksilber, Nickel, Blei und Zink zusammengestellt. Die Auswertung erfolgte sowohl nach den Herkunftsbereichen (Branchen) bzw. den

  15. Costs of mitigating CO2 emissions from passenger aircraft

    Science.gov (United States)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  16. A new inventory for two-wheel vehicle emissions in West Africa for 2002

    Science.gov (United States)

    Assamoi, Eric-Michel; Liousse, Catherine

    2010-10-01

    Rather surprisingly, urban atmospheric particulate levels in West Africa compare with measured concentrations in Europe and Asia megacities (Liousse, C., Galy-Lacaux, C., Assamoi, E.-M., Ndiaye, A., Diop, B., Cachier, H., Doumbia, T., Gueye, P., Yoboue, V., Lacaux, J.-P., Guinot, B., Guillaume, B., Rosset, R., Castera, P., Gardrat, E., Zouiten, C., Jambert, C., Diouf, A., Koita, O., Baeza, A., Annesi-Maesano, I., Didier, A., Audry, S., Konare, A., 2009. Integrated Focus on West African Cities (Cotonou, Bamako, Dakar, Ouagadougou, Abidjan, Niamey): Emissions, Air Quality and Health Impacts of Gases and Aerosols. Third International AMMA Conference on Predictability of the West African Moosoon Weather, Climate and Impacts. Ouagadougou, Burkina Faso. July 20-24). This pollution mainly derives from road traffic emissions with, in some capitals (e.g. Cotonou), the strong contribution of two-wheel vehicles. Two key questions arise: are presently available emission inventories (e.g. Junker, C., Liousse, C., 2008. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997. Atmospheric Chemistry Physics, 8, 1-13; Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 1009, D14203, DOI:10.1029/2003JD003697) able to account for these emissions? And, if not, how can we remedy this? The aim of this paper is to develop a methodology to estimate emissions produced by two-wheel vehicles in West Africa for 2002 in a context where reliable information is hardly available. Fuel consumption ratios between two-wheel engines (in this work) and all vehicles issued from UN database ( http://data.un.org/Data.aspx?d=EDATA&f=cmID%3aMO%3btrID%3a1221) are as high as 169%, 264% and 628%, for Burkina Faso, Mali and Chad respectively, indicating that this global

  17. Improving the Fire Emissions Inventory: A Dive in to the MODIS Fire Detections

    Science.gov (United States)

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. EPA’s National Emission Inventory (NEI) relies on the SMARTFIRE information system to develop estimates of emissions from...

  18. National inventory of anhyd ric carbonic emissions providing of fuels consumption as energy source

    International Nuclear Information System (INIS)

    1994-01-01

    The Convention of the United Nations about Climatic Change, carried out in 1992, and whose ratification this being considerate d at level Parliament in the Republica Oriental del Uruguay, it has as objective to achieve the stabilization of the concentrations of gases of effect hot house in the atmosphere at a level that impedes interferences dangerous antropogenias. The National Direction of environment has carried out and Inventory of the Emissions of gas carbonic anhydride in the execution of the arisen commitments of the mentioned Convention. It being this the first step for the realization of a national inventory, which will not include the rest of the gases of effect hothouse controlled by the Protocols of Montreal. The inventory of the emissions carried out by the Division of Global and Regional Matters, it has been carried out for each one of the years understood in the period from 1987 to 1992 being studied the contribution of each sector of the national activity in the Emissions of carbonic anhydride.The results show that the total emissions estimated for Uruguay reach only the 6655 gigagrames of annual for the year 1992, being a light increase of the emission values among the years 1989 at 1992

  19. Identification of urban gas leaks and evaluation of methane emission inventories using mobile measurements

    Science.gov (United States)

    Zazzeri, Giulia; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Butler, Dominique; Lanoisellé, Mathias; Nisbet, Euan G.

    2017-04-01

    Leakages from the natural gas distribution network, power plants and refineries account for the 10% of national methane emissions in the UK (http://naei.defra.gov.uk/), and are identified as a major source of methane in big conurbations (e.g. Townsend-Small et al., 2012; Phillips et al., 2013). The National Atmospheric Emission Inventories (NAEI) website provides a list of gas installations, but emissions from gas leakage, which in the inventories are estimated on the basis of the population distribution, are difficult to predict, which makes their estimation highly uncertain. Surveys with a mobile measurement system (Zazzeri et al., 2015) were carried out in the London region for detection of fugitive natural gas and in other sites in the UK (i.e. Bacton, Southampton, North Yorkshire) to identify emissions from various gas installations. The methane isotopic analysis of air samples collected during the surveys, using the methodology in Zazzeri et al. (2015), allows the calculation of the δ13C signature characterising natural gas in the UK. The isotopic value of the natural gas supply to SE London has changed a little in recent years, being close to -34 ‰ over 1998-99 period (Lowry et al., 2001) and close to -36 ‰ since at least 2002. Emissions from gas installations, such as pumping stations in NE England (-41 ± 2 ‰ ) were detected, but some of them were not listed in the inventories. Furthermore, the spatial distribution of the gas leaks identified during the surveys in the London region does not coincide with the distribution suggested by the inventories. By locating both small gas leaks and emissions from large gas installations, we can verify how these methane sources are targeted by national emission inventories. Lowry, D., Holmes, C.W., Rata, N.D., O'Brien, P., and Nisbet, E.G., 2001, London methane emissions: Use of diurnal changes in concentration and δ13C to identify urban sources and verify inventories: Journal of Geophysical Research

  20. Danish emission inventories for road transport and other mobile sources. Inventories until year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.

    2008-09-15

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results are shown for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2006 the fuel use and CO{sub 2} emissions for road transport have increased by 36 %, and CH{sub 4} emissions have decreased by 51 %. A N{sub 2}O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2006 emission decreases for PM (exhaust only), CO, NO{sub X} and NMVOC are 30, 69, 28 and 71 % respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO{sub 2} the emission drop is 99% (due to reduced sulphur content in the diesel fuel), whereas the NH{sub 3} emissions increase by 3065% (due to the introduction of catalyst cars). For other mobile sources the calculated emission changes for CO{sub 2} (and fuel use), CH{sub 4} and N{sub 2}O are -10, 5 and -11%, from 1990 to 2006. The emissions of SO{sub 2}, particulates (all size fractions), NO{sub X}, NMVOC and CO have decreased by 88, 56, 14, 12 and 9% from 1985 to 2006. For NH{sub 3} the emissions have increased by 8% in the same time period. Uncertainties for the emissions and trends have been estimated. (au)

  1. Inventory of methane emissions from livestock in China from 1980 to 2013

    Science.gov (United States)

    Yu, Jiashuo; Peng, Shushi; Chang, Jinfeng; Ciais, Philippe; Dumas, Patrice; Lin, Xin; Piao, Shilong

    2018-07-01

    Livestock is the largest anthropogenic methane (CH4) source at the global scale. Previous inventories of this source for China were based on the accounting of livestock populations and constant emission factors (EFs) per head. Here, we re-evaluate how livestock CH4 emissions have changed from China over the last three decades, considering increasing population, body weight and milk production per head which cause EF to change with time, and decreasing average life span (ALS) of livestock. Our results show that annual CH4 emissions by livestock have increased from 4.5 to 11.8 Tg CH4 yr-1 over the period 1980-2013. The increasing trend in emissions (0.25 Tg CH4 yr-2) over this period is ∼12% larger than that if using constant EFs and ALS. The increasing livestock population, production per head and decreasing ALS contributed +91%, +28% and -19% to the increase in CH4 emissions from livestock, respectively. This implies that the temporal changes in EF and ALS of livestock cannot be overlooked in inventories, especially in countries like China where livestock production systems are experiencing rapid transformations.

  2. Ship Emission Inventories in Estuary of the Yangtze River Using Terrestrial AIS Data

    Directory of Open Access Journals (Sweden)

    Xin Yao

    2016-12-01

    Full Text Available Estuary forms a transition zone between inland river and open sea. In China, the estuary of the Yangtze River plays a vital role in connecting the inland and oversea shipping, and witnesses heavy vessel traffic in the recent decades. Nowadays, more attentions have been directed to the issue of ship pollution in busy waterways. In order to investigate the ship emission inventory, this paper presents an Automatic Identification System(AIS based method. AIS data is the realistic data of vessel traffic including dynamic information (position, speed, course, etc. and static information (ship type, dimensions, name, etc.. According to ship dimensions, the power of engines is estimated for different ship types. By using AIS based bottom-up approach, ship emission inventories and shares of air pollutants and GHGs (Greenhouse gases are developed. Spatial distribution of ship emissions is illustrated in the form of heat map. As a case study, the emission inventories are analyzed using AIS data of 2010 in the estuary, and following results are made:(1 shares of the emission are cruise ships 6.59%, bulk carriers 5.16%, container ships 52.96%, tankers 15.16%, fishing ships 9.16%, other ships 10.97%; (2 CO2 is the dominant part of the emission. (3 Areas of highest emission intensity are generally clustered around the South Channel, the North Channel and ports in the vicinity. The proposed method is promising because it is derived from the AIS data which contains not only real data of individual ship but also vessel traffic situation in the study area. It can server as a reference for other researchers and policy makers working in this field.

  3. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling

    Directory of Open Access Journals (Sweden)

    S. Henne

    2016-03-01

    Full Text Available Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH4 from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH4 emissions to be 196 ± 18 Gg yr−1 for the year 2013 (1σ uncertainty. This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr−1 as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter, and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH4 source categories in Switzerland are agriculture (78 %, waste handling (15 % and natural gas distribution and combustion (6 %. The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr−1 reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr−1 implied by the

  4. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  5. NACP MCI: CO2 Emissions Inventory, Upper Midwest Region, USA., 2007

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a bottom-up CO2 emissions inventory for the mid-continent region of the United States for the year 2007. The study was undertaken as...

  6. NACP MCI: CO2 Emissions Inventory, Upper Midwest Region, USA., 2007

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a bottom-up CO2 emissions inventory for the mid-continent region of the United States for the year 2007. The study was undertaken as part of...

  7. Regional landfills methane emission inventory in Malaysia.

    Science.gov (United States)

    Abushammala, Mohammed F M; Noor Ezlin Ahmad Basri; Basri, Hassan; Ahmed Hussein El-Shafie; Kadhum, Abdul Amir H

    2011-08-01

    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.

  8. A Lagrangian Simulation of Subsonic Aircraft Exhaust Emissions

    Science.gov (United States)

    Schoeberl, M. R.; Morris, G. A.

    1999-01-01

    To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.

  9. Challenges and Approaches for Developing Ultrafine Particle Emission Inventories for Motor Vehicle and Bus Fleets

    Directory of Open Access Journals (Sweden)

    Diane U. Keogh

    2011-03-01

    Full Text Available Motor vehicles in urban areas are the main source of ultrafine particles (diameters < 0.1 µm. Ultrafine particles are generally measured in terms of particle number because they have little mass and are prolific in terms of their numbers. These sized particles are of particular interest because of their ability to enter deep into the human respiratory system and contribute to negative health effects. Currently ultrafine particles are neither regularly monitored nor regulated by ambient air quality standards. Motor vehicle and bus fleet inventories, epidemiological studies and studies of the chemical composition of ultrafine particles are urgently needed to inform scientific debate and guide development of air quality standards and regulation to control this important pollution source. This article discusses some of the many challenges associated with modelling and quantifying ultrafine particle concentrations and emission rates for developing inventories and microscale modelling of motor vehicles and buses, including the challenge of understanding and quantifying secondary particle formation. Recommendations are made concerning the application of particle emission factors in developing ultrafine particle inventories for motor vehicle fleets. The article presents a précis of the first published inventory of ultrafine particles (particle number developed for the urban South-East Queensland motor vehicle and bus fleet in Australia, and comments on the applicability of the comprehensive set of average particle emission factors used in this inventory, for developing ultrafine particle (particle number and particle mass inventories in other developed countries.

  10. Denmark's national inventory report 2010. Emission inventories 1990-2008 - submitted under the United Nations framework convention on climate change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Lyck, E; Hjorth Mikkelsen, M [and others

    2010-05-15

    This report is Denmark's National Inventory Report 2010. The report contains information on Denmark's emission inventories for all years' from 1990 to 2008 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  11. Denmark's national inventory report 2011. Emission inventories 1990-2009 - submitted under the United Nations framework convention on climate change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Hjorth Mikkelsen, M; Hoffmann, L [and others

    2011-05-15

    This report is Denmark's National Inventory Report 2011. The report contains information on Denmark's emission inventories for all years' from 1990 to 2009 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  12. Denmark's national inventory report 2012. Emission inventories 1990-2010 - submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Hjorth Mikkelsen, M; Hoffmann, L [and others

    2012-05-15

    This report is Denmark's National Inventory Report 2012. The report contains information on Denmark's emission inventories for all years' from 1990 to 2010 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  13. High-resolution atmospheric emission inventory of the argentine energy sector. Comparison with edgar global emission database

    Directory of Open Access Journals (Sweden)

    S. Enrique Puliafito

    2017-12-01

    Full Text Available This study presents a 2014 high-resolution spatially disaggregated emission inventory (0.025° × 0.025° horizontal resolution, of the main activities in the energy sector in Argentina. The sub-sectors considered are public generation of electricity, oil refineries, cement production, transport (maritime, air, rail and road, residential and commercial. The following pollutants were included: greenhouse gases (CO2, CH4, N2O, ozone precursors (CO, NOx, VOC and other specific air quality indicators such as SO2, PM10, and PM2.5. This work could contribute to a better geographical allocation of the pollutant sources through census based population maps. Considering the sources of greenhouse gas emissions, the total amount is 144 Tg CO2eq, from which the transportation sector emits 57.8 Tg (40%; followed by electricity generation, with 40.9 Tg (28%; residential + commercial, with 31.24 Tg (22%; and cement and refinery production, with 14.3 Tg (10%. This inventory shows that 49% of the total emissions occur in rural areas: 31% in rural areas of medium population density, 13% in intermediate urban areas and 7% in densely populated urban areas. However, if emissions are analyzed by extension (per square km, the largest impact is observed in medium and densely populated urban areas, reaching more than 20.3 Gg per square km of greenhouse gases, 297 Mg/km2 of ozone precursors gases and 11.5 Mg/km2 of other air quality emissions. A comparison with the EDGAR global emission database shows that, although the total country emissions are similar for several sub sectors and pollutants, its spatial distribution is not applicable to Argentina. The road and residential transport emissions represented by EDGAR result in an overestimation of emissions in rural areas and an underestimation in urban areas, especially in more densely populated areas. EDGAR underestimates 60 Gg of methane emissions from road transport sector and fugitive emissions from refining

  14. Empirical analysis of the effect of descent flight path angle on primary gaseous emissions of commercial aircraft.

    Science.gov (United States)

    Turgut, Enis T; Usanmaz, Oznur; Rosen, Marc A

    2018-05-01

    In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NO x and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NO x . For a five-tonne aircraft mass increase, the average change in emissions indices are found to be -4.1% and -5.7% (CO), -5.4% and -8.2% (HC), and +1.1% and +1.6% (NO x ) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NO x during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7-8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NO x ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    Science.gov (United States)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  16. Development of the Flame Test Concept Inventory: Measuring Student Thinking about Atomic Emission

    Science.gov (United States)

    Bretz, Stacey Lowery; Murata Mayo, Ana Vasquez

    2018-01-01

    This study reports the development of a 19-item Flame Test Concept Inventory, an assessment tool to measure students' understanding of atomic emission. Fifty-two students enrolled in secondary and postsecondary chemistry courses were interviewed about atomic emission and explicitly asked to explain flame test demonstrations and energy level…

  17. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Zheng, B.; He, K.B. [Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Zhang, Q. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tong, D.; Li, M. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Huo, H. [Tsinghua Univ., Beijing (China). Inst. of Energy, Environment and Economy

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO{sub 2}, NO{sub x}, and CO{sub 2}, respectively, and decreased by 23 and 27 % for PM{sub 2.5} and PM{sub 10} respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  18. Temporal and spatial variation in recent vehicular emission inventories in China based on dynamic emission factors.

    Science.gov (United States)

    Cai, Hao; Xie, Shaodong

    2013-03-01

    emissions. This paper tracks the temporal and spatial variation characteristics in recent vehicular emission inventories in China based on dynamic emission factors. The fact that CO and NMVOC emissions kept growing at reduced rates and the NOx, PM10, and GHG emissions continued rising rapidly reveals that it was insufficient to bring down the rapid growth of NOx, PM10, and CO2 emissions by merely tightening emission standards and improving fuel quality of motor vehicles. The results will assist decision makers to formulate effective control policies for China's vehicular emissions. The improved methodologies are applicable for routine update of China's vehicular emission inventories.

  19. The Indianapolis Flux Experiment (INFLUX: A test-bed for developing urban greenhouse gas emission measurements

    Directory of Open Access Journals (Sweden)

    Kenneth J. Davis

    2017-05-01

    Full Text Available The objective of the Indianapolis Flux Experiment (INFLUX is to develop, evaluate and improve methods for measuring greenhouse gas (GHG emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

  20. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014.

    Science.gov (United States)

    Chen, Dongsheng; Wang, Xiaotong; Li, Yue; Lang, Jianlei; Zhou, Ying; Guo, Xiurui; Zhao, Yuehua

    2017-12-31

    Ship exhaust emissions have been considered a significant source of air pollution, with adverse impacts on the global climate and human health. China, as one of the largest shipping countries, has long been in great need of in-depth analysis of ship emissions. This study for the first time developed a comprehensive national-scale ship emission inventory with 0.005°×0.005° resolution in China for 2014, using the bottom-up method based on Automatic Identification System (AIS) data of the full year of 2014. The emission estimation involved 166,546 unique vessels observed from over 15billion AIS reports, covering OGVs (ocean-going vessels), CVs (coastal vessels) and RVs (river vessels). Results show that the total estimated ship emissions for China in 2014 were 1.1937×10 6 t (SO 2 ), 2.2084×10 6 t (NO X ), 1.807×10 5 t (PM 10 ), 1.665×10 5 t (PM 2.5 ), 1.116×10 5 t (HC), 2.419×10 5 t (CO), and 7.843×10 7 t (CO 2 , excluding RVs), respectively. OGVs were the main emission contributors, with proportions of 47%-74% of the emission totals for different species. Vessel type with the most emissions was container (~43.6%), followed by bulk carrier (~17.5%), oil tanker (~5.7%) and fishing ship (~4.9%). Monthly variations showed that emissions from transport vessels had a low point in February, while fishing ship presented two emission peaks in May and September. In terms of port clusters, ship emissions in BSA (Bohai Sea Area), YRD (Yangtze River Delta) and PRD (Pearl River Delta) accounted for ~13%, ~28% and ~17%, respectively, of the total emissions in China. On the contrast, the average emission intensities in PRD were the highest, followed by the YRD and BSA regions. The establishment of this high-spatiotemporal-resolution ship emission inventory fills the gap of national-scale ship emission inventory of China, and the corresponding ship emission characteristics are expected to provide certain reference significance for the management and control of the ship

  1. Danish emission inventories for road transport and other mobile sources. Inventories until the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.

    2012-08-15

    This report explains the parts of the Danish emission inventories related to road transport and other mobile sources. Emission results are shown for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2010 the fuel consumption and CO{sub 2} emissions for road transport increased by 30 %, and CH{sub 4} emissions have decreased by 74 %. A N{sub 2}O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2010 emission decrease for NO{sub X}, NMVOC, CO and particulates (exhaust only: Size is below PM{sub 2.5}) -52, -84, -81, and -65 %, respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO{sub 2} the emission drop 99 % (due to reduced sulphur content in the diesel fuel), whereas the NH{sub 3} emissions increased by 2232 % (due to the introduction of catalyst cars). For other mobile sources the calculated emission changes for CO{sub 2} (and fuel use), CH{sub 4} and N{sub 2}O were -2, 5 and -1 %, from 1990 to 2010. The emissions of SO{sub 2}, particulates (all size fractions), NO{sub X}, NMVOC and CO decreased by 88, 65, 17, 28 and 2 % from 1985 to 2010. For NH{sub 3} the emissions increased by 17 % in the same time period. Uncertainties for the emissions and trends were estimated. (Author)

  2. Discrepancies and Uncertainties in Bottom-up Gridded Inventories of Livestock Methane Emissions for the Contiguous United States

    Science.gov (United States)

    Randles, C. A.; Hristov, A. N.; Harper, M.; Meinen, R.; Day, R.; Lopes, J.; Ott, T.; Venkatesh, A.

    2017-12-01

    In this analysis we used a spatially-explicit, bottom-up approach, based on animal inventories, feed intake, and feed intake-based emission factors to estimate county-level enteric (cattle) and manure (cattle, swine, and poultry) livestock methane emissions for the contiguous United States. Combined enteric and manure emissions were highest for counties in California's Central Valley. Overall, this analysis yielded total livestock methane emissions (8,916 Gg/yr; lower and upper bounds of 6,423 and 11,840 Gg/yr, respectively) for 2012 that are comparable to the current USEPA estimates for 2012 (9,295 Gg/yr) and to estimates from the global gridded Emission Database for Global Atmospheric Research (EDGAR) inventory (8,728 Gg/yr), used previously in a number of top-down studies. However, the spatial distribution of emissions developed in this analysis differed significantly from that of EDGAR. As an example, methane emissions from livestock in Texas and California (highest contributors to the national total) in this study were 36% lesser and 100% greater, respectively, than estimates by EDGAR. Thespatial distribution of emissions in gridded inventories (e.g., EDGAR) likely strongly impacts the conclusions of top-down approaches that use them, especially in the source attribution of resulting (posterior) emissions, and hence conclusions from such studies should be interpreted with caution.

  3. U.S. broiler housing ammonia emissions inventory

    Science.gov (United States)

    Gates, R. S.; Casey, K. D.; Wheeler, E. F.; Xin, H.; Pescatore, A. J.

    Using recently published baseline ammonia emissions data for U.S. broiler chicken housing, we present a method of estimating their contribution to an annual ammonia budget that is different from that used by USEPA. Emission rate increases in a linear relationship with flock age from near zero at the start of the flock to a maximum at the end of the flock, 28-65 days later. Market weight of chickens raised for meat varies from "broilers" weighing about 2 kg to "roasters" weighing about 3 kg. Multiple flocks of birds are grown in a single house annually, with variable downtime to prepare the house between flocks. The method takes into account weight and number of chickens marketed. Uncertainty in baseline emissions estimates is used so that inventory estimates are provided with error estimates. The method also incorporates the condition of litter that birds are raised upon and the varying market weight of birds grown. Using 2003 USDA data on broiler production numbers, broiler housing is estimated to contribute 8.8-11.7 kT ammonia for new and built-up litter, respectively, in Kentucky and 240-324 kT ammonia for new and built-up litter, respectively, nationally. Results suggest that a 10% uncertainty in annual emission rate is expected for the market weight categories of broilers, heavy broilers, and roasters. A 27-47% reduction in annual housing emission rate is predicted if new rather than built-up litter were used for every flock. The estimating method can be adapted to other meat bird building emissions and future ammonia emission strategies, with suitable insertion of an age-dependent emission factor or slope into a predictive model equation. The method can be readily applied and is an alternative to that used by USEPA.

  4. The Air Quality and Economic Impact of Atmospheric Lead from General Aviation Aircraft in the United States

    Science.gov (United States)

    Wolfe, P. J.; Selin, N. E.; Barrett, S. R. H.

    2015-12-01

    While leaded fuels for automobiles were phased-out of use in the United States by 1996, lead (Pb) continues to be used as an anti-knock additive for piston-driven aircraft. We model the annual concentration of atmospheric lead attributable to piston driven aircraft emissions in the continental United States using the Community Multi-scale Air Quality (CMAQ) model. Using aircraft emissions inventories for 2008, we then calculate annual economic damages from lead as lifetime employment losses for a one-year cohort exposed to elevated atmospheric lead concentrations using a range of concentration response functions from literature. Mean and median estimates of annual damages attributable to lifetime lost earnings are 1.06 and 0.60 billion respectively. Economy-wide impacts of IQ-deficits on productivity and labor increase expected damages by 54%. Damages are sensitive to background lead concentrations; as emissions decrease from other sources, the damages attributable to aviation are expected to increase holding aviation emissions constant. The monetary impact of General Aviation lead emissions on the environment is the same order of magnitude as noise, climate change, and air quality degradation from all commercial operations.

  5. Trends in aircraft emissions. Simulation of two air traffic scenarios in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Larson, L.G.; Palsson, A. [The Aeronautical Research Inst. of Sweden, Bromma (Sweden). The Swedish Civil Aviation Administration

    1997-12-31

    The developing trends of emissions from aviation in Sweden have been studied by means of flight and emissions simulation. The objective was to investigate whether technical improvements will allow Swedish air traffic to increase, without exceeding national regulations for pollution in the future. It was found that, due to development of aircraft engines and, to some extent, improvement of aerodynamic designs, the fuel consumption and thus the emissions of carbon dioxide will decrease in the future. The decrease of nitrous oxides is predicted to be significant due to advances in engine technology. (author) 4 refs.

  6. Trends in aircraft emissions. Simulation of two air traffic scenarios in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Larson, L G; Palsson, A [The Aeronautical Research Inst. of Sweden, Bromma (Sweden). The Swedish Civil Aviation Administration

    1998-12-31

    The developing trends of emissions from aviation in Sweden have been studied by means of flight and emissions simulation. The objective was to investigate whether technical improvements will allow Swedish air traffic to increase, without exceeding national regulations for pollution in the future. It was found that, due to development of aircraft engines and, to some extent, improvement of aerodynamic designs, the fuel consumption and thus the emissions of carbon dioxide will decrease in the future. The decrease of nitrous oxides is predicted to be significant due to advances in engine technology. (author) 4 refs.

  7. Aircraft Observations of Nitrous Oxide (N2O) in the San Joaquin Valley of California

    Science.gov (United States)

    Muto, S.; Herrera, S.; Pusede, S.

    2017-12-01

    Agriculture is the largest source of anthropogenic nitrous oxide (N2O) in the U.S. While it is generally known which processes produce N2O, there is considerable uncertainty in controls over N2O emissions. Factors that determine N2O fluxes, such as soil properties and manure management, are highly variable in space and time, and, as a result, it has proven difficult to upscale chamber-derived soil flux measurements to regional spatial scales. Aircraft observations provide a regional picture of the N2O spatial distribution, but, because N2O is very long-lived, it is challenging to attribute measured concentrations of N2O to distinct local sources, especially over areas with complex and integrated land use. This study takes advantage of a novel aircraft N2O dataset collected onboard the low-flying, slow-moving NASA C-23 Sherpa in the San Joaquin Valley (SJV) of California, a region with a variety of N2O sources, including dairies, feedlots, fertilized cropland, and industrial facilities. With these measurements, we link observed N2O enhancements to specific sources at sub-inventory spatial scales. We compare our results with area-weighted emission profiles obtained by integrating detailed emission inventory data, agricultural statistics, and GIS source mapping.

  8. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover

    Directory of Open Access Journals (Sweden)

    D. C. Oderbolz

    2013-02-01

    Full Text Available Biogenic volatile organic compounds (BVOC emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based measurements of greenness instead of pre-defined vegetation periods. This approach to seasonality implicitly treats effects caused by water or nutrient availability, altitude and latitude on a plant stand. Additionally, we test the influence of proposed seasonal variability in enzyme activity on BVOC emissions. In its present setup, the emission model calculates hourly emissions of isoprene, monoterpenes, sesquiterpenes and the oxygenated volatile organic compounds (OVOC methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetone and acetic acid. In this study, emissions based on three different vegetation inventories are compared with each other and diurnal and seasonal variations in Europe are investigated for the year 2006. Two of these vegetation inventories require information on tree-cover as an input. We compare three different land-cover inventories (USGS GLCC, GLC2000 and Globcover 2.2 with respect to tree-cover. The often-used USGS GLCC land-cover inventory leads to a severe reduction of BVOC emissions due to a potential miss-attribution of broad-leaved trees and reduced tree-cover compared to the two other land-cover inventories. To account for uncertainties in the land-cover classification, we introduce land-cover correction factors for each relevant land-use category to adjust the tree-cover. The results are very sensitive to these factors within the plausible range. For June 2006, total monthly BVOC emissions decreased up to −27% with

  9. Inventory of conventional atmospheric pollutant emissions in the Cali-Yumbo zone

    International Nuclear Information System (INIS)

    Jaramillo, Mauricio; Nunez, Maria Eugenia; Ocampo, William; Perez, Diego; Portilla, Gloria

    2004-01-01

    This work presents the results of the emission inventory of criteria pollutants (VOC's, PM 1 0, CO, NO x and SO x ) from anthropogenic sources for the Cali-Yumbo urban area in Colombia in 1997. Area, point and mobile sources, were considered in the study. Four point sources; reports to environmental authorities from 108 industries in the area were analyzed. The method of emission factors was employed to relate production activity with pollutant emissions, and the MOBILE 6.0 model was applied to calculate vehicular emissions. This analysis will be useful to generate urban environmental management projects, to develop pollutant dispersion models, and to contribute criteria for improved air quality monitoring and prediction in the zone of interest

  10. Isoprene emission inventory for the BOREAS southern study area

    International Nuclear Information System (INIS)

    Westberg, H.; Lamb, B.; Kempf, K.; Allwine, G.

