WorldWideScience

Sample records for aircraft by type of lift

  1. Design of heavy lift cargo aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  2. The Exergy of Lift and Aircraft Exergy Flow Diagrams

    OpenAIRE

    Paulus, Jr., David; Gaggioli, Richard

    2010-01-01

    Aside from incidental, auxiliary loads, in level flight the principal load on the aircraft propulsion engine is the power required to provide the continuous lift. To construct an exergy flow diagram for an aircraft – for example, for the purpose of pinpointing inefficiencies and for costing – an expression is needed for the exergy delivered to and by the wings. That is, an expression is needed for the exergy of lift. The purpose of this paper is to present an expression de...

  3. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    Science.gov (United States)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  4. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  5. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  6. Numerical Study of Transition of an Annular Lift Fan Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang

    2016-01-01

    The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD) simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can elimin...

  7. Numerical Study of Transition of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-09-01

    Full Text Available The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can eliminate the oscillations. The characteristics of momentum drag of the single-stage fans in transition are similar to that of the two-stage fans, but with the peak of drag lowered from 0.63 to 0.4 of the aircraft weight. The strategy to start transition from a negative angle of attack −21° further reduces the peak of drag to 0.29 of the weight. The strategy also reduces the peak of pitching torque, which needs upward extra thrusts of 0.39 of the weight to eliminate. The peak of rolling moment in transition needs differential upward thrusts of 0.04 of the weight to eliminate. The requirements for extra thrusts in transition lead to a total thrust–weight ratio of 0.7, which makes the aircraft more efficient for high speed cruise flight (higher than 0.7 Ma.

  8. Numerical Investigation of Effect of Parameters on Hovering Efficiency of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-10-01

    Full Text Available The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length, number of blades, and radius of duct inlet lip are explored to optimize the figure of merit. The annular lift fan is also compared with a conventional circular lift fan of the same features with the same disc loading and similar geometry. The simulation results show that the pitch angle of 27°, the thickness of 4% chord length, the aspect ratio of 3.5~4.0, 32 blades, and the radius of inlet lip of 4.7% generate the maximum figure of merit of 0.733. The optimized configuration can be used for further studies of the annular lift fan aircraft.

  9. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    Science.gov (United States)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  10. Fuel-conservative guidance system for powered-lift aircraft

    Science.gov (United States)

    Erzberger, H.; Mclean, J. D.

    1979-01-01

    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.

  11. Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

    Directory of Open Access Journals (Sweden)

    J.-K. Mueller

    2018-01-01

    Full Text Available Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

  12. Application of powered lift and mechanical flap concepts for civil short-haul transport aircraft design

    Science.gov (United States)

    Conlon, J. A.; Bowles, J. V.

    1977-01-01

    The objective of this paper is to determine various design and performance parameters, including wing loading and thrust loading requirements, for powered-lift and mechanical flap conceptual aircraft constrained by field length and community noise impact. Mission block fuel and direct operating costs (DOC) were found for optimum designs. As a baseline, the design and performance parameters were determined for the aircraft using engines without noise suppression. The constraint of the 90 EPNL noise contour being less than 2.6 sq km (1.0 sq mi) in area was then imposed. The results indicate that for both aircraft concepts the design gross weight, DOC, and required mission block fuel decreased with field length. At field lengths less than 1100 m (3600 ft) the powered lift aircraft had lower DOC and block fuel than the mechanical flap aircraft but produced higher unsuppressed noise levels. The noise goal could easily be achieved with nacelle wall treatment only and thus resulted in little or no performance or weight penalty for all studied aircraft.

  13. Numerical Investigation of Effect of Parameters on Hovering Efficiency of an Annular Lift Fan Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang

    2016-01-01

    The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length), number of blades, and radius of duct inlet lip are explored to optimize the figure of merit. The annular lift fan is also compared with a conventional circular lift fan of the same features with the same disc loading and similar geometry. The simulation results show that the pitch angle of 27°, the th...

  14. A novel hovering type of fixed wing aircraft with stealth capability

    Directory of Open Access Journals (Sweden)

    Valeriu DRĂGAN

    2010-12-01

    Full Text Available The tactical need for fixed wing aircraft with hovering capably has long been recognized bythe military for two reasons: increased safety when landing on aircraft carriers and higher velocitiesthat the ones obtainable with rotary wing aircraft.Thus far, the only concept governing the field of vertical flight was to use thrust either from a liftfan-F35, puffer ducts –Harrier or smaller jet engines-D0 31 or Yak-141, i.e. direct lift thrust.In this paper we will look at the prospect of using a combination of the Coanda effect with theVenturi effect to generate lift by so- called “supercirculation”. This novel approach can yield manyadvantages to conventional vertical lifting by providing a more stable platform and requiring lowerpower settings – and thus lower fuel consumption.The aircraft has a fixed, negatively sweped wing that uses circulation control to achieve lift atzero air speed. The fluid used for supercirculation will come from the fan thrust reversers – which, ifcorrectly managed, can give a sufficient flow for lifting the craft and also a negative thrust componentto compensate for the positive thrust of the primary flow (not diverted.

  15. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 1: Technology flight vehicle definition

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    Concept design is presented for two types of lift/cruise fan technology V/STOL aircraft, turbotip fans and the other using mechanically driven fans. The turbotip research technology aircraft reflects maximum usage of existing airframe components. The propulsion system consists of three turbotip fans pneumatically interconnected to three gas generators. Thrust modulation is accomplished by use of energy transfer and control system and thrust reduction modulation. This system can also be operated in the two engine/three fan mode. The mechanical RTA is virtually identical to the turbotip RTA with the exceptions that a different propulsion system and aft fuselage/tail are used. Both aircraft meet or exceed all of the mission performance guidelines and reflect a low cost, low risk approach.

  16. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    Science.gov (United States)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  17. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    Science.gov (United States)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  18. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

    Science.gov (United States)

    Yao, Junkai; Zhou, Danjie; He, Haibo; He, Chengjun; Shi, Zhiwei; Du, Hai

    2017-04-01

    The effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s-1. The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from -4° to 28°. The lift, drag and pitching moment coefficients were compared for the cases with and without plasma control. The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing, for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case. The effects of modulation frequency and discharge voltage were also investigated. The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency. Significant control effects were obtained at f = 70 Hz, corresponding to F + ≈ 1. The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated. However, the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.

  19. 78 FR 73997 - Airworthiness Directives; Various Aircraft Equipped with Wing Lift Struts

    Science.gov (United States)

    2013-12-10

    ...-0023; Directorate Identifier 96-CE-072-AD; Amendment 39-17688; AD 99-01-05 R1] RIN 2120-AA64... Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are revising Airworthiness Directive (AD) 99-01-05 for certain aircraft equipped with wing lift struts. AD 99-01-05 required repetitively inspecting the wing...

  20. 76 FR 6525 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia...

    Science.gov (United States)

    2011-02-07

    ... Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia Aircraft... following new AD: 2011-03-04 Cessna Aircraft Company (Type Certificate Previously Held by Columbia Aircraft... the following Cessna Aircraft Company (type certificate previously held by Columbia Aircraft...

  1. Vertical Lift by Series Hybrid Power, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A major market for vertical lift aircraft is in urban operations, primarily for police and electronic news gathering (typically a Bell 206 or a Eurocopter AS350)....

  2. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    Science.gov (United States)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  3. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  4. AFC-Enabled Simplified High-Lift System Integration Study

    Science.gov (United States)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  5. 75 FR 66009 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia...

    Science.gov (United States)

    2010-10-27

    ... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously the Lancair... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously The Lancair...-15895. Applicability (c) This AD applies to the following Cessna Aircraft Company (type certificate...

  6. Development of a Marine Propeller With Nonplanar Lifting Surfaces

    DEFF Research Database (Denmark)

    Andersen, Poul; Friesch, Jürgen; Kappel, Jens J.

    2005-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or winglet at the wingtip has been developed for aircraft, the application of the nonplanar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved toward the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental, and practical approach to develop and design marine propellers with nonplanar lifting surfaces has resulted in propellers...

  7. International Powered Lift Conference and Exposition, Santa Clara, CA, Dec. 7-10, 1987, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The present conference on VTOL, STOVL and V/STOL fixed-wing aircraft powered lift discusses hot gas recirculation in V/STOL, flight testing of a single-engine powered lift aircraft, RAF experience with VTOL, near-term improvements of the AV-8B Harrier II, recent advancements in thrust augmentation, lift ejectors for STOVL combat aircraft, the correlation of entrainment and lift enhancement for a two-dimensional propulsive wing, the thrust efficiency of powered lift systems, and flight propulsion control integration for V/STOL aircraft. Also discussed are VSTOL design implications for tactical transports, the numerical investigation of a jet in ground effect with a cross flow, the NASA supersonic STOVL propulsion technology program, the aeroacoustics of advanced STOVL aircraft plumes, powered lift transport aircraft certification criteria status, the application of vectored thrust V/STOL experience in supersonic designs, wave drag and high speed performance of supersonic STOVL fighter configurations, and the impact of bypass ratio on thrust-to-weight for V/STOL.

  8. Optimized Matching Lift Unit Transmission Ratio of Engine Driven Ducted Fan

    Directory of Open Access Journals (Sweden)

    Xiao Senlin

    2018-01-01

    Full Text Available As a kind of VTOL technology, ducted fan is not only used by many kinds of aircrafts, but also one of the trends of the future aircraft lift system, and attracts more and more attention. For an engine driven ducted fan lift unit, involving the engine and ducted fan matching problem, the form of transmission and transmission ratio are the key design parameters. In order to design and develop a ducted fan aircraft reasonably, a thrust test platform was set up to connect the engine with the ducted fan through the belt driving. The matching relationship between the engine and the transmission system was experimentally studied and the optimal transmission ratio was determined. The results showed that the optimal transmission ratio for the engine 1 is 2.2:1, and for the engine 2, the optimal transmission ratio should be 2.95:1 based on the current ducted and movable blade aerofoil design. At this time, the lift will exceed 130 kg•f, meeting the aircraft's original design requirements.

  9. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    Science.gov (United States)

    Yoo, Paul

    2013-01-01

    Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.

  10. 77 FR 14316 - Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper...

    Science.gov (United States)

    2012-03-09

    ...-0251; Directorate Identifier 2012-CE-002-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper Aircraft Inc.) Airplanes AGENCY: Federal... supersede an existing airworthiness directive (AD) that applies to certain Piper Aircraft, Inc. (type...

  11. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  12. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  13. Safe, Advanced, Adaptable Isolation System Eliminates the Need for Critical Lifts

    Science.gov (United States)

    Ginn, Starr

    2011-01-01

    The Starr Soft Support isolation system incorporates an automatically reconfigurable aircraft jack into NASA's existing 1-Hertz isolators. This enables an aircraft to float in mid-air without the need for a critical lift during ground vibration testing (GVT), significantly reducing testing risk, time, and costs. Currently incorporating the most advanced technology available, the 60,000-poundcapacity (27-metric-ton) isolation system is used for weight and measurement tests, control-surface free-play tests, and structural mode interaction tests without the need for any major reconfiguration, often saving days of time and significantly reducing labor costs. The Starr Soft Support isolation system consists of an aircraft-jacking device with three jacking points, each of which has an individual motor and accommodates up to 20,000 pounds (9 metric tons) for a total 60,000-pound (27-metric-ton) capacity. The system can be transported to the aircraft by forklift and placed at its jacking points using a pallet jack. The motors power the electric actuators, raising the aircraft above the ground until the landing gear can retract. Inflatable isolators then deploy, enabling the aircraft to float in mid-air, simulating a 1-Hertz free-free boundary condition. Inflatable isolators have been in use at NASA for years, enabling aircraft to literally float unsupported for highly accurate GVT. These isolators must be placed underneath the aircraft for this to occur. Traditionally, this is achieved by a critical lift a high-risk procedure in which a crane and flexible cord system are used to lift the aircraft. In contrast, the Starr Soft Support isolation system eliminates the need for critical lift by integrating the inflatable isolators into an aircraft jacking system. The system maintains vertical and horizontal isolating capabilities. The aircraft can be rolled onto the system, jacked up, and then the isolators can be inflated and positioned without any personnel needing to work

  14. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul

    2002-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or "winglet" at the wingtip has been developed for aircraft, the application of the non-planar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved towards the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental and practical approach to develop and design marine propellers with non-planar lifting surfaces has resulted in propellers...

  15. Analysis of offshore platforms lifting with fixed pile structure type (fixed platform) based on ASD89

    Science.gov (United States)

    Sugianto, Agus; Indriani, Andi Marini

    2017-11-01

    Platform construction GTS (Gathering Testing Sattelite) is offshore construction platform with fix pile structure type/fixed platform functioning to support the mining of petroleum exploitation. After construction fabrication process platform was moved to barges, then shipped to the installation site. Moving process is generally done by pull or push based on construction design determined when planning. But at the time of lifting equipment/cranes available in the work area then the moving process can be done by lifting so that moving activity can be implemented more quickly of work. This analysis moving process of GTS platform in a different way that is generally done to GTS platform types by lifting using problem is construction reinforcement required, so the construction can be moved by lifting with analyzing and checking structure working stress that occurs due to construction moving process by lifting AISC code standard and analysis using the SAP2000 structure analysis program. The analysis result showed that existing condition cannot be moved by lifting because stress ratio is above maximum allowable value that is 0.950 (AISC-ASD89). Overstress occurs on the member 295 and 324 with stress ratio value 0.97 and 0.95 so that it is required structural reinforcement. Box plate aplication at both members so that it produces stress ratio values 0.78 at the member 295 and stress ratio of 0.77 at the member 324. These results indicate that the construction have qualified structural reinforcement for being moved by lifting.

  16. 76 FR 18033 - Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper...

    Science.gov (United States)

    2011-04-01

    ... Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper Aircraft, Inc... applies to certain Piper Aircraft, Inc. Models PA-46-310P and PA- 46-350P airplanes that are equipped with... information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, Florida 32960...

  17. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    Science.gov (United States)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  18. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    Science.gov (United States)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  19. The effect of electrohydrodynamic force on the lift coefficient of a NACA 0015 airfoil

    Science.gov (United States)

    Yusof, Y.; Hossain, A.; Abdullah, A. H.; Nasir, Rizal M. E.; Hamid, A.; Muthmainnah, N.; N, M.

    2017-11-01

    Lift, the force component that is perpendicular to the line of flight, is generated when a small aircraft moves through the air. With the help of the sets of flaps and slats on its wing, the pilot controls his aircraft manoeuvring in the air. In this study, we preferred to cut the drawbacks of the flaps system by introducing the electrohydrodynamic actuator. Widely known as plasma actuator, it is able to improve the induced lift force as well as the efficiency of a small aircraft system. A dielectric-barrier-discharge actuator using a 6 kV AC power supply was developed and tested on a NACA 0015 airfoil using copper as the electrodes and kapton as its dielectric component. The experimental results showed that it was successful in presenting a positive effect of the plasma actuator on the lift coefficient of the airfoil at smaller angle of attack, where enhancements ranged between 0.7% and 1.8%. However, at a higher angle, the results were not as swayed as it was desired since the energy exerted by the plasma actuator on the lift performance of the airfoil was inadequate. Further tests are needed using higher rated voltage supply and other equipment to improve the capability of the actuator in refining the aerodynamic performance of the airfoil.

  20. Wingless Flight: The Lifting Body Story

    Science.gov (United States)

    Reed, R. Dale; Lister, Darlene (Editor); Huntley, J. D. (Editor)

    1997-01-01

    Wingless Flight tells the story of the most unusual flying machines ever flown, the lifting bodies. It is my story about my friends and colleagues who committed a significant part of their lives in the 1960s and 1970s to prove that the concept was a viable one for use in spacecraft of the future. This story, filled with drama and adventure, is about the twelve-year period from 1963 to 1975 in which eight different lifting-body configurations flew. It is appropriate for me to write the story, since I was the engineer who first presented the idea of flight-testing the concept to others at the NASA Flight Research Center. Over those twelve years, I experienced the story as it unfolded day by day at that remote NASA facility northeast of los Angeles in the bleak Mojave Desert. Benefits from this effort immediately influenced the design and operational concepts of the winged NASA Shuttle Orbiter. However, the full benefits would not be realized until the 1990s when new spacecraft such as the X-33 and X-38 would fully employ the lifting-body concept. A lifting body is basically a wingless vehicle that flies due to the lift generated by the shape of its fuselage. Although both a lifting reentry vehicle and a ballistic capsule had been considered as options during the early stages of NASA's space program, NASA initially opted to go with the capsule. A number of individuals were not content to close the book on the lifting-body concept. Researchers including Alfred Eggers at the NASA Ames Research Center conducted early wind-tunnel experiments, finding that half of a rounded nose-cone shape that was flat on top and rounded on the bottom could generate a lift-to-drag ratio of about 1.5 to 1. Eggers' preliminary design sketch later resembled the basic M2 lifting-body design. At the NASA Langley Research Center, other researchers toyed with their own lifting-body shapes. Meanwhile, some of us aircraft-oriented researchers at the, NASA Flight Research Center at Edwards Air

  1. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  2. DNA Profiles from Fingerprint Lifts-Enhancing the Evidential Value of Fingermarks Through Successful DNA Typing.

    Science.gov (United States)

    Subhani, Zuhaib; Daniel, Barbara; Frascione, Nunzianda

    2018-05-25

    This study evaluated the compatibility of the most common enhancement methods and lifting techniques with DNA profiling. Emphasis is placed on modern lifting techniques (i.e., gelatin lifters and Isomark™) and historical fingerprint lifts for which limited research has been previously conducted. A total of 180 fingerprints were deposited on a glass surface, enhanced, lifted, and processed for DNA typing. DNA could be extracted and profiled for all the powders and lifts tested and from both groomed fingerprints and natural prints with no significant difference in the percentage of profile recovered. DNA profiles could also be obtained from historical fingerprint lifts (79.2% of 72 lifts) with one or more alleles detected. These results demonstrate the compatibility between different powder/lift combinations and DNA profiling therefore augmenting the evidential value of fingerprints in forensic casework. © 2018 American Academy of Forensic Sciences.

  3. 75 FR 82329 - Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper...

    Science.gov (United States)

    2010-12-30

    ...-1295; Directorate Identifier 2010-CE-060-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper Aircraft, Inc.) Models PA-46-310P, PA- 46-350P... applies to certain Piper Aircraft, Inc. Models PA-46-310P and PA-46-350P airplanes that are equipped with...

  4. Comments on prospects of fully adaptive aircraft wings

    Science.gov (United States)

    Inman, Daniel J.; Gern, Frank H.; Robertshaw, Harry H.; Kapania, Rakesh K.; Pettit, Greg; Natarajan, Anand; Sulaeman, Erwin

    2001-06-01

    New generations of highly maneuverable aircraft, such as Uninhabited Combat Air Vehicles (UCAV) or Micro Air Vehicles (MAV) are likely to feature very flexible lifting surfaces. To enhance stealth properties and performance, the replacement of hinged control surfaces by smart wings and morphing airfoils is investigated. This requires a fundamental understanding of the interaction between aerodynamics, structures, and control systems. The goal is to build a model consistent with distributed control and to exercise this model to determine the progress possible in terms of flight control (lift, drag and maneuver performance) with an adaptive wing. Different modeling levels are examined and combined with a variety of distributed control approaches to determine what types of maneuvers and flight regimes may be possible. This paper describes the current progress of the project and highlights some recent findings.

  5. Differences in Characteristics of Aviation Accidents During 1993-2012 Based on Aircraft Type

    Science.gov (United States)

    Evans, Joni K.

    2015-01-01

    Civilian aircraft are available in a variety of sizes, engine types, construction materials and instrumentation complexity. For the analysis reported here, eleven aircraft categories were developed based mostly on aircraft size and engine type, and these categories were applied to twenty consecutive years of civil aviation accidents. Differences in various factors were examined among these aircraft types, including accident severity, pilot characteristics and accident occurrence categories. In general, regional jets and very light sport aircraft had the lowest rates of adverse outcomes (injuries, fatal accidents, aircraft destruction, major accidents), while aircraft with twin (piston) engines or with a single (piston) engine and retractable landing gear carried the highest incidence of adverse outcomes. The accident categories of abnormal runway contact, runway excursions and non-powerplant system/component failures occur frequently within all but two or three aircraft types. In contrast, ground collisions, loss of control - on ground/water and powerplant system/component failure occur frequently within only one or two aircraft types. Although accidents in larger aircraft tend to have less severe outcomes, adverse outcome rates also differ among accident categories. It may be that the type of accident has as much or more influence on the outcome as the type of aircraft.

  6. High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.

    2017-01-01

    Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational

  7. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  8. 76 FR 1349 - Airworthiness Directives; Cessna Aircraft Company (Cessna) (Type Certificate A00003SE Previously...

    Science.gov (United States)

    2011-01-10

    ... Airworthiness Directives; Cessna Aircraft Company (Cessna) (Type Certificate A00003SE Previously Held by... Company (Type Certificate A00003SE previously held by Columbia Aircraft Manufacturing (previously The... Cessna Aircraft Company (Cessna) (Type Certificate A00003SE previously held by Columbia Aircraft...

  9. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  10. Pressure distribution data from tests of 2.29 M (7.5 feet) span EET high-lift transport aircraft model in the Ames 12-foot pressure tunnel

    Science.gov (United States)

    Kjelgaard, S. O.; Morgan, H. L., Jr.

    1983-01-01

    A high-lift transport aircraft model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Ames 12-ft pressure tunnel to determine the low-speed performance characteristics of a representative high-aspect-ratio supercritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  11. Study on process design of partially-balanced, hydraulically lifting vertical ship lift

    Science.gov (United States)

    Xin, Shen; Xiaofeng, Xu; Lu, Zhang; Bing, Zhu; Fei, Li

    2017-11-01

    The hub ship lift in Panjin is the first navigation structure in China for the link between the inland and open seas, which adopts a novel partially-balanced, hydraulically lifting ship lift; it can meet such requirements as fast and sharp water level change in open sea, large draft of a yacht, and launching of a ship reception chamber; its balancing weight system can effectively reduce the load of the primary lifting cylinder, and optimize the force distribution of the ship reception chamber. The paper provides an introduction to main equipment, basic principles, main features and system composition of a ship lift. The unique power system and balancing system of the completed ship lift has offered some experience for the construction of the tourism-type ship lifts with a lower lifting height.

  12. The microburst - Hazard to aircraft

    Science.gov (United States)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  13. Wingtip Vortices and Free Shear Layer Interaction in the Vicinity of Maximum Lift to Drag Ratio Lift Condition

    Science.gov (United States)

    Memon, Muhammad Omar

    Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. A large portion of the aerodynamic drag results from the airflow rolling from the higher pressure side of the wing to the lower pressure side, causing the wingtip vortices. The generation of this particular drag is inevitable however, a more fundamental understanding of the phenomenon could result in applications whose benefits extend much beyond the relatively minuscule benefits of commonly-used winglets. Maximizing airport efficiency calls for shorter intervals between takeoffs and landings. Wingtip vortices can be hazardous for following aircraft that may fly directly through the high-velocity swirls causing upsets at vulnerably low speeds and altitudes. The vortex system in the near wake is typically more complex since strong vortices tend to continue developing throughout the near wake region. Several chord lengths distance downstream of a wing, the so-called fully rolled up wing wake evolves into a combination of a discrete wingtip vortex pair and a free shear layer. Lift induced drag is generated as a byproduct of downwash induced by the wingtip vortices. The parasite drag results from a combination of form/pressure drag and the upper and lower surface boundary layers. These parasite effects amalgamate to create the free shear layer in the wake. While the wingtip vortices embody a large portion of the total drag at lifting angles, flow properties in the free shear layer also reveal their contribution to the aerodynamic efficiency of the aircraft. Since aircraft rarely cruise at maximum aerodynamic efficiency, a better understanding of the balance

  14. Structureborne noise investigations of a twin engine aircraft

    Science.gov (United States)

    Garrelick, J. M.; Cole, J. E., III; Martini, K.

    1986-01-01

    The interior noise of aircraft powered by advanced turbo-prop concepts is likely to have nonnegligible contributions from structureborne paths, these paths being those involving propeller loads transmitted to the structures of the lifting surfaces. As a means of examining these paths, structural measurements have been performed on a small twin-engine aircraft, and in addition analytical models of the structure have been developed. In this paper results from both portions of this study are presented.

  15. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - implications for cyclone induced rapid lift and TIL physico-chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, Hans; Aufmhoff, Heinfried; Baumann, Robert; Schumann, Ulrich [DLR IPA, Oberpfaffenhofen (Germany); Arnold, Frank [MPI Kernphysik, Heidelberg (Germany); DLR IPA, Oberpfaffenhofen (Germany); Simgen, Hardy; Lindemann, Siegfried; Rauch, Ludwig; Kaether, Frank [MPI Kernphysik, Heidelberg (Germany); Pirjola, Liisa [University of Helsinki, Helsinki (Finland)

    2013-07-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of polluted planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO{sub 2} and other species), which had increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important impact of East-Asian cyclone induced pollutants transport to the TIL. This impact includes particularly aerosol formation.

  16. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  17. THE SHAPING OF SOME LIFTING AND TRANSPORTATION SYSTEMS, USING AUTODESK INVENTOR

    Directory of Open Access Journals (Sweden)

    URSE Cătălin

    2011-11-01

    Full Text Available The paper presents, through the use of Autodesk Inventor software package, several mechanisms from the structure of lifting and transportation machines, in this case lifting system with winch operated by screw,lifting system type with muffle with hook, respectively bridge crane type.

  18. A wind tunnel investigation of the effects of micro-vortex generators and Gurney flaps on the high-lift characteristics of a business jet wing. M.S. Thesis

    Science.gov (United States)

    Martuccio, Michelle Therese

    1994-01-01

    A study of a full-scale, semi-span business jet wing has been conducted to investigate the potential of two types of high-lift devices for improving aircraft high-lift performance. The research effort involved low-speed wind-tunnel tests of micro-vortex generators and Gurney flaps applied to the flap system of the business jet wing and included force and moment measurements, surface pressure surveys and flow visualization on the wing and flap. Results showed that the micro-vortex generators tested had no beneficial effects on the longitudinal force characteristics in this particular application, while the Gurney flaps were an effective means of increasing lift. However, the Gurney flaps also caused an increase in drag in most circumstances.

  19. The Revolutionary Vertical Lift Technology (RVLT) Project

    Science.gov (United States)

    Yamauchi, Gloria K.

    2018-01-01

    The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.

  20. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 2: Technology aircraft

    Science.gov (United States)

    1975-01-01

    Technology flight vehicles were defined for three different approaches which demonstrate the concept and characteristics of the multipurpose aircraft established for Navy missions. The propulsion system used for the various technology flight vehicles was representative of that established for the multipurpose aircraft. Existing J97-GE100 gas generators were selected based on cost, availability and exhaust characteristics. The LF459 fans were also selected and are compatible with both technology and operational vehicles. To comply with the design guideline safety criteria, it was determined that three gas generators were required to provide engine out safety in the hover flight mode. The final propulsion system established for the technology aircraft was three existing J97 gas generators powering three LF459 fans. Different aircraft candidates were evaluated for application to the three designated design approaches. Each configuration was evaluated on the basis of (1) propulsion system integration, (2) modification required, (3) pilot's visibility, (4) payload volume, and (5) adaptability to compatible location of center-of-gravity/aerodynamic center and thrust center.

  1. Analysis of data from water lift powered by solar energy pump

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Paulo Takashi [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil); Ricieri, Reinaldo Prandini [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Dept. de Engenharia Agricola], E-mail: ricieri@unioeste.br; Halmeman, Maria Cristina Rodrigues [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Gnoatto, Estor; Kavanagh; Brenneisen, Paulo Job [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: gnoatto@utfpr.edu.br, kavanagh@utfpr.edu.br, brenneisen@utfpr.edu.br

    2008-07-01

    Due to the high costs to install electricity in remote locations, away from the regular urban electrical installations, photovoltaic solar energy has ample application in public illumination, water pumping, health services offices, etc. With the purpose to contribute to a better use of this kind of energy, this project aimed in analyzing the outflow and efficiency of a motor pump powered by photovoltaic panels, the irradiation necessary to activate it for water lift, collecting data at every 6- meter height, ranging from 6,2 to 18,2 meters. This study is part of a development project of the Universidade Tecnologica Federal do Parana (UTFPR), by making use of photovoltaic panels, motor pump, pyranometers, thermocouple type K, pressure transducer and outflow transducer. The data show a maximum average outflow of 584,299 Lh{sup -1} and maximum efficiency of 23,338% for a lift of 18,2 m. There is also the need of irradiation for the activation of the motor pump proportional to the height of the lift, in a polynomial dependence of the third order. (author)

  2. 78 FR 3356 - Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts

    Science.gov (United States)

    2013-01-16

    ...) of this AD, inspect the wing lift strut forks for cracks using magnetic particle procedures, such as... for Non-destructive Testing, or MIL-STD-410. (i) If no external corrosion is found on any wing lift..., the surface should be sanded or polished smooth before testing to assure a consistent and smooth...

  3. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  4. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  5. Measurement and characterization of lift forces on drops and bubbles in microchannels

    Science.gov (United States)

    Stan, Claudiu; Guglielmini, Laura; Ellerbee, Audrey; Caviezel, Daniel; Whitesides, George; Stone, Howard

    2013-11-01

    The transverse motion of drops and bubbles within liquids flowing in pipes and channels is determined by the combination of several types of hydrodynamic lift forces with external forces. In microfluidic channels, lift forces have been used to position and sort particles with high efficiency and high accuracy. We measured lift forces on drops and bubbles and discriminated between different lift mechanisms under conditions characterized by low particle capillary numbers (0.0003 bubbles. We will present new experimental data that supports a dynamic interfacial mechanism for the second type of lift force, and discuss possible avenues for creating an analytical model for it.

  6. The Design of Wheelchair Lifting Mechanism and Control System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cong; WANG Zheng-xing; JIANG Shi-hong; ZHANG Li; LIU Zheng-yu

    2014-01-01

    In order to achieve a wheelchair lift function, this paper designs a tri-scissors mechanism. Through the so-called H-type transmission and L-type swing rod, the three scissors mechanisms lift in the same rate with only one liner motor while ensuring the stability of the lift. Finite element analysis in ANSYS is performed to verify the material strength. The control system with Sunplus SCM achieves the voice control of wheelchair walking and lifting.

  7. Fundamental limitations on V/STOL terminal guidance due to aircraft characteristics

    Science.gov (United States)

    Wolkovitch, J.; Lamont, C. W.; Lochtie, D. W.

    1971-01-01

    A review is given of limitations on approach flight paths of V/STOL aircraft, including limits on descent angle due to maximum drag/lift ratio. A method of calculating maximum drag/lift ratio of tilt-wing and deflected slipstream aircraft is presented. Derivatives and transfer functions for the CL-84 tilt-wing and X-22A tilt-duct aircraft are presented. For the unaugmented CL-84 in steep descents the transfer function relating descent angle to thrust contains a right-half plane zero. Using optimal control theory, it is shown that this zero causes a serious degradation in the accuracy with which steep flight paths can be followed in the presence of gusts.

  8. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  9. Estimates of the initial vortex separation distance, bo, of commercial aircraft from pulsed lidar data

    Science.gov (United States)

    2013-01-07

    An aircraft in flight generates multiple wake vortices, the largest of which are a result of : the lift on the wings. These vortices rapidly roll up into a counter-rotating vortex pair : behind the aircraft. The initial separation between the centroi...

  10. Modeling of load lifting process with unknown center of gravity position

    Science.gov (United States)

    Kamanin, Y. N.; Zhukov, M. I.; Panichkin, A. V.; Redelin, R. A.

    2018-03-01

    The article proposes a new type of lifting beams that allows one to lift loads where the position of the center of gravity is unknown beforehand. The benefit of implementing this type of traverse is confirmed by the high demand for this product from the industrial enterprises and lack of their availability on the market. In conducted studies, the main kinematic and dynamic dependencies of the load lifting process with an unknown position of the center of gravity were described allowing for design and verification calculations of the traverse with flexible slings and an adjustable bail to be carried out. The obtained results can be useful to engineers and employees of enterprises engaged in the design and manufacturing of the lifting equipment and scientists doing research in “Carrying and lifting machines”.

  11. Study of quiet turbofan STOL aircraft for short haul transportation

    Science.gov (United States)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  12. Cosmic radiation and airline pilots: Exposure pattern as a function of aircraft type

    International Nuclear Information System (INIS)

    Tveten, U.; Haldorsen, T.; Reitan, J.

    2000-01-01

    The project presented here has been carried out as part of an epidemiological project on Norwegian aircraft personnel, entitled 'Exposure to low level ionising radiation and incidence of cancer in airline pilots and crew'. The purpose of the main project is to determine if there may be a relationship between exposure to cosmic radiation at aircraft cruising altitudes and the incidence of cancer. The methodology used as basis for estimating the radiation exposures is presented. The information used as basis for the dose estimations comes from a variety of sources: the files at the Personnel Licensing Section and the Aviation Medical Section of Norwegian Aviation Administration, the route tables of Scandinavian Airlines System (SAS), large amounts of expert information contributed by members of the Pilot's Associations in Norway and a couple of non-Norwegian pilots and from other members of the staff of SAS and other airlines. The estimation for each pilot was based on individual information of annual block hours and an estimated dose rate for each type of aircraft. The latter was estimated as a weighted average of CARI-estimated doses on a selection of routes flown by the airplanes in the different time periods. The project includes all pilots that have been licensed in Norway since 1946. These pilots have been flying a large variety of different types of aircraft and routes. The cosmic radiation intensity is a function of altitude in the atmosphere and, less markedly, of geographical latitude and of the intensity of the radiation from the sun (quantified as the heliocentric potential). Different types of aircraft fly at different altitudes and are used for different purposes (passenger traffic, cargo, air photography, preparation of maps etc) and used on different routes. The end results of the project described in this article are radiation exposures per block hour for each type of aircraft, and for each individual year (the differences between years reflect the

  13. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv 2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  14. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  15. An Indispensable Ingredient: Flight Research and Aircraft Design

    Science.gov (United States)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  16. Cosmic radiation and airline pilots: Exposure pattern as a function of aircraft type

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.; Haldorsen, T.; Reitan, J

    2000-07-01

    The project presented here has been carried out as part of an epidemiological project on Norwegian aircraft personnel, entitled 'Exposure to low level ionising radiation and incidence of cancer in airline pilots and crew'. The purpose of the main project is to determine if there may be a relationship between exposure to cosmic radiation at aircraft cruising altitudes and the incidence of cancer. The methodology used as basis for estimating the radiation exposures is presented. The information used as basis for the dose estimations comes from a variety of sources: the files at the Personnel Licensing Section and the Aviation Medical Section of Norwegian Aviation Administration, the route tables of Scandinavian Airlines System (SAS), large amounts of expert information contributed by members of the Pilot's Associations in Norway and a couple of non-Norwegian pilots and from other members of the staff of SAS and other airlines. The estimation for each pilot was based on individual information of annual block hours and an estimated doserate for each type of aircraft. The latter was estimated as a weighted average of CARI-estimated doses on a selection of routes flown by the airplanes in the different time periods. The project includes all pilots that have been licensed in Norway since 1946. These pilots have been flying a large variety of different types of aircraft and routes. The cosmic radiation intensity is a function of altitude in the atmosphere and, less markedly, of geographical latitude and of the intensity of the radiation from the sun (quantified as the heliocentric potential). Different types of aircraft fly at different altitudes and are used for different purposes (passenger traffic, cargo, air photography, preparation of maps etc) and used on different routes. The end results of the project described in this article are radiation exposures per block hour for each type of aircraft, and for each individual year (the differences between years

  17. Application of Powered High Lift Systems to STOL Aircraft Design.

    Science.gov (United States)

    1979-09-01

    century by da Vinci, an English - man named Sir George Cayley first attempted to integrate the features of the helicopter and the airplane. In 1843 his...horizontal flight Jun 1959 WEIGHT: 6500 LBS ENGINES: (1) SNECMA ATAR 101 E.V. Turbojet of 8155 lbs thrust LAYOUT: See Fig. 21 COMMENTS: SNECMA was engaged...34 ATAR VOLANT" test vehicle fitted with an annular wing to permit transition to horizontal flight. The aircraft was controlled from a tilting ejec- tion

  18. Aerocrane: A hybrid LTA aircraft for aerial crane applications

    Science.gov (United States)

    Perkins, R. G., Jr.; Doolittle, D. B.

    1975-01-01

    The Aerocrane, a hybrid aircraft, combines rotor lift with buoyant lift to offer VTOL load capability greatly in excess of helicopter technology while eliminating the airship problem of ballast transfer. In addition, the Aerocrane concept sharply reduces the mooring problem of airships and provides 360 deg vectorable thrust to supply a relatively large force component for control of gust loads. Designed for use in short range, ultra heavy lift missions, the Aerocrane operates in a performance envelope unsuitable for either helicopters or airships. Basic design considerations and potential problem areas of the concept are addressed.

