WorldWideScience

Sample records for air void contents

  1. Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete

    Science.gov (United States)

    Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.

    2018-06-01

    Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.

  2. Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete

    Science.gov (United States)

    Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.

    2018-02-01

    Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.

  3. Risk management of low air void asphalt concrete mixtures.

    Science.gov (United States)

    2013-07-01

    Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in : the mixtures during production and placement. The occurrence of low air void contents during plant production m...

  4. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    ). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  5. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    Science.gov (United States)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  6. Air void clustering.

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been identified as a potential source of : low strengths in concrete mixes by several Departments of Transportation around the country. Research was : carried out to (1) develop a quantitati...

  7. Evaluation of the Air Void Analyzer

    Science.gov (United States)

    2013-07-01

    concrete using image analysis: Petrography of cementitious materials. ASTM STP 1215. S.M. DeHayes and D. Stark, eds. Philadelphia, PA: American...Administration (FHWA). 2006. Priority, market -ready technologies and innovations: Air Void Analyzer. Washington D.C. PDF file. Germann Instruments (GI). 2011...tests and properties of concrete and concrete-making materials. STP 169D. West Conshohocken, PA: ASTM International. Magura, D.D. 1996. Air void

  8. Air void clustering : [technical summary].

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been : identified as a potential source of low strengths in concrete mixes by : several Departments of Transportation around the country. Research : was carried out to (1) develop a quantita...

  9. X-ray Computed Tomography Assessment of Air Void Distribution in Concrete

    Science.gov (United States)

    Lu, Haizhu

    Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.

  10. The effect of form pressure on the air void structure of SCC

    DEFF Research Database (Denmark)

    Jensen, Mikkel Vibæk; Hasholt, Marianne Tange; Geiker, Mette Rica

    2005-01-01

    The high workability of self-compacting concrete (SCC) invites to high casting rates. However, casting walls at high rate may result in large pressure at the bottom of the form and subsequently compression of the air voids. This paper deals with the influence of hydrostatic pressure during setting...... on the air void structure of hardened, air entrained SCC. The subject was examined through laboratory investigations of SCC with two different amounts of air entrainment. The condition in the form was simulated by using containers making it possible to cure concrete under various pressures corresponding...... to the bottom of castings of 0, 2, 4, and 6 meters height. The laboratory investigations were supplemented with data from two full-scale wall castings. The air void structure of the hardened concretes was determined on plane sections. The results indicate that the pressure related changes of the air void...

  11. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    International Nuclear Information System (INIS)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-01-01

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  12. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  13. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Yun, Feng, E-mail: fyun2010@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Su, Xilin [Shaanxi Supernova Lighting Technology Co., Ltd., Xi’an, Shaanxi 710075 (China)

    2016-07-15

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  14. Multi-parametric characterization of mode I fracture toughness of asphalt concrete: Influence of void and RA contents, binder and aggregate types

    Directory of Open Access Journals (Sweden)

    Saannibe Ciryle Somé

    2018-05-01

    Full Text Available This study aims to evaluate the fracture toughness (KIc in mode I cracking using semi-circular bending test (SCB. Experiment has been performed to investigate the influence of bitumen grade (using P15/25 and P50/70 bitumens, reclaimed asphalt (RA content (using 0%, 20% and 40% RA contents and temperature (using −20 °C, −5 °C, 10 °C test temperatures, through ANOVA. Additional investigations have been performed: (i to evaluate the effect of the use of polymer modified bitumen (PMB, (ii to evaluate the effect compactness using 5% and 8% air void contents, (iii to evaluate the effect of aggregate type using siliceous-limestone and porphyry aggregates. The results show an important decrease in KIc when temperature increases from −5 °C to 10 °C and a slight decrease between −20 °C and −5 °C. The results also show that increasing RA content increases slightly the KIc. It was found from the ANOVA that the influent parameters can be ranked as follows: temperature, RA content and binder grade. The investigations show that PMB increases the KIc value than pure bitumens. Porphyry aggregates increase the KIc by about 16% than silica-limestone aggregates at low temperatures between −20 °C and −5 °C. However, this ranking is slightly inverted at 10 °C. In addition, KIc decreases by about 12% at 10 °C with an increase in air voids (by 5% to 8%. Void content effect is more significant at −5 °C and 10 °C, and negligible at −20 °C. Keywords: Fracture toughness, SCB, Bituminous mixture, Reclaimed asphalt

  15. Evaluation and Comparison of Freeze-Thaw Tests and Air Void Analysis of Pervious Concrete

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Kevern, John T.

    2016-01-01

    Pearl-Chain Bridge technology is an innovative precast arch bridge solution which uses pervious concrete as fill material. To ensure longevity of the bridge superstructure it is necessary that the per-vious concrete fill is designed to be freeze-thaw durable; however, no standards exist on how...... to eval-uate the freeze-thaw resistance of fresh or hardened pervious concrete and correspondingly what constitutes acceptable freeze-thaw durability. A greater understanding of the correlation between the freeze-thaw performance and the air void structure of pervious concrete is needed. In the present...... study six pervious concrete mixes were exposed to freeze-thaw testing, and their air void structure was analyzed using an automated linear-traverse method. It was found that there is a miscorrelation between these two test methods in their assumption of whether or not the large interconnected voids...

  16. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning

    International Nuclear Information System (INIS)

    Wong, R.C.K.; Chau, K.T.

    2005-01-01

    Normal- and high-strength concrete cylinders (designed compressive strengths of 30 and 90 MPa at 28 days) were loaded uniaxially. Computer tomography (CT) scanning technique was used to examine the evolution of air voids inside the specimens at various loading states up to 85% of the ultimate compressive strength. The normal-strength concrete yielded a very different behaviour in changes of internal microstructure as compared to the high-strength concrete. There were significant instances of nucleation and growth in air voids in the normal-strength concrete specimen, while the increase in air voids in the high-strength concrete specimen was insignificant. In addition, CT images were used for mapping the aggregate spatial distributions within the specimens. No intrinsic anisotropy was detected from the fabric analysis

  17. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  18. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    Science.gov (United States)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  19. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer

    International Nuclear Information System (INIS)

    Delhaye, J.

    1968-01-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a γ-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [fr

  20. Freeze-thaw resistance of concrete with marginal air content

    Science.gov (United States)

    2007-05-01

    Freeze-thaw resistance is a key durability factor for concrete pavements. Recommendations for the air void system parameters are normally 6 1 percent total air and a spacing factor of : < 0.20 millimeter (mm) (0.008 inch). However, it was observed...

  1. Impact of hydrated cement paste quality and entrained air-void system on the durability of concrete.

    Science.gov (United States)

    2011-06-30

    This study is designed to examine whether traditional limits used to describe the air-void system still : apply to concrete prepared with new admixtures and materials. For this research, the concrete mixtures : prepared were characterized with tradit...

  2. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  3. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Khalil, H.P.S. Abdul; Bakar, A. Abu; Khanam, P. Noorunnisa

    2011-01-01

    Tri layer hybrid composites of oil palm empty fruit bunches (EFB) and jute fibres was prepared by keeping oil palm EFB as skin material and jute as the core material and vice versa. The chemical resistance, void content and tensile properties of oil palm EFB/Jute composites was investigated with reference to the relative weight of oil palm EFB/Jute, i.e. 4:1, the fibre loading was optimized and different layering pattern were investigated. It is found from the chemical resistance test that all the composites are resistant to various chemicals. It was observed that marked reduction in void content of hybrid composites in different layering pattern. From the different layering pattern, the tensile properties were slightly higher for the composite having jute as skin and oil palm EFB as core material. Scanning electron microscopy (SEM) was used to study tensile fracture surfaces of different composites.

  4. Freeze-thaw resistance of concrete with marginal air content : final report

    Science.gov (United States)

    2006-12-01

    Freeze-thaw resistance is a key durability factor for concrete pavements. Recommendations for the air : void system parameters are normally: 6 1 percent total air, and spacing factor less than 0.20 : millimeters. However, it was observed that some...

  5. Measurements of void fraction by an improved multi-channel conductance void meter

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  6. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  7. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    Science.gov (United States)

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.

  8. Void fraction measurements using neutron radiography

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Vance, W.H.; Joo, H.

    1992-01-01

    Real-time neutron radiography is being evaluated for studying the dynamic behavior of two phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. To simulate vapor conditions encountered in a fluid flow duct, an air-water flow system was constructed. Air was injected into the bottom of the duct at flow rates up to 0.47 I/s (1 cfm). The water flow rate was varied between 0--3.78 I/m (0--1 gpm). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 10 6 n/cm 2 /s directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5 cm (2 in.) thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data which was recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air/water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented

  9. Critical analysis of partial discharge dynamics in air filled spherical voids

    Science.gov (United States)

    Callender, G.; Golosnoy, I. O.; Rapisarda, P.; Lewin, P. L.

    2018-03-01

    In this paper partial discharge (PD) is investigated inside a spherical air filled void at atmospheric pressure using a drift diffusion model. Discharge dynamics consisted of an electron avalanche transitioning into positive streamer, in agreement with earlier work on dielectric barrier discharges. Different model configurations were utilised to test many of the concepts employed in semi-analytical PD activity models, which use simplistic descriptions of the discharge dynamics. The results showed that many of these concepts may be erroneous, with significant discrepancies between the canonical reasoning and the simulation results. For example, the residual electric field, the electric field after a discharge, is significantly lower than the estimates used by classical PD activity models in the literature.

  10. Measurement of air distribution and void fraction of an upwards air–water flow using electrical resistance tomography and a wire-mesh sensor

    International Nuclear Information System (INIS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-01-01

    Measurements on an upwards air–water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air–water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air–water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed. (paper)

  11. Measurement of local void fraction in a ribbed annulus

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1992-01-01

    The computer code FLOWTRAN-TF is used to analyze hypothetical hydraulic accidents for the nuclear reactor at the Savannah River Site. During a hypothetical Large Break Loss-of-Coolant Accident (LOCA), reactor assemblies would contain a two-phase mixture of air and water which flows downward. Reactor assemblies consist of nested, ribbed annuli. Longitudinal ribs divide each annulus into four subchannels. For accident conditions, air and water can flow past ribs from one subchannel to another. For FLOWTRAN-TF to compute the size of those flows, it is necessary to know the local void fraction in the region of the rib. Measurements have previously been made of length-average void fraction in a ribbed annulus. However, no direct measurements were available of local void fraction. Due to the lack of data, a test was designed to measure local void fraction at the rib. One question addressed by the test was whether void fraction at the rib is solely a function of azimuthal-average void fraction or a function of additional variables such as pressure boundary conditions. This report provides a discussion of this test

  12. Quantifying the distribution of paste-void spacing of hardened cement paste using X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Tae Sup, E-mail: taesup@yonsei.ac.kr [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kim, Kwang Yeom, E-mail: kimky@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang, 411-712 (Korea, Republic of); Choo, Jinhyun, E-mail: jinhyun@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Kang, Dong Hun, E-mail: timeriver@naver.com [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2012-11-15

    The distribution of paste-void spacing in cement-based materials is an important feature related to the freeze-thaw durability of these materials, but its reliable estimation remains an unresolved problem. Herein, we evaluate the capability of X-ray computed tomography (CT) for reliable quantification of the distribution of paste-void spacing. Using X-ray CT images of three mortar specimens having different air-entrainment characteristics, we calculate the distributions of paste-void spacing of the specimens by applying previously suggested methods for deriving the exact spacing of air-void systems. This methodology is assessed by comparing the 95th percentile of the cumulative distribution function of the paste-void spacing with spacing factors computed by applying the linear-traverse method to 3D air-void system and reconstructing equivalent air-void distribution in 3D. Results show that the distributions of equivalent void diameter and paste-void spacing follow lognormal and normal distributions, respectively, and the ratios between the 95th percentile paste-void spacing value and the spacing factors reside within the ranges reported by previous numerical studies. This experimental finding indicates that the distribution of paste-void spacing quantified using X-ray CT has the potential to be the basis for a statistical assessment of the freeze-thaw durability of cement-based materials. - Highlights: Black-Right-Pointing-Pointer The paste-void spacing in 3D can be quantified by X-ray CT. Black-Right-Pointing-Pointer The distribution of the paste-void spacing follows normal distribution. Black-Right-Pointing-Pointer The spacing factor and 95th percentile of CDF of paste-void spacing are correlated.

  13. Use of electrical resistivity to detect underground mine voids in Ohio

    Science.gov (United States)

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  14. Transient void fraction measurements in rod bundle geometries

    International Nuclear Information System (INIS)

    Chan, A.M.C.

    1998-01-01

    A new gamma densitometer with a Ba-133 source and a Nal(TI) scintillator operated in the count mode has been designed for transient void fraction measurements in the RD-14M heated channels containing a seven-element heater bundle. The device was calibrated dynamically in the laboratory using an air-water flow loop. The void fraction measured was found to compare well with values obtained using the trapped-water method. The device was also found to follow very well the passage of air slugs in pulsating flow with slug passing frequencies of up to about 1.5 hz. (author)

  15. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    Science.gov (United States)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  16. Void formation and growth in copper-nickel alloys during irradiation in the high voltage electron microscope

    International Nuclear Information System (INIS)

    Leffers, T.; Singh, B.N.; Barlow, P.

    1977-05-01

    The formation and growth of voids during irradiation in a high-voltage electron microscope were studied in copper and Cu-Ni alloys. For each composition, the range of irradiation temperatures from 250 deg C to 550 deg C was covered. The development of the irradiation-induced dislocation structure was also studied. At irradiation temperatures up to 450 deg C, the void swelling decreased rapidly with increasing Ni content and became practically zero for Cu-10%Ni. The decrease in swelling was produced mainly by decreased void growth (and not by decreased void number density). At 550 deg C the void swelling increased with increasing Ni content up to 5%, whereas for Cu-10%Ni the swelling became practically zero; again the changes in swelling with Ni content were mainly determined by changes in void growth. The reduction in void swelling and growth due to alloying is ascribed to vacancy or interstitial trapping at submicroscopic Ni precipitates, i.e. to the precipitates acting as recombination centres. The increase in void swelling and growth with increasing Ni content, on the other hand, is ascribed to dislocation climb sources that emit loops, and hence produce a fairly high dislocation density at a temperature where there are only few dislocations in pure copper or Cu-Ni with lower Ni content. (author)

  17. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  18. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    Science.gov (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  19. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    Science.gov (United States)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  20. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Laustsen, Sara

    2013-01-01

    the difference between poor and satisfactory frost-resistance. Furthermore, the results indicate that voids created directly by SAP protect concrete against frost deterioration just like other air voids; if the concrete contains enough SAP voids, these alone can provide sufficient frost resistance. © 2013 RILEM....

  1. Portland cement concrete air content study.

    Science.gov (United States)

    1987-04-20

    This study took the analysis of Portland cement concrete air content. Based on the information gathered, this study hold the results were : 1) air-entrained concrete was more durable than non-air entrained concrete all other factors being equal; 2) A...

  2. Void effects on BWR Doppler and void reactivity feedback

    International Nuclear Information System (INIS)

    Hsiang-Shou Cheng; Diamond, D.J.

    1978-01-01

    The significance of steam voids and control rods on the Doppler feedback in a gadolinia shimmed BWR is demonstrated. The importance of bypass voids when determining void feedback is also shown. Calculations were done using a point model, i.e., feedback was expressed in terms of reactivity coefficients which were determined for individual four-bundle configurations and then appropriately combined to yield reactor results. For overpower transients the inclusion of the void effect of control rods is to reduce Doppler feedback. For overpressurization transients the inclusion of the effect of bypass void wil increase the reactivity due to void collapse. (author)

  3. Development of quick-response area-averaged void fraction meter

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Iguchi, Tadashi; Kimura, Mamoru; Anoda, Yoshinari

    2000-11-01

    Authors are performing experiments to investigate BWR thermal-hydraulic instability under coupling of neutronics and thermal-hydraulics. To perform the experiment, it is necessary to measure instantaneously area-averaged void fraction in rod bundle under high temperature/high pressure gas-liquid two-phase flow condition. Since there were no void fraction meters suitable for these requirements, we newly developed a practical void fraction meter. The principle of the meter is based on the electrical conductance changing with void fraction in gas-liquid two-phase flow. In this meter, metal flow channel wall is used as one electrode and a L-shaped line electrode installed at the center of flow channel is used as the other electrode. This electrode arrangement makes possible instantaneous measurement of area-averaged void fraction even under the metal flow channel. We performed experiments with air/water two-phase flow to clarify the void fraction meter performance. Experimental results indicated that void fraction was approximated by α=1-I/I o , where α and I are void fraction and current (I o is current at α=0). This relation holds in the wide range of void fraction of 0∼70%. The difference between α and 1-I/I o was approximately 10% at maximum. The major reasons of the difference are a void distribution over measurement area and an electrical insulation of the center electrode by bubbles. The principle and structure of this void fraction meter are very basic and simple. Therefore, the meter can be applied to various fields on gas-liquid two-phase flow studies. (author)

  4. Average void fraction measurement in a two-phase vertical flow

    International Nuclear Information System (INIS)

    Mello, R.E.F. de; Behar, M.R.; Martines, E.W.

    1975-01-01

    The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method

  5. Interfacial area, velocity and void fraction in two-phase slug flow

    International Nuclear Information System (INIS)

    Kojasoy, G.; Riznic, J.R.

    1997-01-01

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections

  6. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  7. Experimental facility and void fraction calibration methods for impedance probes

    International Nuclear Information System (INIS)

    Oliveira, Fernando L. de; Rocha, Marcelo S.

    2013-01-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  8. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  9. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  10. Void shape effects and voids starting from cracked inclusion

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2011-01-01

    Numerical, axisymmetric cell model analyses are used to study the growth of voids in ductile metals, until the mechanism of coalescence with neighbouring voids sets in. A special feature of the present analyses is that extremely small values of the initial void volume fraction are considered, dow...

  11. Void lattices

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.; Wohlenberg, T.

    1976-01-01

    Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)

  12. The metallurgical approach on the solder voids behaviour in surface mount devices

    International Nuclear Information System (INIS)

    Mohabattul Zaman Bukhari

    1996-01-01

    Solder voids are believed to cause poor heat dissiption in the Surface Mount devices and reduce the reliability of the devices at higher operating services. There are a lot of factors involved in creating voids such as gas/flux entrapment, wettability, outgasseous, air bubbles in the solder paste, inconsistency of solder coverage and improper metal scheme selection. This study was done to observe the behaviour of the solder voids in term of flux entrapmentt and wettability. It is believed that flux entrapment and wettability are verify this hypothesis. Two types of metal scheme were chosen which are Nickel (Ni) plated and Tin (Sn) plated heatsink. X-ray techniques such as Radiographic Inspection Analysis and EDAX were used to detect the minute solder voids. The solder voids observed on the heatsinks and Copper shims after the reflow process are believed to be a non contact voids that resulted from some portion of the surface not wetting properly

  13. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunyu; Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-06-15

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  14. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    International Nuclear Information System (INIS)

    Wang, Chunyu; Huang, Xiongyi; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-01-01

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  15. Partial discharges in spheroidal voids: Void orientation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1997-01-01

    Partial discharge transients can be described in terms of the charge induced on the detecting electrode. The influence of the void parameters upon the induced charge is examined and discussed for spheroidal voids. It is shown that a quantitative interpretation of the induced charge requires...

  16. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  17. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  18. Displacive stability of a void in a void lattice

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    It has recently been suggested that the stability of the void-lattice structure in irradiated metals may be attributed to the effect of the overlapping of the point-defect diffusion fields associated with each void. It is shown here, however, that the effect is much too weak. When one void is displaced from its lattice site, the displacement is shown to relax to zero as proposed, but a conservative estimate indicates that the characteristic time is equivalent to an irradiation dose of the order of 300 displacements per atom which is generally much greater than the dose necessary for void-lattice formation

  19. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Science.gov (United States)

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  20. Characterizing the effects of elevated temperature on the air void pore structure of advanced gas-cooled reactor pressure vessel concrete using x-ray computed tomography

    Directory of Open Access Journals (Sweden)

    Withers P.J.

    2013-07-01

    Full Text Available X-ray computed tomography (X-ray CT has been applied to nondestructively characterise changes in the microstructure of a concrete used in the pressure vessel structure of Advanced Gas-cooled Reactors (AGR in the UK. Concrete specimens were conditioned at temperatures of 105 °C and 250 °C, to simulate the maximum thermal load expected to occur during a loss of coolant accident (LOCA. Following thermal treatment, these specimens along with an unconditioned control sample were characterised using micro-focus X-ray CT with a spatial resolution of 14.6 microns. The results indicate that the air void pore structure of the specimens experienced significant volume changes as a result of the increasing temperature. The increase in the porous volume was more prevalent at 250 °C. Alterations in air void size distributions were characterized with respect to the unconditioned control specimen. These findings appear to correlate with changes in the uni-axial compressive strength of the conditioned concrete.

  1. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    Science.gov (United States)

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  2. Understanding void fraction in steady state and dynamic environments

    International Nuclear Information System (INIS)

    Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.

    1997-01-01

    Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables

  3. Determination of the void nucleation rate from void size distributions

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    A method of estimating the void nucleation rate from one void size distribution and from observation of the maximum void radius at prior times is proposed. Implicit in the method are the assumptions that both variations in the critical radius with dose and vacancy thermal emission processes during post-nucleation quasi-steady-state growth may be neglected. (Auth.)

  4. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  5. A new technology for air-entrainment of concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Hasholt, Marianne Tange; Jensen, Ole Mejlhede

    2008-01-01

    This paper describes a new technology for air-entrainment of concrete. The technology is based on the addition of dry superabsorbent polymers (SAP) to the concrete. A large amount of small internal water reservoirs are formed during mixing when SAP absorbs water and swells. The internal water......-entrainment include stability of the air void system and improved control of both the amount of added air and the air void size. The new technology based on SAP has been tested in freeze-thaw experiments, where the amount of surface scaling was measured. The results clearly show that SAP is beneficial for frost...... reservoirs are distributed throughout the concrete. During the hydration process the cement paste imbibes water from the water-filled SAP voids. Thereby the water-filled SAP voids turn into partly air-filled voids. The advantages of the SAP-based technology compared to traditional chemical air...

  6. Experimental investigation of void distribution in Suppression Pool during the initial blowdown period of a Loss of Coolant Accident using air–water two-phase mixture

    International Nuclear Information System (INIS)

    Rassame, Somboon; Griffiths, Matthew; Yang, Jun; Lee, Doo Yong; Ju, Peng; Choi, Sung Won; Hibiki, Takashi; Ishii, Mamoru

    2014-01-01

    Highlights: • Basic understanding of the venting phenomena in the SP during a LOCA was obtained. • A series of experiment is carried out using the PUMA-E test facility. • Two phases of experiments, namely, an initial and a quasi-steady phase were observed. • The maximum void penetration depth was experienced during the initial phase. - Abstract: During the initial blowdown period of a Loss of Coolant Accident (LOCA), the non-condensable gas initially contained in the BWR containment is discharged to the pressure suppression chamber through the blowdown pipes. The performance of Emergency Core Cooling System (ECCS) can be degraded due to the released gas ingestion into the suction intakes of the ECCS pumps. The understanding of the relevant phenomena in the pressure suppression chamber is important in analyzing potential gas intrusion into the suction intakes of ECCS pumps. To obtain the basic understanding of the relevant phenomena and the generic data of void distribution in the pressure suppression chamber during the initial blowdown period of a LOCA, tests with various blowdown conditions were conducted using the existing Suppression Pool (SP) tank of the integral test facility, called Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility, a scaled downcomer pipe installed in the PUMA-E SP, and air discharge pipe system. Two different diameter sizes of air injection pipe (0.076 and 0.102 m), a range of air volumetric flux (7.9–24.7 m/s), initial void conditions in an air injection pipe (fully void, partially void, and fully filled with water) and different air velocity ramp rates (1.0, 1.5, and 2.0 s) are used to investigate the impact of the blowdown conditions to the void distribution in the SP. Two distinct phases of experiments, namely, an initial and a quasi-steady phase were observed. The maximum void penetration depth was experienced during the initial phase. The quasi-steady phase provided less void

  7. On void nucleation

    International Nuclear Information System (INIS)

    Subbotin, A.V.

    1978-01-01

    Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids

  8. Influence of void on image quality of industrial SPECT

    International Nuclear Information System (INIS)

    Park, J G; Jung, S H; Kim, J B; Moon, J; Kim, C H

    2013-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising technique to determine the dynamic behavior of industrial process media and has been developed in the Korea Atomic Energy Research Institute. The present study evaluated the influence of a void, which is presence in multiphase reactors of industrial process, on the image quality of an industrial SPECT. The results are very encouraging; that is, the performance of the industrial SPECT system is little influenced by the presence of a void, which means that industrial SPECT is an appropriate tool to estimate the dynamic characteristics of the process media in a water-air phase bubble column with a static gas sparger

  9. On the abundance of extreme voids II: a survey of void mass functions

    International Nuclear Information System (INIS)

    Chongchitnan, Siri; Hunt, Matthew

    2017-01-01

    The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.

  10. Influence of water air content on cavitation erosion in distilled water

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available The influence of increased air content of the cavitating liquid (distilled water) was studied in a rotating disk test rig. A rise in the total air content including dissolved and entrained air of the water in the under saturated range resulted...

  11. Void hierarchy and cosmic structure

    International Nuclear Information System (INIS)

    Weygaert, Rien van de; Ravi Sheth

    2004-01-01

    Within the context of hierarchical scenarios of gravitational structure formation we describe how an evolving hierarchy of voids evolves on the basis of two processes, the void-in-void process and the void-in-cloud process. The related analytical formulation in terms of a two-barrier excursion problem leads to a self-similarly evolving peaked void size distribution

  12. Spatial dependence of void coefficient in the University of Arizona TRIGA research reactor

    International Nuclear Information System (INIS)

    Spriggs, Gregory D.; Doane, Harry; Wells, Robert

    1980-01-01

    The spatial dependence of the moderator void coefficient of reactivity in the axial direction was experimentally measured in the A-ring using a hollow, air-filled aluminum cylinder. It was found that the void coefficient was positive in the central region of the fuel section reaching a maximum value of approximately + .045 cents/cm 3 and was negative towards the outer edges of the fuel section reaching a maximum of - .09 cents/cm 3 . (author)

  13. Microscopic Void Detection for Predicting Remaining Life in Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Avila, Steven M.

    2003-01-01

    A reliable method of testing for remaining life in electric cable insulation has continued to elude the nuclear industry as it seeks to extend the life and license of its nuclear stations. Until recently, a trendable, measurable electrical property has not been found, and unexpected cable failures continue to be reported. Most reliable approaches to date rely on monitoring mechanical properties, which are assumed to degrade faster than the insulation's electrical properties. This paper introduces a promising technique based on void characterization, which is dependent on an electrical property related to dielectric strength. A relationship between insulation void characteristics (size and density) and the onset of partial discharge is known to exist. A similar relationship can be shown between void characteristics and unacceptable leakage currents (another typical cable failure criterion). For low-voltage cables, it is believed void content can be correlated to mechanical property degradation.This paper will report on an approach for using void information, research results showing the existence of trendable void characteristics in commonly used electric insulation materials, and techniques for detecting the voids (both laboratory- and field-based techniques). Acoustical microscopy was found to be potentially more suitable than conventional ultrasound for nondestructive in situ detection and monitoring of void characteristics in jacketed multiconductor insulation while ignoring the jacket. Also, optical and scanning electron microscope techniques will play an essential role in establishing the database necessary for continued development and implementation of this promising technique

  14. Development of quick-response area-averaged void fraction meter. Application to BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-05-01

    Authors have been developed a practical conductance-type void fraction meter to measure instantaneously area-averaged void fraction in rod bundle. The principle of the meter is based on the fact that the electrical conductance changes with the change of void fraction in gas-liquid two-phase flow. According to air/water two-phase flow experiment, the void fraction was approximated by {alpha}=1-I/I{sub 0}, where {alpha} and I are void fraction and current (I{sub 0} is current at {alpha}=0). Authors investigated the performance of the void fraction meter under high temperature/high pressure conditions (BWR condition; 290degC, 7MPa). The results indicated that the void fraction was approximated by {alpha}=1-I/I{sub 0} even under high temperature/high pressure condition of stem/water flow. However, it is necessary to take account of temperature dependency of water specific conductance. Therefore, authors derived a correction equation for temperature dependency. Further, for applying the void fraction meter to a large-scale facility, it was found to be necessary to reduce the capacitance of the circuit. Then, authors developed the method to reduce the capacitance effect. Finally, authors succeeded to measure the void fraction in 2 x 2 bundle flow path at the range of 0% - 70% in the error of 10% under high temperature/high pressure and mass flux of less than 133 kg/m{sup 2}s. Developed void fraction meter is theoretically not affected by flow rate. Therefore, it can be applied to the condition of oscillating flow. (author)

  15. Effects of wall roughness and entry length on void profile in vertical bubbly flow

    International Nuclear Information System (INIS)

    Takamasa, Tomoji

    1988-01-01

    An experimental study of upward air-water bubbly two-phase flow in an entry region was performed with various rough wall test tubes. The objective of the work is to clarify the effects of wall roughness and entry length on void profile. The fluid flows in the vertical circular test tube of 25 mm I.D. under nearly atmospheric pressure, at room temperature. The void profile changes from a pattern similar in appearance to the saddle shape which has local void peaks near the wall, into the power law shape whose curve is approximated by a power law formula, with increasing wall roughness and/or entry length. That is, wall roughness and entry length have a similar effect upon void profile. There are two patterns in the power law shape, a pattern with sharp center peak and a pattern with obtuse center peak. As wall roughness and/or entry length increase, the void profile changes from the former pattern to the latter pattern. At enough long entry length (L/D ≅ 150), every void profile has almost the same power law shape independent of wall roughness. Some void profiles are asymmetric to the axis. (author)

  16. Pediatric Voiding Cystourethrogram

    Science.gov (United States)

    Scan for mobile link. Children's (Pediatric) Voiding Cystourethrogram A children’s (pediatric) voiding cystourethrogram uses fluoroscopy – a form of real-time x-ray – to examine a child’s bladder ...

  17. One-Group Perturbation Theory Applied to Measurements with Void

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rolf

    1966-09-15

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.

  18. One-Group Perturbation Theory Applied to Measurements with Void

    International Nuclear Information System (INIS)

    Persson, Rolf

    1966-09-01

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 ± 0.015/m 2 and 0.267 ± 0.005/m 2 resp. From single-rod experiments differences between diffusion coefficients are determined to δD r /D = 0.083 ± 0.004 and δD z /D = 0.120 ± 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D z /D r ) air = 1.034 ± 0.020

  19. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Science.gov (United States)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  20. The sink strengths of voids and the expected swelling for both random and ordered void distributions

    International Nuclear Information System (INIS)

    Quigley, T.M.; Murphy, S.M.; Bullough, R.; Wood, M.H.

    1981-10-01

    The sink strength of a void has been obtained when the void is a member of a random or ordered distribution of voids. The former sink strength derivation has employed the embedding model and the latter the cellular model. In each case the spatially varying size-effect interaction between the intrinsic point defects and the voids has been included together with the presence of other sink types in addition to the voids. The results are compared with previously published sink strengths that have made use of an approximate representation for the size-effect interactions, and indicate the importance of using the exact form of the interaction. In particular the bias for interstitials compared with vacancies of small voids is now much reduced and contamination of the surfaces of such voids no longer appears essential to facilitate the nucleation and growth of the voids. These new sink strengths have been used, in conjunction with recently published dislocation sink strengths, to calculate the expected swelling of materials containing network dislocations and voids. Results are presented for both the random and the void lattice situations. (author)

  1. Measurements of void fraction in transparent two-phase flows by light extinction

    International Nuclear Information System (INIS)

    Shamoun, B.; El Beshbeeshy, M.; Bonazza, R.