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) was designed to measure trace gas fluxes, nutrient cycling, hydrologic budgets and other ecosystem features in order to establish relationships between ecosystem processes and various global climate change scenarios. During the 1994 BOREAS field study isoprene and terpene emissions have been measured at several sites in the Southern Study Area (SSA). Ambient measurements were also made to help establish the chemical importance of these biogenic species in boreal atmosphere. The data was used to test and improve algorithms for predicting emission rates as a function of species, environmental conditions and biomass dynamics and to provide an expanded database describing the relationship of volatile organic compounds emissions to ecosystem dynamics. The study also sought to provide the foundation for improved understanding of physical exchange processes, and define hydrocarbon reactivity in the boundary layer at high latitudes. Details of the biogenic emission rate measurements made in the SSA are also discussed, including the creation of an isoprene emission inventory for the area. The study has been helpful in eliminating major sources of uncertainty associated with estimates of carbon loss due to isoprene emission on the BOREAS SSA. 28 refs., 4 tabs., 5 figs

  11. Greenhouse Gas Emissions in the Netherlands 1990-2007. National Inventory Report 2009

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Brandes, L.J.; Baas, K.; Van den Born, G.J.; Geilenkirchen, G.; Te Molder, R.; Nijdam, D.S.; Olivier, J.G.J.; Peek, C.J.; Van Schijndel, M.W.; Van der Sluis, S.M.; Coenen, P.W.H.G; Zijlema, P.J.; Van den Berghe, G.; Guis, B.

    2009-04-01

    This report documents the 2009 Netherlands annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data

  12. Methane emissions by Chinese economy. Inventory and embodiment analysis

    International Nuclear Information System (INIS)

    Zhang, Bo; Chen, G.Q.

    2010-01-01

    Concrete inventories for methane emissions and associated embodied emissions in production, consumption, and international trade are presented in this paper for the mainland Chinese economy in 2007 with most recent availability of relevant environmental resources statistics and the input-output table. The total CH 4 emission by Chinese economy 2007 estimated as 39,592.70 Gg is equivalent to three quarters of China's CO 2 emission from fuel combustion by the global thermodynamic potentials, and even by the commonly referred lower IPCC global warming potentials is equivalent to one sixth of China's CO 2 emission from fuel combustion and greater than the CO 2 emissions from fuel combustion of many economically developed countries such as UK, Canada, and Germany. Agricultural activities and coal mining are the dominant direct emission sources, and the sector of Construction holds the top embodied emissions in both production and consumption. The emission embodied in gross capital formation is more than those in other components of final demand characterized by extensive investment and limited consumption. China is a net exporter of embodied CH 4 emissions with the emission embodied in exports of 14,021.80 Gg, in magnitude up to 35.42% of the total direct emission. China's exports of textile products, industrial raw materials, and primary machinery and equipment products have a significant impact on its net embodied emissions of international trade balance. Corresponding policy measures such as agricultural carbon-reduction strategies, coalbed methane recovery, export-oriented and low value added industry adjustment, and low carbon energy polices to methane emission mitigation are addressed. (author)

  13. [Inventories of atmospheric arsenic emissions from coal combustion in China, 2005].

    Science.gov (United States)

    Tian, He-Zhong; Qu, Yi-Ping

    2009-04-15

    Anthropogenic arsenic (As) emitted from coal combustion is one of key trace elements leading to negative air pollution and national economy loss. It is of great significance to estimate the atmospheric arsenic emission for proposing relevant laws or regulations and selecting proper pollution control technologies. The inventories of atmospheric arsenic emissions from coal combustion in China were evaluated by adopting the emission factor method based on fuel consumption. Arsenic emission sources were firstly classified into several categories by economic sectors, combustion types and pollution control technologies. Then, according to provincial coal consumption and averaged arsenic concentration in the feed fuel, the inventories of atmospheric arsenic emission from coal combustion in China in 2005 were established. Coal outputand consumption in China in 2005 were 2,119.8 and 2,099.8 Mt, respectively. The total emissions of arsenic released into the atmosphere in 2005 in China were estimated at about 1,564.4 t, and Shandong ranked the largest province with 144.4 t arsenic release, followed by Hunan (141.1 t), Hebei (108.5 t), Henan (77.7 t), and Jiangsu (77.0 t), which were mainly concentrated in the eastern and central provinces of China. The arsenic emissions were largely emitted by industry sector (818.8 t) and thermal power generation sector (303.4 t), contributing 52.3% and 19.4% of the totals, respectively. About 375.5 t arsenic was estimated to be released into the atmosphere in the form of gas phase in China in 2005, with a share of 24% of the totals. In general, arsenic pollution control from coal combustion should be highlighted for the power and industry sectors in the whole country. However, arsenic poisoning caused by residential coal burning should also be paid great attention in some areas such as Xinjiang, Gansu, Qinghai and Guishou.

  14. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    Science.gov (United States)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  15. A comparative analysis of methodology for inventory of greenhouse gases emissions - IPCC and CORINAIR

    International Nuclear Information System (INIS)

    Vasilev, Kh.

    1998-01-01

    The inventory of greenhouse gases (GHG) is performed by two accepted methods - CORINAIR (of EU) and IPCC (of UN Intergovernmental Panel on Climate Changes). The first one is applied only in European countries, the second is conformable to GHG emissions from all over the world. The versions IPCC-95 and CORINAIR94 are compared from theoretical and methodological point of view. In Bulgaria the version CORINAIR95 is not applied yet and the inventory analysis for 1994 uses CORINAIR90. The emissions of main GHG and gases-precursors are compared. The main elements of inventory are analyzed. The values recommended by CORINAIR94 are taken into account. A table for accordance between the two methods is used. The differences concerning transport vehicles are taken into account also. Differences between the two methods are noticed in the following directions: nomenclature of the activities emitting GHG; organization of the inventory guides; kind of the activities and technologies included. The qualitative comparison are done for energy sector and for industry separately. The results show too big differences in the volume of the emitted GHG and the reasons could be classified as methodological ones and differences in the kind and values of the emission coefficients. For their determining standard values for Eastern Europe from IPCC guide have been applied as well as data from experimental investigations. Respectively, in the method CORINAIR emission coefficients CORINAIR90 are used. The differences between the emission coefficients determined in the two methods are as big as twice or even more for CO at solid fuels, i.g. at energy production; as big as three times at NO x and up to twenty times at methane also at solid fuels. The two methods do not read the emissions of gases-precursors at some industrial processes. This disadvantage is overcome at IPCC96 and it is necessary to complement the emission coefficients in the data base, especially for gases-precursors regarding the

  16. Analysis of uncertainties in the estimates of nitrous oxide and methane emissions in the UK's greenhouse gas inventory for agriculture

    Science.gov (United States)

    Milne, Alice E.; Glendining, Margaret J.; Bellamy, Pat; Misselbrook, Tom; Gilhespy, Sarah; Rivas Casado, Monica; Hulin, Adele; van Oijen, Marcel; Whitmore, Andrew P.

    2014-01-01

    The UK's greenhouse gas inventory for agriculture uses a model based on the IPCC Tier 1 and Tier 2 methods to estimate the emissions of methane and nitrous oxide from agriculture. The inventory calculations are disaggregated at country level (England, Wales, Scotland and Northern Ireland). Before now, no detailed assessment of the uncertainties in the estimates of emissions had been done. We used Monte Carlo simulation to do such an analysis. We collated information on the uncertainties of each of the model inputs. The uncertainties propagate through the model and result in uncertainties in the estimated emissions. Using a sensitivity analysis, we found that in England and Scotland the uncertainty in the emission factor for emissions from N inputs (EF1) affected uncertainty the most, but that in Wales and Northern Ireland, the emission factor for N leaching and runoff (EF5) had greater influence. We showed that if the uncertainty in any one of these emission factors is reduced by 50%, the uncertainty in emissions of nitrous oxide reduces by 10%. The uncertainty in the estimate for the emissions of methane emission factors for enteric fermentation in cows and sheep most affected the uncertainty in methane emissions. When inventories are disaggregated (as that for the UK is) correlation between separate instances of each emission factor will affect the uncertainty in emissions. As more countries move towards inventory models with disaggregation, it is important that the IPCC give firm guidance on this topic.

  17. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    Science.gov (United States)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    Biomass burning injects many different gases and aerosols into the atmosphere that could have a harmful effect on air quality, climate, and human health. In this study, a comprehensive biomass burning emission inventory including domestic and in-field straw burning, firewood burning, livestock excrement burning, and forest and grassland fires is presented, which was developed for mainland China in 2012 based on county-level activity data, satellite data, and updated source-specific emission factors (EFs). The emission inventory within a 1 × 1 km2 grid was generated using geographical information system (GIS) technology according to source-based spatial surrogates. A range of key information related to emission estimation (e.g. province-specific proportion of domestic and in-field straw burning, detailed firewood burning quantities, uneven temporal distribution coefficient) was obtained from field investigation, systematic combing of the latest research, and regression analysis of statistical data. The established emission inventory includes the major precursors of complex pollution, greenhouse gases, and heavy metal released from biomass burning. The results show that the emissions of SO2, NOx, PM10, PM2.5, NMVOC, NH3, CO, EC, OC, CO2, CH4, and Hg in 2012 are 336.8 Gg, 990.7 Gg, 3728.3 Gg, 3526.7 Gg, 3474.2 Gg, 401.2 Gg, 34 380.4 Gg, 369.7 Gg, 1189.5 Gg, 675 299.0 Gg, 2092.4 Gg, and 4.12 Mg, respectively. Domestic straw burning, in-field straw burning, and firewood burning are identified as the dominant biomass burning sources. The largest contributing source is different for various pollutants. Domestic straw burning is the largest source of biomass burning emissions for all the pollutants considered, except for NH3, EC (firewood), and NOx (in-field straw). Corn, rice, and wheat represent the major crop straws. The combined emission of these three straw types accounts for 80 % of the total straw-burned emissions for each specific pollutant mentioned in this study

  18. Influence of updating global emission inventory of black carbon on evaluation of the climate and health impact

    Science.gov (United States)

    Wang, Rong; Tao, Shu; Balkanski, Yves; Ciais, Philippe

    2013-04-01

    Black carbon (BC) is an air component of particular concern in terms of air quality and climate change. Black carbon emissions are often estimated based on the fuel data and emission factors. However, large variations in emission factors reported in the literature have led to a high uncertainty in previous inventories. Here, we develop a new global 0.1°×0.1° BC emission inventory for 2007 with full uncertainty analysis based on updated source and emission factor databases. Two versions of LMDz-OR-INCA models, named as INCA and INCA-zA, are run to evaluate the new emission inventory. INCA is built up based on a regular grid system with a resolution of 1.27° in latitude and 2.50° in longitude, while INCA-zA is specially zoomed to 0.51°×0.66° (latitude×longitude) in Asia. By checking against field observations, we compare our inventory with ACCMIP, which is used by IPCC in the 5th assessment report, and also evaluate the influence of model resolutions. With the newly calculated BC air concentrations and the nested model, we estimate the direct radiative forcing of BC and the premature death and mortality rate induced by BC exposure with Asia emphasized. Global BC direct radiative forcing at TOA is estimated to be 0.41 W/m2 (0.2 - 0.8 as inter-quartile range), which is 17% higher than that derived from the inventory adopted by IPCC-AR5 (0.34 W/m2). The estimated premature deaths induced by inhalation exposure to anthropogenic BC (0.36 million in 2007) and the percentage of high risk population are higher than those previously estimated. Ninety percents of the global total anthropogenic PD occur in Asia with 0.18 and 0.08 million deaths in China and India, respectively.

  19. Verification of the Danish emission inventory data by national and international data comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Fauser, P.; Thomsen, Marianne; Nielsen, Ole-Kenneth; Winther, M.; Gyldenkaerne, S.; Hoffmann, L.; Lyck, E.; Boll Illerup, J.

    2007-08-15

    Danish emission intensity values, activity values and implied emission factors for identified key source categories are compared with corresponding values for the EU-15 countries (excluding Luxemburg). The emission values for all countries are based on national greenhouse gas inventories for the years 1990 (base year), 1997 and 2003 provided by the UNFCCC. The comparison is based on a proposed verification procedure that is designed for identifying emission indicators and evaluating data consistency and reliability for the energy and industry sectors. For all sectors the method gives good possibility for checking emission levels and consistency in time trends. (au)

  20. National Emissions Inventory (NEI) 2011 Point Facility Data for the US (US EPA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service displays 2011 USEPA National Emissions Inventory (NEI) point facility information for the United States. The map service was created for inclusion...

  1. National Emissions Inventory (NEI) 2005 Point Facility Data for the US (US EPA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service displays 2005 USEPA National Emissions Inventory (NEI) point facility information for the United States. The map service was created for inclusion...

  2. National Emissions Inventory Vehicle Miles Traveled, U.S., 2014, EPA/OAR/OAQPS/AQAD

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service contains layers that depict gridded Vehicle Miles Traveled (VMT) for 2014 from the National Emission Inventory (NEI). The default 2014 National...

  3. Source apportionment vs. emission inventories of non-methane hydrocarbons (NMHC in an urban area of the Middle East: local and global perspectives

    Directory of Open Access Journals (Sweden)

    T. Salameh

    2016-03-01

    Full Text Available We applied the positive matrix factorization model to two large data sets collected during two intensive measurement campaigns (summer 2011 and winter 2012 at a sub-urban site in Beirut, Lebanon, in order to identify NMHC (non-methane hydrocarbons sources and quantify their contribution to ambient levels. Six factors were identified in winter and five factors in summer. PMF-resolved source profiles were consistent with source profiles established by near-field measurements. The major sources were traffic-related emissions (combustion and gasoline evaporation in winter and in summer accounting for 51 and 74 wt %, respectively, in agreement with the national emission inventory. The gasoline evaporation related to traffic source had a significant contribution regardless of the season (22 wt % in winter and 30 wt % in summer. The NMHC emissions from road transport are estimated from observations and PMF results, and compared to local and global emission inventories. The PMF analysis finds reasonable differences on emission rates, of 20–39 % higher than the national road transport inventory. However, global inventories (ACCMIP, EDGAR, MACCity underestimate the emissions up to a factor of 10 for the transportation sector. When combining emission inventory to our results, there is strong evidence that control measures in Lebanon should be targeted on mitigating the NMHC emissions from the traffic-related sources. From a global perspective, an assessment of VOC (volatile organic compounds anthropogenic emission inventories for the Middle East region as a whole seems necessary as these emissions could be much higher than expected at least from the road transport sector.

  4. USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS2)

    Science.gov (United States)

    The document is a user's guide for an updated Personal Computer version of the Biogenic Emissions Inventory System (PC-BEIS2), allowing users to estimate hourly emissions of biogenic volatile organic compounds (BVOCs) and soil nitrogen oxide emissions for any county in the contig...

  5. A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Caserini, Stefano [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Galante, Silvia, E-mail: silvia1.galante@polimi.it [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Ozgen, Senem; Cucco, Sara; Gregorio, Katia de [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Moretti, Marco [Environmental Protection Agency of Lombardia Region, ARPA, 20124 Milano (Italy)

    2013-04-15

    This paper presents a methodology and its application for the compilation of elemental carbon (EC) and organic carbon (OC) emission inventories. The methodology consists of the estimation of EC and OC emissions from available total suspended particulate matter (TSP) emission inventory data using EC and OC abundances in TSP derived from an extensive literature review, by taking into account the local technological context. In particular, the method is applied to the 2008 emissions of Lombardy region, Italy, considering 148 different activities and 30 types of fuels, typical of Western Europe. The abundances estimated in this study may provide a useful basis to assess the emissions also in other emission contexts with similar prevailing sources and technologies. The dominant sources of EC and OC in Lombardy are diesel vehicles for EC and the residential wood combustion (RWC) for OC which together account for about 83% of the total emissions of both pollutants. The EC and OC emissions from industrial processes and other fuel (e.g., gasoline, kerosene and LPG) combustion are significantly lower, while non-combustion sources give an almost negligible contribution. Total EC + OC contribution to regional greenhouse gas emissions is positive for every sector assuming whichever GWP100 value within the range proposed in literature. An uncertainty assessment is performed through a Monte Carlo simulation for RWC, showing a large uncertainty range (280% of the mean value for EC and 70% for OC), whereas for road transport a qualitative analysis identified a narrower range of uncertainty. - Highlights: ► Diesel and wood combustion contribute to more than 80% of total EC and OC. ► More than 50% of EC emissions come from road transport. ► Monte Carlo method is used to assess the uncertainty of wood combustion emissions. ► Residential wood combustion is the main source of uncertainty of EC OC inventory. ► In terms of CO{sub 2}eq, EC and OC correspond to 3% of CO{sub 2

  6. Development of biogenic VOC emission inventories for the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, V.

    2008-07-01

    The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring

  7. Methane and nitrous oxide: Methods in national emissions inventories and options for control

    Energy Technology Data Exchange (ETDEWEB)

    Van Amstel, A.R. (ed.)

    1993-07-01

    The UN Framework Convention on Climate Change signed in Rio de Janeiro, Brazil, calls for the return of anthropogenic emissions of greenhouse gases to their 1990 levels by the year 2000 in industrialized countries. It also calls for a monitoring of the emissions of greenhouse gases. It is important that reliable and scientifically credible national inventories are available for the international negotiations. Therefore a consistent methodology and a transparent reporting format is needed. The title workshop had two main objectives: (1) to support the development a methodology and format for national emissions inventories of greenhouse gases by mid 1993, as coordinated by the Science Working Group of the IPCC and the OECD; and (2) the development of technical options for reduction of greenhouse gases and the assessment of the socio-economic feasibility of these options. The workshop consisted of key note overview presentations, and two rounds of working group sessions, each covering five parallel sessions on selected sources. In the first round of each working group session the literature, existing methods for methane and nitrous oxide inventories, and the OECD/IPCC guidelines have been addressed. Then, in the second round, options for emission reductions have been discussed, as well as their socio-economic implications. The methane sources discussed concern oil and gas, coal mining, ruminants, animal waste, landfills and sewage treatment, combustion and industry, rice production and wetlands, biomass burning. The nitrous oxide sources discussed are agricultural soils and combustion and industry. The proceedings on methane comprise 16 introductory papers and 7 papers on the results of the working groups, while in part two four introductory papers and two papers on the results of working groups on nitrous oxide are presented. In part three future emission reduction policy options are discussed. Finally, 16 poster contributions are included

  8. A high-resolution (0.1° × 0.1°) inventory of methane emissions from Canadian and Mexican oil and gas systems

    Science.gov (United States)

    Sheng, Jian-Xiong; Jacob, Daniel J.; Maasakkers, Joannes D.; Sulprizio, Melissa P.; Zavala-Araiza, Daniel; Hamburg, Steven P.

    2017-06-01

    Canada and Mexico have large but uncertain methane emissions from the oil/gas industry. Inverse analyses of atmospheric methane observations can improve emission estimates but require accurate source patterns as prior information. In order to serve this need, we develop a 0.1° × 0.1° gridded inventory of oil/gas emissions in Canada for 2013 and Mexico for 2010 by disaggregating national emission inventories using best available data for production, processing, transmission, and distribution. Results show large differences with the EDGAR v4.2 gridded global inventory used in past inverse analyses. Canadian emissions are concentrated in Alberta (gas production and processing) and Mexican emissions are concentrated along the east coast (oil production).

  9. The 2014 National Emission Inventory for Rangeland Fires and Crop Residue Burning

    Science.gov (United States)

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions I...

  10. Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle emission inventory

    Directory of Open Access Journals (Sweden)

    B. Jing

    2016-03-01

    Full Text Available This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT model and near-real-time traffic data on road segments to develop a vehicle emission inventory with high temporal–spatial resolution (HTSVE for the Beijing urban area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54  ×  104, 42.51  ×  104 and 2.13  ×  104 and 0.41  ×  104 Mg respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Based on the results of this study, improved air quality simulation and the contribution of vehicle emissions to ambient pollutant concentration in Beijing have been investigated in a companion paper (He et al., 2016.

  11. The case for refining bottom-up methane emission inventories using top-down measurements

    Science.gov (United States)

    Kelly, Bryce F. J.; Iverach, Charlotte P.; Ginty, Elisa; Bashir, Safdar; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.

    2017-04-01

    Bottom-up global methane emission estimates are important for guiding policy development and mitigation strategies. Such inventories enable rapid and consistent proportioning of emissions by industrial sectors and land use at various scales from city to country to global. There has been limited use of top-down measurements to guide refining emission inventories. Here we compare the EDGAR gridmap data version 4.2 with over 5000 km of daytime ground level mobile atmospheric methane surveys in eastern Australia. The landscapes and industries surveyed include: urban environments, dryland farming, intensive livestock farming (both beef and lamb), irrigation agriculture, open cut and underground coal mining, and coal seam gas production. Daytime mobile methane surveys over a 2-year period show that at the landscape scale there is a high level of repeatability for the mole fraction of methane measured in the ground level atmosphere. Such consistency in the mole fraction of methane indicates that these data can be used as a proxy for flux. A scatter plot of the EDGAR emission gridmap Log[ton substance / 0.1 degree x 0.1 degree / year] versus the median mole fraction of methane / 0.1 degree x 0.1 degree in the ground level atmosphere highlights that the extent of elevated methane emissions associated with coal mining in the Hunter coalfields, which covers an area of 56 km by 24 km, has been under-represented in the EDGAR input data. Our results also show that methane emissions from country towns (population poor information on the extent of urban gas leaks. Given the uncertainties associated with the base land use and industry data for each country, we generalise the Australian observations to the global inventory with caution. The extensive comparison of top-down measurements versus the EDGAR version 4.2 methane gridmaps highlights the need for adjustments to the base resource data and/or the emission factors applied for coal mining, especially emissions from underground

  12. PC-BEIS: a personal computer version of the biogenic emissions inventory system

    International Nuclear Information System (INIS)

    Pierce, T.E.; Waldruff, P.S.

    1991-01-01

    The US Environmental Protection Agency's Biogenic Emissions Inventory System (BEIS) has been adapted for use on IBM-compatible personal computers (PCs). PC-BEIS estimates hourly emissions of isoprene, α-pinene, other monoterpenes, and unidentified hydrocarbons for any county in the contiguous United States. To run the program, users must provide hourly data on ambient temperature, relative humidity, wind speed, cloud cover, and a code that identifies the particular county. This paper provides an overview of the method used to calculate biogenic emissions, shows an example application, and gives information on how to obtain a copy of the program

  13. Reducing errors in aircraft atmospheric inversion estimates of point-source emissions: the Aliso Canyon natural gas leak as a natural tracer experiment

    Science.gov (United States)

    Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.

    2018-04-01

    Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and

  14. GHG emissions inventory for on-road transportation in the town of Sassari (Sardinia, Italy)

    Science.gov (United States)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2016-04-01

    The IPCC Fifth Assessment Report (AR5) accounts an increase of the total annual anthropogenic GHG emissions between 2000 and 2010 that directly came from the transport sector. In 2010, 14% of GHG emissions were released by transport and fossil-fuel-related CO2 emissions reached about 32 GtCO2 per year. The report also considers adaptation and mitigation as complementary strategies for reducing the risks of climate change for sustainable development of urban areas. This paper describes the on-road traffic emission estimated in the framework of a Sardinian regional project [1] for the town of Sassari (Sardinia, Italy), one of the Sardinian areas where the fuel consumption for on-road transportation purposes is higher [2]. The GHG emissions have been accounted (a) by a calculation-based methodology founded on a linear relationship between source activity and emission, and (b) by the COPERT IV methodology through the EMITRA (EMIssions from road TRAnsport) software tool [3]. Inventory data for annual fossil fuel consumption associated with on-road transportation (diesel, gasoline, gas) have been collected through the Dogane service, the ATP and ARST public transport services and vehicle fleet data are available from the Public Vehicle Database (PRA), using 2010 as baseline year. During this period, the estimated CO2 emissions accounts for more than 180,000 tCO2. The calculation of emissions due to on-road transport quantitatively estimates CO2 and other GHG emissions and represents a useful baseline to identify possible adaptation and mitigation strategies to face the climate change risks at municipal level. Acknowledgements This research was funded by the Sardinian Regional Project "Development, functional checking and setup of an integrated system for the quantification of CO2 net exchange and for the evaluation of mitigation strategies at urban and territorial scale", (Legge Regionale 7 agosto 2007, No. 7). References [1] Sanna L., Ferrara R., Zara P. & Duce P. (2014

  15. Denmark's national inventory report 2011. Emission inventories 1990-2009 - submitted under the United Nations framework convention on climate change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Hjorth Mikkelsen, M.; Hoffmann, L. (and others)

    2011-05-15

    This report is Denmark's National Inventory Report 2011. The report contains information on Denmark's emission inventories for all years' from 1990 to 2009 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  16. Denmark's national inventory report 2010. Emission inventories 1990-2008 - submitted under the United Nations framework convention on climate change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Lyck, E.; Hjorth Mikkelsen, M. (and others)

    2010-05-15

    This report is Denmark's National Inventory Report 2010. The report contains information on Denmark's emission inventories for all years' from 1990 to 2008 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  17. Denmark's national inventory report 2012. Emission inventories 1990-2010 - submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Hjorth Mikkelsen, M.; Hoffmann, L. (and others)

    2012-05-15

    This report is Denmark's National Inventory Report 2012. The report contains information on Denmark's emission inventories for all years' from 1990 to 2010 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  18. Denmark's national inventory report 2013. Emission inventories 1990-2011 - submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Plejdrup, M.S.; Winther, M. [and others

    2013-05-15

    This report is Denmark's National Inventory Report 2013. The report contains information on Denmark's emission inventories for all years' from 1990 to 2011 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  19. The use of continuous functions for a top-down temporal disaggregation of emission inventories

    International Nuclear Information System (INIS)

    Kalchmayr, M.; Orthofer, R.

    1997-11-01

    This report is a documentation of a presentation at the International Speciality Conference 'The Emission Inventory: Planning for the Future', October 28-30, 1997 in Research Triangle Park, North Carolina, USA. The Conference was organized by the Air and Waste Management Association (AWMA) and the U.S. Environmental Protection Agency. Emission data with high temporal resolution are necessary to analyze the relationship between emissions and their impacts. In many countries, however, emission inventories refer only to the annual countrywide emission sums, because underlying data (traffic, energy, industry statistics) are available for statistically relevant territorial units and for longer time periods only. This paper describes a method for the temporal disaggregation of yearly emission sums through application of continuous functions which simulate emission generating activities. The temporal patterns of the activities are derived through overlay of annual, weekly and diurnal variation functions which are based on statistical data of the relevant activities. If applied to annual emission data, these combined functions describe the dynamic patterns of emissions over year. The main advantage of the continuous functions method is that temporal emission patterns can be smoothed throughout one year, thus eliminating some of the major drawbacks from the traditional standardized fixed quota system. For handling in models, the continuous functions and their parameters can be directly included and the emission quota calculated directly for a certain hour of the year. The usefulness of the method is demonstrated with NMVOC emission data for Austria. Temporally disaggregated emission data can be used as input for ozone models as well as for visualization and animation of the emission dynamics. The analysis of the temporal dynamics of emission source strengths, e.g. during critical hours for ozone generation in summer, allows the implementation of efficient emission reduction

  20. A Software Toolkit to Accelerate Emission Predictions for Turboelectric/Hybrid Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion represents an attractive path for reducing overall emissions. For larger commercial aircrafts operating in the mega-watt range, power...