  19. Annoyance to Noise Produced by a Distributed Electric Propulsion High-Lift System

    Science.gov (United States)

    Rizzi, Stephen A.; Palumbo, Daniel L.; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2017-01-01

    A psychoacoustic test was performed using simulated sounds from a distributed electric propulsion aircraft concept to help understand factors associated with human annoyance. A design space spanning the number of high-lift leading edge propellers and their relative operating speeds, inclusive of time varying effects associated with motor controller error and atmospheric turbulence, was considered. It was found that the mean annoyance response varies in a statistically significant manner with the number of propellers and with the inclusion of time varying effects, but does not differ significantly with the relative RPM between propellers. An annoyance model was developed, inclusive of confidence intervals, using the noise metrics of loudness, roughness, and tonality as predictors.

  20. Regional changes in spine posture at lift onset with changes in lift distance and lift style

    NARCIS (Netherlands)

    Gill, K.P.; Bennet, S.J.; Savelsbergh, G.J.P.; van Dieen, J.H.

    2007-01-01

    STUDY DESIGN. Repeated measures experiment. OBJECTIVE. To determine the effect of changes in horizontal lift distance on the amount of flexion, at lift onset, in different spine regions when using different lift styles. SUMMARY OF BACKGROUND DATA. By approximating spine bending during lifting as a

  1. Lifted Java: A Minimal Calculus for Translation Polymorphism

    DEFF Research Database (Denmark)

    Ingesman, Matthias Diehn; Ernst, Erik

    2011-01-01

    To support roles and similar notions involving multiple views on an object, languages like Object Teams and CaesarJ include mechanisms known as lifting and lowering. These mechanisms connect pairs of objects of otherwise unrelated types, and enables programmers to consider such a pair almost...... of translation polymorphism has not been proved. This paper presents a simple model that extends Featherweight Java with the core operations of translation polymorphism, provides a Coq proof that its type system is sound, and shows that the ambiguity problem associated with the so-called smart lifting mechanism...... can be eliminated by a very simple semantics for lifting....

  2. 41 CFR 102-33.230 - May we use military FSCAP on non-military FAA-type certificated Government aircraft?

    Science.gov (United States)

    2010-07-01

    ... FSCAP on non-military FAA-type certificated Government aircraft? 102-33.230 Section 102-33.230 Public... Aircraft Parts Managing Aircraft Parts § 102-33.230 May we use military FSCAP on non-military FAA-type... installation by the FAA. See detailed guidance in FAA Advisory Circular 20-142, “Eligibility and Evaluation of...

  3. Gurney flap—Lift enhancement, mechanisms and applications

    Science.gov (United States)

    Wang, J. J.; Li, Y. C.; Choi, K.-S.

    2008-01-01

    Since its invention by a race car driver Dan Gurney in 1960s, the Gurney flap has been used to enhance the aerodynamics performance of subsonic and supercritical airfoils, high-lift devices and delta wings. In order to take stock of recent research and development of Gurney flap, we have carried out a review of the characteristics and mechanisms of lift enhancement by the Gurney flap and its applications. Optimum design of the Gurney flap is also summarized in this paper. For the Gurney flap to be effective, it should be mounted at the trailing edge perpendicular to the chord line of airfoil or wing. The flap height must be of the order of local boundary layer thickness. For subsonic airfoils, an additional Gurney flap increases the pressure on the upstream surface of the Gurney flap, which increases the total pressure of the lower surface. At the same time, a long wake downstream of the flap containing a pair of counter-rotating vortices can delay or eliminate the flow separation near the trailing edge on the upper surface. Correspondingly, the total suction on the airfoil is increased. For supercritical airfoils, the lift enhancement of the Gurney flap mainly comes from its ability to shift the shock on the upper surface in the downstream. Applications of the Gurney flap to modern aircraft design are also discussed in this review.

  4. AEROSTATIC AND AERODYNAMIC MODULES OF A HYBRID BUOYANT AIRCRAFT: AN ANALYTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Anwar Ul Haque

    2015-05-01

    Full Text Available An analytical approach is essential for the estimation of the requirements of aerodynamic and aerostatic lift for a hybrid buoyant aircraft. Such aircrafts have two different modules to balance the weight of aircraft; aerostatic module and aerodynamic module. Both these modules are to be treated separately for estimation of the mass budget of propulsion systems and required power. In the present work, existing relationships of aircraft and airship are reviewed for its further application for these modules. Limitations of such relationships are also disussed and it is precieved that it will provide a strating point for better understanding of design anatomy of such aircraft.

  5. Parametric Approach to Assessing Performance of High-Lift Device Active Flow Control Architectures

    Directory of Open Access Journals (Sweden)

    Yu Cai

    2017-02-01

    Full Text Available Active Flow Control is at present an area of considerable research, with multiple potential aircraft applications. While the majority of research has focused on the performance of the actuators themselves, a system-level perspective is necessary to assess the viability of proposed solutions. This paper demonstrates such an approach, in which major system components are sized based on system flow and redundancy considerations, with the impacts linked directly to the mission performance of the aircraft. Considering the case of a large twin-aisle aircraft, four distinct active flow control architectures that facilitate the simplification of the high-lift mechanism are investigated using the demonstrated approach. The analysis indicates a very strong influence of system total mass flow requirement on architecture performance, both for a typical mission and also over the entire payload-range envelope of the aircraft.

  6. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral

  7. The design of steel string crane with lifting capacity 10 tons

    International Nuclear Information System (INIS)

    Syamsurrijal Ramdja

    2007-01-01

    The steel string (sling) used for lift Crane of type of Overhead Travelling Crane, with capacities lifting 10 ton are designed. If compared to other string type, string of steel have some excellence. At this design, election of type of string become primary and the factor of safety become prima facie matter with pursuant to up to date standard. From made of design, is hence got by specification and age of steel string. (author)

  8. A hypersonic lift mechanism with decoupled lift and drag surfaces

    Science.gov (United States)

    Xu, YiZhe; Xu, ZhiQi; Li, ShaoGuang; Li, Juan; Bai, ChenYuan; Wu, ZiNiu

    2013-05-01

    In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.

  9. An Automated Design Approach for High-Lift Systems incorporating Eccentric Beam Actuators

    NARCIS (Netherlands)

    Steenhuizen, D.; Van Tooren, M.J.L.

    2010-01-01

    In order to asess the merit of novel high-lift structural concepts to the design of contemporary and future transport aircraft, a highly automated design routine is elaborated. The structure, purpose and evolution of this design routine is set-out with the use of Knowledge-Based Engineering

  10. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    OpenAIRE

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standar...

  11. Lifting bloody footwear impressions using alginate casts followed by chemical enhancement.

    Science.gov (United States)

    Wiesner, Sarena; Izraeli, Elad; Shor, Yaron; Domb, Avi

    2013-05-01

    A method for lifting bloody footwear impressions using alginate casts and enhancing the lifted impressions with amido black is presented. On rough or dark substrates, background interferences may conceal significant details of footwear impressions. Illumination with alternative light sources and chemically enhancing the bloody footwear impressions may reveal additional details, but sometimes, lifting footwear impressions prior to enhancing is the only way to expose hidden details (by using blood reagents not adequate on the original). Several cast formulations were tested for lifting the footwear impressions. The best results were achieved using Aroma fine®. Enhancement of the footwear impressions was attempted with several reagents prior to lifting, during the casting process, and on the lifted footwear impressions. Applying amido black to footwear impressions lifted with alginate produced the sharpest and most detailed footwear impressions. Alginate castings followed by chemical enhancement with amido black may produce high-quality footwear impressions for comparison. © 2013 American Academy of Forensic Sciences.

  12. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Science.gov (United States)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  13. Variable Lifting Index (VLI): A New Method for Evaluating Variable Lifting Tasks.

    Science.gov (United States)

    Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert

    2016-08-01

    We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. © 2015, Human Factors and Ergonomics Society.

  14. Neurologic disorders associated with weight lifting and bodybuilding.

    Science.gov (United States)

    Busche, Kevin

    2009-02-01

    Weight lifting and other forms of strength training are becoming more common because of an increased awareness of the need to maintain individual physical fitness. Emergency room data indicate that injuries caused by weight training have become more universal over time, likely because of increased participation rates. Neurologic injuries can result from weight lifting and related practices. Although predominantly peripheral nervous system injuries have been described, central nervous system disease may also occur. This article illustrates the types of neurologic disorders associated with weight lifting.

  15. The design of lifting attachments for the erection of large diameter and heavy wall pressure vessels

    International Nuclear Information System (INIS)

    Antalffy, Leslie P.; Miller, George A.; Kirkpatrick, Kenneth D.; Rajguru, Anil; Zhu, Yong

    2016-01-01

    Lifting attachments for the erection of large diameter and heavy wall pressure vessels require special consideration to ensure that their attachment to their vessel shells or heads do not overstress the vessel during the erection process when lifting these from grade onto their respective foundations. Today, in refinery and petrochemical services, large diameter vessels with diameters ranging up to 15 m and reactors with lifting weights in the range of 700–1400 tons are not uncommon. In today's fabrication market, these vessels may be purchased and fabricated in shops dispersed globally and will require unique equipment for their safe handling, transportation and subsequent erection. The challenge is to design the lifting attachments in such a manner that the attachments provide a safe, cost effective and effective solution based upon the limitations of the job site lift equipment available for erection. Such equipment for the transportation and subsequent lifting of large diameter and heavy wall pressure equipment is usually scarce and quite expensive. Planning ahead, well in advance of the lift date is almost a mandatory requirement. Usually, the specific parameters of the vessel to be lifted and the lifting equipment available at the site will dictate the type of lifting attachments to be designed for the vessel. Once the type of vessel attachment has been chosen, careful consideration must be given to the design of attachments to the pressure vessel in consideration to ensure that the vessel and lifting components are not overstressed during the lifting process. The paper also discusses different types of lifting attachments that may be attached to each end of the vessel either by bolting or welding and discusses the pros and cons of each. The paper also provides an example of a finite element analysis (FEA) of a top nozzle, a FEA of a pair of lifting trunnions and a FEA of welded on lifting lugs for buried pipe. The purpose of the paper is to outline the

  16. Improved design of a high lift system for general aviation aircraft

    NARCIS (Netherlands)

    Florjancic, D.; Steenhuizen, D.; Veldhuis, L.L.M.

    2016-01-01

    Optimization of a single slotted flap with dropped hinge is performed with the objective of increasing the payload of a propeller driven 4-seater general aviation aircraft. Within the optimization loop, two-dimensional aerodynamic characteristics are evaluated using the MSES code, while

  17. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  18. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  19. Thread-Lift Sutures: Still in the Lift? A Systematic Review of the Literature.

    Science.gov (United States)

    Gülbitti, Haydar Aslan; Colebunders, Britt; Pirayesh, Ali; Bertossi, Dario; van der Lei, Berend

    2018-03-01

    In 2006, Villa et al. published a review article concerning the use of thread-lift sutures and concluded that the technique was still in its infancy but had great potential to become a useful and effective procedure for nonsurgical lifting of sagged facial tissues. As 11 years have passed, the authors now performed again a systematic review to determine the real scientific current state of the art on the use of thread-lift sutures. A systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the PubMed database and using the Medical Subject Headings search term "Rhytidoplasty." "Rhytidoplasty" and the following entry terms were included by this Medical Subject Headings term: "facelift," "facelifts," "face Lift," "Face Lifts," "Lift," "Face," "Lifts," "Platysmotomy," "Platysmotomies," "Rhytidectomy," "Rhytidectomies," "Platysmaplasty," "and "Platysmaplasties." The Medical Subject Headings term "Rhytidoplasty" was combined with the following search terms: "Barbed suture," "Thread lift," "APTOS," "Suture suspension," "Percutaneous," and "Silhouette suture." RefWorks was used to filter duplicates. Three of the authors (H.A.G., B.C., and B.L.) performed the search independently. The initial search with all search terms resulted in 188 articles. After filtering the duplicates and the articles about open procedures, a total of 41 articles remained. Of these, the review articles, case reports, and letters to the editor were subsequently excluded, as were reports dealing with nonbarbed sutures, such as Vicryl and Prolene with Gore-Tex. This resulted in a total of 12 articles, seven additional articles since the five articles reviewed by Villa et al. The authors' review demonstrated that, within the past decade, little or no substantial evidence has been added to the peer-reviewed literature to support or sustain the promising statement about thread-lift sutures as made by Villa et al. in 2006 in terms of

  20. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    Science.gov (United States)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  1. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  2. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    Science.gov (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  3. Impact of pulsed jet actuators on aircraft mass and fuel consumption

    NARCIS (Netherlands)

    Bertels, F.G.A.; van Dijk, R.E.C.; Elmendorp, R.J.M.; Vos, R.

    2016-01-01

    Pulsed jet actuators (PJAs) are one of the candidate technologies to be integrated in Fowler flaps to increase the maximum lift coefficient of transport aircraft in the landing configuration. The total system consists of the actuators plus sensors, a piping system to supply pressurized air and a

  4. Large-Scale V/STOL Experimental Investigations of an Ejector-Lift Fighter and a Twin Tilt-Nacelle Transport

    Science.gov (United States)

    Dudley, Michael R.

    2016-01-01

    In the 1980s NASA Aeronautics was actively involved in full-scale wind tunnel testing of promising VSTOL aircraft concepts. This presentation looks at two, a multi-role fighter and a subsonic tactical transport. Their strengths and weaknesses are discussed with some of the rationale that ultimately led to the selection of competing concepts for production, namely the V-22 Osprey and the F-35 Lightning. The E7-A STOVL multi-role fighter was the product of an aircraft development program in the late 1980s by NASA, the Defense Advanced Research Projects Agency (DARPA), the Canadian Department of Industry Science and Technology (DIST), and industry partners General Dynamics and Boeing Dehavilland. The program was conducted an in response to increasing US-UK interest in supersonic STOVL fighters. The objective was to design an aircraft that could replace most existing close air support-air combat fighters with a single aircraft that had some of the qualities of an air superiority fighter and the deployment flexibility of a VSTOL aircraft. The resulting E7-A concept was a delta-wing supersonic fighter that used a fuselage-mounted thrust augmenting ejector and a ventral deflecting jet nozzle for vertical lift. The Grumman Aircraft Company, the Navy, and NASA developed the Design-698 (D-698) subsonic tactical transport in response to the Navy's Type A VSTOL utility aircraft requirement. The objective was to develop a subsonic utility transport with the operational flexibility of a helicopter, but with greater speed and range. The D-698 employs two high-bypass turbofan engines mounted on a dumbbell that rotates through ninety degrees for vertical takeoff and cruise flight. Movable vanes positioned in the exhaust flow provide control in hover with the need for reaction control jets. The presentations concluding comments suggest that technology advances in the last thirty-years may justify the value of revisiting some of these concepts.

  5. NUMERICAL MODELING AND DYNAMIC SIMULATIONS OF NONLINEAR AEROTHERMOELASTIC OF A DOUBLE-WEDGE LIFTING SURFACE

    Directory of Open Access Journals (Sweden)

    ARIF A. EBRAHEEM AL-QASSAR

    2008-12-01

    Full Text Available The design of the re-entry space vehicles and high-speed aircrafts requires special attention to the nonlinear thermoelastic and aerodynamic instabilities of their structural components. The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes. To contribute to the understanding of dynamic behavior of these “hot” structures, a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order Piston Theory Aerodynamics is used to evaluate the applied nonlinear unsteady aerodynamic loads. The loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered. The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams. Modelling issues as well as simulation results have been presented and pertinent conclusions outlined. It is highlighted that a serious loss of torsional stiffness may induce the dynamic instability of the lifting surfaces. The influence of various parameters such as flight condition, thickness ratio, freeplays and pitching stiffness nonlinearity are also discussed.

  6. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  7. An Open-Rotor Distributed Propulsion Aircraft Study

    OpenAIRE

    Gibbs, Jonathan; Bachmann, Arne; Seyfang, George; Peebles, Patrick; May, Chris; Saracoğlu, Bayındır; Paniagua, Guillermo

    2016-01-01

    The EU-funded SOAR project analyzed the high-lift efficiency of an open-fan wing design by systematic variation of fan blade count and angle. The research project built a cross-flow fan propelled wing section and investigated it by means of fluid dynamic simulation and wind tunnel testing. The experimental data resulting from the wind tunnel model were used to generate non-dimensional parameters which were used to scale data for the full-scale SOAR wing section. Preliminary aircraft ...

  8. Scaling of lifting forces in relation to object size in whole body lifting

    NARCIS (Netherlands)

    Kingma, I.; van Dieen, J.H.; Toussaint, H.M.

    2005-01-01

    Subjects prepare for a whole body lifting movement by adjusting their posture and scaling their lifting forces to the expected object weight. The expectancy is based on visual and haptic size cues. This study aimed to find out whether lifting force overshoots related to object size cues disappear or

  9. External Hand Forces Exerted by Long-Term Care Staff to Push Floor-Based Lifts: Effects of Flooring System and Resident Weight.

    Science.gov (United States)

    Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C

    2016-09-01

    The aim of this study was to investigate the effects of flooring type and resident weight on external hand forces required to push floor-based lifts in long-term care (LTC). Novel compliant flooring is designed to reduce fall-related injuries among LTC residents but may increase forces required for staff to perform pushing tasks. A motorized lift may offset the effect of flooring on push forces. Fourteen female LTC staff performed straight-line pushes with two floor-based lifts (conventional, motor driven) loaded with passengers of average and 90th-percentile resident weights over four flooring systems (concrete+vinyl, compliant+vinyl, concrete+carpet, compliant+carpet). Initial and sustained push forces were measured by a handlebar-mounted triaxial load cell and compared to participant-specific tolerance limits. Participants rated pushing difficulty. Novel compliant flooring increased initial and sustained push forces and subjective ratings compared to concrete flooring. Compared to the conventional lift, the motor-driven lift substantially reduced initial and sustained push forces and perceived difficulty of pushing for all four floors and both resident weights. Participants exerted forces above published tolerance limits only when using the conventional lift on the carpet conditions (concrete+carpet, compliant+carpet). With the motor-driven lift only, resident weight did not affect push forces. Novel compliant flooring increased linear push forces generated by LTC staff using floor-based lifts, but forces did not exceed tolerance limits when pushing over compliant+vinyl. The motor-driven lift substantially reduced push forces compared to the conventional lift. Results may help to address risk of work-related musculoskeletal injury, especially in locations with novel compliant flooring. © 2016, Human Factors and Ergonomics Society.

  10. Lifting index of the niosh lifting equation and low back pain

    Directory of Open Access Journals (Sweden)

    Eliana Remor Teixeira

    2011-09-01

    Full Text Available The purpose of this study is to assess the relationship of the Lifting Index obtained through the application of the NIOSH Lifting Equation and the incidence of low back pain among forty-eight workers involved in manual lifting tasks. It was applied the equation in eleven tasks and the workers were interviewed. The most unfavorable conditions presented themselves in the lifting destination. The variables that most contributed to the inadequate values of the Lifting Index were: the horizontal location, the lifting frequency and the vertical distance, beyond the high weight of the load. The incidence of low back pain in the last twelve months was 19%, whereas the incidence of work-related low back pain in the same period was 10%. In 72.7% of the tasks evaluated the Composite Lifting Index was more than three, which are considered as high ergonomic risk.

  11. Integration of Predictive Display and Aircraft Flight Control System

    Directory of Open Access Journals (Sweden)

    Efremov A.V.

    2017-01-01

    Full Text Available The synthesis of predictive display information and direct lift control system are considered for the path control tracking tasks (in particular landing task. The both solutions are based on pilot-vehicle system analysis and requirements to provide the highest accuracy and lowest pilot workload. The investigation was carried out for cases with and without time delay in aircraft dynamics. The efficiency of the both ways for the flying qualities improvement and their integration is tested by ground based simulation.

  12. Lift-and-fill face lift: integrating the fat compartments.

    Science.gov (United States)

    Rohrich, Rod J; Ghavami, Ashkan; Constantine, Fadi C; Unger, Jacob; Mojallal, Ali

    2014-06-01

    Recent discovery of the numerous fat compartments of the face has improved our ability to more precisely restore facial volume while rejuvenating it through differential superficial musculoaponeurotic system treatment. Incorporation of selective fat compartment volume restoration along with superficial musculoaponeurotic system manipulation allows for improved control in recontouring while addressing one of the key problems in facial aging, namely, volume deflation. This theory was evaluated by assessing the contour changes from simultaneous face "lifting" and "filling" through fat compartment-guided facial fat transfer. A review of 100 face-lift patients was performed. All patients had an individualized component face lift with fat grafting to the nasolabial fold, deep malar, and high/lateral malar fat compartment locations. Photographic analysis using a computer program was conducted on oblique facial views preoperatively and postoperatively, to obtain the most projected malar contour point. Two independent observers visually evaluated the malar prominence and nasolabial fold improvements based on standardized photographs. Nasolabial fold improved by at least one grade in 81 percent and by over one grade in 11 percent. Malar prominence average projection increase was 13.47 percent and the average amount of lift was 12.24 percent. The malar prominence score improved by at least one grade in 62 percent of the patients postoperatively, and 9 percent had a greater than one grade improvement. Twenty-eight percent of the patients had a convex malar prominence postoperatively compared with 6 percent preoperatively. Malar prominence improved by at least one grade in 63 percent and by over one grade in 10 percent. The lift-and-fill face lift merges two key concepts in facial rejuvenation: (1) effective tissue manipulation by means of lifting and tightening in differential vectors according to original facial asymmetry and shape; and (2) selective fat compartment filling

  13. CFD Study of a New Annular Lift Fan Configuration with High Lift Efficiency

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2017-03-01

    Full Text Available A new annular lift fan configuration that has very high lift efficiency is explored by using a numerical scheme. The inlet lip radius and diffuser angle are maximized by semicircle duct walls and the location of the lift fan is moved from the throat to the diffuser area to maximize the diffusion effect of the ducted fan. The improved lift fan achieves the figure of merit of 0.772 and the power loading of 9.03 lbs/hp without ground effect, very close to the theoretical limit. Under the ground effect, the figure of merit reaches 0.822 with the power loading of 9.62 lbs/hp. The improved lift efficiency deteriorates the transition characteristics with higher momentum drag and pitching moment. However, with the aid of jet thrusts directly providing part of the lift during transition, the peak of momentum drag and pitching moment can be lowered. A total thrust to weight ratio of 0.7 is enough for all of the requirements in transition and in hover and for the maximum speed of 0.75 Mach in cruise flight.

  14. Transport of timber by rope-and-pulley lift in steep seams

    Energy Technology Data Exchange (ETDEWEB)

    Spaniol, J

    1980-11-01

    This paper describes the rope-and-pulley lift used to transport timber and small items of equipment, which has been installed in tubbing in the return air drop-hole. Gives details of how the lift works and the equipment involved (winch, rope, slings, pulleys, safety and signalling arrangements). Looks at the future prospects of installing these lifts. (In French)

  15. Tornado lift

    OpenAIRE

    Ivanchin, Alexander

    2010-01-01

    It is shown that one of the causes for tornado is Tornado Lift. At increasing vortex diameter its kinetic energy decreases to keep the moment of momentum constant. A kinetic energy gradient of such vortex is Tornado Lift. Evaluation shows that contribution of Tornado Lift in air lifting in a tornado is comparable to buoyancy according to the order of magnitude.

  16. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  17. Configuration management and automatic control of an augmentor wing aircraft with vectored thrust

    Science.gov (United States)

    Cicolani, L. S.; Sridhar, B.; Meyer, G.

    1979-01-01

    An advanced structure for automatic flight control logic for powered-lift aircraft operating in terminal areas is under investigation at Ames Research Center. This structure is based on acceleration control; acceleration commands are constructed as the sum of acceleration on the reference trajectory and a corrective feedback acceleration to regulate path tracking errors. The central element of the structure, termed a Trimmap, uses a model of the aircraft aerodynamic and engine forces to calculate the control settings required to generate the acceleration commands. This report describes the design criteria for the Trimmap and derives a Trimmap for Ames experimental augmentor wing jet STOL research aircraft.

  18. STRUCTURAL AND GEOMETRICAL ANALYSIS OF THE LIFTING MANIPULATORS FOR A GREEN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ioana POPESCU

    2015-12-01

    Full Text Available The lifting and getting off the bins, to and from the body of special waste trucks, by some planar linkage – manipulators are studied. These lifting manipulators are equipped with gripper systems in order to load and unload the bins. Several kinematical schemas of type mono– and bi-mobile manipulators are analyzed, these being driven by one or two linear actuators. The kinematical geometry of these planar manipulators by means of scale drawing of the kinematical schema is displayed. Two solutions for a better efficiency and a green environment have been proposed. Finally, a modeling and simulation case of the lifting manipulator is presented.

  19. Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Morrison, P. J.; Vittot, M.; Guillebon, L. de

    2013-01-01

    Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.

  20. Semi-automatic aircraft control system

    Science.gov (United States)

    Gilson, Richard D. (Inventor)

    1978-01-01

    A flight control type system which provides a tactile readout to the hand of a pilot for directing elevator control during both approach to flare-out and departure maneuvers. For altitudes above flare-out, the system sums the instantaneous coefficient of lift signals of a lift transducer with a generated signal representing ideal coefficient of lift for approach to flare-out, i.e., a value of about 30% below stall. Error signals resulting from the summation are read out by the noted tactile device. Below flare altitude, an altitude responsive variation is summed with the signal representing ideal coefficient of lift to provide error signal readout.

  1. Lift mechanics of downhill skiing and snowboarding.

    Science.gov (United States)

    Wu, Qianhong; Igci, Yesim; Andreopoulos, Yiannis; Weinbaum, Sheldon

    2006-06-01

    This study is conducted to develop a simplified mathematical model to describe the lift mechanics of downhill skiing and snowboarding, where the lift contributions due to both the transiently trapped air and the compressed solid phase (snow crystals) are determined. To our knowledge, this is the first time that anyone has attempted to realistically estimate the relative contribution of the transiently trapped air to the total lift in skiing and snowboarding. The model uses Shimizu's empirical relation to predict the local variation in Darcy permeability due to the compression of the solid phase. The forces and moments on the skier or snowboarder are used to predict the angle of attack of the planing surface, the penetration depth at the leading edge, and the shift in the center of pressure for two typical snow types, fresh and wind-packed snow. We present numerical solutions for snowboarding and asymptotic analytic solutions for skiing for the case where there are no edging or turning maneuvers. The force and moment balance are then used to develop a theory for control and stability in response to changes in the center of mass as the individual shifts his/her weight. Our model predicts that for fine-grained, windpacked snow that when the velocity (U) of the snowboarder or skier is 20 m.s, approximately 50% of the total lift force is generated by the trapped air for snowboarding and 40% for skiing. For highly permeable fresh powder snow, the lift contribution from the pore air pressure drops substantially. This paper develops a new theoretical framework for analyzing the lift mechanics and stability of skis and snowboards that could have important applications in future ski and snowboard design.

  2. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process

    Energy Technology Data Exchange (ETDEWEB)

    Mokuno, Yoshiaki, E-mail: mokuno-y@aist.go.jp; Kato, Yukako; Tsubouchi, Nobuteru; Chayahara, Akiyoshi; Yamada, Hideaki; Shikata, Shinichi [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2014-06-23

    A nitrogen-doped single crystal diamond plate with a low dislocation density is fabricated by chemical vapor deposition (CVD) from a high pressure high temperature synthetic type IIa seed substrate by ion implantation and lift-off processes. To avoid sub-surface damage, the seed surface was subjected to deep ion beam etching. In addition, we introduced a nitrogen flow during the CVD step to grow low-strain diamond at a relatively high growth rate. This resulted in a plate with low birefringence and a dislocation density as low as 400 cm{sup −2}, which is the lowest reported value for a lift-off plate. Reproducing this lift-off process may allow mass-production of single crystal CVD diamond plates with low dislocation density and consistent quality.

  3. Proceedings of a Workshop on V/STOL Aircraft Aerodynamics. Volume I. Held at Naval Postgraduate School Monterey, California 16-18 May 1979,

    Science.gov (United States)

    1979-05-18

    jets in a crossflow being conducted by the Computational Mechanics Corp. The Vought VAPE program will incorporate - in addition to the Wooler-Ziegler...Beatty Vought Corporation Dallas, TX This paper describes the V/STOL Aircraft Propulsive Effects Computer Program ( VAPE ), developed at the Vought...regions of flight. The VAPE program is capable of evaluating: o effects of relative wind about the aircraft o effects of propulsive lift jet entrainment

  4. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    Science.gov (United States)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these

  5. Diagnosis of Wing Icing Through Lift and Drag Coefficient Change Detection for Small Unmanned Aircraft

    DEFF Research Database (Denmark)

    Sørensen, Kim Lynge; Blanke, Mogens; Johansen, Tor Arne

    2015-01-01

    This paper address the issue of structural change, caused by ice accretion, on UAVs by utilising a Neyman Pearson (NP) based statistical change detection approach, for the identification of structural changes of fixed wing UAV airfoils. A structural analysis is performed on the nonlinear aircraft...

  6. NASA evaluation of Type 2 chemical depositions. [effects of deicer deposition on aircraft tire friction performance

    Science.gov (United States)

    Yager, Thomas J.; Stubbs, Sandy M.; Howell, W. Edward; Webb, Granville L.

    1993-01-01

    Recent findings from NASA Langley tests to define effects of aircraft Type 2 chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32 - 96 km/hr (20 - 60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.

  7. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    Science.gov (United States)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  8. Lifting strength in two-person teamwork.

    Science.gov (United States)

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  9. Propulsion systems for vertical flight aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, A.

    1990-01-01

    The present evaluation of VTOL airframe/powerplant integration configurations combining high forward flight speed with safe and efficient vertical flight identifies six configurations that can be matched with one of three powerplant types: turboshafts, convertible-driveshaft lift fans, and gas-drive lift fans. The airframes configurations are (1) tilt-rotor, (2) folded tilt-rotor, (3) tilt-wing, (4) rotor wing/disk wing, (5) lift fan, and (6) variable-diameter rotor. Attention is given to the lift-fan VTOL configuration. The evaluation of these configurations has been conducted by both a joint NASA/DARPA program and the NASA High Speed Rotorcraft program. 7 refs.

  10. Effects of Bed Type, Corm Weight and Lifting Time on Quantitative and Qualitative Criteria of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A. Mollafiilabi

    2017-12-01

    weight of stigma+style and Picrocrocin, Safronal and Crocin contents of saffron were measured. Statistical analysis of data was conducted by SAS 9.1 and mean comparisons by Duncan’s multiple range test at 5%. Results and Discussion Results showed that the corm weight, bed type and time of corm lifting were significant effects on economical yield of saffron such as picked flowers, dry weight of stigma and fresh weight of flowers. The highest saffron economical yield was obtained in interaction of corm weight, 10 g, peat moss and lifting time in mid June as much as 5.2 g.m-2. This yield is 11 fold of average yield of Iranian forms. Growth period of all treatments was in the limit of 115 to 120 days from the time of lifting corms from the soil up to end of flowering except to the treatment corm in the late august with respect to the waiting time of 30 days in the room of flower formation was not able to flower. Incubation period of all treatments was determined as 90 days. Picrocrocin, Safranal ad Crocin contents in peat moss under controlled conditions was graded as excellent thread compared with National Standard of 259-2. Results obtained are corresponded with other researchers. Conclusion It is concluded that the highest saffron economical yield was obtained in interaction of corm weight, 10 g, peat moss and lifting time in mid June as much as 5.2 g.m-2 that is recommended to farmers to apply to increase saffron yield under controlled conditions as much as possible. It seems that time of lifting corms from the soil in addition to effect of temperature through moisture availability, has affected on flowering period of saffron.

  11. Prevention of disabling back injuries in nurses by the use of mechanical patient lift systems.

    Science.gov (United States)

    Edlich, Richard F; Winters, Kathryne L; Hudson, Mary Anne; Britt, L D; Long, William B

    2004-01-01

    immediately has resulted in numerous denials of claims for rehabilitation and compensation that nurses deserve. Experts believe that training in proper body mechanics does not prevent back injury. Consequently, focus has been placed on other innovative injury prevention programs, including the use of engineering controls as well as the "lift team" method. Ergonomics involves the use of mechanical devices (e.g., walking belt and mechanical hoist) to aid in patient lifting and transferring tasks. Guldmann Inc. has devised ceiling lift systems and slings during the past 20 years. They have successfully completed thousands of installations worldwide, covering a wide range of challenging conditions and complex environments. The Guldmann ceiling-mounted hoist system consists of a wide range of lifting units, rail components, and a complete assortment of lifting slings and accessories. Its sling is made of polyester, which is characterized by its strength and elasticity. It retains its shape and is dirt repellent and easy to maintain. The Guldmann network has one of the largest and indisputably most experienced group of certified installers in the United States. The "lift team" method was devised to remove nursing personnel from the everyday task of moving patients. This type of intervention assumes that lifting is a specialized skill to be performed only by expert professional patient movers who have been thoroughly trained in the latest lifting device techniques.

  12. Study of lifting operation of a tripod foundation for offshore wind turbine

    Science.gov (United States)

    Zhu, H.; Li, L.; Ong, M. C.

    2017-12-01

    This study addresses numerical analysis of the installation of a tripod foundation using a heavy lift vessel (HLV). Limiting sea states are firstly predicted in the frequency domain based on crane tip vertical motions using linear transfer functions. Then, numerical modelling and simulations are carried out in the time domain to analyse the coupled dynamic system taking into consideration of the nonlinearities of the system. In time-domain analysis, two lifting phases are brought into focus, i.e., the lift-off and the lowering phases. For the lift-off phase, two scenarios are considered, i.e., lift-off from the own deck of the HLV and lift-off from a transport barge. Moreover, comparative studies using two types of installation vessels, a floating vessel and a Jack-up, are investigated for the lowering process. Critical responses including the motions of the tripod and the lift wire tensions are presented and compared under various environmental and loading conditions.

  13. Analytical prediction of the unsteady lift on a rotor caused by downstream struts

    Science.gov (United States)

    Taylor, A. C., III; Ng, W. F.

    1987-01-01

    A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.

  14. Dynamic response of Hovercraft lift fans

    Science.gov (United States)

    Moran, D. D.

    1981-08-01

    Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.

  15. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Watanabe, M; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  16. Assessment of the sinus lift operation by magnetic resonance imaging.

    Science.gov (United States)

    Senel, Figen Cizmeci; Duran, Serpil; Icten, Onur; Izbudak, Izlem; Cizmeci, Fulya

    2006-12-01

    Vertical bone loss in edentulous maxillary alveolar processes may necessitate a sinus lift before the placement of dental implants. We have measured and assessed maxillary sinuses meticulously before the operation and evaluated the postoperative results of the operation with magnetic resonance imaging (MRI). Thirteen edentulous maxillary regions in eight patients were included in the study. The patients were examined 1 week before and 3 months after the sinus lift operations using a 1.5 T superconductive MR imager that gave oblique sagittal T2-weighted images with slices 2 mm thick without a gap. The images that were obtained 3 months after the sinus lift operations confirmed that vertical height had increased. We obtained high quality images without any artefacts during a short examination period with a high-resolution scanner. The results showed that it is possible to assess the maxillary sinus before the sinus lift and to evaluate the postoperative results using MRI accurately in three dimensions without the risk of radiation. This makes MRI a suitable alternative to computed tomography (CT).

  17. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  18. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be

  19. Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake

    Science.gov (United States)

    Shariff, Karim

    2016-01-01

    Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.

  20. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    Science.gov (United States)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  1. 78 FR 11567 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2013-02-19

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model Gulfstream G150... Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.): Amendment 39...

  2. 76 FR 70040 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2011-11-10

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Aerospace LP (type certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and... new AD: 2011-23-07 Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft...

  3. Application of lifting wavelet and random forest in compound fault diagnosis of gearbox

    Science.gov (United States)

    Chen, Tang; Cui, Yulian; Feng, Fuzhou; Wu, Chunzhi

    2018-03-01

    Aiming at the weakness of compound fault characteristic signals of a gearbox of an armored vehicle and difficult to identify fault types, a fault diagnosis method based on lifting wavelet and random forest is proposed. First of all, this method uses the lifting wavelet transform to decompose the original vibration signal in multi-layers, reconstructs the multi-layer low-frequency and high-frequency components obtained by the decomposition to get multiple component signals. Then the time-domain feature parameters are obtained for each component signal to form multiple feature vectors, which is input into the random forest pattern recognition classifier to determine the compound fault type. Finally, a variety of compound fault data of the gearbox fault analog test platform are verified, the results show that the recognition accuracy of the fault diagnosis method combined with the lifting wavelet and the random forest is up to 99.99%.