    1998-01-01

    We report a technique for the measurement of the 2-D distribution of the line average void fraction in a two-phase flow with transparent gas and liquid components based on the Mie scattering induced by the gas bubbles on a collimated laser beam. The 2-D distribution of the line average of the interfacial area density is measured directly; the void fraction is deduced from it through an image processing algorithm. The technique is demonstrated with experiments in a pool of water injected with air and illuminated with a CW argon ion laser. (author)

  2. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  3. Size-Effects in Void Growth

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2005-01-01

    The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...... strain gradient plasticity models is implemented in a finite element program, which is used to study void growth numerically. The results based on the two models are compared. It is shown how gradient effects suppress void growth on the micron scale when compared to predictions based on conventional...... models. This increased resistance to void growth, due to gradient hardening, is accompanied by an increase in the overall strength for the material. Furthermore, for increasing initial void volume fraction, it is shown that the effect of gradients becomes more important to the overall response but less...

  4. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    Science.gov (United States)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  5. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2010-01-01

    Samples of concrete at different water-to-cement ratios and air contents subjected to freeze/thaw cycles with the lowest temperature at about -80 degrees C are investigated. By adopting a novel technique, a scanning calorimeter is used to obtain data from which the ice contents at different freeze...... temperatures can be calculated. The length change caused by temperature and ice content changes during test is measured by a separate experiment using the same types of freeze-thaw cycles as in the calorimetric tests. In this way it was possible to compare the amount of formed ice at different temperatures...... and the corresponding measured length changes. The development of cracks in the material structure was indicated by an ultra-sonic technique by measuring on the samples before and after the freeze-thaw tests. Further the air void structure was investigated using a microscopic technique in which air'bubble' size...

  6. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  7. A void ratio dependent water retention curve model including hydraulic hysteresis

    Directory of Open Access Journals (Sweden)

    Pasha Amin Y.

    2016-01-01

    Full Text Available Past experimental evidence has shown that Water Retention Curve (WRC evolves with mechanical stress and structural changes in soil matrix. Models currently available in the literature for capturing the volume change dependency of WRC are mainly empirical in nature requiring an extensive experimental programme for parameter identification which renders them unsuitable for practical applications. In this paper, an analytical model for the evaluation of the void ratio dependency of WRC in deformable porous media is presented. The approach proposed enables quantification of the dependency of WRC on void ratio solely based on the form of WRC at the reference void ratio and requires no additional parameters. The effect of hydraulic hysteresis on the evolution process is also incorporated in the model, an aspect rarely addressed in the literature. Expressions are presented for the evolution of main and scanning curves due to loading and change in the hydraulic path from scanning to main wetting/drying and vice versa as well as the WRC parameters such as air entry value, air expulsion value, pore size distribution index and slope of the scanning curve. The model is validated using experimental data on compacted and reconstituted soils subjected to various hydro-mechanical paths. Good agreement is obtained between model predictions and experimental data in all the cases considered.

  8. Cosmology with void-galaxy correlations.

    Science.gov (United States)

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  9. The dark matter of galaxy voids

    Science.gov (United States)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  10. Void consolidation during open-die forging for ultralarge rotor shafts. (1. Formulation of void-closing behavior)

    International Nuclear Information System (INIS)

    Ono, Shin-ichi; Minami, Katsuyuki; Ochiai, Tomoyuki; Iwadate, Tadao; Nakata, Shin-ichi.

    1995-01-01

    Open-die forging experiments using different die geometries under hot isothermal conditions and three-dimensional simulations using rigid-plastic finite-element method were performed to formulate a void-closing behavior using only two factors; the integral of hydrostatic stress and the equivalent strain. First, upsetting, side-upsetting and V-shape die cogging of several cylinders with a spherical void at the center are carried out and the information on the void volume reduction is obtained. Seconds, the same forgings, but without voids is treated numerically and the development of stress and strain at the location of voids is investigated. Then, by combining these results, and using regression analysis, it is found that the void volume reduction is expressed as a polynomial function of the two factors. When the polynomial function is used, various forging methods can be evaluated quantitatively in terms of void-closing behavior. Therefore it is beneficial to optimize the forging process for a large rotor shaft. (author)

  11. Geotechnical reduction of void ratio in low-level radioactive waste burial sites: treatment alternatives

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.; McGuire, H.E.

    1981-01-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have proven to be unstable. Some surface feature manifestations such as large cracks, basins, and cave-ins are caused by voids filling and physico-chemical degradation and solubilization of the buried wastes which could result in the release of contamination. The surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. As a guideline, a reduction of the voids within the waste to 80% or more of maximum relative dry density (a measure of in situ voids within the waste) is proposed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass and pile driving engineering alternatives were selected for further development

  12. On cavitation instabilities with interacting voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...

  13. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  14. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    International Nuclear Information System (INIS)

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-01-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczyński (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  15. Statistics and geometry of cosmic voids

    International Nuclear Information System (INIS)

    Gaite, José

    2009-01-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids

  16. The evolution of voids in the adhesion approximation

    Science.gov (United States)

    Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.

    1994-08-01

    We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent

  17. Void nucleation at heterogeneities

    International Nuclear Information System (INIS)

    Seyyedi, S.A.; Hadji-Mirzai, M.; Russell, K.C.

    The energetics and kinetics of void nucleation at dislocations and interfaces are analyzed. These are potential void nucleation sites only when they are not point defect sinks. Both kinds of site are found to be excellent catalysts in the presence of inert gas

  18. Alignment of voids in the cosmic web

    NARCIS (Netherlands)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2008-01-01

    We investigate the shapes and mutual alignment of voids in the large-scale matter distribution of a Lambda cold dark matter (Lambda CDM) cosmology simulation. The voids are identified using the novel watershed void finder (WVF) technique. The identified voids are quite non-spherical and slightly

  19. Analysis on void reactivity of DCA lattice

    International Nuclear Information System (INIS)

    Min, B. J.; Noh, K. H.; Choi, H. B.; Yang, M. K.

    2001-01-01

    In case of loss of coolant accident, the void reactivity of CANDU fuel provides the positive reactivity and increases the reactor power rapidly. Therefore, it is required to secure credibility of the void reactivity for the design and analysis of reactor, which motivated a study to assess the measurement data of void reactivity. The assessment of lattice code was performed with the experimental data of void reactivity at 30, 70, 87 and 100% of void fractions. The infinite multiplication factors increased in four types of fuels as the void fractions of them grow. The infinite multiplication factors of uranium fuels are almost within 1%, but those of Pu fuels are over 10% by the results of WIMS-AECL and MCNP-4B codes. Moreover, coolant void reactivity of the core loaded with plutonium fuel is more negative compared with that with uranium fuel because of spectrum hardening resulting from large void fraction

  20. An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe

    International Nuclear Information System (INIS)

    Ko, Min Seok; Jemg, Dong Wook; Kim, Sin; Lee, Bo An; Won, Woo Youn; Lee, Yeon Gun

    2015-01-01

    The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor

  1. Temperature controlled 'void' formation

    International Nuclear Information System (INIS)

    Dasgupta, P.; Sharma, B.D.

    1975-01-01

    The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)

  2. Effects of barrier composition and electroplating chemistry on adhesion and voiding in copper/dielectric diffusion barrier films

    Energy Technology Data Exchange (ETDEWEB)

    Birringer, Ryan P.; Dauskardt, Reinhold H. [Department of Materials Science and Engineering, Stanford University, Durand Building, Stanford, California 94305-4034 (United States); Shaviv, Roey [Novellus Systems Inc., 4000 North First Street, San Jose, California 95134 (United States); Geiss, Roy H.; Read, David T. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2011-08-15

    The effects of electroplating chemistry and dielectric diffusion barrier composition on copper voiding and barrier adhesion are reported. Adhesion was quantified using the four-point bend thin film adhesion technique, and voiding in the Cu films was quantified using scanning electron microscopy. A total of 12 different film stacks were investigated, including three different Cu electroplating chemistries and four different barrier materials (SiN, N-doped SiC, O-doped SiC, and dual-layer SiC). Both plating chemistry and barrier composition have a large effect on interface adhesion and voiding in the Cu film. X-ray photoelectron spectroscopy was used to investigate the segregation of Cu electroplating impurities, such as S and Cl, to the Cu/barrier interface. Secondary ion mass spectrometry was used to quantify oxygen content at the Cu/barrier interface in a subset of samples. This interface oxygen content is correlated with measured adhesion values.

  3. Positive void reactivity

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1992-09-01

    This report is a review of some of the important aspects of the analysis of large loss-of-coolant accidents (LOCAs). One important aspect is the calculation of positive void reactivity. To study this subject the lattice physics codes used for void worth calculations and the coupled neutronic and thermal-hydraulic codes used for the transient analysis are reviewed. Also reviewed are the measurements used to help validate the codes. The application of these codes to large LOCAs is studied with attention focused on the uncertainty factor for the void worth used to bias the results. Another aspect of the subject dealt with in the report is the acceptance criteria that are applied. This includes the criterion for peak fuel enthalpy and the question of whether prompt criticality should also be a criterion. To study the former, fuel behavior measurements and calculations are reviewed. (Author) (49 refs., 2 figs., tab.)

  4. Software quality assurance plan for void fraction instrument

    International Nuclear Information System (INIS)

    Gimera, M.

    1994-01-01

    Waste Tank SY-101 has been the focus of extensive characterization work over the past few years. The waste continually generates gases, most notably hydrogen, which are periodically released from the waste. Gas can be trapped in tank waste in three forms: as void gas (bubbles), dissolved gas, or absorbed gas. Void fraction is the volume percentage of a given sample that is comprised of void gas. The void fraction instrument (VFI) acquires the data necessary to calculate void fraction. This document covers the product, Void Fraction Data Acquisition Software. The void fraction software being developed will have the ability to control the void fraction instrument hardware and acquire data necessary to calculate the void fraction in samples. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain void fraction data from Tank SY-101

  5. Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2011-01-01

    Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing...... this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller...... secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations...

  6. Development and validation of a technique of measurement of the void fraction by X-ray tomography

    International Nuclear Information System (INIS)

    Jouet, Emmanuel

    2001-01-01

    The aim of this study is to develop an instrumentation to measure the local void fraction map in an air - water flow by X-ray tomography. After an exhaustive literature survey, the selected reconstruction algorithms are compared to choose the most effective. Several improvements are added and tested to enhance the reconstruction accuracy in the vicinity of the pipe walls. An experimental parallel beam tomographic bench has been developed and its operating parameters have been optimized. The acquisition system and the reconstruction algorithm are used to map phantoms, homogeneous or non - homogeneous air - water bubbly flows and bundle flows with regular or interlaced sampling scheme. The method is validated by comparing with the void fraction maps measured with an optical probe. At the end, the method is extended to the fan-beam geometry. (author) [fr

  7. Elastic wave scattering from multiple voids (porosity)

    International Nuclear Information System (INIS)

    Thompson, D.O.; Rose, J.H.; Thompson, R.B.; Wormley, S.J.

    1983-01-01

    This paper describes the development of an ultrasonic backscatter measurement technique which provides a convenient way to determine certain characteristics of a distribution of voids (porosity) in materials. A typical ultrasonic sample prepared by placing the ''frit'' in a crucible in an RF induction heater is shown. The results of the measurements were Fourier transformed into an amplitude-frequency description, and were then deconvolved with the transducer response function. Several properties needed to characterize a void distribution are obtained from the experimental results, including average void size, the spatial extent of the voids region, the average void separation, and the volume fraction of material contained in the void distribution. A detailed comparison of values obtained from the ultrasonic measurements with visually determined results is also given

  8. Using voids to unscreen modified gravity

    Science.gov (United States)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius

    2018-04-01

    The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.

  9. Development of gamma-ray densitometer and measurement of void fraction in instantaneous pipe rupture under BWR LOCA condition

    International Nuclear Information System (INIS)

    Yano, Toshikazu

    1983-11-01

    In order to clarify the transient mass flow rate under the instantaneous pipe rupture condition, it is necessary to use a highly sensitive void meter. Therefore, a high-response gamma-ray densitometer was developed for the measurement of void fraction variation caused by flashing vaporization of the high-pressure and -temperature water under the instantaneous pipe rupture accident. The measurement of void fraction was performed in the pipe rupture test under the BWR LOCA condition with a 6-inch diameter pipe. Initial conditions of the water were 6.86 MPa in pressure and the saturation temperature. To prove the reliability and accuracy, a calibration test by falling acrylic void simulators and an air injection test into cold water filled in the pipe were also conducted. The following results are obtained in the pipe rupture test. (1) The cone slit method is very useful to increase the measuring accuracy. (2) It is clearly observed that the apparent increase of void fraction occurs after the rarefaction wave passes. (3) The first maximum of void fraction occurs with some delay time after break. The following minimum void fraction concurs with the maximum pressure in the pressure recovering phenomena and with the maximum blowdown thrust force. (author)

  10. Morphological Segregation in the Surroundings of Cosmic Voids

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardelli, Elena; Tamone, Amelie [Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny (Switzerland); Cava, Antonio [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix (Switzerland); Varela, Jesus, E-mail: elena.ricciardelli@epfl.ch [Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan 1, E-44001 Teruel (Spain)

    2017-09-01

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.

  11. Structure of two-phase air-water flows. Study of average void fraction and flow patterns; Structure des ecoulements diphasiques eau-air. Etude de la fraction de vide moyenne et des configurations d'ecoulement

    Energy Technology Data Exchange (ETDEWEB)

    Roumy, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V{sub sg} = f(<{alpha}>) * g(V{sub sl}). The function g(V{sub sl}) for the case of independent bubbles has been found to be: g(V{sub sl}) = V{sub sl} + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V{sub sg}/V{sub sl}. (author) [French] Ce rapport est une etude experimentale d'un melange diphasique eau-air dans des tubes verticaux de differents diametres. Nous avons mesure la fraction de vide moyenne dans une portion de canal de longueur 2 m, au moyen d'un systeme de vannes a fermeture rapide et simultanee. Au moyen de sondes resistives et de photographies nous avons determine la configuration de l'ecoulement et trace des cartes donnant les frontieres entre les differentes configurations d'ecoulement: bulles independantes, bulles agglomerees, bouchons, semi-annulaire, annulaire. Nous montrons que pour les regimes a bulles et a bouchons, une equation de la forme V{sub sg} = f(<{alpha}>) * g(V{sub sl}) relie la fraction de vide moyenne aux vitesses superficielles de chacune des phases. Nous avons pu determiner la fonction g(V{sub sl}) dans le cas du regime a bulles independantes, et nous trouvons g(V{sub sl}) = V{sub sl} + 20. Pour les regimes semi-annulaire et annulaire, il semble qu'en premiere approximation, la fraction de vide moyenne ne depende que

  12. Post-void residual urine under 150 ml does not exclude voiding dysfunction in women

    DEFF Research Database (Denmark)

    Khayyami, Yasmine; Klarskov, Niels; Lose, Gunnar

    2016-01-01

    INTRODUCTION AND HYPOTHESIS: It has been claimed that post-void residual urine (PVR) below 150 ml rules out voiding dysfunction in women with stress urinary incontinence (SUI) and provides license to perform sling surgery. The cut-off of 150 ml seems arbitrary, not evidence-based, and so we sough...

  13. Hot-film anemometry in air-water flow

    International Nuclear Information System (INIS)

    Delahaye, J.M.; Galaup, J.P.

    1975-01-01

    Local measurements of void fraction and liquid velocity in a steady-state air-water bubbly flow at atmospheric pressure are presented. Use was made of a constant temperature anemometer and of a conical hot-film probe. The signal was processed with a multi-channel analyzer. Void fraction and liquid velocities are determined from the amplitude histogram of the signal. The integrated void fraction over a diameter is compared with the average void fraction along the same diameter obtained with a γ-ray absorption method. The liquid volumetric flow-rate is calculated from the void fraction and liquid velocity profiles and compared with the indication given by a turbine flowmeter [fr

  14. Kirkendall void formation in reverse step graded Si1-xGex/Ge/Si(001) virtual substrates

    Science.gov (United States)

    Sivadasan, Vineet; Rhead, Stephen; Leadley, David; Myronov, Maksym

    2018-02-01

    Formation of Kirkendall voids is demonstrated in the Ge underlayer of reverse step graded Si1-xGex/Ge buffer layers grown on Si(001) using reduced pressure chemical vapour deposition (RP-CVD). This phenomenon is seen when the constant composition Si1-xGex layer is grown at high temperatures and for x ≤ 0.7. The density and size of the spherical voids can be tuned by changing Ge content in the Si1-xGex and other growth parameters.

  15. 38 CFR 3.207 - Void or annulled marriage.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...

  16. Effects of two-phase mixing and void drift models on subchannel void fraction predictions in vertical bundles

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.H. [McMaster Univ., Hamilton, Ontario (Canada)], E-mail: leungk4@mcmaster.ca

    2009-07-01

    The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating {omega} to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)

  17. Effects of two-phase mixing and void drift models on subchannel void fraction predictions in vertical bundles

    International Nuclear Information System (INIS)

    Leung, K.H.

    2009-01-01

    The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating Ω to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)

  18. Study on characteristics of void fraction in vertical countercurrent two-phase flow by neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Sudo, Yukio; Haga, Katsuhiro

    1996-01-01

    In order to make clear the flow mechanism and characteristics of falling water limitation under the countercurrent two-phase flow, that is, the countercurrent flow limitation (CCFL), in a vertical channel, a technique of neutron radiography (NRG) provided in the Research Nuclear Reactor JRR-3M was applied to an air-water system of vertical rectangular channels of 50 and 782 mm in length with 66 mm in channel width and 2.3 mm in channel gap under atmospheric pressure. The neutron radiography facility used in this study has a high thermal neutron flux that is suitable for visualization of fluid phenomena. A real-time electronic imaging method was used for capturing two-phase flow images in a vertical channel. It was found the technique applied was very potential to clarify the characteristics of instantaneous, local and average void fractions which were important to understand flow mechanism of the phenomena, while the measurements of void fraction had not been applied fully effectively to understanding of the flow mechanism of CCFL, because the differential pressure for determining void fraction is, in general, too small along the tested channel and is fluctuating too frequently to be measured accurately enough. From the void fraction measured by NRG as well as through direct flow observation, it was revealed that the shorter side walls of rectangular channel tested were predominantly wetted by water falling down with the longer side walls being rather dry by ascending air flow. It was strongly suggested that the analytical flow model thus obtained and proposed for the CCFL based on the flow observation was most effective

  19. Study of pressure drop, void fraction and relative permeabilities of two phase flow through porous media

    International Nuclear Information System (INIS)

    Chu, W.; Dhir, V.K.; Marshall, J.

    1983-01-01

    An experimental investigation of two phase flow through porous layers formed of non-heated glass particles (nominal diameter 1 to 6 mm) has been made. Particulate bed depths of 30 cm and 70 cm were used. The effect of particle size, particle size distribution and bed porosity on void fraction and pressure drop through a particulate bed formed in a cylindrical test section has been investigated. The superficial velocity of liquid (water) is varied from 1.83 to 18.3 mm/s while the superficial velocity of gas (air) is varied from 0 to 68.4 mm/s. These superficial velocities were chosen so that pressure drop and void fraction measurement could be made for the porous layer in fixed and fluidized states. A model based on drift flux approach has been developed for the void fraction. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined

  20. Effect of artificial UV irradiation on spore content of stall air and fattening pig breeding

    International Nuclear Information System (INIS)

    Kalich, J.; Blendl, H.M.

    1978-01-01

    The influence of a continuous UV irradiation (emitter NN 33/89 original Hanau) during the fattening periods primarily in the bactericide region of 253.7 nm of various intensities on the spore content of air, on the state of health and on the fattening breeding of pigs was tested in two fattening procedures. The high spore number per m 3 air of over 700 000 upon occupying the stall in the first fattening procedure was reduced by 90.5% to about 70 000 after 1 week of UV irradiation, and in the second procedure, from 111 500 to 16 000, i.e. a reduction of 85.5%. The spore content of the stall air then exhibited large deviations reducing and increasing. The same deviations were recorded for dust content. There was no absolute correlation between dust and spore content of the air until the 11th week after starting UV irradiation in either test. The spore content sank in the reference stalls also without UV irradiation, by 29.9% in the first fattening procedure 1 week after occupying the stall and even by 75% in the second procedure. The spore content of the air in the reference stalls also then exhibited deviations sinking and rising as in the test stalls with UV irradiation. Here too, there was no correlation between dust and spore content of the air. The spore content in the air was 2 to 7 times higher in the reference stalls than in the test stalls. One may conclude from the tests that the promoting irradiation strength is between 15 and 20 μW/cm 2 and that short-term stool production in danish stalling, 60 μW/cm 2 are not harmful. Air disinfection with UV irradiation, can only be part of the total hygiene measures taken in veterinary medicine and may only be considered as an important link in the chain of the health promoting and increased efficient hygiene measures in the intensification of aggriculturally useful animals. (orig./AJ) [de

  1. Void Measurement by the ({gamma}, n) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Zia

    1962-09-15

    It is proposed to use the ({gamma}, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D{sub 2}O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. {sup 24}Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions.

  2. Void Measurement by the (γ, n) Reaction

    International Nuclear Information System (INIS)

    Rouhani, S. Zia

    1962-09-01

    It is proposed to use the (γ, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D 2 O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. 24 Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions

  3. Vesicoureteral reflux in children: comparison of contrast - enhanced voiding ultrasonography with radiographic voiding cystourethrography - preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chong Hyun; Kim, Hyun Joo; Goo, Hyun Woo; Kim, Hungy; Lee, Jung Joo; Kim, Ellen Ai-Rhan; Kim, Ki Soo; Park, Young Seo; Pi, Soo Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    2001-01-01

    To compared the usefullness of contrst-enhanced voiding ultrasonogrphy (US) with that of radiogrphic voiding cystourethrography (VCUG) for the diagnosis of vesicoureteral reflux (VUR) in children. Ninety-five kidney-ureter units of 47 patients referred for investigation of VUR underwent contrast -enhanced voiding US followed by radiographic VCUG. After baseline US examination of the urinaru tract, residual urine in the bladder was drained through an inserted Foley catheter and the bladder was gravityfilled at a height of 1 m with normal saline. A galactose-based, microbubble-containning echo-enhancing agent (Lvovist; Dchering, Berlin, Germany) was then administered. The amount of this was approximately 10% of bldder capacity, and VUR was diagnosed when microbubbles appeared in the ureter or pelvocalyceal system. Using radiographic VCUG as a reference point, the accuracy with which contrst-enhanced voiding US detected VUR was calcilated. In 87 of 95 kidney-ureter units (91.6%), the two methods showed similiar results regarding the diagnosis or exclusion of VUR, which was detected by both in 12 units, but by neither in 75. VUR was shown to occcur in a total of 20 units, but in eight of these by one method only. In two units, VUR detected by contrast-enhanced voiding US was was not demostarted by radiographic VCUG; in six units, the resverse was true. In the detection of VUR, contrast-enhanced voiding us showed a sensitivity of 66.7%, a sprcificity of 97.4%, a positive predictive value of 85.7%, and a negative predictive value of 92.6%. Contrst-enhanced voiding US is highly specific and has high positive and nagative predictive values; its sensitivity, however, is not sufficiently high. The modality appears to be a useful diagnostic tool for the detection of VUR without exposure to ionizing radiation, though to be certain of its value, more experience of its use its first required.

  4. Vesicoureteral reflux in children: comparison of contrast - enhanced voiding ultrasonography with radiographic voiding cystourethrography - preliminary report

    International Nuclear Information System (INIS)

    Yoon, Chong Hyun; Kim, Hyun Joo; Goo, Hyun Woo; Kim, Hungy; Lee, Jung Joo; Kim, Ellen Ai-Rhan; Kim, Ki Soo; Park, Young Seo; Pi, Soo Young

    2001-01-01

    To compared the usefullness of contrst-enhanced voiding ultrasonogrphy (US) with that of radiogrphic voiding cystourethrography (VCUG) for the diagnosis of vesicoureteral reflux (VUR) in children. Ninety-five kidney-ureter units of 47 patients referred for investigation of VUR underwent contrast -enhanced voiding US followed by radiographic VCUG. After baseline US examination of the urinaru tract, residual urine in the bladder was drained through an inserted Foley catheter and the bladder was gravityfilled at a height of 1 m with normal saline. A galactose-based, microbubble-containning echo-enhancing agent (Lvovist; Dchering, Berlin, Germany) was then administered. The amount of this was approximately 10% of bldder capacity, and VUR was diagnosed when microbubbles appeared in the ureter or pelvocalyceal system. Using radiographic VCUG as a reference point, the accuracy with which contrst-enhanced voiding US detected VUR was calcilated. In 87 of 95 kidney-ureter units (91.6%), the two methods showed similiar results regarding the diagnosis or exclusion of VUR, which was detected by both in 12 units, but by neither in 75. VUR was shown to occcur in a total of 20 units, but in eight of these by one method only. In two units, VUR detected by contrast-enhanced voiding US was was not demostarted by radiographic VCUG; in six units, the resverse was true. In the detection of VUR, contrast-enhanced voiding us showed a sensitivity of 66.7%, a sprcificity of 97.4%, a positive predictive value of 85.7%, and a negative predictive value of 92.6%. Contrst-enhanced voiding US is highly specific and has high positive and nagative predictive values; its sensitivity, however, is not sufficiently high. The modality appears to be a useful diagnostic tool for the detection of VUR without exposure to ionizing radiation, though to be certain of its value, more experience of its use its first required

  5. The entrainment of air by water jet impinging on a free surface

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee King [University of Wollongong, School of Mechanical, Materials and Mechatronics Engineering, Northfields Ave, NSW (Australia); Khoo, Boo Cheong [National University of Singapore, Department of Mechanical and Production Engineering, 10 Kent Ridge Crescent (Singapore); Yuen, W.Y. Daniel [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-09-01

    High-speed cine and video photographs were used to capture the flow patterns of a column of water jet impinging into a pool of water. The impact results in air entrainment into water in the form of a void with no mixing between the water in the jet and the surrounding water. Conservation of fluid momentum shows that the rate of increase of the height of the air void depends on the drag coefficient of the jet front. By neglecting the frictional losses, the application of energy conservation yields an expression that relates the maximum height of the air void with the properties of the water jet. (orig.)

  6. Pores and Void in Asclepiades’ Physical Theory

    Science.gov (United States)

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  7. A NEW STATISTICAL PERSPECTIVE TO THE COSMIC VOID DISTRIBUTION

    International Nuclear Information System (INIS)

    Pycke, J-R; Russell, E.

    2016-01-01

    In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  8. Nonlocal plasticity effects on interaction of different size voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2004-01-01

    A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for. (C) 2003 Elsevier Ltd. All rights reserved....

  9. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  10. The influence of combined addition of phosphorus and titanium on void swelling of austenitic Fe-Cr-Ni alloys at 646-700 K

    International Nuclear Information System (INIS)

    Watanabe, H.; Muroga, T.; Yoshida, N.

    1994-01-01

    The influence of combined addition of phosphorus and titanium on void swelling of model Fe-Cr-Ni austenitic alloys at 646 to 700 K under fast neutron irradiation has been investigated, in comparison with that of a complex austenitic alloy (JPCA-2). In the model alloys, void swelling decreased with increasing phosphorus content. Void average size and density of JPCA-2 were comparable to those of the 0.024P alloy. The fact that these two alloys have the same phosphorus level suggests the void swelling of the model alloys would be strongly suppressed by increasing the phosphorus concentration and/or coaddition of phosphorus and titanium. The present study demonstrated that the phosphorus level is the strongest determinant of void swelling of both model and complex austenitic alloys. ((orig.))

  11. Effect of polyphenol oxidase (PPO and air treatments on total phenol and tannin content of cocoa nibs

    Directory of Open Access Journals (Sweden)

    Brito Edy Sousa de

    2002-01-01

    Full Text Available Cocoa flavour is greatly influenced by polyphenols. These compounds undergo a series of transformations during cocoa processing leading to the characteristic cocoa flavour. The use of exogenous polyphenol oxidase (PPO proved to be useful to reduce polyphenol content in cocoa nibs. The effect of a PPO associated or not with air over total phenol and tannin content was evaluated. Cocoa nibs were autoclaved and treated with a PPO or water in the absence or presence of an air flow for 0.5, 1, 2 and 3 hours. Total phenol content was reduced in PPO or water treatments, but when associated with air there was an increase in phenol content. Tannin content was reduced only by the treatment with water and air.

  12. Voiding dysfunction in children aged five to 15 years

    Directory of Open Access Journals (Sweden)

    Karaklajić Dragana

    2004-01-01

    Full Text Available Voiding dysfunction in children was analyzed in 91 patients in a period from January 1st to October 1st 1998. Most of the patients had functional voiding disorder (92.31%, and only 7.69% manifested monosymptomatic night enuresis. The number of girls was bigger in the group of patients with voiding dysfunction while the boys were predominant in the group with mono-symptomatic nocturnal enuresis. More than a half of children with functional voiding disorder had repeated urinal infections (58.23%, incontinence (93.49%, need for urgent voiding (68.13%, and vesicoureteral reflux (47.61%. The most common type of voiding dysfunction was urge syndrome/urge incontinence. The incidence of dysfunctional voiding disorder was more often in children with scaring changes of kidney which were diagnosed by static scintigraphy.

  13. Voids and superstructures: correlations and induced large-scale velocity flows

    Science.gov (United States)

    Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego

    2017-09-01

    The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ˜40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.

  14. Experimental analysis of ultrasonic signals in air-water vertical upward for void fraction measurement using neural networks; Analise experimental dos sinais ultra-sonicos em escoamentos verticais bifasicos para medicao da fracao de vazios atraves de redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Milton Y.; Massignan, Joao P.D.; Daciuk, Rafael J.; Neves Junior, Flavio; Arruda, Lucia V.R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    Rheology of emulsion mixtures and void fraction measurements of multiphase flows requires proper instrumentation. Sometimes it is not possible to install this instrumentation inside the pipe or view the flow. Ultrasound technology has characteristics compatible with the requirements of the oil industry. It can assist the production of heavy oil. This study provides important information for an analysis of the feasibility of developing non-intrusive equipment. These probes can be used for measurement of multiphase void fraction and detect the flow pattern using ultrasound. Experiments using simulated upward air-water vertical two-phase flow show that there is a correlation between the acoustic attenuation and the concentration of the gas phase. Experimental data were obtained through the prototype developed for ultrasonic data acquisition. This information was processed and used as input parameters for a neural network classifier. Void fractions ({proportional_to}) were analyzed between 0% - 16%, in increments of 1%. The maximum error of the neural network for the classification of the flow pattern was 6%. (author)

  15. Void migration, coalescence and swelling in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2003-01-01

    A recent analysis of the migration of voids and bubbles, produced in neutron irradiated fusion materials, is outlined. The migration, brought about by thermal hopping of atoms on the surface of a void, is normally a random Brownian motion but, in a temperature gradient, can be slightly biassed up the gradient. Two effects of such migrations are the transport of voids and trapped transmutation helium atoms to grain boundaries, where embrittlement may result; and the coalescence of migrating voids, which reduces the number of non-dislocation sites available for the capture of knock-on point defects and thereby enables the dislocation bias process to maintain void swelling. A selection of candidate fusion power plant armour and structural metals have been analysed. The metals most resistant to void migration and its effects are tungsten and molybdenum. Steel and beryllium are least so and vanadium is intermediate

  16. VIDE: The Void IDentification and Examination toolkit

    Science.gov (United States)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N-body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at http://bitbucket.org/cosmicvoids/vide_public and http://www.cosmicvoids.net.

  17. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, Claudie

    1995-01-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tri dimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows. (author) [fr

  18. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, C.

    1995-12-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tridimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows

  19. Evaluation of open-graded friction course mixture : technical assistance report.

    Science.gov (United States)

    2004-10-01

    Open-graded friction course (OGFC) is a porous, gap-graded, predominantly single size aggregate bituminous mixture that contains a high percentage of air voids. The high air void content and the open structure of this mix promote the effective draina...