  1. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-06

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  2. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    Science.gov (United States)

    Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.

    2018-01-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min–max: 0.46, 0.3–0.5 ppbv) and 0.2% (0.013, 0.004–0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5–0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01–0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions. PMID:29707471

  3. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    Science.gov (United States)

    Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.

    2017-12-01

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed 1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5-0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01-0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed 70 times and 13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.

  4. A new gridded on-road CO2 emissions inventory for the United States, 1980-2011

    Science.gov (United States)

    Gately, C.; Hutyra, L.; Sue Wing, I.

    2013-12-01

    On-road transportation is responsible for 28% of all U.S. fossil fuel CO2 emissions. However, mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories have used spatial proxies such as population and road density to downscale national or state level data, which may introduce errors where the proxy variables and actual emissions are weakly correlated. We have developed a national on-road emissions inventory product based on roadway-level traffic data obtained from the Highway Performance Monitoring System. We produce annual estimates of on-road CO2 emissions at a 1km spatial resolution for the contiguous United States for the years 1980 through 2011. For the year 2011 we also produce an hourly emissions product at the 1km scale using hourly traffic volumes from hundreds of automated traffic counters across the country. National on-road emissions rose at roughly 2% per year from 1980 to 2006, with emissions peaking at 1.71 Tg CO2 in 2007. However, while national emissions have declined 6% since the peak, we observe considerable regional variation in emissions trends post-2007. While many states show stable or declining on-road emissions, several states and metropolitan areas in the Midwest, mountain west and south had emissions increases of 3-10% from 2008 to 2011. Our emissions estimates are consistent with state-reported totals of gasoline and diesel fuel consumption. This is in contrast to on-road CO2 emissions estimated by the Emissions Database of Global Atmospheric Research (EDGAR), which we show to be inconsistent in matching on-road emissions to published fuel consumption at the scale of U.S. states, due to the non-linear relationships between emissions and EDGAR's chosen spatial proxies at these scales. Since our emissions estimates were generated independent of population density and other demographic data, we were able to conduct a panel regression analysis to estimate the relationship between these

  5. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Directory of Open Access Journals (Sweden)

    Z. R. Barkley

    2017-11-01

    Full Text Available Natural gas infrastructure releases methane (CH4, a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem, and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are

  6. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Science.gov (United States)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any

  7. Impact of aircraft emissions on the atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dameris, M; Sausen, R; Grewe, V; Koehler, I; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Steil, B [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Bruehl, Ch [Max-Planck-Inst. fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1998-12-31

    A hierarchy of models of different complexity has been applied to estimate the impact of aircraft NO{sub x} emissions on atmospheric chemistry. The global circulation model ECHAM3 has been coupled with two types of chemistry modules. The first of these describes only a simplified (linear) NO{sub x} and HNO{sub 3} chemistry while the second one is a comprehensive chemistry module (CHEM), describing tropospheric and stratospheric chemistry including photochemical reactions and heterogeneous reactions on sulphate aerosols and PSCs. The module CHEM has been coupled either off-line or with feedback via the ozone concentration. First results of multilayer integrations (over decades) are discussed. (author) 27 refs.

  8. Impact of aircraft emissions on the atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dameris, M.; Sausen, R.; Grewe, V.; Koehler, I.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Bruehl, Ch. [Max-Planck-Inst. fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1997-12-31

    A hierarchy of models of different complexity has been applied to estimate the impact of aircraft NO{sub x} emissions on atmospheric chemistry. The global circulation model ECHAM3 has been coupled with two types of chemistry modules. The first of these describes only a simplified (linear) NO{sub x} and HNO{sub 3} chemistry while the second one is a comprehensive chemistry module (CHEM), describing tropospheric and stratospheric chemistry including photochemical reactions and heterogeneous reactions on sulphate aerosols and PSCs. The module CHEM has been coupled either off-line or with feedback via the ozone concentration. First results of multilayer integrations (over decades) are discussed. (author) 27 refs.

  9. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    Science.gov (United States)

    Stephen M Ogle; Kenneth Davis; Thomas Lauvaux; Andrew Schuh; Dan Cooley; Tristram O West; Linda S Heath; Natasha L Miles; Scott Richardson; F Jay Breidt; James E Smith; Jessica L McCarty; Kevin R Gurney; Pieter Tans; A Scott. Denning

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country's contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated...

  10. Evaluation of the FEERv1.0 Global Top-Down Biomass Burning Emissions Inventory over Africa

    Science.gov (United States)

    Ellison, L.; Ichoku, C. M.

    2014-12-01

    With the advent of the Fire Energetics and Emissions Research (FEER) global top-down biomass burning emissions product from NASA Goddard Space Flight Center, a subsequent effort is going on to analyze and evaluate some of the main (particulate and gaseous) constituents of this emissions inventory against other inventories of biomass burning emissions over the African continent. There is consistent and continual burning during the dry season in NSSA of many small slash-and-burn fires that, though may be relatively small fires individually, collectively contribute 20-25% of the global total carbon emissions from biomass burning. As a top-down method of estimating biomass-burning emissions, FEERv1.0 is able to yield higher and more realistic emissions than previously obtainable using bottom-up methods. Results of such comparisons performed in detail over Africa will be discussed in this presentation. This effort is carried out in conjunction with a NASA-funded interdisciplinary research project investigating the effects of biomass burning on the regional climate system in Northern Sub-Saharan Africa (NSSA). Essentially, that project aims to determine how fires may have affected the severe droughts that plagued the NSSA region in recent history. Therefore, it is imperative that the biomass burning emissions input data over Africa be as accurate as possible in order to obtain a confident understanding of their interactions and feedbacks with the hydrological cycle in NSSA.

  11. 2012 Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas Emissions and Sinks

    Science.gov (United States)

    This page describes EPA's September 2012 stakeholder workshop on key aspects of the estimates of greenhouse gas emissions from the natural gas sector in the Inventory of U.S. Greenhouse Gas Emissions and Sinks.

  12. Inventory of greenhouse gas(GH G) emission and sinks in Kenya

    International Nuclear Information System (INIS)

    Mbuthi, P.N.; King'uyu, S.M.; Moenga, O.O.

    1998-01-01

    The Government of Kenya carried out studies on impacts of climate change in 1995, within the framework of Kenya Country Study on Climate Change Project. An inventory of greenhouse gas emission from various activities such as energy, industry, agriculture, urban waste, landuse and forestry was compiled. Each of the five sectoral chapters includes methods used in analysis, data sources, results and recommendations

  13. A new method to compare vehicle emissions measured by remote sensing and laboratory testing: high-emitters and potential implications for emission inventories.

    Science.gov (United States)

    Smit, Robin; Bluett, Jeff

    2011-06-01

    A new method is presented which is designed to investigate whether laboratory test data used in the development of vehicle emission models adequately reflects emission distributions, and in particular the influence of high-emitting vehicles. The method includes the computation of a 'high-emitter' or 'emission distribution' correction factor for use in emission inventories. In order to make a valid comparison we control for a number of factors such as vehicle technology, measurement technique and driving conditions and use a variable called 'Pollution Index' (g/kg). Our investigation into one vehicle class has shown that laboratory and remote sensing data are substantially different for CO, HC and NO(x) emissions, both in terms of their distributions as well as in their mean and 99-percentile values. Given that the remote sensing data has larger mean values for these pollutants, the analysis suggests that high-emitting vehicles may not be adequately captured in the laboratory test data. The paper presents two different methods for the computation of weighted correction factors for use in emission inventories based on laboratory test data: one using mean values for six 'power bins' and one using multivariate regression functions. The computed correction factors are substantial leading to an increase for laboratory-based emission factors with a factor of 1.7-1.9 for CO, 1.3-1.6 for HC and 1.4-1.7 for NO(x) (actual value depending on the method). However, it also clear that there are points that require further examination before these correction factors should be applied. One important step will be to include a comparison with other types of validation studies such as tunnel studies and near-road air quality assessments to examine if these correction factors are confirmed. If so, we would recommend using the correction factors in emission inventories for motor vehicles. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Towards an inventory of methane emissions from manure management that is responsive to changes on Canadian farms

    International Nuclear Information System (INIS)

    VanderZaag, A C; Evans, L; Vergé, X P C; Desjardins, R L; MacDonald, J D

    2013-01-01

    Methane emissions from manure management represent an important mitigation opportunity, yet emission quantification methods remain crude and do not contain adequate detail to capture changes in agricultural practices that may influence emissions. Using the Canadian emission inventory methodology as an example, this letter explores three key aspects for improving emission quantification: (i) obtaining emission measurements to improve and validate emission model estimates, (ii) obtaining more useful activity data, and (iii) developing a methane emission model that uses the available farm management activity data. In Canada, national surveys to collect manure management data have been inconsistent and not designed to provide quantitative data. Thus, the inventory has not been able to accurately capture changes in management systems even between manure stored as solid versus liquid. To address this, we re-analyzed four farm management surveys from the past decade and quantified the significant change in manure management which can be linked to the annual agricultural survey to create a continuous time series. In the dairy industry of one province, for example, the percentage of manure stored as liquid increased by 300% between 1991 and 2006, which greatly affects the methane emission estimates. Methane emissions are greatest from liquid manure, but vary by an order of magnitude depending on how the liquid manure is managed. Even if more complete activity data are collected on manure storage systems, default Intergovernmental Panel on Climate Change (IPCC) guidance does not adequately capture the impacts of management decisions to reflect variation among farms and regions in inventory calculations. We propose a model that stays within the IPCC framework but would be more responsive to farm management by generating a matrix of methane conversion factors (MCFs) that account for key factors known to affect methane emissions: temperature, retention time and inoculum. This

  15. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs are the key precursors of ozone (O3 and secondary organic aerosol (SOA formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography – mass spectrometry system (GC-MS. Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs were the most important species, accounting for 25.9–29.9, 20.8–23.2 and 18.2–21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions

  16. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Science.gov (United States)

    Zhao, Yu; Mao, Pan; Zhou, Yaduan; Yang, Yang; Zhang, Jie; Wang, Shekou; Dong, Yanping; Xie, Fangjian; Yu, Yiyong; Li, Wenqing

    2017-06-01

    Non-methane volatile organic compounds (NMVOCs) are the key precursors of ozone (O3) and secondary organic aerosol (SOA) formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography - mass spectrometry system (GC-MS). Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs) were the most important species, accounting for 25.9-29.9, 20.8-23.2 and 18.2-21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions vary slightly through the years

  17. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain

    International Nuclear Information System (INIS)

    Zhang, Y.; Dore, A.J.; Ma, L.; Liu, X.J.; Ma, W.Q.; Cape, J.N.; Zhang, F.S.

    2010-01-01

    An agricultural ammonia (NH 3 ) emission inventory in the North China Plain (NCP) on a prefecture level for the year 2004, and a 5 x 5 km 2 resolution spatial distribution map, has been calculated for the first time. The census database from China's statistics datasets, and emission factors re-calculated by the RAINS model supported total emissions of 3071 kt NH 3 -N yr -1 for the NCP, accounting for 27% of the total emissions in China. NH 3 emission from mineral fertilizer application contributed 1620 kt NH 3 -N yr -1 , 54% of the total emission, while livestock emissions accounted for the remaining 46% of the total emissions, including 7%, 27%, 7% and 5% from cattle, pigs, sheep and goats, and poultry, respectively. A high-resolution spatial NH 3 emissions map was developed based on 1 x 1 km land use database and aggregated to a 5 x 5 km grid resolution. The highest emission density value was 198 kg N ha -1 yr -1 . - The first high-resolution spatial distribution of ammonia emissions for the North China Plain showed rates up to 200 kg NH 3 -N ha -1 yr -1 .

  18. [Development of biogenic VOC emissions inventory with high temporal and spatial resolution].

    Science.gov (United States)

    Hu, Y; Zhang, Y; Xie, S; Zeng, L

    2001-11-01

    A new method was developed to estimate biogenic VOC emissions with high temporal and spatial resolution by use of Mesoscale Meteorology Modeling System Version5 (MM5). In this method, the isoprene and monoterpene standard emission factors for some types of tree in China were given and the standard VOC emission factors and seasonally average densities of leaf biomass for all types of vegetation were determined. A biogenic VOC emissions inventory in South China was established which could meet the requirement of regional air quality modeling. Total biogenic VOC emissions in a typical summer day were estimated to be 1.12 x 10(4) metric tons in an area of 729 km x 729 km of South China. The results showed the temporal and spatial distributions of biogenic VOC emission rates in this area. The results also showed that the geographical distribution of biogenic VOC emission rates depended on vegetation types and their distributions and the diurnal variation mainly depended on the solar radiation and temperature. The uncertainties of estimating biogenic VOC emissions were also discussed.

  19. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  20. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  1. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R.; Zijlema, P.J.; Van den Berghe, G.; Baas, K.; Te Biesebeek, J.D.; Brandt, A.T.; Geilenkirchen, G.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I.

    2011-04-01

    The total greenhouse gas emission from the Netherlands in 2009 decreased by approximately 3% compared to the emission in 2008. This decrease is a result of the economic crisis, especially due to the decrease in the industrial production. In 2009, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amount to 198.9Tg CO2 eq. This is nearly 7 % below the emissions in the base year 1990 (213.2 Tg CO2 eq). This report documents the 2011 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  2. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P W.H.G.; Van der Hoek, K W; Te Molder, R; Droege, R [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C W.M.; Zijlema, P J; Van den Berghe, A C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J D; Brandt, A T [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J A; Peek, C J; Vonk, J; Van den Wyngaert, I [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  3. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P. W.H.G.; Van der Hoek, K. W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C. W.M.; Zijlema, P. J.; Van den Berghe, A. C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J. D.; Brandt, A. T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J. A.; Peek, C. J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  4. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  5. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J; Schaefer, K [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1998-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  6. Emission inventory; Inventaire des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1997-12-31

    Statistics on air pollutant (sulfur dioxide, nitrogen oxides and ammonium) emissions, acid equivalent emissions and their evolution since 1990 in the various countries of Europe and the USA, are presented. Emission data from the industrial, agricultural, transportation and power sectors are given, and comparisons are carried out between countries based on Gnp and population, pollution import/export fluxes and compliance to the previous emission reduction objectives

  7. Modeled Trends in Impacts of Landing and Takeoff Aircraft Emissions on Surface Air-Quality in U.S for 2005, 2010 and 2018

    Science.gov (United States)

    Vennam, L. P.

    2014-12-01

    Understanding the present-day impacts of aircraft emissions on surface air quality is essential to plan potential mitigation policies for future growth. Stringent regulation on mobile source-related emissions in the recent past coupled with anticipated rise in the growth in aviation activity can increase the relative impacts of aviation-attributable surface air quality if adequate measures for reducing aviation emissions are not implemented. Though aircraft emissions during in-flight mode (at upper altitudes) contribute a significant (70 - 80%) proportion of the total aviation emissions, landing and takeoff (LTO) related emissions can have immediate impact on surface air quality, as most of the large airports are located in urban areas, specifically those that are designated in nonattainment for O3 and/or PM2.5. In this study, we modeled impacts of aircraft emissions during LTO cycles on surface air quality using the latest version of the CMAQ model for two contemporary years (2005, 2010) and one future year (2018). For this regional scale modeling study, we used highly resolved aircraft emissions from the FAA's Aviation Environmental Design Tool (AEDT), meteorology from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) downscaled with the WRF model, dynamically varying chemical boundary conditions from the CAM-Chem global model (which also used the same AEDT emissions but at the global scale), and spatio-temporally resolved lightning NOx emissions estimated using National Lightning Detection Network (NLDN) flash density data. We evaluated our model results with air quality observations from surface-based networks and in-situ aircraft observation data for the contemporary years. We will present results from model evaluation using this enhanced modeling system, as well as the trajectories in aviation- related air quality (focusing on O3, NO2 and PM2.5) for the three modeling years considered in this study. These findings will help plan

  8. Inventory of Greenhouse Gases Emissions from Gasoline and Diesel Consumption in Nigeria

    Directory of Open Access Journals (Sweden)

    S. O. Giwa

    2017-06-01

    Full Text Available Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs released into the environment through consumption of fuels (gasoline and diesel in Nigeria from 1980 to 2014. The fuel consumption data for the period in view were sourced from bulletins released by Nigeria National Petroleum Corporation, (NNPC and were utilized for GHGs estimation based on default emission factors (69300 kg/TJ (CO2; gasoline, 74100 kg/TJ (CO2; diesel, 18 kg/TJ (CH4; gasoline, 3.85 kg/TJ (CH4; diesel, 1.9 kg/TJ (N2O; gasoline and 2.25 kg/TJ (N2O; diesel. In addition, the uncertainty and sensitivity analyses associated with the inventory were carried out. Total amount of GHGs emitted into the environment for the period under consideration was 7.30 x 108 tCO2 e (5.20 x 108 tCO2 e and 2.10 x 108 tCO2 e of gasoline and diesel, respectively. It is worth noting that gasoline consumption accounted for 71.23% of the total amount of GHGs with CO2 making up 98.72 % (CH4 = 1.39 % and N2O = 0.61 % of the emissions. For this study, uncertainty of estimate was between -80.93 % and 78.36 % while volume of diesel is more sensitive than the volume of gasoline of the input parameters. National policy and enforcement on low or neutral emission fuels utilization are amongst the recommended actions toward reducing GHG emissions in the country.

  9. Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from remotely sensed data.

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo

    2017-07-01

    Biomass burning is a large important source of greenhouse gases and atmospheric aerosols, and can contribute greatly to the temporal variations of CO 2 emissions at regional and global scales. In this study, we compared four globally gridded CO 2 emission inventories from biomass burning during the period of 2002-2011, highlighting the similarities and differences in seasonality and interannual variability of the CO 2 emissions both at regional and global scales. The four datasets included Global Fire Emissions Database 4s with small fires (GFED4s), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0), and Global Inventory for Chemistry-Climate studies-GFED4s (G-G). The results showed that in general, the four inventories presented consistent temporal trend but with large differences as well. Globally, CO 2 emissions of GFED4s, GFAS1.0, and G-G all peaked in August with the exception in FINN1.0, which recorded another peak in annual March. The interannual trend of all datasets displayed an overall decrease in CO 2 emissions during 2002-2011, except for the inconsistent FINN1.0, which showed a tendency to increase during the considered period. Meanwhile, GFED4s and GFAS1.0 noted consistent agreement from 2002 to 2011 at both global (R 2  > 0.8) and continental levels (R 2  > 0.7). FINN1.0 was found to have the poorest temporal correlations with the other three inventories globally (R 2  80%) but showed small variations through the years (<40%).

  10. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-31

    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  11. Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China

    International Nuclear Information System (INIS)

    Xi Fengming; Geng Yong; Chen Xudong; Zhang Yunsong; Wang Xinbei; Xue Bing; Dong Huijuan; Liu Zhu; Ren Wanxia; Fujita, Tsuyoshi; Zhu Qinghua

    2011-01-01

    Cities consumed 84% of commercial energy in China, which indicates cities should be the main areas for GHG emissions reduction. Our case study of Shenyang in this paper shows how a clear inventory analysis on GHG emissions at city level can help to identify the major industries and societal sectors for reduction efforts so as to facilitate low-carbon policy-making. The results showed total carbon emission in 2007 was 57 Mt CO 2 equivalents (CO 2 e), of which 41 Mt CO 2 e was in-boundary emissions and 16 Mt CO 2 e was out-of-boundary emissions. The energy sector was dominant in the emission inventory, accounting for 93.1% of total emissions. Within energy sector, emissions from energy production industry, manufacturing and construction industry accounted for 88.4% of this sector. Our analysis showed that comparing with geographical boundary, setting system boundary based on single process standard could provide better information to decision makers for carbon emission reduction. After attributing electricity and heating consumption to final users, the resident and commercial sector became the largest emitter, accounting for 28.5% of total emissions. Spatial analysis of emissions showed that industrial districts such as Shenbei and Tiexi had the large potential to reduce their carbon emissions. Implications of results are finally discussed. - Highlights: → An inventory analysis can help identify key industries and societal sectors for reduction efforts. → Setting system boundary can provide better information for carbon emission reduction. → Urban districts with heavy industrial plants have potential to reduce their carbon emissions. → Policies that support urban energy structure optimization can accelerate low-carbon development.

  12. Nitrous oxide emission inventory of German forest soils

    Science.gov (United States)

    Schulte-Bisping, Hubert; Brumme, Rainer; Priesack, Eckart

    2003-02-01

    Annual fluxes of N2O trace gas emissions were assessed after stratifying German forest soils into Seasonal Emission Pattern (SEP) and Background Emission Pattern (BEP). Broad-leaved forests with soil pH(KCl) ≤ 3.3 were assigned to have SEP, broad-leaved forests with soil pH(KCl) > 3.3 and all needle-leaved forests to have BEP. BEPs were estimated by a relationship between annual N2O emissions and carbon content of the O-horizon. SEPs were primarily controlled by temperature and moisture and simulated by the model Expert-N after calibration to a 9-year record of N2O measurements. Analysis with different climate and soil properties indicated that the model reacts highly sensitive to changes in soil temperature, soil moisture, and soil texture. A geographic information system (ARC/INFO) was used for a spatial resolution of 1 km × 1 km grid where land cover, dominant soil units, and hygro climate classes were combined. The mean annual N2O emission flux from German forest soils was estimated as 0.32 kg ha-1 yr-1. Broad-leaved forests with SEP had the highest emissions (2.05 kg ha-1 yr-1) followed by mixed forests (0.38 kg ha-1 yr-1), broad-leaved forests (0.37 kg ha-1 yr-1), and needle-leaved forests with BEP (0.17 kg ha-1 yr-1). The annual N2O emission from German forest soils was calculated as 3.26 Gg N2O-N yr-1. Although needle-leaved trees cover about 57% of the entire forest area in Germany, their contribution is low (0.96 Gg N2O-N yr-1). Broad-leaved forests cover about 22% of the forest area but have 55% higher emissions (1.49 Gg N2O-N yr-1) than needle-leaved. Mixed forests cover 21% of the area and contribute 0.81 Gg N2O-N yr-1. Compared to the total N2O emissions in Germany of 170 Gg N yr-1, forest soils contribute only 1.9%. However, there are some uncertainties in this emission inventory, which are intensely discussed.

  13. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Illerup, Jytte Boll; Kindbom, Karin

    the reported emissions of PM10 and PM2.5 was calculated for each country. Norway has the largest share of PM2.5 compared to PM10 (88 %), whereas Finland has the lowest (66 %). Denmark and Sweden are right in the middle with 73 and 76 %, respectively. The completeness of the inventories was assessed...

  14. Greenhouse gas emissions in China 2007: Inventory and input-output analysis

    International Nuclear Information System (INIS)

    Chen, G.Q.; Zhang Bo

    2010-01-01

    For greenhouse gas (GHG) emissions by the Chinese economy in 2007 with the most recent statistics availability, a concrete inventory covering CO 2 , CH 4 , and N 2 O is composed and associated with an input-output analysis to reveal the emission embodiment in final consumption and international trade. The estimated total direct GHG emission amounts to 7456.12 Mt CO 2 -eq by the commonly referred IPCC global warming potentials, with 63.39% from energy-related CO 2 , 22.31% from non-energy-related CO 2 , 11.15% from CH 4 and 3.15% from N 2 O. Responsible for 81.32% of the total GHG emissions are the five sectors of the Electric Power/Steam and Hot Water Production and Supply, Smelting and Pressing of Ferrous and Nonferrous Metals, Nonmetal Mineral Products, Agriculture, and Coal Mining and Dressing, with distinctive emission structures. The sector of Construction holds the top GHG emissions embodied in both domestic production and consumption, and the emission embodied in gross capital formation is prominently more than those in other components of the final consumption characterized by extensive investment in contrast to limited household consumption. China is a net exporter of embodied GHG emissions, with emissions embodied in exports of 3060.18 Mt CO 2 -eq, in magnitude up to 41.04% of the total direct emission.

  15. Joint Optimization of Distribution Network Design and Two-Echelon Inventory Control with Stochastic Demand and CO2 Emission Tax Charges.

    Science.gov (United States)

    Li, Shuangyan; Li, Xialian; Zhang, Dezhi; Zhou, Lingyun

    2017-01-01

    This study develops an optimization model to integrate facility location and inventory control for a three-level distribution network consisting of a supplier, multiple distribution centers (DCs), and multiple retailers. The integrated model addressed in this study simultaneously determines three types of decisions: (1) facility location (optimal number, location, and size of DCs); (2) allocation (assignment of suppliers to located DCs and retailers to located DCs, and corresponding optimal transport mode choices); and (3) inventory control decisions on order quantities, reorder points, and amount of safety stock at each retailer and opened DC. A mixed-integer programming model is presented, which considers the carbon emission taxes, multiple transport modes, stochastic demand, and replenishment lead time. The goal is to minimize the total cost, which covers the fixed costs of logistics facilities, inventory, transportation, and CO2 emission tax charges. The aforementioned optimal model was solved using commercial software LINGO 11. A numerical example is provided to illustrate the applications of the proposed model. The findings show that carbon emission taxes can significantly affect the supply chain structure, inventory level, and carbon emission reduction levels. The delay rate directly affects the replenishment decision of a retailer.

  16. Joint Optimization of Distribution Network Design and Two-Echelon Inventory Control with Stochastic Demand and CO2 Emission Tax Charges.

    Directory of Open Access Journals (Sweden)

    Shuangyan Li

    Full Text Available This study develops an optimization model to integrate facility location and inventory control for a three-level distribution network consisting of a supplier, multiple distribution centers (DCs, and multiple retailers. The integrated model addressed in this study simultaneously determines three types of decisions: (1 facility location (optimal number, location, and size of DCs; (2 allocation (assignment of suppliers to located DCs and retailers to located DCs, and corresponding optimal transport mode choices; and (3 inventory control decisions on order quantities, reorder points, and amount of safety stock at each retailer and opened DC. A mixed-integer programming model is presented, which considers the carbon emission taxes, multiple transport modes, stochastic demand, and replenishment lead time. The goal is to minimize the total cost, which covers the fixed costs of logistics facilities, inventory, transportation, and CO2 emission tax charges. The aforementioned optimal model was solved using commercial software LINGO 11. A numerical example is provided to illustrate the applications of the proposed model. The findings show that carbon emission taxes can significantly affect the supply chain structure, inventory level, and carbon emission reduction levels. The delay rate directly affects the replenishment decision of a retailer.

  17. CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities

    International Nuclear Information System (INIS)

    Yu Wei; Pagani, Roberto; Huang Lei

    2012-01-01

    The international literature has paid significant attention to presenting China as the largest emitter of greenhouse gases (GHGs) in the world, despite having much lower per-capita emissions than the global average. In fact, the imbalance of economic development leads to diversity in GHG emissions profiles in different areas of China. This paper employs a common methodology, consistent with the Sustainable Energy Action Plan (SEAP) approved by the Covenant of Mayors (CoM), to estimate CO 2 emissions of four Chinese cities in highly urbanized areas from 2004 to 2010. The results show that the CO 2 emissions of all four cities are still rising and that secondary industries emit the most CO 2 in these cities. By comparing these data with the inventory results of two European cities, this paper further reveals that Chinese cities in highly urbanized areas contribute much higher per-capita emissions than their European competitors. Furthermore, the per-capita CO 2 emissions of the residential sector and private transport in these Chinese cities are growing rapidly, some of them approaching the levels of European cities. According to these findings, several policy suggestions considering regional disparities are provided that aim to reduce the CO 2 emissions of highly urbanized areas in China. - Highlights: ► An exemplary study of GHG emission inventory for Chinese cities. ► Estimate CO 2 emissions of Chinese city in highly urbanized areas from 2004 to 2010. ► The studied Chinese cities contribute higher per-capita emissions than European’s. ► Emissions of residential sector and private transport in China are growing rapidly. ► Several policy suggestions considering regional disparities are provided.