  4. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    Directory of Open Access Journals (Sweden)

    Stanislav Vladimirovich Daletskiy

    2017-01-01

    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  5. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    Science.gov (United States)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  6. Safe lifting in patients with chronic low back pain : Comparing FCE lifting task and NIOSH lifting guideline

    NARCIS (Netherlands)

    Kuijer, Wietske; Dijkstra, Pieter U.; Brouwer, Sandra; Reneman, Michiel F.; Groothoff, Johan W.; Geertzen, Jan H. B.

    2006-01-01

    Introduction: Both the floor-to-waist lifting task of the Isernhagen Work Systems Functional Capacity Evaluation (IWS FCE) and recommended weight limit (RWL) of the NIOSH produce safe lifting weights and are used world-wide nowadays. It is unknown whether they produce similar safe lifting weights.

  7. SAGD gas lift completions and optimization : a field case study at Surmont

    Energy Technology Data Exchange (ETDEWEB)

    Handfield, T.C.; Nations, T.; Noonan, S.G. [ConocoPhillips Co., Houston, TX (United States)

    2008-10-15

    Gas lift completions for steam assisted gravity drainage (SAGD) producers are unique. Because of the extreme temperatures of the downhole environment, conventional gas lift valves and mandrels with a packer completion cannot be used. Most gas lifts enter the production stream downhole through open-ended tubing or nozzles, which if not properly sized could result in operational issues, such as fluid/gas slugging and pressure instabilities which negatively effect the overall lift efficiency. ConocoPhillips performed a study in 2006 to design a gas lift system for the Surmont SAGD development that would allow better control of lift gas into the production string. The wells completed with gas lift were placed on production in 2007. This paper discussed the data collection effort and analysis completed to determine the efficiency of the two types of gas lift nozzles used in the completions. It also presented the methodology for optimization of SAGD gas lift systems and recommendations for future improvement. Background information on the Surmont oil sands project, located southeast of Fort McMurray in the Athabasca oil sands was included along with a historical perspective of the SAGD Surmont gas lift experience followed by a discussion of the Surmont initial gas lift design. Last, the paper discussed the Surmont gas lift start-up and optimization. It was concluded that installation of backcheck valves in coil tubing used for gas lift may mitigate plugging issues on initial start-up and following periods of shut-down. 5 refs., 10 figs.

  8. Review of the physics of enhancing vortex lift by unsteady excitation

    Science.gov (United States)

    Wu, J. Z.; Vakili, A. D.; Wu, J. M.

    1991-01-01

    A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.

  9. Parents of two-phase flow and theory of "gas-lift"

    Science.gov (United States)

    Zitek, Pavel; Valenta, Vaclav

    2014-03-01

    This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.

  10. Searching for ski-lift injury: an uphill struggle?

    Science.gov (United States)

    Smartt, Pam; Chalmers, David

    2010-03-01

    Injuries arising from ski-lift malfunction are rare. Most arise from skier error when embarking or disembarking, or from improper lift operation. A search of the literature failed to uncover any studies focusing specifically on ski-lift injuries. The purpose of this study was to identify and characterise ski-lift injury resulting in hospitalisation and comment on barriers to reporting and reporting omissions. New Zealand hospitalised injury discharges 2000-2005 formed the primary dataset. To aid case identification these data were linked to ACC compensated claims for the same period and the data searched for all hospitalised cases of injury arising from ski-lifts. 44 cases were identified representing 2% of snow-skiing/snowboarding cases. 28 cases (64%) were male and 16 (36%) female, the average age was 32 yrs (range 5-73 yrs). The majority of cases were snow-skiers (35 cases, 80%). Most of the injuries were serious, or potentially so, with 1 case of traumatic pneumothorax, one of pulmonary embolism (after jumping from a ski-lift) and 28 cases sustaining fractures (six to the neck-of-femur, one to the lumbar spine and one to the pubis). ICISS scores for all cases ranged from 1.00 to 0.8182 (probability of dying in hospital 0-18.18%). Only 14 (32%) cases could be easily identified from ICD-10-AM e-codes and activity codes in the discharge summary. The ICD-10-AM external cause code for ski-lift injury V98 ("other specified transport accidents") was only assigned to 39% of cases. The type of ski-lift could only be determined in 24 cases (55%). Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Direct lifts of coupled cell networks

    Science.gov (United States)

    Dias, A. P. S.; Moreira, C. S.

    2018-04-01

    In networks of dynamical systems, there are spaces defined in terms of equalities of cell coordinates which are flow-invariant under any dynamical system that has a form consistent with the given underlying network structure—the network synchrony subspaces. Given a network and one of its synchrony subspaces, any system with a form consistent with the network, restricted to the synchrony subspace, defines a new system which is consistent with a smaller network, called the quotient network of the original network by the synchrony subspace. Moreover, any system associated with the quotient can be interpreted as the restriction to the synchrony subspace of a system associated with the original network. We call the larger network a lift of the smaller network, and a lift can be interpreted as a result of the cellular splitting of the smaller network. In this paper, we address the question of the uniqueness in this lifting process in terms of the networks’ topologies. A lift G of a given network Q is said to be direct when there are no intermediate lifts of Q between them. We provide necessary and sufficient conditions for a lift of a general network to be direct. Our results characterize direct lifts using the subnetworks of all splitting cells of Q and of all split cells of G. We show that G is a direct lift of Q if and only if either the split subnetwork is a direct lift or consists of two copies of the splitting subnetwork. These results are then applied to the class of regular uniform networks and to the special classes of ring networks and acyclic networks. We also illustrate that one of the applications of our results is to the lifting bifurcation problem.

  12. Business Profile of Boat Lift Net and Stationary Lift Net Fishing Gear in Morodemak Waters Central Java

    Science.gov (United States)

    Hapsari, Trisnani D.; Jayanto, Bogi B.; Fitri, Aristi D. P.; Triarso, I.

    2018-02-01

    Lift net is one of the fishing gears that is used widely in the Morodemak coastal fishing port (PPP) for catching pelagic fish. The yield of fish captured by these fishing gear has high economic value, such as fish belt (Trichiurus sp), squids (Loligo sp) and anchovies (Stelophorus sp). The aims of this research were to determine the technical aspects of boat lift net and stationary lift net fishing gear in Morodemak Waters Demak Regency; to find out the financial aspect of those fishing gears and to analyze the financial feasibility by counting PP, NPV, IRR, and B/C ratio criteria. This research used case study method with descriptive analysis. The sampling method was purposive sampling with 22 fishermen as respondents. The result of the research showed that the average of boat lift net acceptance was Rp 388,580,000. The financial analysis of fisheries boat lift net with the result of NPV Rp 836,149,272, PP 2.44 years, IRR value 54%, and B/C ratio 1.73. The average of stationary lift net acceptance was Rp 27,750,000. The financial analysis lift net with the result of NPV Rp 37,937,601; PP 1.96 years, IRR value 86%, and B/C ratio 1.32. This research had a positive NPV value, B/C ratio >1, and IRR > discount rate (12 %). This study concluded that the fishery business of boat lift net and stationary lift net in Morodemak coastal fishing port (PPP) was worth running.

  13. Lift, drag, and guidance forces on alternating polarity magnets, using loop guideways

    International Nuclear Information System (INIS)

    Lindenbaum, S.D.; Lee, M.S.

    1975-01-01

    Exact solutions of track current, lift force, and drag force, together with their velocity dependence, have been computed for a vehicle carrying a finite number of fixed current alternating polarity superconducting magnets, suspended at various heights over structured track guideways of the single- and double-loop (''null'') types. Results for the double-loop case are compared with those of a previously reported approximate analysis. The analytical method is then applied to a study of a low-drag guidance loop guideway which is integrable with lift loop guideways utilizing a common set of vehicle magnets. Solutions are obtained for guidance track restoring forces, lateral destabilization forces, and lift force degradation as functions of lateral displacement from symmetry. The dependence of lift, drag, and lift-to-drag on track loop parameters is studied and the linear dependence of lift-to-drag on loop time constant confirmed. The contribution to the forces made by successive addition of alternating polarity magnets is calculated and the marked reduction in lift force pulsation noted

  14. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  15. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  16. New heavy-lift system under construction

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Heavy-lift availability is at a premium, and the market is eager for alternatives to meet the demand. An alternative heavy-lift solution from SeaMetric - which has two multi-purpose heavy-lift vessels under construction in China - will be available in the first quarter of 2011. The TML system is based on buoyancy and ballast tanks, with four lifting arms mounted on two identical vessels, each vessel measuring 140 x 40 x 10.75 metres. To perform a lift, one TML with lifting arms is positioned on each side of the object. Using seawater pumps, lift force is created by de ballasting the buoyancy tanks and at the same time ballasting the ballast tanks. (AG). tab., ills

  17. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  18. 75 FR 57844 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2010-09-23

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Previously Held by Israel Aircraft Industries, Ltd.): Amendment 39-16438. Docket No. FAA-2010-0555... (Type Certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and Gulfstream 200...

  19. Lift truck safety review

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  20. Lift truck safety review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter's Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given

  1. A Collection of Nonlinear Aircraft Simulations in MATLAB

    Science.gov (United States)

    Garza, Frederico R.; Morelli, Eugene A.

    2003-01-01

    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  2. Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem

    Directory of Open Access Journals (Sweden)

    Roshan Sharma

    2012-01-01

    Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.

  3. The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

    Directory of Open Access Journals (Sweden)

    Kasey O. Greenland

    2013-06-01

    Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

  4. Research on enhancement of natural circulation capability in lead–bismuth alloy cooled reactor by using gas-lift pump

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Juanli, E-mail: Jenyzuo@163.com; Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn; Chen, Ronghua, E-mail: ronghua.chen@stu.xjtu.edu.cn; Qiu, Suizheng; Su, Guanghui, E-mail: ghsu@mail.xjtu.edu.cn

    2013-10-15

    Highlights: • The gas-lift pump has been adopted to enhance the natural circulation capability. • LENAC code is developed in my study. • The calculation results by LENAC code show good agreement with experiment results. • Gas mass flow rate, bubble diameter, rising pipe length are important parameters. -- Abstract: The gas-lift pump has been adopted to enhance the natural circulation capability in the type of lead–bismuth alloy cooled reactors such as Accelerator Driven System (ADS) and Liquid–metal Fast Reactor (LMFR). The natural circulation ability and the system safety are obviously influenced by the two phase flow characteristics of liquid metal–inert gas. In this study, LENAC (LEad bismuth alloy NAtural Circulation capability) code has been developed to evaluate the natural circulation capability of lead–bismuth cooled ADS with gas-lift pump. The drift flow theory, void fraction prediction model and friction pressure drop prediction model have been incorporated into LENAC code. The calculation results by LENAC code show good agreement with experiment results of CIRCulation Experiment (CIRCE) facility. The effects of the gas mass flow rate, void fraction, gas quality, bubble diameter and the rising pipe height or the potential difference between heat exchanger and reactor core on natural circulation capability of gas-lift pump have been analyzed. The results showed that in bubbly flow pattern, for a fixed value of gas mass flow rate, the natural circulation capability increased with the decrease of the bubble diameter. In the bubbly flow, slug flow, churn flow and annular flow pattern, with the gas mass flow rate increasing, the natural circulation capability initially increased and then declined. And the flow parameters influenced the thermal hydraulic characteristics of the reactor core significantly. The present work is helpful for revealing the law of enhancing the natural circulation capability by gas-lift pump, and providing theoretical

  5. 75 FR 28485 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2010-05-21

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.): Amendment 39... previously held by Israel Aircraft Industries, Ltd.) Model Gulfstream 100 airplanes; and Model Astra SPX and...

  6. Limited vs extended face-lift techniques: objective analysis of intraoperative results.

    Science.gov (United States)

    Litner, Jason A; Adamson, Peter A

    2006-01-01

    To compare the intraoperative outcomes of superficial musculoaponeurotic system plication, imbrication, and deep-plane rhytidectomy techniques. Thirty-two patients undergoing primary deep-plane rhytidectomy participated. Each hemiface in all patients was submitted sequentially to 3 progressively more extensive lifts, while other variables were standardized. Four major outcome measures were studied, including the extent of skin redundancy and the repositioning of soft tissues along the malar, mandibular, and cervical vectors of lift. The amount of skin excess was measured without tension from the free edge to a point over the intertragal incisure, along a plane overlying the jawline. Using a soft tissue caliper, repositioning was examined by measurement of preintervention and immediate postintervention distances from dependent points to fixed anthropometric reference points. The mean skin excesses were 10.4, 12.8, and 19.4 mm for the plication, imbrication, and deep-plane lifts, respectively. The greatest absolute soft tissue repositioning was noted along the jawline, with the least in the midface. Analysis revealed significant differences from baseline and between lift types for each of the studied techniques in each of the variables tested. These data support the use of the deep-plane rhytidectomy technique to achieve a superior intraoperative lift relative to comparator techniques.

  7. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    Science.gov (United States)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  8. Drag Reduction Devices for Aircraft (Latest Citations from the Aerospace Database)

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning the modeling, application, testing, and development of drag reduction devices for aircraft. Slots, flaps, fences, large-eddy breakup (LEBU) devices, vortex generators and turbines, Helmholtz resonators, and winglets are among the devices discussed. Contour shaping to ensure laminar flow, control boundary layer transition, or minimize turbulence is also covered. Applications include the wings, nacelles, fuselage, empennage, and externals of aircraft designed for high-lift, subsonic, or supersonic operation. The design, testing, and development of directional grooves, commonly called riblets, are covered in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.)

  9. A lifting line model to investigate the influence of tip feathers on wing performance

    International Nuclear Information System (INIS)

    Fluck, M; Crawford, C

    2014-01-01

    Bird wings have been studied as prototypes for wing design since the beginning of aviation. Although wing tip slots, i.e. wings with distinct gaps between the tip feathers (primaries), are very common in many birds, only a few studies have been conducted on the benefits of tip feathers on the wing's performance, and the aerodynamics behind tip feathers remains to be understood. Consequently most aircraft do not yet copy this feature. To close this knowledge gap an extended lifting line model was created to calculate the lift distribution and drag of wings with tip feathers. With this model, is was easily possible to combine several lifting surfaces into various different birdwing-like configurations. By including viscous drag effects, good agreement with an experimental tip slotted reference case was achieved. Implemented in C++ this model resulted in computation times of less than one minute per wing configuration on a standard notebook computer. Thus it was possible to analyse the performance of over 100 different wing configurations with and without tip feathers. While generally an increase in wing efficiency was obtained by splitting a wing tip into distinct, feather-like winglets, the best performance was generally found when spreading more feathers over a larger dihedral angle out of the wing plane. However, as the results were very sensitive to the precise geometry of the feather fan (especially feather twist) a careless set-up could just as easily degrade performance. Hence a detailed optimization is recommended to realize the full benefits by simultaneously optimizing feather sweep, twist and dihedral angles. (paper)

  10. An introduction of gauge field by the Lie-isotopic lifting of the Hilbert space

    International Nuclear Information System (INIS)

    Nishioka, M.

    1984-01-01

    It is introduced the gauge field by the Lie-isotopic lifting of the Hilbert space. Our method is different from other's in that the commutator between the isotropic element and the generators of the Lie algebra does not vanish in our case, but vanishes in other cases. Our method uses the Lie-isotopic lifting of the Hilbert space, but others do not use it

  11. Evaluation of structure integrity of the lifting handle of CRB

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.-Y. [Radiation Protection Association, Taiwan (China); Lin, S.-R. [Radiation Protection Association, Taiwan (China)], E-mail: srlin@iner.gov.tw; Kang, L.-C. [Institute of Nuclear Energy Research, Taiwan (China); Chang, Han-Jou [Department of Nuclear Safety, TPC, Taiwan (China)

    2008-09-15

    Since visual inspection was applied to inspect the control rod blades (CRBs) of nuclear power plants in Taiwan, indications have been found in areas such as roller-pin hole, sheath and tie-rod of CRB. Many preliminary safety analyses with conservative assumptions have been conducted to endorse the continuing operation of the units. The objective of this study is to evaluate the structural integrity of those CRBs during lifting operation. Detailed finite element models of the lifting handle of the CRB are built with emphasis on the postulated crack near the roller-pin hole. Both the D-215 type CRB and the Marathon type CRB are evaluated. It is concluded that the structural integrity is guaranteed even under the worst postulated situation.

  12. Status of Advanced Stitched Unitized Composite Aircraft Structures

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  13. Patterning of oxide-hardened gold black by photolithography and metal lift-off

    Science.gov (United States)

    Panjwani, Deep; Yesiltas, Mehmet; Nath, Janardan; Maukonen, D. E.; Rezadad, Imen; Smith, Evan M.; Peale, R. E.; Hirschmugl, Carol; Sedlmair, Julia; Wehlitz, Ralf; Unger, Miriam; Boreman, Glenn

    2014-01-01

    A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at ˜1 Torr. SiO2 is then deposited as a protection layer by electron beam evaporation. Lift-off proceeds by dissolving the photoresist in acetone. The resulting sub-millimeter size gold black patterns that remain on the substrate retain high infrared absorption out to ˜5 μm wavelength and exhibit good mechanical stability. This technique allows selective application of gold black coatings to the pixels of thermal infrared imaging array detectors.

  14. Motor-pump unit provided with a lifting appliance of the motor

    International Nuclear Information System (INIS)

    Veronesi, Luciano; Francis, W.R.

    1978-01-01

    This invention relates to lifting appliances and particularly concerns a 'pump and motor set' or motor-pump unit fitted with a lifting appliance enabling the motor to be separated from the pump. In nuclear power stations the reactor discharges heat that is carried by the coolant to a distant point away from the reactor to generate steam and electricity conventionally. In order to cause the reactor coolant to flow through the system, coolant motor-pump units are provided in the cooling system. These units are generally of the vertical type with an electric motor fitted vertically on the pump by means of a cylindrical or conical structure called motor support [fr

  15. Aero-acoustic design and test of a multiple splitter exhaust noise suppressor for a 0.914m diameter lift fan

    Science.gov (United States)

    Stimpert, D. L.

    1973-01-01

    A lift fan exhaust suppression system to meet future VTOL aircraft noise goals was designed and tested. The test vehicle was a 1.3 pressure ratio, 36 inch (91.44 cm) diameter lift fan with two chord rotor to stator spacing. A two splitter fan exhaust suppression system thirty inches (76.2 cm) long achieved 10 PNdB exhaust suppression in the aft quadrant compared to a design value of 20 PNdB. It was found that a broadband noise floor limited the realizable suppression. An analytical investigation of broadband noise generated by flow over the treatment surfaces provided very good agreement with the measured suppression levels and noise floor sound power levels. A fan thrust decrement of 22% was measured for the fully suppressed configuration of which 11.1% was attributed to the exhaust suppression hardware.

  16. Feasibility study of modern airships, phase 1. Volume 2: Parametric analysis (task 3). [lift, weight (mass)

    Science.gov (United States)

    Lancaster, J. W.

    1975-01-01

    Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.

  17. Turbulence induced lift experienced by large particles in a turbulent flow

    International Nuclear Information System (INIS)

    Zimmermann, Robert; Gasteuil, Yoann; Volk, Romain; Pumir, Alain; Pinton, Jean-François; Bourgoin, Mickaël

    2011-01-01

    The translation and rotation of a large, neutrally buoyant, particle, freely advected by a turbulent flow is determined experimentally. We observe that, both, the orientation the angular velocity with respect to the trajectory and the translational acceleration conditioned on the spinning velocity provides evidence of a lift force, F lift ∝ ω × ν rel , acting on the particle. New results of the dynamics of the coupling between the particle's rotation and its translation are presented.

  18. Energy conservation aircraft design and operational procedures

    Energy Technology Data Exchange (ETDEWEB)

    Poisson-Quinton, P.

    1978-01-01

    The paper reviews studies associated with improved fuel efficiency. Several aircraft design concepts are described including: (1) increases in aerodynamic efficiency through decreased friction drag, parasitic drag, and drag due to lift, (2) structural efficiency and the implementation of composite materials, (3) active control technology, (4) the optimization of airframe-engine integration, and (5) VTOL and STOL concepts. Consideration is also given to operational procedures associated with flight management, terminal-area operations, and the influence of environmental noise constraints on fuel economy.

  19. 14 CFR Appendix J to Part 141 - Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate J Appendix J to Part 141 Aeronautics and Space FEDERAL... PILOT SCHOOLS Pt. 141, App. J Appendix J to Part 141—Aircraft Type Rating Course, For Other Than an...

  20. Aircraft vulnerability analysis by modeling and simulation

    Science.gov (United States)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    Infrared missiles pose a significant threat to civilian and military aviation. ManPADS missiles are especially dangerous in the hands of rogue and undisciplined forces. Yet, not all the launched missiles hit their targets; the miss being either attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft-missile engagement is a complex series of events, many of which are only partially understood. Aircraft and missile designers focus on the optimal design and performance of their respective systems, often testing only in a limited set of scenarios. Most missiles react to the contrast intensity, but the variability of the background is rarely considered. Finally, the vulnerability of the aircraft depends jointly on the missile's performance and the doctrine governing the missile's launch. These factors are considered in a holistic investigation. The view direction, altitude, time of day, sun position, latitude/longitude and terrain determine the background against which the aircraft is observed. Especially high gradients in sky radiance occur around the sun and on the horizon. This paper considers uncluttered background scenes (uniform terrain and clear sky) and presents examples of background radiance at all view angles across a sphere around the sensor. A detailed geometrical and spatially distributed radiometric model is used to model the aircraft. This model provides the signature at all possible view angles across the sphere around the aircraft. The signature is determined in absolute terms (no background) and in contrast terms (with background). It is shown that the background significantly affects the contrast signature as observed by the missile sensor. A simplified missile model is constructed by defining the thrust and mass profiles, maximum seeker tracking rate, maximum

  1. Lift on side by side intruders of various geometries within a granular flow

    Science.gov (United States)

    Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.

    2017-06-01

    Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.

  2. Lift production through asymmetric flapping

    Science.gov (United States)

    Jalikop, Shreyas; Sreenivas, K. R.

    2009-11-01

    At present, there is a strong interest in developing Micro Air Vehicles (MAV) for applications like disaster management and aerial surveys. At these small length scales, the flight of insects and small birds suggests that unsteady aerodynamics of flapping wings can offer many advantages over fixed wing flight, such as hovering-flight, high maneuverability and high lift at large angles of attack. Various lift generating mechanims such as delayed stall, wake capture and wing rotation contribute towards our understanding of insect flight. We address the effect of asymmetric flapping of wings on lift production. By visualising the flow around a pair of rectangular wings flapping in a water tank and numerically computing the flow using a discrete vortex method, we demonstrate that net lift can be produced by introducing an asymmetry in the upstroke-to-downstroke velocity profile of the flapping wings. The competition between generation of upstroke and downstroke tip vortices appears to hold the key to understanding this lift generation mechanism.

  3. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  4. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2003-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  5. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2004-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  6. Integrating the Base of Aircraft Data (BADA) in CTAS Trajectory Synthesizer

    Science.gov (United States)

    Abramson, Michael; Ali, Kareem

    2012-01-01

    The Center-Terminal Radar Approach Control (TRACON) Automation System (CTAS), developed at NASA Ames Research Center for assisting controllers in the management and control of air traffic in the extended terminal area, supports the modeling of more than four hundred aircraft types. However, 90% of them are supported indirectly by mapping them to one of a relatively few aircraft types for which CTAS has detailed drag and engine thrust models. On the other hand, the Base of Aircraft Data (BADA), developed and maintained by Eurocontrol, supports more than 300 aircraft types, about one third of which are directly supported, i.e. they have validated performance data. All these data were made available for CTAS by integrating BADA version 3.8 into CTAS Trajectory Synthesizer (TS). Several validation tools were developed and used to validate the integrated code and to evaluate the accuracy of trajectory predictions generated using CTAS "native" and BADA Aircraft Performance Models (APM) comparing them with radar track data. Results of these comparisons indicate that the two models have different strengths and weaknesses. The BADA APM can improve the accuracy of CTAS predictions at least for some aircraft types, especially small aircraft, and for some flight phases, especially climb.

  7. Neurological sequelae of the operation "baby lift" airplane disaster.

    Science.gov (United States)

    Cohen, M; Conners, C K; Brook, I; Feldman, S; Mason, J K; Dugas, M; Collis, L; Copeland, B; Lewis, O; Denhoff, E

    1994-01-01

    The aircraft disaster of the first flight of Operation "Baby Lift", which departed from Saigon, Vietnam, April 4, 1975, was survived by 149 orphaned children on their way to adoptive homes in the West. It had 157 passenger fatalities. The aircraft disaster exposed the surviving children to a complex disaster environment in which subatmospheric decompression, hypoxia, and deceleration were experienced, many children suffered a transient unconsciousness. We examined 135 surviving children between 1978 and 1985. The U.S. resident children were examined in the years 1979 to 1982 at an average age of 8 years and 6 months. They displayed the following symptomatology: attention deficit (> 75%), hyperactivity (> 65%), impulse disorder (> 55%), learning disabilities (> 35%), speech and language pathology (> 70%), and soft neurological signs (> 75%). The European children were examined in the years 1983 to 1985. On arrival at the adoptive home, 2 weeks after the accident they displayed the following symptomatology: muscle hypotonia (26%), seizures (2.5%), and regressed developmental milestones (33%). At the time of the diagnostic evaluations (1983 to 1985) the average age was 11 years and 8 months. They displayed the following symptomatology: attention deficit (59%), hyperactivity (52%), impulse disorder (48%), learning disabilities (43%), soft neurological signs (43%), epilepsy (16%), and speech and language pathology (34%). We conclude that a complex disaster environment can cause brain damage in children without prolonged unconsciousness, and that victims of disasters require a thorough evaluation from a multidisciplinary team.

  8. Vertical vector face lift.

    Science.gov (United States)

    Somoano, Brian; Chan, Joanna; Morganroth, Greg

    2011-01-01

    Facial rejuvenation using local anesthesia has evolved in the past decade as a safer option for patients seeking fewer complications and minimal downtime. Mini- and short-scar face lifts using more conservative incision lengths and extent of undermining can be effective in the younger patient with lower face laxity and minimal loose, elastotic neck skin. By incorporating both an anterior and posterior approach and using an incision length between the mini and more traditional face lift, the Vertical Vector Face Lift can achieve longer-lasting and natural results with lesser cost and risk. Submentoplasty and liposuction of the neck and jawline, fundamental components of the vertical vector face lift, act synergistically with superficial musculoaponeurotic system plication to reestablish a more youthful, sculpted cervicomental angle, even in patients with prominent jowls. Dramatic results can be achieved in the right patient by combining with other procedures such as injectable fillers, chin implants, laser resurfacing, or upper and lower blepharoplasties. © 2011 Wiley Periodicals, Inc.

  9. Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist

    Science.gov (United States)

    Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey

    1999-06-01

    In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.

  10. Choice of coverage for restoration thermal mono rails mechanization aircraft wing

    Directory of Open Access Journals (Sweden)

    В.О. Краля

    2006-02-01

    Full Text Available  The main tribotechnical characteristics of plasm gasthermal retraction – coatings for restoration of monorail of alloy BT-22 for extension of flaps and slats of modern aircraft are analysed. The parameters of fretting-resistance and adheasive strength of coatings are determined. It is estaflished that the optimal coating is a coating of molibdenum. The results are especially actual for modern aviation industry, as for nowadays there is no common opinion about the given assembly restoration. The monorail recovery of high lift devices by means of plasm covering gives signiticant economic effect and economy of material.

  11. JWST Lifting System

    Science.gov (United States)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  12. Analysis of multicriteria models application for selection of an optimal artificial lift method in oil production

    Directory of Open Access Journals (Sweden)

    Crnogorac Miroslav P.

    2016-01-01

    Full Text Available In the world today for the exploitation of oil reservoirs by artificial lift methods are applied different types of deep pumps (piston, centrifugal, screw, hydraulic, water jet pumps and gas lift (continuous, intermittent and plunger. Maximum values of oil production achieved by these exploitation methods are significantly different. In order to select the optimal exploitation method of oil well, the multicriteria analysis models are used. In this paper is presented an analysis of the multicriteria model's application known as VIKOR, TOPSIS, ELECTRE, AHP and PROMETHEE for selection of optimal exploitation method for typical oil well at Serbian exploration area. Ranking results of applicability of the deep piston pumps, hydraulic pumps, screw pumps, gas lift method and electric submersible centrifugal pumps, indicated that in the all above multicriteria models except in PROMETHEE, the optimal method of exploitation are deep piston pumps and gas lift.

  13. Quantification of the lift height for magnetic force microscopy using 3D surface parameters

    International Nuclear Information System (INIS)

    Nenadovic, M.; Strbac, S.; Rakocevic, Z.

    2010-01-01

    In this work, the quantitative conditions for the lift height for imaging of the magnetic field using magnetic force microscopy (MFM) were optimized. A thin cobalt film deposited on a monocrystalline silicon (1 0 0) substrate with a thickness of 55 nm and a thin nickel film deposited on a glass with a thickness of 600 nm were used as samples. The topography of the surface was acquired by tapping mode atomic force microscopy (AFM), while MFM imaging was performed in the lift mode for various lift heights. It was determined that the sensitivity of the measurements was about 10% higher for images obtained at a scan angle of 90 o compared to a scan angle of 0 deg. Therefore, the three-dimensional surface texture parameters, i.e., average roughness, skewness, kurtosis and the bearing ratio, were determined in dependence on the lift height for a scan angle of 90 deg. The results of the analyses of the surface parameters showed that the influence of the substrate and its texture on the magnetic force image could be neglected for lift heights above 40 nm and that the upper lift height limit is 100 nm. It was determined that the optimal values of the lift heights were in the range from 60 to 80 nm, depending on the nature of the sample and on the type of the tip used.

  14. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-01-01

    Full Text Available Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays. To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground operations as major driver for airline punctuality. Aircraft ground trajectories primarily consists of handling processes at the stand (deboarding, catering, fueling, cleaning, boarding, unloading, loading, which are defined as the aircraft turnaround. Turnaround processes are mainly controlled by ground handling, airport, or airline staff, except the aircraft boarding, which is driven by passengers’ experience and willingness/ability to follow the proposed boarding procedures. This paper provides an overview of the research done in the field of aircraft boarding and introduces a reliable, calibrated, and stochastic aircraft boarding model. The stochastic boarding model is implemented in a simulation environment to evaluate specific boarding scenarios using different boarding strategies and innovative technologies. Furthermore, the potential of a connected aircraft cabin as sensor network is emphasized, which could provide information on the current and future status of the boarding process.

  15. Annoyance by aircraft noise and fear of overflying aircraft in relation to attitudes toward the environment and community

    Science.gov (United States)

    Loeb, M.; Moran, S. V.

    1977-01-01

    It has been suggested that expressions of annoyance attributable to aircraft noise may reflect in part fear of aircraft overflights and possible crashes. If this is true, then residents of areas where crashes have occurred should express more annoyance. To test this hypothesis, 50 residents of an Albany, New York area where an aircraft crash producing fatalities recently occurred and 50 residents of a comparable nearby area without such a history, were asked to respond to a 'Quality of Life Questionnaire.' Among the items were some designed to test annoyance by noise and fear of aircraft overflights. It was predicted that those in the crash area would express more fear and would more often identify aircraft as a noise source. These hypotheses were sustained. A near-replication was carried out in Louisville, Kentucky; results were much the same. Analyses indicated that for the crash-area groups, there was associating of aircraft fear and noise annoyance responses; this was true to an apparently lesser extent for non-crash groups. The greater annoyance of crash groups by aircraft community noise apparently does not carry over to situations in which aircraft noise is assessed in the laboratory.

  16. A VLSI Implementation of Four-Phase Lift Controller Using Verilog HDL

    Science.gov (United States)

    Kumar, Manish; Singh, Priyanka; Singh, Shesha

    2017-08-01

    With the advent of an era of staggering range of new technologies to provide ease of mobility and transportation elevators have become an essential component of all high rise buildings. An elevator is a type of vertical transportation that moves people between the floors of a high rise building. A four-Phase lift controller modeled on Verilog HDL code using Finite State Machine (FSM) has been presented in this paper. Verilog HDL helps in automated analysis and simulation of lift controller circuit. This design is based on synchronous input that operates on a fixed frequency. The Lift motion is controlled by means of accepting the destination floor level as input and generate control signal as output. In the proposed design a Verilog RTL code is developed and verified. Project Navigator of XILINX has been used as a code writing platform and results were simulated using Modelsim 5.4a simulator. This paper discusses the overall evolution of design and also discusses simulated results.

  17. Definition of propulsion system for V/STOL research and technology aircraft

    Science.gov (United States)

    1977-01-01

    Wind tunnel test support, aircraft contractor support, a propulsion system computer card deck, preliminary design studies, and propulsion system development plan are reported. The Propulsion system consists of two lift/cruise turbofan engines, one turboshaft engine and one lift fan connected together with shafting into a combiner gearbox. Distortion parameter levels from 40 x 80 test data were within the established XT701-AD-700 limits. The three engine-three fan system card deck calculates either vertical or conventional flight performance, installed or uninstalled. Design study results for XT701 engine modifications, bevel gear cross shaft location, fixed and tilt fan frames and propulsion system controls are described. Optional water-alcohol injection increased total net thrust 10.3% on a 90 F day. Engines have sufficient turbine life for 500 hours of the RTA duty cycle.

  18. Eisenhart lift for higher derivative systems

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton, E-mail: galajin@tpu.ru; Masterov, Ivan, E-mail: masterov@tpu.ru

    2017-02-10

    The Eisenhart lift provides an elegant geometric description of a dynamical system of second order in terms of null geodesics of the Brinkmann-type metric. In this work, we attempt to generalize the Eisenhart method so as to encompass higher derivative models. The analysis relies upon Ostrogradsky's Hamiltonian. A consistent geometric description seems feasible only for a particular class of potentials. The scheme is exemplified by the Pais–Uhlenbeck oscillator.

  19. Lift scheduling organization : Lift Concept for Lemminkainen

    OpenAIRE

    Mingalimov, Iurii

    2015-01-01

    The purpose of the work was to make a simple schedule for the main contractors and clients to check and control workflow connected with lifts. It gathers works with electricity, construction, engineering networks, installing equipment and commissioning works. The schedule was carried out during working on the building site Aino in Saint Petersburg in Lemminkӓinen. The duration of work was 5 months. The lift concept in Lemminkӓinen is very well controlled in comparison with other buil...

  20. Face-Lift

    Science.gov (United States)

    ... or sun damage, you might also consider a skin-resurfacing procedure. A face-lift can be done in combination with some other cosmetic procedures, such as a brow lift or eyelid surgery. Why it's done As you get older, your facial skin changes — sagging and becoming loose. This can make ...

  1. Heterotic weight lifting

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2010-01-01

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E 8 factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3)xSU(2)xU(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

  2. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-03-21

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E{sub 8} factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3)xSU(2)xU(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

  3. Identification of Thrust, Lift, and Drag for Deep-stall Flight Data of a Fixed-wing Unmanned Aircraft

    DEFF Research Database (Denmark)

    Cunis, Torbjørn; Leth, Tobias; Totu, Luminita Cristiana

    2018-01-01

    In this paper, we consider a small unmanned aircraft and data collected during regular and deep-stall flight. We present an identification method for the thrust force generated by the propulsion system based on the in-flight measurements where we make use of the well-known linear and quadratic...... force estimation in the full flight envelope....

  4. Occupational lifting of heavy loads and preterm birth:

    DEFF Research Database (Denmark)

    Runge, Stine Bjerrum; Pedersen, Jacob Krabbe; Svendsen, Susanne Wulff

    2013-01-01

    To examine the association between occupational lifting during pregnancy and preterm birth. The risk of preterm birth was estimated for total burden lifted per day and number of medium and heavy loads lifted per day.......To examine the association between occupational lifting during pregnancy and preterm birth. The risk of preterm birth was estimated for total burden lifted per day and number of medium and heavy loads lifted per day....

  5. Operation of flooded wells by the gas-lift method

    Energy Technology Data Exchange (ETDEWEB)

    Li, G S; Kabirov, M M; Nigay, Yu V

    1983-01-01

    A study is made of the factors which influence the effectiveness of operation of the gas-lift lifter during progressive flooding of a well. The law governing the change in its efficiency under the given conditions is also examined.

  6. X-ray inspection of composite materials for aircraft structures using detectors of Medipix type

    International Nuclear Information System (INIS)

    Jandejsek, I; Jakubek, J; Jakubek, M; Krejci, F; Soukup, P; Turecek, D; Vavrik, D; Zemlicka, J; Prucha, P

    2014-01-01

    This work presents an overview of promising X-ray imaging techniques employed for non-destructive defectoscopy inspections of composite materials intended for the Aircraft industry. The major emphasis is placed on non-tomographic imaging techniques which do not require demanding spatial and time measurement conditions. Imaging methods for defects visualisation, delamination detection and porosity measurement of various composite materials such as carbon fibre reinforced polymers and honeycomb sendwiches are proposed. We make use of the new large area WidePix X-ray imaging camera assembled from up to 100 edgeless Medipix type detectors which is highly suitable for this type of measurements

  7. 78 FR 47546 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2013-08-06

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model... Aviation Authority of Israel (CAAI), which is the aviation authority for Israel, has issued Israeli...