  20. Three-dimensional simulations of void collapse in energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  1. Nucleation of voids - the impurity effect

    International Nuclear Information System (INIS)

    Chen, I-W; Taiwo, A.

    1984-01-01

    Nucleation of voids under irradiation in multicomponent alloys remains an unsolved theoretical problem. Of particular interest are the effects of nonequilibrium solute segregation phenomena on the critical nucleus and the nucleation rate. The resolution of the multicomponent nucleation in a dissipative system also has broader implication to the field of irreversible thermodynamics. The present paper describes a recent study of solute segregation effects in void nucleation. We begin with a thermodynamic model for a nonequilibrium void with interfacial segregation. The thermodynamic model is coupled with kinetic considerations of solute/solvent diffusion under a bias, which is itself related to segregation by the coating effect, to assess the stability of void embryos. To determine nucleation rate, we develop a novel technique by extending the most probable path method in statistical mechanics for nonequilibrium steady state to simulate large fluctuation with nonlinear dissipation. The path of nucleation is determined by solving an analogous problem on particle trajectory in classical dynamics. The results of both the stability analysis and the fluctuation analysis establish the paramount significance of the impurity effect via the mechanism of nonequilibrium segregation. We conclude that over-segregation is probably the most general cause for the apparently low nucleation barriers that are responsible for nearly ubiquitous occurrence of void swelling in common metals

  2. The Metallicity of Void Dwarf Galaxies

    Science.gov (United States)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  3. On the seepage voids in the compacted soil observed by the x-ray imaging method

    International Nuclear Information System (INIS)

    Tokunaga, Koichi; Koga, Kiyoshi

    1991-01-01

    The structure of large voids in the soil layer by banking and rolling compaction and the form of the water channel structure seeping through soil layers have important significance in geotechnical engineering, and it was decided to examine them by the heavy liquid infiltration method developed recently by one of the authors. It has been known that the water permeability of soil due to compaction varies remarkably according to the water content in the soil at the time of compaction. However, the factor which determines the water permeability is related to the voids in soil, particularly the form of large voids which become water channel. As for the heavy liquid infiltration method, the sample soil is set similarly to the permeability test of compacted soil, and liquid contrast medium is infiltrated. The stereoscopic photographing is carried out as it is, and the path of the contrast medium infiltrating into soil, namely the form of the voids corresponding to water channel can be observed. Sample soil, the experimental method and the results are reported. The compaction permeability curves have the same tendency in volcanic ash soil and red clay. (K.I.)

  4. Correction for dynamic bias error in transmission measurements of void fraction

    International Nuclear Information System (INIS)

    Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.

    2012-01-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  5. Effect of void cluster on ductile failure evolution

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    The behavior of a non-uniform void distribution in a ductile material is investigated by using a cell model analysis to study a material with a periodic pattern of void clusters. The special clusters considered consist of a number of uniformly spaced voids located along a plane perpendicular...

  6. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    Science.gov (United States)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  7. Void formation in NiTi shape memory alloys by medium-voltage electron irradiation

    International Nuclear Information System (INIS)

    Schlossmacher, P.; Stober, T.

    1995-01-01

    In-situ electron irradiation experiments of NiTi shape memory alloys, using high-voltage transmission electron microscopes, result in amorphization of the intermetallic compound. In all of these experiments high-voltages more than 1.0 MeV had to be applied in order to induce the crystalline-to-amorphous transformation. To their knowledge no irradiation effects of medium-voltage electrons of e.g. 0.5 MeV have been reported in the literature. In this contribution, the authors describe void formation in two different NiTi shape memory alloys, resulting from in-situ electron irradiation, using a 300 kV electron beam in a transmission electron microscope. First evidence is presented that void formation is correlated with the total oxygen content of the alloys

  8. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  9. Friction stir welding process to repair voids in aluminum alloys

    Science.gov (United States)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  10. On nonlinear excitation of voids in dusty plasmas

    International Nuclear Information System (INIS)

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-01-01

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment

  11. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    Science.gov (United States)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  12. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  13. Air Layer Drag Reduction

    Science.gov (United States)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  14. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  15. Voiding school as a treatment of daytime incontinence or enuresis: Children's experiences of the intervention.

    Science.gov (United States)

    Saarikoski, A; Koppeli, R; Salanterä, S; Taskinen, S; Axelin, A

    2018-02-01

    Daytime incontinence and enuresis are common problems in otherwise healthy children, and negatively influence their social lives and self-esteem. Motivation for treatment is often a real clinical problem. Children's experiences of their incontinence treatments have not been previously described. The aim of this study was to describe children's experiences of the Voiding School intervention as a treatment for their incontinence. A qualitative, descriptive focus-group study with a purposive sample was conducted at a Finish university hospital in 2014. Children aged 6-12 years participated in the Voiding School at an outpatient clinic. The intervention included two 1-day group visits 2 months apart. The educational content was based on the International Children Continence Society's standards for urotherapy. The education was delivered with child-oriented teaching methods. At the end of the second visit, 19 children were interviewed in five groups. Data were analysed with inductive content analysis. The children described incontinence as an embarrassing problem, which they had to hide at any cost. They had experienced bullying and social isolation because of it. Normal outpatient visits emphasized adult-to-adult communication, which made the children feel like outsiders. The children perceived the Voiding School as a nice and child-oriented experience. Making new friends was especially important to younger boys who felt that the Voiding School day was too long and issue-oriented. In the Voiding School, videos and 'learning by doing' helped the children to understand the basis of given advice, and they were able to learn new habits, which gave them control over the incontinence; this helped them to become 'the boss of the bladder'. Sharing experiences and improvements in their incontinence with their peers supported the children's self-esteem and encouraged them to do new things, such as staying overnight with friends. These experiences helped them to acquire control

  16. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  17. Learning from errors: analysis of medication order voiding in CPOE systems.

    Science.gov (United States)

    Kannampallil, Thomas G; Abraham, Joanna; Solotskaya, Anna; Philip, Sneha G; Lambert, Bruce L; Schiff, Gordon D; Wright, Adam; Galanter, William L

    2017-07-01

    Medication order voiding allows clinicians to indicate that an existing order was placed in error. We explored whether the order voiding function could be used to record and study medication ordering errors. We examined medication orders from an academic medical center for a 6-year period (2006-2011; n  = 5 804 150). We categorized orders based on status (void, not void) and clinician-provided reasons for voiding. We used multivariable logistic regression to investigate the association between order voiding and clinician, patient, and order characteristics. We conducted chart reviews on a random sample of voided orders ( n  = 198) to investigate the rate of medication ordering errors among voided orders, and the accuracy of clinician-provided reasons for voiding. We found that 0.49% of all orders were voided. Order voiding was associated with clinician type (physician, pharmacist, nurse, student, other) and order type (inpatient, prescription, home medications by history). An estimated 70 ± 10% of voided orders were due to medication ordering errors. Clinician-provided reasons for voiding were reasonably predictive of the actual cause of error for duplicate orders (72%), but not for other reasons. Medication safety initiatives require availability of error data to create repositories for learning and training. The voiding function is available in several electronic health record systems, so order voiding could provide a low-effort mechanism for self-reporting of medication ordering errors. Additional clinician training could help increase the quality of such reporting. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Influence of void effects on reactivity of coupled fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.

    1997-01-01

    Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents

  19. Void formation and its impact on Cu−Sn intermetallic compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Glenn, E-mail: Glenn.Ross@aalto.fi; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-08-25

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu{sub 3}Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu{sub 3}Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu{sub 3}Sn thickness and an accelerated growth rate of Cu{sub 6}Sn{sub 5}. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu{sub 3}Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu{sub 3}Sn to be consumed by Cu{sub 6}Sn{sub 5}.

  20. LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu [Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates)

    2017-01-20

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.

  1. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    of different material length parameters in a multi-parameter theory is studied, and it is shown that the important length parameter is the same as under purely hydrostatic loading. It is quantified how micron scale voids grow less rapidly than larger voids, and the implications of this in the overall strength...... of the material is emphasized. The size effect on the onset of coalescence is studied, and results for the void volume fraction and the strain at the onset of coalescence are presented. It is concluded that for cracked specimens not only the void volume fraction, but also the typical void size is of importance...... to the fracture strength of ductile materials....

  2. Laboratory test on maximum and minimum void ratio of tropical sand matrix soils

    Science.gov (United States)

    Othman, B. A.; Marto, A.

    2018-04-01

    Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.

  3. Development of an electrical sensor for measurement of void fraction and identification of flow regime in a horizontal pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin

    2015-01-01

    The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements

  4. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  5. Influence of void ratio on thermal performance of heat pipe receiver

    International Nuclear Information System (INIS)

    Gui Xiaohong; Tang Dawei; Liang Shiqiang; Lin Bin; Yuan Xiugan

    2012-01-01

    Highlights: ► The temperature gradient increases significantly and the utility ratio of PCM decreases obviously as void ratio increases. ► Void cavity influences the process of phase change greatly. ► PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. ► The temperature gradient of PCM zone is very significant with the effect of void cavity. - Abstract: In this paper, influence of void ratio on thermal performance of heat pipe receiver under microgravity is numerically simulated. Accordingly, mathematical model is set up. Numerical method is offered. The temperature field of Phase Change Material (PCM) canister is shown. Numerical results are compared with numerical ones of National Aeronautics and Space Administration (NASA). Numerical results show that the temperature gradient increases significantly and the utility ratio of PCM decreases obviously as void ratio increases. Void cavity influences the process of phase change greatly. PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. The thermal resistance of void cavity is much bigger than that of PCM canister wall. Void cavity prevents the heat transfer between PCM zone and canister wall. The temperature gradient of PCM zone is very significant with the effect of void cavity. So the thermal stress of heat pipe receiver may increase, and the lifetime may decrease as void ratio increases.

  6. Void growth and coalescence in metals deformed at elevated temperature

    DEFF Research Database (Denmark)

    Klöcker, H.; Tvergaard, Viggo

    2000-01-01

    For metals deformed at elevated temperatures the growth of voids to coalescence is studied numerically. The voids are assumed to be present from the beginning of deformation, and the rate of deformation considered is so high that void growth is dominated by power law creep of the material, without...... any noticeable effect of surface diffusion. Axisymmetric unit cell model computations are used to study void growth in a material containing a periodic array of voids, and the onset of the coalescence process is defined as the stage where plastic flow localizes in the ligaments between neighbouring...... voids. The focus of the study is on various relatively high stress triaxialties. In order to represent the results in terms of a porous ductile material model a set of constitutive relations are used, which have been proposed for void growth in a material undergoing power law creep....

  7. Research of mechanical and void properties of composite insulation for superconducting busbar

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Guoliang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Clayton, Nicholas [ITER IO, Superconductor Systems & Auxiliaries Section, 13067 St Paul Lez Durance Cedex (France); Lu, Kun; Wang, Chunyu; Wang, Chao; Dai, Zhiheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gung, Chen-yu; Devred, Arnaud [ITER IO, Superconductor Systems & Auxiliaries Section, 13067 St Paul Lez Durance Cedex (France); Song, Yuntao; Fang, Linlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-01-15

    Highlights: • Two curing methods for the pre-preg on the superconducting busbar are researched. • Vaccum bag and silicone rubber is used for pre-preg curing as complement of VPI in fusion filed. • The results of mechanical properties and void content is described and discussed. - Abstract: Pre-preg material has been widely-used in the industry of the aerospace, the wind power, which has many advantages on manufacture process, and can be chosen as an effective complementary insulation method for the Wet-winding and Vacuum Pressure Impregnation technology in the field of superconducting fusion magnets. ASIPP undertaken many engineering tasks on the superconducting coil and busbar design and manufacture for the large fusion device, the pre-preg material and the relevant curing technology were researched as a new method for the high voltage potential components in ITER Feeders, such as the busbars and current leads. Two types of Chinese industrial glass fiber pre-preg insulation composite material were studied and pre-qualified using vacuum bag and silicone rubber assistance technique in ASIPP. The mechanical properties including the ILSS and UTS at 77 K, and void content of this composites were measured and discussed in this paper in detail.

  8. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  9. Polish apparatus for the measurement of dust content in the air of a mine

    Energy Technology Data Exchange (ETDEWEB)

    Krzystolik, P; Piskorska-Kalisz, Z

    1981-01-01

    Some characteristics are presented of the apparatus for the control of the dust content of air in coal mines, developed by the main Polish Institute of Mining Affairs. The Barbara 3 A gravitational dust meter has: volumetric velocity of suction of air of 5 cubic decimeters per minute; the mass is 5.8 kilograms; the range of the determined concentration of dust is from 0.5 to 1 grams per cubic meters; the length of the operation with the supply from four silver-zinc accumulator elements is eight hours; the selector of dust particles is a platy elutriator or a microcyclone; a membrane type of filter, an explosively danger actuation. The Barbar 4 gravitation dust meter has: volumetric velocity of air suction of 10, 20, 50, or 100 cubic decimeters per minute; supply from the network of compressed air; the mass is about eight kilograms; the selector of dust particles is a microcyclone; the filter is a membrane or is in the form of a layer of salicylic acid, placed between two nets. Both dust meters are designated for the determination of dust content as well as the content of finely dispersed dust particles. The mass of the selected specimen of dust is adequate also for the determination of the content of silica, as well as for other special analyses.

  10. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    of different material length parameters in a multi-parameter theory is studied, and it is shown that the important length parameter is the same as under purely hydrostatic loading. It is quantified how micron scale voids grow less rapidly than larger voids, and the implications of this in the overall strength...... of the material is emphasized. It is concluded that for cracked specimens not only the void volume fraction, but also the typical void size is of importance to the fracture strength of ductile materials....

  11. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice

  12. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth the rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice [fr

  13. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Directory of Open Access Journals (Sweden)

    Nguyen Trung-Kien

    2017-01-01

    Full Text Available This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  14. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  15. On the observability of coupled dark energy with cosmic voids

    Science.gov (United States)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  16. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.; Honey, M. [Indian Institute of Astrophysics, Bangalore (India); Saito, T. [Department of Astronomy, Graduate school of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Iono, D. [Chile Observatory, NAOJ (Japan); Ramya, S., E-mail: mousumi@iiap.res.in [Shanghai Astronomical Observatory, Shanghai (China)

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  17. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  18. Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hursin, M.; Koeberl, O.; Perret, G. [Paul Scherrer Institut PSI, 5232 Villigen (Switzerland)

    2012-07-01

    High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivity Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)

  19. Local, zero-power void coefficient measurements in the ACPR

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, J B; Thome, F V [Sandia Laboratories (United States)

    1974-07-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from {approx}6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  20. Local, zero-power void coefficient measurements in the ACPR

    International Nuclear Information System (INIS)

    Rivard, J.B.; Thome, F.V.

    1974-01-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from ∼6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  1. Comparative study of void fraction models

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1985-01-01

    Some models for the calculation of void fraction in water in sub-cooled boiling and saturated vertical upward flow with forced convection have been selected and compared with experimental results in the pressure range of 1 to 150 bar. In order to know the void fraction axial distribution it is necessary to determine the net generation of vapour and the fluid temperature distribution in the slightly sub-cooled boiling region. It was verified that the net generation of vapour was well represented by the Saha-Zuber model. The selected models for the void fraction calculation present adequate results but with a tendency to super-estimate the experimental results, in particular the homogeneous models. The drift flux model is recommended, followed by the Armand and Smith models. (F.E.) [pt

  2. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    Directory of Open Access Journals (Sweden)

    Mohd Rasdan Ibrahim

    2014-01-01

    Full Text Available The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC. Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12% and different percentages of binder content (4%–7%. The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  3. Is abdominal wall contraction important for normal voiding in the female rat?

    Directory of Open Access Journals (Sweden)

    Boone Timothy B

    2007-03-01

    Full Text Available Abstract Background Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female rats Methods A free-voiding model was designed to allow assessment of abdominal wall activity during voiding resulting from physiologic bladder filling, in the absence of bladder or urethral instrumentation. Physiologic diuresis was promoted by rapid intravascular hydration. Intercontraction interval (ICI, voided volumes and EMG activity of the rectus abdominis were quantified. The contribution of abdominal wall contraction to voiding was eliminated in a second group of rats by injecting botulinum-A (BTX, 5 U into each rectus abdominis to induce local paralysis. Uroflow parameters were compared between intact free-voiding and BTX-prepared animals. Results Abdominal wall response is present in free voiding. BTX preparation eliminated the voiding-associated EMG activity. Average per-void volume decreased from 1.8 ml to 1.1 ml (p Conclusion The voiding-associated abdominal wall response is a necessary component of normal voiding in urethane anesthetized female rats. As the proximal urethra may be the origin of the afferent signaling which results in the abdominal wall response, the importance of the bladder pressure increment due to this response may be in maintaining a normal duration intermittent pulsatile high frequency oscillatory (IPHFO/flow phase and thus efficient voiding. We propose the term Voiding-associated Abdominal Response (VAR for the physiologic voiding-associated EMG

  4. Molecular dynamics modeling and simulation of void growth in two dimensions

    Science.gov (United States)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  5. Molecular dynamics modeling and simulation of void growth in two dimensions

    International Nuclear Information System (INIS)

    Chang, H-J; Segurado, J; LLorca, J; Rodríguez de la Fuente, O; Pabón, B M

    2013-01-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids. (paper)

  6. Alignment of galaxy spins in the vicinity of voids

    International Nuclear Information System (INIS)

    Slosar, Anže; White, Martin

    2009-01-01

    We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee and Pen to describe the strength of such an alignment, we find that c0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries

  7. Structure-dependent behavior of stress-induced voiding in Cu interconnects

    International Nuclear Information System (INIS)

    Wu Zhenyu; Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing

    2010-01-01

    Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.

  8. Void Fraction Instrument operation and maintenance manual

    International Nuclear Information System (INIS)

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O ampersand MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document

  9. Experimental investigation of void distribution in suppression pool over the duration of a loss of coolant accident using steam–water two-phase mixture

    International Nuclear Information System (INIS)

    Rassame, Somboon; Griffiths, Matthew; Yang, Jun; Ju, Peng; Sharma, Subash; Hibiki, Takashi; Ishii, Mamoru

    2015-01-01

    Highlights: • Experiments were conducted to study void fraction distribution in SP during blowdown. • 3 Experimental phases, namely, an initial and a quasi-steady phase, chugging were observed. • The maximum void penetration depth was experienced during the initial phase. • The quasi-steady phase provided less void penetration depth with oscillations. • The chugging phase was experienced at the end of experimental phase. - Abstract: Studies are underway to determine if a large amount gas discharged through the downcomer pipes in the pressure suppression chamber during the blowdown of Loss of Coolant Accident (LOCA) can potentially be entrained into the Emergency Core Cooling System (ECCS) suction piping of BWR. This may result in degraded ECCS pumps performance which could affect the ability to maintain or recover the water inventory level in the Reactor Pressure Vessel (RPV) during a LOCA. Therefore, it is very important to understand the void behavior in the pressure suppression chamber during the blowdown period of a LOCA. To address this issue, a set of experiments is conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility. The geometry of the test apparatus is determined based on the basic geometrical scaling analysis from a prototypical BWR containment (MARK I) with a consideration of downcomer size, downcomer water submergence depth and Suppression Pool (SP) water level. Several instruments are installed in the test facility to measure the required experimental data such as the steam mass flow rate, void fraction, pressure and temperature. In the experiments, sequential flows of air, steam–air mixture and pure steam-each with the various flow rate conditions are injected from the Drywell (DW) through a downcomer pipe in the SP. Eight tests with two different downcomer sizes, various initial gas volumetric fluxes at the downcomer, and two different initial non-condensable gas

  10. Effects of Void Uncertainties on Pin Power Distributions and the Void Reactivity Coefficient for a 10X10 BWR Assembly

    International Nuclear Information System (INIS)

    Jatuff, F.; Krouthen, J.; Helmersson, S.; Chawla, R.

    2004-01-01

    A significant source of uncertainty in Boiling Water Reactor physics is associated with the precise characterisation of the axially-dependent neutron moderation properties of the coolant inside the fuel assembly channel, and the corresponding effects on reactor physics parameters such as the lattice neutron multiplication, the neutron migration length, and the pin-by-pin power distribution. In this paper, the effects of particularly relevant void fraction uncertainties on reactor physics parameters have been studied for a BWR assembly of type Westinghouse SVEA-96 using the CASMO-4, HELIOS/PRESTO-2 and MCNP4C codes. The SVEA-96 geometry is characterised by the sub-division of the assembly into four different sub-bundles by means of an inner bypass with a cruciform shape. The study has covered the following issues: (a) the effects of different cross-section data libraries on the void coefficient of reactivity, for a wide range of void fractions; (b) the effects due to a heterogeneous vs. homogeneous void distribution inside the sub-bundles; and (c) the consequences of partly inserted absorber blades producing different void fractions in different sub-bundles. (author)

  11. Relationship between voided volume and the urge to void among patients with lower urinary tract symptoms.

    Science.gov (United States)

    Blaivas, Jerry G; Tsui, Johnson F; Amirian, Michael; Ranasinghe, Buddima; Weiss, Jeffrey P; Haukka, Jari; Tikkinen, Kari A O

    2014-12-01

    The aim of this study was to explore the relationship between voided volume (VV) and urge to void among patients with lower urinary tract symptoms. Consecutive adult patients (aged 23-90 years) were enrolled, and completed a 24 h bladder diary and the Urgency Perception Scale (UPS). Patients were categorized as urgency or non-urgency based on the Overactive Bladder Symptom Score. The relationship between UPS and VV (based on the bladder diary) was analyzed by Spearman's rho and proportional odds model. In total, 1265 micturitions were evaluated in 117 individuals (41 men, 76 women; 56 individuals in the urgency and 61 in the non-urgency group). The mean (± SD) VV and UPS were 192 ± 127 ml and 2.4 ± 1.2 ml in the urgency group and 173 ± 124 ml and 1.7 ± 1.1 ml in the non-urgency group, respectively. Spearman's rho (between UPS and VV) was 0.21 [95% confidence interval (CI) 0.13-029, p < 0.001] for the urgency group, 0.32 (95% CI 0.25-0.39, p < 0.001) for the non-urgency group, and 0.28 (95% CI 0.23-0.33, p < 0.001) for the total cohort. Urgency patients had higher UPS [odds ratio (OR) 3.1, 95% CI 2.5-3.8]. Overall, each additional 50 ml VV increased the odds of having a higher UPS with OR 1.2 (95% CI 1.2-1.3). The relationship between VV and UPS score was similar in both groups (p = 0.548 for interaction). Although urgency patients void with a higher UPS score, among both urgency and non-urgency patients there is only a weak correlation between VV and the urge to void. This suggests that there are factors other than VV that cause the urge to void.

  12. Sodium voiding analysis in Kalimer

    International Nuclear Information System (INIS)

    Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee

    2001-01-01

    A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)

  13. Reliability Impact of Stockpile Aging: Stress Voiding; TOPICAL

    International Nuclear Information System (INIS)

    ROBINSON, DAVID G.

    1999-01-01

    The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution

  14. The association of age of toilet training and dysfunctional voiding

    Directory of Open Access Journals (Sweden)

    Hodges SJ

    2014-10-01

    Full Text Available Steve J Hodges, Kyle A Richards, Ilya Gorbachinsky, L Spencer KraneDepartment of Urology, Wake Forest University, Winston-Salem, NC, USAObjective: To determine whether age of toilet training is associated with dysfunctional voiding in children.Materials and methods: We compared patients referred to the urologic clinics for voiding dysfunction with age-matched controls without urinary complaints. Characteristics including age and reason for toilet training, method of training, and encopresis or constipation were compared between both groups.Results: Initiation of toilet training prior to 24 months and later than 36 months of age were associated with dysfunctional voiding. However, dysfunctional voiding due to late toilet training was also associated with constipation.Conclusion: Dysfunctional voiding may be due to delayed emptying of the bowel and bladder by children. The symptoms of dysfunctional voiding are more common when toilet training early, as immature children may be less likely to empty in a timely manner, or when training late due to (or in association with constipation.Keywords: voiding dysfunction, constipation

  15. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  16. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  17. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    Science.gov (United States)

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  18. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  19. Atomistic simulations of void migration under thermal gradient in UO2

    International Nuclear Information System (INIS)

    Desai, Tapan G.; Millett, Paul; Tonks, Michael; Wolf, Dieter

    2010-01-01

    It is well known that within a few hours after startup of a nuclear reactor, the temperature gradient within a fuel element causes migration of voids/bubbles radially inwards to form a central hole. To understand the atomic processes that control this migration of voids, we performed molecular dynamics (MD) simulations on single crystal UO 2 with voids of diameter 2.2 nm. An external temperature gradient was applied across the simulation cell. At the end of the simulation run, it was observed that the voids had moved towards the hot end of the simulation cell. The void migration velocity obtained from the simulations was compared with the available phenomenological equations for void migration due to different transport mechanisms. Surface diffusion of the slowest moving specie, i.e. uranium, was found to be the dominant mechanism for void migration. The contribution from lattice diffusion and the thermal stress gradient to the void migration was analyzed and found to be negligible. By extrapolation, a crossover from the surface-diffusion-controlled mechanism to the lattice-diffusion-controlled mechanism was found to occur for voids with sizes in the μm range.

  20. Void Shapes Controlled by Using Interruption-Free Epitaxial Lateral Overgrowth of GaN Films on Patterned SiO2 AlN/Sapphire Template

    Directory of Open Access Journals (Sweden)

    Yu-An Chen

    2014-01-01

    Full Text Available GaN epitaxial layers with embedded air voids grown on patterned SiO2 AlN/sapphire templates were proposed. Using interruption-free epitaxial lateral overgrowth technology, we realized uninterrupted growth and controlled the shape of embedded air voids. These layers showed improved crystal quality using X-ray diffraction and measurement of etching pits density. Compared with conventional undoped-GaN film, the full width at half-maximum of the GaN (0 0 2 and (1 0 2 peaks decreased from 485 arcsec to 376 arcsec and from 600 arcsec to 322 arcsec, respectively. Transmission electron microscopy results showed that the coalesced GaN growth led to bending threading dislocation. We also proposed a growth model based on results of scanning electron microscopy.

  1. Physics study of Canada deuterium uranium lattice with coolant void reactivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Central Research Institute (KHNP-CRI), Daejeon (Korea, Republic of)

    2017-02-15

    This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 x 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

  2. Influence of nickel and beryllium content on swelling behavior of copper irradiated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Garner, F.A.; Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Evans, J.H.

    1996-10-01

    In the 1970`s, the effects of nickel content on the evolution of dislocation microstructures and the formation and growth of voids in Cu-Ni alloys were studied using 1 MeV electrons in a high voltage electron microscope. The swelling rate was found to decrease rapidly with increasing nickel content. The decrease in the swelling rate was associated with a decreasing void growth rate with increasing nickel content at irradiation temperatures up to 450{degrees}C. At 500{degrees}C, both void size and swelling rate were found to peak at 1 and 2% Ni, respectively, and then to decrease rapidly with increasing nickel content. However, recent work has demonstrated that the swelling behavior of Cu-5%Ni irradiated with fission neutrons is very similar for that of pure copper. The present experiments were designed to investigate this apparent discrepancy.

  3. Studies of void formation in pure metals

    International Nuclear Information System (INIS)

    Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.; Levy, V.; Adda, Y.

    1975-01-01

    Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to a general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented [fr

  4. Studies of void formation in pure metals

    International Nuclear Information System (INIS)

    Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.

    1975-01-01

    Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to our general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented

  5. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    Science.gov (United States)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  6. Partial discharges within two spherical voids in an epoxy resin

    International Nuclear Information System (INIS)

    Illias, H A; Mokhlis, H; Tunio, M A; Chen, G; Bakar, A H A

    2013-01-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions. (paper)

  7. A sharp interface model for void growth in irradiated materials

    Science.gov (United States)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  8. From Voids to Yukawaballs And Back

    International Nuclear Information System (INIS)

    Land, V.; Goedheer, W. J.

    2008-01-01

    When dust particles are introduced in a radio-frequency discharge under micro-gravity conditions, usually a dust free void is formed due to the ion drag force pushing the particles away from the center. Experiments have shown that it is possible to close the void by reducing the power supplied to the discharge. This reduces the ion density and with that the ratio between the ion drag force and the opposing electric force. We have studied the behavior of a discharge with a large amount of dust particles (radius 3.4 micron) with our hydrodynamic model, and simulated the closure of the void for conditions similar to the experiment. We also approached the formation of a Yukawa ball from the other side, starting with a discharge at low power and injecting batches of dust, while increasing the power to prevent extinction of the discharge. Eventually the same situation could be reached.

  9. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir; Arciniega, Roman; El Sayed, Tamer

    2011-01-01

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006

  10. Archaeology of Void Spaces

    Science.gov (United States)

    Look, Cory

    The overall goal of this research is to evaluate the efficacy of pXRF for the identification of ancient activity areas at Pre-Columbian sites in Antigua that range across time periods, geographic regions, site types with a variety of features, and various states of preservation. These findings have important implications for identifying and reconstructing places full of human activity but void of material remains. A synthesis for an archaeology of void spaces requires the construction of new ways of testing anthrosols, and identifying elemental patterns that can be used to connect people with their places and objects. This research begins with an exploration of rich middens in order to study void spaces. Midden archaeology has been a central focus in Caribbean research, and consists of an accumulation of discarded remnants from past human activities that can be tested against anthrosols. The archaeological collections visited for this research project involved creating new databases to generate a comprehensive inventory of sites, materials excavated, and assemblages available for study. Of the more than 129 Pre-Columbian sites documented in Antigua, few sites have been thoroughly surveyed or excavated. Twelve Pre-Columbian sites, consisting of thirty-six excavated units were selected for study; all of which contained complete assemblages for comparison and soil samples for testing. These excavations consisted almost entirely of midden excavations, requiring new archaeological investigations to be carried out in spaces primarily void of material remains but within the village context. Over the course of three seasons excavations, shovel test pits, and soil augers were used to obtain a variety of anthrosols and archaeological assemblages in order to generate new datasets to study Pre-Columbian activity areas. The selection of two primary case study sites were used for comparison: Indian Creek and Doigs. Findings from this research indicate that accounting for the

  11. Effect of voids-controlled vacancy supersaturations on B diffusion

    International Nuclear Information System (INIS)

    Marcelot, O.; Claverie, A.; Cristiano, F.; Cayrel, F.; Alquier, D.; Lerch, W.; Paul, S.; Rubin, L.; Jaouen, H.; Armand, C.

    2007-01-01

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs

  12. Effect of voids-controlled vacancy supersaturations on B diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcelot, O. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France)]. E-mail: marcelot@cemes.fr; Claverie, A. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Cristiano, F. [LAAS/CNRS, 7 av. du Col. Roche, 31077 Toulouse (France); Cayrel, F. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Alquier, D. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Lerch, W. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Paul, S. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Rubin, L. [Axcelis Technologies, 108 Cherry Hill Drive, Beverly MA 01915 (United States); Jaouen, H. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Armand, C. [LNMO/INSA, Service analyseur ionique, 135 av. de Rangueil, 31077 Toulouse (France)

    2007-04-15

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs.

  13. Effect of dissolved air content on single bubble sonoluminescence

    OpenAIRE

    Arakeri, Vijay H

    1993-01-01

    It has been recently demonstrated that a single gas bubble in a liquid medium can be driven hard enough by an acoustic pressure field to make it emit light which is visible to the naked eye in a dark room. This phenomenon termed as single bubble sonoluminescence has shown some extraordinary physical properties. In the present investigation the author has shown that dissolved air content has a significant influence on this phenomenon.

  14. Dependence of calculated void reactivity on film-boiling representation

    International Nuclear Information System (INIS)

    Whitlock, J.; Garland, W.