  18. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: zhangying0928@hotmail.co [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Dore, A.J. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Ma, L. [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); College of Resources and Environmental Sciences, Agricultural University of Hebei, Baoding 071001 (China); Liu, X.J., E-mail: liu310@cau.edu.c [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Ma, W.Q. [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); College of Resources and Environmental Sciences, Agricultural University of Hebei, Baoding 071001 (China); Cape, J.N. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Zhang, F.S. [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China)

    2010-02-15

    An agricultural ammonia (NH{sub 3}) emission inventory in the North China Plain (NCP) on a prefecture level for the year 2004, and a 5 x 5 km{sup 2} resolution spatial distribution map, has been calculated for the first time. The census database from China's statistics datasets, and emission factors re-calculated by the RAINS model supported total emissions of 3071 kt NH{sub 3}-N yr{sup -1} for the NCP, accounting for 27% of the total emissions in China. NH{sub 3} emission from mineral fertilizer application contributed 1620 kt NH{sub 3}-N yr{sup -1}, 54% of the total emission, while livestock emissions accounted for the remaining 46% of the total emissions, including 7%, 27%, 7% and 5% from cattle, pigs, sheep and goats, and poultry, respectively. A high-resolution spatial NH{sub 3} emissions map was developed based on 1 x 1 km land use database and aggregated to a 5 x 5 km grid resolution. The highest emission density value was 198 kg N ha{sup -1} yr{sup -1}. - The first high-resolution spatial distribution of ammonia emissions for the North China Plain showed rates up to 200 kg NH{sub 3}-N ha{sup -1} yr{sup -1}.

  19. Improving emissions inventories in North America through systematic analysis of model performance during ICARTT and MILAGRO

    Science.gov (United States)

    Mena, Marcelo Andres

    During 2004 and 2006 the University of Iowa provided air quality forecast support for flight planning of the ICARTT and MILAGRO field campaigns. A method for improvement of model performance in comparison to observations is showed. The method allows identifying sources of model error from boundary conditions and emissions inventories. Simultaneous analysis of horizontal interpolation of model error and error covariance showed that error in ozone modeling is highly correlated to the error of its precursors, and that there is geographical correlation also. During ICARTT ozone modeling error was improved by updating from the National Emissions Inventory from 1999 and 2001, and furthermore by updating large point source emissions from continuous monitoring data. Further improvements were achieved by reducing area emissions of NOx y 60% for states in the Southeast United States. Ozone error was highly correlated to NOy error during this campaign. Also ozone production in the United States was most sensitive to NOx emissions. During MILAGRO model performance in terms of correlation coefficients was higher, but model error in ozone modeling was high due overestimation of NOx and VOC emissions in Mexico City during forecasting. Large model improvements were shown by decreasing NOx emissions in Mexico City by 50% and VOC by 60%. Recurring ozone error is spatially correlated to CO and NOy error. Sensitivity studies show that Mexico City aerosol can reduce regional photolysis rates by 40% and ozone formation by 5-10%. Mexico City emissions can enhance NOy and O3 concentrations over the Gulf of Mexico in up to 10-20%. Mexico City emissions can convert regional ozone production regimes from VOC to NOx limited. A method of interpolation of observations along flight tracks is shown, which can be used to infer on the direction of outflow plumes. The use of ratios such as O3/NOy and NOx/NOy can be used to provide information on chemical characteristics of the plume, such as age

  20. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P. W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P. J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E. J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A. C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A. T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C. W.M.; Te Biesebeek, J. D.; Van der Hoek, K. W.; Te Molder, R.; Montfoort, J. A.; Peek, C. J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  1. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P.J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E.J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A.C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A.T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C.W.M.; Te Biesebeek, J.D.; Van der Hoek, K.W.; Te Molder, R.; Montfoort, J.A.; Peek, C.J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  2. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity

    Energy Technology Data Exchange (ETDEWEB)

    Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E.

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO{sub 2} emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO{sub 2} sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO{sub 2} gas emissions were also significant, particularly SO{sub 2} (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. - Highlights: • First GHG & black carbon inventory for Mezquital Valley: Mexico City energy supplier • Energy industries caused the largest CO{sub 2} and SO{sub 2} emissions from residual fuel oil. • Diesel

  3. NO{sub x} emission indices of subsonic wide-bodied jet aircraft at cruise altitude: In situ measurements and predictions

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, P.; Schlager, H.; Schumann, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Baughcum, S.L. [Boeing Co., Seattle, WA (United States); Deidewig, F. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Antriebstechnik

    1996-10-01

    In situ measurements of NO, NO{sub 2}, and CO{sub 2} volume mixing ratios have been carried out in the near field exhaust plumes of seven subsonic wide-bodied jet aircraft using the DLR research aircraft `Falcon`. For three additional aircraft only NO and CO{sub 2} was measured. Plume ages of 50 s to 150 s have been covered, with maximum observed exhaust gas enhancements of 319 ppbv and 51 ppmv for {Delta}[NO{sub x}] and {Delta}[CO{sub 2}], respectively, relative to ambient values. These measurements are used to derive NO{sub x} emission indices for seven of the individual aircraft/engine combinations. The NO{sub x} emission indices derived range from 12.3 g/kg to 30.4 g/kg. They are compared with predicted emission index values, calculated for the same aircraft engine and the actual conditions using two newly developed fuel flow correlation methods. The calculated emission indices were mostly within or close to the error limits of the measured values. On average, the predictions from both methods were 12% lower than the measured values, with an observed maximum deviation of 25%. The ratio {gamma}=[NO{sub 2}]/[NO{sub x}] found during the present measurements ranged from 0.06 to 0.11 for five daytime cases and was around 0.22 for two nighttime cases. By use of a simple box model of the plume chemistry and dilution these data were used to estimate the initial value {gamma}{sub 0} present at the engine exit plane. {gamma}{sub 0} values between 0 and 0.15 were found. These where applied to estimate the corresponding NO{sub 2} for the three cases where only NO was measured. (orig.)

  4. Best practices and better protocols : guidance for a comprehensive community emissions inventory system from a high level review of international best practices

    International Nuclear Information System (INIS)

    Boston, A.

    2007-11-01

    A community greenhouse gas emission and energy inventory is an important tool to help local governments plan, implement and monitor climate change mitigation strategies and sustainable energy systems. Inventories can also facilitate a number of other local priorities such as air quality management; integrated land-use and transportation planning; infrastructure optimization and planning; and community economic development planning. The British Columbia government's community energy and emissions inventory initiative (CEEI) intends to collect and centralize high-quality geocoded data to generate high-value community inventories for the province's 185 local governments. This report presented strategic guidance for a comprehensive community emissions inventory system based on a high level review of international best practices. The report described the project objective and scope; guiding principles; research methodology; and inventory limitations. The report provided observations, findings and recommendations according to the following four areas: protocols and standards recommendations; data management systems recommendations; community inventory parameters recommendations; and reporting formats and capacity building recommendations. It was recommended that as CEEI progresses, consideration should be given to developing provincial level reports and online reporting of local government activity in order to strengthen awareness, recognize leadership and build support.17 refs., 2 tabs., 11 figs., 2 appendices

  5. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1°×1°

    NARCIS (Netherlands)

    Olivier, J.G.J.; Bouwman, A.F.; Berdowski, J.J.M.; Veldt, C.; Bloos, J.P.J.; Visschedijk, A.J.H.; Maas, C.W.M. van der; Zandveld, P.Y.J.

    1999-01-01

    A set of global greenhouse gas emission inventories has been compiled per source category for the 1990 annual emissions of the direct greenhouse gases CO2, CH4 and N2O, as well as of the indirect greenhouse gases (ozone precursors) CO, NOx and NMVOC, and of SO2. The inventories are available by

  6. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Zumkehr, Andrew [Sierra Nevada Research Institute, University of California, Merced California USA; Hilton, Timothy W. [Sierra Nevada Research Institute, University of California, Merced California USA; Whelan, Mary [Sierra Nevada Research Institute, University of California, Merced California USA; Smith, Steve [Joint Global Change Research Institute, PNNL, College Park Maryland USA; Campbell, J. Elliott [Sierra Nevada Research Institute, University of California, Merced California USA

    2017-02-21

    Carbonyl sulfide (COS or OCS), the most abundant sulfur containing gas in the troposphere, has recently emerged as a potentially important atmospheric tracer for the carbon cycle. Atmospheric inverse modeling studies may be able to use existing tower, airborne, and satellite observations of COS to infer information about photosynthesis. However, such analysis relies on gridded anthropogenic COS source estimates that are largely based on industry activity data from over three decades ago. Here we use updated emission factor data and industry activity data to develop a gridded inventory with a 0.1 degree resolution for the U.S. domain. The inventory includes the primary anthropogenic COS sources including direct emissions from the coal and aluminum industries as well as indirect sources from industrial carbon disulfide emissions. Compared to the previously published inventory, we found that the total anthropogenic source (direct and indirect) is 47% smaller. Using this new gridded inventory to drive the STEM/WRF atmospheric transport model, we found that the anthropogenic contribution to COS variation in the troposphere is small relative to the biosphere influence, which is encouraging of carbon cycle applications in this region. Additional anthropogenic sectors with highly uncertain emission factors require further field measurements.

  7. An approach to a black carbon emission inventory for Mexico by two methods

    International Nuclear Information System (INIS)

    Cruz-Núñez, Xochitl

    2014-01-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method

  8. An approach to a black carbon emission inventory for Mexico by two methods

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Núñez, Xochitl, E-mail: xcruz@unam.mx

    2014-05-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method.

  9. A comprehensive ammonia emission inventory with high-resolution and its evaluation in the Beijing-Tianjin-Hebei (BTH) region, China

    Science.gov (United States)

    Zhou, Ying; Shuiyuan Cheng; Lang, Jianlei; Chen, Dongsheng; Zhao, Beibei; Liu, Chao; Xu, Ran; Li, Tingting

    2015-04-01

    A comprehensive ammonia (NH3) emission inventory for the Beijing-Tianjin-Hebei (BTH) region was developed based on the updated source-specific emission factors (EFs) and the county-level activity data obtained from a full-coverage investigation launched in the BTH region for the first time. The NH3 emission inventory within 1 km × 1 km grid was generated using source-based spatial surrogates with geographical information system (GIS) technology. The total NH3 emission was 1573.7 Gg for the year 2010. The contributions from livestock, farmland, human, biomass burning, chemical industry, fuel combustion, waste disposal and on-road mobile source were approximately 56.6%, 28.6%, 7.2%, 3.4%, 1.1%, 1.3%, 1.0% and 0.8%, respectively. Among different cities, Shijiazhang, Handan, Xingtai, Tangshan and Cangzhou had higher NH3 emissions. Statistical analysis aiming at county-level emission of 180 counties in BTH indicated that the NH3 emission in most of the counties were less than 16 Gg. The maximum value of the county level emission was approximately 25.5 Gg. Higher NH3 emission was concentrated in the areas with more rural and agricultural activity. Monthly, higher NH3 emission occurred during the period from April to September, which could be attributed to the temperature and timing of planting practice. The validity of the estimated emissions were further evaluated from multiple perspectives covering (1) uncertainty analysis based on Monte Carlo simulation, (2) comparison with other studies, (3) quantitative analysis of improvement in spatial resolution of activity data, and (4) verification based on a comparison of the simulated and observed surface concentrations of ammonium. The detailed and validated ammonia emission inventory could provide valuable information for understanding air pollution formation mechanisms and help guide decision-making with respect to control strategies.

  10. Meso-scale on-road vehicle emission inventory approach: a study on Dhaka City of Bangladesh supporting the 'cause-effect' analysis of the transport system.

    Science.gov (United States)

    Iqbal, Asif; Allan, Andrew; Zito, Rocco

    2016-03-01

    The study aims to develop an emission inventory (EI) approach and conduct an inventory for vehicular sources in Dhaka City, Bangladesh. A meso-scale modelling approach was adopted for the inventory; the factors that influence the emissions and the magnitude of emission variation were identified and reported on, which was an innovative approach to account emissions unlike the conventional inventory approaches. Two techniques for the emission inventory were applied, viz. (i) a combined top-down and bottom-up approach that considered the total vehicle population and the average diurnal on-road vehicle speed profile in the city and (ii) a bottom-up approach that accounted for road link-specific emissions of the city considering diurnal traffic volume and speed profiles of the respective roads. For the bottom-up approach, road link-specific detailed data were obtained through field survey in 2012, where mid-block traffic count of the day, vehicle speed profile, road network and congestion data were collected principally. The emission variances for the change in transport system characteristics (like change in fuel type, AC usage pattern, increased speed and reduced congestion/stopping) were predicted and analysed in this study; congestion influenced average speed of the vehicles, and fuel types in the vehicles were identified as the major stressors. The study performance was considered reasonable when comparing with the limited number of similar studies conducted earlier. Given the increasing trend of private vehicles each year coupled with increasing traffic congestion, the city is under threat of increased vehicular emissions unless a good management strategy is implemented. Although the inventory is conducted for Dhaka and the result may be important locally, the approach adopted in this research is innovative in nature to be followed for conducting research on other urban transport systems.

  11. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  12. Characterization of road freight transportation and its impact on the national emission inventory in China

    Science.gov (United States)

    Yang, X. F.; Liu, H.; Man, H. Y.; He, K. B.

    2014-06-01

    Mobile source emission inventories serve as critical input for atmospheric chemical transport models, which are used to simulate air quality and understand the role of mobile source emissions. The significance of mobile sources is even more important in China because the country has the largest vehicle population in the world, and that population continues to grow rapidly. Estimating emissions from diesel trucks is a critical work in mobile source emission inventories due to the importance and difficulties associated with estimating emissions from diesel trucks. Although diesel trucks are major contributors of nitrogen oxide (NOx) and primary particulate matter smaller than 2.5 μm (PM2.5), there are still more obstacles on the existing estimation of diesel truck emissions compared with that of cars; long-range freight transportation activities are complicated, and much of the basic data remain unclear. Most of existing inventories were based on local registration number. However, according to our research, a large number of trucks are conducting long-distance inter-city or inter province transportation. Instead of the local registration number based approach, a road emission intensity-based (REIB) approach is introduced in this research. To provide efficient data for the REIB approach, 1060 questionnaire responses and approximately 1.7 million valid seconds of onboard GPS monitoring data were collected. Both the questionnaire answers and GPS monitoring results indicated that the driving conditions on different types of road have significant impacts on the emission levels of freight trucks. We present estimated emissions of NOx and primary PM2.5 from diesel freight trucks for China in 2011. Using the REIB approach, the activity level and distribution data are obtained from the questionnaire answers. Emission factors are calculated with the International Vehicle Emission (IVE) model that interpolated local on-board measurement results in China according to the GPS

  13. Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations

    Science.gov (United States)

    Bergamaschi, Peter; Karstens, Ute; Manning, Alistair J.; Saunois, Marielle; Tsuruta, Aki; Berchet, Antoine; Vermeulen, Alexander T.; Arnold, Tim; Janssens-Maenhout, Greet; Hammer, Samuel; Levin, Ingeborg; Schmidt, Martina; Ramonet, Michel; Lopez, Morgan; Lavric, Jost; Aalto, Tuula; Chen, Huilin; Feist, Dietrich G.; Gerbig, Christoph; Haszpra, László; Hermansen, Ove; Manca, Giovanni; Moncrieff, John; Meinhardt, Frank; Necki, Jaroslaw; Galkowski, Michal; O'Doherty, Simon; Paramonova, Nina; Scheeren, Hubertus A.; Steinbacher, Martin; Dlugokencky, Ed

    2018-01-01

    We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) Tg CH4 yr-1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr-1 (2006) to 18.8 Tg CH4 yr-1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) Tg CH4 yr-1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon

  14. Analysis of emission data from global commercial aviation: 2004 and 2006

    Directory of Open Access Journals (Sweden)

    J. T. Wilkerson

    2010-07-01

    Full Text Available The global commercial aircraft fleet in 2006 flew 31.26 million flights, burned 188.20 million metric tons of fuel, and covered 38.68 billion kilometers. This activity emitted substantial amounts of fossil-fuel combustion products within the upper troposphere and lower stratosphere that affect atmospheric composition and climate. The emissions products, such as carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur compounds, and particulate matter, are not emitted uniformly over the Earth, so understanding the temporal and spatial distributions is important for modeling aviation's climate impacts. Global commercial aircraft emission data for 2004 and 2006, provided by the Volpe National Transportation Systems Center, were computed using the Federal Aviation Administration's Aviation Environmental Design Tool (AEDT. Continuous improvement in methodologies, including changes in AEDT's horizontal track methodologies, and an increase in availability of data make some differences between the 2004 and 2006 inventories incomparable. Furthermore, the 2004 inventory contained a significant over-count due to an imperfect data merge and daylight savings error. As a result, the 2006 emissions inventory is considered more representative of actual flight activity. Here, we analyze both 2004 and 2006 emissions, focusing on the latter, and provide corrected totals for 2004. Analysis of 2006 flight data shows that 92.5% of fuel was burned in the Northern Hemisphere, 69.0% between 30N and 60N latitudes, and 74.6% was burned above 7 km. This activity led to 162.25 Tg of carbon from CO2 emitted globally in 2006, more than half over three regions: the United States (25.5%, Europe (14.6, and East Asia (11.1. Despite receiving less than one percent of global emissions, the Arctic receives a uniformly dispersed concentration of emissions with 95.2% released at altitude where they have longer residence time than surface emissions. Finally, 85.2% of all

  15. Analysis of emission data from global commercial aviation: 2004 and 2006

    Science.gov (United States)

    Wilkerson, J. T.; Jacobson, M. Z.; Malwitz, A.; Balasubramanian, S.; Wayson, R.; Fleming, G.; Naiman, A. D.; Lele, S. K.

    2010-07-01

    The global commercial aircraft fleet in 2006 flew 31.26 million flights, burned 188.20 million metric tons of fuel, and covered 38.68 billion kilometers. This activity emitted substantial amounts of fossil-fuel combustion products within the upper troposphere and lower stratosphere that affect atmospheric composition and climate. The emissions products, such as carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur compounds, and particulate matter, are not emitted uniformly over the Earth, so understanding the temporal and spatial distributions is important for modeling aviation's climate impacts. Global commercial aircraft emission data for 2004 and 2006, provided by the Volpe National Transportation Systems Center, were computed using the Federal Aviation Administration's Aviation Environmental Design Tool (AEDT). Continuous improvement in methodologies, including changes in AEDT's horizontal track methodologies, and an increase in availability of data make some differences between the 2004 and 2006 inventories incomparable. Furthermore, the 2004 inventory contained a significant over-count due to an imperfect data merge and daylight savings error. As a result, the 2006 emissions inventory is considered more representative of actual flight activity. Here, we analyze both 2004 and 2006 emissions, focusing on the latter, and provide corrected totals for 2004. Analysis of 2006 flight data shows that 92.5% of fuel was burned in the Northern Hemisphere, 69.0% between 30N and 60N latitudes, and 74.6% was burned above 7 km. This activity led to 162.25 Tg of carbon from CO2 emitted globally in 2006, more than half over three regions: the United States (25.5%), Europe (14.6), and East Asia (11.1). Despite receiving less than one percent of global emissions, the Arctic receives a uniformly dispersed concentration of emissions with 95.2% released at altitude where they have longer residence time than surface emissions. Finally, 85.2% of all flights by number in 2006

  16. Greenhouse gas emission inventory based on full energy chain analysis

    International Nuclear Information System (INIS)

    Dones, R.; Hirschberg, S.; Knoepfel, I.

    1996-01-01

    Methodology, characteristics, features and results obtained for greenhouse gases within the recent Swiss LCA study 'Environmental Life-Cycle Inventories of Energy Systems' are presented. The focus of the study is on existing average Full Energy Chains (FENCHs) in the electricity generation mixes in Europe and in Switzerland. The systems, including coal (hard coal and lignite), oil, natural gas, nuclear and hydro, are discussed one by one as well as part of the electricity mixes. Photovoltaic systems are covered separately since they are not included in the electricity mixes. A sensitivity analysis on methane leakage during long-range transport via pipeline is shown. Whilst within the current study emissions are not attributed to specific countries, the main sectors contributing to the total GHGs emissions calculated for the various FENCHs are specified. (author). 10 refs, 10 figs, 9 tabs

  17. Greenhouse gas emission inventory based on full energy chain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R; Hirschberg, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Knoepfel, I [Federal Inst. of Technology Zurich, Zurich (Switzerland)

    1996-07-01

    Methodology, characteristics, features and results obtained for greenhouse gases within the recent Swiss LCA study `Environmental Life-Cycle Inventories of Energy Systems` are presented. The focus of the study is on existing average Full Energy Chains (FENCHs) in the electricity generation mixes in Europe and in Switzerland. The systems, including coal (hard coal and lignite), oil, natural gas, nuclear and hydro, are discussed one by one as well as part of the electricity mixes. Photovoltaic systems are covered separately since they are not included in the electricity mixes. A sensitivity analysis on methane leakage during long-range transport via pipeline is shown. Whilst within the current study emissions are not attributed to specific countries, the main sectors contributing to the total GHGs emissions calculated for the various FENCHs are specified. (author). 10 refs, 10 figs, 9 tabs.

  18. Inventory of aerosol and sulphur dioxide emissions from India. Part 1 - Fossil fuel combustion

    International Nuclear Information System (INIS)

    Shekar Reddy, M.; Venkataraman, C.

    2002-01-01

    A comprehensive, spatially resolved (0.25 o x 0.25 o ) fossil fuel consumption database and emissions inventory was constructed, for India, for the first time. Emissions of sulphur dioxide and aerosol chemical constituents were estimated for 1996-1997 and extrapolated to the Indian Ocean Experiment (INDOEX) study period (1998-1999). District level consumption of coal/lignite, petroleum and natural gas in power plants, industrial, transportation and domestic sectors was 9411 PJ, with major contributions from coal (54%) followed by diesel (18%). Emission factors for various pollutants were derived using India specific fuel characteristics and information on combustion/air pollution control technologies for the power and industrial sectors. Domestic and transportation emission factors, appropriate for Indian source characteristics, were compiled from literature. SO 2 emissions from fossil fuel combustion for 1996-1997 were 4.0Tg SO 2 yr -1 , with 756 large point sources (e.g. utilities, iron and steel, fertilisers, cement, refineries and petrochemicals and non-ferrous metals), accounting for 62%. PM 2.5 emitted was 0.5 and 2.0Tgyr -1 for the 100% and the 50% control scenario, respectively, applied to coal burning in the power and industrial sectors. Coal combustion was the major source of PM 2.5 (92%) primarily consisting of fly ash, accounting for 98% of the 'inorganic fraction' emissions (difference between PM 2.5 and black carbon + organic matter) of 1.6Tgyr -1 . Black carbon emissions were estimated at 0.1Tgyr -1 , with 58% from diesel transport, and organic matter emissions at 0.3Tgyr -1 , with 48% from brick-kilns. Fossil fuel consumption and emissions peaked at the large point industrial sources and 22 cities, with elevated area fluxes in northern and western India. The spatial resolution of this inventory makes it suitable for regional-scale aerosol-climate studies. These results are compared to previous studies and differences discussed. Measurements of

  19. National inventories of air emissions in France: organisation and methodology - 8. edition - OMINEA, February 2011

    International Nuclear Information System (INIS)

    Fontelle, Jean-Pierre; Allemand, Nadine; Andre, Jean-Marc; Bastide, Aurelie; Chang, Jean-Pierre; Deflorenne, Emmanuel; Druart, Ariane; Gavel, Antoine; Gueguen, Celine; Jabot, Julien; Jacquier, Guillaume; Joya, Romain; Kessouar, Sabrina; Martinet, Yann; Mathias, Etienne; Nicco, Laetitia; Prouteau, Emilie; Serveau, Laetitia; Tuddenham, Mark; Vincent, Julien

    2011-01-01

    Usually, various methods are used to estimate emissions of atmospheric pollutants from anthropogenic or natural sources. These methods which are more or less specific, require large quantities of data to carry out what is commonly named 'emission inventories', 'cadastres' or 'registers' depending on characteristics of the collection in terms of spatial and sectoral resolution. The OMINEA report includes a description of the national inventory system of pollutant emissions into the atmosphere (SNIEPA) which deals with the following topics: organisation, break down of responsibilities and coverage. Technical operational arrangements are described and various elements relating to reference documents and definitions, control and quality assurance, estimation of uncertainties are provided. A description is given for each emitting source category and for several substances classified in the following topics: 'greenhouse gases', 'acidification and photochemical pollution', 'eutrophication', 'heavy metals', 'persistent organic pollutants', 'particulate matter', 'other'. The plan is based on the international reporting format defined by the United Nations within the framework of conventions on climate change and long range transboundary air pollution (sources categories listed in CRFI/NFR)

  20. National inventories of air emissions in France: organisation and methodology - 9. edition - OMINEA, February 2011

    International Nuclear Information System (INIS)

    Fontelle, Jean-Pierre; Andre, Jean-Marc; Bastide, Aurelie; Bort, Romain; Chang, Jean-Pierre; Deflorenne, Emmanuel; Druart, Ariane; Gavel, Antoine; Gueguen, Celine; Jabot, Julien; Jacquier, Guillaume; Jeannot, Coralie; Joya, Romain; Kessouar, Sabrina; Martinet, Yann; Mathias, Etienne; Nicco, Laetitia; Serveau, Laetitia; Tuddenham, Mark; Vasudeva, Divya; Vincent, Julien

    2012-01-01

    Usually, various methods are used to estimate emissions of atmospheric pollutants from anthropogenic or natural sources. These methods which are more or less specific, require large quantities of data to carry out what is commonly named 'emission inventories', 'cadastres' or 'registers' depending on characteristics of the collection in terms of spatial and sectoral resolution. The OMINEA report includes a description of the national inventory system of pollutant emissions into the atmosphere (SNIEPA) which deals with the following topics: organisation, break down of responsibilities and coverage. Technical operational arrangements are described and various elements relating to reference documents and definitions, control and quality assurance, estimation of uncertainties are provided. A description is given for each emitting source category and for several substances classified in the following topics: 'greenhouse gases', 'acidification and photochemical pollution', 'eutrophication', 'heavy metals', 'persistent organic pollutants', 'particulate matter', 'other'. The plan is based on the international reporting format defined by the United Nations within the framework of conventions on climate change and long range transboundary air pollution (sources categories listed in CRFI/NFR)

  1. Field measurements and modeling to resolve m2 to km2 CH4 emissions for a complex urban source: An Indiana landfill study

    Science.gov (United States)

    Large uncertainties for landfill CH4 emissions due to spatial and temporal variabilities remain unresolved by short-term field campaigns and historic GHG inventory models. Using four field methods (aircraft-based mass balance, tracer correlation, vertical radial plume mapping, and static chambers) ...

  2. Policy change driven by an AIS-assisted marine emission inventory in Hong Kong and the Pearl River Delta

    Science.gov (United States)

    Ng, Simon K. W.; Loh, Christine; Lin, Chubin; Booth, Veronica; Chan, Jimmy W. M.; Yip, Agnes C. K.; Li, Ying; Lau, Alexis K. H.

    2013-09-01

    A new exhaust emission inventory of ocean-going vessels (OGVs) was compiled for Hong Kong by using Automatic Identification System (AIS) data for the first time to determine typical main engine load factors, through vessel speed and operation mode characterization. It was found that in 2007, container vessel was the top emitting vessel type, contributing 9,886, 11,480, 1,173, 521 and 1166 tonnes of SO2, NOx, PM10, VOC and CO, respectively, or about 80%-82% of the emissions. The top five, which also included ocean cruise, oil tanker, conventional cargo vessel and dry bulk carrier, accounted for about 98% of emissions. Emission maps, which add a new spatial dimension to the inventory, show the key emission hot spots in Hong Kong and suggest that a significant portion of emissions were emitted at berth. Scientific evidence about the scale and distribution of ship emissions has contributed in raising public awareness and facilitating stakeholder engagement about the issue. Fair Winds Charter, the world's first industry-led voluntary emissions reduction initiative, is a perfect example of how careful scientific research can be used in public engagement and policy deliberation to help drive voluntary industry actions and then government proposals to control and regulate marine emissions in Hong Kong and the Pearl River Delta region.