  8. 77 FR 45979 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-08-02

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc... information identified in this proposed AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach...

  9. Changes in spine loading patterns throughout the workday as a function of experience, lift frequency, and personality.

    Science.gov (United States)

    Chany, Anne-Marie; Parakkat, Julia; Yang, Gang; Burr, Deborah L; Marras, William S

    2006-01-01

    Psychosocial stressors have been associated with low back pain reporting. However, response to psychosocial risk factors may be dependent on the individual's personality type that, in turn, can affect muscle recruitment and spine loading. This study explores how personality might be associated with spine loading during repetitive lifting performed throughout an entire work shift. Assess spine loading as a function of an individual's personality type during repetitive, long-term exposure to a materials handling tasks. Laboratory experiment where experienced and inexperienced participants performed repetitive, asymmetric lifts at various load and lift frequency levels throughout a series of 8-hour exposure periods. Spine loads were monitored throughout the work period. Twelve novice and 12 experienced materials handlers who were asymptomatic for back pain. Spine compression, anterior-posterior (A/P) shear, and lateral shear at the L5-S1 level. Participants were categorized into personality types based upon the Myers-Briggs personality type indicator. An electromyography-assisted biomechanical model was used to assess spine compression, A/P shear, and lateral shear throughout the exposure period. The results indicate that intuitors had higher shear spinal loading regardless of moment exposure, lift frequency, and time through the work period, compared with the sensor personality type. In addition, higher spine compressive and shear forces occurred in the perceiver personality compared with the judgers' personality trait, regardless of moment and, often, lift frequency. Novice lifters typically experienced greater spine loading. The results suggest that when there exists a personality-job environment mismatch, spinal loading increases via an increase in antagonistic co-contraction. The trends suggest that inherent personality characteristics may play a role in one's motor control strategies when performing a repetitive lifting task.

  10. Experimental validation of a true-scale morphing flap for large civil aircraft applications

    Science.gov (United States)

    Pecora, R.; Amoroso, F.; Arena, M.; Noviello, M. C.; Rea, F.

    2017-04-01

    Within the framework of the JTI-Clean Sky (CS) project, and during the first phase of the Low Noise Configuration Domain of the Green Regional Aircraft - Integrated Technological Demonstration (GRA-ITD, the preliminary design and technological demonstration of a novel wing flap architecture were addressed. Research activities were carried out to substantiate the feasibility of morphing concepts enabling flap camber variation in compliance with the demanding safety requirements applicable to the next generation green regional aircraft, 130- seats with open rotor configuration. The driving motivation for the investigation on such a technology was found in the opportunity to replace a conventional double slotted flap with a single slotted camber-morphing flap assuring similar high lift performances -in terms of maximum attainable lift coefficient and stall angle- while lowering emitted noise and system complexity. Studies and tests were limited to a portion of the flap element obtained by slicing the actual flap geometry with two cutting planes distant 0.8 meters along the wing span. Further activities were then addressed in order to increase the TRL of the validated architecture within the second phase of the CS-GRA. Relying upon the already assessed concept, an innovative and more advanced flap device was designed in order to enable two different morphing modes on the basis of the A/C flight condition / flap setting: Mode1, Overall camber morphing to enhance high-lift performances during take-off and landing (flap deployed); Mode2, Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed. A true-scale segment of the outer wing flap (4 meters span with a mean chord of 0.9 meters) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation. Advanced and innovative solutions for the adaptive structure, actuation and control

  11. 77 FR 44113 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2012-07-27

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Aerospace LP (Type Certificate previously held by Israel Aircraft Industries, Ltd.) Model Gulfstream G150... to the manufacturer. This action was prompted by a report from the Civil Aviation Authority of Israel...

  12. 77 FR 64767 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2012-10-23

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... airworthiness directive (AD) for certain Gulfstream Aerospace LP (Type Certificate previously held by Israel... Certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and Gulfstream 200 airplanes...

  13. The Effect of Midline Corset Platysmaplasty on Degree of Face-lift Flap Elevation During Concomitant Deep-Plane Face-lift: A Cadaveric Study.

    Science.gov (United States)

    Jacono, Andrew A; Malone, Melanie H

    2016-05-01

    The evaluation of the effects of midline platysmaplasty concomitant with rhytidectomy. To determine whether midline platysmaplasty limits the degree of lift during deep-plane face-lift. Deep-plane rhytidectomy was performed on 10 cadaveric hemifaces. The redundant skin for excision after performing the face-lift was measured with and without midline platymaplasty. Deep-plane rhytidectomy. The redundant skin was measured preauricularly in the vertical and horizontal dimension, and postauricularly after deep-plane face-lift and after adding a midline platysmaplasty. Concomitant midline platysmaplasty significantly reduced the amount of lift during concomitant deep-plane rhytidectomy preauricularly in the vertical dimension by 40.5% (from 37.0 mm excess skin redraped to 22.0 mm) and postauricularly by 23.9% (from 40.6 mm excess skin redraped to 30.9 mm) (P jawline and midface during rhytidectomy. NA.

  14. 77 FR 31169 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-05-25

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-31T and..., contact Piper Aircraft, Inc., 926 Piper Drive, Vero Beach, Florida 32960; telephone: (772) 567-4361...

  15. CERN takes off at Lift11

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    CERN was especially featured at the Lift11 conference, held in Geneva early this month. Tara Shears delivered a keynote speech at the event, while Paul Oortman Gerlings (DGS-SEE) and Erik van der Bij (BE-CO) – winners of the Bulletin’s Lift11 competition – organised the CERN workshop.   Paul Oortman Gerlings takes questions at CERN's Lift11 workshop. Lift11 was an opportunity for CERN to reach today’s innovators and developers. “The event was filled with people eager to learn new ideas, who were not afraid to ask questions,” says Tara Shears, physicist from the LHCb Collaboration who presented an update on the status of the LHC. “People were amazed by what goes on inside CERN, by our science, our facilities – even by the way we carry out our day-to-day work. It is a branch of fundamental research that really seems to inspire everyone.” A small Lift11 group had the chance to take a tour of CERN, ...

  16. Analysis of ergonomic and unergonomic human lifting behaviors by using Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Kuschan Jan

    2017-03-01

    Full Text Available This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU with 9 Dimensions of Freedom (DOF each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.

  17. Concept definition and aerodynamic technology studies for single-engine V/STOL fighter/attack aircraft

    Science.gov (United States)

    Nelms, W. P.; Durston, D. A.

    1981-01-01

    The results obtained in the early stages of a research program to develop aerodynamic technology for single-engine V/STOL fighter/attack aircraft projected for the post-1990 period are summarized. This program includes industry studies jointly sponsored by NASA and the Navy. Four contractors have identified promising concepts featuring a variety of approaches for providing propulsive lift. Vertical takeoff gross weights range from about 10,000 to 13,600 kg (22,000 to 30,000 lb). The aircraft have supersonic capability, are highly maneuverable, and have significant short takeoff overload capability. The contractors have estimated the aerodynamics and identified aerodynamic uncertainties associated with their concepts. Wind-tunnel research programs will be formulated to investigate these uncertainties. A description of the concepts is emphasized.

  18. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  19. HLA-typing analysis following allogeneic bone grafting for sinus lifting.

    Science.gov (United States)

    Piaia, Marcelo; Bub, Carolina Bonet; Succi, Guilherme de Menezes; Torres, Margareth; Costa, Thiago Henrique; Pinheiro, Fabricio Costa; Napimoga, Marcelo Henrique

    2017-03-01

    According to the Brazilian Association of Organ Transplants, in 2015, 19,408 bone transplants were performed in Brazil, over 90% by Dental Surgeons. The surgical technique itself has a respectable number of reports regarding its clinical efficacy, as measured by long-term survival of dental implants in grafted areas. Uncertainty remains, however, as to whether fresh frozen grafts from human bone donors remain immunologically innocuous in the body of the host. Six male with no previous medical history of note, including systemic diseases, surgery or blood transfusion were selected. These patients underwent reconstructive procedures (sinus lifting) using fresh frozen human bone from a tissue bank. All patients had venous blood samples collected prior to surgery and 6 months after the procedure. Anti-HLA analysis for the detection of HLA (human leukocyte antigen) antibodies was performed using methods such as the LABScreen PRA Class I and Class II, LABScreen Single Antigen Class I and Class II, Luminex Platform. Reactive individuals to the screening tests (LABScreen PRA) were further investigated to determine the specificity of the antibodies detected (LABScreen Single Antigen) with a cutoff value of median fluorescence intensity ≥500. As a result, it was observed that two patients (33%) were positive in screening tests, one presenting with anti-HLA Class I and II sensitization and the other with anti-HLA class II. The specificity analysis showed that the patients sensitized to HLA class II presented 4 specificities, 3 of which immunologically relevant. In the second individual, 23 specificities were identified, 6 of which immunologically important for HLA class I and 4 specificities for HLA class II, 3 of these were immunologically important. All specificities detected had average fluorescence. These findings are suggestive that sinus-lifting procedures with allogeneic bone can induce immunological sensitization.

  20. Thread-Lift Sutures : Still in the Lift? A Systematic Review of the Literature

    NARCIS (Netherlands)

    Gulbitti, Haydar Aslan; Colebunders, Britt; Pirayesh, Ali; Bertossi, Dario; van der Lei, Berend

    Background: In 2006, Villa et al. published a review article concerning the use of thread-lift sutures and concluded that the technique was still in its infancy but had great potential to become a useful and effective procedure for nonsurgical lifting of sagged facial tissues. As 11 years have

  1. Thread-Lift Sutures : Still in the Lift? A Systematic Review of the Literature

    NARCIS (Netherlands)

    Gülbitti, Haydar Aslan; Colebunders, Britt; Pirayesh, Ali; Bertossi, Dario; van der Lei, Berend

    2018-01-01

    BACKGROUND: In 2006, Villa et al. published a review article concerning the use of thread-lift sutures and concluded that the technique was still in its infancy but had great potential to become a useful and effective procedure for nonsurgical lifting of sagged facial tissues. As 11 years have

  2. Modern trends of aircraft fly-by-wire systems

    Directory of Open Access Journals (Sweden)

    С. С. Юцкевич

    2013-07-01

    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  3. Effect of endoscopic brow lift on contractures and synkinesis of the facial muscles in patients with a regenerated postparalytic facial nerve syndrome.

    Science.gov (United States)

    Bran, Gregor M; Börjesson, Pontus K E; Boahene, Kofi D; Gosepath, Jan; Lohuis, Peter J F M

    2014-01-01

    Delayed recovery after facial palsy results in aberrant nerve regeneration with symptomatic movement disorders, summarized as the postparalytic facial nerve syndrome. The authors present an alternative surgical approach for improvement of periocular movement disorders in patients with postparalytic facial nerve syndrome. The authors proposed that endoscopic brow lift leads to an improvement of periocular movement disorders by reducing pathologically raised levels of afferent input. Eleven patients (seven women and four men) with a mean age of 54 years (range, 33 to 85 years) and with postparalytic facial nerve syndrome underwent endoscopic brow lift under general anesthesia. Patients' preoperative condition was compared with their postoperative condition using a retrospective questionnaire. Subjects were also asked to compare the therapeutic effectiveness of endoscopic brow lift and botulinum toxin type A. Mean follow-up was 52 months (range, 22 to 83 months). No intraoperative or postoperative complications occurred. During follow-up, patients and physicians observed an improvement of periorbital contractures and oculofacial synkinesis. Scores on quality of life improved significantly after endoscopic brow lift. Best results were obtained when botulinum toxin type A was adjoined after the endoscopic brow lift. Patients described a cumulative therapeutic effect. These findings suggest endoscopic brow lift as a promising additional treatment modality for the treatment of periocular postparalytic facial nerve syndrome-related symptoms, leading to an improved quality of life. Even though further prospective investigation is needed, a combination of endoscopic brow lift and postsurgical botulinum toxin type A administration could become a new therapeutic standard.

  4. Relative importance of expertise, lifting height and weight lifted on posture and lumbar external loading during a transfer task in manual material handling.

    Science.gov (United States)

    Plamondon, André; Larivière, Christian; Delisle, Alain; Denis, Denys; Gagnon, Denis

    2012-01-01

    The objective of this study was to measure the effect size of three important factors in manual material handling, namely expertise, lifting height and weight lifted. The effect of expertise was evaluated by contrasting 15 expert and 15 novice handlers, the effect of the weight lifted with a 15-kg box and a 23-kg box and the effect of lifting height with two different box heights: ground level and a 32 cm height. The task consisted of transferring a series of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables (moments) while expertise had low impact. On the other hand, expertise showed a significant effect of posture variables on the lumbar spine and knees. All three factors are important, but for a reduction of external back loading, the focus should be on the lifting height and weight lifted. The objective was to measure the effect size of three important factors in a transfer of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables but expertise was a major determinant in back posture.

  5. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  6. Coandă configured aircraft: A preliminary analytical assessment

    Science.gov (United States)

    Hamid, M. F. Abdul; Gires, E.; Harithuddin, A. S. M.; Abu Talib, A. R.; Rafie, A. S. M.; Romli, F. I.; Harmin, M. Y.

    2017-12-01

    The interest in the use of flow control for enhanced aerodynamic performance has grown, particularly in the use of jets (continuous, synthetic, pulsed, etc.), compliant surface, vortex-cell, and others. It has been widely documented that these active control concepts can dramatically alter the behaviour of aerodynamic components like airfoils, wings and bodies. In this conjunction, with the present demands of low-cost and efficient flights, the use of Coandă effect as a lift enhancer has attracted a lot of interest. Tangential jets that take advantage of the Coandă effect to closely follow the contours of the body have been considered to be simple and particularly effective. For this case, a large mass of surrounding air can be entrained, hence amplifying the circulation. In an effort to optimize the aerodynamic performance of an aircraft, such effect will be critically reviewed by taking advantage of recent progress. For this purpose, in this study, the design of a Coandă-configured aircraft wing will be mathematically idealized and modelled as a two-dimensional flow problem.

  7. Motor of Lift RSG-GAS Performance Analysis after Repair

    International Nuclear Information System (INIS)

    Asep-Saepuloh; Yayan-Andriyanto; Yuyut-Suraniyanto

    2006-01-01

    The out of order an equipment is ordinary natural process happened, above all the equipment be used continually with very old time, as for as out of order can be resulted from kinds of cause. Lift motor out of order can be result by motor is broken or happened the body shorten then affected do not function it the lift, so until done rewinding process. The rewinding is furl to repeat at motor coils. Motor of Lift represent main activator machine turning around shares pulley. Lift Motor will work if there is called in normal operation condition or the moment manual switch if done maintenance. Motor used at lift is motor three phases with two speeds that is low speed and high speed. Rewinding process must be done removed the motor from Lift machine and have to be done by professional workshop. In during function test take place, temperature at coil reach 70 o C (exceeding boundary permitted). After done installation addition thermal at motor coil hence his temperature become normal that is only reach 50 o C. (author)

  8. A comparative analysis of lumbar spine mechanics during barbell- and crate-lifting: implications for occupational lifting task assessments.

    Science.gov (United States)

    Zehr, Jackie D; Carnegie, Danielle R; Welsh, Timothy N; Beach, Tyson A C

    2018-03-19

    To compare the effects of object handled and handgrip used on lumbar spine motion and loading during occupational lifting task simulations. Eight male and eight female volunteers performed barbell and crate lifts with a pronated (barbell) and a neutral (crate) handgrip. The mass of barbells/crates lifted was identical across the objects and fixed at 11.6 and 9.3 kg for men and women, respectively. The initial heights of barbells/crates were individualized to mid-shank level. Body segment kinematics and foot-ground reaction kinetics were collected, and then input into an electromyography-assisted dynamic biomechanical model to quantify lumbar spine motion and loading. Lumbar compression and net lumbosacral moment magnitudes were 416 N and 17 Nm lower when lifting a barbell than when lifting a crate (p  0.392) or flexion/extension velocities (p > 0.085). Crate- and barbell-lifting tasks can be used interchangeably if assessing lifting mechanics based on peak spine motion variables. If assessments are based on the spine loading responses to task demands, however, then crate- and barbell-lifting tasks cannot be used interchangeably.

  9. Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Johann C. Dauer

    2014-05-01

    Full Text Available Unmanned aircraft (UA applications impose a variety of computing tasks on the on-board computer system. From a research perspective, it is often more convenient to evaluate algorithms on bigger aircraft as they are capable of lifting heavier loads and thus more powerful computational units. On the other hand, smaller systems are often less expensive and operation is less restricted in many countries. This paper thus presents a conceptual design for flight software that can be evaluated on the UA of convenient size. The integration effort required to transfer the algorithm to different sized UA is significantly reduced. This scalability is achieved by using exchangeable payload modules and a flexible process distribution on different processing units. The presented approach is discussed using the example of the flight software of a 14 kg unmanned helicopter and an equivalent of 1.5 kg. The proof of concept is shown by means of flight performance in a hardware-in-the-loop simulation.

  10. Conceptual study of an advanced VTOL transport aircraft; Kosoku VTOL ki no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Watanabe, M; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-05-01

    The concept of the advanced 100-passenger class VTOL aircraft equipped with new lift fan engines was clarified as domestic passenger aircraft for the 21st century. Under the assumption of a total weight of 40 tons, a seat fuselage diameter of 3.3m as small as possible and a short seat pitch, the airframe shape satisfying a target performance was obtained without any problems about aerodynamic stability, operability and control capability, and noise lower than that of small helicopters was also estimated. In the case of 10 tons in airframe payload and 8 tons in fuel, even if light-weight composite materials were used for most of parts including fuselage structure, a total weight summed to 42.3 tons exceeding a target by 2.3 tons. As this VTOL aircraft was limited to domestic flight use only, the total weight could be reduced without any change in airframe shape and number of passengers by reducing the payload (baggage weight can be probably reduced by 2 tons/100 passengers in the future domestic flight) and fuel (cruising range around 2500km can be secured even if fuel is reduced by 0.3 tons). In conclusion, this concept was thus technologically reasonable. 6 refs., 15 figs., 6 tabs.

  11. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao

    2012-01-01

    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  12. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight.

    Directory of Open Access Journals (Sweden)

    Frank Behrendt

    Full Text Available Facilitation of the primary motor cortex (M1 during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer's motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS to measure the corticospinal excitability of the m. erector spinae (ES while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature.

  13. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight.

    Science.gov (United States)

    Behrendt, Frank; de Lussanet, Marc H E; Zentgraf, Karen; Zschorlich, Volker R

    2016-01-01

    Facilitation of the primary motor cortex (M1) during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer's motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS) to measure the corticospinal excitability of the m. erector spinae (ES) while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature.

  14. 78 FR 7642 - Airworthiness Directives; Piper Aircraft, Inc.

    Science.gov (United States)

    2013-02-04

    ... Airworthiness Directives; Piper Aircraft, Inc. AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) PA-28, PA-32, PA-34, and PA-44...

  15. Computation of load functions for different types of aircraft

    International Nuclear Information System (INIS)

    Siefert, Alexander; Henkel, Fritz-Otto

    2013-01-01

    In the presentation the influence of different parameters on the Ft-function were shown. The increase of the impact velocity shows for all aircraft a higher maximal load value and a reduced impact time. Due to the structural setup of the aircraft's the intensity is of these effects different. Comparing the Ft-function of A320, A340 and A380 for an impact velocity of 100 and 175 m/s no constant relation between them can be determined. • The variation of the flight direction with respect to the vertical axis shows a great influence on the Ft-function. A approximation by the cosine is especially for bigger rotations not correct. The influence of the rotation about the horizontal axis can be neglected. Finally the SPH-method was applied for the modelling of the fuel. The comparison to the discrete modelling approach was carried out for the Phantom F4. Thereby no big influence on the Ft-function is observed. For the evaluation of this modelling approach on the local damage the loaded area must be determined in further investigations

  16. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  17. Lambda-lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, O.; Schultz, U.P.

    2004-01-01

    -lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...

  18. Defense Strategy of Aircraft Confronted with IR Guided Missile

    Directory of Open Access Journals (Sweden)

    Hesong Huang

    2017-01-01

    Full Text Available Surface-type infrared (IR decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhaust system radiation in the state of different heights and different speeds are established. Secondly, the most effective avoidance maneuver is simulated when the missile comes from the front of the target aircraft. Lastly, combining maneuver with decoys, the best defense strategy is analysed when the missile comes from the front of aircraft. The result of simulation, which is authentic, is propitious to avoid the missile and improve the survivability of aircraft.

  19. Back injury prevention: a lift team success story.

    Science.gov (United States)

    Hefti, Kelly S; Farnham, Richard J; Docken, Lisa; Bentaas, Ruth; Bossman, Sharon; Schaefer, Jill

    2003-06-01

    Work related back injuries among hospital personnel account for high volume, high cost workers' compensation claims. These injuries can be life altering experiences, affecting both the personal and professional lives of injured workers. Lifting must be viewed as a skill involving specialized training and mandated use of mechanical equipment, rather than as a random task performed by numerous health care providers. The use of a lift team specially trained in body mechanics, lifting techniques, and the use of mandated mechanical equipment can significantly affect injury data, financial outcomes, and employee satisfaction. The benefits of a lift team extend beyond the effect on injury and financial outcomes--they can be used for recruitment and retention strategies, and team members serve as mentors to others by demonstrating safe lifting techniques. Ultimately, a lift team helps protect a valuable resource--the health care worker.

  20. Evaluation of ceiling lifts in health care settings: patient outcome and perceptions.

    Science.gov (United States)

    Alamgir, Hasanat; Li, Olivia Wei; Gorman, Erin; Fast, Catherine; Yu, Shicheng; Kidd, Catherine

    2009-09-01

    Ceiling lifts have been introduced into health care settings to reduce manual patient lifting and thus occupational injuries. Although growing evidence supports the effectiveness of ceiling lifts, a paucity of research links indicators, such as quality of patient care or patient perceptions, to the use of these transfer devices. This study explored the relationship between ceiling lift coverage rates and measures of patient care quality (e.g., incidence of facility-acquired pressure ulcers, falls, urinary infections, urinary incontinence, and assaults [patient to staff] in acute and long-term care facilities), as well as patient perceptions of satisfaction with care received while using ceiling lifts in a complex care facility. Qualitative semi-structured interviews were used to generate data. A significant inverse relationship was found between pressure ulcer rates and ceiling lift coverage; however, this effect was attenuated by year. No significant relationships existed between ceiling lift coverage and patient outcome indicators after adding the "year" variable to the model. Patients generally approved of the use of ceiling lifts and recognized many of the benefits. Ceiling lifts are not detrimental to the quality of care received by patients, and patients prefer being transferred by ceiling lifts. The relationship between ceiling lift coverage and pressure ulcer rates warrants further investigation. Copyright (c) 2009, SLACK Incorporated.

  1. Stereotype threat and lift effects in motor task performance: the mediating role of somatic and cognitive anxiety.

    Science.gov (United States)

    Laurin, Raphael

    2013-01-01

    The aim of this investigation was to replicate the stereotype threat and lift effects in a motor task in a neutral sex-typed activity, using somatic and cognitive anxiety as key mediators of these phenomena. It was hypothesized that an ingroup/outgroup social categorization based on gender would have distinctive effects for female and male participants. A total of 161 French physical education students were randomly assigned to three threat conditions--no threat, female threat, and male threat--thus leading to a 3 x 2 (threat by gender) design. The analyses revealed a stereotype lift effect on the performances for both male and female participants, as well as a stereotype threat effect only for female participants. They also indicated that somatic anxiety had a mediating effect on the performance of female participants targeted by a negative stereotype, but that it had a facilitating effect on their performance. The stereotype threat and lift effects on motor tasks were replicated in a neutral sex-typed activity and somatic anxiety seems to have a facilitating mediating effect of the relationships between the gender-conditions (control or female threat) interaction and free-throw performance. The model used to distinguish somatic and cognitive anxiety appeared to be a relevant means of explaining the stereotype threat and lift mechanisms.

  2. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    Science.gov (United States)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  3. [Origin of lifting and lowering theory and its herb pair study].

    Science.gov (United States)

    Guo, Zhao-Juan; Yuan, Yi-Ping; Kong, Li-Ting; Jia, Xiao-Yu; Wang, Ning-Ning; Dai, Ying; Zhai, Hua-Qiang

    2017-08-01

    Lifting and lowering theory is one of the important basis for guiding clinical medication. Through the study of ancient books and literature, we learned that lifting and lowering theory was originated in Huangdi Neijing, practiced more in the Shanghan Zabing Lun, established in Yixue Qiyuan, and developed in Compendium of Materia Medica and now. However, lifting and lowering theory is now mostly stagnated in the theoretical stage, with few experimental research. In the clinical study, the guiding role of lifting and lowering theory to prescriptions?mainly includes opposite?role?of lift and lower medicine property, mutual promotion of lift and lower medicine property, main role of lift medicine property and main role of lower medicine property. Under the guidance of lifting and lowering theory, the herb pair compatibility include herb combination of lift medicine property, herb combination of lift and lower medicine property and herb combination of lower medicine property. Modern biological technology was used in this study to carry out experimental research on the lifting and lowering theory, revealing the scientific connotation of it, which will help to promote clinical rational drug use. Copyright© by the Chinese Pharmaceutical Association.

  4. 14 CFR 382.97 - To which aircraft does the requirement to provide boarding and deplaning assistance through the...

    Science.gov (United States)

    2010-01-01

    ... provide boarding and deplaning assistance through the use of lifts apply? 382.97 Section 382.97... REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Boarding, Deplaning, and Connecting Assistance § 382.97 To which aircraft does the requirement to provide boarding and deplaning assistance...

  5. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  6. Toward the bi-modal camber morphing of large aircraft wing flaps: the CleanSky experience

    Science.gov (United States)

    Pecora, R.; Amoroso, F.; Magnifico, M.

    2016-04-01

    The Green Regional Aircraft (GRA), one of the six CleanSky platforms, represents the largest European effort toward the greening of next generation air transportation through the implementation of advanced aircraft technologies. In this framework researches were carried out to develop an innovative wing flap enabling airfoil morphing according to two different modes depending on aircraft flight condition and flap setting: - Camber morphing mode. Morphing of the flap camber to enhance high-lift performances during take-off and landing (flap deployed); - Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed and consequent optimization of aerodynamic efficiency. A true-scale flap segment of a reference aircraft (EASA CS25 category) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation issues especially with reference to the tapered geometrical layout and 3D aerodynamic loads distributions. The investigation domain covered the flap region spanning 3.6 m from the wing kink and resulted characterized by a taper ratio equal to 0.75 with a root chord of 1.2 m. High TRL solutions for the adaptive structure, actuation and control system were duly analyzed and integrated while assuring overall device compliance with industrial standards and applicable airworthiness requirements.

  7. 77 FR 42455 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-07-19

    ...-0756; Directorate Identifier 2012-CE-012-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft... adopt a new airworthiness directive (AD) for all Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-18 and PA-19 airplanes. This proposed AD was prompted by...

  8. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation used in compilers and in partial evaluators and that operates in cubic time. In this article, we show how to reduce this complexity to quadratic time. Lambda-lifting transforms a block-structured program into a set of recursive equations, one for each...... local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters that yields the cubic factor in the traditional formulation of lambda-lifting, which...... is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity of lambda-lifting from O(n 3 log n)toO(n2 log n), where n is the size of the program. Since a lambda-lifter can output...

  9. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; hide

    2016-01-01

    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  10. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft

    Directory of Open Access Journals (Sweden)

    Ishaan PRAKASH

    2017-09-01

    Full Text Available Recent trends in aircraft design research have resulted in development of many unconventional configurations mostly aimed at improving aerodynamic efficiency. The blended wing body (BWB is one such configuration that holds potential in this regard. In its current form the BWB although promises a better lift to drag (L/D ratio it is still not able to function to its maximum capability due to design modifications such as twist and reflexed airfoils to overcome stability problems in the absence of a tail. This work aims to maximize the impact of a BWB. A design approach of morphing the BWB with a conventional aft fuselage is proposed. Such a configuration intends to impart full freedom to the main wing and the blended forward fuselage to contribute in lift production while the conventional tail makes up for stability. The aft fuselage, meanwhile, also ensures that the aircraft is compatible with current loading and airdrop operations. This paper is the culmination of obtained models results and inferences from the first phase of the project wherein development of aerodynamic design and analysis methodologies and mission specific optimization have been undertaken.

  11. 78 FR 26556 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-05-07

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2012-0756; Directorate Identifier 2012-CE-012-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft... Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-18 and...

  12. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  13. Visual perception of fatigued lifting actions.

    Science.gov (United States)

    Fischer, Steven L; Albert, Wayne J; McGarry, Tim

    2012-12-01

    Fatigue-related changes in lifting kinematics may expose workers to undue injury risks. Early detection of accumulating fatigue offers the prospect of intervention strategies to mitigate such fatigue-related risks. In a first step towards this objective, this study investigated whether fatigue detection was accessible to visual perception and, if so, what was the key visual information required for successful fatigue discrimination. Eighteen participants were tasked with identifying fatigued lifts when viewing 24 trials presented using both video and point-light representations. Each trial comprised a pair of lifting actions containing a fresh and a fatigued lift from the same individual presented in counter-balanced sequence. Confidence intervals demonstrated that the frequency of correct responses for both sexes exceeded chance expectations (50%) for both video (68%±12%) and point-light representations (67%±10%), demonstrating that fatigued lifting kinematics are open to visual perception. There were no significant differences between sexes or viewing condition, the latter result indicating kinematic dynamics as providing sufficient information for successful fatigue discrimination. Moreover, results from single viewer investigation reported fatigue detection (75%) from point-light information describing only the kinematics of the box lifted. These preliminary findings may have important workplace applications if fatigue discrimination rates can be improved upon through future research. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The design space exploration and preliminary testing of a new class of tailsitting quadrotor aircraft

    Science.gov (United States)

    Bodlak, Eric

    Within the last decade, multi-rotor aircraft have become the most prevalent form of unmanned aerial vehicle (UAV), with applications in the military, commercial, and civilian sectors. This is due primarily to advances in electronics that allow small-scale aircraft systems to be produced and controlled in an affordable manner. Such systems are maneuvered by precisely varying the thrust and torque of individual rotors to produce flight control forces, thereby eliminating much of the mechanical complexity inherent in conventional helicopter configurations. Although many UAV missions exploit the ability to hover in place, many also require the ability to quickly and efficiently dash from point to point. Rotorcraft, in general, are limited in this capacity, since rotor thrust must also be used to produce lift. Transitional aircraft represent an alternative that blends the vertical take-off and landing (VTOL) capabilities of rotorcraft with the forward flight performance of fixed-wing aircraft, but they often rely on cumbersome mechanisms, such as additional or rotating powerplants. UAVs, however, have no need to maintain cockpit orientation. Consequently, a tailsitting quadcopter concept was devised by Dr. Ron Barrett to combine quadcopter hovering performance with the high-speed flight of fixed-wing craft. This paper lays out the arguments for such an aircraft--the XQ-139 --and examines the performance of XQ-139 variants with installed power values ranging from 100 W to 10,000 kW. Battery-electric, rotary engine, turboprop, and hybrid propulsive options are considered, and the merits of each discussed. Additionally, an XQ-139 prototype was designed and constructed, and stationary test was used to compare the aircraft's installed efficiency with that of a typical quadcopter. The prototype was found to be approximately 5% more efficient in hover mode than the quadcopter to which it was compared.

  15. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost,

  16. A strategy of faster movements used by elderly humans to lift objects of increasing weight in ecological context.

    Science.gov (United States)

    Hoellinger, Thomas; McIntyre, Joseph; Jami, Lena; Hanneton, Sylvain; Cheron, Guy; Roby-Brami, Agnes

    2017-08-15

    It is not known whether, during the course of aging, changes occur in the motor strategies used by the CNS for lifting objects of different weights. Here, we analyzed the kinematics of object-lifting in two different healthy groups (young and elderly people) plus one well-known deafferented patient (GL). The task was to reach and lift onto a shelf an opaque cylindrical object with changing weight. The movements of the hand and object were recorded with electromagnetic sensors. In an ecological context (i.e. no instruction was given about movement speed), we found that younger participants, elderly people and GL did not all move at the same speed and that, surprisingly, elder people are faster. We also observed that the lifting trajectories were constant for both the elderly and the deafferented patient while younger participants raised their hand higher when the object weighed more. It appears that, depending on age and on available proprioceptive information, the CNS uses different strategies of lifting. We suggest that elder people tend to optimize their feedforward control in order to compensate for less functional afferent feedback, perhaps to optimize movement time and energy expenditure at the expense of high precision. In the case of complete loss of proprioceptive input, however, compensation follows a different strategy as suggested by GL's behavior who moved more slowly compared to both our younger and older participants. Copyright © 2017. Published by Elsevier Ltd.

  17. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    ideas to get expressions for lift and moment that are remarkably accurate. The pressure ... ating a lift force, leads to a nose-up or nose-down moment also. .... venient to use for a fluid since we would like to deal with a flow .... energy to get lift?

  18. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    Science.gov (United States)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  19. Aircraft vulnerability analysis by modelling and simulation

    CSIR Research Space (South Africa)

    Willers, CJ

    2014-09-01

    Full Text Available attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft...

  20. Prediction of peak back compressive forces as a function of lifting speed and compressive forces at lift origin and destination - a pilot study.

    Science.gov (United States)

    Greenland, Kasey O; Merryweather, Andrew S; Bloswick, Donald S

    2011-09-01

    To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) back-compressive force. Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R(2) values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

  1. Lifted Java: A Minimal Calculus for Translation Polymorphism

    DEFF Research Database (Denmark)

    Ingesman, Matthias Diehn; Ernst, Erik

    2012-01-01

    To support roles and similar notions involving multiple views on an object, languages like Object Teams and CaesarJ include mechanisms known as lifting and lowering. These mechanisms connect pairs of objects of otherwise unrelated types, and enable programmers to consider such a pair almost...

  2. Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites

    Science.gov (United States)

    Rehfield, Lawrence W.

    2004-01-01

    Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.

  3. Occupational lifting and pelvic pain during pregnancy:

    DEFF Research Database (Denmark)

    Larsen, Pernille Stemann; Strandberg-Larsen, Katrine; Juhl, Mette

    2013-01-01

    OBJECTIVES: Pelvic pain during pregnancy is a common ailment, and the disease is a major cause of sickness absence during pregnancy. It is plausible that occupational lifting may be a risk factor of pelvic pain during pregnancy, but no previous studies have examined this specific exposure. The aim...... of this study was to examine the association between occupational lifting and pelvic pain during pregnancy. METHODS: The study comprised 50 143 pregnant women, enrolled in the Danish National Birth Cohort in the period from 1996-2002. During pregnancy, the women provided information on occupational lifting...... (weight load and daily frequency), and six months post partum on pelvic pain. Adjusted odds ratios for pelvic pain during pregnancy according to occupational lifting were calculated by logistic regression. RESULTS: Any self-reported occupational lifting (>1 time/day and loads weighing >10 kg...

  4. A Real-Time Lift Detection Strategy for a Hip Exoskeleton.

    Science.gov (United States)

    Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona

    2018-01-01

    Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was exoskeleton in assisting subjects in performing load lifting tasks. These results validate the promise of applying the proposed lift detection strategy for exoskeleton control aiming at lift

  5. Safety of Cargo Aircraft Handling Procedure

    Directory of Open Access Journals (Sweden)

    Daniel Hlavatý

    2017-07-01

    Full Text Available The aim of this paper is to get acquainted with the ways how to improve the safety management system during cargo aircraft handling. The first chapter is dedicated to general information about air cargo transportation. This includes the history or types of cargo aircraft handling, but also the means of handling. The second part is focused on detailed description of cargo aircraft handling, including a description of activities that are performed before and after handling. The following part of this paper covers a theoretical interpretation of safety, safety indicators and legislative provisions related to the safety of cargo aircraft handling. The fourth part of this paper analyzes the fault trees of events which might occur during handling. The factors found by this analysis are compared with safety reports of FedEx. Based on the comparison, there is a proposal on how to improve the safety management in this transportation company.

  6. Thermally stimulating mechanically-lifted well production

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Hinson, R.A.

    1984-06-19

    A well which is producing slowly by artificial lift can be economically heated by first inflowing a nitrogen-generating solution, to form a pool of reacting liquid near the uppermost opening into the reservoir, then inflowing more solution while artificially-lifting liquid from near the lowermost opening into the reservoir at a rate substantially equalling the inflow rate.