    1992-01-01

    Partial voiding of a fuel channel can lead to complicated neutronic analysis, because of highly nonuniform spatial distributions. An investigation of the distribution dependence of void reactivity in a Canada deuterium uranium (CANDU) lattice, specifically in the regime of film boiling, was done. Although the core is not expected to be critical at the time of sheath dryout, this study augments current knowledge of void reactivity in this type of lattice

  15. On the formation of voids in internal tin Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Haibel, A

    2007-01-01

    In this article we describe three void growth mechanisms in Nb$_{3}$Sn strands of the internal tin design on the basis of combined synchrotron micro-tomography and x-ray diffraction measurements during in-situ heating cycles. Initially void growth is driven by a reduction of void surface area by void agglomeration. The main void volume increase is caused by density changes during the formation of Cu3Sn in the strand. Subsequent transformation of Cu-Sn intermetallics into the lower density a-bronze reduces the void volume again. Long lasting temperature ramps and isothermal holding steps can neither reduce the void volume nor improve the chemical strand homogeneity prior to the superconducting A15 phase nucleation and growth.

  16. Void shrinkage in stainless steel during high energy electron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Foreman, A.J.E.

    1976-03-01

    During irradiation of thin foils of an austenitic stainless steel in a high voltage electron microscope, steadily growing voids have been observed to suddenly shrink and disappear at the irradiation temperature of 650 0 Cthe phenomenon has been observed in specimens both with and withoutimplanted helium. Possible mechanisms for void shrinkage during irradiation are considered. It is suggested that the dislocation-pipe-diffusion of vacancies from or of self-interstitial atoms to the voids can explain the shrinkage behaviour of voids observed during our experiments. (author)

  17. On hydrogen-induced plastic flow localization during void growth and coalescence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.C.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Dodds, R.H. Jr. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2007-11-15

    Hydrogen-enhanced localized plasticity (HELP) is recognized as a viable mechanism of hydrogen embrittlement. A possible way by which the HELP mechanism can bring about macroscopic material failure is through hydrogen-induced accelerated void growth and coalescence. Assuming a periodic array of spherical voids loaded axisymmetrically, we investigate the hydrogen effect on the occurrence of plastic flow localization upon void growth and its dependence on macroscopic stress triaxiality. Under a macroscopic stress triaxiality equal to 1 and prior to void coalescence, the finite element calculation results obtained with material data relevant to A533B steel indicate that a hydrogen-induced localized shear band forms at an angle of about 45 {sup circle} from the axis of symmetry. At triaxiality equal to 3, void coalescence takes place by accelerated hydrogen-induced localization of plasticity mainly in the ligament between the voids. Lastly, we discuss the numerical results within the context of experimental observations on void growth and coalescence in the presence of hydrogen. (author)

  18. Measurement of the muon content in air showers at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Veberič Darko

    2016-01-01

    Full Text Available The muon content of extensive air showers produced by ultra-high energy cosmic rays is an observable sensitive to the composition of primary particles and to the properties of hadronic interactions governing the evolution of air-shower cascades. We present different methods for estimation of the number of muons at the ground and the muon production depth. These methods use measurements of the longitudinal, lateral, and temporal distribution of particles in air showers recorded by the detectors of the Pierre Auger Observatory. The results, obtained at about 140 TeV center-of-mass energy for proton primaries, are compared to the predictions of LHC-tuned hadronic-interaction models used in simulations with different primary masses. The models exhibit a deficitin the predicted muon content. The combination of these results with other independent mass composition analyses, such as those involving the depth of shower maximum observablemax, provide additional constraints on hadronic-interaction models for energies beyond the reach of the LHC.

  19. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  20. Void fraction and flow regime determination by optical probe for boiling two-phase flow in a tube subchannel

    International Nuclear Information System (INIS)

    Cheng Huiping; Wu Hongtao; Ba Changxi; Yan Xiaoming; Huang Suyi

    1995-12-01

    In view of the need to determine void fraction and flow regime of vapor-liquid two-phase flow in the steam generator test model, domestic made optical probe was applied on a small-scale freon two-phase flow test rig. Optical probe signals were collected at a sampling rate up to 500 Hz and converted into digital form. Both the time signal, and the amplitude probability density function and FFT spectrum function calculated thereof were analysed in the time and frequency domains respectively. The threshold characterizing vapor or liquid contact with the probe tip was determined from the air-water two-phase flow pressure drop test results. Then, the boiling freon two-phase flow void fraction was determined by single threshold method, and compared with numerical heat transfer computation. Typical patterns which were revealed by the above-mentioned time signal and the functions were found corresponding to distinct flow regimes, as corroborated by visual observation. The experiment shows that the optical probe was a promising technique for two-phase flow void fraction measurement and flow regime identification (3 refs., 15 figs., 1 tab.)

  1. Nucleation and growth of voids by radiation. Pt. 2

    International Nuclear Information System (INIS)

    Mayer, R.M.; Brown, L.M.

    1980-01-01

    The original model of Brown, Kelly and Mayer [1] for the nucleation of interstitial loops has been extended to take into account the following: (i) mobility of the vacancies, (ii) generation and migration of gas atoms during irradiation, (iii) nucleation and growth of voids, and (iv) vacancy emission from voids and clusters at high temperatures. Using chemicalrate equations, additional expressions are formulated for the nucleation and growth of vacancy loops and voids. (orig.)

  2. Radiation-induced void swelling in metals and alloys

    International Nuclear Information System (INIS)

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  3. Numerical simulation of void growth under dynamic loading

    International Nuclear Information System (INIS)

    Iqbal, A.

    1996-01-01

    Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)

  4. Method of simulating spherical voids for use as a radiographic standard

    International Nuclear Information System (INIS)

    Foster, B.E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard

  5. Size-effects at a crack-tip interacting with a number of voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2008-01-01

    A strain gradient plasticity theory is used to analyse the growth of discretely represented voids in front of a blunting crack tip, in order to study the influence of size effects on two competing mechanisms of crack growth. For a very small void volume fraction the crack tip tends to interact...... of the characteristic material length relative to the initial void radius. For a case showing the multiple void mechanism, it is found that the effect of the material length can change the behaviour towards the void by void mechanism. A material model with three characteristic length scales is compared with a one...

  6. New insight on bubble-void transition effects in irradiated materials

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1993-01-01

    An account of elastic interaction between cavities and point defects is shown to result in new critical quantities for bubblevoid transition effects in irradiated cubic crystals. In contrast to previous theories, the present one gives not only critical quantities which determine the onset of bias-driven void swelling but the maximum stationary number density and the corresponding mean radius of voids as well as the duration of the bimodal regime. The void density and swelling rate are shown to be independent from the gas level. In the region of low temperatures/high dose rates, the void density appears to be independent from irradiation parameters as well. The relationships among material constants are found at which the stabilization of gas bubbles occurs via the dislocation loop punching mechanism resulting in a drastic change in the cavity behaviour under irradiation such as the saturation (or even suppression) of void swelling and void lattice formation. The theoretical results are compared with experimental data and further experimental tests are proposed. (author). 38 refs., 1 tab., 11 figs

  7. Dislocation and void segregation in copper during neutron irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy

    1986-01-01

    ); the irradiation experiments were carried out at 250 degree C. The irradiated specimens were examined by transmission electron microscopy. At both doses, the irradiation-induced structure was found to be highly segregated; the dislocation loops and segments were present in the form of irregular walls and the voids...... density, the void swelling rate was very high (approximately 2. 5% per dpa). The implications of the segregated distribution of sinks for void formation and growth are briefly discussed....

  8. Climate and air quality trade-offs in altering ship fuel sulfur content

    Science.gov (United States)

    Partanen, A.-I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K. E. J.; Laakso, L.; Korhonen, H.

    2013-08-01

    Aerosol particles from shipping emissions both cool the climate and cause adverse health effects. The cooling effect is, however, declining because of shipping emission controls aiming to improve air quality. We used an aerosol-climate model ECHAM-HAMMOZ to test whether by altering ship fuel sulfur content, the present-day aerosol-induced cooling effect from shipping could be preserved while at the same time reducing premature mortality rates related to shipping emissions. We compared the climate and health effects of a present-day shipping emission scenario with (1) a simulation with strict emission controls in the coastal waters (ship fuel sulfur content of 0.1%) and twofold ship fuel sulfur content compared to current global average of 2.7% elsewhere; and (2) a scenario with global strict shipping emission controls (ship fuel sulfur content of 0.1% in coastal waters and 0.5% elsewhere) roughly corresponding to international agreements to be enforced by the year 2020. Scenario 1 had a slightly stronger aerosol-induced radiative flux perturbation (RFP) from shipping than the present-day scenario (-0.43 W m-2 vs. -0.39 W m-2) while reducing premature mortality from shipping by 69% (globally 34 900 deaths avoided per year). Scenario 2 decreased the RFP to -0.06 W m-2 and annual deaths by 96% (globally 48 200 deaths avoided per year) compared to present-day. A small difference in radiative effect (global mean of 0.04 W m-2) in the coastal regions between Scenario 1 and the present-day scenario imply that shipping emission regulation in the existing emission control areas should not be removed in hope of climate cooling. Our results show that the cooling effect of present-day emissions could be retained with simultaneous notable improvements in air quality, even though the shipping emissions from the open ocean clearly have a significant effect on continental air quality. However, increasing ship fuel sulfur content in the open ocean would violate existing

  9. Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

    Energy Technology Data Exchange (ETDEWEB)

    FILTER, WILLIAM F.

    1999-09-17

    Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.

  10. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  11. Void growth suppression by dislocation impurity atmospheres

    International Nuclear Information System (INIS)

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  12. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  13. Nucleation of voids in materials supersaturated with mobile interstitials, vacancies and divacancies

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Si-Ahmed, A.

    1982-01-01

    In previous void nucleation theories, the void size has been allowed to change only by one atomic volume through vacancy or interstitial absorption or through vacancy emission. To include the absorption of divacancies, the classical nucleation theory is here extended to include double-step transitions between clusters. The new nucleation theory is applied to study the effect of divacancies on void formation. It is found that the steady-state void nucleation rate is enhanced by several orders of magnitude as compared to results with previous void nucleation theories. However, to obtain void nucleation rates comparable to measured ones, the effect of impurities, segregation and insoluble gases must still be invoked. (author)

  14. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    Science.gov (United States)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  15. Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling

    International Nuclear Information System (INIS)

    Neustroev, V.S.; Garner, F.

    2007-01-01

    Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)

  16. Void coalescence mechanism for combined tension and large amplitude cyclic shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Andersen, Rasmus Grau; Tvergaard, Viggo

    2017-01-01

    Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flat...

  17. The effect of voids on the hardening of body-centered cubic Fe

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Ryosuke, E-mail: ryosuke.nakai@jupiter.qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Yabuuchi, Kiyohiro, E-mail: k-yabuuchi@iae.kyoto-u.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 (Japan); Nogami, Shuhei, E-mail: shuhei.nogami@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Hasegawa, Akira, E-mail: akira.hasegawa@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan)

    2016-04-01

    The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates. - Highlights: • The strength factor of voids in BCC Fe was experimentally investigated. • The strength factor of voids estimated by the line tension theory was 0.6. • The strength factor of voids estimated by the bowing angle of dislocations was 0.8. • The different strength factors are due to the positional relationship.

  18. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe.

    Science.gov (United States)

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-05-08

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  19. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  20. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  1. Modelling the void deformation and closure by hot forging of ingot castings

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Kotas, Petr

    2012-01-01

    by mechanical deformation. The aim of this paper is to analyze numerically if and to what degree the voids areclosed by the forging. Using the commercial simulation software ABAQUS, both simplified model ingots and physically manufactured ingots containing prescribed void distributions are deformed and analyzed....... The analysis concernsboth the void density change and the location of the voids in the part after deformation. The latter can be important for the subsequent reliability of the parts, for instance regarding fatigue properties. The analysis incorporates the Gurson yield criterion for metals containing voids...... and focuses on how the voids deform depending on their size and distribution in the ingot as well ashow the forging forces are applied....

  2. Convex-based void filling method for CAD-based Monte Carlo geometry modeling

    International Nuclear Information System (INIS)

    Yu, Shengpeng; Cheng, Mengyun; Song, Jing; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • We present a new void filling method named CVF for CAD based MC geometry modeling. • We describe convex based void description based and quality-based space subdivision. • The results showed improvements provided by CVF for both modeling and MC calculation efficiency. - Abstract: CAD based automatic geometry modeling tools have been widely applied to generate Monte Carlo (MC) calculation geometry for complex systems according to CAD models. Automatic void filling is one of the main functions in the CAD based MC geometry modeling tools, because the void space between parts in CAD models is traditionally not modeled while MC codes such as MCNP need all the problem space to be described. A dedicated void filling method, named Convex-based Void Filling (CVF), is proposed in this study for efficient void filling and concise void descriptions. The method subdivides all the problem space into disjointed regions using Quality based Subdivision (QS) and describes the void space in each region with complementary descriptions of the convex volumes intersecting with that region. It has been implemented in SuperMC/MCAM, the Multiple-Physics Coupling Analysis Modeling Program, and tested on International Thermonuclear Experimental Reactor (ITER) Alite model. The results showed that the new method reduced both automatic modeling time and MC calculation time

  3. Void fraction for gas bubbling in shallow viscous pools-application to molten core concrete interaction

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J.F.

    2005-01-01

    During Molten Core-Concrete Interaction, the concrete will release gases (mainly steam and carbon oxides) that will flow through the corium pool. To obtain reliable heat transfer prediction, it is necessary to model the void fraction in the pool as a function of the gas mass flow (or superficial velocity at the interface). A series of simulant-materials have been performed with water-air and sugar syrup-air in order to study how the drift model could be applied to a shallow pool (where the bubbly flow is not fully developed) and to liquids which are more viscous (with higher Morton numbers) than water. The bubble average diameter was estimated around 3 mm with spherical to ellipsoidal shapes. For all the configurations, even with the shallowest pools (6 cm height for 38 cm diameter) the experimental void fractions follow the drift-model relationship. In water, the distribution coefficient C 0 tends to the classical value of 1.2 while the drift velocity V jg tends to the 23 cm/s predicted by Ishii (1975) model for churn flows. For the more viscous syrup, the drift velocity tends to 13 cm/s which is significantly lower than the value obtained from the Ishii correlation for bubbly or churn flows (established for water). These results are then applied to MCCI experimental configurations. (authors)

  4. Controlling Interfacial Separation in Porous Structures by Void Patterning

    Science.gov (United States)

    Ghareeb, Ahmed; Elbanna, Ahmed

    Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.

  5. Air-water upward flow in prismatic channel of rectangular base

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1984-01-01

    Experiments had carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. Flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt

  6. Void migration in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2002-01-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium

  7. Void migration in fusion materials

    Science.gov (United States)

    Cottrell, G. A.

    2002-04-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.

  8. A void fraction model for annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N.; Gupta, C.P.; Varma, H.K.

    1985-01-01

    An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.

  9. Measurement of local void fraction at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis

  10. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  11. Void nucleation in spheroidized steels during tensile deformation

    International Nuclear Information System (INIS)

    Fisher, J.R. Jr.

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy

  12. Tank SY-101 void fraction instrument functional design criteria

    International Nuclear Information System (INIS)

    McWethy, L.M.

    1994-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations

  13. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...... with circular cross-section, i.e. the voids in shear flatten out to micro-cracks, which rotate and elongate until interaction with neighboring micro-cracks gives coalescence. Even though the mechanism of ductile failure is the same, the load carrying capacity predicted, for the same initial void volume fraction...

  14. Three dimensional turbulence structure measurements in air/water two phase flow

    International Nuclear Information System (INIS)

    Wang, S.K.L.

    1986-01-01

    The phenomena of turbulent air/water two phase upward and downward flows in a circular test section were investigated. Important flow quantities such as void fraction, liquid velocity, and Reynolds stresses were measured by using both single sensor and three sensor hot film probes. A digital data processing technique based on combined derivative and level thresholding was developed to determine the local void fraction from hot-film anemometer signals. The measured local void fraction was integrated and the result was compared with the chordal averaged void fraction measured by a gamma ray densitometer. It was found that the local measurement underestimated local void fraction due to surface tension effects and bubble deflection by the probe. A correlation based on local parameters characterizing probe/bubble interaction was developed, and it corrected the measured void fraction successfully. The measured void fraction profiles in upward flow and downward flow showed two distinct patterns. In upward flow, bubbles tend to migrate toward the wall and the void fraction profile shows a sharp peak near the wall. In downward flow, as the liquid velocity increases, the wall peaking phenomenon fades out and bubbles tend to migrate toward the center of the pipe

  15. Measurements of void fraction in a heated tube in the rewetting conditions

    International Nuclear Information System (INIS)

    Freitas, R.L.

    1983-01-01

    The methods of void fraction measurements by transmission and diffusion of cold, thermal and epithermal neutrons were studied with cylindrical alluminium pieces simulating the steam. A great set of void fraction found in a wet zone was examined and a particulsar attention was given to the sensitivity effects of the method, mainly for high void fraction. Several aspects of the measurement techniques were analyzed, such as the effect of the phase radial distribution, neutron energy, water tempeture, effect of the void axial gradient. The technique of thermal neutron diffusion measurement was used to measure the axial profile of void fraction in a steady two-phase flow, where the pressure, mass velocity and heat flux are representative of the wet conditions. Experimental results are presented and compared with different void fraction models. (E.G.) [pt

  16. Discrete modelling of ductile crack growth by void growth to coalescence

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    of the ligaments between the crack-tip and a void or between voids involves the development of very large strains, which are included in the model by using remeshing at several stages of the plastic deformation. The material is here described by standard isotropic hardening Mises theory. For a very small void...

  17. Effective void fraction for a BWR assembly with boiling in the bypass region

    International Nuclear Information System (INIS)

    Galperin, A.; Segev, M.; Knoglinger, E.

    1991-09-01

    Average BWR assembly cross-sections for nominal conditions, namely for zero bypass void, can be utilised in the analysis of transient conditions with boiling in the bypass. A model is developed to yield an effective channel void for such conditions. The use of this void in conjunction with the 'nominal conditions' cross section library approximately preserves the assembly K-infinity corresponding to the true channel and bypass voids. The effective void is an augmentation of the actual channel void. The augment is proportional to the bypass-to-channel volume ratio, to the bypass void, and to a weight W which is introduced to quantify the fact that a water molecule in the bypass has a different assembly criticality worth than one in the channel. The formula developed is superior to the practice of choosing W=1, namely a simple, non-weighted, transfer of water from channel to bypass. The use of this approximate effective channel void reproduces actual K-infinity values of assemblies to better than 5 mk, whereas the use of a simple model sometimes misspredicts the assembly K-infinity by 40 mK. The effective void model cannot handle cases in which both channel and bypass void value are high, simply because then the effective void α ch eff becomes meaningless. A method to treat the α eff >1 domain is developed by which corrections to cross sections are provided. Such corrections are synthesised as functions of the assembly parameters. (author) figs., tabs., refs

  18. Force field inside the void in complex plasmas under microgravity conditions

    International Nuclear Information System (INIS)

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-01-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force

  19. Direct evidence of void passivation in Cu(InGa)(SSe)2 absorber layers

    International Nuclear Information System (INIS)

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop; Lee, Jaehan; Heo, Sung; Park, Jong-Bong; Kang, Yoonmook

    2015-01-01

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer

  20. Theory of void swelling, irradiation creep and growth

    International Nuclear Information System (INIS)

    Wood, M.H.; Bullough, R.; Hayns, M.R.

    Recent progress in our understanding of the fundamental mechanisms involved in swelling, creep and growth of materials subjected to irradiation is reviewed. The topics discussed are: the sink types and their strengths in the lossy continuum; swelling and void distribution analysis, including recent work on void nucleation; and, irradiation creep and growth of zirconium and zircaloy are taken as an example

  1. Video Voiding Device for Diagnosing Lower Urinary Tract Dysfunction in Men.

    Science.gov (United States)

    Shokoueinejad, Mehdi; Alkashgari, Rayan; Mosli, Hisham A; Alothmany, Nazeeh; Levin, Jacob M; Webster, John G

    2017-01-01

    We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.

  2. Neutron gauging to detect voids in polyurethane

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Alger, D.M.; Brugger, R.M.

    1978-01-01

    Thermal-neutron radiography and fast-neutron gauging measurements were made to evaluate the feasibility of detecting voids in a polyurethane block placed between steel plates. This sandwich of polyurethane and steel simulates the walls of a canister being designed to hold explosive devices. The polyurethane would act as a shock absorber in the canister. A large fabrication cost saving would result by casting the polyurethane, but a nondestructive testing (NDT) method is needed to determine the uniformity of the polyurethane fill. The radiography measurements used a beam of thermal neutrons, while the gauging used filtered beams of 24 keV and fission spectrum neutrons. For the 83-mm-thick polyurethane and 130-mm-thick steel matrix, the thermal-neutron radiography was able to detect only those voids equal to about one-half the polyurethane thickness. The gauging detected voids in the path of the neutron beam of a few millimetres thickness in seconds to minutes. The gauging is feasible as an NDT method for the canister application

  3. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NARCIS (Netherlands)

    van de Weygaert, Rien; Shandarin, S.; Saar, E.; Einasto, J.

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe

  4. Blind void filling in LR-EPONs: How efficient it can be?

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work proposes a novel blind void (idle periods) filling in Long-Reach Ethernet Passive Optical Networks (LR-EPONs) namely Size Controlled Batch Void Filling (SCBVF). We emphasize on reducing grant delays and hence reducing the average packet delay. SCBVF delay reduction is achieved by early flushing data during the idle time periods (voids) between allocated grants. The proposed approach can be integrated with almost all of the previously reported dynamic bandwidth allocation schemes. SCBVF is less sensitive to differential distance between ONUs and can work well in case of small differential distances compared to previously reported void filling schemes. We support our work by extensive simulation study considering bursty traffic with long range dependency. Numerical results show a delay reduction up to 35% compared to non-void filling scheme outperforming its main competitors that can achieve up to 7% delay reduction.

  5. Blind void filling in LR-EPONs: How efficient it can be?

    KAUST Repository

    Elrasad, Amr

    2015-07-01

    This work proposes a novel blind void (idle periods) filling in Long-Reach Ethernet Passive Optical Networks (LR-EPONs) namely Size Controlled Batch Void Filling (SCBVF). We emphasize on reducing grant delays and hence reducing the average packet delay. SCBVF delay reduction is achieved by early flushing data during the idle time periods (voids) between allocated grants. The proposed approach can be integrated with almost all of the previously reported dynamic bandwidth allocation schemes. SCBVF is less sensitive to differential distance between ONUs and can work well in case of small differential distances compared to previously reported void filling schemes. We support our work by extensive simulation study considering bursty traffic with long range dependency. Numerical results show a delay reduction up to 35% compared to non-void filling scheme outperforming its main competitors that can achieve up to 7% delay reduction.

  6. Effect of main stream void distribution on cavitating hydrofoil

    International Nuclear Information System (INIS)

    Ito, J.

    1993-01-01

    For the safety analysis of a loss of coolant accident in a pressurized water reactor, it is important to establish an analytical method which predicts the pump performance under gas-liquid two-phase flow condition. J.H. Kim briefly reviewed several major two-phase flow pump models, and discussed the parameters that could significantly affect two-phase pump behavior. The parameter pointed out to be of the most importance is void distribution at the pump inlet. This says that the pipe bend near the pump inlet makes the void distribution at the pump inlet nonuniform, and this matter can have a significant effect on the impeller blade performance. This paper proposes an analytical method of solution for a partially cavitating hydrofoil placed in the main stream of incompressible homogeneous bubbly two-phase flow conditions whose void fraction is exponentially distributed normal to chordline. The paper clarifies the effect of main stream void distribution parameter on the partially cavitating hydrofoil characteristics

  7. On localization and void coalescence as a precursor to ductile fracture.

    Science.gov (United States)

    Tekoğlu, C; Hutchinson, J W; Pardoen, T

    2015-03-28

    Two modes of plastic flow localization commonly occur in the ductile fracture of structural metals undergoing damage and failure by the mechanism involving void nucleation, growth and coalescence. The first mode consists of a macroscopic localization, usually linked to the softening effect of void nucleation and growth, in either a normal band or a shear band where the thickness of the band is comparable to void spacing. The second mode is coalescence with plastic strain localizing to the ligaments between voids by an internal necking process. The ductility of a material is tied to the strain at macroscopic localization, as this marks the limit of uniform straining at the macroscopic scale. The question addressed is whether macroscopic localization occurs prior to void coalescence or whether the two occur simultaneously. The relation between these two modes of localization is studied quantitatively in this paper using a three-dimensional elastic-plastic computational model representing a doubly periodic array of voids within a band confined between two semi-infinite outer blocks of the same material but without voids. At sufficiently high stress triaxiality, a clear separation exists between the two modes of localization. At lower stress triaxialities, the model predicts that the onset of macroscopic localization and coalescence occur simultaneously. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Variations of free gas content in water during pressure fluctuations

    International Nuclear Information System (INIS)

    Keller, A.; Zielke, W.

    1977-01-01

    In this paper an experimental programme is described in order to determine the influence of the cavitation nuclei distribution on cavitation inception. This programme has been used to measure air bubbles dimensions and number and particularly to determine the influence of quick pressure variations on the size on the number of bubbles in a pipe. An optical device counting scattered light is used as a measuring technique. Gas bubbles go through an optical control volume where they receive a high intensity light beam and scatter the light, then led to a photomultiplier; the signals are sorted and counted according to their size. If the number of nuclei, the dimensions of the control volume and the velocity of the water are known, it is possible to determine bubbles concentrations and the bulk modulus of the water. This measuring technique has been applied to a flow in a 140 mm diameter pipe with quick pressure variations from 2 bar to 0-10 bar. During the variations, the void fraction depends on the Reynolds number of the flow and on the gas content of the water. The bulk modulus has been computed with different conditions. Most results concern pressures slightly over the vapor pressure. Air content has a strong influence on cavitation and on water compressibility after a vapor cavity collapse

  9. Fluid intake and voiding; habits and health knowledge in a young, healthy population.

    Science.gov (United States)

    Das, Rebekah N; Grimmer-Somers, Karen A

    2012-01-01

    Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence.

  10. Influence of the void fraction in the linear reactivity model

    International Nuclear Information System (INIS)

    Castillo, J.A.; Ramirez, J.R.; Alonso, G.

    2003-01-01

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  11. The use of graphite for the reduction of void reactivity in CANDU reactors

    International Nuclear Information System (INIS)

    Min, B.J.; Kim, B.G.; Sim, K-S.

    1995-01-01

    Coolant void reactivity can be reduced by using burnable poison in CANDU reactors. The use of graphite in the fuel bundle is introduced to reduce coolant void reactivity by adding an appropriate amount of burnable poison in the central rod. This study shows that sufficiently low void reactivity which in controllable by Reactor Regulating System (RRS) can be achieved by using graphite used fuel with slightly enriched uranium. Zero void reactivity can be also obtained by using graphite used fuel with a large central rod. A new fuel bundle with graphite rods can substantially reduce the void reactivity with less burnup penalty compared to previously proposed low void reactivity fuel with depleted uranium. (author)

  12. A DRAGON-MCNP comparison of void reactivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.

  13. A DRAGON-MCNP comparison of void reactivity calculations

    International Nuclear Information System (INIS)

    Marleau, G.

    1995-01-01

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs

  14. Breaking the vicious circle: Onabotulinum toxin A in children with therapy-refractory dysfunctional voiding

    NARCIS (Netherlands)

    L.A. 't Hoen (Lisette); J. van den Hoek (Joop); K.P. Wolffenbuttel (Katja); F. van der Toorn; J.R. Scheepe (Jeroen)

    2015-01-01

    textabstractIntroduction An increased activity of the external urethral sphincter or pelvic floor muscles during voluntary voiding leads to dysfunctional voiding. Frequently reported symptoms are urinary incontinence, urinary tract infections and high post-void residuals. Dysfunctional voiding is a

  15. Void fraction instrument software, Version 1,2, Acceptance test report

    International Nuclear Information System (INIS)

    Gimera, M.

    1995-01-01

    This provides the report for the void fraction instrument acceptance test software Version 1.2. The void fraction will collect data that will be used to calculate the quantity of gas trapped in waste tanks

  16. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    Science.gov (United States)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  17. Experimental study of average void fraction in low-flow subcooled boiling

    International Nuclear Information System (INIS)

    Sun Qi; Wang Xiaojun; Xi Zhao; Zhao Hua; Yang Ruichang

    2005-01-01

    Low-flow subcooled void fraction in medium pressure was investigated using high-temperature high-pressure single-sensor optical probe in this paper. And then average void fraction was obtained through the integral calculation of local void fraction in the cross-section. The experimental data were compared with the void fraction model proposed in advance. The results show that the predictions of this model agree with the data quite well. The comparisons of Saha and Levy models with low-flow subcooled data show that Saha model overestimates the experimental data distinctively, and Levy model also gets relatively higher predictions although it is better than Saha model. (author)

  18. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    International Nuclear Information System (INIS)

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  19. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  20. Partial discharges in ellipsoidal and spheroidal voids

    DEFF Research Database (Denmark)

    Crichton, George C; Karlsson, P. W.; Pedersen, Aage

    1989-01-01

    Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying it to a s......Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying...

  1. Modeling quiescent phase transport of air bubbles induced by breaking waves

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear

  2. Parallel Void Thread in Long-Reach Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work investigates void filling (idle periods) in long-reach Ethernet passive optical networks. We focus on reducing grant delays and hence reducing the average packet delay. We introduce a novel approach called parallel void thread (PVT), which

  3. Void formation by annealing of neutron-irradiated plastically deformed molybdenum

    International Nuclear Information System (INIS)

    Petersen, K.; Nielsen, B.; Thrane, N.

    1976-01-01

    The positron annihilation technique has been used in order to study the influence of plastic deformation on the formation and growth of voids in neutron irradiated molybdenum single crystals treated by isochronal annealing. Samples were prepared in three ways: deformed 12-19% before irradiation, deformed 12-19% after irradiation, and - for reference purposes -non-deformed. In addition a polycrystalline sample was prepared in order to study the influence of the grain boundaries. All samples were irradiated at 60 0 C with a flux of 2.5 x 10 18 fast neutrons/cm 2 . After irradiation the samples were subjected to isochronal annealing. It was found that deformation before irradiation probably enhanced the formation of voids slightly. Deformation after irradiation strongly reduced the void formation. The presence of grain boundaries in the polycrystalline sample had a reducing influence on the growth of voids. (author)

  4. Investigation of CTF void fraction prediction by ENTEK BM experiment data

    International Nuclear Information System (INIS)

    Hoang Minh Giang; Hoang Tan Hung; Nguyen Phu Khanh

    2015-01-01

    Recently, CTF, a version of COBRA-TF code is reviewed to validate its simulation models by several experiments such as Castellana 4x4 rod bundle, EPRI 5x5 bundle tests, PSBT bundle tests and TPTF experiment. These above experiments provide enthalpy, mass flux (Castellana), temperature (EPRI) and void fraction (PSBT, TPTF) at exit channel only. In order to simulate PWR rod bundle flow behavior, it is necessary to review CTF with more experiment in high pressure condition and it is found that the ENTEK BM facility is suitable for this purpose. The ENTEK BM facility is used to simulate Russia RBMK and VVER rod bundle two phase flow with pressure at 3 and 7 MPa and it gives measured void fraction distribution along the channel. This study focus on two points: (a) accuracy assessment between CTF void fraction distribution predictions versus experiment void fraction distributions and (b) investigation of void fraction prediction uncertainty from propagation of input deviations caused by measured accuracy. (author)

  5. Influence of water content on the inactivation of P. digitatum spores using an air-water plasma jet

    Science.gov (United States)

    Youyi, HU; Weidong, ZHU; Kun, LIU; Leng, HAN; Zhenfeng, ZHENG; Huimin, HU

    2018-04-01

    In order to investigate whether an air-water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas (air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH (A2Σ+-X2Πi) and O (3p5P-3s5S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53-9.58 mg l-1, depending on the gas/water mixture ratio. The production of OH (A2Σ+-X2Πi) rises with the increase of water content, whereas the O (3p5P-3s5S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air-water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH (A2Σ+-X2Πi) is a more effective species in inactivation than O (3p5P-3s5S) and the water content benefit the spore germination inhibition through rising the OH (A2Σ+-X2Πi) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l-1.