  3. Denmark's National Inventory Report 2010

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Lyck, Erik; Mikkelsen, Mette Hjorth

    2010-01-01

    This report is Denmark's National Inventory Report 2010. The report contains information on Denmark's emission inventories for all years' from 1990 to 2008 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2.......This report is Denmark's National Inventory Report 2010. The report contains information on Denmark's emission inventories for all years' from 1990 to 2008 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2....

  4. Biogenic emissions of greenhouse gases caused by arable and animal agriculture. Task 3. Overall biogenic greenhouse gas emissions from agriculture. National Inventories

    International Nuclear Information System (INIS)

    Hensen, A.

    1999-12-01

    The aim of the concerted action 'Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture' is to obtain an overview of the current knowledge on the emissions of greenhouse gases related to agricultural activities. This task 3 report summarises the activities that take place in the Netherlands with respect to agriculture emission inventories. This 'national' report was compiled using information from a number of Dutch groups. Therefore, from a national point of view the compilation does not contain new information. The paper can however be useful for other European partners to get an overview of how emission estimates are obtained in the Netherlands. 14 p

  5. Annual Danish Informative Inventory Report to UNECE

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Winther, Morten; Mikkelsen, Mette Hjorth

    The report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2013. The report contains information on Denmark’s emission inventories regarding emissions of (1) SOX......(k)fluoranthene and indeno(1,2,3-cd)pyrene, PCDD/F and HCB for the years 1990-2011. Further, the report contains information on background data for emissions inventory....

  6. Annual Danish Informative Inventory Report to UNECE

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Winther, Morten; Mikkelsen, Mette Hjorth

    2012-01-01

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2012. The report contains information on Denmark’s emission inventories regarding emissions of (1) SOX......(k)fluoranthene and indeno(1,2,3-cd)pyrene, PCDD/F and HCB for the years 1990-2010. Further, the report contains information on background data for emissions inventory....

  7. Air pollution impacts due to petroleum extraction in the Norwegian Sea during the ACCESS aircraft campaign

    Directory of Open Access Journals (Sweden)

    P. Tuccella

    2017-06-01

    Full Text Available Emissions from oil/gas extraction activities in the Arctic are already important in certain regions and may increase as global warming opens up new opportunities for industrial development. Emissions from oil/gas extraction are sources of air pollutants, but large uncertainties exist with regard to their amounts and composition. In this study, we focus on detailed investigation of emissions from oil/gas extraction in the Norwegian Sea combining measurements from the EU ACCESS aircraft campaign in July 2012 and regional chemical transport modeling. The goal is to (1 evaluate emissions from petroleum extraction activities and (2 investigate their impact on atmospheric composition over the Norwegian Sea. Numerical simulations include emissions for permanently operating offshore facilities from two datasets: the TNO-MACC inventory and emissions reported by Norwegian Environment Agency (NEA. It was necessary to additionally estimate primary aerosol emissions using reported emission factors since these emissions are not included in the inventories for our sites. Model runs with the TNO-MACC emissions are unable to reproduce observations close to the facilities. Runs using the NEA emissions more closely reproduce the observations although emissions from mobile facilities are missing from this inventory. Measured plumes suggest they are a significant source of pollutants, in particular NOx and aerosols. Sensitivities to NOx and NMVOC emissions show that, close to the platforms, O3 is sensitive to NOx emissions and is much less sensitive to NMVOC emissions. O3 destruction, via reaction with NO, dominates very close to the platforms. Far from the platforms, oil/gas facility emissions result in an average daytime O3 enhancement of +2% at the surface. Larger enhancements are predicted at noon ranging from +7% at the surface to +15% at 600 m. Black carbon is the aerosol species most strongly influenced by petroleum extraction emissions. The results highlight

  8. Mobile Source Emissions Regulatory Compliance Data Inventory

    Science.gov (United States)

    The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road engine manufacturers by model, as well as fee payment data required by Title II of the 1990 Amendments to the Clean Air Act, to certify engines for sale in the U.S. and collect compliance certification fees. Data submitted by manufacturers falls into 12 industries: Heavy Duty Compression Ignition, Marine Spark Ignition, Heavy Duty Spark Ignition, Marine Compression Ignition, Snowmobile, Motorcycle & ATV, Non-Road Compression Ignition, Non-Road Small Spark Ignition, Light-Duty, Evaporative Components, Non-Road Large Spark Ignition, and Locomotive. Title II also requires the collection of fees from manufacturers submitting for compliance certification. Manufacturers submit data on an annual basis, to document engine model changes for certification. Manufacturers also submit compliance information on already certified in-use vehicles randomly selected by the EPA (1) year into their life and (4) years into their life to ensure that emissions systems continue to function appropriately over time.The EPA performs targeted confirmatory tests on approximately 15% of vehicles submitted for certification. Confirmatory data on engines is associated with its corresponding submission data to verify the accuracy of manufacturer submission beyond standard business rules.Section 209 of the 1990 Amendments to the Clea

  9. Denmark's National Inventory Report 2014

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    This report is Denmark’s National Inventory Report 2014. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2012 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2......This report is Denmark’s National Inventory Report 2014. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2012 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2...

  10. Denmark's National Inventory Report 2013

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    This report is Denmark’s National Inventory Report 2013. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2011 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2.......This report is Denmark’s National Inventory Report 2013. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2011 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2....

  11. Denmark's National Inventory Report 2017

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    This report is Denmark’s National Inventory Report 2017. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2015 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2......This report is Denmark’s National Inventory Report 2017. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2015 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2...

  12. Evaluation of Modeling NO2 Concentrations Driven by Satellite-Derived and Bottom-Up Emission Inventories Using In-Situ Measurements Over China

    Science.gov (United States)

    Liu, Fei; van der A, Ronald J.; Eskes, Henk; Ding, Jieying; Mijling, Bas

    2018-01-01

    Chemical transport models together with emission inventories are widely used to simulate NO2 concentrations over China, but validation of the simulations with in situ measurements has been extremely limited. Here we use ground measurements obtained from the air quality monitoring network recently developed by the Ministry of Environmental Protection of China to validate modeling surface NO2 concentrations from the CHIMERE regional chemical transport model driven by the satellite-derived DECSO and the bottom-up MIX emission inventories. We applied a correction factor to the observations to account for the interferences of other oxidized nitrogen compounds (NOz), based on the modeled ratio of NO2 to NOz. The model accurately reproduces the spatial variability in NO2 from in situ measurements, with a spatial correlation coefficient of over 0.7 for simulations based on both inventories. A negative and positive bias is found for the simulation with the DECSO (slopeD0.74 and 0.64 for the daily mean and daytime only) and the MIX (slopeD1.3 and 1.1) inventories, respectively, suggesting an underestimation and overestimation of NOx emissions from corresponding inventories. The bias between observed and modeled concentrations is reduced, with the slope dropping from 1.3 to 1.0 when the spatial distribution of NOx emissions in the DECSO inventory is applied as the spatial proxy for the MIX inventory, which suggests an improvement of the distribution of emissions between urban and suburban or rural areas in the DECSO inventory compared to that used in the bottom-up inventory. A rough estimate indicates that the observed concentrations, from sites predominantly placed in the populated urban areas, may be 10-40% higher than the corresponding model grid cell mean. This reduces the estimate of the negative bias of the DECSO-based simulation to the range of -30 to 0% on average and more firmly establishes that the MIX inventory is biased high over major cities. The performance of

  13. Evaluation of modeling NO2 concentrations driven by satellite-derived and bottom-up emission inventories using in situ measurements over China

    Science.gov (United States)

    Liu, Fei; van der A, Ronald J.; Eskes, Henk; Ding, Jieying; Mijling, Bas

    2018-03-01

    Chemical transport models together with emission inventories are widely used to simulate NO2 concentrations over China, but validation of the simulations with in situ measurements has been extremely limited. Here we use ground measurements obtained from the air quality monitoring network recently developed by the Ministry of Environmental Protection of China to validate modeling surface NO2 concentrations from the CHIMERE regional chemical transport model driven by the satellite-derived DECSO and the bottom-up MIX emission inventories. We applied a correction factor to the observations to account for the interferences of other oxidized nitrogen compounds (NOz), based on the modeled ratio of NO2 to NOz. The model accurately reproduces the spatial variability in NO2 from in situ measurements, with a spatial correlation coefficient of over 0.7 for simulations based on both inventories. A negative and positive bias is found for the simulation with the DECSO (slope = 0.74 and 0.64 for the daily mean and daytime only) and the MIX (slope = 1.3 and 1.1) inventories, respectively, suggesting an underestimation and overestimation of NOx emissions from corresponding inventories. The bias between observed and modeled concentrations is reduced, with the slope dropping from 1.3 to 1.0 when the spatial distribution of NOx emissions in the DECSO inventory is applied as the spatial proxy for the MIX inventory, which suggests an improvement of the distribution of emissions between urban and suburban or rural areas in the DECSO inventory compared to that used in the bottom-up inventory. A rough estimate indicates that the observed concentrations, from sites predominantly placed in the populated urban areas, may be 10-40 % higher than the corresponding model grid cell mean. This reduces the estimate of the negative bias of the DECSO-based simulation to the range of -30 to 0 % on average and more firmly establishes that the MIX inventory is biased high over major cities. The

  14. The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Anton, Assumpció; Bengoa, Xavier

    2015-01-01

    Pesticides are applied to agricultural fields to optimise crop yield and their global use is substantial. Their consideration in life cycle assessment (LCA) is affected by important inconsistencies between the emission inventory and impact assessment phases of LCA. A clear definition...

  15. A New High-Resolution N2O Emission Inventory for China in 2008

    Science.gov (United States)

    Shang, Z.; Zhou, F.; Ciais, P.; Tao, S.; Piao, S.; Raymond, P. A.; He, C.; Li, B.; Wang, R.; Wang, X.; Peng, S.; Zeng, Z.; Chen, H.; Ying, N.; Hou, X.; Xu, P.

    2014-12-01

    The amount and geographic distribution of N2O emissions over China remain largely uncertain. Most of existing emission inventories use uniform emission factors (EFs) and the associated parameters and apply spatial proxies to downscale national or provincial data, resulting in the introduction of spatial bias. In this study, county-level and 0.1° × 0.1° gridded anthropogenic N2O emission inventories for China (PKU-N2O) in 2008 are developed based on high-resolution activity data and regional EFs and parameters. These new estimates are compared with estimates from EDGAR v4.2, GAINS-China, National Development and Reform Commission of China (NDRC), and with two sensitivity tests: one that uses high-resolution activity data but the default IPCC methodology (S1) and the other that uses regional EFs and parameters but starts from coarser-resolution activity data. The total N2O emissions are 2150 GgN2O/yr (interquartile range from 1174 to 2787 GgN2O/yr). Agriculture contributes 64% of the total, followed by energy (17%), indirect emissions (12%), wastes (5%), industry (2.8%), and wildfires (0.2%). Our national emission total is 17% greater than that of the EDGAR v4.2 global product sampled over China and is also greater than the GAINS-China, NDRC, and S1 estimates by 10%, 50%, and 17%, respectively. We also found that using uniform EFs and parameters or starting from national/provincial data causes systematic spatial biases compared to PKU-N2O. In addition, the considerable differences between the relative contributions of the six sectors across the six Agro-Climate Zones primarily reflect the different distributions of industrial activities and land use. Eastern China (8.7% area of China) is the largest contributor of N2O emissions and accounts for nearly 25% of the total. Spatial analysis also shows nonlinear relationships between N2O emission intensities and urbanization. Per-capita and per-GDP N2O emissions increase gradually with an increase in the urban

  16. Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines

    Science.gov (United States)

    2017-05-01

    Engineering Chemistry Fundamentals, Vol. 5, No. 3, 1966, pp. 356–363. [14] Burns, R. A., Development of scalar and velocity imaging diagnostics...in an Aero- Engine Model Combustor at Elevated Pressure Using URANS and Finite- Rate Chemistry ,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference...FINAL REPORT Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines SERDP Project WP-2151

  17. Mercury emissions inventory for 2014 in Costa Rica using the PNUMA Toolkit to a N2 level

    Directory of Open Access Journals (Sweden)

    Julio César Murillo-Hernández

    2017-12-01

    Full Text Available The Minamata Convention was signed in October 2013 to protect human health and the environment from releases and anthropogenic emissions of elemental mercury and compounds containing this element.  When Costa Rica ratified this instrument, the country committed to develop and keep updated an inventory of emissions from the relevant sources of mercury. In the present work, the tool proposed by UNEP was used to generate the first mercury inventory at the N2 level of the country, which considers releases of mercury in air, water, soil, product and waste matrices. Taking 2014 as the reference year, the estimated mercury emission for Costa Rica was recorded at 5 052 kg, with an uncertainty interval between 2 675 kg and 10 525 kg; and the most important sectors in terms of the total emission were the extraction of gold with amalgamation (42 %, informal burning of waste (15 % and use of dental amalgams (10 %. The most impacted matrices were air (29 %, water (28 % and soil (21 %, respectively.

  18. Energy-dominated local carbon emissions in Beijing 2007: inventory and input-output analysis.

    Science.gov (United States)

    Guo, Shan; Liu, J B; Shao, Ling; Li, J S; An, Y R

    2012-01-01

    For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO(2)-eq, of which energy-related CO(2) emissions comprise 90.49%, non-energy-related CO(2) emissions 6.35%, CH(4) emissions 2.33%, and N(2)O emissions 0.83%, respectively. In terms of energy-related CO(2) emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E + 07 t CO(2)-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO(2)-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

  19. Quebec inventory of greenhouse gas emissions in 2008 and their evolution since 1990

    International Nuclear Information System (INIS)

    Leblond, V.; Paradis, J.; Bougie, R.; Goulet, M.; Leclerc, N.; Nolet, E.

    2010-11-01

    This document presented an inventory of greenhouse gas (GHG) emissions produced by human activity in Quebec between 1990 and 2008. In 2008, 82.7 Mt of carbon dioxide (CO 2 ) equivalent were released in Quebec, which represents a 1.2 percent reduction from 1990 levels. Quebec had the second lowest GHG emissions per capita in 2008 and was 1 of only 3 only provinces in Canada to have a reduction in GHG emissions since 1990. This document also presented data regarding GHG emissions released by sector, notably from industrial combustion such as the TransCanada Energy cogeneration facilities; industrial processes; residential, commercial and institutional buildings; agriculture; sanitary landfills; and electric power production. Quebec's reduction in GHG emissions can be attributed primarily to advances in energy efficiency technology that have been adopted by the industrial sector. In addition, some industrial combustion facilities have been closed and landfill facilities have begun to use systems to capture methane gas. In contrast, automobile traffic increased over the study period, and was responsible for an important increase in GHG emissions since 1990. 6 tabs., 4 figs.

  20. Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories.

    Science.gov (United States)

    Wang, Peng; Ying, Qi; Zhang, Hongliang; Hu, Jianlin; Lin, Yingchao; Mao, Hongjun

    2018-06-01

    A Community Multiscale Air Quality (CMAQ) model with source-oriented lumped SAPRC-11 (S11L) photochemical mechanism and secondary organic aerosol (SOA) module was applied to determine the contributions of anthropogenic and biogenic sources to SOA concentrations in China. A one-year simulation of 2013 using the Multi-resolution Emission Inventory for China (MEIC) shows that summer SOA are generally higher (10-15 μg m -3 ) due to large contributions of biogenic (country average 60%) and industrial sources (17%). In winter, SOA formation was mostly due to anthropogenic emissions from industries (40%) and residential sources (38%). Emissions from other countries in southeast China account for approximately 14% of the SOA in both summer and winter, and 46% in spring due to elevated open biomass burning in southeast Asia. The Regional Emission inventory in ASia v2.1 (REAS2) was applied in this study for January and August 2013. Two sets of simulations with the REAS2 inventory were conducted using two different methods to speciate total non-methane carbon into model species. One approach uses total non-methane hydrocarbon (NMHC) emissions and representative speciation profiles from the SPECIATE database. The other approach retains the REAS2 speciated species that can be directly mapped to S11L model species and uses source specific splitting factors to map other REAS2 lumped NMHC species. Biogenic emissions are still the most significant contributor in summer based on these two sets of simulations. However, contributions from the transportation sector to SOA in January are predicted to be much more important based on the two REAS2 emission inventories (∼30-40% vs. ∼5% by MEIC), and contributions from residential sources according to REAS2 was much lower (∼21-24% vs. ∼42%). These discrepancies in source contributions to SOA need to be further investigated as the country seeks for optimal emission control strategies to fight severe air pollution. Copyright

  1. Integrating internet GPS vehicle tracking data into a bottom-up vehicular emissions inventory and atmospheric simulation in South-East, Brazil

    Science.gov (United States)

    Ibarra Espinosa, S.; Ynoue, R.; Giannotti, M., , Dr

    2017-12-01

    It has been shown the importance of emissions inventories for air quality studies and environmental planning at local, regional (REAS), hemispheric (CLRTAP) and global (IPCC) scales. It has been shown also that vehicules are becoming the most important sources in urban centers. Several efforts has been made in order to model vehicular emissions to obtain more accurate emission factors based on Vehicular Specific Power (VPS) with IVE and MOVES based on VSP, MOBILE, VERSIT and COPERT based on average speed, or ARTEMIS and HBEFA based on traffic situations. However, little effort has been made to improve traffic activity data. In this study we are proposing using a novel approach to develop vehicular emissions inventory including point data from MAPLINK a company that feeds with traffic data to Google. This includes working and transforming massive amount of data to generate traffic flow and speeds. The region of study is the south east of Brazil including São Paulo metropolitan areas. To estimate vehicular emissions we are using the open source model VEIN available at https://CRAN.R-project.org/package=vein. We generated hourly traffic between 2010-04-21 and 2010-10-22, totalizing 145 hours. This data consists GPS readings from vehicles with assurance policy, applications and other sources. This type data presents spacial bias meaning that only a part of the vehicles are tracked. We corrected this bias using the calculated speed as proxy of traffic flow using measurements of traffic flow and speed per lane made in São Paulo. Then we calibrated the total traffic estimating Fuel Consumption with VEIN and comparing Fuel Sales for the region. We estimated the hourly vehicular emissions and produced emission maps and data-bases. In addition, we simulated atmospheric simulations using WRF-Chem to identify which inventory produces better agreement with air pollutant observations. New technologies and big data provides opportunities to improve vehicular emissions

  2. Assessing the optimized precision of the aircraft mass balance method for measurement of urban greenhouse gas emission rates through averaging

    Directory of Open Access Journals (Sweden)

    Alexie M. F. Heimburger

    2017-06-01

    Full Text Available To effectively address climate change, aggressive mitigation policies need to be implemented to reduce greenhouse gas emissions. Anthropogenic carbon emissions are mostly generated from urban environments, where human activities are spatially concentrated. Improvements in uncertainty determinations and precision of measurement techniques are critical to permit accurate and precise tracking of emissions changes relative to the reduction targets. As part of the INFLUX project, we quantified carbon dioxide (CO2, carbon monoxide (CO and methane (CH4 emission rates for the city of Indianapolis by averaging results from nine aircraft-based mass balance experiments performed in November-December 2014. Our goal was to assess the achievable precision of the aircraft-based mass balance method through averaging, assuming constant CO2, CH4 and CO emissions during a three-week field campaign in late fall. The averaging method leads to an emission rate of 14,600 mol/s for CO2, assumed to be largely fossil-derived for this period of the year, and 108 mol/s for CO. The relative standard error of the mean is 17% and 16%, for CO2 and CO, respectively, at the 95% confidence level (CL, i.e. a more than 2-fold improvement from the previous estimate of ~40% for single-flight measurements for Indianapolis. For CH4, the averaged emission rate is 67 mol/s, while the standard error of the mean at 95% CL is large, i.e. ±60%. Given the results for CO2 and CO for the same flight data, we conclude that this much larger scatter in the observed CH4 emission rate is most likely due to variability of CH4 emissions, suggesting that the assumption of constant daily emissions is not correct for CH4 sources. This work shows that repeated measurements using aircraft-based mass balance methods can yield sufficient precision of the mean to inform emissions reduction efforts by detecting changes over time in urban emissions.

  3. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  4. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  5. Field measurements and modeling to resolve m2 to km2 CH4 emissions for a complex urban source: An Indiana landfill study

    Directory of Open Access Journals (Sweden)

    Maria Obiminda L. Cambaliza

    2017-07-01

    Full Text Available Large spatial and temporal uncertainties for landfill CH4 emissions remain unresolved by short-term field campaigns and historic greenhouse gas (GHG inventory models. Using four field methods (aircraft-based mass balance, tracer correlation, vertical radial plume mapping, static chambers and a new field-validated process-based model (California Landfill Methane Inventory Model, CALMIM 5.4, we investigated the total CH4 emissions from a central Indiana landfill as well as the partitioned emissions inclusive of methanotrophic oxidation for the various cover soils at the site. We observed close agreement between whole site emissions derived from the tracer correlation (8 to 13 mol s–1 and the aircraft mass balance approaches (7 and 17 mol s–1 that were statistically indistinguishable from the modeling result (12 ± 2 mol s–1 inclusive of oxidation. Our model calculations indicated that approximately 90% of the annual average CH4 emissions (11 ± 1 mol s–1; 2200 ± 250 g m–2 d–1 derived from the small daily operational area. Characterized by a thin overnight soil cover directly overlying a thick sequence of older methanogenic waste without biogas recovery, this area constitutes only 2% of the 0.7 km2 total waste footprint area. Because this Indiana landfill is an upwind source for Indianapolis, USA, the resolution of m2 to km2 scale emissions at various temporal scales contributes to improved regional inventories relevant for addressing GHG mitigation strategies. Finally, our comparison of measured to reported CH4 emissions under the US EPA National GHG Reporting program suggests the need to revisit the current IPCC (2006 GHG inventory methodology based on CH4 generation modeling. The reasonable prediction of emissions at individual U.S. landfills requires incorporation of both cover-specific landfill climate modeling (e.g., soil temperature/moisture variability over a typical annual cycle driving CH4 transport and oxidation rates as

  6. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  7. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results

    Science.gov (United States)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-10-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 ± 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to be much

  8. Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Directory of Open Access Journals (Sweden)

    C. Liousse

    2010-10-01

    Full Text Available African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin and Banizoumbou (Niger AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable.

  9. Aircrafts' taxi noise emission

    NARCIS (Netherlands)

    Asensio, C.; Pagan Munoz, Raul; López, J.M.

    2008-01-01

    An investigation has been conducted, with the objective of creating a database of inputs that can be used with noise prediction software, to evaluate noise of aircraft taxing movements and community noise exposure levels. The acoustic consultant can use these data with any of the software packages,

  10. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    C. Huang

    2011-05-01

    Full Text Available The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2392 kt, 2293 kt, 6697 kt, 3116 kt, 1511 kt, 2767 kt, and 459 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77 % to the total ozone formation potential (OFP. The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around Hangzhou Bay. The industrial sources, including power plants other fuel combustion facilities, and non-combustion processes contribute about 97 %, 86 %, 89 %, 91 %, and 69 % of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3 % and 12.4 % of the NOx and VOC emissions, respectively. Regarding OFPs, the chemical industry, domestic use of paint & printing, and gasoline vehicles contribute 38 %, 24 %, and 12 % to the ozone formation in the YRD region.

  11. A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009

    International Nuclear Information System (INIS)

    Song Yu; Chang Di; Liu Bing; Miao Weijie; Zhu Lei; Zhang Yuanhang

    2010-01-01

    Open fires play a significant role in atmospheric pollution and climatic change. This work aims to develop an emission inventory for nonagricultural open fires in Asia using the newly released MODIS (Moderate Resolution Imaging Spectroradiometer) burned area product (MCD45A1), as the MODIS sensor cannot efficiently detect field crop residue burning. Country-level or province-specific biomass density data were used as fuel loads. Moisture contents were taken into account when calculating combustion factors for grass fuel. During the nine fire years 2000-2008, both burned areas and fire emissions clearly presented spatial and seasonal variations. Extensive nonagricultural open fires were concentrated in the months of February and March, while another peak was between August and October. Indonesia was the most important contributor to fire emission, which was largely attributable to peat burning. Myanmar, India, and Cambodia together contributed approximately half of the total burned area and emission. The annual emissions for CO 2 , CO, CH 4 , NMHC s , NO x , NH 3 , SO 2 , BC, OC, PM 2.5 , and PM 10 were 83 (69-103), 6.1 (4.6-8.2), 0.38 (0.24-0.57), 0.64 (0.36-1.0), 0.085 (0.074-0.10), 0.31 (0.17-0.48), 0.030 (0.024-0.037), 0.023 (0.020-0.028), 0.27 (0.22-0.33), 2.0 (1.6-2.6), and 2.2 (1.7-2.9) Tg yr -1 , respectively. This inventory has a daily temporal resolution and 500 m spatial resolution, and covers a long period, from April 2000 to February 2009. It could be used in global and regional air quality modeling.

  12. Modelling of pesticide emissions for Life Cycle Inventory analysis: Model development, applications and implications

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes

    with variations in the climates and soils present in Europe. Emissions of pesticides to surface water and groundwater calculated by PestLCI 2.0 were compared with models used for risk assessment. Compared to the MACRO module in SWASH 3.1 model, which calculates surface water emissions by runoff and drainage...... chromatographic flow of water through the soil), which was attributed to the omission of emissions via macropore flow in the latter model. The comparison was complicated by the fact that the scenarios used were not fully identical. In order to quantify the implications of using PestLCI 2.0, human toxicity......The work presented in this thesis deals with quantification of pesticide emissions in the Life Cycle Inventory (LCI) analysis phase of Life Cycle Assessment (LCA). The motivation to model pesticide emissions is that reliable LCA results not only depend on accurate impact assessment models, but also...

  13. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    Science.gov (United States)

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  14. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  15. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    Science.gov (United States)

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  16. Emissions inventories for urban airshed model application in the Philadelphia Aqcr (Air Quality Control Region)

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    This report documents the procedures used to develop emissions input required by the Urban Airshed photochemical oxidant model. Ambient air quality data were gathered as part of another effort during the summer of 1979 in Philadelphia to be used in the model validation effort. For 1979 and the 1987 projection year, ES compiled hour by hour emissions data for a representative weekday in the oxidant season. The pollutants inventoried are five categories of VOC required by the Airshed model, four categories of VOC defined in RAPS, NO, NO2, CO, SO2, and TSP. Point and area sources were considered with the highway vehicle portion of the inventory being subcontracted to DVRPC. County level area source data were allocated to a 502-cell grid system. Projections were made so that ozone air quality in 1987 could be investigated. ES developed annualized EIS/PandR data and data files containing temporal and VOC/NOx profiles in order to generate the data packets required by the Airshed model.

  17. Energy-Dominated Local Carbon Emissions in Beijing 2007: Inventory and Input-Output Analysis

    Directory of Open Access Journals (Sweden)

    Shan Guo

    2012-01-01

    Full Text Available For greenhouse gas (GHG emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO2-eq, of which energy-related CO2 emissions comprise 90.49%, non-energy-related CO2 emissions 6.35%, CH4 emissions 2.33%, and N2O emissions 0.83%, respectively. In terms of energy-related CO2 emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry holds the top local emissions embodied in final demand of 1.86E + 07 t CO2-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals. The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO2-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

  18. SewageLCI 1.0 - A first generation inventory model for quantification of chemical emissions via sewage systems. Application on chemicals of concern

    DEFF Research Database (Denmark)

    Gallice, Aurélie; Birkved, Morten; Kech, Sébastien

    obtained applying SewageLCI 1.0 model reveal that it’s possible to account for many of the variations in emission quantities of chemicals, caused by variations in the chemical fate properties and in the composition of national waste water treatment grids. The results indicate that the total emission...... treatment is emission to surface water recipients, other environmental compartments such as agricultural soil may receive considerable loads of chemicals emitted by the national specific waste water grids. The SewageLCI 1.0 presentation and case study reveal how broad inclusion of chemicals emitted......Lack of inventory data on chemical emissions often forces life cycle assessors to rely on crude emissions estimates (e.g. 100 % of the applied chemical mass is assumed emitted) or in the worst case to omit chemical emissions due to lack of emission data. The inventory model SewageLCI 1.0, provides...