  7. Maintenance program developmentandImport /Export of Aircraft in USA

    OpenAIRE

    Takele, Teklu

    2009-01-01

    AbstractThis thesis discuss how United Parcel Service (UPS) develop its aircraft maintenanceprogram after import of McDonnell Douglas MD-11aircraft and the process of exporting newMD-11 aircraft from manufacturer in USA to European operator as passenger aircraft. It alsodiscusses the process of importing the same types of aircraft as freight carrier. The aircraftundergo, through different modifications at Singapore Technologies Aerospace (STA)conversion from passenger to freight carrier, a pr...

  8. High-quality vertical light emitting diodes fabrication by mechanical lift-off technique

    Science.gov (United States)

    Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen

    2011-10-01

    We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.

  9. Aircraft accident analysis for emergency planning and safety analysis

    International Nuclear Information System (INIS)

    Nicolosi, S.L.; Jordan, H.; Foti, D.; Mancuso, J.

    1996-01-01

    Potential aircraft accidents involving facilities at the Rocky Flats Environmental Technology Site (Site) are evaluated to assess their safety significance. This study addresses the probability and facility penetrability of aircraft accidents at the Site. The types of aircraft (large, small, etc.) that may credibly impact the Site determine the types of facilities that may be breached. The methodology used in this analysis follows elements of the draft Department of Energy Standard ''Accident Analysis for Aircraft Crash into Hazardous Facilities'' (July 1995). Key elements used are: the four-factor frequency equation for aircraft accidents; the distance criteria for consideration of airports, airways, and jet routes; the consideration of different types of aircraft; and the Modified National Defense Research Committee (NDRC) formula for projectile penetration, perforation, and minimum resistant thickness. The potential aircraft accident frequency for each type of aircraft applicable to the Site is estimated using a four-factor formula described in the draft Standard. The accident frequency is the product of the annual number of operations, probability of an accident, probability density function, and area. The annual number of operations is developed from site-specific and state-wide data

  10. The likelihood of failures in the operation of the lifting mechanism electrical hook bridge crane

    Directory of Open Access Journals (Sweden)

    Ritenman I.L.

    2017-09-01

    Full Text Available Given the application of the methods of analysis of types and consequences of failures (FMEA analysis to assess the technical risk of occurrence of emergency situations during the operation of the lifting mechanism electrical hook bridge crane. The technique allows to identify the limiting elements and to determine the significance of effects in the design of the lifting mechanism, to develop measures to reduce the risk of the occurrence of an emergency.

  11. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  12. Performance investigations on modified vertical axis water turbine: Combination of lift and drag

    Science.gov (United States)

    Baumatary, Mithinga; Biswas, Angimitra; Misra, Rahul Dev

    2018-04-01

    Extracting energy from the water has been followed since decades due to environmental friendly. Now a days everyone is running after clean energy, therefore extracting energy from the water turbine is a good approach. The main idea of this study is to investigate the performance of a new design turbine which is a combination of the concepts of lift and drag turbine. The main purpose of the study is to accumulate maximum energy by considering advantages of two different types of turbine. The maximum coefficient of power is 0.141 at free stream velocity of 0.5 m/s. The modified new design turbine consist of straight section and the curve section. The length of the straight section influences the performance of the turbine. Investigation on the optimization of straight section has been carried out in this paper. As this type of turbine have opted the advantages of both lift and drag it has turned out to be fruitful.

  13. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  14. Design Of Vertical Take-Off And Landing VTOL Aircraft System

    Directory of Open Access Journals (Sweden)

    Win Ko Ko Oo

    2017-04-01

    Full Text Available Vertical Take Off and Landing Vehicles VTOL are the ones which can take off and land from the same place without need of long runway. This paper presents the design and implementation of tricopter mode and aircraft mode for VTOL aircraft system. Firstly the aircraft design is considered for VTOL mode. And then the mathematical model of the VTOL aircraft is applied to test stability. In this research the KK 2.1 flight controller is used for VTOL mode and aircraft mode. The first part is to develop the VTOL mode and the next part is the transition of VTOL mode to aircraft mode. This paper gives brief idea about numerous types of VTOLs and their advantages over traditional aircraftsand insight to various types of tricopter and evaluates their configurations.

  15. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting.

    Science.gov (United States)

    Kuijer, P P F M; van Oostrom, S H; Duijzer, K; van Dieën, J H

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.

  16. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

    Science.gov (United States)

    Yeung, S S; Ng, G Y

    2000-06-01

    Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

  17. Laser-induced forward transfer (LIFT) of congruent voxels

    Science.gov (United States)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  18. Carbon dioxide degassing in fresh and saline water. II: Degassing performance of an air-lift

    DEFF Research Database (Denmark)

    Moran, Damian

    2010-01-01

    A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate, and c...... for any water type (i.e. temperature, alkalinity, salinity and influent CO2 concentration).......A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate......, and could be adjusted to three lifting heights: 11, 16 and 25 cm. The gas to liquid ratio (G:L) was high (1.9–2.0) at low water discharge rates (Qw) and represented the initial input energy required to raise the water up the vertical riser section to the discharge pipe. The air-lift increased in pumping...

  19. Lift conference | 5-7 February

    CERN Multimedia

    2014-01-01

    Since 2006, Lift Events explore the business and social implications of new technologies through the organisation of international event series and open innovation programs in Europe, Asia and America. The next conference will be held on 5-7 February in Geneva.   (Image: © Lift Conference) The Lift Conference is one of the leading conferences on innovation in Europe and a key annual meeting for individuals and organizations wishing to understand and anticipate trends and innovation. Held every year in February in Geneva (5-7 February 2014), the Lift Conference is a three-day event consisting of talks, interactive workshops, exhibitions, and discussions bringing together over 1’000 participants from all society’s sectors and industries in a dynamic and informal environment with the aim to learn, connect, share and leverage innovation opportunities.   Extraordinary speakers will take to the stage at Lift14: Porter Erisman, former VP of Alibaba.com turned...

  20. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  1. Sensorimotor memory biases weight perception during object lifting

    Directory of Open Access Journals (Sweden)

    Vonne evan Polanen

    2015-12-01

    Full Text Available When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, the weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber’s law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in

  2. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  3. Development of Bubble Lift-off Diameter Model for Subcooled Boiling Flows

    International Nuclear Information System (INIS)

    Hoang, Nhan Hien; Chu, Incheol; Song Chulhwa; Euh, Dongjin

    2014-01-01

    A lot of models and correlations for predicting the bubble departure/lift-off diameter are available in the literature. Most of them were developed based on a hydrodynamic principle, which balances forces acting on a bubble at the departure/lift-off point. One difficulty of these models is lack of essential information, such as bubble front velocity, liquid velocity, or relative velocity, to estimate the active force elements. Hence, the lift-off bubble diameter predicted by these hydrodynamic-controlled models may be suffered a large uncertainty. In contract to the hydrodynamic approach, there are few models developed based on the heat transfer aspect. By balancing the heat conducted through a microlayer underneath a bubble with the heat taken away by condensation at the upper part of the bubble, Unal derived a heat-controlled model of the bubble lift-off diameter. This model did not consider the role of superheat liquid layer surrounding the bubble as well as the effect of liquid properties on the heat transfer process. Beside these two approaches, several empirical correlations have been proposed based on dimensionless analyses for measured experimental databases. The application of these correlations to different experiments conditions is, of course, questionable because of the lack of physical bases. Regarding the heat transfer accompanied by a vapor bubble, four involved heat transfer regions surrounding this bubble can be defined as in Fig. 1. These are dry region, microlayer, superheated liquid layer (SpLL) and subcooled liquid layer (SbLL). The existing of the microlayer is confirmed by experiments, and it is considered to be very effective in the heat transfer. Sernas and Hoper defined five types of the microlayer and indicated that the microlayer acting as a very thick liquid layer gives a best prediction for the bubble growth. However, beside the microlayer, the SpLL might play an important role in the heat transfer if its effective heat transfer area

  4. Wind tower service lift

    Science.gov (United States)

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  5. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  6. Drag and Lift Estimation from 3-D Velocity Field Data Measured by Multi-Plane Stereo PIV

    OpenAIRE

    加藤, 裕之; 松島, 紀佐; 上野, 真; 小池, 俊輔; 渡辺, 重哉; Kato, Hiroyuki; Matsushima, Kisa; Ueno, Makoto; Koike, Shunsuke; Watanabe, Shigeya

    2013-01-01

    For airplane design, it is crucial to have tools that can accurately predict airplane drag and lift. Usually drag and lift prediction methods are force measurement using wind tunnel balance. Unfortunately, balance data do not provide information contribution of airplane to components to drag and lift for more precise and competitive airplane design. To obtain such information, a wake integration method for use drag and lift estimation was developed for use in wake survey data analysis. Wake s...

  7. Establishing a Regulatory Framework for the Development & Operations of Sub-Orbital & Orbital Aircraft (SOA) in the EU

    Science.gov (United States)

    Marciacq, Jean-Bruno; Tomasello, Filippo; Erdelyi, Zsuzsanna; Gerhard, Michael

    2013-09-01

    The Treaty of the European Union allows for the development of common policies for all sectors of transport, including aviation, and its safety. To this end, the European legislator established in 2002 the European Aviation Safety Agency (EASA), located in Cologne, Germany, and gave it responsibility for the regulation of aviation safety, successively encompassing airworthiness, air operations and Flight Crew Licensing (FCL), Air Traffic Management (ATM), Air Navigation Systems (ANS), as well as Aerodromes (ADR).The Annexes 6 and 8 of the International Civil Aviation Organization (ICAO) to the Chicago Convention define an aircraft as "any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth's surface". The aerodynamic lift generated during the atmospheric part of the flight is commonly used to sustain and control the vehicle, that is to take-off, climb, pull-up, perform manoeuvres, fly back to the airport and land. Thus, Sub- orbital and Orbital Aircraft (SOA) are considered to be aircraft, as opposed to rockets which are symmetrical bodies not generating lift, and solely sustained by their rocket engine(s).Consequently, the regulation of SOA airworthiness, their crew, operations, insertion into the traffic and utilisation of aerodromes would in principle fall under the remit of EASA, which would have to fulfil its role of protection of the European citizens in relation to civil suborbital and orbital flights, that is to certify SOAs and their operations before they would be operated for Commercial Transport in the EU.Since EASA was first contacted by potential applicants in 2007, many projects have developed and the context has evolved. Thus, this paper intends to update the approach initially proposed at the 3rd IAASS in Rome in October 2008 and complemented at the 4th IAASS in Huntsville in May 2010 to accommodate sub-orbital and orbital aircraft into the EU regulatory system, and

  8. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Cassandra M.

    2014-07-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad-1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  9. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    International Nuclear Information System (INIS)

    Barrett, Ronald M; Barrett, Cassandra M

    2014-01-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad −1 . Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  10. Alternate method for gas measurement to offshore wells producing by plunger lift

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sergio Jose Goncalves e [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Mota, Francisco das Chagas [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The purpose of this paper is to describe an alternate method for gas measurement to wells producing by conventional plunger lift to a two phase separator in offshore production systems. The principle of the plunger lift is basically the use of a free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well's lifting efficiency. However, when the piston reaches the surface a liquid slug is produced through the flowline and it propagates into the separator where the phases are measured. Usually, orifice meter is widely used in separators to measure steady-state gas flow rate, but when intermittent flow is present, the gas causes the signal saturation of the differential pressure element ({delta}P), resulting in measurement distortion. The solution proposed in this work to estimate the gas flow rate during the liquid slug it was obtained through the mathematical modeling of the separator and with the use of System Identification Theory. Applying the ARX model it was possible to get the best fit to the collected data. So, with this model and its recursive variant (RARX) it was possible to prove that, with reasonable forecast degree, the signal of the gas flow rate can be recovered by starting from the signal of the pressure control valve of the separator. (author)

  11. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  12. AIRCRAFT MAINTENANCE HANGAR

    Directory of Open Access Journals (Sweden)

    GEAMBASU Gabriel George

    2017-05-01

    Full Text Available The paper presents the maintenance process that is done on an airplane, at a certain period of time, or after a number of flight hours or cycles and describes the checks performed behind each inspection. The first part of research describes the aircraft maintenance process that has to be done after an updated maintenance manual according with aircraft type, followed by a short introduction about maintenance hangar. The second part of the paper presents a hangar design with a foldable roof and walls, which can be folded or extended, over an airplane when a maintenance process is done, or depending on weather condition.

  13. Recovery of DNA from latent fingerprint tape lifts archived against matte acetate.

    Science.gov (United States)

    Steadman, Shelly A; Hoofer, Steven R; Geering, Sarah C; King, Stephanie; Bennett, Marc A

    2015-05-01

    This study was driven by court order to examine methods to remove, extract, and STR-type potential DNA entrapped between latent fingerprint lifting tape and matte acetate that was collected from a 1977 crime scene. Results indicate that recovery of appreciable quantities of DNA is more challenging once adhesive is attached to matte acetate cards and even more difficult when fixed following black powder enhancement. STR amplification of extracts from entrapped fingermarks collected following the dusting/lifting procedure did not produce robust profiles, and extraneous peaks not expressed by print donors were detected for some samples. A hearing was set to argue whether there was DNA remaining to be tested, and if so, whether that DNA could be exculpatory in this postconviction matter. The studies herein provided the basis for the court's decision to not require the testing. © 2015 American Academy of Forensic Sciences.

  14. Effects of a Belt on Intra-Abdominal Pressure during Weight Lifting.

    Science.gov (United States)

    1988-03-01

    potentially injurious b compressive forces on spinal discs during lifting. To investigate the effects of a standard lifting belt on lAP and lifting mechanics... injurious compressive forces on spinal discs during lifting. To investigate the effects of a standard lifting belt on IAP and lifting ! mechanics... weightlifting (7,9). Both olympic and power lifters have used lifting belts for many years, yet virtually no research has been reported which examines

  15. Fatigue-related changes in the coordination of lifting and their effect of low back load

    NARCIS (Netherlands)

    Van Dieën, Jaap H.; Toussaint, Huub M.; Maurice, Cora; Mientjes, Martine

    1996-01-01

    In this study, changes in movement coordination caused by fatigue that developed during repetitive lifting were examined. Five men performed 6 times a 5-min bout of lifting an 8-kg barbell at 15 lifts/min, using two lifting techniques; one minimized trunk rotation (squat lift), and the other

  16. Wide Body Aircraft Demand Potential at Washington National Airport,

    Science.gov (United States)

    1977-09-01

    the city-pair markets. Probably the most important feature of FA-7 is the fact that it allows for investigation of the behavior of airlines to changes...FINANCIAL INFORMfATION YLIGHTS BY AIRCRAFT TPE ~.4/J \\ FUEL COSUMED PASSENGERS UARRIED BY TOA IR F FLIGHITS TOTAL AIRCRAFT USAGE coded data. Sample...the various levels of operations. Similar behavior can be identified in the simultaneous increase of both types of aircraft at Dulles. Tables lAthrough

  17. Effect of training and lifting equipment for preventing back pain in lifting and handling: systematic review

    NARCIS (Netherlands)

    Martimo, Kari-Pekka; Verbeek, Jos; Karppinen, Jaro; Furlan, Andrea D.; Takala, Esa-Pekka; Kuijer, P. Paul F. M.; Jauhiainen, Merja; Viikari-Juntura, Eira

    2008-01-01

    To determine whether advice and training on working techniques and lifting equipment prevent back pain in jobs that involve heavy lifting. Medline, Embase, CENTRAL, Cochrane Back Group's specialised register, CINAHL, Nioshtic, CISdoc, Science Citation Index, and PsychLIT were searched up to

  18. Maximum Acceptable Weight of Lift reflects peak lumbosacral extension moments in a Functional Capacity Evaluation test using free style, stoop, and squat lifting

    NARCIS (Netherlands)

    Kuijer, P.P.F.M.; van Oostrom, S.H.; Duijzer, K.; van Dieen, J.H.

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting

  19. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting

    NARCIS (Netherlands)

    Kuijer, P. P. F. M.; van Oostrom, S. H.; Duijzer, K.; van Dieën, J. H.

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting

  20. 77 FR 58323 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2012-09-20

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... Previously Held by Israel Aircraft Industries, Ltd.) Model Gulfstream G150 airplanes. This proposed AD was.... Discussion The Civil Aviation Authority of Israel (CAAI), which is the aviation authority for Israel, has...

  1. 77 FR 32069 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2012-05-31

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and Gulfstream 200 airplanes. This proposed... receive about this proposed AD. Discussion The Civil Aviation Authority of Israel (CAAI), which is the...

  2. Isolated neck-lifting procedure: isolated stork lift.

    Science.gov (United States)

    Barbarino, Sheila C; Wu, Allan Y; Morrow, David M

    2013-04-01

    Many patients desire cosmetic improvement of neck laxity when consulting with a plastic surgeon about their face. Neck laxity and loss of the cervicomental angle can be due to multiple components of aging such as skin quality/elasticity, loss of platysma muscle tone, and submental fat accumulation. Traditionally, the procedure of choice for patients with an aging lower face and neck is a cervicofacial rhytidectomy. However, occasionally, a patient wishes to have no other facial surgery than an improvement of their excessive skin of the anterior, lateral, and/or posterior neck. In other instances, a patient may present with having had a face/neck-lifting procedure that left objectionable vertical/diagonal lines at the lateral neck. In both these instances, a surgeon should consider an isolated stork lift (ISL) procedure. An ISL procedure avoids and/or corrects problematic vertical/diagonal lateral neck folds by "walking" the excess skin flaps around the posterior inferior occipital hairline bilaterally, bringing the flaps together at the lateral and posterior neck, which sometimes involves a midline posterior dart excision of the dog ear. A patient presenting with excessive skin of the neck (anterior, lateral, and/or posterior) and/or residual vertical/diagonal skin folds is an excellent candidate for the ISL. The ISL procedure was performed on 273 patients over a 2-year period at The Morrow Institute. Patients were included if they had excessive skin of the anterior, lateral, and/or posterior neck and/or diagonal/vertical lateral bands and did not desire a full face-lifting procedure. Patients were excluded from this study if they would not accept having longer hair in order to cover the scar along the posterior inferior occipital hairline or a midline T-flap skin closure scar at the base of the posterior midline neck. Under a combination of local anesthesia and IV sedation, a postauricular face-lift incision was made that was extended in a circumoccipital fashion

  3. Maximum Acceptable Weight of Lift reflects peak lumbosacral extension moments in a Functional Capacity Evaluation test using free style, stoop, and squat lifting

    OpenAIRE

    Kuijer, P.P.F.M.; van Oostrom, S.H.; Duijzer, K.; van Dieen, J.H.

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting from knee to waist level - using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic para...

  4. Heavy Lift for Exploration: Options and Utilization

    Science.gov (United States)

    Creech, Steve; Sumrall, Phil

    2010-01-01

    Every study of exploration capabilities since the Apollo Program has recommended the renewal of a heavy lift launch capability for the United States. NASA is aggressively pursuing that capability. This paper will discuss several aspects of that effort and the potential uses for that heavy lift capability. The need for heavy lift was cited most recent in the findings of the Review of U.S. Human Space Flight Plans Committee. Combined with considerations of launch availability and on-orbit operations, the Committee finds that exploration will benefit from the availability of a heavy-lift vehicle, the report said. In addition, heavy lift would enable the launching of large scientific observatories and more capable deep-space missions. It may also provide benefit in national security applications. The most recent focus of NASA s heavy lift effort is the Ares V cargo launch vehicle, which is part of the Constellation Program architecture for human exploration beyond low Earth orbit (LEO). The most recent point-of-departure configuration of the Ares V was approved during the Lunar Capabilities concept Review (LCCR) in 2008. The Ares V first stage propulsion system consists of a core stage powered by six commercial liquid hydrogen/liquid oxygen (LH2/LOX) RS-68 engines, flanked by two 5.5-segment solid rocket boosters (SRBs) based on the 5-segment Ares I first stage. The boosters use the same Polybutadiene Acrylonitrile (PBAN) propellant as the Space Shuttle. Atop the core stage is the Earth departure stage (EDS), powered by a single J-2X upper stage engine based on the Ares I upper stage engine. The 33-foot-diameter payload shroud can enclose a lunar lander, scientific instruments, or other payloads. Since LCCR, NASA has continued to refine the design through several successive internal design cycles. In addition, NASA has worked to quantify the broad national consensus for heavy lift in ways that, to the extent possible, meet the needs of the user community.

  5. Clinical Comparison of Sinus Lift via Summers Osteotomy and Piezosurgery

    Directory of Open Access Journals (Sweden)

    Mehrdad Radvar

    2017-12-01

    Full Text Available Introduction: Sinus lift is a process that could be performed by two methods. In the closed sinus lift, hybrid materials enter a suitable position through a created cavity. Afterwards, the materials are pressed without damaging the sinus membrane, and the implants are usually placed at the same time. Closed sinus lift is carried out via osteotomy and piezosurgery, and each of the techniques has certain advantages and limitations. The present study aimed to compare the clinical results of closed sinus lift using the summers osteotomy and piezosurgery. Materials and Methods: In this study, 20 patients requiring dental implants in the posterior segment of the maxilla via sinus lift surgery were randomly divided into two groups. The first group received piezosurgery, and the second group underwent summers osteotomy for sinus lift. Postoperative Schneiderian membrane perforation, inflammation, pain, bone gain, and bone loss were compared between the groups six months after the surgery using Mann-Whitney U test and two-sample t-test. Results: In the groups receiving piezosurgery and summers osteotomy, mean sinus lift was 3.6±0.9 and 4.0±2.2 mm, pain score was 1.1±1.2 and 0.9±0.8, bone gain was 2.2±0.8 and 3.1±1.3 mm, and crestal bone loss was 1.1±1.2 and 0.9±0.8 mm, respectively. Moreover, no Schneiderian membrane perforation was observed in the two methods, and the differences between the groups were not considered significant (P>0.05. Conclusion: According to the results, the clinical outcomes of piezosurgery in sinus lift are similar to those of summers osteotomy. Therefore, piezosurgery could be a proper alternative to summers osteotomy in sinus lift surgery.

  6. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  7. Low-back loading in lifting two loads beside the body compared to lifting one load in front of the body

    NARCIS (Netherlands)

    Faber, G.S.; Kingma, I.; Bakker, A.J.; van Dieen, J.H.

    2009-01-01

    Low-back load during manual lifting is considered an important risk factor for the occurrence of low-back pain. Splitting a load, so it can be lifted beside the body (one load in each hand), instead of in front of the body, can be expected to reduce low-back load. Twelve healthy young men lifted 10

  8. Descriptive and analytical epidemiology of accidents in five categories of sport aviation aircraft

    NARCIS (Netherlands)

    van Doorn, R.R.A.; de Voogt, A.J.

    2011-01-01

    The present study reports and compares causes of, and factors contributing to, 2,118 documented accidents of sport aviation represented by diverse aircraft types including balloons and blimps, gliders, gyroplanes, and ultralights. For the 26-year period, accidents were aircraft-specific regarding

  9. Wavelets and the Lifting Scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  10. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2012-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  11. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2009-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  12. Cooperative control system of the floating cranes for the dual lifting

    Directory of Open Access Journals (Sweden)

    Mihee Nam

    2018-01-01

    Full Text Available This paper proposes a dual lifting and its cooperative control system with two different kinds of floating cranes. The Mega-erection and Giga-erection in the ship building are used to handle heavier and wider blocks and modules as ships and off-shore platforms are enlarged. However, there is no equipment to handle such Tera-blocks. In order to overcome the limit on performance of existing floating cranes, the dual lifting is proposed in this research. In the dual lifting, two floating cranes are well-coordinated to add up the lift capabilities of both cranes without any loss such that virtually a single crane is lifting, maneuvering and unloading. Two main constraints for the dual lifting are as follows: First, two barges of floating cranes should be constrained as a rigid body not to cause a relative motion between two barges and main hooks of the two cranes should be controlled as main hooks of a single crane. In order words, it is necessary to develop the cooperative control of two floating cranes in order to sustain a center of gravity of the module and minimize the tilting angle during the lifting and unloading by the two floating cranes. Two floating cranes are handled as a master-slave system. The master crane is able to gather information about all working conditions and make a decision to control the individual hook speed, which communicates the slave crane by TCP/IP. The developed control system has been embedded in the real floating crane systems and the dual lifting has been demonstrated five times at SHI shipyard in 2015. The moving angles of the lifting module are analyzed and verified to be suitable for hoisting control. It is verified that the dual lifting can be applied for many heavier and wider blocks and modules to shorten the construction time of ships and off-shore platforms.

  13. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  14. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  15. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.

    Science.gov (United States)

    Jung, Ku Youl; Min, Byoung-Chul; Ahn, Chiyui; Choi, Gyung-Min; Shin, Il-Jae; Park, Seung-Young; Rhie, Kungwon; Shin, Kyung-Ho

    2013-09-01

    We present a fabrication method for nano-scale magnetic tunnel junctions (MTJs), employing e-beam lithography and lift-off process assisted by the probe tip of atomic force microscope (AFM). It is challenging to fabricate nano-sized MTJs on small substrates because it is difficult to use chemical mechanical planarization (CMP) process. The AFM-assisted lift-off process enables us to fabricate nano-sized MTJs on small substrates (12.5 mm x 12.5 mm) without CMP process. The e-beam patterning has been done using bi-layer resist, the poly methyl methacrylate (PMMA)/ hydrogen silsesquioxane (HSQ). The PMMA/HSQ resist patterns are used for both the etch mask for ion milling and the self-aligned mask for top contact formation after passivation. The self-aligned mask buried inside a passivation oxide layer, is readily lifted-off by the force exerted by the probe tip. The nano-MTJs (160 nm x 90 nm) fabricated by this method show clear current-induced magnetization switching with a reasonable TMR and critical switching current density.

  16. TECHNICAL EFFICIENCY AND TECHNICAL LEVEL INDICATORS APPLICATION FOR CIVIL AIRCRAFT FUNCTIONAL PROPERTIES ANALYSIS

    Directory of Open Access Journals (Sweden)

    Vadim V. Efimov

    2018-01-01

    Full Text Available Functional properties characterize the purpose of the aircraft and are described by its flight performance characteristics such as range and cruising speed, payload, runway characteristics, etc. Functional properties also characterize the aircraft efficiency that determines the objective need for their analysis by both aircraft designers and operators in conditions of permanent and systematic efficiency increase necessity. When choosing the aircraft, it is important for the operator to make sure that a selected aircraft type has a high level of functional properties, which will allow it to provide high operational efficiency without obsolescence in the long term. However, when choosing from several aircraft types the operator has to face the fact that some characteristics of considered aircraft variants are better and the others are worse that does not allow to definitely determine what aircraft type has a higher level of functional properties.The possibility of applying technical efficiency indicators and a generalized technical level indicator for analyzing the functional properties of civil aviation aircraft is explored in this article. Fuel, weight and target efficiency values as well as the previously improved technical level indicator value were calculated for the different generations and modifications of Boeing 737 and Airbus A320 families of medium-range airplanes, which was followed by the results interpretation within one airplane generation and when moving historically from one airplane generation to another. According to analysis results it is concluded that it is impossible to define the change of the aircraft functional properties level by the change in the values of separate technical efficiency indicators. Thus, it is proposed to use a generalized technical level indicator that determines the level of aircraft technical perfection for purpose and to use efficiency indicators to analyze the cost of providing this level of

  17. Evaluation of an exhaust gas evacuation system during propane-fueled lift truck maintenance

    International Nuclear Information System (INIS)

    Roberge, B.; Beaudet, Y.; Lazure, L.; Menard, L.; Turcotte, A.

    2006-01-01

    Exposure to carbon monoxide (CO) gas in the workplace can cause health problem. CO gas is colourless and odourless, and exposure to it can cause intoxication, particularly for mechanics working on internal combustion engines fed by propane-fueled lift trucks. Regular procedures for evacuating the gases emitted during routine mechanical repairs involve the use of rigid evacuating pipes attached to the building and hooked to a flexible pipe at the end of the exhaust pipe. With lift trucks, this procedure is limited because of the configuration of these vehicles, and also because this type of work is often done in places without access to permanent mechanical ventilation. The object of this study was to propose a new evacuation method for CO gas fumes that would lower the exposures of fumes for mechanics and for workstations. It identified the criteria that should be considered, such as the configuration of the existing exhaust system of lift trucks, and feasibility of using this system at a variety of on-site locations. The design of the device was described and evaluated. 7 refs., 6 tabs., 8 figs., 3 appendices

  18. Hydrogen aircraft and airport safety

    International Nuclear Information System (INIS)

    Schmidtchen, U.; Behrend, E.; Pohl, H.-W.; Rostek, N.

    1997-01-01

    First flight tests with a hydrogen demonstrator aircraft, currently under investigation in the scope of the German-Russia Cryoplane project, are scheduled for 1999. Regular service with regional aircraft may begin around 2005, followed by larger Airbus-type airliners around 2010-2015. The fuel storage aboard such airliners will be of the order of 15 t or roughly 200 m 3 LH 2 . This paper investigates a number of safety problems associated with the handling and air transport of so much hydrogen. The same is done for the infrastructure on the airport. Major risks are identified, and appropriate measures in design and operation are recommended. It is found that hydrogen aircraft are no more dangerous than conventional ones - safer in some respects. (author)

  19. Lifting Term Rewriting Derivations in Constructor Systems by Using Generators

    Directory of Open Access Journals (Sweden)

    Adrián Riesco

    2015-01-01

    Full Text Available Narrowing is a procedure that was first studied in the context of equational E-unification and that has been used in a wide range of applications. The classic completeness result due to Hullot states that any term rewriting derivation starting from an instance of an expression can be "lifted" to a narrowing derivation, whenever the substitution employed is normalized. In this paper we adapt the generator- based extra-variables-elimination transformation used in functional-logic programming to overcome that limitation, so we are able to lift term rewriting derivations starting from arbitrary instances of expressions. The proposed technique is limited to left-linear constructor systems and to derivations reaching a ground expression. We also present a Maude-based implementation of the technique, using natural rewriting for the on-demand evaluation strategy.

  20. Trust Control of VTOL Aircraft Part Deux

    Science.gov (United States)

    Dugan, Daniel C.

    2014-01-01

    Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.

  1. Reduction of Dynamic Loads in Mine Lifting Installations

    Science.gov (United States)

    Kuznetsov, N. K.; Eliseev, S. V.; Perelygina, A. Yu

    2018-01-01

    Article is devoted to a problem of decrease in the dynamic loadings arising in transitional operating modes of the mine lifting installations leading to heavy oscillating motions of lifting vessels and decrease in efficiency and reliability of work. The known methods and means of decrease in dynamic loadings and oscillating motions of the similar equipment are analysed. It is shown that an approach based on the concept of the inverse problems of dynamics can be effective method of the solution of this problem. The article describes the design model of a one-ended lifting installation in the form of a two-mass oscillation system, in which the inertial elements are the mass of the lifting vessel and the reduced mass of the engine, reducer, drum and pulley. The simplified mathematical model of this system and results of an efficiency research of an active way of reduction of dynamic loadings of lifting installation on the basis of the concept of the inverse problems of dynamics are given.

  2. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  3. Comparison of 5468 retreatments after laser in situ keratomileusis by lifting the flap or performing photorefractive keratectomy on the flap.

    Science.gov (United States)

    Ortega-Usobiaga, J; Llovet-Osuna, F; Katz, T; Djodeyre, M R; Druchkiv, V; Bilbao-Calabuig, R; Baviera, J

    2018-02-01

    To assess visual outcomes of retreatment after laser in situ keratomileusis (LASIK) by lifting the flap or performing photorefractive keratectomy (PRK) on the flap, as well as to establish whether there was an increased risk of epithelial ingrowth (EIG) when LASIK and lifting of the flap are separated by a long time interval and to determine the incidence of corneal haze after PRK. Retrospective study of 4077 patients (5468 eyes) who underwent LASIK and subsequent retreatment were reviewed in order to study their visual results and identify cases of EIG and corneal haze. Enhancements included 5196 eyes from 3876 patients that were retreated by lifting the flap, and 272 eyes from 201 patients that were retreated by PRK on the flap. No statistically significant differences were found between the retreatments in terms of predictability, efficacy, and safety. A total of 704 cases of EIG were found after lifting the flap, for which surgical cleansing was necessary in 70. Surgical cleansing decreased the efficacy index when compared with patients with EIG who did not need cleansing (P=.01). Differences in terms of safety and predictability were not statistically significant. The incidence of corneal haze after ablation of the surface of the previous flap was 14.34%, although none of these cases were clinically relevant. Visual outcomes were similar between patients who were retreated by lifting the flap and those who underwent PRK. The incidence of EIG when the flap was lifted was 13.55%. The incidence of EIG increases with the time elapsed between the primary procedure and retreatment. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    Science.gov (United States)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  5. Effect of conditions of air-lift type reactor work on cadmium adsorption

    International Nuclear Information System (INIS)

    Filipkowska, Urszula; Szymczyk, Paula Szymczyk; Kuczajowska-Zadrozna, Malgorzata; Joezwiak, Tomasz

    2015-01-01

    We investigated cadmium sorption by activated sludge immobilized in 1.5% sodium alginate with 0.5% polyvinyl alcohol. Experiments were conducted in an air-lift type reactor at the constant concentration of biosorbent reaching 5 d.m./dm 3 , at three flow rates: 0.1, 0.25 and 0.5 V/h, and at three concentrations of the inflowing cadmium solution: 10, 25 and 50mg/dm 3 . Analyses determined adsorption capacity of activated sludge immobilized in alginate as well as reactor's work time depending on flow rate and initial concentration of the solution. Results achieved were described with the use of Thomas model. The highest adsorption capacity of the sorbent (determined from the Thomas model), i.e., 200.2mg/g d.m. was obtained at inflowing solution concentration of 50mg/dm 3 and flow rate of 0.1V/h, whereas the lowest one reached 53.69mg/g d.m. at the respective values of 10mg/dm 3 and 0.1 V/h. Analyses were also carried out to determine the degree of biosorbent adsorption capacity utilization at the assumed effectiveness of cadmium removal - at the breakthrough point (C=0.05*C 0 ) and at adsorption capacity depletion point (C−0.9*C0). The study demonstrated that the effectiveness of adsorption capacity utilization was influenced by both the concentration and flow rate of the inflowing solution. The highest degree of sorbent capacity utilization was noted at inflowing solution concentration of 50mg/dm 3 and flow rate of 0.1 V/h, whereas the lowest one at the respective values of 10mg/dm 3 and 0.1 V/h. The course of the process under dynamic conditions was evaluated using coefficients of tangent inclination - a, at point C/C 0 =1/2. A distinct tendency was demonstrated in changes of tangent slope a as affected by the initial concentration of cadmium and flow rate of the solution. The highest values of a coefficient were achieved at the flow rate of 0.1 V/h and initial cadmium concentration of 50mg/dm 3 .

  6. Lifting Wing in Constructing Tall Buildings —Aerodynamic Testing

    Directory of Open Access Journals (Sweden)

    Ian Skelton

    2014-05-01

    Full Text Available This paper builds on previous research by the authors which determined the global state-of-the-art of constructing tall buildings by surveying the most active specialist tall building professionals around the globe. That research identified the effect of wind on tower cranes as a highly ranked, common critical issue in tall building construction. The research reported here presents a design for a “Lifting Wing,” a uniquely designed shroud which potentially allows the lifting of building materials by a tower crane in higher and more unstable wind conditions, thereby reducing delay on the programmed critical path of a tall building. Wind tunnel tests were undertaken to compare the aerodynamic performance of a scale model of a typical “brick-shaped” construction load (replicating a load profile most commonly lifted via a tower crane against the aerodynamic performance of the scale model of the Lifting Wing in a range of wind conditions. The data indicate that the Lifting Wing improves the aerodynamic performance by a factor of up to 50%.

  7. NDT applications in the aircraft industry

    International Nuclear Information System (INIS)

    Aguilar, E.C.

    1994-01-01

    Non-destructive testing (NDT) in the aircraft industry is used primarily to detect process defects in the manufacturing stage and failure defects in the in-service stage. Inspection techniques such as X- or gamma ray radiography are used for examination. Eddy current and ultrasonic are applied for examination, fluorescent penetrant and magnetic particles are applied for examination of aircraft and engine. With the wide scope of application, this paper discussed one type of NDT that is much used in aircraft being the latest technique in aircraft manufacturing. 1 fig

  8. Laser-induced forward transfer (LIFT) of congruent voxels

    Energy Technology Data Exchange (ETDEWEB)

    Piqué, Alberto, E-mail: pique@nrl.navy.mil [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel [Materials Science and Technology Division, Code 6364, Naval Research Laboratory, Washington, DC 20375 (United States); Breckenfeld, Eric [National Research Council Fellow at the Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-06-30

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  9. Laser-induced forward transfer (LIFT) of congruent voxels

    International Nuclear Information System (INIS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C.Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-01-01

    Highlights: • Laser-induced forward transfer (LIFT) is demonstrated with high viscosity Ag nanopaste. • Under the right conditions (viscosity and fluence) the transfer of congruent voxels was achieved. • For viscosities under 100 Pa s, congruent voxel transfer of silver nano-suspensions is only possible under a very narrow range of conditions. • For viscosities over 100 Pa s, congruent voxel transfer of silver nano-pastes works over a wider range of fluences, donor substrate thickness, gap distances and voxel areas. • The laser transfer of congruent voxels can be used for printing electronic patterns in particular interconnects. - Abstract: Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D

  10. Aircraft Icing Weather Data Reporting and Dissemination System

    Science.gov (United States)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  11. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  12. EFFECT OF HEEL LIFTS ON PATELLOFEMORAL JOINT STRESS DURING RUNNING.