  6. The Effects of Void on Natural Ventilation Performance in Multi-Storey Housing

    Directory of Open Access Journals (Sweden)

    Fakhriah Muhsin

    2016-08-01

    Full Text Available Enhancing natural ventilation performance in multi-storey housing is very important for the living environment in terms of health and thermal comfort purposes. One of the most important design strategies to enhance natural ventilation in multi-storey housing is through the provision of voids. A void is a passive architectural feature, which is located in the middle of deep plan buildings. It is very crucial to consider the configurations of voids in the buildings for enhancing natural ventilation, especially for multi-storey housing. In this study, Malaysian Medium Cost Multi-Storey Housing (MMCMSH, which is an example of multi-storey housing located in a suburban area, has been selected in this study. This study aims to investigate the potential of void for enhancing natural ventilation performance in multi-storey housing by the comparison of two different void configurations. Field measurement of MMCMSH has been conducted to validate Computational Fluid Dynamic (CFD model and Atmospheric Boundary Layer (ABL is an important parameter for setting up the CFD Model’s domain. Ventilation rate (Q, which is necessary for comfort and health reasons, is an important parameter for the comparison of the different void configurations. This study revealed that the provision of void can enhance natural ventilation performance in multi-storey housing with an increase in the value of Q, from 3.44% to 40.07%, by enlarging the void’s width by 50% compared to the existing void.

  7. Void distributions in liquid BiBr{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, K [Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Endo, H [Faculty of Science, Kyoto University, Kyoto 606-8224 (Japan); Hoshino, H [Faculty of Education, Hirosaki University, Hirosaki 036-8560 (Japan); Kawakita, Y [Faculty of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kohara, S; Itou, M [Japan Synchrotron Radiation Research Institute(JASRI), Sayo-cho 679-5198 (Japan)

    2008-02-15

    The X-ray diffraction experiments and the reverse Monte Carlo analysis for liquid BiBr{sub 3} have been performed to clarify the distribution of Bi and Br ions around voids, comparing with previous results derived in the neutron diffraction experiments. The hexagonal cages involving voids are formed by the corner-sharing of the trigonal pyramidal BiBr{sub 3} blocks. The neighboring cages are linked together in highly correlated fashion. The observed pre-peak in S(Q) at 1.3A{sup -1} is related to the pre-peak of the void-based S'{sub CC} (Q) due to an intermediate chemical order in the structure. The pre-peak intensity increases with increasing temperature. This characteristic change for the pre-peak intensity is discussed by considering the modifications of the topology and stacking in the hexagonal cages.

  8. Three-dimensional core analysis on a super fast reactor with negative local void reactivity

    International Nuclear Information System (INIS)

    Cao Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi

    2009-01-01

    Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than -30 pcm

  9. Summer Temperature Trend Over the Past Two Millennia Using Air Content in Himalayan Ice

    National Research Council Canada - National Science Library

    Hou, S; Chappellaz, J; Jouzel, J; Chu, P. C; Masson-Delmotte, V; Qin, D; Raynaud, D; Mayewski, P. A; Lipenkov, V. Y; Kang, S

    2007-01-01

    Two Himalayan ice cores display a factor-two decreasing trend of air content over the past two millennia, in contrast to the relatively stable values in Greenland and Antarctica ice cores over the same period...

  10. Standard Test Methods for Constituent Content of Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods determine the constituent content of composite materials by one of two approaches. Method I physically removes the matrix by digestion or ignition by one of seven procedures, leaving the reinforcement essentially unaffected and thus allowing calculation of reinforcement or matrix content (by weight or volume) as well as percent void volume. Method II, applicable only to laminate materials of known fiber areal weight, calculates reinforcement or matrix content (by weight or volume), and the cured ply thickness, based on the measured thickness of the laminate. Method II is not applicable to the measurement of void volume. 1.1.1 These test methods are primarily intended for two-part composite material systems. However, special provisions can be made to extend these test methods to filled material systems with more than two constituents, though not all test results can be determined in every case. 1.1.2 The procedures contained within have been designed to be particularly effective for ce...

  11. The dipole moment of a wall-charged void in a bulk dielectric

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1993-01-01

    The dipole moment of a wall-charged void is examined with reference to the spatial extent of the surface charge density σ and the distribution of this charge. The salient factors influencing the void dipole moment are also examined. From a study of spherical voids, it is shown that, although the σ......-distribution influences the dipole moment, the spatial extent of σ has a greater influence. This behavior is not unexpected. For a void of fixed dimensions, the smaller the charged surface area, the greater is the charges, and thus the greater the dipole moment...

  12. Uroflowmetry in neurologically normal children with voiding disorders

    DEFF Research Database (Denmark)

    Jensen, K M; Nielsen, K.K.; Kristensen, E S

    1985-01-01

    of neurological deficits underwent a complete diagnostic program including intravenous urography, voiding cystography and cystoscopy as well as spontaneous uroflowmetry, cystometry-emg and pressure-flow-emg study. The incidence of dyssynergia was 22%. However, neither the flow curve pattern nor single flow...... variables were able to identify children with dyssynergia. Consequently uroflowmetry seems inefficient in the screening for dyssynergia in neurological normal children with voiding disorders in the absence of anatomical bladder outlet obstruction....

  13. Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup, E-mail: jungyupyang@gmail.com, E-mail: ddang@korea.ac.kr; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Seobuk-gu, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Lee, Jaehan [Core Technology Laboratory, Battery Research Center, Samsung SDI, 130 Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Heo, Sung; Park, Jong-Bong [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Kang, Yoonmook, E-mail: jungyupyang@gmail.com, E-mail: ddang@korea.ac.kr [KUKIST Green School, Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2015-02-23

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.

  14. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  15. Voids in the Cosmic Web as a probe of dark energy

    Directory of Open Access Journals (Sweden)

    B. Novosyadlyj

    2017-03-01

    Full Text Available The formation of large voids in the Cosmic Web from the initial adiabatic cosmological perturbations of space-time metric, density and velocity of matter is investigated in cosmological model with the dynamical dark energy accelerating expansion of the Universe. It is shown that the negative density perturbations with the initial radius of about 50 Mpc in comoving to the cosmological background coordinates and the amplitude corresponding to the r.m.s. temperature fluctuations of the cosmic microwave background lead to the formation of voids with the density contrast up to -0.9, maximal peculiar velocity about 400 km/s and the radius close to the initial one. An important feature of voids formation from the analyzed initial amplitudes and profiles is establishing the surrounding overdensity shell. We have shown that the ratio of the peculiar velocity in units of the Hubble flow to the density contrast in the central part of a void does not depend or weakly depends on the distance from the center of the void. It is also shown that this ratio is sensitive to the values of dark energy parameters and can be used to find them based on the observational data on mass density and peculiar velocities of galaxies in the voids.

  16. Fast and interrupted expansion in cyclic void growth in dusty plasma

    International Nuclear Information System (INIS)

    Van de Wetering, F M J H; Brooimans, R J C; Nijdam, S; Beckers, J; Kroesen, G M W

    2015-01-01

    Low-pressure acetylene plasmas are able to spontaneously form dust particles. This will result in a dense cloud of solid particles that is levitated in the plasma. The formed particles can grow up to micrometers. We observed a spontaneous interruption in the expansion of the so-called dust void. A dust void is a macroscopic region in the plasma that is free of nanoparticles. The phenomenon is periodical and reproducible. We refer to the expansion interruption as ‘hiccup’. The expanding void is an environment in which a new cycle of dust particle formation can start. At a certain moment in time, this cycle reaches the (sudden) coagulation phase and as a result the void will temporarily shrink. To substantiate this reasoning, the electron density is determined non-intrusively using microwave cavity resonance spectroscopy. Moreover, video imaging of laser light scattering of the dust particles provides their spatial distribution. The emission intensity of a single argon transition is measured similarly. Our results support the aforementioned hypothesis for what happens during the void hiccup. The void dynamics preceding the hiccup are modeled using a simple analytical model for the two dominant forces (ion drag and electric) working on a nanoparticle in a plasma. The model results qualitatively reproduce the measurements. (paper)

  17. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    Science.gov (United States)

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  18. Void worths in subcritical cores cooled by lead-bismuth

    International Nuclear Information System (INIS)

    Wallenius, Janne; Tucek, Kamil; Gudowski, Waclaw

    2001-01-01

    The introduction lead-bismuth coolant in accelerator driven transmutation systems (ADS) was: good neutron economy (higher source efficiency); natural circulation possible (decay heat removal); synergy with spallation target (simplified coolant management); high temperature of boiling (larger overpower margin); smaller void worths (operation at higher k-values). This paper deals with different aspects of the void worths in JAERI ADS

  19. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  20. Analysis of sodium-void-worths in ZPPR-3 modified phase 3 core

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Arai, K.; Otake, I. [Osaka Univ. (JP)

    1980-09-15

    The sodium-void-worths in the ZPPR-3 modified phase 3 core, in which singularities such as control-rods and sodium-followers were voided, have been analyzed using a unified diffusion coefficient. The unified diffusion coefficient is obtained by applying the Benoist formula to a super-cell consisting of different drawers, and is applicable not only to fuel drawers but also to control-rod drawers or sodium-followers. Using the coefficient the interference effect of neutron streaming between different drawers can be taken into account. The applicability of the unified diffusion coefficient to sodium-void-worth calculations has been checked in a slab model and a RZ model. The sodium-void-worths in the ZPPR-3 modified phase 3 core have been analyzed by carrying out 16-group three-dimensional diffusion calculations using the unified diffusion coefficient and the results have been compared with experimental data. The comparison indicates that the unified diffusion coefficient is useful in calculating the sodium-void-worth in a region including sodium-voided singularities.

  1. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    Science.gov (United States)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  2. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  3. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  4. Idiopathic detrusor sphincter dyssynergia in neurologically normal patients with voiding abnormalities

    DEFF Research Database (Denmark)

    Jørgensen, T M; Djurhuus, J C; Schrøder, H D

    1982-01-01

    Symptomatology and clinical manifestations of detrusor sphincter dyssynergia are described in 23 patients without neurological disease. Their cardinal symptoms were recurrent cystitis, enuresis, frequent voiding, back pain during voiding and anal discomfort. The major objective finding was vesico......Symptomatology and clinical manifestations of detrusor sphincter dyssynergia are described in 23 patients without neurological disease. Their cardinal symptoms were recurrent cystitis, enuresis, frequent voiding, back pain during voiding and anal discomfort. The major objective finding...... was vesicoureteral reflux in 11 cases with kidney scarring in 10. Bladder trabeculation was found in 13 patients, bladder hyperreflexia in 8, and significant residual urine in 16 patients. The etiology of detrusor sphincter dyssynergia in non-neurological patients is discussed. By means of exclusion it is most...

  5. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sun Kaichao, E-mail: kaichao.sun@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-07-15

    Highlights: > We analyze the void reactivity effect for three ESFR core fuel cycle states. > The void reactivity effect is decomposed by neutron balance method. > Novelly, the normalization to the integral flux in the active core is applied. > The decomposition is compared with the perturbation theory based results. > The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly by the

  6. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    International Nuclear Information System (INIS)

    Sun Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro; Chawla, Rakesh

    2011-01-01

    Highlights: → We analyze the void reactivity effect for three ESFR core fuel cycle states. → The void reactivity effect is decomposed by neutron balance method. → Novelly, the normalization to the integral flux in the active core is applied. → The decomposition is compared with the perturbation theory based results. → The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly

  7. Local void and slip model used in BODYFIT-2PE

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE

  8. How institutional voids influence Brazilian foreign direct investment in Angola

    Directory of Open Access Journals (Sweden)

    Renato Virches

    2017-04-01

    Full Text Available How do institutional voids influence emerging market multinationals (EMNEs foreign direct investment (FDI in developing countries? In this article we respond to this question by examining Brazilian FDI in Angola as our analytical setting. We focus on the host country’s institutions and its institutional voids as essential factors that attract the FDI of EMNES to developing countries. The research indicates that Brazilian companies fill in much of these voids within the market intermediaries, often creating a point of competitive advantage, and also creating advantages in relation to FDI from other economies that invest in Angola. The scarce literature on FDI in Africa has been largely dedicated to the analysis of Chinese investment in the region. We aim to complement recent research on the influence of the host country’s institutions on the behavior of FDI in developing countries, explaining how some EMNEs are able to use the institutional voids of developing countries as market opportunities. Our findings should provide also implications for EMNEs managers from other emerging markets by providing a better understanding of how Brazilian multinationals expand their business in less developed countries, handle institutional voids and manage relationships with local and foreign institutions in the host country.

  9. Magnetic resonance voiding cystography in the diagnosis of vesicoureteral reflux: comparative study with voiding cystourethrography.

    Science.gov (United States)

    Lee, Sang Kwon; Chang, Yongmin; Park, Noh Hyuck; Kim, Young Hwan; Woo, Seongku

    2005-04-01

    To evaluate the feasibility of magnetic resonance voiding cystography (MRVC) compared with voiding cystourethrography (VCUG) for detecting and grading vesicoureteral reflux (VUR). MRVC was performed upon 20 children referred for investigation of reflux. Either coronal T1-weighted spin-echo (SE) or gradient-echo (GE) (fast multiplanar spoiled gradient-echo (FMPSPGR) or turbo fast low-angle-shot (FLASH)) images were obtained before and after transurethral administration of gadolinium solution, and immediately after voiding. The findings of MRVC were compared with those of VCUG and technetium-99m ((99m)Tc) dimercaptosuccinic acid (DMSA) single-photon emission computed tomography (SPECT) performed within 6 months of MRVC. VUR was detected in 23 ureterorenal units (16 VURs by both methods, 5 VURs by VCUG, and 2 VURs by MRVC). With VCUG as the standard of reference, the sensitivity of MRVC was 76.2%; the specificity, 90.0%; the positive predictive value, 88.9%; and the negative predictive value, 78.3%. There was concordance between two methods regarding the grade of reflux in all 16 ureterorenal units with VUR detected by both methods. Of 40 kidneys, MRVC detected findings of renal damage or reflux nephropathy in 13 kidneys, and (99m)Tc DMSA renal SPECT detected findings of reflux nephropathy in 17 kidneys. Although MRVC is shown to have less sensitivity for VUR than VCUG, MRVC may represent a method of choice offering a safer nonradiation test that can additionally evaluate the kidneys for changes related to reflux nephropathy. Copyright 2005 Wiley-Liss, Inc.

  10. A variational constitutive model for the distribution and interactions of multi-sized voids

    KAUST Repository

    Liu, Jinxing

    2013-07-29

    The evolution of defects or voids, generally recognized as the basic failure mechanism in most metals and alloys, has been intensively studied. Most investigations have been limited to spatially periodic cases with non-random distributions of the radii of the voids. In this study, we use a new form of the incompressibility of the matrix to propose the formula for the volumetric plastic energy of a void inside a porous medium. As a consequence, we are able to account for the weakening effect of the surrounding voids and to propose a general model for the distribution and interactions of multi-sized voids. We found that the single parameter in classical Gurson-type models, namely void volume fraction is not sufficient for the model. The relative growth rates of voids of different sizes, which can in principle be obtained through physical or numerical experiments, are required. To demonstrate the feasibility of the model, we analyze two cases. The first case represents exactly the same assumption hidden in the classical Gurson\\'s model, while the second embodies the competitive mechanism due to void size differences despite in a much simpler manner than the general case. Coalescence is implemented by allowing an accelerated void growth after an empirical critical porosity in a way that is the same as the Gurson-Tvergaard-Needleman model. The constitutive model presented here is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is shown by simulating a tensile test on a notched round bar. © 2013 The Author(s).

  11. PD-related stresses in the bulk dielectric for ellipsoidal voids

    DEFF Research Database (Denmark)

    Pedersen, Aage; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    In a previous study, the existence of a field enhancement in the solid dielectric in the vicinity of void undergoing PD activity was established. That study was undertaken with reference to a spherical void. In this paper, a more general investigation of this phenomenon of field enhancement...

  12. Void formation in ODS EUROFER produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Ortega, Y.; Monge, M.A.; Castro, V. de; Munoz, A.; Leguey, T.; Pareja, R.

    2009-01-01

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  13. Void formation in ODS EUROFER produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: yanicet@fis.ucm.es; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Munoz, A.; Leguey, T.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2009-04-30

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  14. Radiation-induced segregation and void formation in C+ ion-irradiated vanadium-carbon alloys

    International Nuclear Information System (INIS)

    Takeyama, T.; Ohnuki, S.; Takahashi, H.; Sato, Y.; Mochizuki, S.

    1982-01-01

    To clarify the effect of interstitial elements on radiation-induced segregation and void formation in V and V-C alloys irradiated by 200 keV C + ions to a dose of 48 dpa at 973 K, the microstructural observation and the measurement of C segregation to the surfaces were carried out by TEM and XPS. Voids, dislocations and precipitates were produced in all of the specimens during irradiation. The addition of C in V led to a reduction of void size and to increase in void number density, consequently the void swelling was suppressed strongly. Radiation-induced segregation of C was observed clearly on and near the irradiated surfaces of V-C alloys and as a result of the enrichment of C atoms, carbides precipitated on the surfaces. It is the first evidence of the radiation-induced segregation of interstitial elements on the surfaces. Also, quasi-carbides were observed on the (210) habit plaints near large voids and dislocations in V. The phenomena show that C atoms, which was insolved and/or implanted, interact strongly with vacancies rather than self-interstitial atoms and migrate with vacancies toward defect sinks, such as surfaces, voids, and dislocations. The segregated zones of C reduced the sink efficiency of the defects, and showed the effect of the suppression on void in V-C alloys. (author)

  15. Detection of Vesico-Ureteric Reflux Using Voiding Hippuran Ureterograms

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J. B.; Palser, R. [Section of Nuclear Medicine, Manitoba Cancer Treatment and Research Foundation, Winnipeg General Hospital, Winnipeg (Canada); Macpherson, R. I. [Children' s Hospital of Winnipeg, Winnipeg (Canada)

    1971-02-15

    Initial results of a technique for the demonstration of vesico-ureteric reflux in children are described. Hippuran-{sup 131}I (15 {mu}Ci) (ortho-iodohippurate) is injected intravenously. A standard renogram is obtained. Additional collimation is added to the recording probes and they are positioned to record the radioactivity from the mid-ureteric region. Recordings of normal and abnormal peristaltic activity during per-ora hydration of the patient are thus obtained. When the child is willing to void, he is placed upright on a bed pan, the probes positioned to record over the lower ureteric region and recordings are made while the child voids. All data are recorded on a 512-channel analyser operated in the multi-scaler node. Data are punched out on paper tape and, after an 11 point computer smoothing program, are displayed graphically. These recordings show different patterns in normal children and those with vesico-ureteric reflux. There are several advantages to this technique over the standard radiological and other radionuclide voiding cystoureterograms. The results are compared with contrast voiding cystourethrograms in both normal children and those with vesico-ureteric reflux. (author)

  16. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    KAUST Repository

    Liu, Jinxing

    2012-11-27

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void\\'s contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized. © 2013 IOP Publishing Ltd.

  17. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    Directory of Open Access Journals (Sweden)

    Mladena Lukovic

    2015-12-01

    Full Text Available In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c. This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d, the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning. From reconstructed images, different phases in the repair system (repair material, substrate, voids can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice.

  18. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption.

    Science.gov (United States)

    Lukovic, Mladena; Ye, Guang

    2015-12-22

    In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice.

  19. Absence of saturation of void growth in rate theory with anisotropic diffusion

    CERN Document Server

    Hudson, T S; Sutton, A P

    2002-01-01

    We present a first attempt at solution the problem of the growth of a single void in the presence of anisotropically diffusing radiation induced self-interstitial atom (SIA) clusters. In order to treat a distribution of voids we perform ensemble averaging over the positions of centres of voids using a mean-field approximation. In this way we are able to model physical situations in between the Standard Rate Theory (SRT) treatment of swelling (isotropic diffusion), and the purely 1-dimensional diffusion of clusters in the Production Bias Model. The background absorption by dislocations is however treated isotropically, with a bias for interstitial cluster absorption assumed similar to that of individual SIAs. We find that for moderate anisotropy, unsaturated void growth is characteristic of this anisotropic diffusion of clusters. In addition we obtain a higher initial void swelling rate than predicted by SRT whenever the diffusion is anisotropic.

  20. Influence of sodium content on the properties of bioactive glasses for use in air abrasion

    International Nuclear Information System (INIS)

    Farooq, Imran; Brauer, Delia S; Hill, Robert G; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz

    2013-01-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO 2 –P 2 O 5 –CaO–CaF 2 –Na 2 O) with low sodium content (0 to 10 mol% Na 2 O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na 2 O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. (paper)

  1. The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests

    Science.gov (United States)

    Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson

    2018-05-01

    We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.

  2. Voids and overdensities of coupled Dark Energy

    International Nuclear Information System (INIS)

    Mainini, Roberto

    2009-01-01

    We investigate the clustering properties of dynamical Dark Energy even in association of a possible coupling between Dark Energy and Dark Matter. We find that within matter inhomogeneities, Dark Energy migth form voids as well as overdensity depending on how its background energy density evolves. Consequently and contrarily to what expected, Dark Energy fluctuations are found to be slightly suppressed if a coupling with Dark Matter is permitted. When considering density contrasts and scales typical of superclusters, voids and supervoids, perturbations amplitudes range from |δ φ | ∼ O(10 −6 ) to |δ φ | ∼ O(10 −4 ) indicating an almost homogeneous Dark Energy component

  3. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  4. Measurement of void fractions by nuclear techniques

    International Nuclear Information System (INIS)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  5. Void redistribution in sand under post-earthquake loading

    International Nuclear Information System (INIS)

    Boulanger, R.W.; Truman, S.P.

    1996-01-01

    A mechanism for void redistribution in an infinite slope under post-earthquake loading conditions is described by consideration of the in situ loading paths that can occur under post-earthquake conditions and the results of triaxial tests designed to represent specific in situ post-earthquake loading paths. The mechanism is illustrated by application to an example problem. Void redistribution is shown to be a phenomena that may be more pronounced at the field scale than at the laboratory scale. (author). 12 refs., 4 figs

  6. Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium

    International Nuclear Information System (INIS)

    Pushkareva, Marina; Adrien, Jérôme; Maire, Eric; Segurado, Javier; Llorca, Javier; Weck, Arnaud

    2016-01-01

    The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.

  7. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  8. Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Pushkareva, Marina [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Adrien, Jérôme; Maire, Eric [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Segurado, Javier; Llorca, Javier [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain); Weck, Arnaud, E-mail: aweck@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Centre for Research in Photonics at the University of Ottawa, 800 King Edward Ave., Ottawa, ON, Canada K1N 6N5 (Canada)

    2016-08-01

    The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.

  9. Generation of nano-voids inside polylactide using femtosecond laser radiation

    Science.gov (United States)

    Viertel, Tina; Pabst, Linda; Olbrich, Markus; Ebert, Robby; Horn, Alexander; Exner, Horst

    2017-12-01

    The arrangement of nanometer-sized voids, induced by focusing intense laser radiation within transparent material can allow the generation of transparent components with dimensions in the micrometer to nanometre range due to internal contour cut and thus satisfy the progressive miniaturization of products in micro-optics and medical technologies. For further improvements in the precision of those components, a deep understanding of the involved processes during the interaction of laser radiation within the material is necessary. In this work, voids inside bulk polylactide (PLA), a bioabsorbable polymer, were generated using a femtosecond laser ( λ = 1030 nm, τH = 180 fs) with single and multiple pulse irradiation. The dependence of the spot size was examined by the use of four microscope objectives with focus radii of 4.9, 3.3, 2 and 1.2 µm. For the experiments, the pulse energy and focusing depth into the material were varied. The dimensions of the voids were experimentally determined as function of the intensity. Differences in the lateral and axial extents of the voids were obtained for different focus radii and focusing depths at same intensities. Furthermore, the intensity distribution of the laser radiation inside the material for the different focus radii and focusing depths, and their dependence on the lateral and axial sizes of the voids was simulated and compared with the experimental results.

  10. AirPrint Forensics: Recovering the Contents and Metadata of Printed Documents from iOS Devices

    Directory of Open Access Journals (Sweden)

    Luis Gómez-Miralles

    2015-01-01

    data they may store, opens new opportunities in the field of computer forensics. In 2010, version 4 of the iOS operating system introduced AirPrint, a simple and driverless wireless printing functionality supported by hundreds of printer models from all major vendors. This paper describes the traces left in the iOS device when AirPrint is used and presents a method for recovering content and metadata of documents that have been printed.

  11. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.

    2001-03-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)

  12. Civil Engineering Applications of Ground Penetrating Radar in Finland

    Science.gov (United States)

    Pellinen, Terhi; Huuskonen-Snicker, Eeva; Olkkonen, Martta-Kaisa; Eskelinen, Pekka

    2014-05-01

    Ground penetrating radar (GPR) has been used in Finland since 1980's for civil engineering applications. First applications in this field were road surveys and dam inspections. Common GPR applications in road surveys include the thickness evaluation of the pavement, subgrade soil evaluation and evaluation of the soil moisture and frost susceptibility. Since the 1990's, GPR has been used in combination with other non-destructive testing (NDT) methods in road surveys. Recently, more GPR applications have been adopted, such as evaluating bridges, tunnels, railways and concrete elements. Nowadays, compared with other countries GPR is relatively widely used in Finland for road surveys. Quite many companies, universities and research centers in Finland have their own GPR equipment and are involved in the teaching and research of the GPR method. However, further research and promotion of the GPR techniques are still needed since GPR could be used more routinely. GPR has been used to evaluate the air void content of asphalt pavements for years. Air void content is an important quality measure of pavement condition for both the new and old asphalt pavements. The first Finnish guideline was released in 1999 for the method. Air void content is obtained from the GPR data by measuring the dielectric value as continuous record. To obtain air void content data, few pavement cores must be taken for calibration. Accuracy of the method is however questioned because there are other factors that affect the dielectric value of the asphalt layer, in addition to the air void content. Therefore, a research project is currently carried out at Aalto University in Finland. The overall objective is to investigate if the existing GPR technique used in Finland is accurate enough to be used as QC/QA tool in assessing the compaction of asphalt pavements. The project is funded by the Finnish Transport Agency. Further research interests at Aalto University include developing new microwave asphalt

  13. Finding Brazing Voids by Holography

    Science.gov (United States)

    Galluccio, R.

    1986-01-01

    Vibration-induced interference fringes reveal locations of defects. Holographic apparatus used to view object while vibrated ultrasonically. Interference fringes in hologram reveal brazing defects. Holographic technique locates small voids in large brazed joints. Identifies unbrazed regions 1 in. to second power (6 cm to the second power) or less in area.

  14. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    International Nuclear Information System (INIS)

    Lee, Seungchan; Sung, Jejung; Lee, Jongchan; Kim, Jonguk

    2014-01-01

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin

  15. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Sung, Jejung [Korea Hydro Nuclear Power Electricity Co., Daejeon (Korea, Republic of); Lee, Jongchan; Kim, Jonguk [FNC Technology Co., LTD., Yongin (Korea, Republic of)

    2014-05-15

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin.

  16. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  17. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  18. Effect of scale size, orientation type and dispensing method on void ...

    Indian Academy of Sciences (India)

    AIZAT ABAS

    2018-04-13

    Apr 13, 2018 ... reduce the formation of void during encapsulation process. Keywords. Ball grid ... Additionally, the usage of LBM to study of void in CUF was again conducted by ... models are fabricated using clear Perspex and plastics beads.

  19. An experimental and theoretical analysis of void fraction dynamics in a boiling channel

    International Nuclear Information System (INIS)

    Romberg, T.M.

    1977-01-01

    This paper describes an experimental and theoretical investigation of the void fraction dynamics at the exit of a test boiling channel which is operated near the 'instability threshold power' (the power level at which coolant flow instabilities occur). Dynamic measurements of the perturbations in channel inlet flow-rate, power input and exit void fraction are analysed using multivariate spectral analysis. The resulting experimental cross-spectral density functions between flow-rate/exit void fraction and power input/exit void fraction agree favourably with those calculated by a linearised hydrodynamic model in the frequency domain. (Author)

  20. Experimental investigation of the effect of injected interstitials on void formation

    International Nuclear Information System (INIS)

    Badger, B. Jr.; Plumton, D.L.; Zinkle, S.J.; Sindelar, R.L.; Kulcinski, G.L.; Dodd, R.A.; Wolfer, W.G.

    1984-01-01

    Pure nickel, a pure 316-type stainless steel (P7) and two high strength copper alloys have been irradiated with either 14-MeV nickel or copper ions to a peak damage level of 50 dpa (K = 0.8) at homologous temperatures ranging from 0.4 to 0.6 Tm. The irradiated foils have been examined in cross section in an electron microscope. The injected interstitial effect on the suppression of the measured void densities in Ni and P7 was found to increase with decreasing temperature. The comparison of these results with nucleation theory shows good qualitative agreement. Quantitative discrepancies are attributed to diffusional spreading of point defects and to the presence of impurity atoms in the matrix. A copper alloy irradiated at 300 0 C showed a small heterogeneous void density characteristic of the high temperature end of the void swelling regime, while no voids formed in the alloys irradiated > 400 0 C. This result is in excellent agreement with nucleation theory which indicates the void swelling regime in ion-irradiated, low impurity copper should be less than 300 0 C (0.42 Tm)

  1. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal

  2. Measurement of the thermal Sunyaev-Zel'dovich effect around cosmic voids

    Science.gov (United States)

    Alonso, David; Hill, J. Colin; Hložek, Renée; Spergel, David N.

    2018-03-01

    We stack maps of the thermal Sunyaev-Zel'dovich effect produced by the Planck Collaboration around the centers of cosmic voids defined by the distribution of galaxies in the CMASS sample of the Baryon Oscillation Spectroscopic Survey, scaled by the void effective radii. We report a first detection of the associated cross-correlation at the 3.4 σ level: voids are under-pressured relative to the cosmic mean. We compare the measured Compton-y profile around voids with a model based solely on the spatial modulation of halo abundance with environmental density. The amplitude of the detected signal is marginally lower than predicted by an overall amplitude αv=0.67 ±0.2 . We discuss the possible interpretations of this measurement in terms of modeling uncertainties, excess pressure in low-mass halos, or nonlocal heating mechanisms.

  3. Kinetic aspects of the growth of platelets and voids in H implanted Si

    International Nuclear Information System (INIS)

    Grisolia, J.; Cristiano, F.; Ben Assayag, G.; Claverie, A.

    2001-01-01

    We have undertaken a systematic and quantitative study of the extended defects formed after high-dose proton implantation in silicon. This study is based on the transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) experiments to 'follow' the thermal evolution of platelets and voids for a large variety of annealing conditions up to 900 deg. C. Up to about 500 deg. C, only platelets are observed and, as the anneal proceeds, they grow in size and reduce their density through the conservative exchange of hydrogen (H) atoms. On the contrary, above 500 deg. C, H starts to diffuse out of the defect-rich region and this out-diffusion can be completed after 700 deg. C anneals. Concurrently, platelets tend to disappear and voids appear. Above 700 deg. C anneals, hydrogen cannot be detected anymore in the layers and only voids remain. Upon time, they also grow in size and reduce their density. This is again attributed to the Ostwald ripening of voids which involves now vacancy diffusion from small voids to large ones. In summary, we have shown that platelets and voids both undergo quasi-conservative ripening upon annealing; at low-temperature (LT) platelets exchange the H atoms they are composed of while at high-temperature voids exchange vacancies

  4. A theoretical derivation of the transients related to partial discharges in ellipsoidal voids

    DEFF Research Database (Denmark)

    Crichton, George C; Karlsson, A.; Pedersen, Aage

    1988-01-01

    be drawn about the effects of the gas within the void as well as the size, shape, and location of voids. The method is illustrated by applying it to a spheroidal void in a simple disk-type gas-insulated-substation (GIS) spacer. It is found that the nonattaching gas generates an induced charge...