  19. Verification of the Danish 1990, 2000 and 2010 emission inventory data

    DEFF Research Database (Denmark)

    Fauser, Patrik; Nielsen, Malene; Winther, Morten

    , agriculture, industry and waste. The data are based on the national greenhouse gas inventories for the years 1990 (base year), 2000 and 2010, as reported in 2012, and provided by the UNFCCC and EU. Inter-country comparison and time series consistency check of emissions and implied emission factors is made...... is made with data for energy consumption (Eurostat), agricultural statistics (Eurostat), industrial processes (UN) and waste disposal (OECD). Verification in this approach is a combination of qualitative and quantitative assessments and can assist to identify sectors and categories that require more...... for EU15 countries, excluding Luxemburg and including Norway and Switzerland and for some verification steps also including Australia, Canada, Japan, Russian Federation, USA and aggregated values for EU15 and EU27. National and inter-country verification and time trend consistency check of activity data...

  20. Tempo-spatial variation of emission inventories of speciated volatile organic compounds from on-road vehicles in China

    Directory of Open Access Journals (Sweden)

    H. Cai

    2009-09-01

    Full Text Available Emission inventories of sixty-seven speciated non-methane volatile organic compounds (NMVOC from on-road vehicles in China were estimated for the period of 1980–2005, using seven NMVOC emission profiles, which were summarized based on local and international measurements from published literatures dealing with specific vehicle categories running under particular modes.

    Results show an exponential growth trend of China's historical emissions of alkanes, alkenes, alkines, aromatics and carbonyls during the period of 1980–2005, increasing from 63.9, 39.3, 6.9, 36.8 and 24.1 thousand tons, respectively, in 1980 to 2778.2, 1244.5, 178.7, 1351.7 and 406.0 thousand tons, respectively, in 2005, which coincided well with China's economic growth. Emission inventories of alkenes, aromatics and carbonyls were gridded at a high resolution of 40 km×40 km for air quality simulation and health risk evaluation, using the geographic information system (GIS methodology. Spatial distribution of speciated NMVOC emissions shows a clear difference in emission densities between developed eastern and relatively underdeveloped western and inland China. Besides, the appearance and expansion of high-emission areas was another notable characteristic of spatial distribution of speciated NMVOC emissions during the period.

    Emission contributions of vehicle categories to speciated NMVOC groups showed annual variation, due to the variance in the provincial emissions and in the relative fractions of the seven emission profiles adopted at the provincial level. Highly reactive and toxic compounds accounted for high proportions of emissions of speciated NMVOC groups. The most abundant compounds were isopentane, pentane and butane from alkanes; ethene, propene, 2-methyl-2-butene and ethyne from alkenes and alkines; benzene, toluene, ethylbenzene, o-xylene, and m,p-xylene (BTEX and 1,2,4-trimethylbenzene from aromatics and formaldehyde, acetaldehyde

  1. Impacts of Residential Biofuel Emissions on Air Quality and Climate

    Science.gov (United States)

    Huang, Y.; Unger, N.; Harper, K.; Storelvmo, T.

    2016-12-01

    The residential biofuel sector is defined as fuelwood, agricultural residues and dung used for household cooking and heating. Aerosol emissions from this human activity play an important role affecting local, regional and global air quality, climate and public health. However, there are only few studies available that evaluate the net impacts and large uncertainties persist. Here we use the Community Atmosphere Model version 5.3 (CAM v5.3) within the Community Earth System Model version 1.2.2, to quantify the impacts of cook-stove biofuel emissions on air quality and climate. The model incorporates a novel advanced treatment of black carbon (BC) effects on mixed-phase/ice clouds. We update the global anthropogenic emission inventory in CAM v5.3 to a state-of-the-art emission inventory from the Greenhouse Gas-Air Pollution Interactions and Synergies integrated assessment model. Global in-situ and aircraft campaign observations for BC and organic carbon are used to evaluate and validate the model performance. Sensitivity simulations are employed to assess the impacts of residential biofuel emissions on regional and global direct and indirect radiative forcings in the contemporary world. We focus the analyses on several key regions including India, China and Sub-Saharan Africa.

  2. Denmark’s National Inventory Report 2012

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Mikkelsen, Mette Hjorth; Hoffmann, Leif

    This report is Denmark’s National Inventory Report 2012. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2010 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2......This report is Denmark’s National Inventory Report 2012. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2010 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2...

  3. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  4. Comparison of neighborhood-scale residential wood smoke emissions inventories using limited and intensive survey data

    International Nuclear Information System (INIS)

    Baxter, T.E.

    1998-01-01

    Emission inventory based estimations of pollutants resulting from residential combustion of wood are typically determined by collecting survey data that represent a single but relatively large area. While the pollutants in wood smoke emissions may represent a relatively low fraction (<10%) of an area's total annual emissions mass inventory, they can concentrate within the specific neighborhood areas where emitted. Thus, while the representativeness of a large-area survey approach is valid and useful, its application for estimating wood smoke pollutant levels within any particular neighborhood may be limited. The ability to obtain a better estimation of pollutant levels for evaluating potential health-related impacts within neighborhoods where wood smoke pollutants can concentrate requires survey data more representative of the particular area. This study compares residential wood combustion survey data collected from six residential neighborhoods in the metropolitan area of Flagstaff, Arizona. The primary purpose of this study is to determine the ability of data collected from a limited neighborhood-scale survey effort to represent that neighborhood's wood fuel consumption characteristics and wood smoke emissions. In addition, the variation that occurs between different neighborhoods regarding residential consumption of wood is also evaluated. Residential wood combustion survey data were collected compare wood burning device distribution, wood types and quantities burned, and emission rates. One neighborhood was surveyed once at approximately a 10% distribution rate and again at a 100% distribution rate providing data for evaluating the ability of a limited-effort survey to represent a more intensive survey. Survey methodology, results and recommendations are presented

  5. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory

    Science.gov (United States)

    Kim, Hyun Cheol; Kim, Eunhye; Bae, Changhan; Cho, Jeong Hoon; Kim, Byeong-Uk; Kim, Soontae

    2017-09-01

    The impact of regional emissions (e.g., domestic and international) on surface particulate matter (PM) concentrations in the Seoul metropolitan area (SMA), South Korea, and its sensitivities to meteorology and emissions inventories are quantitatively estimated for 2014 using regional air quality modeling systems. Located on the downwind side of strong sources of anthropogenic emissions, South Korea bears the full impact of the regional transport of pollutants and their precursors. However, the impact of foreign emissions sources has not yet been fully documented. We utilized two regional air quality simulation systems: (1) a Weather Research and Forecasting and Community Multi-Scale Air Quality (CMAQ) system and (2) a United Kingdom Met Office Unified Model and CMAQ system. The following combinations of emissions inventories are used: the Intercontinental Chemical Transport Experiment-Phase B, the Inter-comparison Study for Asia 2010, and the National Institute of Environment Research Clean Air Policy Support System. Partial contributions of domestic and foreign emissions are estimated using a brute force approach, adjusting South Korean emissions to 50 %. Results show that foreign emissions contributed ˜ 60 % of SMA surface PM concentration in 2014. Estimated contributions display clear seasonal variation, with foreign emissions having a higher impact during the cold season (fall to spring), reaching ˜ 70 % in March, and making lower contributions in the summer, ˜ 45 % in September. We also found that simulated surface PM concentration is sensitive to meteorology, but estimated contributions are mostly consistent. Regional contributions are also found to be sensitive to the choice of emissions inventories.

  6. Comparison of real-time BTEX flux measurements to reported emission inventories in the Upper Green River Basin, Wyoming.

    Science.gov (United States)

    Edie, R.; Robertson, A.; Murphy, S. M.; Soltis, J.; Field, R. A.; Zimmerle, D.; Bell, C.

    2017-12-01

    Other Test Method 33a (OTM-33a) is an EPA-developed near-source measurement technique that utilizes a Gaussian plume inversion to calculate the flux of a point source 20 to 200 meters away. In 2014, the University of Wyoming mobile laboratory—equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction Time of Flight Mass Spectrometer—measured methane and BTEX fluxes from oil and gas operations in the Upper Green River Basin (UGRB), Wyoming. In this study, OTM-33a BTEX flux measurements are compared to BTEX emissions reported by operators in the Wyoming Department of Environmental Quality (WY-DEQ) emission inventory. On average, OTM-33a measured BTEX fluxes are almost twice as high as those reported in the emission inventory. To further constrain errors in the OTM-33a method, methane test releases were performed at the Colorado State University Methane Emissions Test and Evaluation Center (METEC) in June of 2017. The METEC facility contains decommissioned oil and gas equipment arranged in realistic well pad layouts. Each piece of equipment has a multitude of possible emission points. A Gaussian fit of measurement error from these 29 test releases indicate the median OTM-33a measurement quantified 55% of the metered flowrate. BTEX results from the UGRB campaign and inventory analysis will be presented, along with a discussion of errors associated with the OTM-33a measurement technique. Real-time BTEX and methane mixing ratios at the measurement locations (which show a lack of correlation between VOC and methane sources in 20% of sites sampled) will also be discussed.

  7. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  8. A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009

    Energy Technology Data Exchange (ETDEWEB)

    Song Yu; Chang Di; Liu Bing; Miao Weijie; Zhu Lei; Zhang Yuanhang, E-mail: songyu@pku.edu.c, E-mail: yhzhang@pku.edu.c [State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Sciences, Peking University, Beijing 100871 (China)

    2010-01-15

    Open fires play a significant role in atmospheric pollution and climatic change. This work aims to develop an emission inventory for nonagricultural open fires in Asia using the newly released MODIS (Moderate Resolution Imaging Spectroradiometer) burned area product (MCD45A1), as the MODIS sensor cannot efficiently detect field crop residue burning. Country-level or province-specific biomass density data were used as fuel loads. Moisture contents were taken into account when calculating combustion factors for grass fuel. During the nine fire years 2000-2008, both burned areas and fire emissions clearly presented spatial and seasonal variations. Extensive nonagricultural open fires were concentrated in the months of February and March, while another peak was between August and October. Indonesia was the most important contributor to fire emission, which was largely attributable to peat burning. Myanmar, India, and Cambodia together contributed approximately half of the total burned area and emission. The annual emissions for CO{sub 2}, CO, CH{sub 4}, NMHC{sub s}, NO{sub x}, NH{sub 3}, SO{sub 2}, BC, OC, PM{sub 2.5}, and PM{sub 10} were 83 (69-103), 6.1 (4.6-8.2), 0.38 (0.24-0.57), 0.64 (0.36-1.0), 0.085 (0.074-0.10), 0.31 (0.17-0.48), 0.030 (0.024-0.037), 0.023 (0.020-0.028), 0.27 (0.22-0.33), 2.0 (1.6-2.6), and 2.2 (1.7-2.9) Tg yr{sup -1}, respectively. This inventory has a daily temporal resolution and 500 m spatial resolution, and covers a long period, from April 2000 to February 2009. It could be used in global and regional air quality modeling.

  9. A 1990 global emission inventory of anthropogenic sources of carbon monoxide on 1o x 1o developed in the framework of EDGAR/GEIA

    International Nuclear Information System (INIS)

    Olivier, J.G.J.; Bouwman, A.F.; Bloos, J.P.J.; Berdowski, J.J.M.; Visschedijk, A.J.H.

    1999-01-01

    A global emission inventory of carbon monoxide (CO) emissions with 1 o x 1 o latitude-longitude resolution was compiled for 1990 on a sectoral basis. The sectoral sources considered include large-scale biomass burning (29%, of which savanna burning, 18%, and deforestation, 11%), fossil fuel combustion (27%, predominantly in road transport), biofuel combustion (19%, predominantly fuelwood combustion), agricultural waste burning (21%) and industrial process sources (4%). The inventory was compiled using mostly national statistics as activity data, emission factors at global or country level, and specific grid maps to convert, by sector, country total emissions to the 1 o x 1 o grid. A special effort was made to compile a global inventory of biofuel use, since this was considered to be a significant source on a global level, and a major source in some regions such as India and China. The global anthropogenic source of CO in 1990 is estimated at about 974 Tg CO yr -1 . The inventory is available on a sectoral basis on a 1 o x 1 o grid for input to global atmospheric models and on a regional/country basis for policy analysis. (author)

  10. HCFC-142b emissions in China: An inventory for 2000 to 2050 basing on bottom-up and top-down methods

    Science.gov (United States)

    Han, Jiarui; Li, Li; Su, Shenshen; Hu, Jianxin; Wu, Jing; Wu, Yusheng; Fang, Xuekun

    2014-05-01

    1-Chloro-1,1-difluoroethane (HCFC-142b) is both ozone depleting substance included in the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and potent greenhouse gas with high global warming potential. As one of the major HCFC-142b consumption and production countries in the world, China's control action will contribute to both mitigating climate change and protecting ozone layer. Estimating China's HCFC-142b emission is a crucial step for understanding its emission status, drawing up phasing-out plan and evaluating mitigation effect. Both the bottom-up and top-down method were adopted in this research to estimate HCFC-142b emissions from China. Results basing on different methods were compared to test the effectiveness of two methods and validate inventory's reliability. Firstly, a national bottom-up emission inventory of HCFC-142b for China during 2000-2012 was established based on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the Montreal Protocol, showing that in contrast to the downward trend revealed by existing results, HCFC-142b emissions kept increasing from 0.1 kt/yr in 2000 to the peak of 14.4 kt/yr in 2012. Meanwhile a top-down emission estimation was also developed using interspecies correlation method. By correlating atmospheric mixing ratio data of HCFC-142b and reference substance HCFC-22 sampled from four representative cities (Beijing, Hangzhou, Lanzhou and Guangzhou, for northern, eastern, western and southern China, respectively), China's HCFC-142b emission in 2012 was calculated. It was 16.24(13.90-18.58) kt, equivalent to 1.06 kt ODP and 37 Tg CO2-eq, taking up 9.78% (ODP) of total HCFCs emission in China or 30.5% of global HCFC-142b emission. This result was 12.7% higher than that in bottom-up inventory. Possible explanations were discussed. The consistency of two results lend credit to methods effectiveness and results reliability. Finally, future HCFC-142b emission was projected to 2050

  11. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model.

    Science.gov (United States)

    Chen, Tsao-Chou; Lin, Cheng-Fang

    2008-06-30

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions.

  12. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model

    International Nuclear Information System (INIS)

    Chen, T.-C.; Lin, C.-F.

    2008-01-01

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions

  13. Methodology of regional emission inventories: Application to the emission inventories of the ESCOMPTE experiment and to their regional extension to the PACA (Provence-Alpes-Cote-d'Azur) region; Methodologie d'etablissement de cadastres d'emissions a l'echelle regionale: application au cadastre escompte et a son extension a la region PACA

    Energy Technology Data Exchange (ETDEWEB)

    Francois, St.

    2004-06-01

    With the industrial revolution and then the massive use of fossil fuels, the air quality has been considerably worsening. Air quality is a complex function of meteorological situations (wind, sun radiation) and pollutant emissions. All those parameters must be accounted for modelling the reactive transports of pollutants in the atmosphere but only the anthropogenic emissions can be managed on a short time frame, as well concerning the composition of the flux as the emitted quantities. This overall modelling problematic emphasize the crucial role of emission databases in the air quality modelling processes, as diagnostic or prognostic tool for air quality issues. To obtain a consistent and realistic modelling, not only the emissions and meteorological data have to be taken take into account, especially the emissions in the proper chemical reaction mechanisms but the quality of the emission data is crucial. The starting point of our study was that few or no inventories exist, and from the ones available, they are not adapted to be used efficiently in regional air quality modelling. The resolution, especially regarding spatial emission distribution of the national inventories can not lead to proper input data for this kind of studies. Our study include both the method aspects (theoretical studies) and the operational aspects (applied studies) regarding the generation of high resolution spatial emission data (based on national statistical data standards) that can be used as suitable input data for meso-scale photochemical models of the reactive transport of pollutants. This work was part of the ESCOMPTE program, an unparalleled scientific in the domain of air quality experiment in France. Our tasks in this program also included a methodological transfer (accompanied with the software tools related to the emission databases) of the study to the local air quality monitoring authority (AIRMARAIX for the city of Marseille). This overall application proved the feasibility

  14. Airborne Quantification of Methane Emissions in the San Francisco Bay Area of California

    Science.gov (United States)

    Guha, A.; Newman, S.; Martien, P. T.; Young, A.; Hilken, H.; Faloona, I. C.; Conley, S.

    2017-12-01

    The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions 80% below 1990 levels by 2050, consistent with the State of California's climate protection goal. The Air District maintains a regional GHG emissions inventory that includes emissions estimates and projections which influence the agency's programs and regulatory activities. The Air District is currently working to better characterize methane emissions in the GHG inventory through source-specific measurements, to resolve differences between top-down regional estimates (Fairley and Fischer, 2015; Jeong et al., 2016) and the bottom-up inventory. The Air District funded and participated in a study in Fall 2016 to quantify methane emissions from a variety of sources from an instrumented Mooney aircraft. This study included 40 hours of cylindrical vertical profile flights that combined methane and wind measurements to derive mass emission rates. Simultaneous measurements of ethane provided source-apportionment between fossil-based and biological methane sources. The facilities sampled included all five refineries in the region, five landfills, two dairy farms and three wastewater treatment plants. The calculated mass emission rates were compared to bottom-up rates generated by the Air District and to those from facility reports to the US EPA as part of the mandatory GHG reporting program. Carbon dioxide emission rates from refineries are found to be similar to bottom-up estimates for all sources, supporting the efficacy of the airborne measurement methodology. However, methane emission estimates from the airborne method showed significant differences for some source categories. For example, methane emission estimates based on airborne measurements were up to an order of magnitude higher for refineries, and up to five times higher for landfills compared to bottom-up methods, suggesting significant

  15. High-resolution inventory of ammonia emissions from agricultural fertilizer in China from 1978 to 2008

    Science.gov (United States)

    Xu, P.; Liao, Y. J.; Lin, Y. H.; Zhao, C. X.; Yan, C. H.; Cao, M. N.; Wang, G. S.; Luan, S. J.

    2016-02-01

    The quantification of ammonia (NH3) emissions is essential to the more accurate quantification of atmospheric nitrogen deposition, improved air quality and the assessment of ammonia-related agricultural policy and climate mitigation strategies. The quantity, geographic distribution and historical trends of these emissions remain largely uncertain. In this paper, a new Chinese agricultural fertilizer NH3 (CAF_NH3) emissions inventory has been compiled that exhibits the following improvements: (1) a 1 × 1 km gridded map on the county level was developed for 2008; (2) a combined bottom-up and top-down method was used for the local correction of emission factors (EFs) and parameters; (3) the temporal patterns of historical time trends for 1978-2008 were estimated and the uncertainties were quantified for the inventories; and (4) a sensitivity test was performed in which a province-level disaggregated map was compared with CAF_NH3 emissions for 2008. The total CAF_NH3 emissions for 2008 were 8.4 TgNH3 yr-1 (a 6.6-9.8 Tg interquartile range). From 1978 to 2008, annual NH3 emissions fluctuated with three peaks (1987, 1996 and 2005), and total emissions increased from 3.2 to 8.4 Tg at an annual rate of 3.0 %. During the study period, the contribution of livestock manure spreading increased from 37.0 to 45.5 % because of changing fertilization practices and the rapid increase in egg, milk, and meat consumption. The average contribution of synthetic fertilizer, which has a positive effect on crop yields, was approximately 38.3 % (minimum: 33.4 %; maximum: 42.7 %). With rapid urbanization causing a decline in the rural population, the contribution of the rural excrement sector varied widely between 20.3 % and 8.5 %. The average contributions of cake fertilizer and straw returning were approximately 3.8 and 4.5 %, respectively, thus small and stable. Collectively, the CAF_NH3 emissions reflect the nation's agricultural policy to a certain extent. An effective approach to

  16. Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis

    Science.gov (United States)

    Zhang, Bo; Zhang, Yaowen; Zhao, Xueli; Meng, Jing

    2018-01-01

    Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as Construction, Production and Supply of Electricity and Steam, Manufacture of Food and Tobacco and Manufacture of Chemicals, and Chemical Products played as the important transmission channels. Examining both production- and consumption-based non-CO2 GHG emissions will enrich our understanding of the influences of industrial positions, final consumption demands, and trades on national non-CO2 GHG emissions by considering the comprehensive abatement potentials in the supply chains.

  17. Improving and Assessing Aircraft-based Greenhouse Gas Emission Rate Measurements at Indianapolis as part of the INFLUX project.

    Science.gov (United States)

    Heimburger, A. M. F.; Shepson, P. B.; Stirm, B. H.; Susdorf, C.; Cambaliza, M. O. L.

    2015-12-01

    Since the Copenhagen accord in 2009, several countries have affirmed their commitment to reduce their greenhouse gas emissions. The United States and Canada committed to reduce their emissions by 17% below 2005 levels, by 2020, Europe by 14% and China by ~40%. To achieve such targets, coherent and effective strategies in mitigating atmospheric carbon emissions must be implemented in the next decades. Whether such goals are actually achieved, they require that reductions are "measurable", "reportable", and "verifiable". Management of greenhouse gas emissions must focus on urban environments since ~74% of CO2 emissions worldwide will be from cities, while measurement approaches are highly uncertain (~50% to >100%). The Indianapolis Flux Experiment (INFLUX) was established to develop, assess and improve top-down and bottom-up quantifications of urban greenhouse gas emissions. Based on an aircraft mass balance approach, we performed a series of experiments focused on the improvement of CO2, CH4 and CO emission rates quantification from Indianapolis, our final objective being to drastically improve the method overall uncertainty from the previous estimate of 50%. In November-December 2014, we conducted nine methodologically identical mass balance experiments in a short period of time (24 days, one downwind distance) for assumed constant total emission rate conditions, as a means to obtain an improved standard deviation of the mean determination. By averaging the individual emission rate determinations, we were able to obtain a method precision of 17% and 16% for CO2 and CO, respectively, at the 95%C.L. CH4 emission rates are highly variable day to day, leading to precision of 60%. Our results show that repetitive sampling can enable improvement in precision of the aircraft top-down methods through averaging.

  18. Land cover change mapping using MODIS time series to improve emissions inventories

    Science.gov (United States)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie

    2016-04-01

    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  19. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity.

    Science.gov (United States)

    Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data

    Directory of Open Access Journals (Sweden)

    D. Stroppiana

    2010-12-01

    Full Text Available We compare five global inventories of monthly CO emissions named VGT, ATSR, MODIS, GFED3 and MOPITT based on remotely sensed active fires and/or burned area products for the year 2003. The objective is to highlight similarities and differences by focusing on the geographical and temporal distribution and on the emissions for three broad land cover classes (forest, savanna/grassland and agriculture. Globally, CO emissions for the year 2003 range between 365 Tg CO (GFED3 and 1422 Tg CO (VGT. Despite the large uncertainty in the total amounts, some common spatial patterns typical of biomass burning can be identified in the boreal forests of Siberia, in agricultural areas of Eastern Europe and Russia and in savanna ecosystems of South America, Africa and Australia. Regionally, the largest difference in terms of total amounts (CV > 100% and seasonality is observed at the northernmost latitudes, especially in North America and Siberia where VGT appears to overestimate the area affected by fires. On the contrary, Africa shows the best agreement both in terms of total annual amounts (CV = 31% and of seasonality despite some overestimation of emissions from forest and agriculture observed in the MODIS inventory. In Africa VGT provides the most reliable seasonality. Looking at the broad land cover types, the range of contribution to the global emissions of CO is 64–74%, 23–32% and 3–4% for forest, savanna/grassland and agriculture, respectively. These results suggest that there is still large uncertainty in global estimates of emissions and it increases if the comparison is carried by out taking into account the temporal (month and spatial (0.5° × 0.5° cell dimensions. Besides the area affected by fires, also vegetation characteristics and conditions at the time of burning should also be accurately parameterized since they can greatly influence the global estimates of CO emissions.

  1. A comparison of ground-based and aircraft-based methane emission flux estimates in a western oil and natural gas production basin

    Science.gov (United States)

    Snare, Dustin A.

    Recent increases in oil and gas production from unconventional reservoirs has brought with it an increase of methane emissions. Estimating methane emissions from oil and gas production is complex due to differences in equipment designs, maintenance, and variable product composition. Site access to oil and gas production equipment can be difficult and time consuming, making remote assessment of emissions vital to understanding local point source emissions. This work presents measurements of methane leakage made from a new ground-based mobile laboratory and a research aircraft around oil and gas fields in the Upper Green River Basin (UGRB) of Wyoming in 2014. It was recently shown that the application of the Point Source Gaussian (PSG) method, utilizing atmospheric dispersion tables developed by US EPA (Appendix B), is an effective way to accurately measure methane flux from a ground-based location downwind of a source without the use of a tracer (Brantley et al., 2014). Aircraft measurements of methane enhancement regions downwind of oil and natural gas production and Planetary Boundary Layer observations are utilized to obtain a flux for the entire UGRB. Methane emissions are compared to volumes of natural gas produced to derive a leakage rate from production operations for individual production sites and basin-wide production. Ground-based flux estimates derive a leakage rate of 0.14 - 0.78 % (95 % confidence interval) per site with a mass-weighted average (MWA) of 0.20 % for all sites. Aircraft-based flux estimates derive a MWA leakage rate of 0.54 - 0.91 % for the UGRB.

  2. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.

    Science.gov (United States)

    Ou, Jiamin; Zheng, Junyu; Li, Rongrong; Huang, Xiaobo; Zhong, Zhuangmin; Zhong, Liuju; Lin, Hui

    2015-10-15

    The increasing ground-ozone (O3) levels, accompanied by decreasing SO2, NO2, PM10 and PM2.5 concentrations benefited from air pollution control measures implemented in recent years, initiated a serious challenge to control Volatile Organic Compound (VOC) emissions in the Pearl River Delta (PRD) region, China. Speciated VOC emission inventory is fundamental for estimating Ozone Formation Potentials (OFPs) to identify key reactive VOC species and sources in order to formulate efficient O3 control strategies. With the use of the latest bulk VOC emission inventory and local source profiles, this study developed the PRD regional speciated Oxygenated Volatile Organic Compound (OVOC) and VOC emission inventories to identify the key emission-based and OFP-based VOC sources and species. Results showed that: (1) Methyl alcohol, acetone and ethyl acetate were the major constituents in the OVOC emissions from industrial solvents, household solvents, architectural paints and biogenic sources; (2) from the emission-based perspective, aromatics, alkanes, OVOCs and alkenes made up 39.2%, 28.2%, 15.9% and 10.9% of anthropogenic VOCs; (3) from the OFP-based perspective, aromatics and alkenes become predominant with contributions of 59.4% and 25.8% respectively; (4) ethene, m/p-xylene, toluene, 1,2,4-trimethyl benzene and other 24 high OFP-contributing species were the key reactive species that contributed to 52% of anthropogenic emissions and up to 80% of OFPs; and (5) industrial solvents, industrial process, gasoline vehicles and motorcycles were major emission sources of these key reactive species. Policy implications for O3 control strategy were discussed. The OFP cap was proposed to regulate VOC control policies in the PRD region due to its flexibility in reducing the overall OFP of VOC emission sources in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Danish CORINAIR Inventories

    DEFF Research Database (Denmark)

    Winther, M.; Illerup, J. B.; Fenhann, J.

    CORINAIR is the most comprehensive European air emission inventory programme. It consists of a defined emission calculation methodology and software for storing and further data processing. In CORINAIR 28 different emission species are estimated in 11 main sectors which are further sub-divided, a...