    Science.gov (United States)

    Mestelle, Zachary; Kernozek, Thomas; Adkins, Kelly S; Miller, Jessica; Gheidi, Naghmeh

    2017-10-01

    Patellofemoral pain is a debilitating injury for many recreational runners. Excessive patellofemoral joint stress may be the underlying source of pain and interventions often focus on ways to reduce patellofemoral joint stress. Heel lifts have been used as an intervention within Achilles tendon rehabilitation programs and to address leg length discrepancies. The purpose of this study was to examine the effect of running with heel lifts on patellofemoral joint stress, patellofemoral stress impulse, quadriceps force, step length, cadence, and other related kinematic and spatiotemporal variables. A repeated-measures research design. Sixteen healthy female runners completed five running trials in a controlled laboratory setting with and without 11mm heel lifts inserted in a standard running shoe. Kinetic and kinematic data were used in combination with a static optimization technique to estimate individual muscle forces. These data were inserted into a patellofemoral joint model which was used to estimate patellofemoral joint stress and other variables during running. When running with heel lifts, peak patellofemoral joint stress and patellofemoral stress impulse were reduced by a 4.2% (p=0.049) and 9.3% (p=0.002). Initial center of pressure was shifted anteriorly 9.1% when running with heel lifts (p0.05) were shown between conditions. Heel lift use resulted in decreased patellofemoral joint stress and impulse without associated changes in step length or frequency, or other variables shown to influence patellofemoral joint stress. The center of pressure at initial contact was also more anterior using heel lifts. The use of heel lifts may have therapeutic benefits for runners with patellofemoral pain if the primary goal is to reduce patellofemoral joint stress. 3b.

  13. 76 FR 41432 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2011-07-14

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model Galaxy, Gulfstream... proposed AD. Discussion The Civil Aviation Authority (CAA), which is the aviation authority for Israel, has... Held by Israel Aircraft Industries, Ltd.): Docket No. FAA-2011-0716; Directorate Identifier 2011-NM-013...

  14. Win a lift to the future!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The Communication Group is organising a competition offering people at CERN the chance to submit their ideas and win a ticket to the Lift10 Conference, which will be held in Geneva from 5 to7 May.   Lift is a community of technology "pioneers", created in 2006. It now involves more than 4,000 people from over 60 countries, who meet regularly in Europe and in Asia to explore the social implications of new technologies and the major shifts ahead. CERN is one of the academic partners of the next Lift conference, whose theme is "Connected people”. For this occasion, 10 free tickets to the conference will be awarded to the "CERNois" who come up with the best answers to the question: “How would you contribute to Lift10?” Those taking part in the competition can choose from among the following categories: - run workshop(s); - cover the conference on a blog; - coordinate a discussion during the breaks; - organize a lift@home ...

  15. Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector

    International Nuclear Information System (INIS)

    Viera, Juan P.; Payri, Raul; Swantek, Andrew B.; Duke, Daniel J.; Sovis, Nicolas; Kastengren, Alan L.; Powell, Christopher F.

    2016-01-01

    Highlights: • A direct-acting prototype diesel injector is utilized to control needle lift. • The effects of partial needle lift on rate of injection are analyzed. • Time-resolved needle lift is measured from fast phase-contrast X-ray images. • The link between instantaneous needle lift and rate of injection is analyzed. - Abstract: Internal combustion engines have been and still are key players in today’s world. Ever increasing fuel consumption standards and the ongoing concerns about exhaust emissions have pushed the industry to research new concepts and develop new technologies that address these challenges. To this end, the diesel direct injection system has recently seen the introduction of direct-acting piezoelectric injectors, which provide engineers with direct control over the needle lift, and thus instantaneous rate of injection (ROI). Even though this type of injector has been studied previously, no direct link between the instantaneous needle lift and the resulting rate of injection has been quantified. This study presents an experimental analysis of the relationship between instantaneous partial needle lifts and the corresponding ROI. A prototype direct-acting injector was utilized to produce steady injections of different magnitude by partially lifting the needle. The ROI measurements were carried out at CMT-Motores Térmicos utilizing a standard injection rate discharge curve indicator based on the Bosch method (anechoic tube). The needle lift measurements were performed at the Advanced Photon Source at Argonne National Laboratory. The analysis seeks both to contribute to the current understanding of the influence that partial needle lifts have over the instantaneous ROI and to provide experimental data with parametric variations useful for numerical model validations. Results show a strong relationship between the steady partial needle lift and the ROI. The effect is non-linear, and also strongly dependent on the injection pressure. The

  16. Modeling lift operations with SASmacr Simulation Studio

    Science.gov (United States)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  17. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    Science.gov (United States)

    Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.

  18. Learning versus correct models: influence of model type on the learning of a free-weight squat lift.

    Science.gov (United States)

    McCullagh, P; Meyer, K N

    1997-03-01

    It has been assumed that demonstrating the correct movement is the best way to impart task-relevant information. However, empirical verification with simple laboratory skills has shown that using a learning model (showing an individual in the process of acquiring the skill to be learned) may accelerate skill acquisition and increase retention more than using a correct model. The purpose of the present study was to compare the effectiveness of viewing correct versus learning models on the acquisition of a sport skill (free-weight squat lift). Forty female participants were assigned to four learning conditions: physical practice receiving feedback, learning model with model feedback, correct model with model feedback, and learning model without model feedback. Results indicated that viewing either a correct or learning model was equally effective in learning correct form in the squat lift.

  19. Common aspects and differences in the behaviour of classical configuration versus canard configuration aircraft in the presence of vertical gusts, assuming the hypothesis of an elastic fuselage

    Directory of Open Access Journals (Sweden)

    Octavian PREOTU

    2011-06-01

    Full Text Available The paper analyzes, in parallel, common aspects and differences in the behavior of classical configuration versus canard configuration aircraft in the presence of vertical gusts, assuming the hypothesis of an elastic fuselage. The effects of the main constructional dimensions of the horizontal empennage on lift cancelling and horizontal empennage control are being analyzed

  20. Masculinity and Lifting Accidents among Danish Ambulance Personnel

    DEFF Research Database (Denmark)

    Hansen, Claus D.; Nielsen, Kent J

    Background Work injuries related to lifting are the most prevalent among ambulance personnel (AP) despite the introduction of ‘assistive technologies’ (AT) that help reduce situations of manual lifting. One third of the AP report using AT only ‘sometimes’ and 10% report having lifted a patient...... alone. Aim This presentation investigates whether failure to use AT is linked to male ambulance workers’ gender identity? Is lifting patients alone a way of performing masculinity for AP’s? Method Data is taken from MARS, a panel study of AP workers in Denmark (n = 1606). Information from questionnaires...... measuring traditional male role norms (MRNI), safety attitudes and safety behavior will be linked to company register information on work injuries categorized as lifting accidents. Logistic regression is used to analyse associations between masculinity, lifting behavior, and lifting accidents. Results...

  1. Summary of Low-Lift Drag and Directional Stability Data from Rocket Models of the Douglas XF4D-1 Airplane with and without External Stores and Rocket Packets at Mach Numbers from 0.8 to 1.38 TED No. NACA DE-349

    Science.gov (United States)

    Mitcham, Grady L.; Blanchard, Willard S.; Hastings, Earl C., Jr.

    1952-01-01

    At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.

  2. TMI-2 reactor vessel plenum final lift

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1986-01-01

    Removal of the plenum assembly from the TMI-2 reactor vessel was necessary to gain access to the core region for defueling. The plenum was lifted from the reactor vessel by the polar crane using three specially designed pendant assemblies. It was then transferred in air to the flooded deep end of the refueling canal and lowered onto a storage stand where it will remain throughout the defueling effort. The lift and transfer were successfully accomplished on May 15, 1985 in just under three hours by a lift team located in a shielded area within the reactor building. The success of the program is attributed to extensive mockup and training activities plus thorough preparations to address potential problems. 54 refs

  3. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  4. Software design to calculate and simulate the mechanical response of electromechanical lifts

    Science.gov (United States)

    Herrera, I.; Romero, E.

    2016-05-01

    Lift engineers and lift companies which are involved in the design process of new products or in the research and development of improved components demand a predictive tool of the lift slender system response before testing expensive prototypes. A method for solving the movement of any specified lift system by means of a computer program is presented. The mechanical response of the lift operating in a user defined installation and configuration, for a given excitation and other configuration parameters of real electric motors and its control system, is derived. A mechanical model with 6 degrees of freedom is used. The governing equations are integrated step by step through the Meden-Kutta algorithm in the MATLAB platform. Input data consists on the set point speed for a standard trip and the control parameters of a number of controllers and lift drive machines. The computer program computes and plots very accurately the vertical displacement, velocity, instantaneous acceleration and jerk time histories of the car, counterweight, frame, passengers/loads and lift drive in a standard trip between any two floors of the desired installation. The resulting torque, rope tension and deviation of the velocity plot with respect to the setpoint speed are shown. The software design is implemented in a demo release of the computer program called ElevaCAD. Further on, the program offers the possibility to select the configuration of the lift system and the performance parameters of each component. In addition to the overall system response, detailed information of transients, vibrations of the lift components, ride quality levels, modal analysis and frequency spectrum (FFT) are plotted.

  5. Can a new behaviorally oriented training process to improve lifting technique prevent occupationally related back injuries due to lifting?

    Science.gov (United States)

    Lavender, Steven A; Lorenz, Eric P; Andersson, Gunnar B J

    2007-02-15

    A prospective randomized control trial. To determine the degree to which a new behavior-based lift training program (LiftTrainer; Ascension Technology, Burlington, VT) could reduce the incidence of low back disorder in distribution center jobs that require repetitive lifting. Most studies show programs aimed at training lifting techniques to be ineffective in preventing low back disorders, which may be due to their conceptual rather than behavioral learning approach. A total of 2144 employees in 19 distribution centers were randomized into either the LiftTrainer program or a video control group. In the LiftTrainer program, participants were individually trained in up to 5, 30-minute sessions while instrumented with motion capture sensors to quantify the L5/S1 moments. Twelve months following the initial training, injury data were obtained from company records. Survival analyses (Kaplan-Meier) indicated that there was no difference in injury rates between the 2 training groups. Likewise, there was no difference in the turnover rates. However, those with a low (<30 Nm) average twisting moment at the end of the first session experienced a significantly (P < 0.005) lower rate of low back disorder than controls. While overall the LiftTrainer program was not effective, those with twisting moments below 30 Nm reported fewer injuries, suggesting a shift in focus for "safe" lifting programs.

  6. Lifting Safety: Tips To Help Prevent Back Injuries

    Science.gov (United States)

    ... Prevent Back Injuries Lifting Safety: Tips to Help Prevent Back Injuries Share Print Back injuries are common problems at work, home, and play. They can be caused by accidents or improper lifting technique. Below are tips to ...

  7. Analysis of lifting beam and redesigned lifting lugs for 241-AZ-01A decant pump

    International Nuclear Information System (INIS)

    Coverdell, B.L.

    1994-01-01

    This supporting document details calculations for the proper design of a lifting beam and redesigned lifting lugs for the 241AZO1A decant pump. This design is in accordance with Standard Architectural-Civil Design Criteria, Design Loads for Facilities (DOE-RL 1989) and is safety class three. The design and fabrication is in accordance with American Institute of Steel Construction, Manual of Steel Construction, (AISC, 1989) and the Hanford Hoisting and Rigging Manual (DOE-RL 1993)

  8. 33 CFR 118.85 - Lights on vertical lift bridges.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  9. Number and mass analysis of particles emitted by aircraft engine

    Directory of Open Access Journals (Sweden)

    Jasiński Remigiusz

    2017-01-01

    Full Text Available Exhaust emissions from aircraft is a complex issue because of the limited possibility of measurements in flight conditions. Most of the studies on this subject were performed on the basis of stationary test. Engine certification data is used to calculate total emissions generated by air transport. However, it doesnt provide any information about the local effects of air traffic. The main threat to local communities is particulate matter emissions, which adversely affects human health. Emissions from air transport affect air quality, particularly in the vicinity of the airports; it also contributes to the greenhouse effect. The article presents the measurement results of the concentration and size distribution of particles emitted during aircraft landing operation. Measurements were carried out during the landings of aircraft at a civilian airport. It was found that a single landing operation causes particle number concentration value increase of several ten-fold in a short period of time. Using aircraft engine certification data, the methodology for determination of the total number of particles emitted during a single landing operation was introduced.

  10. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  11. Cost Benefit Analysis of Boat Lifts

    Science.gov (United States)

    2014-09-01

    associated with commercial boat lifts were obtained through a market survey based on products advertised for sale to the general public. The information...from the market survey and knowledge of specific boat maintenance items susceptible to cost reduction using a boat lift were then compared to identify...transferred to the Boat Inventory Manager ( BIM ). Custodians are responsible for maintaining boats and small craft in good working order at all times

  12. Predicting visibility of aircraft.

    Directory of Open Access Journals (Sweden)

    Andrew Watson

    Full Text Available Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO. In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  13. Evaluation of optimal control type models for the human gunner in an Anti-Aircraft Artillery (AAA) system

    Science.gov (United States)

    Phatak, A. V.; Kessler, K. M.

    1975-01-01

    The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.

  14. Cosmic radiation and airline pilots. Exposure patterns of Norwegian pilots flying aircraft not used by SAS

    International Nuclear Information System (INIS)

    Tveten, U.

    1997-05-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots flying a great diversity of different aircrafts. Aircrafts that appear in the time-tables of the Scandinavian Airline System (SAS) have been treated in an earlier report. The results presented in this report (radiation doserates for the different types of aircrafts in the different years) will, in a later stage of the project be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for the work in this report is information provided by several active pilots, members of the Pilots Associations, along with calculations performed using US Federal Aviation Administration's computer code CARI-3N. 2 refs

  15. Cosmic radiation and airline pilots. Exposure patterns of Norwegian pilots flying aircraft not used by SAS

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.

    1997-05-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots flying a great diversity of different aircrafts. Aircrafts that appear in the time-tables of the Scandinavian Airline System (SAS) have been treated in an earlier report. The results presented in this report (radiation doserates for the different types of aircrafts in the different years) will, in a later stage of the project be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for the work in this report is information provided by several active pilots, members of the Pilots Associations, along with calculations performed using US Federal Aviation Administration`s computer code CARI-3N. 2 refs.

  16. 77 FR 20558 - Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift...

    Science.gov (United States)

    2012-04-05

    ... unrelated to the barrier's safety. Lift-U also questioned the agency's statement that it could be difficult... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 571 [Docket No. NHTSA-2012-0039] RIN 2127-AJ93 Federal Motor Vehicle Safety Standards; Platform Lifts for...

  17. Fuel Cell Hydroge Manifold for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    . Battery driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need long time to recharge and may be out of work for a long time. Fuel cell driven lift trucks diminish this problem and are therefore getting more attention...

  18. Non-intrusive aerodynamic loads analysis of an aircraft propeller blade

    Energy Technology Data Exchange (ETDEWEB)

    Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2011-08-15

    The flow field in a cross-sectional plane of a scaled Beaver DHC aircraft propeller has been measured by means of a stereoscopic PIV setup. Phase-locked measurements are obtained in a rotational frequency range from 18,900 to 21,000 rpm, at a relative Mach number of 0.6 at 3/4 propeller radius. The use of an adapted formulation of the momentum equation in differential form for rotating frame of references, integrated with isentropic relations as boundary conditions, allowed to compute the pressure field around the blade and the surface pressure distribution directly from the velocity data in the compressible regime. The procedure, extended to the computation of the aerodynamic lift and drag coefficients by a momentum contour integral approach, proved to be able to couple the aerodynamical loads to the flow field on the moving propeller blade, comparing favorably with a numerical simulation of the entire scaled model. Results are presented for two propeller rotation speeds and three different yawing angles. (orig.)

  19. Non-intrusive aerodynamic loads analysis of an aircraft propeller blade

    Science.gov (United States)

    Ragni, D.; van Oudheusden, B. W.; Scarano, F.

    2011-08-01

    The flow field in a cross-sectional plane of a scaled Beaver DHC aircraft propeller has been measured by means of a stereoscopic PIV setup. Phase-locked measurements are obtained in a rotational frequency range from 18,900 to 21,000 rpm, at a relative Mach number of 0.6 at ¾ propeller radius. The use of an adapted formulation of the momentum equation in differential form for rotating frame of references, integrated with isentropic relations as boundary conditions, allowed to compute the pressure field around the blade and the surface pressure distribution directly from the velocity data in the compressible regime. The procedure, extended to the computation of the aerodynamic lift and drag coefficients by a momentum contour integral approach, proved to be able to couple the aerodynamical loads to the flow field on the moving propeller blade, comparing favorably with a numerical simulation of the entire scaled model. Results are presented for two propeller rotation speeds and three different yawing angles.

  20. M2-F1 lifting body and Paresev 1B on ramp

    Science.gov (United States)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop

  1. Lifting simulation of an offshore supply vessel considering various operating conditions

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Jeong

    2016-06-01

    Full Text Available Recently, an offshore support vessel is being widely used to install an offshore structure such as a subsea equipment which is laid on its deck. The lifting operation which is one of the installation operations includes lifting off, lifting in the air, splash zone crossing, deep submerging, and finally landing of the structure with an offshore support vessel crane. There are some major considerations during this operation. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and hoisting (or lowering speed are bad, the excess of tension of wire ropes of the crane and the collision between the offshore support vessel and the structure can be occurred due to the relative motion between them. To solve this problem, this study performs the lifting simulation while the offshore support vessel installs the structure. The simulation includes the calculation of dynamic responses of the offshore support vessel and the equipment, including the wire tension and the collision detection. To check the applicability of the simulation, it is applied to some lifting steps by varying operating conditions. As a result, it is confirmed that the conditions affect the operability of those steps.

  2. Using verbal instructions to influence lifting mechanics - Does the directive "lift with your legs, not your back" attenuate spinal flexion?

    Science.gov (United States)

    Beach, Tyson A C; Stankovic, Tatjana; Carnegie, Danielle R; Micay, Rachel; Frost, David M

    2018-02-01

    "Use your legs" is commonly perceived as sound advice to prevent lifting-related low-back pain and injuries, but there is limited evidence that this directive attenuates the concomitant biomechanical risk factors. Body segment kinematic data were collected from 12 men and 12 women who performed a laboratory lifting/lowering task after being provided with different verbal instructions. The main finding was that instructing participants to lift "without rounding your lower back" had a greater effect on the amount of spine flexion they exhibited when lifting/lowering than instructing them to lift "with your legs instead of your back" and "bend your knees and hips". It was concluded that if using verbal instructions to discourage spine flexion when lifting, the instructions should be spine- rather than leg-focused. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Lifting device for drilling rods

    Energy Technology Data Exchange (ETDEWEB)

    Radzivilovich, L L; Laptev, A G; Lipkovich, V A

    1982-01-01

    A lifter is proposed for drilling rods including a spacer stand with rotating bracket, boom with by-pass rollers, spacing and lifting hydrocylinders with rods and flexible tie mechanism. In order to improve labor productivity by improving maneuverability and to increase the maintenance zone, the lifter is equipped with a hydrocylinder of advance and a cross piece which is installed with the possibility of forward and rotational movement on the stand, and in which by means of the hydrocylinder of advance a boom is attached. Within the indicated boom there is a branch of the flexible tie mechanism with end attached with the possibility of regulation over the length on a rotating bracket, while the rod of the lifting hydrocylinder is connected to the cross piece.

  4. Project LIFT: Year 1 Report

    Science.gov (United States)

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  5. Sunspots and the physics of magnetic flux tubes. III - Aerodynamic lift

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The aerodynamic lift exerted on a magnetic flux tube by the asymmetric flow around the two sides of the tube is calculated as part of an investigation of the physics of solar flux tubes. The general hydrodynamic forces on a rigid circular cylinder in a nonuniform flow of an ideal fluid are derived from the first derivatives of the velocity field. Aerodynamic lift in a radial nonuniform flow is found to act in the direction of the flow, toward the region of increased flow velocity, while in a shear flow, lift is perpendicular to the free stream and directed toward increasing flow velocity. For a general, three dimensional, large-scale stationary incompressible equilibrium flow, an expression is also derived relating the lift per unit length to the dynamical pressure, cylinder radius and the gradient of the free-stream velocity. Evidence from an asymmetric airfoil in a uniform flow indicates that lift is enhanced in a real fluid in the presence of turbulence.

  6. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    Science.gov (United States)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  7. Analysis of the problem of forced landing of aircraft on water surface and methods of simulation of aircraft crews at aircraft accidents of this type

    Directory of Open Access Journals (Sweden)

    V. M. Nedilko

    2017-06-01

    Full Text Available The article is devoted to an actual problem of emergency incidents of forced landing of aircraft on the water surface. The main content of the research is the analysis of statistical data and classification splashdown. The article reveals the main reasons that lead to the forced landing of aircraft. Analysis of accidents is interesting for us, as it can reveal the shortcomings and problems in the Rescue and disadvantages of rescue equipment. Considerable attention is paid to the analysis of simulators for flight and cabin crew. Based on the analysis of the problem the need for regular training and exercises is established. To conduct a full-fledged study on the problem of forced landing of airborne vessels on the water surface, the following methods were used: comparison method, generalization method, data analysis method.

  8. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Directory of Open Access Journals (Sweden)

    E. F. Shair

    2017-01-01

    Full Text Available Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs, where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG signal is used to monitor the workers’ muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird’s eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.

  9. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Science.gov (United States)

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  10. Lower complexity bounds for lifted inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2015-01-01

    instances of the model. Numerous approaches for such “lifted inference” techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show...... the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established earlier in Jaeger (2000; Jaeger, M. 2000. On the complexity of inference about...... that under the assumption that NETIME≠ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier-, and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference and for knowledge bases not containing...

  11. Lift-up construction method of apron pavement in the airport. Kuko epuron hoso no lift up koho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H. (Ministry of Transport, Tokyo (Japan))

    1994-03-25

    Frequently used airports do not allow the period during which facilities are shutdown for cultivation in the repair work of sunk concrete pavement. The present report describes the outline of the lift-up construction method by means of prestressed concrete pavement which allows repair work only in the night. The method has been developed and demonstrated this time in the construction of off-shore development of Tokyo International Airport. The fundamental procedures are as follows: A [phi] 16cm hole is drilled with a core boring machine into the pavement slab in the sunk area; the roadbed is excavated around the hole in the volume of ca. 45cm in diameter and ca. 30cm in thickness; a reaction bed of concrete and a metal fixture of the hydraulic jack are installed; the reaction bed is exerted with a force by the jack to lift up the pavement slab; and finally the gap made between the pavement slab and the road bed is grouted with cement milk. In a demonstration test construction, lift-up of 3.5cm over ca. 3500m[sup 2] was performed during a total of four days of one day in the daytime and three days in the night. 7 figs.

  12. Evaluation of ceiling lifts: transfer time, patient comfort and staff perceptions.

    Science.gov (United States)

    Alamgir, Hasanat; Li, Olivia Wei; Yu, Shicheng; Gorman, Erin; Fast, Catherine; Kidd, Catherine

    2009-09-01

    Mechanical lifting devices have been developed to reduce healthcare worker injuries related to patient handling. The purpose of this study was to evaluate ceiling lifts in comparison to floor lifts based on transfer time, patient comfort and staff perceptions in three long-term care facilities with varying ceiling lift coverage. The time required to transfer or reposition patients along with patient comfort levels were recorded for 119 transfers. Transfers performed with ceiling lifts required on average less time (bed to chair transfers: 156.9 seconds for ceiling lift, 273.6 seconds for floor lift) and were found to be more comfortable for patients. In the three facilities, 143 healthcare workers were surveyed on their perceptions of patient handling tasks and equipment. For both transferring and repositioning tasks, staff preferred to use ceiling lifts and also found them to be less physically demanding. Further investigation is needed on repositioning tasks to ensure safe practice.

  13. Uncertainty quantification in computational fluid dynamics and aircraft engines

    CERN Document Server

    Montomoli, Francesco; D'Ammaro, Antonio; Massini, Michela; Salvadori, Simone

    2015-01-01

    This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors...

  14. Liens on aircraft with special reference on statutory liens

    Directory of Open Access Journals (Sweden)

    Janković Svetislav

    2014-01-01

    Full Text Available The paper examines three types of liens on aircraft: mortgage (as contractual lien, statutory and judicial lien on aircraft. Special attention is paid to statutory liens and its relationship with mortgage and judicial lien on same aircraft. The author highlights the problem of priority of different type of secured creditors due to the fact of existing competition between their interests. This problem is especially enlarged because of simultaneously applying three different source of law: Cape Town Convention 2001, Serbian Law of Air Transport 2011 and Geneva Convention on the Recognition of Rights in Aircraft 1948. Conclusion is that the creditor with statutory lien on aircraft has the biggest priority in realization of his right over other creditors and even creditors secured with mortgage and judicial lien which have priority between themselves in comply with principle 'first in time, first in right'. In order to achieve the ideas of this conclusion in practice it is necessary for courts to use teleological interpretation in applying laws. This is especially because of certain inconsistencies between different legal sources in regard of notion, order of priority and effect of different type of liens on aircraft.

  15. Flight test results for the Daedalus and Light Eagle human powered aircraft

    Science.gov (United States)

    Sullivan, R. Bryan; Zerweckh, Siegfried H.

    1988-01-01

    The results of the flight test program of the Daedalus and Light Eagle human powered aircraft in the winter of 1987/88 are given. The results from experiments exploring the Light Eagle's rigid body and structural dynamics are presented. The interactions of these dynamics with the autopilot design are investigated. Estimates of the power required to fly the Daedalus aircraft are detailed. The system of sensors, signal conditioning boards, and data acquisition equipment used to record the flight data is also described. In order to investigate the dynamics of the aircraft, flight test maneuvers were developed to yield maximum data quality from the point of view of estimating lateral and longitudinal stability derivatives. From this data, structural flexibility and unsteady aerodynamics have been modeled in an ad hoc manner and are used to augment the equations of motion with flexibility effects. Results of maneuvers that were flown are compared with the predictions from the flexibility model. To extend the ad hoc flexibility model, a fully flexible aeroelastic model has been developed. The model is unusual in the approximate equality of many structural natural frequencies and the importance of unsteady aerodynamic effects. the Gossamer Albatross. It is hypothesized that this inverse ground effect is caused by turbulence in the Earth's boundary layer. The diameters of the largest boundary layer eddies (which represent most of the turbulent kinetic energy) are proportional to altitude; thus, closer to the ground, the energy in the boundary layer becomes concentrated in eddies of smaller and smaller diameter. Eventually the eddies become sufficiently small (approximately 0.5 cm) that they trip the laminar boundary layer on the wing. As a result, a greater percentage of the wing area is covered with turbulent flow. Consequently the aircraft's drag and the pow er required both increase as the aircraft flies closer to the ground. The results of the flight test program are

  16. Lifting devices in nuclear facilities

    International Nuclear Information System (INIS)

    The rule is valid for lifts, cranes, winches, rail travel trolleys, load lifting devices and fuel element changing devices for light-water reactors, insofar as these are used in plants to produce or to fission nuclear fuels or to process irradiated nuclear fuels or in the storage or other use of nuclear fuels. (LH) [de

  17. Two-dimensional unsteady lift problems in supersonic flight

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  18. 2005 ACGIH Lifting TLV: Employee-Friendly Presentation and Guidance for Professional Judgment

    Energy Technology Data Exchange (ETDEWEB)

    Splittstoesser, Riley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Farrell, Daniel Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, John [Savannah River Site (SRS), Aiken, SC (United States); McMahon, Terrence [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sastry, Nikhil [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tiemeier, Mark [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-05-22

    The American Council of Governmental Industrial Hygienists (ACGIH) Lifting Threshold Limit Values (TLVs) provide a tool to reduce incidence of low back and shoulder injuries. However, application of the TLV is too complicated for floor-level workers and relies on professional judgment to assess commonly encountered tasks. This paper presents an Employee-Friendly Simplified Format of the TLV that has been adapted from Table 1 of the Lifting TLV presented in the 2005 TLVs and BEIs Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. This simplified format can be employed by floor-level workers to self-assess lifting tasks. The Ergonomics Project Team also provides research-based guidance for applying professional judgment consistent with standard industry practice: Extended Work Shifts – Reduce weight by 20% for shifts lasting 8 to 12 hours; Constrained Lower Body Posture – Reduce weight by 25% when lifting in such postures; Infrequently Performed LiftsLift up to 15 lbs. ≤3 lifts per hour within the zones marked “No safe limit for repetitive lifting” in the TLVs Table 1; Asymmetry beyond 30° – Reduce weight by 10 lbs. for lifts with up to 60° asymmetry from sagittal plane.

  19. Three-dimensional micro assembly of a hinged nickel micro device by magnetic lifting and micro resistance welding

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Hsu, Wensyang

    2009-01-01

    The three-dimensional micro assembly of hinged nickel micro devices by magnetic lifting and micro resistance welding is proposed here. By an electroplating-based surface machining process, the released nickel structure with the hinge mechanism can be fabricated. Lifting of the released micro structure to different tilted angles is accomplished by controlling the positions of a magnet beneath the device. An in situ electro-thermal actuator is used here to provide the pressing force in micro resistance welding for immobilizing the tilted structure. The proposed technique is shown to immobilize micro devices at controlled angles ranging from 14° to 90° with respect to the substrate. Design parameters such as the electro-thermal actuator and welding beam width are also investigated. It is found that there is a trade-off in beam width design between large contact pressure and low thermal deformation. Different dominated effects from resistivity enhancement and contact area enlargement during the welding process are also observed in the dynamic resistance curves. Finally, a lifted and immobilized electro-thermal bent-beam actuator is shown to displace upward about 27.7 µm with 0.56 W power input to demonstrate the capability of electrical transmission at welded joints by the proposed 3D micro assembly technique

  20. An overview of major aspects of the aircraft impact problem

    International Nuclear Information System (INIS)

    Kamil, H.; Kost, G.; Sharpe, R.

    1978-01-01

    The major aspects of the aircraft impact problem are identified and the most relevant topics for future investigations are discussed. The emphasis is on three main topics: modeling techniques, influence of non-linear behavior, and importance of damping in the dynamic structural response analyses for aircraft loading. Results are presented from brief studies involving response of linear and nonlinear simple systems to short-duration impulsive loadings of the aircraft impact type. (Auth.)

  1. Containment vessel bottom head transport and lifting technique

    International Nuclear Information System (INIS)

    Zheng Donghong; Tian Shiyong; Hu Dequan; Xiao Hongtao

    2013-01-01

    The challengeable transport and lifting techniques and high safety assurance measures are needed for the onsite construction of the AP1000 containment vessel bottom head (CVBH), which is a large component with heavy weight, big size, high center of gravity, and easy to deformation. During transport, the infra structural road foundation is heavily loaded with big turning radius, and the requirement for synchronization of transport vehicles is strict. During lifting, the crane lifting capacities are high, requirement for the lifting and rigging tools is strict, nuclear island being put into place is difficult, and the crane operating foundation is heavily loaded. The transport and lifting techniques and safety assurance measures for CVBH are elaborated in detail, so as to provide a reference for the follow-up transport and lifting of large components of nuclear island. (authors)

  2. Toward a new nanoLIFT transfer process

    International Nuclear Information System (INIS)

    Mezel, C.; Hallo, L.; Breil, J.; Souquet, A.; Guillemot, F.; Bourgeade, A.; Hebert, D.; Saut, O.

    2010-01-01

    The Laser Induced Forward Transfer (LIFT) is a direct-write technique used to print biological materials such as living cells or molecules. During the LIFT process, the biomaterial to be printed is deposited on a target submitted to a nanosecond laser shot, and the ejecta are collected onto a receiving substrate. Despite the several advantages of this technique (control of the propelled quantity, no spoiling of the substrate), it remains difficult to be employed due to the high sensitivity of its control parameters. Recently, Duocastella published some experimental results which exhibit the real-time jet formation process, under conditions similar to those present in the LIFT process. In the first Section, a typical experimental setup for LIFT process is presented. Then, simulations of Duocastella's and Guillemot's experiments are carried out to model the jet formation in water when irradiated by an ultraviolet nanosecond laser pulse. The 2D axisymmetric hydrodynamic code CHIC (Code d'Hydrodynamique et d'Implosion du CELIA) is used for these simulations with included equations of state (EOS) to take into account the behavior of water under standard conditions. Finally, an improvement of the LIFT technique which consists in using femtosecond lasers instead of nanosecond ones, is presented. It would allow to process smaller bioelements and to control the jet diameter, as it is directly related to the laser beam waist.

  3. First-Order Twistor Lifts

    Directory of Open Access Journals (Sweden)

    Simões BrunoAscenso

    2010-01-01

    Full Text Available The use of twistor methods in the study of Jacobi fields has proved quite fruitful, leading to a series of results. L. Lemaire and J. C. Wood proved several properties of Jacobi fields along harmonic maps from the two-sphere to the complex projective plane and to the three- and four-dimensional spheres, by carefully relating the infinitesimal deformations of the harmonic maps to those of the holomorphic data describing them. In order to advance this programme, we prove a series of relations between infinitesimal properties of the map and those of its twistor lift. Namely, we prove that isotropy and harmonicity to first order of the map correspond to holomorphicity to first order of its lift into the twistor space, relatively to the standard almost complex structures and . This is done by obtaining first-order analogues of classical twistorial constructions.

  4. First-Order Twistor Lifts

    Directory of Open Access Journals (Sweden)

    Bruno Ascenso Simões

    2010-01-01

    Full Text Available The use of twistor methods in the study of Jacobi fields has proved quite fruitful, leading to a series of results. L. Lemaire and J. C. Wood proved several properties of Jacobi fields along harmonic maps from the two-sphere to the complex projective plane and to the three- and four-dimensional spheres, by carefully relating the infinitesimal deformations of the harmonic maps to those of the holomorphic data describing them. In order to advance this programme, we prove a series of relations between infinitesimal properties of the map and those of its twistor lift. Namely, we prove that isotropy and harmonicity to first order of the map correspond to holomorphicity to first order of its lift into the twistor space, relatively to the standard almost complex structures J1 and J2. This is done by obtaining first-order analogues of classical twistorial constructions.

  5. New F-theory lifts

    International Nuclear Information System (INIS)

    Collinucci, Andres

    2009-01-01

    In this note, a procedure is developed to explicitly construct non-trivial F-theory lifts of perturbative IIB orientifold models on Calabi-Yau complete intersections in toric varieties. This procedure works on Calabi-Yau orientifolds where the involution coordinate can have arbitrary projective weight, as opposed to the well-known hypersurface cases where it has half the weight of the equation defining the CY threefold. This opens up the possibility of lifting more general setups, such as models that have O3-planes.

  6. Comparison of Methods of Teaching Children Proper Lifting ...

    African Journals Online (AJOL)

    Objective: This study was designed to determine the effects of three teaching methods on children\\'s ability to demonstrate and recall their mastery of proper lifting techniques. Method: Ninety-three primary five and six public school children who had no knowledge of proper lifting technique were assigned into three equal ...

  7. Recovery of Trace DNA on Clothing: A Comparison of Mini-tape Lifting and Three Other Forensic Evidence Collection Techniques.

    Science.gov (United States)

    Hess, Sabine; Haas, Cordula

    2017-01-01

    Trace DNA is often found in forensic science investigations. Experience has shown that it is difficult to retrieve a DNA profile when trace DNA is collected from clothing. The aim of this study was to compare four different DNA collection techniques on six different types of clothing in order to determine the best trace DNA recovery method. The classical stain recovery technique using a wet cotton swab was tested against dry swabbing, scraping and a new method, referred to as the mini-tape lifting technique. Physical contact was simulated with three different "perpetrators" on 18 machine-washed garments. DNA was collected with the four different DNA recovery methods and subjected to standard PCR-based DNA profiling. The comparison of STR results showed best results for the mini-tape lifting and scraping methods independent of the type of clothing. The new mini-tape lifting technique proved to be an easy and reliable DNA collection method for textiles. © 2016 American Academy of Forensic Sciences.

  8. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    Science.gov (United States)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  9. The community response to aircraft noise around six Spanish airports

    Science.gov (United States)

    Garcia, A.; Faus, L. J.; Garcia, A. M.