  5. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  6. Active infrared thermography for visualizing subsurface micro voids in an epoxy molding compound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Yeol [Test and Package Center, Samsung Electronics, Asan(Korea, Republic of); Hwang, Soon Kyu; Choi, Jae Mook; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-04-15

    This paper presents an automated subsurface micro void detection technique based on pulsed infrared thermography for inspecting epoxy molding compounds (EMC) used in electronic device packaging. Subsurface micro voids are first detected and visualized by extracting a lock-in amplitude image from raw thermal images. Binary imaging follows to achieve better visualization of subsurface micro voids. A median filter is then applied for removing sparse noise components. The performance of the proposed technique is tested using 36 EMC samples, which have subsurface (below 150 μm ~ 300 μm from the inspection surface) micro voids (150 μm ~ 300 μm in diameter). The experimental results show that the subsurface micro voids can be successfully detected without causing any damage to the EMC samples, making it suitable for automated online inspection.

  7. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  8. submitter Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations

    CERN Document Server

    Xydou, A; Aicheler, M; Djurabekova, F

    2016-01-01

    By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature $(T_m)$. The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculate...

  9. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  10. Air-water two-phase flow through a pipe junction

    International Nuclear Information System (INIS)

    Suu, Tetsuo

    1991-01-01

    The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)

  11. Predictive efficacy of radioisotope voiding cystography for renal outcome

    International Nuclear Information System (INIS)

    Kim, Seok Ki; Lee, Dong Soo; Kim, Kwang Myeung; Choi, Whang; Chung, June Key; Lee, Myung Chul

    2000-01-01

    As vesicoureteral reflux (VUR) could lead to renal functional deterioration when combined with urinary tract infection, we need to decide whether operative anti-reflux treatment should be performed at the time of diagnosis of VUR. Predictive value of radioisotope voiding cystography (RIVCG) for renal outcome was tested. In 35 children (18 males, 17 females), radiologic voiding cystoure-thrography (VCU), RIVCG and DMSA scan were performed. Change in renal function was evaluated using the follow-up DMSA scan, ultrasonography, and clinical information. Discriminant analysis was performed using individual or integrated variables such as reflux amount and extent at each phase of voiding on RIVCG, in addition to age, gender and cortical defect on DMSA scan at the time of diagnosis. Discriminant function was composed and its performance was examined. Reflux extent at the filling phase and reflux amount and extent at postvoiding phase had a significant prognostic value. Total reflux amount was a composite variable to predict prognosis. Discriminant function composed of reflux extent at the filling phase and reflux amount and extent at postvoiding phase showed better positive predictive value and specificity than conventional reflux grading. RIVCG could predict renal outcome by disclosing characteristic reflux pattern during various voiding phases.=20

  12. Voiding patterns in men evaluated by a questionnaire survey

    DEFF Research Database (Denmark)

    Sommer, P; Nielsen, K K; Bauer, T

    1990-01-01

    A questionnaire on obstructive and irritative voiding symptoms was sent to 572 men aged between 20 and 79 years, selected at random from the National Register; 337 questionnaires were completed. None of the responders had consulted a doctor because of voiding symptoms. There was a significant...... voiding symptoms in men aged 60 to 79 years without subjective prostatism was the same as in patients admitted with prostatism, although most of the men had milder symptoms. Only nocturia and urge incontinence were more prevalent in patients admitted with prostatism. About 20% of men in the oldest decades...... had symptoms equal in severity to those found in men undergoing prostatectomy; 29% and 11% of men in the eighth decade [corrected] had nocturia twice and 3 times or more respectively; 19% complained of urge incontinence. More information on possible treatment is needed....

  13. Analysis of void reactivity measurements in full MOX BWR physics experiments

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yamamoto, Toru; Umano, Takuya

    2008-01-01

    In the full MOX BWR physics experiments, FUBILA, four 9x9 test assemblies simulating BWR full MOX assemblies were located in the center of the core. Changing the in-channel moderator condition of the four assemblies from 0% void to 40% and 70% void mock-up, void reactivity was measured using Amplified Source Method (ASM) technique in the subcritical cores, in which three fission chambers were located. ASM correction factors necessary to express the consistency of the detector efficiency between measured core configurations were calculated using collision probability cell calculation and 3D-transport core calculation with the nuclear data library, JENDL-3.3. Measured reactivity worth with ASM correction factor was compared with the calculated results obtained through a diffusion, transport and continuous energy Monte Carlo calculation respectively. It was confirmed that the measured void reactivity worth was reproduced well by calculations. (author)

  14. Sensitivity analysis of an impedance void meter to the void distribution in annular flow: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service d' Etudes Thermohydrauliques)

    1991-04-01

    Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.).

  15. Sensitivity analysis of an impedance void meter to the void distribution in annular flow: A theoretical study

    International Nuclear Information System (INIS)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S.

    1991-01-01

    Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.)

  16. Analysis of sodium-void experiments in ZPPR-3 modified phase 3 core

    International Nuclear Information System (INIS)

    Yoshida, T.

    1978-08-01

    In this work, large-zone sodium-void effects are studied in detail in the presence of many singularities, namely, control rods (CRs) and control rod positions (CRPs). The results of measurements and calculations are compared by CIE (calculation/experiment) values, which are 1.07 when the voided core region is free of singularities. When the void region includes CPRs, which are concurrently voided, the CIE value deteriorates and varies from 0.35 to 1.58. The agreement can be improved considerably by correcting the reactivity worth of the sodium contained in the CRPs with the aid of experimental data (CIE = 1.00 +- 0.15). The heterogeneity correction for the fuel elements was performed by the plate-cell vollision probability code KAPPER. (GL) [de

  17. Transcutaneous sacral neurostimulation for irritative voiding dysfunction.

    Science.gov (United States)

    Walsh, I K; Johnston, R S; Keane, P F

    1999-01-01

    Patients with irritative voiding dysfunction are often unresponsive to standard clinical treatment. We evaluated the response of such individuals to transcutaneous electrical stimulation of the third sacral nerve. 32 patients with refractory irritative voiding dysfunction (31 female and 1 male; mean age 47 years) were recruited to the study. Ambulatory transcutaneous electrical neurostimulation was applied bilaterally to the third sacral dermatomes for 1 week. Symptoms of frequency, nocturia, urgency, and bladder pain were scored by each patient throughout and up to 6 months following treatment. The mean daytime frequency was reduced from 11.3 to 7.96 (p = 0.01). Nocturia episodes were reduced from a mean of 2.6 to 1.8 (p = 0.01). Urgency and bladder pain mean symptom scores were reduced from 5.97 to 4.89 and from 1.48 to 0.64, respectively. After stopping therapy, symptoms returned to pretreatment levels within 2 weeks in 40% of the patients and within 6 months in 100%. Three patients who continued with neurostimulation remained satisfied with this treatment modality at 6 months. Transcutaneous third sacral nerve stimulation may be an effective and noninvasive ambulatory technique for the treatment of patients with refractory irritative voiding dysfunction. Following an initial response, patients may successfully apply this treatment themselves to ensure long-term relief.

  18. Effect of grain size on void swelling in irradiated materials: A phase-field approach

    International Nuclear Information System (INIS)

    Chang, Kunok; Lee, Gyeonggeun; Kwon, Junhyun

    2014-01-01

    The progress of swelling is retarded as the average grain diameter increases in a pure copper case. Within the framework of the production bias model (PBM), their experimental results were quantitatively explained. The phase-field method has already been used to investigate the void/bubble behavior in the irradiated materials. In particular, Millett et al. already incorporated the interaction between the point defect and the grain boundary in their study. Therefore, they described the void denuded zones and void peaked zones adjacent to the grain boundaries, which are already observed in the experimental investigations. We performed the phase-field simulation in order to verify the role of the grain diameter on the void swelling in the cascade damage condition. In addition, our results will be compared with the experimental observations or the theoretical works, such as PBM. Two-dimensional phase-field simulations were performed to investigate the void swelling process in the irradiated materials. We clearly observed the void denuded and void peaked zones, which were already observed in formal experimental and computational approaches. We also found that the progress of swelling was retarded as the average grain diameter increased. The triple junctions, which are believed to be a critical factor t affecting the fracture, are the main cites for the void nucleation and growth in our simulations

  19. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...... growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence....

  20. Two-phase flow void fraction measurement using gamma ray attenuation technique

    International Nuclear Information System (INIS)

    Silva, R.D. da.

    1985-01-01

    The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt

  1. Multiple void formation in plasmas containing multispecies charged grains

    International Nuclear Information System (INIS)

    Liu, Y. H.; Chen, Z. Y.; Bogaerts, A.; Yu, M. Y.

    2006-01-01

    Self-organized separation of charged-dust species in two-dimensional dusty plasmas is studied by means of molecular-dynamics simulation. The multispecies dust grains, interacting through a screened Coulomb potential with a long-range attractive component, are confined by an external quadratic potential and subjected to a radially outward ion drag force. It is found that, in general, the species are spatially separated by bandlike dust-free (or void) regions, and grains of the same species tend to populate a common shell. At large ion drag and/or large plasma screening, a central disklike void as well as concentric bandlike voids separating the different species appear. Because of the outward drag and the attractive component of the dust-dust interaction forces, highly asymmetrical states consisting of species-separated dust clumps can also exist despite the fact that all the forces are either radial or central

  2. The relationship between temperament, gender, and childhood dysfunctional voiding.

    Science.gov (United States)

    Colaco, Marc; Dobkin, Roseanne D; Sterling, Matthew; Schneider, Dona; Barone, Joseph

    2013-08-01

    Dysfunctional voiding (DV) is an extremely common pediatric complaint. The goal of this study was to examine the relationship between DV and childhood temperament. Information about the voiding behaviors and temperaments of 50 children was examined using a case-control model. Caregivers were asked to fill out the Children's Behavior Questionnaire in order to rate their child on the dimensions of surgency, negative affect, and effortful control. The relationship between DV and these dimensions was then evaluated. Males with DV were found to have lower effortful control than males with normal voiding habits. Females with DV did not demonstrate a difference in effortful control, but did demonstrate a higher rate of surgency. The results suggest that temperament does have an association with DV. These findings are in line with temperamental associations with other externalizing trouble behaviors and may inform potential treatment strategies for DV.

  3. Computer simulation of void formation in residual gas atom free metals by dual beam irradiation experiments

    International Nuclear Information System (INIS)

    Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.

    1992-01-01

    In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)

  4. M-CHOLINOLYTICS IN RHEABILITATION OF CHILDREN WITH VOIDING DISFUNCTION AND URNARY BLADDER HYPERACTIVITY

    Directory of Open Access Journals (Sweden)

    I.V. Kazanskaya

    2006-01-01

    Full Text Available Voiding dysfunction is a common problem in pediatrics. Hyperactive urinary bladder is the most frequent cause of voiding dysfunction. Macholinolytic drugs are the first choice treatment for urinary bladder hyperactivity. The «urination pathology» center has investigated the efficacy of an macholinolytic, oxybutynin. The study included 25 children (aged 6–14 with different causes of voiding dysfunction and bladder hyperactivity. Oxybutynin was administered with a dosage of 5 mg twice a day, the follow up period was 8 weeks. The control evaluation of urodynamics (voiding rhythm, uroflowmetry, residual urine volume was performed at 4–8 weeks. Symptoms of bladder hyperactivity have been eliminated in 50% of patients, the bladder capacity has increased in 70% of cases, the frequency of night and day incontinence has diminished. The report demonstrates that oxybutynin has been most effective in patients with urinary bladder volume between 80 and 100 ml. the side effects, as dryness of mucous membranes and voiding difficulties, have been rarely observed. These side effects could be avoided by individual dose titration.Key words: voiding dysfunction, urinary bladder hyperactivity, oxybutynin, children.

  5. Void porosity measurements in coastal structures

    NARCIS (Netherlands)

    Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.

    2002-01-01

    The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and

  6. Capacitance sensor for void fraction measurement in a natural circulation refrigeration circuit

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Simoes-Moreira, Jose R.

    2009-01-01

    Natural circulation is widely used in nuclear reactors for residual heat refrigeration. In this work, a conductance probe is designed and constructed to measure the instantaneous bulk void fraction in a vertical tube section. This probe is installed in a natural circulation refrigeration loop designed to simulate a nuclear reactor primary refrigeration circuit. During the operation of the natural circulation loop several gas-liquid flow patterns are observed, including oscillatory flow. The instantaneous signal generated by the capacitance probe allows the calculation of the two-phase flow void fraction. The void fraction obtained by the probe will be compared with the theoretical void fraction calculated by the computational program RELAP5/MOD3.2.2 gamma. The probe design and electronics, as well as the previous results obtained are presented and discussed. (author)

  7. An approach of SFR safety study through the most penalizing sodium void reactivity - 105

    International Nuclear Information System (INIS)

    Tiberi, V.; Ivanov, E.; Pignet, S.

    2010-01-01

    Sodium void reactivity effects can affect the plant safety significantly during accidental transients. Accordingly, they have to be accurately investigated for any new sodium cooled fast reactor concept, even if a fuel with a melting point lower than the sodium boiling temperature is adopted. Thus all new reactor concepts should be compared to each - others adopting the value of the maximal possible sodium void reactivity as a discrimination parameter. However, taking into account that the sodium void worth is spatially depended, it is not evident which volume could be voided in order to obtain the maximal reactivity increase. Typically the complete active core voiding (zones initially loaded with 235 U or 239 Pu) is taken into account. This paper summarizes the extensive work carried-out in the IRSN to investigate the sodium-void reactivity spatial profiles of a fast sodium-cooled reactor core in the aim of defining a methodology to search for the area where the void contribution to the reactivity is strictly positive. Perturbation theory design approach available in the ERANOS 2.1 code has been adopted to evaluate the 'area of positive void worth'. To do that, the code has been previously validated against experimental based benchmarks (IRPhEP) and reference calculations. The evaluation of the absolute values of reactivity profiles can be improved later-on adopting more sophisticated methodologies to perform more accurate calculations of the sample with the voided area determined adopting the rough procedure described here. It has been demonstrated that even the non-reference way of ERANOS calculations could be used to provide the basis for different core concepts inter-comparison. (authors)

  8. Effects of void anisotropy on the ignition and growth rates of energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Initiation of heterogeneous energetic materials is thought to occur at hot spots; reaction fronts propagate from sites of such hot spots into the surrounding material resulting in complete consumption of the material. Heterogeneous materials, such as plastic bonded explosives (PBXs) and pressed materials contain numerous voids, defects and interfaces at which hot spots can occur. Amongst the various mechanisms of hot spot formation, void collapse is considered to be the predominant one in the high strain rate loading conditions. It is established in the past the shape of the voids has a significant effect on the initiation behavior of energetic materials. In particular, void aspect ratio and orientations play an important role in this regard. This work aims to quantify the effects of void aspect ratio and orientation on the ignition and growth rates of chemical reaction from the hot spot. A wide range of aspect ratio and orientations is considered to establish a correlation between the ignition and growth rates and the void morphology. The ignition and growth rates are obtained from high fidelity reactive meso-scale simulations. The energetic material considered in this work is HMX and Tarver McGuire HMX decomposition model is considered to capture the reaction mechanism of HMX. The meso-scale simulations are performed using a Cartesian grid based Eulerian solver SCIMITAR3D. The void morphology is shown to have a significant effect on the ignition and growth rates of HMX.

  9. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the

  10. Self-organized voids revisited: Experimental verification of the formation mechanism

    International Nuclear Information System (INIS)

    Song Juan; Jiang Yan; Ye Jun-Yi; Qian Meng-Di; Lin Xian; Bian Hua-Dong; Dai Ye; Ma Guo-Hong; Luo Fang-Fang; Chen Qing-Xi; Zhao Quan-Zhong; Qiu Jian-Rong

    2014-01-01

    We conduct several experiments to further clarify the formation mechanism of a self-organized void array induced by a single laser beam, including energy-related experiments, refractive-index-contrast-related experiments, depth-related experiments, and effective-numerical-aperture experiment. These experiments indicate that the interface spherical aberration is indeed responsible for the formation of void arrays. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Impedance void-meter and neural networks for vertical two-phase flows

    International Nuclear Information System (INIS)

    Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.

    1998-01-01

    Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)

  12. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  13. Loss of urinary voiding sensation due to herpes zoster.

    Science.gov (United States)

    Hiraga, Akiyuki; Nagumo, Kiyomi; Sakakibara, Ryuji; Kojima, Shigeyuki; Fujinawa, Naoto; Hashimoto, Tasuku

    2003-01-01

    A case of sacral herpes zoster infection in a 56-year-old man with the complication of loss of urinary voiding sensation is presented. He had typical herpes zoster eruption on the left S2 dermatome, hypalgesia of the S1-S4 dermatomes, and absence of urinary voiding sensation. There was no other urinary symptom at the first medical examination. Urinary complications associated with herpes zoster are uncommon, but two types, acute cystitis and acute retention, have been recognized. No cases of loss of urinary voiding sensation due to herpes zoster have been reported. In this case, hypalgesia of the sacral dermatomes was mild compared to the marked loss of urethral sensation. This inconsistency is explained by the hypothesis that the number of urethral fibers is very small as compared to that of cutaneous fibers, therefore, urethral sensation would be more severely disturbed than cutaneous sensation. Copyright 2003 Wiley-Liss, Inc.

  14. A New Kind of Void Soap-free P(MMA-EA-MAA) Latex Particles

    Institute of Scientific and Technical Information of China (English)

    Kai KANG; Cheng You KAN; Yi DU; Yu Zhong LI; De Shan LIU

    2005-01-01

    Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.

  15. Development of measurement method of void fraction distribution on subcooled flow boiling using neutron radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Matsubayashi, Masahito; Akimoto, Hajime

    1999-03-01

    In relation to the development of a solid target of high intensity neutron source, plasma-facing components of fusion reactor and so forth, it is indispensable to estimate the void fraction for high-heat-load subcooled flow boiling of water. Since the existing prediction method of void fraction is based on the database for tubes, it is necessary to investigate extendibility of the existing prediction method to narrow-gap rectangular channels that is used in the high-heat-load devices. However, measurement method of void fraction in the narrow-gap rectangular channel has not been established yet because of the difficulty of measurement. The objectives of this investigation are development of a new system for bubble visualization and void fraction measurement on subcooled flow boiling in narrow-gap rectangular channels using the neutron radiography, and establishment of void fraction database by using this measurement system. This report describes the void fraction measurement method by the neutron radiography technique, and summarizes the measured void fraction data in one-side heated narrow-gap rectangular channels at subcooled boiling condition. (author)

  16. Effect of void fraction correlations on two-phase pressure drop during flow boiling in narrow rectangular channel

    International Nuclear Information System (INIS)

    Huang, Dong; Gao, Puzhen; Chen, Chong; Lan, Shu

    2013-01-01

    Highlights: • Most of the slip ratio models and the Lockhart–Martinelli parameter based models give similar results. • The drift flux void fraction models give relatively small values. • The effect of void fraction correlations on two-phase friction pressure drop is inconspicuous. • The effect of void fraction correlations on two-phase acceleration pressure drop is significant. - Abstract: The void fraction of water during flow boiling in vertical narrow rectangular channel is experimentally investigated. The void fraction is indirectly determined using the present experimental data with various void fraction correlations or models published in the open literature. The effects of mass flux, mass quality, system pressure and inlet subcooling on the void fraction and pressure drop are discussed in detail. In addition, comparison and discussion among the numerous void fraction correlations are carried out. The effect of void fraction correlations on two-phase pressure drop is presented as well. The results reveal that most of the slip ratio correlations and the Lockhart–Martinelli parameter based void fraction correlations have results close to each other at mass quality higher than 0.2. The drift flux void fraction correlations give small values which are incompatible with other models making it inapplicable for narrow rectangular channel. The alteration of void fraction correlations has an inconspicuous effect on two-phase frictional pressure drop, while an obvious effect on two-phase accelerational pressure drop during flow boiling in narrow rectangular channel

  17. Newtonian self-gravitating system in a relativistic huge void universe model

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Ryusuke; Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2016-12-01

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.

  18. Effect of hardness of martensite and ferrite on void formation in dual phase steel

    DEFF Research Database (Denmark)

    Azuma, M.; Goutianos, Stergios; Hansen, Niels

    2012-01-01

    The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...

  19. Determination of void fraction from source range monitor and mass flow rate data

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-09-01

    This is a report on the calculation of the TMI-2 primary coolant system local void fraction from source range neutron flux monitor data and from hot leg mass flowrate meter data during the first 100 minutes of the accident. The methods of calculation of void fraction from the two data sources is explained and the results are compared. It is indicated that the void fraction determined using the mass flowrate data contained an error of unknown magnitude due to the assumption of constant homogeneous volumetric flowrate used in the calculation and required further work. Void fraction determined from the source range monitor data is felt to be usable although an uncertainty analysis has not been performed

  20. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.

  1. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jungwoon; Kim, Young-ki

    2015-01-01

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength

  2. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  3. Dependence of calculated void reactivity on film boiling representation in a CANDU lattice

    Energy Technology Data Exchange (ETDEWEB)

    Whitlock, J [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics

    1994-12-31

    The distribution dependence of void reactivity in a CANDU (CANada Deuterium Uranium) lattice is studied, specifically in the regime of film boiling. A heterogeneous model of this phenomenon predicts a 4% increase in void reactivity over a homogeneous model for fresh fuel, and 11% at discharge. An explanation for this difference is offered, with regard to differing changes in neutron mean free path upon voiding. (author). 9 refs., 4 tabs., 6 figs.

  4. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-01-01

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12 CO 2 and 13 CO 2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm -1 ) are determined to be optimal for analysis of relative content of 12 CO 2 and 13 CO 2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO 2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  5. Computational benchmark on the void reactivity effect in MOX lattices. Contribution to a NEA-NSC benchmark study organized by the Working Party on Plutonium Recycling

    International Nuclear Information System (INIS)

    Freudenreich, W.E.; Aaldijk, J.K.

    1994-08-01

    The Working Party on Plutonium Recycling of the Nuclear Science Committee of the OECD Nuclear Energy Agency has initiated a benchmark study on the calculation of the void reactivity effect in MOX lattices. The results presented here were obtained with the continuous energy, generalized geometry Monte Carlo transport code MCNP. The cross-section libraries used were processed from the JEF-2.2 evaluation taking into account selfshielding in the unresolved resonance ranges (selfshielding in the resolved resonance ranges is treated by MCNP). For an infinite lattice of unit cells a positive void reactivity effect was found only for the MOX fuel with the largest Pu content. For an infinite lattice of macro cells (voidable inner zone with different fuel mixtures surrounded by an outer zone of UO 2 fuel with moderator) a positive void reactivity effect was obtained for the three MOX fuel types considered. The results are not representative for MOX-loaded power reactor lattices, but serve only to intercompare reactor physics codes and libraries. (orig.)

  6. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  7. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  8. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  9. The Influence of Thickener Content on the Properties of Acryl Emulsion Resin

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Sam; Choi, Sang Goo [Department of Chemical Technology, Ho-Won University, Kunsan (Korea)

    2001-04-01

    HW-100 (acryl oligomer), Aerosil 200 (fine silica), HEMC (hydroxyethyl methylcellulose) and HPMC (hydroxypropyl methylcellulose) were each mixed with acryl emulsion resin. For each mixture, various physical properties were tested experimentally. HW-100 mixtures showed higher viscosity and thixotropy than the other mixtures. The viscosity increased rapidly with adding of thickener. Fabrication workability decreased substantially with increased thixotropy. Aerosil mixture represented good properties in workability, adhesive strength and water-resistance, however, it had large shrinkage. The shrinkage was typically influenced by content of water and void. HEMC mixture showed higher pH and adhesion than others, while HPMC mixture had long drying-time and excellent alkali-resistance characteristics. Water-resistance and alkali-resistance were mainly influenced by the molecular structure of thickener and the content of void. 26 refs., 12 figs.

  10. Influence of second phase dispersion on void formation during irradiation

    International Nuclear Information System (INIS)

    Sundararaman, M.; Banerjee, S.; Krishnan, R.

    Irradiation-induced void formation in alloys has been found to be strongly influenced by the microstructure, the important microstructural parameters being the dislocation density and the nature, density and distribution of second-phase precipitates. The effects of various types of precipitates on void swelling have been examined using the generally-accepted model of void formation : void embryos are assumed to grow in a situation where equal numbers of vacancies and interstitials are continuously generated by the incident irradiation, the interstitials being somewhat perferentially absorbed in some sinks present in the material. The mechanism of the trapping of defects by a distribution of precipitates has been discussed and the available experimental results on the suppression of void formation in materials containing coherent precipitates have been reviewed. Experimental results on the microstructure developed in a nickel-base alloys, Inconel-718 (considered to be a candidate material for structural applications in fast reactors), have been presented. The method of determination of the coherency strain associated with the precipitates has been illustrated with the help of certain observations made on this alloy. The major difficulty in using a two-phase alloy in an irradiation environment is associated with the irradiation-induced instability of the precipitates. Several processes such as precipitate dislocation (in which the incident radiation removes the outer layer of precipitates by recoil), enhanced diffusion disordering, fragmentation of precipitates, etc. are responsible for bringinq about a significant change in the structure of a two-phase material during irradiation. The effect of these processes on the continued performance of a two-phase alloy subjected to irradiation at an elevated temperature has been discussed. (auth.)

  11. Void fraction prediction in two-phase flows independent of the liquid phase density changes

    International Nuclear Information System (INIS)

    Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.

    2014-01-01

    Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows

  12. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials

    International Nuclear Information System (INIS)

    Weck, A.; Wilkinson, D.S.; Maire, E.; Toda, H.

    2008-01-01

    The literature contains many models for the process of void nucleation, growth and coalescence leading to ductile fracture. However, these models lack in-depth experimental validation, in part because void coalescence is difficult to capture experimentally. In this paper, an embedded array of holes is obtained by diffusion bonding a sheet filled with laser-drilled holes between two intact sheets. The experiments have been performed with both pure copper and Glidcop. Using X-ray computed tomography, we show that void growth and coalescence (or linkage) are well captured in both materials. The Brown and Embury model for void coalescence underestimates coalescence strains due to constraining effects. However, both the Rice and Tracey model for void growth and the Thomason model for void coalescence give good predictions for copper samples when stress triaxiality is considered. The Thomason model, however, fails to predict coalescence for the Glidcop samples; this is primarily due to secondary void nucleation

  13. Quantifying voids effecting delamination in carbon/epoxy composites: static and fatigue fracture behavior

    Science.gov (United States)

    Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.

    2016-04-01

    On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.

  14. Prediction of pool void fraction by new drift flux correlation

    International Nuclear Information System (INIS)

    Kataoka, I.; Ishii, M.

    1986-06-01

    A void fraction for a bubbling or boiling pool system is one of the important parameters in analyzing heat and mass transfer processes. Using the drift flux formulation, correlations for the pool void fraction have been developed in collaboration with a large number of experimental data. It has been found that the drift velocity in a pool system depends upon vessel diameter, system pressure, gas flux and fluid physical properties. The results show that the relative velocity and void fraction can be quite different from those predicted by conventional correlations. In terms of the rise velocity, four different regimes are identified. These are bubbly, churn-turbulent, slug and cap bubble regimes. The present correlations are shown to agree with the experimental data over wide ranges of parameters such as vessel diameter, system pressure, gas flux and physical properties. 39 refs., 41 figs

  15. Nucleation from a cluster of inclusions, leading to void coalescense

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2017-01-01

    A cell model analysis is used to study the nucleation and subsequent growth of voids from a non-uniform distribution of inclusions in a ductile material. Nucleation is modeled as either stress controlled or strain controlled. The special clusters considered consist of a number of uniformly spaced...... inclusions located along a plane perpendicular to the maximum principal tensile stress. A plane strain approximation is used, where the inclusions are parallel cylinders perpendicular to the plane. Clusters with different numbers of inclusions are compared with the nucleation and growth from a single...... inclusion, such that the total initial volume of the inclusions is the same for the clusters and the single inclusion. After nucleation, local void coalescence inside the clusters is accounted for, since this makes it possible to compare the rate of growth of the single larger void that results from...

  16. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yanqing [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340 (United States); Xu, Shuozhi, E-mail: shuozhixu@gatech.edu [GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2016-12-15

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  17. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    International Nuclear Information System (INIS)

    Su, Yanqing; Xu, Shuozhi

    2016-01-01

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  18. Sensitivity study of poisson corruption in tomographic measurements for air-water flows

    International Nuclear Information System (INIS)

    Munshi, P.; Vaidya, M.S.

    1993-01-01

    An application of computerized tomography (CT) for measuring void fraction profiles in two-phase air-water flows was reported earlier. Those attempts involved some special radial methods for tomographic reconstruction and the popular convolution backprojection (CBP) method. The CBP method is capable of reconstructing void profiles for nonsymmetric flows also. In this paper, we investigate the effect of corrupted CT data for gamma-ray sources and aCBP algorithm. The corruption in such a case is due to the statistical (Poisson) nature of the source

  19. Effect of Contact Conditions on Void Coalescence at Low Stress Triaxiality Shearing

    DEFF Research Database (Denmark)

    Dahl, Jonas; Nielsen, Kim Lau; Tvergaard, Viggo

    2012-01-01

    , the deformed voids develop into shapes that closely resemble micro-cracks. It is found that the predictions using the frictionless pseudo-contact approach are in rather good agreement with corresponding simulations that fully account for frictionless contact. In particular, good agreement is found at close...... to zero stress triaxiality. Furthermore, it is shown that accounting for friction at the void surface strongly postpones the onset of coalescence, hence, increasing the overall material ductility. The changes in overall material behavior are here presented for a wide range of initial material and loading...... conditions, such as various stress triaxialities, void sizes, and friction coefficients....

  20. Electromagnetic wave survey on voids behind waterway channel lining; Suiro kaikyo sokuheki haimen kudo no denjiha tansa

    Energy Technology Data Exchange (ETDEWEB)

    Koitabashi, H [Tokyo Electric Power Co. Inc., Tokyo (Japan); Inagaki, M

    1996-10-01

    Voids behind lining were surveyed by applying electromagnetic wave reflection method to the waterway channel of a hydraulic power plant. Since waterway channel lining is ranged from oblique to vertical direction, voids are hardly formed. However, formation of voids or cavities behind lining is supposed such as voids between ground and lining due to change with time or consolidation settlement, and voids due to soil loss. Electromagnetic radar reflection suggesting continuous void was observed behind terrace concrete lining. As the result of core boring, thin continuous void of 2-5cm thick and more than 100m long was found. This was possibly formed by consolidation settlement for a long time. In some sites, continuous void signal was observed at the upper part of side walls although this signal was smaller than that at the upper part of a terrace. This continuous cavity of 10-20cm thick and 20m long was different from voids, and unevenly distributed at the upper part of an open channel along flowing surface with large flow rate. In addition, it is necessary to clarify the relation to cracks. 2 refs., 4 figs.

  1. Electron microscopy observations of helium bubble-void transition effects in nimonic PE16 alloys

    International Nuclear Information System (INIS)

    Mazey, D.J.; Nelson, R.S.