  4. The Fire INventory from NCAR (FINN: a high resolution global model to estimate the emissions from open burning

    Directory of Open Access Journals (Sweden)

    C. Wiedinmyer

    2011-07-01

    Full Text Available The Fire INventory from NCAR version 1.0 (FINNv1 provides daily, 1 km resolution, global estimates of the trace gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed burning and does not include biofuel use and trash burning. Emission factors used in the calculations have been updated with recent data, particularly for the non-methane organic compounds (NMOC. The resulting global annual NMOC emission estimates are as much as a factor of 5 greater than some prior estimates. Chemical speciation profiles, necessary to allocate the total NMOC emission estimates to lumped species for use by chemical transport models, are provided for three widely used chemical mechanisms: SAPRC99, GEOS-CHEM, and MOZART-4. Using these profiles, FINNv1 also provides global estimates of key organic compounds, including formaldehyde and methanol. Uncertainties in the emissions estimates arise from several of the method steps. The use of fire hot spots, assumed area burned, land cover maps, biomass consumption estimates, and emission factors all introduce error into the model estimates. The uncertainty in the FINNv1 emission estimates are about a factor of two; but, the global estimates agree reasonably well with other global inventories of biomass burning emissions for CO, CO2, and other species with less variable emission factors. FINNv1 emission estimates have been developed specifically for modeling atmospheric chemistry and air quality in a consistent framework at scales from local to global. The product is unique because of the high temporal and spatial resolution, global coverage, and the number of species estimated. FINNv1 can be used for both hindcast and forecast or near-real time model applications and the results are being critically evaluated with models and observations whenever possible.

  5. Confirmation of Elevated Methane Emissions in Utah's Uintah Basin With Ground-Based Observations and a High-Resolution Transport Model

    Science.gov (United States)

    Foster, C. S.; Crosman, E. T.; Holland, L.; Mallia, D. V.; Fasoli, B.; Bares, R.; Horel, J.; Lin, J. C.

    2017-12-01

    Large CH4 leak rates have been observed in the Uintah Basin of eastern Utah, an area with over 10,000 active and producing natural gas and oil wells. In this paper, we model CH4 concentrations at four sites in the Uintah Basin and compare the simulated results to in situ observations at these sites during two spring time periods in 2015 and 2016. These sites include a baseline location (Fruitland), two sites near oil wells (Roosevelt and Castlepeak), and a site near natural gas wells (Horsepool). To interpret these measurements and relate observed CH4 variations to emissions, we carried out atmospheric simulations using the Stochastic Time-Inverted Lagrangian Transport model driven by meteorological fields simulated by the Weather Research and Forecasting and High Resolution Rapid Refresh models. These simulations were combined with two different emission inventories: (1) aircraft-derived basin-wide emissions allocated spatially using oil and gas well locations, from the National Oceanic and Atmospheric Administration (NOAA), and (2) a bottom-up inventory for the entire U.S., from the Environmental Protection Agency (EPA). At both Horsepool and Castlepeak, the diurnal cycle of modeled CH4 concentrations was captured using NOAA emission estimates but was underestimated using the EPA inventory. These findings corroborate emission estimates from the NOAA inventory, based on daytime mass balance estimates, and provide additional support for a suggested leak rate from the Uintah Basin that is higher than most other regions with natural gas and oil development.

  6. Inventory greenhouse gas emissions and removal by sinks in the Republic of Macedonia

    International Nuclear Information System (INIS)

    2002-07-01

    This publication is a result of a several months of analysis and cooperation between the experts group from the Center for energy, informatics and materials within Macedonian Academy of Sciences and Arts, and the Ministry of Environment and Physical Planning, related to preparation of the national inventory of greenhouse gas emissions by sources and removals by sinks. The inventory is prepared according to IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 1996), with consideration of the three main greenhouse gases: carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O). The investigations were conducted by three working teams: the first team dealt with the energy sector, the second team focused on the industrial processes and waste sectors, and the third team worked on the agriculture and land use change and forestry sectors. The sufficiency and applicability of the existing annual and monthly publications of the State Statistical Office were checked for each sector. Complete and high quality input data concerning the economy activities in the country were provided, to remove all initial uncertainties. The correlation factors which determine the quality of the processes were mostly taken as prescribed by the methodology. Within all sectors, the annual reports of the State Statistical Office were main information sources. although for the waste and agriculture sectors (where lack and uncertainty of data were prevalent) other sources and local experts had to be extensively consulted. Special treatment was applied to the energy sector, considering the complexity of this sector an its contribution to the total emissions with about 70%. The analyses were performed according to the type of final energy used: electricity production, heat production and transformation of mechanical energy for transport. Furthermore, separate detailed analyses were made for solid, liquid and gaseous fuels. The approach ensured the quality of input data for annual

  7. Evaluation of Biogenic and Fire Emissions in a Global Chemistry Model with NOMADSS, DC3 and SEAC4RS observations

    Science.gov (United States)

    Emmons, L. K.; Wiedinmyer, C.; Park, M.; Kaser, L.; Apel, E. C.; Guenther, A. B.

    2014-12-01

    Numerous measurements of compounds produced by biogenic and fire emissions were made during several recent field campaigns in the southeast United States, providing a unique data set for emissions and chemical model evaluation. The NCAR Community Atmosphere Model with Chemistry (CAM-chem) is coupled to the Community Land Model (CLM), which includes the biogenic emissions model MEGAN-v2.1, allowing for online calculation of emissions from vegetation for 150 compounds. Simulations of CAM-chem for summers 2012 and 2013 are evaluated with the aircraft and ground-based observations from DC3, NOMADSS and SEAC4RS. Comparison of directly emitted biogenic species, such as isoprene, terpenes, methanol and acetone, are used to evaluate the MEGAN emissions. Evaluation of oxidation products, including methyl vinyl ketone (MVK), methacrolein, formaldehyde, and other oxygenated VOCs are used to test the model chemistry mechanism. In addition, several biomass burning inventories are used in the model, including FINN, QFED, and FLAMBE, and are compared for their impact on atmospheric composition and ozone production, and evaluated with the aircraft observations.

  8. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China

    Science.gov (United States)

    Liang, Xiaoming; Chen, Xiaofang; Zhang, Jiani; Shi, Tianli; Sun, Xibo; Fan, Liya; Wang, Liming; Ye, Daiqi

    2017-08-01

    Increasingly serious ozone (O3) pollution, along with decreasing NOx emission, is creating a big challenge in the control of volatile organic compounds (VOCs) in China. More efficient and effective measures are assuredly needed for controlling VOCs. In this study, a reactivity-based industrial VOCs emission inventory was established in China based on the concept of ozone formation potential (OFP). Key VOCs species, major VOCs sources, and dominant regions with high reactivity were identified. Our results show that the top 15 OFP-based species, including m/p-xylene, toluene, propene, o-xylene, and ethyl benzene, contribute 69% of the total OFP but only 30% of the total emission. The architectural decoration industry, oil refinery industry, storage and transport, and seven other sources constituted the top 10 OFP subsectors, together contributing a total of 85%. The provincial and spatial characteristics of OFP are generally consistent with those of mass-based inventory. The implications for O3 control strategies in China are discussed. We propose a reactivity-based national definition of VOCs and low-reactive substitution strategies, combined with evaluations of health risks. Priority should be given to the top 15 or more species with high reactivity through their major emission sources. Reactivity-based policies should be flexibly applied for O3 mitigation based on the sensitivity of O3 formation conditions.

  9. Denmark's National Inventory Report 2015 and 2016

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    This report is Denmark’s annual documentation report of the greenhouse gas inventory submitted to the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. The report is prepared in accordance with the UNFCCC reporting guidelines and CMP decisions and contains all...... the mandatory information related to the Danish greenhouse gas inventory. The report contains information on emissions of CO2, CH4, N2O, HFCs, PFCs and SF6 and removals of CO2. The report describes among other aspects the data underpinning the inventory, the methodologies to estimate emissions....../removals and the quality control procedures in place. The main sectoral chapters of the report refer to Denmark, while information on the emission inventory of Greenland and the Faroe Islands is included in Chapter 16 and Annex 7, respectively....

  10. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China

    Science.gov (United States)

    Huang, C.; Wang, H. L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J. A.; Zhou, M.; Jing, S. A.; Lu, J.; Chen, C. H.

    2015-10-01

    Volatile organic compound (VOC) species from vehicle exhausts and gas evaporation were investigated by chassis dynamometer and on-road measurements of nine gasoline vehicles, seven diesel vehicles, five motorcycles, and four gas evaporation samples. The secondary organic aerosol (SOA) mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were estimated based on the mixing ratio of measured C2-C12 VOC species and inferred carbon number distributions. High aromatic contents were measured in gasoline exhausts and contributed comparatively more SOA yield. A vehicular emission inventory was compiled based on a local survey of on-road traffic in Shanghai and real-world measurements of vehicle emission factors from previous studies in the cities of China. The inventory-based vehicular organic aerosol (OA) productions to total CO emissions were compared with the observed OA to CO concentrations (ΔOA / ΔCO) in the urban atmosphere. The results indicate that vehicles dominate the primary organic aerosol (POA) emissions and OA production, which contributed about 40 and 60 % of OA mass in the urban atmosphere of Shanghai. Diesel vehicles, which accounted for less than 20 % of vehicle kilometers of travel (VKT), contribute more than 90 % of vehicular POA emissions and 80-90 % of OA mass derived by vehicles in urban Shanghai. Gasoline exhaust could be an important source of SOA formation. Tightening the limit of aromatic content in gasoline fuel will be helpful to reduce its SOA contribution. Intermediate-volatile organic compounds (IVOCs) in vehicle exhausts greatly contribute to SOA formation in the urban atmosphere of China. However, more experiments need to be conducted to determine the contributions of IVOCs to OA pollution in China.

  11. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008-2012

    Science.gov (United States)

    Wu, Rongrong; Bo, Yu; Li, Jing; Li, Lingyu; Li, Yaqi; Xie, Shaodong

    2016-02-01

    A method was developed to establish a comprehensive anthropogenic VOC emission inventory in China, in which a four-level source categorization was proposed, and an emission factor determination system together with a reference database were developed. And this was applied to establish VOC emission inventories for the period 2008-2012. Results show China's anthropogenic VOC emissions increased from 22.45 Tg in 2008 to 29.85 Tg in 2012 at an annual average rate of 7.38%, with Shandong, Guangdong, Jiangsu, Zhejiang and Hebei provinces being the largest emitters. Industrial processes, transportation and solvent utilization were the key sources, accounting for 39.3%, 25.6%, and 14.9% of the total emissions in 2012, respectively. Passenger cars, biofuel combustion, coke production, field burning of biomass, and raw chemical manufacturing were the primary VOC sources nationwide. The key sources for each province were different because of the disparate industry and energy structure. China's VOC emissions displayed remarkable spatial variation, with emissions in the east and southeast regions being much larger than in the northwest, and the high emission areas mainly centered in the Bohai Economic Rim, the Yangtze River Delta, the Pearl River Delta and the Sichuan Basin. The size of high emission areas expanded over the period 2008-2012, with heavily polluted city clusters gradually emerging.

  12. A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India

    Science.gov (United States)

    Guttikunda, Sarath K.; Calori, Giuseppe

    2013-03-01

    In Delhi, between 2008 and 2011, at seven monitoring stations, the daily average of particulates with diameter generation, and construction activities. In this paper, we present a multi-pollutant emissions inventory for the National Capital Territory of Delhi, covering the main district and its satellite cities - Gurgaon, Noida, Faridabad, and Ghaziabad. For the base year 2010, we estimate emissions (to the nearest 000's) of 63,000 tons of PM2.5, 114,000 tons of PM10, 37,000 tons of sulfur dioxide, 376,000 tons of nitrogen oxides, 1.42 million tons of carbon monoxide, and 261,000 tons of volatile organic compounds. The inventory is further spatially disaggregated into 80 × 80 grids at 0.01° resolution for each of the contributing sectors, which include vehicle exhaust, road dust re-suspension, domestic cooking and heating, power plants, industries (including brick kilns), diesel generator sets and waste burning. The GIS based spatial inventory coupled with temporal resolution of 1 h, was utilized for chemical transport modeling using the ATMoS dispersion model. The modeled annual average PM2.5 concentrations were 122 ± 10 μg m-3 for South Delhi; 90 ± 20 μg m-3 for Gurgaon and Dwarka; 93 ± 26 μg m-3 for North-West Delhi; 93 ± 23 μg m-3 for North-East Delhi; 42 ± 10 μg m-3 for Greater Noida; 77 ± 11 μg m-3 for Faridabad industrial area. The results have been compared to measured ambient PM pollution to validate the emissions inventory.

  13. The influence of the waterjet propulsion system on the ships' energy consumption and emissions inventories.

    Science.gov (United States)

    Durán-Grados, Vanesa; Mejías, Javier; Musina, Liliya; Moreno-Gutiérrez, Juan

    2018-08-01

    In this study we consider the problems associated with calculating ships' energy and emission inventories. Various related uncertainties are described in many similar studies published in the last decade, and applying to Europe, the USA and Canada. However, none of them have taken into account the performance of ships' propulsion systems. On the one hand, when a ship uses its propellers, there is no unanimous agreement on the equations used to calculate the main engines load factor and, on the other, the performance of waterjet propulsion systems (for which this variable depends on the speed of the ship) has not been taken into account in any previous studies. This paper proposes that the efficiency of the propulsion system should be included as a new parameter in the equation that defines the actual power delivered by a ship's main engines, as applied to calculate energy consumption and emissions in maritime transport. To highlight the influence of the propulsion system on calculated energy consumption and emissions, the bottom-up method has been applied using data from eight fast ferries operating across the Strait of Gibraltar over the course of one year. This study shows that the uncertainty about the efficiency of the propulsion system should be added as one more uncertainty in the energy and emission inventories for maritime transport as currently prepared. After comparing four methods for this calculation, the authors propose a new method for eight cases. For the calculation of the Main Engine's fuel oil consumption, differences up to 22% between some methods were obtained at low loads. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories

    International Nuclear Information System (INIS)

    McKechnie, Jon; Colombo, Steve; MacLean, Heather L.

    2014-01-01

    Highlights: • Forest carbon accounting influences the national GHG inventory impacts of bioenergy. • Current accounting rules may overlook forest carbon trade-offs of bioenergy. • Wood pellet trade risks creating an emissions burden for exporting countries. - Abstract: While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but

  15. Pollution from aircraft emissions in the North Atlantic flight corridor. Overview on the results of the POLINAT project

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, U; Duerbeck, T; Feigl, C [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany); Arnold, F; Droste-Franke, B [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Flatoy, F [Bergen Univ. (Norway). Inst. of Geophysics; Ford, I J [University Coll., London (United Kingdom); Hagen, D E; Hopkins, A R [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Sciences; Hayman, G D [National Environmental Technology Centre, AEA Technology, Culham (United Kingdom); others, and

    1998-12-31

    The POLINAT project (phase 1) was performed 1994 to 1996 within the Environment Research Programme of the European Commission. POLINAT-2 is being performed now since April 1996. The objectives of POLINAT-1 and -2, the methods used, the measurements, and some selected results are described. Details are given on the measured background concentrations, the emission indices of several aircraft, comparisons between modelled and measured data, and the impact of the emissions within the North Atlantic flight corridor. (author) 21 refs.

  16. Pollution from aircraft emissions in the North Atlantic flight corridor. Overview on the results of the POLINAT project

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, U.; Duerbeck, T.; Feigl, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany); Arnold, F.; Droste-Franke, B. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Flatoy, F. [Bergen Univ. (Norway). Inst. of Geophysics; Ford, I.J. [University Coll., London (United Kingdom); Hagen, D.E.; Hopkins, A.R. [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Sciences; Hayman, G.D. [National Environmental Technology Centre, AEA Technology, Culham (United Kingdom); and others

    1997-12-31

    The POLINAT project (phase 1) was performed 1994 to 1996 within the Environment Research Programme of the European Commission. POLINAT-2 is being performed now since April 1996. The objectives of POLINAT-1 and -2, the methods used, the measurements, and some selected results are described. Details are given on the measured background concentrations, the emission indices of several aircraft, comparisons between modelled and measured data, and the impact of the emissions within the North Atlantic flight corridor. (author) 21 refs.

  17. Annual land cover change mapping using MODIS time series to improve emissions inventories.

    Science.gov (United States)

    López Saldaña, G.; Quaife, T. L.; Clifford, D.

    2014-12-01

    Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A prototype land cover product was created for 2006 to 2008. Several machine learning classifiers were tested as well as different sets of input features going from the BRDF parameters to spectral Albedo. We will present the results of the time series development and the first exercises when creating the prototype land cover product.

  18. Inventory and action plan for greenhouse gas emissions and capture in the Lower Saint Lawrence

    International Nuclear Information System (INIS)

    Granger, F.; Avoine, G.; Michon, P.-Y.; Drainville, L.

    2003-01-01

    The authors reported on a project designed to provide farmers with concrete information based on data from their enterprise to develop an action plan for the reduction of greenhouse gas emissions. This project involved completing an inventory of greenhouse gas emissions and capture for seven farms located in the Lower Saint Lawrence region of Quebec. The authors presented a balance sheet and action plan for the region under study. A total of six priorities were identified. They encompassed measures such as the optimization of nitrogen management in agricultural soils, to increasing the capture rate of carbon dioxide, and reducing the use of fossil fuels. 6 refs., 6 figs

  19. Danish emission inventories for agriculture

    DEFF Research Database (Denmark)

    Mikkelsen, Mette Hjorth; Albrektsen, Rikke; Gyldenkærne, Steen

    . This report contains a description of the emissions from the agricultural sector from 1985 to 2009. Furthermore, the report includes a detailed description of methods and data used to calculate the emissions, which is based on national methodologies as well as international guidelines. For the Danish...... emissions calculations and data management an Integrated Database model for Agricultural emissions (IDA) is used. The emission from the agricultural sector includes emission of the greenhouse gases methane (CH4), nitrous oxide (N2O), ammonia (NH3), particulate matter (PM), non-methane volatile organic...... compounds (NMVOC) and other pollutants related to the field burning of agricultural residue such as NOx, CO2, CO, SO2, heavy metals, dioxin and PAH. The ammonia emission from 1985 to 2009 has decreased from 119 300 tonnes of NH3 to 73 800 tonnes NH3, corresponding to a 38 % reduction. The emission...

  20. A plume-in-grid approach to characterize air quality impacts of aircraft emissions at the Hartsfield–Jackson Atlanta International Airport

    Directory of Open Access Journals (Sweden)

    J. Rissman

    2013-09-01

    Full Text Available This study examined the impacts of aircraft emissions during the landing and takeoff cycle on PM2.5 concentrations during the months of June and July 2002 at the Hartsfield–Jackson Atlanta International Airport. Primary and secondary pollutants were modeled using the Advanced Modeling System for Transport, Emissions, Reactions, and Deposition of Atmospheric Matter (AMSTERDAM. AMSTERDAM is a modified version of the Community Multiscale Air Quality (CMAQ model that incorporates a plume-in-grid process to simulate emissions sources of interest at a finer scale than can be achieved using CMAQ's model grid. Three fundamental issues were investigated: the effects of aircraft on PM2.5 concentrations throughout northern Georgia, the differences resulting from use of AMSTERDAM's plume-in-grid process rather than a traditional CMAQ simulation, and the concentrations observed in aircraft plumes at subgrid scales. Comparison of model results with an air quality monitor located in the vicinity of the airport found that normalized mean bias ranges from −77.5% to 6.2% and normalized mean error ranges from 40.4% to 77.5%, varying by species. Aircraft influence average PM2.5 concentrations by up to 0.232 μg m−3 near the airport and by 0.001–0.007 μg m−3 throughout the Atlanta metro area. The plume-in-grid process increases concentrations of secondary PM pollutants by 0.005–0.020 μg m−3 (compared to the traditional grid-based treatment but reduces the concentration of non-reactive primary PM pollutants by up to 0.010 μg m−3, with changes concentrated near the airport. Examination of subgrid-scale results indicates that median aircraft contribution to grid cells is higher than median puff concentration in the airport's grid cell and outside of a 20 km × 20 km square area centered on the airport, while in a 12 km × 12 km square ring centered on the airport, puffs have median concentrations over an order of magnitude higher than aircraft

  1. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    1994-08-01

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  2. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  3. Combining tracer flux ratio methodology with low-flying aircraft measurements to estimate dairy farm CH4 emissions

    Science.gov (United States)

    Daube, C.; Conley, S.; Faloona, I. C.; Yacovitch, T. I.; Roscioli, J. R.; Morris, M.; Curry, J.; Arndt, C.; Herndon, S. C.

    2017-12-01

    Livestock activity, enteric fermentation of feed and anaerobic digestion of waste, contributes significantly to the methane budget of the United States (EPA, 2016). Studies question the reported magnitude of these methane sources (Miller et. al., 2013), calling for more detailed research of agricultural animals (Hristov, 2014). Tracer flux ratio is an attractive experimental method to bring to this problem because it does not rely on estimates of atmospheric dispersion. Collection of data occurred during one week at two dairy farms in central California (June, 2016). Each farm varied in size, layout, head count, and general operation. The tracer flux ratio method involves releasing ethane on-site with a known flow rate to serve as a tracer gas. Downwind mixed enhancements in ethane (from the tracer) and methane (from the dairy) were measured, and their ratio used to infer the unknown methane emission rate from the farm. An instrumented van drove transects downwind of each farm on public roads while tracer gases were released on-site, employing the tracer flux ratio methodology to assess simultaneous methane and tracer gas plumes. Flying circles around each farm, a small instrumented aircraft made measurements to perform a mass balance evaluation of methane gas. In the course of these two different methane quantification techniques, we were able to validate yet a third method: tracer flux ratio measured via aircraft. Ground-based tracer release rates were applied to the aircraft-observed methane-to-ethane ratios, yielding whole-site methane emission rates. Never before has the tracer flux ratio method been executed with aircraft measurements. Estimates from this new application closely resemble results from the standard ground-based technique to within their respective uncertainties. Incorporating this new dimension to the tracer flux ratio methodology provides additional context for local plume dynamics and validation of both ground and flight-based data.

  4. Preparing US community greenhouse gas inventories for climate action plans

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Scott Matthews, H; Hendrickson, Chris T; Sharrard, Aurora L; Azevedo, Ines Lima

    2011-01-01

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  5. Preparing US community greenhouse gas inventories for climate action plans

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station C1752, Austin, TX 78712-0276 (United States); Scott Matthews, H; Hendrickson, Chris T [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Sharrard, Aurora L [Green Building Alliance, 333 East Carson Street, Suite 331, Pittsburgh, PA 15219 (United States); Azevedo, Ines Lima, E-mail: mblackhurst@gmail.com, E-mail: hsm@cmu.edu, E-mail: auroras@gbapgh.org, E-mail: cth@andrew.cmu.edu, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-07-15

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  6. A High Resolution Technology-based Emissions Inventory for Nepal: Present and Future Scenario

    Science.gov (United States)

    Sadavarte, P.; Das, B.; Rupakheti, M.; Byanju, R.; Bhave, P.

    2016-12-01

    A comprehensive regional assessment of emission sources is a major hindrance for a complete understanding of the air quality and for designing appropriate mitigation solutions in Nepal, a landlocked country in foothills of the Himalaya. This study attempts, for the first time, to develop a fine resolution (1km × 1km) present day emission inventory of Nepal with a higher tier approach using our understanding of the currently used technologies, energy consumption used in various energy sectors and its resultant emissions. We estimate present-day emissions of aerosols (BC, OC and PM2.5), trace gases (SO2, CO, NOX and VOC) and greenhouse gases (CO2, N2O and CH4) from non-open burning sources (residential, industry, transport, commercial) and open-burning sources (agriculture and municipal solid waste burning) for the base year 2013. We used methodologies published in literatures, and both primary and secondary data to estimate energy production and consumption in each sector and its sub-sector and associated emissions. Local practices and activity rates are explicitly accounted for energy consumption and dispersed often under-documented emission sources like brick manufacturing, diesel generator sets, mining, stone crushing, solid waste burning and diesel use in farms are considered. Apart from pyrogenic source of CH4 emissions, methanogenic and enteric fermentation sources are also accounted. Region-specific and newly measured country-specific emission factors are used for emission estimates. Activity based proxies are used for spatial and temporal distribution of emissions. Preliminary results suggest that 80% of national energy consumption is in residential sector followed by industry (8%) and transport (7%). More than 90% of the residential energy is supplied by biofuel which needs immediate attention to reduce emissions. Further, the emissions would be compared with other contemporary studies, regional and global datasets and used in the model simulations to

  7. Quantification of the urban air pollution increment and its dependency on the use of down-scaled and bottom-up city emission inventories

    NARCIS (Netherlands)

    Timmermans, R.M.A.; Denier van der Gon, H.A.C.; Kuenen, J.J.P.; Segers, A.J.; Honoré, C.; Perrussel, O.; Builtjes, P.J.H.; Schaap, M.

    2013-01-01

    The impact of large cities on air pollution levels usually is determined with models driven by so-called downscaled emission inventories. This implies that annual emissions of air pollutants at the national scale are spatially distributed over a grid using proxy data like population density. These

  8. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    Science.gov (United States)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  9. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    Science.gov (United States)

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year

  10. Emission inventory for large combustion plants in France according to the 2001/80/CE European directive - LCP - February 2010

    International Nuclear Information System (INIS)

    Chang, Jean-Pierre; Fontelle, Jean-Pierre; Gavel, Antoine; Vincent, Julien; Matthias, Etienne; Druart, Ariane; Jacquier, Guillaume; Nicco, Laetitia

    2010-02-01

    After a recall of the methodological aspects of this inventory (scope of application, concept of existing or new installation, thermal power, fuels, considered pollutants, equipment, data acquisition and processing), this report presents the national results: typology of large combustion plant (LCP) installations, energy consumption, atmospheric emissions (sulphur dioxide, nitrogen dioxide, particles), emission distribution per energy type, sector-based distribution of LCPs. It also presents regional results (for 2008 and evolutions in 2009)

  11. Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector

    Science.gov (United States)

    Paustian, K.; Herrick, J.

    2015-12-01

    Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach

  12. Portable Wireless Device Threat Assessment for Aircraft Navigation Radios

    Science.gov (United States)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2004-01-01

    This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.

  13. Emission Inventory Development and Application Based On an Atmospheric Emission Source Priority Control Classification Technology Method, a Case Study in the Middle Reaches of Yangtze River Urban Agglomerations, China

    Science.gov (United States)

    Sun, X.; Cheng, S.

    2017-12-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was the first time to be developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. The emission inventory was proved to be acceptable owing to the atmospheric modeling verification. A classification technology method for atmospheric pollution source priority control was the first time to be introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale. MICAPS (Meteorological Information comprehensive Analysis and Processing System) was applied for the regional meteorological condition and sensitivity analysis. The results demonstrated that the emission sources in the Hefei-center Urban Agglomerations contributed biggest on the mean PM2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In addition, the cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study provide a valuable preference for policy makers to develop effective air pollution control strategies.

  14. Compilation of an Embodied CO2 Emission Inventory for China Using 135-Sector Input-Output Tables

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2015-06-01

    Full Text Available A high-quality carbon dioxide (CO2 inventory is the cornerstone of climate change mitigation. Most of the previously reported embodied CO2 inventories in China have no more than 42 sectors, and this limitation may introduce apparent inaccuracy into the analysis at the sector level. To improve the quality of input-output (IO-based CO2 inventories for China, we propose a practical energy allocation approach to link the energy statistics to the 135-sector IO tables for China and compiled a detailed embodied CO2 intensity and inventory for 2007 using a single-region IO model. Interpretation of embodied CO2 intensities by fuel category, direct requirement, and total requirement in the sectors were conducted to identify, from different perspectives, the significant contributors. The total embodied CO2 emissions in 2007 was estimated to be 7.1 Gt and was separated into the industrial sector and final demand sector. Although the total CO2 estimations by the 42-sector and 135-sector analyses are equivalent, the allocations in certain groups of sectors differ significantly. Our compilation methodologies address indirect environmental impacts from industrial sectors, including the public utility and tertiary sectors. This method of interpretation could be utilized for better communication with stakeholders.

  15. Influence Of Aircraft Engine Exhaust Emissions At A Global Level And Preventive Measures

    Directory of Open Access Journals (Sweden)

    Jasna Golubić

    2004-07-01

    Full Text Available The work considers the differences in the aircraft engine exhaustemissions, as well as the impact of the emissions on theenvironment depending on several factors. These include theage of the engine, i. e. technical refinement, engine operating regimesat different thrusts during time periods: takeoff, climb,approach, etc. Also, the exhaust emissions do not have thesame influence on different atmospheric layers. The pollutantsemitted at higher altitudes during cruising have become agreater problem, although the volume of pollutants is smaller,due to the chemical complexity and sensitivity of these layers ascompared to the lower layers of atmosphere. One of the reasonswhy these problems have long remained outside the focus of interestof the environmentalists is that the air transport of goodsand people is performed at high altitudes, so that the pollutionof atmosphere does not present a direct threat to anyone, sincethe environment is being polluted at a global level and thereforeis more difficult to notice at the local level.