    1993-06-01

    The community response to aircraft noise has been studied through a social survey. A total of 1800 persons living in the vicinity of six major Spanish airports have been interviewed at their homes concerning the environmental quality of the area, dissatisfaction with road traffic noise and aircraft noise, activities interfered with by noise, most disturbing aircraft types, and subjective evaluation of airport impact. All the responses obtained in this survey have been compared with aircraft noise levels corresponding to the residence locations of the people interviewed (values of NEF levels were calculated with the INM model). The results obtained in this work allow one to evaluate the impact of aircraft noise under a wide range of different situations.

  10. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    OpenAIRE

    Michael Schultz

    2018-01-01

    Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays). To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground opera...

  11. Commercial transport aircraft composite structures

    Science.gov (United States)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  12. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  13. Airfoil design: Finding the balance between design lift and structural stiffness

    International Nuclear Information System (INIS)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik; Vronsky, Tomas

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup, airfoils were designed with relative thicknesses between 18% and 36%, a structural box height of 85% of the relative thickness, and varying box widths in chordwise direction between 20% and 40% of the chord length. The results from these airfoil designs showed that for a given flapwise stiffness, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were supported by an analysis of the three airfoil families Riso-C2, DU and FFA, where the lift-drag ratio as a function of flapwise stiffness was decreasing, but relatively independent of the airfoil design, and the design lift coefficient was varying depending on the design philosophy. To make the analysis complete also design lift and lift- drag ratio as a function of edgewise and torsional stiffness were shown

  14. Computer simulation of viscous fingering in a lifting Hele-Shaw cell

    Indian Academy of Sciences (India)

    We simulate viscous fingering generated by separating two plates with a constant force, in a lifting Hele-Shaw cell. Variation in the patterns for different fluid viscosity and lifting force is studied. Viscous fingering is strongly affected by anisotropy. We report a computer simulation study of fingering patterns, where circular or ...

  15. Advances in Engineering Software for Lift Transportation Systems

    Science.gov (United States)

    Kazakoff, Alexander Borisoff

    2012-03-01

    In this paper an attempt is performed at computer modelling of ropeway ski lift systems. The logic in these systems is based on a travel form between the two terminals, which operates with high capacity cabins, chairs, gondolas or draw-bars. Computer codes AUTOCAD, MATLAB and Compaq-Visual Fortran - version 6.6 are used in the computer modelling. The rope systems computer modelling is organized in two stages in this paper. The first stage is organization of the ground relief profile and a design of the lift system as a whole, according to the terrain profile and the climatic and atmospheric conditions. The ground profile is prepared by the geodesists and is presented in an AUTOCAD view. The next step is the design of the lift itself which is performed by programmes using the computer code MATLAB. The second stage of the computer modelling is performed after the optimization of the co-ordinates and the lift profile using the computer code MATLAB. Then the co-ordinates and the parameters are inserted into a program written in Compaq Visual Fortran - version 6.6., which calculates 171 lift parameters, organized in 42 tables. The objective of the work presented in this paper is an attempt at computer modelling of the design and parameters derivation of the rope way systems and their computer variation and optimization.

  16. Breast lift

    Science.gov (United States)

    ... and areola may be moved. Sometimes, women have breast augmentation (enlargement with implants) when they have a breast lift. Why the ... MD, FACS, general surgery practice specializing in breast cancer, Virginia Mason Medical Center, Seattle, WA. Also reviewed ...

  17. Determination of the probability of an aircraft falling on a nuclear power plant

    International Nuclear Information System (INIS)

    Kostikov, V.A.; Smol'nikov, V.L.; Baranaev, Yu.D.; Viktorov, A.N.; Vladykov, G.M.; Dolgov, V.V.; Shvedenko, I.M.

    1993-01-01

    Significant possible external actions at nuclear power plants are events associated with aviation accidents, in which, for one reason or another, an airplane or a fragment of an airplane can fall on the building and destroy the reactor or important safety systems. Measures for preventing an aircraft from striking a nuclear power plant include flight limitations and siting of airports, and flight corridors are created near nuclear power plants. The reactor itself can be placed in a special strong protective envelope. The specific technical measures are determined, to a significant degree, by the type of accident and the type of aircraft. It is now acknowledged, including in documents published by the IAEA, that assessment of the adequacy of measures for protecting a nuclear power plant from aircraft is most efficiently done by means of a probability analysis. We expound below briefly the methodology and the results obtained by its application to the South Ural nuclear power plant and the Bilibinskaya nuclear heat and electricity station. Falling of an aircraft (jet or helicopter) on a nuclear power plant is an extreme event, whose probability is determined mainly by flight safety measures, the intensity of flights in the region, and the distribution of aviation accidents by type and characteristic consequences. Flight safety is determined by the frequency with which aviation accidents occur per hour of flight and mainly depends on the sophistication of the aviation technology. The intensity of flights near a nuclear power plant is estimated taking into account the administrative and organizational measures for limiting flights and is a characteristic of the region where the power plant is located, as is the distribution of aviation accidents by type

  18. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    Science.gov (United States)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Zhang, Zhiqiang; Duan, Huigao

    2015-10-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process.

  19. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    International Nuclear Information System (INIS)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Duan, Huigao; Zhang, Zhiqiang

    2015-01-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process. (paper)

  20. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 3: Development program and budgetary estimates

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    The aircraft development program, budgetary estimates in CY 1976 dollars, and cost reduction program variants are presented. Detailed cost matrices are also provided for the mechanical transmission system, turbotip transmission system, and the thrust vector hoods and yaw doors.

  1. Knees Lifted High

    Centers for Disease Control (CDC) Podcasts

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Knees Lifted High gives children fun ideas for active outdoor play.

  2. Sikkerhedsbestemmelser for beskæringsarbejde fra lift

    DEFF Research Database (Denmark)

    Jakobsen, Ole Sejr; Theilby, Frans

    2010-01-01

    Brug af lift til beskæring og fældning af træer er blevet udbredt i den grønne sektor. Som bruger er det vigtigt at kende den lift, man har valgt, og at arbejdet med motorsav foregår efter Arbejdstilsynets regler og anbefalinger.......Brug af lift til beskæring og fældning af træer er blevet udbredt i den grønne sektor. Som bruger er det vigtigt at kende den lift, man har valgt, og at arbejdet med motorsav foregår efter Arbejdstilsynets regler og anbefalinger....

  3. Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD).

    Science.gov (United States)

    Abdoli-Eramaki, Mohammad; Stevenson, Joan M; Reid, Susan A; Bryant, Timothy J

    2007-01-01

    In our laboratory, we have developed a prototype of a personal lift augmentation device (PLAD) that can be worn by workers during manual handling tasks involving lifting or lowering or static holding in symmetric and asymmetric postures. Our concept was to develop a human-speed on-body assistive device that would reduce the required lumbar moment by 20-30% without negative consequences on other joints or lifting kinematics. This paper provides mathematical proof using simplified free body diagrams and two-dimensional moment balance equations. Empirical proof is also provided based on lifting trials with nine male subjects who executed sagittal plane lifts using three lifting styles (stoop, squat, free) and three different loads (5, 15, and 25kg) under two conditions (PLAD, No-PLAD). Nine Fastrak sensors and six in-line strap force sensors were used to estimate the reduction of compressive and shear forces on L4/L5 as well as estimate the forces transferred to the shoulders and knees. Depending on lifting technique, the PLAD applied an added 23-36Nm of torque to assist the back muscles during lifting tasks. The peak pelvic girdle contact forces were estimated and their magnitudes ranged from 221.3+/-11.2N for stoop lifting, 324.3+/-17.2N for freestyle lifts to 468.47+/-23.2N for squat lifting. The PLAD was able to reduce the compression and shear forces about 23-29% and 7.9-8.5%, respectively.

  4. Static mechanical properties of 30 x 11.5 - 14.5, type 8 aircraft tires of bias-ply and radial-belted design

    Science.gov (United States)

    Davis, Pamela A.; Lopez, Mercedes C.

    1988-01-01

    An investigation was conducted to determine the static mechanical properties of a 30 x 11.5 to 14.5, Type 8, bias-ply and radial-belted aircraft tire. The properties measured were the spring rate and damping characteristics of each tire from vertical- and lateral-loading hysteresis loops. Mass moment of inertia tests were also conducted. The results of the study are presented along with a discussion of the advantages and disadvantages of each type of tire.

  5. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  6. Reduction environmental effects of civil aircraft through multi-objective flight plan optimisation

    International Nuclear Information System (INIS)

    Lee, D S; Gonzalez, L F; Walker, R; Periaux, J; Onate, E

    2010-01-01

    With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO 2 ) and nitrogen oxides (NO x ) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO 2 ) and NO x using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NO x with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NO x with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NO x and CO 2 (minimum mission fuel weight).

  7. An unconventional mechanism of lift production during the downstroke in a hovering bird ( Zosterops japonicus)

    Science.gov (United States)

    Chang, Yu-Hung; Ting, Shang-Chieh; Liu, Chieh-Cheng; Yang, Jing-Tang; Soong, Chyi-Yeou

    2011-11-01

    An unconventional mechanism of ventral clap is exploited by hovering passerines to produce lift. Quantitative visualization of the wake flow, analysis of kinematics and evaluation of the transient lift force was conducted to dissect the biomechanical role of the ventral clap in the asymmetrical hovering flight of passerines. The ventral clap can first abate and then augment lift production during the downstroke; the net effect of the ventral clap on lift production is, however, positive because the extent of lift augmentation is greater than the extent of lift abatement. Moreover, the ventral clap is inferred to compensate for the zero lift production of the upstroke because the clapping wings induce a substantial elevation of the lift force at the end of the downstroke. Overall, our observations shed light on the aerodynamic function of the ventral clap and offer biomechanical insight into how a bird hovers without kinematically mimicking hovering hummingbirds.

  8. Offsite radiological consequence analysis for the bounding aircraft crash accident

    International Nuclear Information System (INIS)

    OBERG, B.D.

    2003-01-01

    The purpose of this calculation note is to quantitatively analyze a bounding aircraft crash accident for comparison to the DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', Appendix A, Evaluation Guideline of 25 rem. The potential of aircraft impacting a facility was evaluated using the approach given in DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities''. The following aircraft crash FR-equencies were determined for the Tank Farms in RPP-11736, ''Assessment Of Aircraft Crash FR-equency For The Hanford Site 200 Area Tank Farms'': (1) The total aircraft crash FR-equency is ''extremely unlikely.'' (2) The general aviation crash FR-equency is ''extremely unlikely.'' (3) The helicopter crash FR-equency is ''beyond extremely unlikely.'' (4) For the Hanford Site 200 Areas, other aircraft type, commercial or military, each above ground facility, and any other type of underground facility is ''beyond extremely unlikely.'' As the potential of aircraft crash into the 200 Area tank farms is more FR-equent than ''beyond extremely unlikely,'' consequence analysis of the aircraft crash is required

  9. The Cumulative Lifting Index (CULI) for the Revised NIOSH Lifting Equation: Quantifying Risk for Workers With Job Rotation.

    Science.gov (United States)

    Garg, Arun; Kapellusch, Jay M

    2016-08-01

    The objectives were to: (a) develop a continuous frequency multiplier (FM) for the Revised NIOSH Lifting Equation (RNLE) as a function of lifting frequency and duration of a lifting task, and (b) describe the Cumulative Lifting Index (CULI), a methodology for estimating physical exposure to workers with job rotation. The existing FM for the RNLE (FME) does not differentiate between task duration >2 hr and <8 hr, which makes quantifying physical exposure to workers with job rotation difficult and presents challenges to job designers. Using the existing FMs for 1, 2, and 8 hr of task durations, we developed a continuous FM (FMP) that extends to 12 hr per day. We simulated 157,500 jobs consisting of two tasks each and, using different combinations of Frequency Independent Lifting Index, lifting frequency and duration of lifting. Biomechanical stresses were estimated using the CULI, time-weighted average (TWA), and peak exposure. The median difference between FME and FMP was ±1% (range: 0%-15%). Compared to CULI, TWA underestimated risk of low-back pain (LBP) for 18% to 30% of jobs, and peak exposure for an assumed 8-hr work shift overestimated risk of LBP for 20% to 25% of jobs. Peak task exposure showed 90% agreement with CULI but ignored one of two tasks. The CULI partially addressed the underestimation of physical exposure using the TWA approach and overestimation of exposure using the peak-exposure approach. The proposed FM and CULI may provide more accurate physical exposure estimates, and therefore estimated risk of LBP, for workers with job rotation. © 2016, Human Factors and Ergonomics Society.

  10. Analysis of the Umbrella Roof for lifting

    International Nuclear Information System (INIS)

    Shaaban, A.

    1983-01-01

    In addition to supporting the dead loads and the operational loads, the Umbrella Roof (UR) has two major functions to which it was designed. First is to allow access for repair and removal of any of the TF coils, the upper PF coils and the Vacuum Vessel sections; and second, is to reproduce the exact positioning of the upper PF coils every time the UR is placed over the Tokamac. To provide these functions, the UR is designed to be lifted as one integrated structure to which the upper PF coils are attached. In order to ensure precise positioning of the UR, a redundant system of 13 guide pins were provided on the bottom of the radial beams, and four shear lugs were provided atop the central column. Mating reciprocals with very close tolerance for the guide pins were provided in the tops of the 13 peripheral columns. To meet close tolerances and to accommodate such high redundancy in match points, accurate analysis was necessary by which the center of gravity of the UR can be located and the deflection of all match points can be computed. Also stress analysis of the members of the UR was necessary because when the UR is lifted it is denied the midpoint support over the center column; and also the beams of the UR are not interconnected by moment-capable joints, thus if provisions are not made to support every radial beam, those which are not supported would yield and collapse. In this paper, the lifting schemes proposed for the UR are discussed and the results of the analysis performed for the elected scheme are presented. Also presented is a unique application of the NASTRAN code by which the center of gravity of the UR was located by allowing a refined model of the UR to swing until it came to rest under an arbitrary lift point

  11. Different levels of undermining in face lift - Experience of 141 consecutive cases

    Directory of Open Access Journals (Sweden)

    Panettiere Pietro

    2004-01-01

    Full Text Available CONTEXT: The most revolutionary concept in rhytidectomy is the role of Sub Muscular Aponeurotic System (SMAS, even if many alternative approaches have been proposed. The main aim of face lift is to bring back the time, preventing the "lifted-face" appearance. SETTINGS AND DESIGN: The authors present their personal experience with different levels of undermining, i.e. subperiosteal forehead lift, subcutaneous midface lift with SMAS plication and platysmal suspension, and discuss the anatomical and biomechanical elements of rhytidectomy. RESULTS: Optimal aesthetic results were achieved by repositioning the neck, face and forehead tissues in a global and harmonious fashion, without distorting face characteristics and disguising surgery trails as much as possible. CONCLUSIONS: Different levels of undermining can give good and stable aesthetic results minimizing the risks and preventing face distortion.

  12. Outcomes of polydioxanone knotless thread lifting for facial rejuvenation.

    Science.gov (United States)

    Suh, Dong Hye; Jang, Hee Won; Lee, Sang Jun; Lee, Won Seok; Ryu, Hwa Jung

    2015-06-01

    Thread lifting is a minimally invasive technique for facial rejuvenation. Various devices for thread lifting using polydioxanone (PDO) are popular in aesthetic clinics in Korea, but there have been a few studies regarding its use. To describe PDO thread and techniques adopted to counteract the descent and laxity of the face. A retrospective chart review was conducted over a 24-month period. A total of 31 thread lifting procedures were performed. On each side, 5 bidirectional cog threads were used in the procedure for the flabby skin of the nasolabial folds. And, the procedure was performed on the marionette line using 2 twin threads. In most patients (87%), the results obtained were considered satisfactory. Consensus ratings by 2 physicians found that objective outcomes were divided among "excellent," "good," "fair," and "poor." Texture wise, the outcome ratings were 13 as excellent and 9 as good. Lifting wise, ratings were 11 as excellent and 6 as good. The incidence of complications was low and not serious. Facial rejuvenation using PDO thread is a safe and effective procedure associated with only minor complications when performed on patients with modest face sagging, fine wrinkles, and marked facial pores.

  13. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  14. Lifted linear phase filter banks and the polyphase-with-advance representation

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C. M. (Christopher M.); Wohlberg, B. E. (Brendt E.)

    2004-01-01

    A matrix theory is developed for the noncausal polyphase-with-advance representation that underlies the theory of lifted perfect reconstruction filter banks and wavelet transforms as developed by Sweldens and Daubechies. This theory provides the fundamental lifting methodology employed in the ISO/IEC JPEG-2000 still image coding standard, which the authors helped to develop. Lifting structures for polyphase-with-advance filter banks are depicted in Figure 1. In the analysis bank of Figure 1(a), the first lifting step updates x{sub 0} with a filtered version of x{sub 1} and the second step updates x{sub 1} with a filtered version of x{sub 0}; gain factors 1/K and K normalize the lowpass- and highpass-filtered output subbands. Each of these steps is inverted by the corresponding operations in the synthesis bank shown in Figure 1(b). Lifting steps correspond to upper- or lower-triangular matrices, S{sub i}(z), in a cascade-form decomposition of the polyphase analysis matrix, H{sub a}(z). Lifting structures can also be implemented reversibly (i.e., losslessly in fixed-precision arithmetic) by rounding the lifting updates to integer values. Our treatment of the polyphase-with-advance representation develops an extensive matrix algebra framework that goes far beyond the results of. Specifically, we focus on analyzing and implementing linear phase two-channel filter banks via linear phase lifting cascade schemes. Whole-sample symmetric (WS) and half-sample symmetric (HS) linear phase filter banks are characterized completely in terms of the polyphase-with-advance representation. The theory benefits significantly from a number of new group-theoretic structures arising in the polyphase-with-advance matrix algebra from the lifting factorization of linear phase filter banks.

  15. Pig lift applications in offshore dry completion wells; Aplicacao do pig lift em pocos offshore de completacao seca

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Paulo C.R.; Faria, Rogerio Costa; Almeida, Alcino Resende [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2000-07-01

    Production increases of 10% to 130% have been obtained with pig lift installations on offshore oil wells in the Cacao Field, southeast Brazil. At the present time 3 wells out of 5 are being produced with pig lift. These deep, highly deviated wells with little space on the platform to the required surface equipment presented a challenge to pig lift technology. However, these difficulties were overcame and the benefits obtained helped to maintain the economical attractiveness of the platform. (author)

  16. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  17. A Practical Approach To Lift-Off

    Science.gov (United States)

    Jones, Susan K.; Chapman, Richard C.; Pavelchek, Edward K.

    1987-08-01

    Lift-off technology provides an alternate metal patterning technology to that of subtractive etching. In this raper, we describe an image reversal process which provides a practical means for reliably producing resist stencils which are required for successful lift-off in a 2.0 μm metal pitch CMOS process, as well as for experimental submicron processing. Experimental data and PROSIM simulations are presented to show the effects of patterning exposure dose, flood exposure dose, develop time, and focus parameters on resist linewidths as well as for control of resist retrograde (undercut) sidewall angles. Deposition and subsequent lift-off of Al/Cu alloys and sandwich metallizations is demonstrated. Because the image reversal process enables pattern definition at the top of the resist film, it is demonstrated that thicker resist films can be used to produce finer resolution of lift-off stencils over topography than would have been expected without resorting to multilayer resist structures.

  18. Functional residual capacity increase during laparoscopic surgery with abdominal wall lift

    Directory of Open Access Journals (Sweden)

    Hiroshi Ueda

    Full Text Available Abstract Background and objectives: The number of laparoscopic surgeries performed is increasing every year and in most cases the pneumoperitoneum method is used. One alternative is the abdominal wall lifting method and this study was undertaken to evaluate changes of functional residual capacity during the abdominal wall lift procedure. Methods: From January to April 2013, 20 patients underwent laparoscopic cholecystectomy at a single institution. All patients were anesthetized using propofol, remifentanil and rocuronium. FRC was measured automatically by Engstrom Carestation before the abdominal wall lift and again 15 minutes after the start of the procedure. Results: After abdominal wall lift, there was a significant increase in functional residual capacity values (before abdominal wall lift 1.48 × 103 mL, after abdominal wall lift 1.64 × 103 mL (p < 0.0001. No complications such as desaturation were observed in any patient during this study. Conclusions: Laparoscopic surgery with abdominal wall lift may be appropriate for patients who have risk factors such as obesity and respiratory disease.

  19. On Wings of the Minimum Induced Drag: Spanload Implications for Aircraft and Birds

    Science.gov (United States)

    Bowers, Albion H.; Murillo, Oscar J.; Jensen, Robert (Red); Eslinger, Brian; Gelzer, Christian

    2016-01-01

    For nearly a century Ludwig Prandtl's lifting-line theory remains a standard tool for understanding and analyzing aircraft wings. The tool, said Prandtl, initially points to the elliptical spanload as the most efficient wing choice, and it, too, has become the standard in aviation. Having no other model, avian researchers have used the elliptical spanload virtually since its introduction. Yet over the last half-century, research in bird flight has generated increasing data incongruous with the elliptical spanload. In 1933 Prandtl published a little-known paper presenting a superior spanload: any other solution produces greater drag. We argue that this second spanload is the correct model for bird flight data. Based on research we present a unifying theory for superior efficiency and coordinated control in a single solution. Specifically, Prandtl's second spanload offers the only solution to three aspects of bird flight: how birds are able to turn and maneuver without a vertical tail; why birds fly in formation with their wingtips overlapped; and why narrow wingtips do not result in wingtip stall. We performed research using two experimental aircraft designed in accordance with the fundamentals of Prandtl's second paper, but applying recent developments, to validate the various potentials of the new spanload, to wit: as an alternative for avian researchers, to demonstrate the concept of proverse yaw, and to offer a new method of aircraft control and efficiency.

  20. Asymmetric Gepner models II. Heterotic weight lifting

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2011-01-01

    A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E 8 factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  1. Canadian East Coast offshore petroleum industry safe lifting practices respecting offshore pedestal cranes, offshore containers, loose gear, other lifting devices, and operational best practices : standard practices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This document was developed by a working group with representatives from the petroleum industry, the Offshore Petroleum Boards and Certifying Authorities. It outlines industry best practices for operators responsible for the management, planning and execution of offshore lifting operations. Its purpose is to assist in the interpretation of applicable legislation and standards. Considered within the practice are safe design requirements, manufacture, certification, testing, maintenance and inspection requirements for pedestal cranes, offshore containers, loose gear and lifting devices. Operational best practices for lifting operations are also included along with a section that identifies additional requirements for personnel lifting operations, including personnel transfers by crane and man-riding operations. 82 refs., 2 tabs., 4 figs., 3 appendices.

  2. Damage assessment of nuclear containment against aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Mohd Ashraf, E-mail: iqbal_ashraf@rediffmail.com; Sadique, Md. Rehan, E-mail: rehan.sadique@gmail.com; Bhargava, Pradeep, E-mail: bhpdpfce@iitr.ac.in; Bhandari, N.M., E-mail: nmbcefce@iitr.ac.in

    2014-10-15

    Highlights: • Damage assessment of nuclear containment is studied against aircraft crash. • Four impact locations have been identified at the outer containment shell. • The mid of the total height has been found to be most vulnerable location. • The crown of dome has been found to be the strongest location. • Phantom F4 caused more localized and severe damage compared to other aircrafts. - Abstract: The behavior of nuclear containment structure has been studied against aircraft crash with an emphasis on the influence of strike location. The impact locations identified on the BWR Mark III type nuclear containment structure are mid-height, junction of dome and cylinder, crown of dome and arc of dome. The containment at each of the above locations has been impacted normally by Phantom F-4, Boeing 707-320 and Airbus A320 aircrafts. The loading of the aircraft has been assigned through the corresponding reaction-time response curve. ABAQUS/Explicit finite element code has been used to carry out the three-dimensional numerical simulations. The concrete damaged plasticity model was used to simulate the behavior of concrete while the behavior of steel reinforcement was incorporated using the Johnson–Cook elasto-viscoplastic material model. The mid-height of containment has been found to experience most severe deformation against each aircraft. Phantom F4 has been found to be most disastrous at each location. The results have been compared with those of the available studies with respect to the containment deformation.

  3. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  4. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    Science.gov (United States)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  5. The Low-Noise Potential of Distributed Propulsion on a Catamaran Aircraft

    Science.gov (United States)

    Posey, Joe W.; Tinetti, A. F.; Dunn, M. H.

    2006-01-01

    The noise shielding potential of an inboard-wing catamaran aircraft when coupled with distributed propulsion is examined. Here, only low-frequency jet noise from mid-wing-mounted engines is considered. Because low frequencies are the most difficult to shield, these calculations put a lower bound on the potential shielding benefit. In this proof-of-concept study, simple physical models are used to describe the 3-D scattering of jet noise by conceptualized catamaran aircraft. The Fast Scattering Code is used to predict noise levels on and about the aircraft. Shielding results are presented for several catamaran type geometries and simple noise source configurations representative of distributed propulsion radiation. Computational analyses are presented that demonstrate the shielding benefits of distributed propulsion and of increasing the width of the inboard wing. Also, sample calculations using the FSC are presented that demonstrate additional noise reduction on the aircraft fuselage by the use of acoustic liners on the inboard wing trailing edge. A full conceptual aircraft design would have to be analyzed over a complete mission to more accurately quantify community noise levels and aircraft performance, but the present shielding calculations show that a large acoustic benefit could be achieved by combining distributed propulsion and liner technology with a twin-fuselage planform.

  6. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  7. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    NARCIS (Netherlands)

    Faber, Gert; Visser, Steven; van der Molen, Henk F.; Kuijer, P. Paul F. M.; Hoozemans, Marco J. M.; van Dieën, Jaap H.; Frings-Dresen, Monique H. W.

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared

  8. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  9. Conceptual design for a laminar-flying-wing aircraft

    Science.gov (United States)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  10. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul

    2012-06-01

    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  11. 21 CFR 880.5500 - AC-powered patient lift.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or other...

  12. Null lifts and projective dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cariglia, Marco, E-mail: marco@iceb.ufop.br

    2015-11-15

    We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.

  13. ALARA review for the deactivation of 105-N Lift Station

    International Nuclear Information System (INIS)

    Nellesen, A.L.

    1997-01-01

    This ALARA review provides a description of the engineering and administrative controls used to manage personnel exposure and to control contamination levels and airborne radioactivity concentrations, while removing water, sludge, stabilizing surfaces, and all other associated work involved in the deactivation of the 105-N Lift Station. The lift station was used as a sump and received contaminated water from the 105-N Fuel Storage Basin weirs and contaminated drains in the 105-N Building. During operation water from the lift station was pumped to the 1310-N and 1325-N cribs. Deactivation of the lift station is a critical step in completing the deactivation of N-Area

  14. 'Natural Gas lift', a New Tool for Nigeria

    International Nuclear Information System (INIS)

    Lucas, C. D.

    2003-01-01

    Gas lift is the most common means of artificial lift in the Niger Delta and has been widely applied worldwide. The advent of remote monitoring and control devises (RMC) has added a new option in artificiallift, 'natural gas lift'. 'Natural gas lift' is an extension RMC in which a gas zone and one or more oil zones are produced through the same tubing string, using the gas enhance the production of the oil zones. The flow of gas is maintained in the optimal range using down hole chokes that are controlled from the surface. The gas flow rate is monitored using downhole pressure and .temperature gauges. The use of 'natural gas lift' has the advantages of gas lift but without the cost associated with gas lift; gas supply wells, compression etc. This is especially critical in areas that are remote from other facilities or in subsea completions where access to the wells is limited. Stacked reservoirs and frequent inclusion of both oil and gas reservoirs in the same field, as found in the Niger Delta, makes Nigeria a prime candidate for this technology. An example of this production from the North Sea will be presented along with a potential application using data from the Niger Delta. Design elements of the monitoring and control systems will be covered and the advantages and drawbacks of this application will be discussed

  15. PRODUCTION SYSTEM MODELING OF THE GAS LIFTED WELL BY MEANS OF THE PROGRAM PROSPER

    Directory of Open Access Journals (Sweden)

    Sonja Koščak Kolin

    2009-12-01

    Full Text Available A production system analysis was made for the well Šandrovac-136 equipped with a continuous gas lift. The analysis was based on the test data which served as the foundation for creating a production well model in computer program ‘PROSPER’ (Version 10.3, License 2681. The importance of the measured data in well modeling is accuracy and reliability in predicting future developments of the production system. The model design can be divided in six steps among which the most important are: calculation of the IPR curve, calculation of the gas lift system and matching of VLP and IPR curves based on the well testing. The aim of the VLP/IPR matching is to choose an appropriate method for calculating the pressure drop gradient by applying the nonlinear regression method, which results in the system working point adjusted to the measured data. This model was applied in sensitivity analysis of the well, in which three key variables are selected to predict their effect on future system changes, primarily on changes of the production and bottom dynamic pressure (the paper is published in Croatian.

  16. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial

  17. Face-Lift Satisfaction Using the FACE-Q.

    Science.gov (United States)

    Sinno, Sammy; Schwitzer, Jonathan; Anzai, Lavinia; Thorne, Charles H

    2015-08-01

    Face lifting is one of the most common operative procedures for facial aging and perhaps the procedure most synonymous with plastic surgery in the minds of the lay public, but no verifiable documentation of patient satisfaction exists in the literature. This study is the first to examine face-lift outcomes and patient satisfaction using a validated questionnaire. One hundred five patients undergoing a face lift performed by the senior author (C.H.T.) using a high, extended-superficial musculoaponeurotic system with submental platysma approximation technique were asked to complete anonymously the FACE-Q by e-mail. FACE-Q scores were assessed for each domain (range, 0 to 100), with higher scores indicating greater satisfaction with appearance or superior quality of life. Fifty-three patients completed the FACE-Q (50.5 percent response rate). Patients demonstrated high satisfaction with facial appearance (mean ± SD, 80.7 ± 22.3), and quality of life, including social confidence (90.4 ± 16.6), psychological well-being (92.8 ± 14.3), and early life impact (92.2 ± 16.4). Patients also reported extremely high satisfaction with their decision to undergo face lifting (90.5 ± 15.9). On average, patients felt they appeared 6.9 years younger than their actual age. Patients were most satisfied with the appearance of their nasolabial folds (86.2 ± 18.5), cheeks (86.1 ± 25.4), and lower face/jawline (86.0 ± 20.6), compared with their necks (78.1 ± 25.6) and area under the chin (67.9 ± 32.3). Patients who responded in this study were extremely satisfied with their decision to undergo face lifting and the outcomes and quality of life following the procedure.

  18. Experimental and simulated control of lift using trailing edge devices

    Science.gov (United States)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  19. Electro—magnetic control of shear flow over a cylinder for drag reduction and lift enhancement

    International Nuclear Information System (INIS)

    Zhang Hui; Fan Bao-Chun; Chen Zhi-Hua; Chen Shuai; Li Hong-Zhi

    2013-01-01

    In this paper, the electro—magnetic control of a cylinder wake in shear flow is investigated numerically. The effects of the shear rate and Lorentz force on the cylinder wake, the distribution of hydrodynamic force, and the drag/lift phase diagram are discussed in detail. It is revealed that Lorentz force can be classified into the field Lorentz force and the wall Lorentz force and they affect the drag and lift forces independently. The drag/lift phase diagram with a shape of ''8'' consists of two closed curves, which correspond to the halves of the shedding cycle dominated by the upper and lower vortices respectively. The free stream shear (K > 0) induces the diagram to move downward and leftward, so that the average lift force directs toward the downside. With the upper Lorentz force, the diagram moves downwards and to the right by the field Lorentz force, thus resulting in the drag increase and the lift reduction, whereas it moves upward and to the left by the wall Lorentz force, leading to the drag reduction and the lift increase. Finally the diagram is dominated by the wall Lorentz force, thus moving upward and leftward. Therefore the upper Lorentz force, which enhances the lift force, can be used to overcome the lift loss due to the free stream shear, which is also obtained in the experiment. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Comparative Kinematic Analysis of the Snatch Lifts in Elite Male Adolescent Weightlifters

    Directory of Open Access Journals (Sweden)

    Erbil Harbili

    2014-06-01

    Full Text Available The purpose of the study was to compare the linear kinematics of the barbell and the angular kinematics of the lower limb during the snatch lifts of two different barbell weights in elite male adolescent weightlifters. In the national team level, nine elite male adolescent weightlifters participated in the study. The snatch lifts were recorded by two video cameras under competitive conditions in preparation period before the European Junior Championship (Sony MiniDv PAL- 50 field/s and the two heaviest successful lifts were selected for kinematic analysis. The little toe, ankle, knee, hip, and shoulder on the body and one point on the barbell were digitized using Ariel Performance Analysis System (APAS, San Diego, CA, USA. Significant decreases were found in the maximum barbell height, the relative power output during the second pull, and the maximum vertical velocity of the barbell during the second pull of the heaviest lift (p < 0.05. Maximum extension velocity of the hip joint significantly increased during the first pull of the heaviest lift (p < 0.05. As the mass of the barbell increased, the maximum vertical velocity and the maximum height of the barbell and relative power output during the second pull decreased in the heaviest lift performed by adolescent weightlifters. Coaches should pay attention to assistant exercises to increase explosive strength during the second pull with maximum strength in male adolescent weightlifters.

  1. Aircraft and background noise annoyance effects

    Science.gov (United States)

    Willshire, K. F.

    1984-01-01

    To investigate annoyance of multiple noise sources, two experiments were conducted. The first experiment, which used 48 subjects, was designed to establish annoyance-noise level functions for three community noise sources presented individually: jet aircraft flyovers, air conditioner, and traffic. The second experiment, which used 216 subjects, investigated the effects of background noise on aircraft annoyance as a function of noise level and spectrum shape; and the differences between overall, aircraft, and background noise annoyance. In both experiments, rated annoyance was the dependent measure. Results indicate that the slope of the linear relationship between annoyance and noise level for traffic is significantly different from that of flyover and air conditioner noise and that further research was justified to determine the influence of the two background noises on overall, aircraft, and background noise annoyance (e.g., experiment two). In experiment two, total noise exposure, signal-to-noise ratio, and background source type were found to have effects on all three types of annoyance. Thus, both signal-to-noise ratio, and the background source must be considered when trying to determine community response to combined noise sources.

  2. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  3. Characterization of Oscillatory Lift in MFC Airfoils

    OpenAIRE

    Lang Jr, Joseph Reagle

    2014-01-01

    The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil. The transfer function is then used to determine the lift component du...

  4. The hybrid assistive limb (HAL) for Care Support successfully reduced lumbar load in repetitive lifting movements.

    Science.gov (United States)

    Miura, Kousei; Kadone, Hideki; Koda, Masao; Abe, Tetsuya; Kumagai, Hiroshi; Nagashima, Katsuya; Mataki, Kentaro; Fujii, Kengo; Noguchi, Hiroshi; Funayama, Toru; Kawamoto, Hiroaki; Sankai, Yoshiyuki; Yamazaki, Masashi

    2018-05-03

    Work-related low back pain is a serious socioeconomic problem. This study examined whether HAL for Care Support, which is a newly developed wearable robot, would decrease lumbar fatigue and improve lifting performance during repetitive lifting movements. Eighteen healthy volunteers (11 men, 7 women) performed repetitive stoop lifting movements of a cardboard box weighing 12 kg as many times as possible. The first lifting trial was executed without HAL for Care Support, and the second was with it. We evaluated the VAS of lumbar fatigue as the lumbar load and the number of lifts and the lifting time as lifting performance. Without HAL for Care Support, the mean VAS of lumbar fatigue, the number of lifts and lifting time were 68 mm, 60 and 230 s; with HAL for Care Support, they were 51 mm, 87 and 332 s, respectively. Both lifting performance measures were significantly improved by using HAL for Care Support (Fig. 2). A power analysis showed that there was sufficient statistical power for the VAS of lumbar fatigue (0.99), the number of lifts (0.92), and lifting time (0.93). All participants performed their repetitive lifting trials safely. There were no adverse events caused by using HAL for Care Support. In conclusion, the HAL for Care Support can decrease lumbar load and improve the lifting performance during repetitive stoop lifting movements in healthy adults. Copyright © 2018. Published by Elsevier Ltd.

  5. Lifting the US crude oil export ban: A numerical partial equilibrium analysis

    International Nuclear Information System (INIS)

    Langer, Lissy; Huppmann, Daniel; Holz, Franziska

    2016-01-01

    The upheaval in global crude oil markets and the boom in shale oil production in North America brought scrutiny on the US export ban for crude oil from 1975. The ban was eventually lifted in early 2016. This paper examines the shifts of global trade flows and strategic refinery investments in a spatial, game-theoretic partial equilibrium model. We consider detailed oil supply chain infrastructure with multiple crude oil types, distinct oil products, as well as specific refinery configurations and modes of transport. Prices, quantities produced and consumed, as well as infrastructure and refining capacity investments are endogenous to the model. We compare two scenarios: an insulated US crude oil market, and a counter-factual with lifted export restrictions. We find a significant expansion of US sweet crude exports with the lift of the export ban. In the US refinery sector, more (imported) heavy sour crude is transformed. Countries importing US sweet crude gain from higher product output, while avoiding costly refinery investments. Producers of heavy sour crude (e.g. the Middle East) are incentivised to climb up the value chain to defend their market share and maintain their dominant position. - Highlights: • We study the impacts of lifting the US crude ban on global oil flows and investments. • We find massive expansion of US sweet crude oil exports. • We analyze the resulting welfare effects for US producers, refiners and consumers. • We indicate the changes on global trade patterns. • We conclude that lifting the ban is the right policy for the US and the global economy.