    1980-01-01

    High-nickel alloys based on the Nimonic PE16 composition have been injected at temperatures of 525 0 C and 625 0 C with 1000 ppm helium to produce a high gas-bubble concentration and subsequently irradiated with 36 MeV nickel ions. Extensive heterogeneous nucleation of bubbles is observed on faulted interstitial loops and dislocations. Evidence is found in standard PE16 alloy for bimodal bubble plus void distributions which persist during nickel-ion irradiation to 30 and 60 dpa at 625 0 C and result in a low void volume swelling of approximately 1%. The observations can be correlated with the critical bubble/void transition radius which is calculated from theory to be approximately 4.4 nm. Pre-injection of helium into a 'matrix' PE16 (low Si, Ti and Al) alloy produced an initial bubble population whose average size was above the calculated transition radius such that all bubbles eventually grew as voids during subsequent nickel-ion irradiation up to 60 dpa at 625 0 C where the void volume swelling reached approximately 12%. The observations are discussed briefly and related to theoretical predictions of the bubble/void transition radius. (author)

  2. Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters

    International Nuclear Information System (INIS)

    Wang Yuan-Yuan; Ding Jian-Hua; Huang Shao-Song; Zhao Ji-Jun; Liu Wen-Bo; Ke Xiao-Qin; Wang Yun-Zhi; Zhang Chi

    2017-01-01

    A series of material parameters are derived from atomistic simulations and implemented into a phase field (PF) model to simulate void evolution in body-centered cubic (bcc) iron subjected to different irradiation doses at different temperatures. The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial. (paper)

  3. Nebular metallicities in two isolated local void dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia); Basurah, Hassan, E-mail: David.Nicholls@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah (Saudi Arabia)

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  4. Void coefficient of reactivity calculation for AP-600 core

    International Nuclear Information System (INIS)

    Suparlina, L.; Budiono, T.A.; Mardha, A.; Tukiran

    1998-01-01

    Void coefficient of reactivity as one of reactor kinetics parameters has been carried out. The calculation was done into two steps which is cell calculation using WIMSD/4 and core calculation using Batan-2DIFF code programs with the condition of beginning of cycle with all fresh fuels elements and all control rods withdrawn. The one dimension transport program in four neutron energy groups is used to calculate the cell generation of various core materials cell has been calculated in 1/4 fuel element with cluster model and square pitch arrange. Moderator density have been reduced until 20% for the void coefficient of reactivity calculation. Macroscopic cross-section as the out put of WIMSD/4 is being used as the input at the diffusion neutron program for core calculation. The void coefficient of reactivity of the AP-600 core can be determined with regular neutron flux and adjoint in four energy groups and X-Y geometry. The results is shown that the K eff calculation value is different 5.2% from the design data

  5. Nebular Metallicities in Two Isolated Local Void Dwarf Galaxies

    Science.gov (United States)

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  6. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Neustroev, V.S. [FSUE ' SSC RF Research Institute of Atomic Reactors' , Dimitrovgrad (Russian Federation)], E-mail: neustroev@niiar.ru; Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2009-04-30

    Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components and introducing limitations on low temperature handling especially. It is shown that the degradation is actually a form of quasi-embrittlement arising from intense flow localization with high levels of localized ductility involving micropore coalescence and void-to-void cracking. Voids initially serve as hardening components whose effect is overwhelmed by the void-induced reduction in shear and Young's moduli at high swelling levels. Thus the alloy appears to soften even as the ductility plunges toward zero on a macroscopic level although a large amount of deformation occurs microscopically at the failure site. Thus the failure is better characterized as 'quasi-embrittlement' which is a suppression of uniform deformation. This case should be differentiated from that of real embrittlement which involves the complete suppression of the material's capability for plastic deformation.

  7. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier in...

  8. Modification of redshift and luminosity by voids in the expanding universe

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Humitaka

    1985-03-01

    Propagation of light in a clumpy universe is examined for redshift and luminosity. Taking a spherical void model and Swiss Chesse model, the modification is found to be the third order of (Hrsub(b)/c) for the redshift and the first order of it for the luminosity, rsub(b) being the radius of a void or a Swiss Cheese hole.

  9. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  10. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel; Liu, Jinxing; El Sayed, Tamer S.

    2014-01-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood

  11. Noninvasive Medical Tools for Evaluating Voiding Pattern in Real Life

    Directory of Open Access Journals (Sweden)

    Kwonsoo Chun

    2017-04-01

    Full Text Available Voiding dysfunction is a common disease that contributes to a lower quality of life and has an increased prevalence in the elderly population. Noninvasive and objective methods such as uroflowmetry (UFM and voiding diaries (VDs are essential for exact diagnosis and effective treatment of this condition because patients with different causes of voiding dysfunction can complain of the same lower urinary tract symptoms. Further, different treatment options can be determined based on the diagnosis made from these symptoms. In order to improve the quality of UFM and VDs and to provide a convenient testing environment, several advances have been made by previous investigators. In this study, we investigate the history and technological mechanisms of UFM and VDs. We also aim to review UFM from the viewpoint of clinical and at-home uses, including the recently proposed toilet-shaped UFM and electronic VDs.

  12. Analysis of stress-strain relationship in materials containing voids by means of plastic finite element method

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Tabuchi, Masaaki

    2000-01-01

    Applying the finite element method in two dimensions, an analysis is performed to derive the stress-strain relationship of material containing voids in matrix, and which is subjected to large deformation. The conditions assumed for the analysis are applicability of continuum body mechanics, Mises yield criterion, J2 flow theory, power work-hardening, plane stress in two-dimensional system and uniform cyclically recurring void distribution. Taking as example a case of material presenting 0.3 work-hardening, it is indicated from the analysis that: With voids arrayed in square lattice, total elongation would be little affected by change in void size; With a void spacing in lattice of 10 μ m, a uniform elongation 12-14% should be obtained in a wide range of void sizes from 0.01 to 8.0 μm; Tensile strength should start to lower at a void areal fraction of around 1%; A sharply lowered uniform elongation of a level far below 1% should be presented by material of low work-hardening exponent. The severe decline of ductility seen with 316 stainless steel upon neutron irradiation at temperatures around 600 K is interpreted as resulting from a combination of low work-hardening and the presence of voids in matrix. (author)

  13. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-01-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface. - Highlights: • Dislocation mechanism of void growth at TB of nanotwinned nickel is investigated. • Deformation of the nanotwinned nickel is dominated by leading and trailing partials. • Growth of void at TB is caused by successive emission and escape of these partials.

  14. 40 CFR 1065.525 - Engine starting, restarting, shutdown, and optional repeating of void discrete modes.

    Science.gov (United States)

    2010-07-01

    ..., and optional repeating of void discrete modes. 1065.525 Section 1065.525 Protection of Environment... repeating of void discrete modes. (a) Start the engine using one of the following methods: (1) Start the... during one of the modes of a discrete-mode test, you may void the results only for that individual mode...

  15. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    Science.gov (United States)

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account.

  16. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Stuart Davis [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Jensen, Niels G [Los Alamos National Laboratory

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in a micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.

  17. The Effect of Void Shape on the Mechanical Properties of Rock

    International Nuclear Information System (INIS)

    D.O. Potyondy

    2006-01-01

    The bonded-particle model for rock (Potyondy and Cundall, 2004) represents rock by a dense packing of non-uniform-sized circular or spherical particles that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct-element method using the two- and three-dimensional programs PFC2D and PFC3D. A bonded-particle model of lithophysal tuff has been used to study the effect of lithophysae (hollow, bubble-like voids) on the mechanical properties (Young's modulus and unconfined compressive strength) of this rock, and to quantify the variability of these properties. The model reproduces the failure mechanisms observed in the laboratory and exhibits a reduction of strength and modulus with increasing lithophysal volume fraction. The effect of void shape on mechanical properties is studied by inserting randomly distributed voids of simple shape (circle, triangle and star) and by inserting voids corresponding with lithophysal cavities identified in panel maps of the walls of a tunnel through this material. These studies address tunnel-stability issues associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed US high-level nuclear waste repository

  18. Effects contributing to positive coolant void reactivity in CANDU

    International Nuclear Information System (INIS)

    Whitlock, J.J.; Garland, W.J.; Milgram, M.S.

    1995-01-01

    The lattice cell code WIMS-AECL (Ref. 3) is used to model a typical CANDU lattice cell, using nominal geometric bucklings, the PIJ option, and 69-group Winfrith library. The effect of cell voiding is modeled as a 100% instantaneous removal of coolant from the lattice. This is conservative because of the neglect of time dependence and partial core voiding, considered more plausible in CANDU. Results are grouped into three spectral groups: fast neutrons (0.821 to 10 MeV), epithermal neutrons (0.625 eV to 0.821 MeV), and thermal neutrons (<0.625 eV)

  19. Effect of Initial Moisture Content on the in-Vessel Composting Under Air Pressure of Organic Fraction of MunicipalSolid Waste in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelhadi Makan

    2013-01-01

    Full Text Available This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  20. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    Science.gov (United States)

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  1. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    Directory of Open Access Journals (Sweden)

    Mountadar Mohammed

    2013-01-01

    Full Text Available Abstract This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  2. Analysis of sodium-void experiments in ZPPR-3 modified Phase 3 core

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.

    1978-08-01

    An analysis is presented of a series of sodium-void reactivity measurements performed in assembly 3 of Zero Power Plutonium Reactor (ZPPR-3), a mockup of the US Demoplant. In this series, large-zone sodium-void effects were studied in detail in the presence of many singularities, namely, control rods (CRs) and control rod positions (CRPs). The Karlsruhe data-and-method have been applied to an analysis of these experiments, and the results are presented. The work is aimed at complementing the sodium-void reactivity analysis based on the SNEAK experiments, where it was difficult to simulate a large plutonium-core of a prototype fast breeder reactor.

  3. Accurate reactivity void coefficient calculation for the fast spectrum reactor FBR-IME

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fabiano P.C.; Vellozo, Sergio de O.; Velozo, Marta J., E-mail: fabianopetruceli@outlook.com, E-mail: vellozo@cbpf.br, E-mail: martajann@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Militar

    2017-07-01

    This paper aims to present an accurate calculation of the void reactivity coefficient for the FBR-IME, a fast spectrum reactor in development at the Engineering Military Institute (IME). The main design peculiarity lies in using mixed oxide [MOX - PuO{sub 2} + U(natural uranium)O{sub 2}] as fuel core. For this task, SCALE system was used to calculate the reactivity for several voids distributions generated by bubbles in the sodium beyond its boiling point. The results show that although the void reactivity coefficient is positive and location dependent, they are offset by other feedback effects, resulting in a negative overall coefficient. (author)

  4. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel

    2014-07-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.

  5. Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Subing [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Zhanbing, E-mail: yangzhanbing@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Hui [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Watanabe, Seiichi; Shibayama, Tamaki [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2017-05-15

    Large amounts of void swelling still limit the application of austenitic stainless steels in nuclear reactors due to radiation-induced lattice point defects. In this study, laser and/or beam irradiation was conducted in a temperature range of 573–773 K to explore the suppression of void swelling. The results show that during sequential laser-electron beam irradiation, the void nucleation is enhanced because of the vacancy clusters and void nuclei formed under pre-laser irradiation, causing greater void swelling than single electron beam irradiation. However, simultaneous laser-electron dual-beam irradiation exhibits an obvious suppression effect on void swelling due to the enhanced recombination between interstitials and vacancies in the temperature range of 573–773 K; especially at 723 K, the swelling under simultaneous dual-beam irradiation is 0.031% which is only 22% of the swelling under electron beam irradiation (0.137%). These results provide new insight into the suppression of void swelling during irradiation. - Highlights: •The temperature dependence of void swelling under simultaneous laser-electron dual-beam irradiation has been investigated. •Pre-laser irradiation enhances void nucleation at temperatures from 573 K to 773 K. •Simultaneous laser-electron dual-beam irradiation suppresses void swelling in the temperature range of 573–773 K.

  6. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.

    2002-01-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain......-size-dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under...

  7. Void swelling and segregation in dilute nickel alloys

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Five binary alloys containing 1 at.% of Al, Ti, Mo, Si and Be in nickel were irradiated at temperatures from 525 to 675 0 C with 3.5-MeV 58 Ni + ions. The resultant microstructures were examined by TEM, and void diameters, number densities and swelling are presented for each alloy over the temperature interval investigated. A systematic relation between solute misfit (size factor) and void swelling is established for these alloys. Solute concentration profiles near the irradiated surface were determined and these also exhibited a systematic behavior--undersize solutes segregated to the surface, whereas oversize solutes were depleted. The results are consistent with calculations based on strong interstitial-solute trapping by undersize solutes and vacancy-solute trapping by oversize solutes that are weak interstitial traps

  8. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    OpenAIRE

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-01

    Abstract This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreove...

  9. Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Dahl, Jonas; Tvergaard, Viggo

    2012-01-01

    the numerical analysis, which is also reflected in published literature. Rather than moving towards very low triaxiality shearing, work has focused on extracting wide-ranging results for moderate stress triaxiality (T ~ 1), in order to achieve sufficient understanding of the influence of initial porosity, void...... significant straining of the matrix material located on the axis of rotation. In particular, the void surface material is severely deformed during shearing and void surface contact is established early in the deformation process. This 3D effect intensifies with decreasing stress triaxiality and complicates...... shape, void orientation etc. The objective of this work is to expand the range of stress triaxiality usually faced in 3D cell model studies, such that intense shearing is covered, and to bring forward details on the porosity and void shape evolution. The overall material response is presented...

  10. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    International Nuclear Information System (INIS)

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  11. Vesico-ureteral reflux: diagnosis and staging with voiding color doppler US Preliminary experience

    International Nuclear Information System (INIS)

    Farina, Renato; Arena, Carmela; Pennisi, Francesco; Di Benedetto, Vincenzo; Politi, Guido; Di Benedetto, Aurelio

    2000-01-01

    Introduction: The aim of this study is to assess the accuracy of a new US examination: 'voiding color Doppler US ' in the early diagnosis and staging of vesico-ureteral reflux (VUR). The contrast agent US was SH U 508A (Levovist, Schering, Berlin), which produces a chromatic accentuation of the signals picked up by the color Doppler US. Eighteen patients (10 females, eight males) were recruited for the study. In two patients a second examination was performed for follow-up after a VUR conservative therapy. All patients were taken under examination for the evaluation of possible VUR. In all patients the voiding color Doppler US was followed by voiding cystourethrography (VCUG) and the data obtained were compared. Materials and methods: A total of 18 patients aged between 3 months and 10 years, were recruited for the study. The results of the examination were the following: urinary tract infections, follow-up of VUR after conservative or surgical therapy, miscellaneous indications. Voiding color Doppler US was performed, followed by a VCUG. The voiding color Doppler US consists in the trans-catheter introduction of a contrast agent SHU 508 A (Levovist, Schering, Ag. Berlin) into the bladder and a subsequent test with the color Doppler US to show or exclude the presence of reflux into the ureters and/or into the pyelo-caliceal cavity of the kidneys. After the introduction of the contrast agent US the ultrasound scanning of the bladder, the ureters and the pyelo-caliceal cavity was performed to examine the reflux degree. The ultrasonographic investigations were perfomed with AU 590 asyncronus US (Esaote Biomedica, Genova) with a 3.5 MHz convex probe. Results: After the trans-catheter introduction of the contrast agent US, vesico-ureteral reflux occured in 13 patients (77.2%). The reflux degree was also measured by means of ultrasound and was later confirmed by VCUG. The mean times of each examination were as follows: initial US, 10 min; catheterization, 8 min; voiding

  12. Microstructural characterization of XLPE electrical insulation in power cables: determination of void size distributions using TEM

    International Nuclear Information System (INIS)

    Markey, L; Stevens, G C

    2003-01-01

    In an effort to progress in our understanding of the ageing mechanisms of high voltage cables submitted to electrical and thermal stresses, we present a quantitative study of voids, the defects which are considered to be partly responsible for cable failure. We propose a method based on large data sets of transmission electron microscopy (TEM) observations of replicated samples allowing for the determination of void concentration distribution as a function of void size in the mesoscopic to microscopic range at any point in the cable insulation. A theory is also developed to calculate the effect of etching on the apparent size of the voids observed. We present the first results of this sort ever obtained on two industrial cables, one of which was aged in an AC field. Results clearly indicate that a much larger concentration of voids occur near the inner semiconductor compared to the bulk of the insulation, independently of ageing. An effect of ageing can also be seen near the inner semiconductor, resulting in an increase in the total void internal surface area and a slight shift of the concentration curve towards larger voids, with the peak moving from about 40 nm to about 50 nm

  13. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    carbon (CCCsoils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after......To improve our understanding of how clay-organic carbon dynamics affect soil aggregate strength and physical resilience, we selected three nearby soils (MFC,Mixed Forage Cropping; MCC,Mixed Cash Cropping; CCC, Cereal Cash Cropping)with identical clay content and increasing contents of organic...

  14. Emission-line galaxies toward the booetes void

    International Nuclear Information System (INIS)

    Moody, J.W.

    1986-01-01

    Galaxies with strong emission are potentially useful as probes of the large-scale galaxian distribution. However, to serve as probes, their relative frequency and clustering properties must be known. This dissertation presents a study of these properties for field galaxies having [OIII] λ5007 emission equivalent widths greater than 10 A and reports on a search for galaxies with [OIII] λ5007 emission in the direction of the Booetes void, a volume located at α = 4/sup h/48/sup m/, δ = 47 0 , and cz = 15,000 km/sec that has been demonstrated to be under-abundant in galaxies by a factor of at least four. The study of field emission-line galaxies was done in two magnitude limited surveys consisting of 341 galaxies from both the north and south galactic caps having previously published redshifts and photometry. The galaxy spectra used for redshifts were examined and supplemented by new observations for 56 objects, primarily those with confirmed or suspected emission. Emission-line galaxies were found to comprise 8.8% of galaxies in a Illa-J selected sample or 6.6% of galaxies in a Illa-F selected sample. A search for emission-line galaxies towards the Booetes void was undertaken using the Burrell Schmidt telescope and an objective prism giving a reciprocal dispersion of 900 A/mm at Hβ. Three galaxies were found to lie within it, a result consistent with distributions through the void ranging from uniform to under-abundant by a factor of three

  15. Void analysis of target residues at SPS energy -evidence of correlation with fractal behaviour

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Deb, Argha; Das, Rupa . E-mail : dipakghosh_in@yahoo.com

    2007-01-01

    This paper presents an analysis of the target residues in 32 S -AgBr and 16 0 -AgBr interactions at 200 AGeV and 60AGeV respectively in terms of fractal moment by Takagi method and void probability scaling. The study reveals an interesting feature of the production process. In 16 O- AgBr interactions multifractal behaviour is present in both hemispheres and void probability does not show a scaling behaviour, but at high energy the situation changes. In 32 S -AgBr interactions for both hemisphere monofractal behaviour is indicated by that data and void probability also shows good scaling behaviour. This suggests that a possible correlation of void probability with fractal behaviour of target residues. (author)

  16. Supernovae observations in a 'meatball' universe with a local void

    International Nuclear Information System (INIS)

    Kainulainen, Kimmo; Marra, Valerio

    2009-01-01

    We study the impact of cosmic inhomogeneities on the interpretation of observations. We build an inhomogeneous universe model without dark energy that can confront supernova data and yet is reasonably well compatible with the Copernican principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

  17. Supernovae observations in a 'meatball' universe with a local void

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, Kimmo; Marra, Valerio [Department of Physics, University of Jyvaeskylae, PL 35 (YFL), FIN-40014 Jyvaeskylae, Finland and Helsinki Institute of Physics, University of Helsinki, PL 64, FIN-00014 Helsinki (Finland)

    2009-12-15

    We study the impact of cosmic inhomogeneities on the interpretation of observations. We build an inhomogeneous universe model without dark energy that can confront supernova data and yet is reasonably well compatible with the Copernican principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

  18. Supernovae observations in a ``meatball'' universe with a local void

    Science.gov (United States)

    Kainulainen, Kimmo; Marra, Valerio

    2009-12-01

    We study the impact of cosmic inhomogeneities on the interpretation of observations. We build an inhomogeneous universe model without dark energy that can confront supernova data and yet is reasonably well compatible with the Copernican principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

  19. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-ichi; Maruhashi, Akira

    2006-01-01

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger

  20. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours

    Science.gov (United States)

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-ichi; Maruhashi, Akira

    2006-03-01

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  1. An assessment of void fraction correlations for vertical upward steam-water flow

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Maruthi Ramesh, N.; Pilkhwal, D.S.; Saha, D.

    1997-01-01

    An assessment of sixteen void fraction correlations have been carried out using experimental void fraction data compiled from open literature for vertical upward steam-water flow. Nearly 80% of all the data pertained to natural circulation flow. This assessment showed that best prediction is obtained by Chexal et al. (1996) correlation followed by Hughmark (1965) and the Mochizuki and Ishii (1992) correlations. The Mochizuki-Ishii correlation is found to satisfy all the three limiting conditions whereas Chexal et al. (1996) correlation satisfies all the limiting conditions at moderately high mass fluxes (greater than 140 kg/m 2 s) while Hughmark correlation satisfies only one of the three limiting conditions. The available void fraction data in the open literature for steam-water two-phase flow lies predominantly in the low quality region. This is the reason why correlations like Hughmark which do not satisfy the upper limiting condition (i.e. at x=1, α=1) perform rather well in assessments. Additional work is required for the generation of high quality (greater than 40%) void fraction data. (author)

  2. Theories of nucleation and growth of bubbles and voids

    International Nuclear Information System (INIS)

    Speight, M.V.

    1977-01-01

    The application of classical nucleation theory to the formation of voids from a supersaturated concentration of vacancies is reviewed. The effect of a dissolved concentration of barley soluble gas on the nucleation rate of voids is emphasized. Exposure to a damaging flux of irradiation is the most effective way of introducing a vacancy supersaturation, but interstitials are produced at an equal rate. The concentration of interstitials inhibits the nucleation of voids which can occur only in the presence of dislocations since they preferentially absorb interstitials. It is well known that a definite value of internal gas pressure is necessary to stabilize a bubble so that it shows no tendencies to either shrink or grow. The arguments are reviewed which conclude that this pressure is determined by the specific surface free energy of the solid rather than the surface tension. While the former property refers to the energy necessary to create new surface, the latter is a measure of the work done in elastically stretching a a given surface. The presence of an equilibrium gas bubble leaves the stresses in the surrounding solid unperturbed only when surface energy and surface tension are numerically equal. A bubble with internal pressure greater than the restraint offered by surface energy tends to grow to relieve the excess pressure. The mechanism of growth can involve the migration of vacancies from remote sources to the bubble surface or the plastic straining of the solid surrounding the bubble. The kinetics of both mechanisms are developed and compared. The theory of growth of grain-boundary voids by vacancy condensation under an applied stress is also considered. (author)

  3. Void nucleation by the helium atoms during lifetime of reactor pressure vessel

    International Nuclear Information System (INIS)

    Rahman, F.A.

    1984-01-01

    Void formation and growth has a great influence on the reactor pressure vessel steels during its lifetime and during post-irradiation annealing to increase its life. The present investigation aimed at the fact that if one can prevent void nucleation, accordingly one would not wary about void formation and growth. From that concept a model for helium production by transmutation reaction and corresponding swelling under irradiation conditions for several number of steels have been developed. This was done for recommending a steel type that can oppose such a phenomena. In the same time the present investigation gives a procedure utilizing such phenomena for checking the validity of pressure vessel steel used in the NPP

  4. Herpes zoster-associated voiding dysfunction in hematopoietic malignancy patients.

    Science.gov (United States)

    Imafuku, Shinichi; Takahara, Masakazu; Uenotsuchi, Takeshi; Iwato, Koji; Furue, Masutaka

    2008-01-01

    Voiding dysfunction is a rare but important complication of lumbo-sacral herpes zoster. Although the symptoms are transient, the clinical impact on immunocompromised patients cannot be overlooked. To clarify the time course of voiding dysfunction in herpes zoster, 13 herpes zoster patients with voiding dysfunction were retrospectively analyzed. Of 13 patients, 12 had background disease, and six of these were hematopoietic malignancies; four of these patients were hematopoietic stem cell transplant (HSCT) recipients. Ten patients had sacral lesions, two had lumbar, and one had thoracic lesions. Interestingly, patients with severe rash, or with hematopoietic malignancy had later onset of urinary retention than did patients with mild skin symptoms (Mann-Whitney U analysis, P = 0.053) or with other background disease (P = 0.0082). Patients with severe skin rash also had longer durations (P = 0.035). In one case, acute urinary retention occurred as late as 19 days after the onset of skin rash. In immune compromised subjects, attention should be paid to patients with herpes zoster in the lumbo-sacral area for late onset of acute urinary retention even after the resolution of skin symptoms.

  5. Study on influence of flow rates on voids in waxy crude oil subjected to dynamic and static cooling

    Directory of Open Access Journals (Sweden)

    Girma T. Chala

    2015-12-01

    Full Text Available The assumption of constant yield stress in the conventional restart pressure equation neglects the effects of thermal shrinkage and gas voids formation, which in turn resulted in an over-designed production piping systems. This paper presents a study on the effects of flow rates on the formation of voids in gelled waxy crude oil. A flow loop rig simulating offshore waxy crude oil transportation was used to produce a gel. A Magnetic Resonance Imaging (MRI was used to scan the gelled crude oil over the three planes. Waxy crude oil underwent both dynamic and static cooling to observe the effects of volume flow rates on the voids formed in wax-oil gel. Volume flow rate was found to have different influences on the intra-gel voids in the pipeline. A volume flow rate of 5 L/min resulted in a maximum total voids volume of 6.98% while 20 L/min produced a minimum total voids volume of 5.67% in the entire pipe. Slow flow rates resulted in a larger voids volume near the pipe wall. In contrast, faster flow rates produced insignificantly higher voids volume around pipe core. Generally, slower flow rates favoured the formation of higher total voids volume following sufficient steady time of wax crystal formation, producing larger voids areas in gelled waxy crude oil.

  6. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    KAUST Repository

    Liu, Jinxing; El Sayed, Tamer S.

    2012-01-01

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes

  7. Influence of composition and substrate bias on structure and inert-gas content of sputter-deposited Ni-La alloys

    International Nuclear Information System (INIS)

    Knoll, R.W.; McClanahan, E.D.

    1982-09-01

    X-ray diffraction patterns show that the disappearance of crystallinity in the deposit occurs gradually as the La content increases. At the same time, the deposit becomes saturated with Kr. Because there is no evidence of crystalline La metal or Ni-La intermetallic phase in the diffraction data, it may be concluded that each La atom creates a highly disordered (amorphous) region in the lattice, and that this region contains interstitial voids large enough to capture inert gas atoms. Saturation of the gas content with respect to La/Ni ratio might commence when these disordered regions begin to impinge upon one another. Finally, if inert gas atoms occupy interstitial voids within the deposit, then determination of the gas trapping characteristics of the material, using inert gas ions of different sizes, may be a means of studying the structure of glassy vapor-deposited materials. For example, the size distribution of the interstitial voids might be determined in this manner

  8. Cluster-void degeneracy breaking: Modified gravity in the balance

    Science.gov (United States)

    Sahlén, Martin; Silk, Joseph

    2018-05-01

    Combining galaxy cluster and void abundances is a novel, powerful way to constrain deviations from general relativity and the Λ CDM model. For a flat w CDM model with growth of large-scale structure parametrized by the redshift-dependent growth index γ (z )=γ0+γ1z /(1 +z ) of linear matter perturbations, combining void and cluster abundances in future surveys with Euclid and the four-meter multiobject spectroscopic telescope could improve the figure of merit for (w ,γ0,γ1) by a factor of 20 compared to individual abundances. In an ideal case, improvement on current cosmological data is a figure of merit factor 600 or more.

  9. Voiding dysfunction after abdominal radical hysterectomy. Comparison between patients with and without adjuvant irradiation therapy

    International Nuclear Information System (INIS)

    Ueda, Tomohiro; Yamauchi, Tamio; Kageyama, Susumu; Tsuzuki, Masahiro; Kawakami, Satoru; Yonese, Junji; Kawai, Tsuneo

    1994-01-01

    We evaluated 59 patients with voiding dysfunction after abdominal radical hysterectomy for uterine cancer. Of 59 patients, 45 underwent the surgery alone, and the other 14 underwent surgery and postoperative radiotherapy. Irradiation (mean dose, 60 Gy) was performed in bilateral commoni iliac regions excluding the bladder. In principle, the indwelling urethral catheter was removed 4 days after operation. All patients were followed up at the gynecologocal department until the onset of the voiding dysfunction. The mean interval between operation and the onset of voiding dysfunction was significantly longer (P<0.01) in the group treated by surgery alone (7.9 years) than in the group treated by surgery in combination with radiotherapy (3.8 year). Voiding dysfunction developed earlier as the age at the time of operation was higher. No differences were observed in the volume of residual urine, the detrusor function, or the incidence of urinary tract infection between the two groups. These results suggest that aged patients develop voiding dysfunction earlier after radical hysterectomy than young patients, and postoperative radiotherapy shortens the interval between operation and the onset of postoperative voiding dysfunction. (author)

  10. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  11. Study on identically voided pervious concrete made with different sized aggregates

    Science.gov (United States)

    Kastro Kiran, V.; Anand, K. B.

    2018-02-01

    Pervious concrete (PC) is also known as no fines concrete and has been found to be a reliable stormwater management tool. As a substitution for conventional impervious pavement, PC usage has been increasing during recent years. PC made with different sized aggregate shows different void ratios and changed properties. As void ratio plays a notable role on strength and permeability of PC, this study aims to focus on properties of PC at identical void ratio of 20%, made using aggregates of three size ranges, viz., 4.75-6mm, 10-12.5mm, and 10-20mm. Appropriate alternatives were used to maintain the identical void ratio. As the permeation capacity of PC gets reduced due to the clogging tendency, the life of PC will also get reduced. Hence, to make the PC to sustain for a long time it is necessary to study the clogging behavior. This study investigates the tendency of PC for clogging and the potential for regaining the permeability through de-clogging methods. Clogging tendency of PC is studied by using two sizes (coarse and fine) of clog particles and the changes in permeability are observed. Efficiency of declogging methods like pressure washing and vacuum suction on PC with different sized aggregates are also evaluated.

  12. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.

    Science.gov (United States)

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-08-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.

  13. Partial discharge patterns related to surface deterioration in voids in epoxy

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens

    1990-01-01

    Results are presented from an investigation of the relationship between changes in partial discharge patterns and the surface deterioration process taking place in small naturally formed spherical voids in epoxy plastic. The voids were exposed to a moderate electric stress above inception level......, where partial discharges were present for more than 1500 h. Two types of electrical tree growth were found, the bush like tree and a single channel-like tree, which led to very different partial discharge patterns. It is concluded that the formation of crystals on a void surface leads to an immediate...... and easy-to-detect increase in the partial discharge activity with subsequent severe surface deterioration (deep pit formations) in the vicinity of the crystal. However, the partial discharge signal from a specimen with a black channel-like tree structure did not give any indication of channel growth...

  14. Self-organization of voids, gas bubbles and dislocation patterns under irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.

    1993-01-01

    In the present paper three examples of self-organization in solids under irradiation are considered on the basis of original mechanisms, namely, the ordering of voids in void lattices under high temperature irradiation, the alignment of gas bubbles in bubble lattices under low-temperature gas atom implantation, and the formation of superdislocations (one-dimensional pile-ups of dislocation loops) and other dislocation patterns in the regimes of medium and high temperature irradiation. The ordering of cavities (i.e.voids or gas bubbles) is shown to arise due to a dissipative interaction between cavities induced by the interstitial dislocation loop absorption and punching, respectively, which represent anisotropic mechanisms of atomic transport. The dislocation patterning is shown to be driven by the dependence of dislocation bias for absorption of self-interstitial atoms on the dislocation arrangement. (author). 57 refs., 1 tab., 12 figs

  15. Calculation of the void reactivity of CANDU lattices using the SCALE code system

    Energy Technology Data Exchange (ETDEWEB)

    Valko, J. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Feher, S. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Slobben, J. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-11-01

    The reactivity effect of coolant voiding in CANDU-type fuel lattices has been calculated with different methods using the SCALE code system. The known positive void reactivity coefficient of the original lattice was correctly obtained. A modified fuel bundle containing dysprosium and slightly enriched uranium to eliminate the positive reactivity effect was also calculated. Owing to the increased heterogeneity of this modified fuel the one-dimensional cylindrical calculation with XSDRN proved to be inadequate. Code options allowing bundle geometry were successfully used for the calculation of the strongly space dependent flux and spectrum changes which determine the void reactivity. (orig.).