  16. The biogenic volatile organic compounds emission inventory in France: application to plant ecosystems in the Berre-Marseilles area (France).

    Science.gov (United States)

    Simon, Valérie; Dumergues, Laurent; Ponche, Jean-Luc; Torres, Liberto

    2006-12-15

    An inventory describing the fluxes of volatile organic compounds (VOCs), isoprene and monoterpenes, and other VOCs (OVOCs) from the biosphere to the atmosphere, has been constructed within the framework of the ESCOMPTE project (fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions). The area concerned, located around Berre-Marseilles, is a Mediterranean region frequently subject to high ozone concentrations. The inventory has been developed using a fine scale land use database for the year 1999, forest composition statistics, emission potentials from individual plant species, biomass distribution, temperature and light intensity. The seasonal variations in emission potentials and biomass were also taken into account. Hourly meteorological data for 1999 were calculated from ALADIN data and these were used to predict the hourly isoprene, monoterpene and OVOC fluxes for the area on a 1 kmx1 km spatial grid. Estimates of annual biogenic isoprene, monoterpene and OVOC fluxes for the reference year 1999 were 20.6, 38.9 and 13.3 kt, respectively, Quercus pubescens, Quercus ilex, Pinus halepensis and garrigue vegetation are the dominant emitting species of the area. VOC emissions from vegetation in this region contribute approximately 94% to the NMVOC (non-methane volatile organic compounds) of natural origin and are of the same order of magnitude as NMVOC emissions from anthropogenic sources. These results complete the global ESCOMPTE database needed to make an efficient strategy for tropospheric ozone reduction policy.

  17. Carbon emissions and resources use by Chinese economy 2007: A 135-sector inventory and input-output embodiment

    Science.gov (United States)

    Chen, G. Q.; Chen, Z. M.

    2010-11-01

    A 135-sector inventory and embodiment analysis for carbon emissions and resources use by Chinese economy 2007 is presented in this paper by an ecological input-output modeling based on the physical entry scheme. Included emissions and resources belong to six categories as: (1) greenhouse gas (GHG) in terms of CO 2, CH 4, and N 2O; (2) energy in terms of coal, crude oil, natural gas, hydropower, nuclear power, and firewood; (3) water in terms of freshwater; (4) exergy in terms of coal, crude oil, natural gas, grain, bean, tuber, cotton, peanut, rapeseed, sesame, jute, sugarcane, sugar beet, tobacco, silkworm feed, tea, fruits, vegetables, wood, bamboo, pulp, meat, egg, milk, wool, aquatic products, iron ore, copper ore, bauxite, lead ore, zinc ore, pyrite, phosphorite, gypsum, cement, nuclear fuel, and hydropower; (5) and (6) solar and cosmic emergies in terms of sunlight, wind power, deep earth heat, chemical power of rain, geopotential power of rain, chemical power of stream, geopotential power of stream, wave power, geothermal power, tide power, topsoil loss, coal, crude oil, natural gas, ferrous metal ore, non-ferrous metal ore, non-metal ore, cement, and nuclear fuel. Accounted based on the embodied intensities are carbon emissions and resources use embodied in the final use as rural consumption, urban consumption, government consumption, gross fixed capital formation, change in inventories, and export, as well as in the international trade balance. The resulted database is basic to environmental account of carbon emissions and resources use at various levels.

  18. Development of a web GIS application for emissions inventory spatial allocation based on open source software tools

    Science.gov (United States)

    Gkatzoflias, Dimitrios; Mellios, Giorgos; Samaras, Zissis

    2013-03-01

    Combining emission inventory methods and geographic information systems (GIS) remains a key issue for environmental modelling and management purposes. This paper examines the development of a web GIS application as part of an emission inventory system that produces maps and files with spatial allocated emissions in a grid format. The study is not confined in the maps produced but also presents the features and capabilities of a web application that can be used by every user even without any prior knowledge of the GIS field. The development of the application was based on open source software tools such as MapServer for the GIS functions, PostgreSQL and PostGIS for the data management and HTML, PHP and JavaScript as programming languages. In addition, background processes are used in an innovative manner to handle the time consuming and computational costly procedures of the application. Furthermore, a web map service was created to provide maps to other clients such as the Google Maps API v3 that is used as part of the user interface. The output of the application includes maps in vector and raster format, maps with temporal resolution on daily and hourly basis, grid files that can be used by air quality management systems and grid files consistent with the European Monitoring and Evaluation Programme Grid. Although the system was developed and validated for the Republic of Cyprus covering a remarkable wide range of pollutant and emissions sources, it can be easily customized for use in other countries or smaller areas, as long as geospatial and activity data are available.

  19. Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil.

    Science.gov (United States)

    Chen, Lian; Zhou, Shenglu; Wu, Shaohua; Wang, Chunhui; Li, Baojie; Li, Yan; Wang, Junxiao

    2018-08-01

    Two quantitative methods (emission inventory and isotope ratio analysis) were combined to apportion source contributions of heavy metals entering agricultural soils in the Lihe River watershed (Taihu region, east China). Source apportionment based on the emission inventory method indicated that for Cd, Cr, Cu, Pb, and Zn, the mean percentage input from atmospheric deposition was highest (62-85%), followed by irrigation (12-27%) and fertilization (1-14%). Thus, the heavy metals were derived mainly from industrial activities and traffic emissions. For Ni the combined percentage input from irrigation and fertilization was approximately 20% higher than that from atmospheric deposition, indicating that Ni was mainly derived from agricultural activities. Based on isotope ratio analysis, atmospheric deposition accounted for 57-93% of Pb entering soil, with the mean value of 69.3%, which indicates that this was the major source of Pb entering soil in the study area. The mean contributions of irrigation and fertilization to Pb pollution of soil ranged from 0% to 10%, indicating that they played only a marginally important role. Overall, the results obtained using the two methods were similar. This study provides a reliable approach for source apportionment of heavy metals entering agricultural soils in the study area, and clearly have potential application for future studies in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. CH4 emissions from European Major Population Centers: Results from aircraft-borne CH4 in-situ observations during EMeRGe-Europe campaign 2017

    Science.gov (United States)

    Roiger, A.; Klausner, T.; Schlager, H.; Ziereis, H.; Huntrieser, H.; Baumann, R.; Eirenschmalz, L.; Joeckel, P.; Mertens, M.; Fisher, R.; Bauguitte, S.; Young, S.; Andrés Hernández, M. D.

    2017-12-01

    Urban environments represent large and diffuse area sources of CH4 including emissions from pipeline leaks, industrial/sewage treatment plants, and landfills. However, there is little knowledge about the exact magnitude of these emissions and their contribution to total anthropogenic CH4. Especially in the context of an urbanizing world, a better understanding of the methane footprint of urban areas is crucial, both with respect to mitigation and projection of climate impacts. Aircraft-borne in-situ measurements are particularly useful to both quantify emissions from such area sources, as well as to study their impact on the regional distribution. However, airborne CH4 observations downstream of European cities are especially sparse.Here we report from aircraft-borne CH4 in-situ measurements as conducted during the HALO aircraft campaign EMeRGe (Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global Scales) in July 2017, which was led by the University of Bremen, Germany. During seven research flights, emissions from a variety of European (Mega)-cities were probed at different altitudes from 3km down to 500m, including measurements in the outflows of London, Rome, Po Valley, Ruhr and Benelux. We will present and compare the CH4 distribution measured downstream of the various studied urban hot-spots. With the help of other trace gas measurements (including e.g. CO2, CO, O3, SO2), observed methane enhancements will be attributed to the different potential source types. Finally, by the combination of in-situ measurements and regional model simulations using the EMAC-MECO(n) model, the contribution of emissions from urban centers to the regional methane budget over Europe will be discussed.

  1. The new open Flexible Emission Inventory for Greece and the Greater Athens Area (FEI-GREGAA): Account of pollutant sources and their importance from 2006 to 2012

    Science.gov (United States)

    Fameli, Kyriaki-Maria; Assimakopoulos, Vasiliki D.

    2016-07-01

    Photochemical and particulate pollution problems persist in Athens as they do in various European cities, despite measures taken. Although, for many cities, organized and updated pollutant emissions databases exist, as well as infrastructure for the support of policy implementation, this is not the case for Greece and Athens. So far abstract efforts to create inventories from temporal and spatial annual low resolution data have not lead to the creation of a useful database. The objective of this study was to construct an emission inventory in order to examine the emission trends in Greece and the Greater Athens Area for the period 2006-2012 on a spatial scale of 6 × 6 km2 and 2 × 2 km2, respectively and on a temporal scale of 1 h. Emissions were calculated from stationary combustion sources, transportation (road, navigation and aviation), agriculture and industry obtained from official national and European sources. Moreover, new emission factors were calculated for road transport and aviation. The final database named F.E.I. - GREGAA (Flexible Emission Inventory for GREece and the GAA) is open-structured so as to receive data updates, new pollutants, various emission scenarios and/or different emission factors and be transformed for any grid spacing. Its main purpose is to be used in applications with photochemical models to contribute to the investigation on the type of sources and activities that lead to the configuration of air quality. Results showed a decreasing trend in CO, NOx and VOCs-NMVOCs emissions and an increasing trend from 2011 onwards in PM10 emissions. Road transport and small combustion contribute most to CO emissions, road transport and navigation to NOx and small combustion and industries to PM10. The onset of the economic crisis can be seen from the reduction of emissions from industry and the increase of biomass burning for heating purposes.

  2. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011

    Directory of Open Access Journals (Sweden)

    J.-P. Jalkanen

    2016-01-01

    Full Text Available Emissions originating from ship traffic in European sea areas were modelled using the Ship Traffic Emission Assessment Model (STEAM, which uses Automatic Identification System data to describe ship traffic activity. We have estimated the emissions from ship traffic in the whole of Europe in 2011. We report the emission totals, the seasonal variation, the geographical distribution of emissions, and their disaggregation between various ship types and flag states. The total ship emissions of CO2, NOx, SOx, CO, and PM2.5 in Europe for year 2011 were estimated to be 121, 3.0, 1.2, 0.2, and 0.2 million tons, respectively. The emissions of CO2 from the Baltic Sea were evaluated to be more than a half (55 % of the emissions of the North Sea shipping; the combined contribution of these two sea regions was almost as high (88 % as the total emissions from ships in the Mediterranean. As expected, the shipping emissions of SOx were significantly lower in the SOx Emission Control Areas, compared with the corresponding values in the Mediterranean. Shipping in the Mediterranean Sea is responsible for 40 and 49 % of the European ship emitted CO2 and SOx emissions, respectively. In particular, this study reported significantly smaller emissions of NOx, SOx, and CO for shipping in the Mediterranean than the EMEP inventory; however, the reported PM2.5 emissions were in a fairly good agreement with the corresponding values reported by EMEP. The vessels registered to all EU member states are responsible for 55 % of the total CO2 emitted by ships in the study area. The vessels under the flags of convenience were responsible for 25 % of the total CO2 emissions.

  3. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    1994-04-01

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  4. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  5. A high-resolution open biomass burning emission inventory based on statistical data and MODIS observations in mainland China

    Science.gov (United States)

    Xu, Y.; Fan, M.; Huang, Z.; Zheng, J.; Chen, L.

    2017-12-01

    Open biomass burning which has adverse effects on air quality and human health is an important source of gas and particulate matter (PM) in China. Current emission estimations of open biomass burning are generally based on single source (alternative to statistical data and satellite-derived data) and thus contain large uncertainty due to the limitation of data. In this study, to quantify the 2015-based amount of open biomass burning, we established a new estimation method for open biomass burning activity levels by combining the bottom-up statistical data and top-down MODIS observations. And three sub-category sources which used different activity data were considered. For open crop residue burning, the "best estimate" of activity data was obtained by averaging the statistical data from China statistical yearbooks and satellite observations from MODIS burned area product MCD64A1 weighted by their uncertainties. For the forest and grassland fires, their activity levels were represented by the combination of statistical data and MODIS active fire product MCD14ML. Using the fire radiative power (FRP) which is considered as a better indicator of active fire level as the spatial allocation surrogate, coarse gridded emissions were reallocated into 3km ×3km grids to get a high-resolution emission inventory. Our results showed that emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC in mainland China were 6607, 427, 84, 79, 1262, 1198, 1222, 159 and 686 Gg/yr, respectively. Among all provinces of China, Henan, Shandong and Heilongjiang were the top three contributors to the total emissions. In this study, the developed open biomass burning emission inventory with a high-resolution could support air quality modeling and policy-making for pollution control.

  6. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Science.gov (United States)

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  7. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China

    Science.gov (United States)

    Liu, Huanjia; Wu, Bobo; Liu, Shuhan; Shao, Panyang; Liu, Xiangyang; Zhu, Chuanyong; Wang, Yong; Wu, Yiming; Xue, Yifeng; Gao, Jiajia; Hao, Yan; Tian, Hezhong

    2018-05-01

    A high resolution regional emission inventory of typical primary air pollutants (PAPs) for the year 2012 in Beijing and the surrounding five provinces (BSFP) of North China is developed. It is compiled with the combination of bottom-up and top-down methods, based on city-level collected activity data and the latest updated specific emission factors for different sources. The considered sources are classified into 12 major categories and totally 36 subcategories with respect to their multi-dimensional characteristics, such as economic sector, combustion facility or industrial process, installed air pollution control devices, etc. Power plant sector is the dominant contributor of NOX emissions with an average contribution of 34.1%, while VOCs emissions are largely emitted from industrial process sources (33.9%). Whereas, other stationary combustion sources represent major sources of primary PM2.5, PM10 and BC emissions, accounting for 22.7%, 30.0% and 33.9% of the total emissions, respectively. Hebei province contributes over 34% of the regional total CO emissions because of huge volume of iron and steel production. By comparison, Shandong province ranks as the biggest contributor for NOX, PM10, PM2.5, SO2, VOCs and OC. Further, the BSFP regional total emissions are spatially distributed into grid cells with a high resolution of 9 km × 9 km using GIS tools and surrogate indexes, such regional population, gross domestic product (GDP) and the types of arable soils. The highest emission intensities are mainly located in Beijing-Tianjin-Tangshan area, Jinan-Laiwu-Zibo area and several other cities such as Shijiazhuang, Handan, and Zhengzhou. Furthermore, in order to establish a simple method to estimate and forecast PAPs emissions with macroscopic provincial-level statistical parameters in China, multi-parameter regression equations are firstly developed to estimate emissions outside the BSFP region with routine statistics (e.g. population, total final coal consumption

  8. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  9. Global emissions inventories

    International Nuclear Information System (INIS)

    Dignon, J.

    1995-07-01

    Atmospheric chemistry determines the concentrations of most of the important greenhouse gases except for carbon dioxide. The rate of removal of the greenhouse gases from the atmosphere is also controlled by atmospheric chemistry. The indirect effects of chemical forcing resulting from the chemical interactions of other species can also affect the concentrations of radiatively important gases such as ozone. In order to establish the contribution of any possible climatic change attributable to individual greenhouse gases, spatially and temporally resolved estimates of their emissions need to be established. Unfortunately, for most of the radiatively important species the global magnitudes of their individual fluxes are not known to better than a factor of two and their spatial distributions are even more poorly characterized. Efforts to estimate future projections of potential impacts and to monitor international agreements will require continued research to narrow the uncertainties of magnitude and geographical distribution of emissions

  10. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics.

    Science.gov (United States)

    Wang, Kun; Tian, Hezhong; Hua, Shenbing; Zhu, Chuanyong; Gao, Jiajia; Xue, Yifeng; Hao, Jiming; Wang, Yong; Zhou, Junrui

    2016-07-15

    China has become the largest producer of iron and steel throughout the world since 1996. However, as an energy-and-pollution intensive manufacturing sector, a detailed comprehensive emission inventory of air pollutants for iron and steel industry of China is still not available. To obtain and better understand the temporal trends and spatial variation characteristics of typical hazardous air pollutants (HAPs) emissions from iron and steel production in China, a comprehensive emission inventory of multiple air pollutants, including size segregated particulate matter (TSP/PM10/PM2.5), gaseous pollutants (SO2, NOx, CO), heavy metals (Pb, Cd, Hg, As, Cr, Ni etc.), as well as the more dangerous PCDD/Fs, is established with the unit-based annual activity, specific dynamic emission factors for the historical period of 1978-2011, and the future potential trends till to 2050 are forecasted by using scenario analysis. Our results show that emissions of gaseous pollutants and particulate matter have experienced a gradual increase tendency since 2000, while emissions of priority-controlled heavy metals (Hg, Pb, As, Cd, Cr, and Ni) have exhibited a short-term fluctuation during the period of 1990 to 2005. With regard to the spatial distribution of HAPs emissions in base year 2011, Bohai economic circle is identified as the top emission intensity region where iron and steel smelting plants are densely built; within iron and steel industry, blast furnaces contribute the majority of PM emissions, sinter plants account for most of gaseous pollutants and the majority of PCDD/Fs, whereas steel making processes are responsible for the majority of heavy metal emissions. Moreover, comparisons of future emission trends under three scenarios indicate that advanced technologies and integrated whole process management strategies are in great need to further diminish various hazardous air pollutants from iron and steel industry in the future. Copyright © 2016 Elsevier B.V. All rights

  11. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    Science.gov (United States)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter

    2015-01-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  12. Quantifying emissions of NH3 and NOx from Agricultural Sources and Biomass Burning using SOF

    Science.gov (United States)

    Kille, N.; Volkamer, R. M.; Dix, B. K.

    2017-12-01

    Column measurements of trace gas absorption along the direct solar beam present a powerful yet underused approach to quantify emission fluxes from area sources. The University of Colorado Solar Occultation Flux (CU SOF) instrument (Kille et al., 2017, AMT, doi:10.5194/amt-10-373-2017) features a solar tracker that is self-positioning for use from mobile platforms that are in motion (Baidar et al., 2016, AMT, doi: 10.5194/amt-9-963-2016). This enables the use from research aircraft, as well as the deployment under broken cloud conditions, while making efficient use of aircraft time. First airborne SOF measurements have been demonstrated recently, and we discuss applications to study emissions from biomass burning using aircraft, and to study primary emissions of ammonia and nitrogen oxides (= NO + NO2) from area sources such as concentrated animal feeding operations (CAFO). SOF detects gases in the open atmosphere (no inlets), does not require access to the source, and provides results in units that can be directly compared with emission inventories. The method of emission quantification is relatively straightforward. During FRAPPE (Front Range Air Pollution and Photochemistry Experiment) in Colorado in 2014, we measured emission fluxes of NH3, and NOx from CAFO, quantifying the emissions from 61400 of the 535766 cattle in Weld County, CO (11.4% of the cattle population). We find that NH3 emissions from dairy and cattle farms are similar after normalization by the number of cattle, i.e., we find emission factors, EF, of 11.8 ± 2.0 gNH3/h/head for the studied CAFOs; these EFs are at the upper end of reported values. Results are compared to daytime NEI emissions for case study days. Furthermore, biologically active soils are found to be a strong source of NOx. The NOx sources account for 1.2% of the N-flux (i.e., NH3), and can be competitive with other NOx sources in Weld, CO. The added NOx is particularly relevant in remote regions, where O3 formation and oxidative

  13. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    Science.gov (United States)

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  14. Comparison of two spatially-resolved fossil fuel CO2 emissions inventories at the urban scale in four US cities

    Science.gov (United States)

    Liang, J.; Gurney, K. R.; O'Keeffe, D.; Patarasuk, R.; Hutchins, M.; Rao, P.

    2017-12-01

    Spatially-resolved fossil fuel CO2 (FFCO2) emissions are used not only in complex atmospheric modeling systems as prior scenarios to simulate concentrations of CO2 in the atmosphere, but to improve understanding of relationships with socioeconomic factors in support of sustainability policymaking. We present a comparison of ODIAC, a top-down global gridded FFCO2 emissions dataset, and Hesita, a bottom-up FFCO2 emissions dataset, in four US cities, including Los Angles, Indianapolis, Salt Lake City and Baltimore City. ODIAC was developed by downscaling national total emissions to 1km-by-1km grid cells using satellite nightlight imagery as proxy. Hesita was built from the ground up by allocating sector-specific county-level emissions to urban-level spatial surrogates including facility locations, road maps, building footprints/parcels, railroad maps and shipping lanes. The differences in methodology and data sources could lead to large discrepancies in FFCO2 estimates at the urban scale, and these discrepancies need to be taken into account in conducting atmospheric modeling or socioeconomic analysis. This comparison work is aimed at quantifying the statistical and spatial difference between the two FFCO2 inventories. An analysis of the difference in total emissions, spatial distribution and statistical distribution resulted in the following findings: (1) ODIAC agrees well with Hestia in total FFCO2 emissions estimates across the four cities with a difference from 3%-20%; (2) Small-scale areal and linear spatial features such as roads and buildings are either entirely missing or not very well represented in ODIAC, since nightlight imagery might not be able to capture these information. This might further lead to underestimated on-road FFCO2 emissions in ODIAC; (3) The statistical distribution of ODIAC is more concentrated around the mean with much less samples in the lower range. These phenomena could result from the nightlight halo and saturation effects; (4) The

  15. A consumption-based GHG inventory for the U.S. state of Oregon.

    Science.gov (United States)

    Erickson, Peter; Allaway, David; Lazarus, Michael; Stanton, Elizabeth A

    2012-04-03

    Many U.S. states conduct greenhouse gas (GHG) inventories to inform their climate change planning efforts. These inventories usually follow a production-based method adapted from the Intergovernmental Panel on Climate Change. States could also take a consumption-based perspective, however, and estimate all emissions released to support consumption in their state, regardless of where the emissions occur. In what may be the first such comprehensive inventory conducted for a U.S. state, we find that consumption-based emissions for Oregon are 47% higher than those released in-state. This finding implies that Oregon's contribution to global greenhouse gas emissions (carbon footprint) is considerably higher than traditional production-based methods would suggest. Furthermore, the consumption-based inventory helps highlight the role of goods and services (and associated purchasing behaviors) more so than do production-based methods. Accordingly, a consumption-based perspective opens new opportunities for many states and their local government partners to reduce GHG emissions, such as initiatives to advance lower-carbon public sector or household consumption, that are well within their sphere of influence. State and local governments should consider conducting consumption-based GHG inventories and adopting consumption-based emission reductions targets in order to broaden the reach and effectiveness of state and local actions in reducing global GHG emissions. Consumption-based frameworks should be viewed as a complement to, but not a substitute for, production-based (in-state) GHG emissions inventories and targets.

  16. European Union emission inventory report 1990 - 2011 under the UNECE convention on Long-range Transboundary Air Pollution (LRTAP)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    Under the LRTAP Convention, Parties (including the European Union) are obliged to report emissions data for a large number of air pollutants, including nitrogen oxides (NO{sub X}), non-methane volatile organic compounds (NMVOCs), sulphur oxides (SO{sub X}), ammonia (NH{sub 3}), carbon monoxide (CO), primary particulate matter (PM{sub 2.5} and PM{sub 10}), heavy metals (among which lead (Pb), cadmium (Cd) and mercury (Hg)) and persistent organic pollutants (POPs) (among which polychlorinated dibenzodioxin/polychlorinated dibenzofurans (PCDD/F), polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB), hexachlorocyclohexane (HCH) and polychlorinated biphenyls (PCBs)). This report describes: 1) the institutional arrangements that underpin the European Union's emission inventory; 2) emission trends for the EU-27 as a whole, and individual Member States, and the contribution made by important individual emission sources to emissions; 3) sector emission trends for key pollutants; 4) information on recalculations and future planned improvements. Emissions data presented in this report are included as accompanying annexes and are also available for direct download through the EEA's dataservice. (LN)

  17. European Union emission inventory report 1990 - 2010 under the UNECE convention on Long-range Transboundary Air Pollution (LRTAP)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-15

    Under the LRTAP Convention, Parties (including the European Union) are obliged to report emissions data for a large number of air pollutants, including nitrogen oxides (NO{sub X}), non-methane volatile organic compounds (NMVOCs), sulphur oxides (SO{sub X}), ammonia (NH{sub 3}), carbon monoxide (CO), primary particulate matter (PM{sub 2.5} and PM{sub 10}), heavy metals (among which lead (Pb), cadmium (Cd) and mercury (Hg)) and persistent organic pollutants (POPs) (among which polychlorinated dibenzodioxin/polychlorinated dibenzofurans (PCDD/F), polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB), hexachlorocyclohexane (HCH) and polychlorinated biphenyls (PCBs)). This report describes: 1) the institutional arrangements that underpin the European Union's emission inventory; 2) emission trends for the EU.27 as a whole, and individual Member States, and the contribution made by important individual emission sources to emissions; 3) sector emission trends for key pollutants; 4) information on recalculations and future planned improvements. Emissions data presented in this report are included as accompanying annexes and are also available for direct download through the EEA's dataservice. (LN)

  18. European Union emission inventory report 1990 - 2009 under the UNECE convention on Long-range Transboundary Air Pollution (LRTAP)

    Energy Technology Data Exchange (ETDEWEB)

    2011-05-15

    Under the LRTAP Convention, Parties (including the European Union) are obliged to report emissions data for a large number of air pollutants, including nitrogen oxides (NO{sub X}), non-methane volatile organic compounds (NMVOCs), sulphur oxides (SO{sub X}), ammonia (NH{sub 3}), carbon monoxide (CO), primary particulate matter (PM{sub 2.5} and PM{sub 10}), heavy metals (among which lead (Pb), cadmium (Cd) and mercury (Hg)) and persistent organic pollutants (POPs) (among which polychlorinated dibenzodioxin/polychlorinated dibenzofurans (PCDD/F), polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB), hexachlorocyclohexane (HCH) and polychlorinated biphenyls (PCBs)). This report describes: 1) the institutional arrangements that underpin the European Union's emission inventory; 2) emission trends for the EU.27 as a whole (2), and individual Member States, and the contribution made by important individual emission sources to emissions; 3) sector emission trends for key pollutants; 4) information on recalculations and future planned improvements. Emissions data presented in this report are included as accompanying annexes and are also available for direct download through the EEA's dataservice. (LN)

  19. Progress Towards Improved MOPITT-based Biomass Burning Emission Inventories for the Amazon Basin

    Science.gov (United States)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Wiedinmyer, C.; Arellano, A. F.; Fischer, E. V.; González-Alonso, L.; Val Martin, M.; Gatti, L. V.; Miller, J. B.; Gloor, M.; Domingues, L. G.; Correia, C. S. D. C.

    2016-12-01

    The 17-year long record of carbon monoxide (CO) concentrations from the MOPITT satellite instrument is uniquely suited for studying the interannual variability of biomass burning emissions. Data assimilation methods based on Ensemble Kalman Filtering are currently being developed to infer CO emissions within the Amazon Basin from MOPITT measurements along with additional datasets. The validity of these inversions will depend on the characteristics of the MOPITT CO retrievals (e.g., retrieval biases and vertical resolution) as well as the representation of chemistry and dynamics in the chemical transport model (CAM-Chem) used in the data assimilation runs. For example, the assumed vertical distribution ("injection height") of the biomass burning emissions plays a particularly important role. We will review recent progress made on a project to improve biomass burning emission inventories for the Amazon Basin. MOPITT CO retrievals over the Amazon Basin are first characterized, focusing on the MOPITT Version 6 "multispectral" retrieval product (exploiting both thermal-infrared and near-infrared channels). Validation results based on in-situ vertical profiles measured between 2010 and 2013 are presented for four sites in the Amazon Basin. Results indicate a significant negative bias in MOPITT retrieved lower-tropospheric CO concentrations. The seasonal and geographical variability of smoke injection height over the Amazon Basin is then analyzed using a MISR plume height climatology. This work has led to the development of a new fire emission injection height parameterization that was implemented in CAM-Chem and GEOS-Chem.. Finally, we present initial data assimilation results for the Amazon Basin and evaluate the results using available field campaign measurements.

  20. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Research Team . Volume 2; Appendices

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.