  6. In-flight observation of long duration gamma-ray glows by aircraft

    Science.gov (United States)

    Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai

    2017-04-01

    The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.

  7. iLift: A health behavior change support system for lifting and transfer techniques to prevent lower-back injuries in healthcare.

    Science.gov (United States)

    Kuipers, Derek A; Wartena, Bard O; Dijkstra, Boudewijn H; Terlouw, Gijs; van T Veer, Job T B; van Dijk, Hylke W; Prins, Jelle T; Pierie, Jean Pierre E N

    2016-12-01

    Lower back problems are a common cause of sick leave of employees in Dutch care homes and hospitals. In the Netherlands over 40% of reported sick leave is due to back problems, mainly caused by carrying out heavy work. The goal of the iLift project was to develop a game for nursing personnel to train them in lifting and transfer techniques. The main focus was not on testing for the effectiveness of the game itself, but rather on the design of the game as an autogenous trigger and its place in a behavioral change support system. In this article, the design and development of such a health behavior change support system is addressed, describing cycles of design and evaluation. (a) To define the problem space, use context and user context, focus group interviews were conducted with Occupational Therapists (n=4), Nurses (n=10) and Caregivers (n=12) and a thematic analysis was performed. We interviewed experts (n=5) on the subject of lifting and transferring techniques. (b) A design science research approach resulted in a playable prototype. An expert panel conducted analysis of video-recorded playing activities. (c) Field experiment: We performed a dynamic analysis in order to investigate the feasibility of the prototype through biometric data from player sessions (n=620) by healthcare professionals (n=37). (a) Occupational Therapists, Nurses and Caregivers did not recognise a lack of knowledge with training in lifting and transferring techniques. All groups considered their workload, time pressure and a culturally determined habit to place the patient's well being above their own as the main reason not to apply appropriate lifting and transferring techniques. This led to a shift in focus from a serious game teaching lifting and transferring techniques to a health behavior change support system containing a game with the intention to influence behavior. (b) Building and testing (subcomponents of) the prototype resulted in design choices regarding players perspective

  8. Development of Facial Rejuvenation Procedures: Thirty Years of Clinical Experience with Face Lifts

    Directory of Open Access Journals (Sweden)

    Byung Jun Kim

    2015-09-01

    Full Text Available Facial rejuvenation procedures can be roughly divided into face lift surgery and nonoperative, less invasive procedures, such as fat grafts, fillers, botulinum toxin injections, thread lifts, or laserbrasion. Face lift surgery or rhytidectomy is the procedure most directly associated with rejuvenation, due to its fundamental ability to restore the anatomical changes caused by aging. Various methods of face lift surgery have been developed over the last hundred years, thanks to advances in the understanding of facial anatomy and the mechanisms of aging, as well as the dedication of innovative surgeons. However, no generally applicable standard method exists, because the condition of each patient is different, and each operative method has advantages and disadvantages. Specific characteristics of the skin of Asians and their skeletal anatomy should be considered when determining the operative method to be used on Asian patients. Plastic surgeons should improve their ability to analyze the original aesthetic properties and problem areas of each patient, drawing on scientific knowledge about the aging process, and they should develop the skills necessary to perform various rejuvenative techniques. In the present article, we reviewed various face lift procedures and the current methods of modified double plane face lift, based on our clinical experience of over 30 years.

  9. Asymmetric Gepner models II. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2011-05-21

    A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E{sub 8} factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  10. 26 CFR 48.4041-14 - Exemption for sale to or use by certain aircraft museums.

    Science.gov (United States)

    2010-04-01

    ... TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Special Fuels § 48... aircraft of the type used for combat or transport in World War II. (2) In the case of liquid sold for use...

  11. Estimation of unsteady lift on a pitching airfoil from wake velocity surveys

    Science.gov (United States)

    Zaman, K. B. M. Q.; Panda, J.; Rumsey, C. L.

    1993-01-01

    The results of a joint experimental and computational study on the flowfield over a periodically pitched NACA0012 airfoil, and the resultant lift variation, are reported in this paper. The lift variation over a cycle of oscillation, and hence the lift hysteresis loop, is estimated from the velocity distribution in the wake measured or computed for successive phases of the cycle. Experimentally, the estimated lift hysteresis loops are compared with available data from the literature as well as with limited force balance measurements. Computationally, the estimated lift variations are compared with the corresponding variation obtained from the surface pressure distribution. Four analytical formulations for the lift estimation from wake surveys are considered and relative successes of the four are discussed.

  12. Your body mechanics in motion : proactive training for stepping, handling, lifting

    Energy Technology Data Exchange (ETDEWEB)

    Hanchara, L.; Strong, J. [Kinetic Safety Consulting Inc., Grande Prairie, AB (Canada)

    2007-07-01

    Over a third of all injuries in the oil and gas industry are caused by strains. Nearly 50 per cent of back injuries in the industry are reported by workers on the job for less than 6 months. This presentation provided details of Mechanics in Motion, a program designed to promote proactive and safe conditions for workers in the petroleum industry. The program presented methods of improving posture when lifting, stepping, reaching, and carrying. The program was created in 2005 in order to serve as a preventative tool in the oilfield. Outlines of body fulcrums and levers were presented, as well as the types of joints that are most prone to workplace injuries. Field and office ergonomics were reviewed, and various correct lifting techniques were presented. Worksite warm-up programs were provided, as well as a set of stretches designed specifically for the back. It was concluded that understanding oilfield ergonomics and the mechanical principles of the body may help to prevent injuries in the workplace. tabs., figs.

  13. Probability of detection for bolt hole eddy current in extracted from service aircraft wing structures

    Science.gov (United States)

    Underhill, P. R.; Uemura, C.; Krause, T. W.

    2018-04-01

    Fatigue cracks are prone to develop around fasteners found in multi-layer aluminum structures on aging aircraft. Bolt hole eddy current (BHEC) is used for detection of cracks from within bolt holes after fastener removal. In support of qualification towards a target a90/95 (detect 90% of cracks of depth a, 95% of the time) of 0.76 mm (0.030"), a preliminary probability of detection (POD) study was performed to identify those parameters whose variation may keep a bolt hole inspection from attaining its goal. Parameters that were examined included variability in lift-off due to probe type, out-of-round holes, holes with diameters too large to permit surface-contact of the probe and mechanical damage to the holes, including burrs. The study examined the POD for BHEC of corner cracks in unfinished fastener holes extracted from service material. 68 EDM notches were introduced into two specimens of a horizontal stabilizer from a CC-130 Hercules aircraft. The fastener holes were inspected in the unfinished state, simulating potential inspection conditions, by 7 certified inspectors using a manual BHEC setup with an impedance plane display and also with one inspection conducted utilizing a BHEC automated C-Scan apparatus. While the standard detection limit of 1.27 mm (0.050") was achieved, given the a90/95 of 0.97 mm (0.039"), the target 0.76 mm (0.030") was not achieved. The work highlighted a number of areas where there was insufficient information to complete the qualification. Consequently, a number of recommendations were made. These included; development of a specification for minimum probe requirements; criteria for condition of the hole to be inspected, including out-of-roundness and presence of corrosion pits; statement of range of hole sizes; inspection frequency and data display for analysis.

  14. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  15. An Extensional Characterization of Lambda-Lifting and Lambda-Dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1999-01-01

    Lambda-lifting and lambda-dropping respectively transform a block-structured functional program into recursive equations and vice versa. Lambda-lifting was developed in the early 80’s, whereas lambda-dropping is more recent. Both are split into an analysis and a transformation. Published work......, however, has only concentrated on the analysis parts. We focus here on the transformation parts and more precisely on their correctness, which appears never to have been proven. To this end, we define extensional versions of lambda-lifting and lambda-dropping and establish their correctness with respect...

  16. An Extensional Characterization of Lambda-Lifting and Lambda-Dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1998-01-01

    Lambda-lifting and lambda-dropping respectively transform a block-structured functional program into recursive equations and vice versa. Lambda-lifting was developed in the early 80’s, whereas lambda-dropping is more recent. Both are split into an analysis and a transformation. Published work......, however, has only concentrated on the analysis parts. We focus here on the transformation parts and more precisely on their correctness, which appears never to have been proven. To this end, we define extensional versions of lambda-lifting and lambda-dropping and establish their correctness with respect...

  17. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  18. Toxicological findings in fatally injured pilots of 979 amateur-built aircraft accidents.

    Science.gov (United States)

    2011-12-01

    "Biological samples collected from fatally injured pilots in aviation accidents involving all types of aircraft, including : amateur-built aircraft, are submitted to the Civil Aerospace Medical Institute (CAMI) for accident investigation. : These sam...

  19. Cold-forceps avulsion with adjuvant snare-tip soft coagulation (CAST) is an effective and safe strategy for the management of non-lifting large laterally spreading colonic lesions.

    Science.gov (United States)

    Tate, David J; Bahin, Farzan F; Desomer, Lobke; Sidhu, Mayenaaz; Gupta, Vikas; Bourke, Michael J

    2018-01-01

     Non-lifting large laterally spreading colorectal lesions (LSLs) are challenging to resect endoscopically and often necessitate surgery. A safe, simple technique to treat non-lifting LSLs endoscopically with robust long-term outcomes has not been described.  In this single-center prospective observational study of consecutive patients referred for endoscopic mucosal resection (EMR) of LSLs ≥ 20 mm, LSLs not completely resectable by snare because of non-lifting underwent standardized completion of resection with cold-forceps avulsion and adjuvant snare-tip soft coagulation (CAST). Scheduled surveillance colonoscopies were performed at 4 - 6 months (SC1) and 18 months (SC2). Primary outcomes were endoscopic evidence of adenoma clearance and avoidance of surgery. The secondary outcome was safety.  From January 2012 to October 2016, 540 lifting LSLs (82.2 %) underwent complete snare excision at EMR. CAST was required for complete removal in 101 non-lifting LSLs (17.8 %): 63 naïve non-lifting lesions (NNLs; 62.7 %) and 38 previously attempted non-lifting lesions (PANLs; 37.3 %). PANLs were smaller ( P  < 0.001) and more likely to be non-granular ( P  = 0.001) than the lifting LSLs. NNLs were of similar size ( P  = 0.77) and morphology ( P  = 0.10) to the lifting LSLs. CAST was successful in all cases and adverse events were comparable to lifting LSLs resected by complete snare excision. Recurrence at SC1 was comparable for PANLs (15.2 %) and lifting LSLs (15.3 %; P  = 0.99), whereas NNLs recurred more frequently (27.5 %; P  = 0.049); however, surgery was no more common for either type of non-lifting LSL than for lifting LSLs.  CAST is a safe, effective, and surgery-sparing therapy for the majority of non-lifting LSLs. It is easy to use, inexpensive, and does not require additional equipment. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Impact of optical properties of front glass substrates on Cu(In,Ga)Se{sub 2} solar cells using lift-off process

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Akihiro, E-mail: ro005080@ed.ritsumei.ac.jp [College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan); Abe, Yasuhiro [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan); Minemoto, Takashi [College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan)

    2013-11-01

    Transmittance of a front glass is one of the important factors in the development of high efficiency superstrate-type Cu(In,Ga)Se{sub 2} (CIGS) solar cells. In this study, we investigated the impact of optical properties of the front glass on the solar cell performance of the CIGS solar cells fabricated using the lift-off process. First, optical properties of quartz substrates and soda-lime glass (SLG) substrates with various thicknesses were investigated. Although optical properties of the SLG substrates depend on the thickness, those of the quartz substrates hardly depend on the thickness. Secondly, the superstrate-type CIGS solar cells were fabricated using 1-mm-thick SLG or 1-mm-thick quartz substrates. As a result, the short-circuit current density of the superstrate-type CIGS solar cell with 1-mm-thick quartz substrate was approximately 7% higher than that with 1-mm-thick SLG substrate, and its conversion efficiency was 7.1%. The external quantum efficiency of the solar cells was also improved using the quartz substrate as a front glass because transmittance and absorptance of the quartz substrate were superior to those of the SLG substrate. We therefore conclude that optical properties of the front glasses play an important role in the improvement of the superstrate-type solar cells. - Highlights: • Superstrate type Cu(In,Ga)Se{sub 2} solar cells are fabricated by lift-off process. • Various glasses are used as front glass for lift-off. • The impact of optical properties of the glasses on cell performance is investigated. • Quartz front glass gives 7% higher short-circuit current than soda-lime glass. • High transmittance is desired for front glass.

  1. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  2. Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

    OpenAIRE

    A. Badarudin; C. S. Oon; S. N. Kazi; N. Nik-Ghazali; Y. J. Lee; W. T. Chong

    2013-01-01

    An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appro...

  3. ASKA STOL research aircraft flight tests and evaluation. STOL jikkenki Asuka'' no hiko shiken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, M; Inoue, T; Tobinaga, Y; Tsuji, H [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1991-07-20

    The present report evaluated the powered high-lift device (PHLD) distance of upper surface blowing (USB) system, basing the materialization of short distance take-off and landing (STOL) performance, one of the main flight test purposes by the Aska'', quiet STOL research aircraft, which evaluation was then added with reporting its flight test result to cover several topics. As prototypical, a C-1 tactical transport aircraft produced by Kawasaki Heavy Industries was modified to the aska'' together with the following change in design for the STOL flight test: Adoption was made of a PHLD of USB system where the wing surface was mounted with four turbofan jet engines thereon. Application was made of a boundary layer control (BLC) to the main wing leading edge and aileron. Mounting was made of a stability and control augmentation system (SCAS) using a triple system digital computer. Fitting was made of a vortex generator for the prevention from peeling by jet exhaust. As a result of flight test, the recorded distance was confirmed to be 1580ft in landing and 1670ft in take-off. 5 refs., 15 figs., 2 tabs.

  4. Determination of tricresyl phosphate air contamination in aircraft.

    Science.gov (United States)

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  5. Nordic noir and lifted localities

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    What I do here is to draw attention to a particular visual quality of recent Nordic noir and to relate the visuality of TV-drama to what I – with a term borrowed from Roland Robertson – dub lifted localites.......What I do here is to draw attention to a particular visual quality of recent Nordic noir and to relate the visuality of TV-drama to what I – with a term borrowed from Roland Robertson – dub lifted localites....

  6. Three-dimensional motion analysis of the lumbar spine during "free squat" weight lift training.

    Science.gov (United States)

    Walsh, James C; Quinlan, John F; Stapleton, Robert; FitzPatrick, David P; McCormack, Damian

    2007-06-01

    Heavy weight lifting using a squat bar is a commonly used athletic training exercise. Previous in vivo motion studies have concentrated on lifting of everyday objects and not on the vastly increased loads that athletes subject themselves to when performing this exercise. Athletes significantly alter their lumbar spinal motion when performing squat lifting at heavy weights. Controlled laboratory study. Forty-eight athletes (28 men, 20 women) performed 6 lifts at 40% maximum, 4 lifts at 60% maximum, and 2 lifts at 80% maximum. The Zebris 3D motion analysis system was used to measure lumbar spine motion. Exercise was performed as a "free" squat and repeated with a weight lifting support belt. Data obtained were analyzed using SAS. A significant decrease (P free squat or when lifting using a support belt in any of the groups studied. Weight lifting using a squat bar causes athletes to significantly hyperextend their lumbar spines at heavier weights. The use of a weight lifting support belt does not significantly alter spinal motion during lifting.

  7. Experimental and simulated control of lift using trailing edge devices

    International Nuclear Information System (INIS)

    Cooperman, A; Blaylock, M; Van Dam, C P

    2014-01-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust

  8. Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode

    Science.gov (United States)

    Yang, S. B.; Han, X. Y.; Qiu, J.

    As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.

  9. Lift of a rotating circular cylinder in unsteady flows

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Mandviwalla, Xerxes; Vita, Luca

    2012-01-01

    A cylinder rotating in steady current experiences a lift known as the Magnus effect. In the present study the effect of waves on the Magnus effect has been investigated. This situation is experienced with the novel floating offshore vertical axis wind turbine (VAWT) concept called the DEEPWIND...... concept, which incorporates a rotating spar buoy and thereby utilizes seawater as a roller-bearing. The a priori assumption and the results suggest that the lift in waves, to a first approximation, may be represented by a formulation similar to the well-known Morison formulation. The force coefficients...

  10. Lifting as You Climb

    Science.gov (United States)

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  11. Lift-(gasless) laparoscopic surgery under regional anesthesia.

    Science.gov (United States)

    Kruschinski, Daniel; Homburg, Shirli

    2005-01-01

    The objective of this Chapter was to investigate the feasibility and outcome of gasless laparoscopy under regional anesthesia. A prospective evaluation of Lift-(gasless) laparoscopic procedures under regional anesthesia (Canadian Task Force classification II-1) was done at three endoscopic gynecology centers (franchise system of EndGyn(r)). Sixty-three patients with gynecological diseases comprised the cohort. All patients underwent Lift-laparoscopic surgery under regional anesthesia: 10 patients for diagnostic purposes, 17 for surgery of ovarian tumors, 14 to remove fibroids, and 22 for hysterectomies. All patients were operated without conversion to general anesthesia and without perioperative or anesthesiologic complications. Lift-laparoscopy under regional anesthesia can be recommended to all patients who desire laparoscopic intervention without general anesthesia. For elderly patients, those with cardiopulmonary risks, during pregnancy, or with contraindications for general anesthesia, Lift-laparoscopy under regional anesthesia should be the procedure of choice.

  12. Development of an Active Flow Control Technique for an Airplane High-Lift Configuration

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Hartwich, Peter M.; Khodadoust, Abdi

    2017-01-01

    This study focuses on Active Flow Control methods used in conjunction with airplane high-lift systems. The project is motivated by the simplified high-lift system, which offers enhanced airplane performance compared to conventional high-lift systems. Computational simulations are used to guide the implementation of preferred flow control methods, which require a fluidic supply. It is first demonstrated that flow control applied to a high-lift configuration that consists of simple hinge flaps is capable of attaining the performance of the conventional high-lift counterpart. A set of flow control techniques has been subsequently considered to identify promising candidates, where the central requirement is that the mass flow for actuation has to be within available resources onboard. The flow control methods are based on constant blowing, fluidic oscillators, and traverse actuation. The simulations indicate that the traverse actuation offers a substantial reduction in required mass flow, and it is especially effective when the frequency of actuation is consistent with the characteristic time scale of the flow.

  13. Food can lift mood by affecting mood-regulating neurocircuits via a serotonergic mechanism.

    Science.gov (United States)

    Kroes, Marijn C W; van Wingen, Guido A; Wittwer, Jonas; Mohajeri, M Hasan; Kloek, Joris; Fernández, Guillén

    2014-01-01

    It is commonly assumed that food can affect mood. One prevalent notion is that food containing tryptophan increases serotonin levels in the brain and alters neural processing in mood-regulating neurocircuits. However, tryptophan competes with other long-neutral-amino-acids (LNAA) for transport across the blood-brain-barrier, a limitation that can be mitigated by increasing the tryptophan/LNAA ratio. We therefore tested in a double-blind, placebo-controlled crossover study (N=32) whether a drink with a favourable tryptophan/LNAA ratio improves mood and modulates specific brain processes as assessed by functional magnetic resonance imaging (fMRI). We show that one serving of this drink increases the tryptophan/LNAA ratio in blood plasma, lifts mood in healthy young women and alters task-specific and resting-state processing in brain regions implicated in mood regulation. Specifically, Test-drink consumption reduced neural responses of the dorsal caudate nucleus during reward anticipation, increased neural responses in the dorsal cingulate cortex during fear processing, and increased ventromedial prefrontal-lateral prefrontal connectivity under resting-state conditions. Our results suggest that increasing tryptophan/LNAA ratios can lift mood by affecting mood-regulating neurocircuits. © 2013 Elsevier Inc. All rights reserved.

  14. Lift 2013⎜February 6 to 8

    CERN Multimedia

    2013-01-01

    The Lift Conference returns to the Centre International de Conférence de Genève, with speakers ranging from a science fiction author to a cognitive neuroscience researcher. As one of the foremost talk events of Europe, Lift 2013 seeks to discover new trends and turn them into opportunities.   The three-day conference is designed to engage and arouse intellectual curiosity by exploring the business and social implications of technological innovation. This year’s schedule also includes discussion of the political implications of technology and the impact of the online market on the future of economy. Alongside talks, workshops will be held on a wide range of topics, including the relationship between entrepreneur and investor, designs that influence social behaviour, and how ordinary people are changing the urban space. Lift 2013 also seeks to promote new business ventures and will award prizes to the start-up company that succeeds in convincing the audience an...

  15. Soccer ball lift coefficients via trajectory analysis

    International Nuclear Information System (INIS)

    Goff, John Eric; Carre, Matt J

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  16. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  17. Assessment of aircraft risk reduction at Pantex Plant

    International Nuclear Information System (INIS)

    Lin, Y.T.; Hedtke, R.; Fike, D.; Diniz, J.

    1996-01-01

    The possibility of an aircraft crashing into the Department of Energy's (DOE) Pantex plant facility has been of concern in risk assessments. In response to public concerns, and in an effort to reduce risks associated with overflights of Pantex, several changes to navigational aids at Amarillo International Airport have been implemented. For over one year, a radar airspace monitor and recording system has been connected to the airport surveillance radar at Amarillo to record the flight paths, aircraft types, and traffic density of aircraft in the vicinity of the Pantex plant. The data has provided a better understanding of the overflight risk at Pantex as well as a means to measure the effectiveness of risk reduction efforts

  18. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    Science.gov (United States)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  19. Knees Lifted High

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Knees Lifted High gives children fun ideas for active outdoor play.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  20. The influence of individual and organisational factors on nurses' behaviour to use lifting devices in healthcare.

    Science.gov (United States)

    Koppelaar, E; Knibbe, J J; Miedema, H S; Burdorf, A

    2013-07-01

    This study evaluates the influence of individual and organisational factors on nurses' behaviour to use lifting devices in healthcare. Interviews among nurses were conducted to collect individual characteristics and to establish their behaviour regarding lifting devices use. Organisational factors were collected by questionnaires and walk-through-surveys, comprising technical facilities, organisation of care, and management-efforts. Generalised-Estimating-Equations for repeated measurements were used to estimate determinants of nurses' behaviour. Important determinants of nurses' behaviour to use lifting devices were knowledge of workplace procedures (OR = 5.85), strict guidance on required lifting devices use (OR = 2.91), and sufficient lifting devices (OR = 1.92). Management-support and supportive-management-climate were associated with these determinants. Since nurses' behaviour to use lifting devices is influenced by factors at different levels, studies in ergonomics should consider how multi-level factors impact each other. An integral approach, addressing individual and organisational levels, is necessary to facilitate appropriate implementation of ergonomic interventions, like lifting devices. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  2. Modeling the Aerodynamic Lift Produced by Oscillating Airfoils at Low Reynolds Number

    OpenAIRE

    Khalid, Muhammad Saif Ullah; Akhtar, Imran

    2014-01-01

    For present study, setting Strouhal Number (St) as control parameter, numerical simulations for flow past oscillating NACA-0012 airfoil at 1,000 Reynolds Numbers (Re) are performed. Temporal profiles of unsteady forces; lift and thrust, and their spectral analysis clearly indicate the solution to be a period-1 attractor for low Strouhal numbers. This study reveals that aerodynamic forces produced by plunging airfoil are independent of initial kinematic conditions of airfoil that proves the ex...

  3. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  4. Evaluation of team lifting on work demands, workload and workers' evaluation: an observational field study.

    Science.gov (United States)

    Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Frings-Dresen, Monique H W

    2014-11-01

    The objective of this study was to assess differences in work demands, energetic workload and workers' discomfort and physical effort in two regularly observable workdays in ironwork; one where loads up to 50kg were handled with two persons manually (T50) and one where loads up to 100kg were handled manually with four persons (T100). Differences between these typical workdays were assessed with an observational within-subject field study of 10 ironworkers. No significant differences were found for work demands, energetic workload or discomfort between T50 and T100 workdays. During team lifts, load mass exceeded 25kg per person in 57% (T50 workday) and 68% (T100 workday) of the lifts. Seven ironworkers rated team lifting with two persons as less physically demanding compared with lifting with four persons. When loads heavier than 25kg are lifted manually with a team, regulations of the maximum mass weight are frequently violated. Loads heavier than 25kg are frequently lifted during concrete reinforcement work and should be lifted by a team of persons. However, the field study showed that loads above 25kg are most of the time not lifted with the appropriate number of workers. Therefore, loads heavier than 25kg should be lifted mechanically. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    So how do you go about teaching them something new? By mix- ing what they know with .... the viscous terms to the Euler equations increases the order of the ... such a strange result, one can use this pressure distribution and calculate the lift ...

  6. Corrosion of Aluminum Alloys in the Presence of Fire-Retardant Aircraft Interior Materials

    Science.gov (United States)

    1995-10-01

    This research project was to evaluate the potential for fire-retardant materials used in aircraft interiors to cause corrosion of aluminum structural alloys. Service Difficulty Reports (SDR's) were reviewed for several aircraft types, and the most fr...

  7. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  8. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    Science.gov (United States)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  9. Minilaparotomy with a gasless laparoscopic-assisted procedure by abdominal wall lifting for ileorectal anastomosis in patients with slow transit constipation.

    Science.gov (United States)

    Tomita, Ryouichi; Fujisak, Shigeru

    2009-01-01

    Total colectomy with ileorectal anastomosis (IRA) is the most widely adopted procedure. The aim of this study was to introduce a minimally invasive procedure, i.e., minilaparotomy with laparoscopic-assisted procedure, by abdominal wall lifting for IRA in patients with slow transit constipation (STC). Six STC patients (6 women, aged 40-69 years, mean age 56.3 years) underwent minilaparotomy with gasless laparoscopic-assisted approach by abdominal wall lifting for IRA. The present procedure involved a 7-cm lower abdominal median incision made at the beginning of the operation. 12 mm ports were also placed in the right and left upper abdominal quadrant positions. The upper abdominal wall was lifted by a subcutaneous Kirshner wire. The small wound was pulled upward and/or laterally by retractors (abdominal lifting) and conventional surgical instruments were used through the wound. Occasionally laparoscopic assistance was employed. The terminal ileum with total colon was brought out through the small wound and transected, approximately 5 cm from the ileocecal valve. The colon was also resected at the level of promontrium. Then, IRA was performed in the instruments. The total surgical time was 197.7 +/- 33.9 min and the mean estimated blood loss was 176.8 +/- 42.2 ml. There was no surgical mortality. Post-operative hospitalization was 8.1 +/- 2.1 days. Six months after surgery, they defecated 1.8 +/- 2.1 times daily, have no abdominal distension, pain, and incontinence. The patients also take no laxatives. All subjects were satisfied with this procedure. Minilaparotomy with gasless laparoscopic-assisted IRA by abdominal wall lifting could be a safe and efficient technique in the treatment of STC.

  10. Managing cultural diversity in healthcare partnerships: the case of LIFT.

    Science.gov (United States)

    Mannion, Russell; Brown, Sally; Beck, Matthias; Lunt, Neil

    2011-01-01

    The National Health Service (NHS) Local Improvement Finance Trust (LIFT) programme was launched in 2001 as an innovative public-private partnership to address the historical under-investment in local primary care facilities in England. The organisations from the public and private sector that comprise a local LIFT partnership each have their own distinctive norms of behaviour and acceptable working practices - ultimately different organisational cultures. The purpose of this article is to assess the role of organisational culture in facilitating (or impeding) LIFT partnerships and to contribute to an understanding of how cultural diversity in public-private partnerships is managed at the local level. The approach taken was qualitative case studies, with data gathering comprising interviews and a review of background documentation in three LIFT companies purposefully sampled to represent a range of background factors. Elite interviews were also conducted with senior policy makers responsible for implementing LIFT policy at the national level. Interpreting the data against a conceptual framework designed to assess approaches to managing strategic alliances, the authors identified a number of key differences in the values, working practices and cultures in public and private organisations that influenced the quality of joint working. On the whole, however, partners in the three LIFT companies appeared to be working well together, with neither side dominating the development of strategy. Differences in culture were being managed and accommodated as partnerships matured. As LIFT develops and becomes the primary source of investment for managing, developing and channelling funding into regenerating the primary care infrastructure, further longitudinal work might examine how ongoing partnerships are working, and how changes in the cultures of public and private partners impact upon wider relationships within local health economies and shape the delivery of patient care

  11. Microbial penetration and utilization of organic aircraft fuel-tank coatings.

    Science.gov (United States)

    Crum, M G; Reynolds, R J; Hedrick, H G

    1967-11-01

    Microorganisms have been found as contaminants in various types of aircraft fuel tanks. Their presence introduces problems in the operation of the aircraft, including destruction of components such as the organic coatings used as protective linings in the fuel tanks. Microbial penetration and utilization of the currently used organic coatings, EC 776, DV 1180, PR 1560, and DeSoto 1080, were determined by changes in electrical resistances of the coatings; mycelial weight changes; growth counts of the bacteria; and manometric determinations on Pseudomonas aeruginosa (GD-FW B-25) and Cladosporium resinae (QMC-7998). The results indicate EC 776 and DV 1180 to be less resistant to microbial degradation than the other coatings. Organic coatings, serving as a source of nutrition, would be conducive to population buildups in aircraft fuel tanks.

  12. Electromagnetic nondestructive testing at high lift-off using a magnetic image conduit

    International Nuclear Information System (INIS)

    Lee, Jin Yi; Jun, Jong Woo; Kim, Jung Min; Le, Min Hhuy

    2013-01-01

    To protect sensors from the extreme environments, such as, heat, moisture, pollution and radiation, cracks must be inspected for; this can be done by measuring the distribution of magnetic fields at high lift-off through nondestructive electro-magnetic testing. However, as the intensity of an electro-magnetic field is inversely proportional to the square of the lift-off, it becomes increasingly difficult to effective inspect a crack as the lift-off increases. In this paper, a magnetic image conduit to minimize the intensity loss of an electro-magnetic field at high lift-off is proposed, and the effectiveness of a conduit for magnetic imaging is verified by means of both theoretical and experimental approaches.

  13. Endoscopic brow lifts uber alles.

    Science.gov (United States)

    Patel, Bhupendra C K

    2006-12-01

    Innumerable approaches to the ptotic brow and forehead have been described in the past. Over the last twenty-five years, we have used all these techniques in cosmetic and reconstructive patients. We have used the endoscopic brow lift technique since 1995. While no one technique is applicable to all patients, the endoscopic brow lift, with appropriate modifications for individual patients, can be used effectively for most patients with brow ptosis. We present the nuances of this technique and show several different fixation methods we have found useful.

  14. Spherical projections and liftings in geometric tomography

    DEFF Research Database (Denmark)

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....

  15. Behavior in exploitation of gas-lift installations with differential valves. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Bodea, I; Truica, V

    1969-07-01

    In this second installment, charts of casing and tubing pressure are shown to illustrate how they can be used as diagnostic tools, both for continuous and intermittent gas-lift installations. The desirable conditions for continuous gas lift are constant casing and tubing pressures; for intermittent gas lift, cycles of equal length and intensity. After discussion of the possible flow regimes in the production tubing, it is shown that pressure gradient and temperature measurements can also be used as diagnostic tools. The basic rules for designing a continuous flow gas-lift installation by multipoint injection are given. Application of these principles in several wells has resulted in an increase in the oil production rate, a decrease in the gas requirement, and a reduction in the frequency of well pulling jobs. A well-designed installation can be expected to function trouble- free for 2 to 4 yr.

  16. A status report on artificial lift systems and challenges in North Dakota horizontal completions

    Energy Technology Data Exchange (ETDEWEB)

    Fangmeier, K. [Amerada Hess Corp., ND (United States)

    2005-07-01

    Partially pressure depleted reservoirs and unfavorable horizontal flow geometries can impact artificial lift designs and diagnostics. In addition, terrain slugging, drilling fines, high gas volume fractions, H{sub 2}S gas and high bottom hole temperatures also pose challenges. This paper provides an overview of various systems utilized by Amerada Hess, a company which examines methods of reducing gas lift gas volumes to achieve maximum flow. A description of naturally fractured reservoirs and limited natural fractures was provided. A comparison was presented between the original conditions at Beaver Lodge Madison and existing conditions with horizontal development. Various artificial lift challenges were examined. It was suggested that high volume lift utilizing gas lift was the preferred artificial lift system for high volume wells. It was noted that downhole sensors can be used as an indicator of potential run life. However, reliability is limited by downhole operating temperatures and electrical ground faults. A comparison of friendly and unfriendly flow systems was presented, as well as a gas lift pressure chart. A summary of average gas volume systems was provided as well as an example of a response to increase drawdown. Examples of downhole Electric Submersible Pump (ESP) sensors were provided, as well as possible flowing pressure profiles in horizontal completion because of the constraints of lift capacity. It was concluded that a single point injection and proven gas lift system is the next step in high volume lift strategy. 2 tabs, 16 figs.

  17. Reinforced orbitotemporal lift: contribution to midface rejuvenation.

    Science.gov (United States)

    Renó, Waldir Teixeira

    2003-02-01

    The changes in the aging face occur from progressive ptosis of the skin, fat, and muscle, in conjunction with bone absorption and cartilage atrophy. In the orbital region, hollowness and compartmentalization occur. Conventional face lift procedures correct only the skin flaccidity, and superficial musculoaponeurotic system techniques reposition the skin and platysma without repositioning the middle third of the face, creating an artificial jawline. Subperiosteal rhytidectomy disrupts the anatomy of the periorbita, which gives the patient a certain scarecrow aspect. Composite rhytidectomy associated with brow lift and blepharoplasty may offer better results, with improvement in the malar and orbital regions. The reinforced orbitotemporal lift (ROTEL) is a new procedure in a face lift that allows the orbicularis oculi muscle and all the structures connected to it to be elevated and stretched and the orbitotemporal skin to be raised, repositioning these structures and ending orbital compartmentalization. The result is an impressive improvement in the malar-orbitotemporal region, resulting in a natural and youthful appearance.

  18. TCA High Lift Preliminary Assessment

    Science.gov (United States)

    Wyatt, G. H.; Polito, R. C.; Yeh, D. T.; Elzey, M. E.; Tran, J. T.; Meredith, Paul T.

    1999-01-01

    This paper presents a TCA (Technology Concept Airplane) High lift Preliminary Assessment. The topics discussed are: 1) Model Description; 2) Data Repeatability; 3) Effect of Inboard L.E. (Leading Edge) Flap Span; 4) Comparison of 14'x22' TCA-1 With NTF (National Transonic Facility) Modified Ref. H; 5) Comparison of 14'x22' and NTF Ref. H Results; 6) Effect of Outboard Sealed Slat on TCA; 7) TCA Full Scale Build-ups; 8) Full Scale L/D Comparisons; 9) TCA Full Scale; and 10) Touchdown Lift Curves. This paper is in viewgraph form.

  19. Optimal control of lift/drag ratios on a rotating cylinder

    Science.gov (United States)

    Ou, Yuh-Roung; Burns, John A.

    1992-01-01

    We present the numerical solution to a problem of maximizing the lift to drag ratio by rotating a circular cylinder in a two-dimensional viscous incompressible flow. This problem is viewed as a test case for the newly developing theoretical and computational methods for control of fluid dynamic systems. We show that the time averaged lift to drag ratio for a fixed finite-time interval achieves its maximum value at an optimal rotation rate that depends on the time interval.

  20. Quality-Oriented Classification of Aircraft Material Based on SVM

    Directory of Open Access Journals (Sweden)

    Hongxia Cai

    2014-01-01

    Full Text Available The existing material classification is proposed to improve the inventory management. However, different materials have the different quality-related attributes, especially in the aircraft industry. In order to reduce the cost without sacrificing the quality, we propose a quality-oriented material classification system considering the material quality character, Quality cost, and Quality influence. Analytic Hierarchy Process helps to make feature selection and classification decision. We use the improved Kraljic Portfolio Matrix to establish the three-dimensional classification model. The aircraft materials can be divided into eight types, including general type, key type, risk type, and leveraged type. Aiming to improve the classification accuracy of various materials, the algorithm of Support Vector Machine is introduced. Finally, we compare the SVM and BP neural network in the application. The results prove that the SVM algorithm is more efficient and accurate and the quality-oriented material classification is valuable.