  16. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.

    1992-01-01

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions

  17. Urethane foam void filling. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Under the decontamination and decommissioning (D and D) Implementation Plan of the United States Department of Energy's (DOE's) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP's OSDF are provisions to protect against subsidence of the OSDF's cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create depressions in the OSDF's cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP's OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene torch was the baseline approach used by the FEMP's D and D contractor on Plant 1, B and W Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, it is time-consuming, labor-intensive and costly. Use of the oxy-acetylene torch exposes workers to health and safety hazards including the risk of burns, carbon monoxide, and airborne contamination of residual lead-based paints and other contaminants on the surface of the components being segmented. In addition, solvents used to remove paint from the components before segmenting them emit flammable, noxious fumes. This demonstration investigated the feasibility of placing large vessels intact in the OSDF without segmenting them. To prevent the walls of the vessels from collapsing under the overburden or from degradation, an innovative approach was employed which involved filling the voids in the vessels with a fluid material that hardened on standing. The hardened filling would support the walls of the vessels, and prevent them from collapsing. This report

  18. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  19. Prediction of the theoretical capacity of non-aqueous lithium-air batteries

    International Nuclear Information System (INIS)

    Tan, Peng; Wei, Zhaohuan; Shyy, W.; Zhao, T.S.

    2013-01-01

    Highlights: • The theoretical capacity of non-aqueous lithium-air batteries is predicted. • Key battery design parameters are defined and considered. • The theoretical battery capacity is about 10% of the lithium capacity. • The battery mass and volume changes after discharge are also studied. - Abstract: In attempt to realistically assess the high-capacity feature of emerging lithium-air batteries, a model is developed for predicting the theoretical capacity of non-aqueous lithium-air batteries. Unlike previous models that were formulated by assuming that the active materials and electrolyte are perfectly balanced according to the electrochemical reaction, the present model takes account of the fraction of the reaction products (Li 2 O 2 and Li 2 O), the utilization of the onboard lithium metal, the utilization of the void volume of the porous cathode, and the onboard excess electrolyte. Results show that the gravimetric capacity increases from 1033 to 1334 mA h/g when the reaction product varies from pure Li 2 O 2 to pure Li 2 O. It is further demonstrated that the capacity declines drastically from 1080 to 307 mA h/g when the case of full utilization of the onboard lithium is altered to that only 10% of the metal is utilized. Similarly, the capacity declines from 1080 to 144 mA h/g when the case of full occupation of the cathode void volume by the reaction products is varied to that only 10% of the void volume is occupied. In general, the theoretical gravimetric capacity of typical non-aqueous lithium-air batteries falls in the range of 380–450 mA h/g, which is about 10–12% of the gravimetric capacity calculated based on the energy density of the lithium metal. The present model also facilitates the study of the effects of different parameters on the mass and volume change of non-aqueous lithium-air batteries

  20. Manipulating ship fuel sulfur content and modeling the effects on air quality and climate

    Science.gov (United States)

    Partanen, Antti-Ilari; Laakso, Anton; Schmidt, Anja; Kokkola, Harri; Kuokkanen, Tuomas; Kerminen, Veli-Matti; Lehtinen, Kari E. J.; Laakso, Lauri; Korhonen, Hannele

    2013-04-01

    Aerosol emissions from international shipping are known to cause detrimental health effects on people mainly via increased lung cancer and cardiopulmonary diseases. On the other hand, the aerosol particles from the ship emissions modify the properties of clouds and are believed to have a significant cooling effect on the global climate. In recent years, aerosol emissions from shipping have been more strictly regulated in order to improve air quality and thus decrease the mortality due to ship emissions. Decreasing the aerosol emissions from shipping is projected to decrease their cooling effect, which would intensify the global warming even further. In this study, we use a global aerosol-climate model ECHAM5.5-HAM2 to test if continental air quality can be improved while still retaining the cooling effect from shipping. The model explicitly resolves emissions of aerosols and their pre-cursor gases. The model also calculates the interaction between aerosol particles and clouds, and can thus predict the changes in cloud properties due to aerosol emissions. We design and simulate a scenario where ship fuel sulfur content is strictly limited to 0.1% near all coastal regions, but doubled in the open oceans from the current global mean value of 2.7% (geo-ships). This scenario is compared to three other simulations: 1) No shipping emissions at all (no-ships), 2) present-day shipping emissions (std-ships) and 3) a future scenario where sulfur content is limited to 0.1% in the coastal zones and to 0.5% in the open ocean (future-ships). Global mean radiative flux perturbation (RFP) in std-ships compared to no-ships is calculated to be -0.4 W m-2, which is in the range of previous estimates for present-day shipping emissions. In the geo-ships simulation the corresponding global mean RFP is roughly equal, but RFP is spatially distributed more on the open oceans, as expected. In future-ships the decreased aerosol emissions provide weaker cooling effect of only -0.1 W m-2. In

  1. Transient analysis of air-water two-phase flow in channels and bends

    International Nuclear Information System (INIS)

    Khan, H.J.; Ye, W.; Pertmer, G.A.

    1992-01-01

    The algorithm used in this paper is the Newton Block Gauss Seidel method, which has been applied to both simple and complex flow conditions in two-phase flow. This paper contains a description of difference techniques and an iterative solution algorithm that is used to solve the field and constitutive equations of the two-fluid model. In practice, this solution procedure has been proven to be stable and capable of generating solutions in problems where other schemes have failed. The method converges rapidly for reasonable error tolerances and is easily extended to three-dimensional geometries. Using air-water as the two-phase medium, transient flow behavior in several geometries of interest are shown. Flow through a vertical channel with flow obstruction, large U bends, and 90-deg bends are being demonstrated with variation of inlet void fraction and slip ratio. Significant changes in the velocity and void distribution profiles have been observed. Various regions of flow recirculation are obtained in the flow domain for each phase. The phasic velocity and void distributions are dominated by gravity-induced phase separation causing air to accumulate in the upper region. The influence of inlet slip ratio and interfacial momentum transfer on the transient flow profile has been demonstrated in detail

  2. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

  3. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  4. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    Science.gov (United States)

    Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.

    2011-10-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.

  5. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  6. A variational constitutive model for the distribution and interactions of multi-sized voids

    KAUST Repository

    Liu, Jinxing; El Sayed, Tamer S.

    2013-01-01

    of the radii of the voids. In this study, we use a new form of the incompressibility of the matrix to propose the formula for the volumetric plastic energy of a void inside a porous medium. As a consequence, we are able to account for the weakening effect

  7. A model for void-induced back reaction between radiolytic products in NaCl

    NARCIS (Netherlands)

    Turkin, A.A.; Dubinko, V.I.; Vainshtein, D.I.; Hartog, H.W. den

    A kinetic model is formulated for the chemical reaction between radiolytic sodium colloids and gas bubbles, which are brought into contact with each other during the exposure to ionising radiation by the growing voids. The reaction starts with the evaporation of Na atoms into the void due to the

  8. Diffusion in and around alginate and chitosan films with embedded sub-millimeter voids

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Subhajit; Bal, Dharmendra Kumar; Ganguly, Somenath, E-mail: snganguly@che.iitkgp.ernet.in

    2016-02-01

    Hydrogel scaffolds from biopolymers have potential use in the controlled release of drugs, and as 3-D structure for the formation of tissue matrix. This article describes the solute release behavior of alginate and chitosan films with embedded voids of sub-millimeter dimensions. Nitrogen gas was bubbled in a fluidic arrangement to generate bubbles, prior to the crosslinking. The crosslinked gel was dried in a vacuum oven, and subsequently, soaked in Vitamin B-12 solution. The dimensions of the voids immediately after the cross-linking of gel, and also after complete drying were obtained using a digital microscope and scanning electron microscope respectively. The porosity of the gel was measured gravimetrically. The release of Vitamin B-12 in PBS buffer on a shaker was studied. The release experiments were repeated at an elevated temperature of 37 °C in the presence of lysozyme. The diffusion coefficient within the gel layer and the mass transfer coefficient at the interface with the bulk-liquid were estimated using a mathematical model. For comparison, the experiment was repeated with a film that does not have any embedded void. The enhancement in diffusion coefficient due to the presence of voids is discussed in this article. - Highlights: • Formation of sub-millimeter voids in biopolymer films using fluidic arrangement • The retention of self-assembled bubbles in films after crosslinking, and drying • The enhancement observed in release of model drug with introduction of voids • The diffusion coefficients in and around biopolymer films from model regression • Use of classical model in explaining release profiles from dual porosity media.

  9. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  10. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  11. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    Science.gov (United States)

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  12. Void fraction in horizontal bulk flow boiling at high flow qualities

    International Nuclear Information System (INIS)

    Collado, Fancisco J.; Monne, Carlos; Pascau, Antonio

    2008-01-01

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities (≤0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality (≤0.2)

  13. Finite Element Analysis of Transverse Compressive Loads on Superconducting Nb3Sn Wires Containing Voids

    Science.gov (United States)

    D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration

    2015-11-01

    High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.

  14. An analytical approach to the positive reactivity void coefficient of TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Edgue, Erdinc; Yarman, Tolga

    1988-01-01

    Previous calculations of reactivity void coefficient of I.T.U. TRIGA Mark-II Reactor was done by the second author et al. The theoretical predictions were afterwards, checked in this reactor experimentally. In this work an analytical approach is developed to evaluate rather quickly the reactivity void coefficient of I.T.U. TRIGA Mark-II, versus the size of the void inserted into the reactor. It is thus assumed that the reactor is a cylindrical, bare nuclear system. Next a belt of water of 2πrΔrH is introduced axially at a distance r from the center line of the system. r here, is the thickness of the belt, and H is the height of the reactor. The void is described by decreasing the water density in the belt region. A two group diffusion theory is adopted to determine the criticality of our configuration. The space dependency of the group fluxes are, thereby, assumed to be J 0 (2.405 r / R) cos (π Z / H), the same as that associated with the original bare reactor uniformly loaded prior to the change. A perturbation type of approach, thence, furnishes the effect of introducing a void in the belt region. The reactivity void coefficient can, rather surprisingly, be indeed positive. To our knowledge, this fact had not been established, by the supplier. The agreement of our predictions with the experimental results is good. (author)

  15. Near‐surface void detection using a seismic landstreamer and horizontal velocity and attenuation tomography

    Science.gov (United States)

    Buckley, Sean F.; Lane, John W.

    2012-01-01

    The detection and characterization of subsurface voids plays an important role in the study of karst formations and clandestine tunnels. Horizontal velocity and attenuation tomography (HVAT) using offset‐fan shooting and a towed seismic land streamer is a simple, rapid, minimally invasive method that shows promise for detecting near‐surface voids and providing information on the orientation of linear voids. HVAT surveys were conducted over a known subsurface steam tunnel on the University of Connecticut Depot Campus, Storrs, Connecticut. First‐arrival travel‐time and amplitude data were used to produce two‐dimensional (2D) horizontal (map view) velocity and attenuation tomograms. In addition, attenuation tomograms were produced based on normalized total trace energy (TTE). Both the velocity and TTE attenuation tomograms depict an anomaly consistent with the location and orientation of the known tunnel; the TTE method, however, requires significantly less processing time, and therefore may provide a path forward to semi‐automated, near real‐time detection of near‐surface voids. Further study is needed to assess the utility of the HVAT method to detect deeper voids and the effects of a more complex geology on HVAT results.

  16. Coolant void effect investigation - case of a na-cooled fast reactor

    International Nuclear Information System (INIS)

    Glinatsis, G.; Gugiu, D.

    2013-01-01

    In the frame of the last EURATOM-FP7 Program, a large sized Sodium-cooled FR (SFR) has been studied. Mixed carbides fuel (U, Pu)C has been adopted for the backup core solution and important work has been also performed in order to obtain an ''optimised'' backup configuration ''close'' to the reference one, which is fueled by mixed oxides fuel (U, Pu)Ox. The peculiarity of both core designs (the reference configuration and the optimised backup configuration) is the adoption of a 60 cm Plenum zone in the upper part of each fuel assembly (FA), that is filled by coolant, in order to mitigate (when emptied) the core positive coolant void effect. This paper presents some results of a detailed study of the coolant void effect for the above SFR with mixed carbides core. Many aspects, like geometric heterogeneity, the burnup state, the operating conditions, etc., have been taken into consideration in order to obtain information about the ''propagation'' and the behaviour of the coolant void effect itself. The performed study investigates also the coolant void effect consequences on some reactivity coefficients, which are important for a safe behaviour of the reactor. The investigation consisted in the steady state simulations of the reactor on different operating conditions in Monte Carlo approach. (authors)

  17. Implementation of drift-flux model in artist and assessment to thetis void distribution

    International Nuclear Information System (INIS)

    Kim, H. C.; Yun, B. J.; Moon, S. K.; Jeong, J. J.; Lee, W. J.

    1998-01-01

    A system transient analysis code, ARTIST, based on the drift-flux model is being developed to enhance capability of predicting two-phase flow void distribution at low pressure and low flow conditions. The governing equations of the ARTIST code consist of three continuity equations (mixture, liquid, and noncondensibles), two energy equations (gas and mixture) and one mixture momentum euqation constituted with the drift-flux model. Area averaged one-dimensional conservation equations are established using the flow quality expressed in terms of the relative velocity. The relative velocity is obtained from the drift flux relationship. The Chexal-Lellouche void fraction correlation is used to provide the drift velocity and the concentration parameter. The implicit one-step method and the block elimination technique are employed as numerical solution scheme for the node-flowpath thermal-hydraulic network. In order to validate the ARIST code, the steady state void distributions of the THETIS boil-off tests are simulated. The axial void distributions calculated by the Chexal-Lellouche fraction correlation at low pressure and low flow are better than those of both the two-fluid model of RELAP5/MOD3 code and the homogeneous model. The drift-flux model of the ARTIST code is an efficient tool in predicting the void distribution of two-phase flow at low pressure and low flow condtions

  18. Multipole analysis of redshift-space distortions around cosmic voids

    Science.gov (United States)

    Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15

  19. Multipole analysis of redshift-space distortions around cosmic voids

    Energy Technology Data Exchange (ETDEWEB)

    Hamaus, Nico; Weller, Jochen [Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians Universität, Scheinerstr. 1, D-81679 München (Germany); Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie, E-mail: hamaus@usm.lmu.de, E-mail: cousinou@cppm.in2p3.fr, E-mail: pisani@cppm.in2p3.fr, E-mail: maubert@cppm.in2p3.fr, E-mail: escoffier@cppm.in2p3.fr, E-mail: jochen.weller@usm.lmu.de [Aix Marseille Univ., CNRS/IN2P3, CPPM, 163 avenue de Luminy, F-13288, Marseille (France)

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.

  20. Multipole analysis of redshift-space distortions around cosmic voids

    International Nuclear Information System (INIS)

    Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie

    2017-01-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h −1 Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599 +0.134 −0.124 and β( z-bar =0.54)=0.457 +0.056 −0.054 , with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.

  1. Pelvic floor spasm as a cause of voiding dysfunction.

    Science.gov (United States)

    Kuo, Tricia L C; Ng, L G; Chapple, Christopher R

    2015-07-01

    Pelvic floor disorders can present with lower urinary tract symptoms, bowel, sexual dysfunction, and/or pain. Symptoms of pelvic muscle spasm (nonrelaxing pelvic floor or hypertonicity) vary and can be difficult to recognize. This makes diagnosis and management of these disorders challenging. In this article, we review the current evidence on pelvic floor spasm and its association with voiding dysfunction. To distinguish between the different causes of voiding dysfunction, a video urodynamics study and/or electromyography is often required. Conservative measures include patient education, behavioral modifications, lifestyle changes, and pelvic floor rehabilitation/physical therapy. Disease-specific pelvic pain and pain from pelvic floor spasm needs to be differentiated and treated specifically. Trigger point massage and injections relieves pain in some patients. Botulinum toxin A, sacral neuromodulation, and acupuncture has been reported in the management of patients with refractory symptoms. Pelvic floor spasm and associated voiding problems are heterogeneous in their pathogenesis and are therefore often underrecognized and undertreated; it is therefore essential that a therapeutic strategy needs to be personalized to the individual patient's requirements. Therefore, careful evaluation and assessment of individuals using a multidisciplinary team approach including a trained physical therapist/nurse clinician is essential in the management of these patients.

  2. Void-free epoxy castings for cryogenic insulators and seals

    International Nuclear Information System (INIS)

    Quirk, J.F.

    1983-01-01

    The design of the Westinghouse Magnet for the Oak Ridge National Laboratory's Large Coil Program (LCP) incorporates a main lead bushing which transmits heat-leak loads by conduction to the supercritical helium stream. The bushing, which consists of epoxy resin cast about a copper conductor, must be electrically insulated, vacuum tight and be capable of withstanding the stresses encountered in cryognic service. The seal design of the bushing is especially important; leakage from either the helium system or the external environment into the vacuum will cause the magnet to quench. Additionally, the epoxy-resin casting must resist mechanical loads caused by the weight of leads attached to the bushing and thermal stresses transmitted to the epoxy via the conductor. The epoxy resin is cast about the conductor in such a way as to provide the required vacuum tight seal. The technique by which this is accomplished is reviewed. Equally important is the elimination of voids in the epoxy which will act as stress-concentrating discontinuities during cooling to or warming from 4K. The types of voids that could be expected and their causes are described. The paper reviews techniques employed to eliminate voids within the cast-resin portion of the bushing

  3. Is the far border of the Local Void expanding?

    Science.gov (United States)

    Iwata, I.; Chamaraux, P.

    2011-07-01

    Context. According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km s-1. Aims: In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. Methods: We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km s-1 and 5000 km s-1, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. Results: The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km s-1, which is not significantly different from zero. Conclusions: Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km s-1 equivalent to what is found at the position of the Local Group. Based on data taken at Nançay radiotelescope operated by Observatoire de Paris, CNRS and Université d'Orléans, Infrared Survey Facility (IRSF) which is operated by Nagoya university under the cooperation of South African Astronomical Observatory, Kyoto University, and National

  4. Dependence of hotspot initiation on void distribution in high explosive crystals simulated with molecular dynamics

    Science.gov (United States)

    Herring, Stuart Davis

    Microscopic defects may dramatically affect the susceptibility of high explosives to shock initiation. Such defects redirect the shock's energy and become hotspots (concentrations of stress and heat) that can initiate chemical reactions. Sufficiently large or numerous defects may produce a self-sustaining deflagration or even detonation from a shock notably too weak to detonate defect-free samples. The effects of circular or spherical voids on the shock sensitivity of a model (two- or three-dimensional) high explosive crystal are considered. We simulate a piston impact using molecular dynamics with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. In both dimensionalities, the probability of initiating chemical reactions rises more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void of even 10 nm radius (˜39 interatomic spacings) reduces the minimum initiating velocity by a factor of 4 (8 in 3D). The transition at larger velocities to detonation is studied in micron-long samples with a single void (and its periodic images). Reactions during the shock traversal increase rapidly with velocity, then become a reliable detonation. In 2D, a void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal; a Pop plot of the detonation delays at higher velocities shows a characteristic pressure dependence. 3D samples are more likely to react but less to detonate. In square lattices of voids, reducing the (common) void radius or increasing the porosity without changing the other parameter causes the hotspots to consume the material faster and detonation to occur sooner and at lower velocities. Early behavior is seen to follow a very simple ignition and growth model; the pressure exponents are more realistic than with single voids. The hotspots collectively develop a broad pressure wave (a sonic, diffuse deflagration front

  5. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • We show a detailed analysis of void fraction (VF) in HTR-10 of China using DEM. • Radial distribution (RD) of VF is uniform in the core and oscillated near the wall. • Axial distribution (AD) is linearly varied along height due to effect of gravity. • Steady RD of VF in the conical base is Gaussian-like, larger than packing bed. • Joint linear and normal distribution of VF is analyzed and explained. - Abstract: The current work analyzes the radial and axial distributions of void fraction of a pebble bed high temperature reactor. A three-dimensional pebble bed corresponding to our test facility of pebble bed type gas-cooled high temperature reactor (HTR-10) in Tsinghua University is simulated via discrete element method, and the radial and axial void fraction profiles are calculated. It validates the oscillating characteristics of radial void fraction near the wall. Detailed calculations show the differences of void fraction profiles between the stationary packing bed and the dynamically discharging bed. Based on the vertically and circumferentially averaged radial distribution and horizontally averaged axial distribution of void fraction, a fully three-dimensional analytical distribution of void fraction throughout the bed is established. The results show the combined effects of gravity and void variation in the pebble bed caused by the pebble discharging. It indicates the linearly increased packing effect caused by gravity in the vertical (axial) direction and the normal distribution of void in the horizontal (radial) direction by pebble drainage. These two effects coexist in the conical base of the bed whereas only the former effect exists in the cylindrical volume of the bed

  6. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    Science.gov (United States)

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  7. Void-Free Lid for Food Packaging

    Science.gov (United States)

    Watson, C. D.; Farris, W. P.

    1986-01-01

    Flexible cover eliminates air pockets in sealed container. Universal food-package lid formed from flexible plastic. Partially folded, lid unfolded by depressing center portion. Height of flat portion of lid above flange thereby reduced. Pressure of food against central oval depression pops it out, forming dome that provides finger grip for mixing contents with water or opening lid. Therefore food stays fresh, allows compact stacking of partially filled containers, and resists crushing. Originally developed for packaging dehydrated food for use in human consumption on Space Shuttle missions. Other uses include home canning and commercial food packaging.

  8. Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yu-Feng Yao

    2014-01-01

    Full Text Available The void structures and related optical properties after thermal annealing with ambient oxygen in regularly patterned ZnO nanrorod (NR arrays grown with the hydrothermal method are studied. In increasing the thermal annealing temperature, void distribution starts from the bottom and extends to the top of an NR in the vertical (c-axis growth region. When the annealing temperature is higher than 400°C, void distribution spreads into the lateral (m-axis growth region. Photoluminescence measurement shows that the ZnO band-edge emission, in contrast to defect emission in the yellow-red range, is the strongest under the n-ZnO NR process conditions of 0.003 M in Ga-doping concentration and 300°C in thermal annealing temperature with ambient oxygen. Energy dispersive X-ray spectroscopy data indicate that the concentration of hydroxyl groups in the vertical growth region is significantly higher than that in the lateral growth region. During thermal annealing, hydroxyl groups are desorbed from the NR leaving anion vacancies for reacting with cation vacancies to form voids.

  9. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook

    2015-01-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)

  10. Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons.

    Science.gov (United States)

    Morishima, Kunihiro; Kuno, Mitsuaki; Nishio, Akira; Kitagawa, Nobuko; Manabe, Yuta; Moto, Masaki; Takasaki, Fumihiko; Fujii, Hirofumi; Satoh, Kotaro; Kodama, Hideyo; Hayashi, Kohei; Odaka, Shigeru; Procureur, Sébastien; Attié, David; Bouteille, Simon; Calvet, Denis; Filosa, Christopher; Magnier, Patrick; Mandjavidze, Irakli; Riallot, Marc; Marini, Benoit; Gable, Pierre; Date, Yoshikatsu; Sugiura, Makiko; Elshayeb, Yasser; Elnady, Tamer; Ezzy, Mustapha; Guerriero, Emmanuel; Steiger, Vincent; Serikoff, Nicolas; Mouret, Jean-Baptiste; Charlès, Bernard; Helal, Hany; Tayoubi, Mehdi

    2017-12-21

    The Great Pyramid, or Khufu's Pyramid, was built on the Giza plateau in Egypt during the fourth dynasty by the pharaoh Khufu (Cheops), who reigned from 2509 bc to 2483 bc. Despite being one of the oldest and largest monuments on Earth, there is no consensus about how it was built. To understand its internal structure better, we imaged the pyramid using muons, which are by-products of cosmic rays that are only partially absorbed by stone. The resulting cosmic-ray muon radiography allows us to visualize the known and any unknown voids in the pyramid in a non-invasive way. Here we report the discovery of a large void (with a cross-section similar to that of the Grand Gallery and a minimum length of 30 metres) situated above the Grand Gallery. This constitutes the first major inner structure found in the Great Pyramid since the nineteenth century. The void, named ScanPyramids' Big Void, was first observed with nuclear emulsion films installed in the Queen's chamber, then confirmed with scintillator hodoscopes set up in the same chamber and finally re-confirmed with gas detectors outside the pyramid. This large void has therefore been detected with high confidence by three different muon detection technologies and three independent analyses. These results constitute a breakthrough for the understanding of the internal structure of Khufu's Pyramid. Although there is currently no information about the intended purpose of this void, these findings show how modern particle physics can shed new light on the world's archaeological heritage.

  11. The Beckoning Void in Moravagine

    Directory of Open Access Journals (Sweden)

    Stephen K. Bellstrom

    1979-01-01

    Full Text Available The Chapter «Mascha,» lying at the heart of Cendrars's Moravagine , contains within it a variety of images and themes suggestive of emptiness. The philosophy of nihilism is exemplified in the motivations and actions of the group of terrorists seeking to plunge Russia into revolutionary chaos. Mascha's anatomical orifice, symbolizing both a biological and a psychological fault, and the abortion of her child, paralleled by the abortion of the revolutionary ideal among her comrades, are also emblematic of the chapter's central void. Moreover, Cendrars builds the theme of hollowness by describing Moravagine with images of omission, such as «empan» (space or span, «absent,» and «étranger.» Moravagine's presence, in fact, characteristically causes an undercurrent of doubt and uncertainty about the nature of reality to become overt. It is this parodoxical presence which seems to cause the narrator (and consequently the narrative to «lose» a day at the most critical moment of the story. By plunging the reader into the narrator's lapsus memoriae , Cendrars aims at creating a feeling of the kind of mental and cosmic disorder for which Moravagine is the strategist and apologist. This technique of insufficiency is an active technique, even though it relies on the passive idea of removing explanation and connecting details. The reader is invited, or lured, into the central void of the novel and, faced with unresolvable dilemmas, becomes involved in the same disorder that was initially produced.

  12. A maximum principle for time dependent transport in systems with voids

    International Nuclear Information System (INIS)

    Schofield, S.L.; Ackroyd, R.T.

    1996-01-01

    A maximum principle is developed for the first-order time dependent Boltzmann equation. The maximum principle is a generalization of Schofield's κ(θ) principle for the first-order steady state Boltzmann equation, and provides a treatment of time dependent transport in systems with void regions. The formulation comprises a direct least-squares minimization allied with a suitable choice of bilinear functional, and gives rise to a maximum principle whose functional is free of terms that have previously led to difficulties in treating void regions. (Author)

  13. Comparative sodium void effects for different advanced liquid metal reactor fuel and core designs

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Gedeon, S.R.; Omberg, R.P.

    1991-01-01

    An analysis of metal-, oxide-, and nitride-fueled advanced liquid metal reactor cores was performed to investigate the calculated differences in sodium void reactivity, and to determine the relationship between sodium void reactivity and burnup reactivity swing using the three fuel types. The results of this analysis indicate that nitride fuel has the least positive sodium void reactivity for any given burnup reactivity swing. Thus, it appears that a good design compromise between transient overpower and loss of flow response is obtained using nitride fuel. Additional studies were made to understand these and other nitride advantages. (author)

  14. Evaluation of void fraction measurements from DADINE experience using RELAP4/MOD5 code

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1989-01-01

    The DADINE experiment measures the axial evolution of the void fraction by neutronic diffusion in two-phase flow in the wet regions of a pressurized water reactor in accident conditions. Since the theoretical/experimental confrontation is important for code evaluation, this paper presents the simulation with the RELAP4/MOD5 Code of the void fractions results obtained in the DADINE Experiment, that showed some deviation probably associated with the existing models in Code, special attention in the way of stablishing the two-phase flow and the no characterization of the differents flow regimes related with the void fractions. (author) [pt

  15. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    International Nuclear Information System (INIS)

    In, Wang-Kee; Hwang, Dae-Hyun; Jeong, Jae Jun

    2013-01-01

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment

  16. Measurement of the local void fraction at high pressures in a heating channel

    International Nuclear Information System (INIS)

    Martin, R.

    1969-01-01

    Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm 2 ); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm 2 .s, heat flux from 40 to 170 W/cm 2 and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [fr

  17. Effect of the moisture content of forced hot air on the postharvest quality and bioactive compounds of mango fruit (Mangifera indica L. cv. Manila).

    Science.gov (United States)

    Ornelas-Paz, José de Jesús; Yahia, Elhadi M

    2014-04-01

    The effectiveness of hot air treatments in controlling decay and insects in mango fruit has been demonstrated and has usually been assessed as a function of the temperature of the heated air and the duration of the treatment. However, the contribution of the moisture content of the heated air has received little attention, especially with regard to fruit quality. In this study, mango fruits (cv. Manila) at mature-green stage were treated with moist (95% relative humidity (RH)) or dry (50% RH) hot forced air (43 °C, at 2.5 m s(-1) for 220 min) and then held at 20 °C for 9 days and evaluated periodically. The heating rate was higher with moist air. Treatments with moist and dry air did not cause injury to the fruit. Treatment with moist air temporarily slowed down color development, softening, weight loss and β-carotene biosynthesis. This slowing down was clearly observed during the first 4-5 days at 20 °C. However, non-heated fruit and fruit heated with dry air showed similar quality at the end of storage. The moisture content of the heating air differentially modulated the postharvest ripening of 'Manila' mangoes. Moist air temporarily slowed down the ripening process of this mango cultivar. © 2013 Society of Chemical Industry.

  18. Assessment of void swelling in austenitic stainless steel PWR core internals

    International Nuclear Information System (INIS)

    Chung, H.M.

    2006-01-01

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  19. Determination of gas pressure in voids in epoxy casting using an ultrasonic measuring technique

    DEFF Research Database (Denmark)

    Larsen, Esben; Petersen, C. Bak; Henriksen, Mogens

    1990-01-01

    Results of measurements performed on a large open void, where pressure can be controlled from the outside, are compared to the theory of ultrasound transmission. The results verify the theory that the attenuation of transmitted ultrasonic signals through a void depends on the gas pressure inside ...

  20. Effect of air pollution on epiphytic lichen vegetation and element contents of a lichen and pine needles at Valkeakoski, South Finland

    Energy Technology Data Exchange (ETDEWEB)

    Laaksovirta, K; Olkkonen, H

    1979-01-01

    The macrolichen vegetation on Pinus sylvestris L. and the contents of S, K, Ca, Ti, V, Fe and Zn in the lichen Hypogymnia physodes (L.) Nyl. and needles of Pinus sylvestris were investigated in relation to air pollution at 55 study stations in and around the industrial town of Valkeakoski, southern Finland. The air pollutants are emitted mainly by the wood pulp industry. The parameters of the lichen vegetation (occurrence of species, number of species, cover of the vegetation and the damage index) did not give a good picture of the distribution of air pollutants, because the environmental conditions were not exactly the same at the different study stations. The accumulation of the elements was more effective in the lichen than in pine needles and the lichen element contents agreed better with the pattern of the prevailing winds. The correlations between the contents of the different pollutant elements were also stronger in the lichen than in pine needles. The most reliable indices of pollutant substances originating from combustion of fuel oil and the wood pulp industry were the sulfur and vanadium contents of the lichen, while the calcium, titanium and iron concentrations of the lichen gave a good idea of the distribution of dust raised from the roads by traffic. 11 references, 10 figures, 4 tables.