WorldWideScience

Sample records for air reveals large-scale

  1. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  2. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Science.gov (United States)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water

  3. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Directory of Open Access Journals (Sweden)

    T. Wolf-Grosse

    2017-06-01

    Full Text Available Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES experiments with the Parallelised Large-Eddy Simulation Model (PALM for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a

  4. Maps on large-scale air quality concentrations in the Netherlands

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Beck, J.P.; Blom, W.F.; Van Dam, J.D.; Elzenga, H.E.; Geilenkirchen, G.P.; Hoen, A.; Jimmink, B.A.; Matthijsen, J.; Peek, C.J.; Van Velze, K.; Visser, H.; De Vries, W.J.

    2007-01-01

    Every year MNP produces maps showing large-scale concentrations of several air quality components in the Netherlands for which there are European regulations. The concentration maps are based on a combination of model calculations and measurements. These maps (called GCN maps) show the large-scale contribution of these components in air in the Netherlands for both past and future years. Local, provincial and other authorities use these maps for reporting exceedances in the framework of the EU Air Quality Directive and for planning. The report gives the underlying assumptions applied to the GCN-maps in this 2007 report. The Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) is legally responsible for selecting the scenario to be used in the GCN maps. The Ministry has chosen to base the current maps of nitrogen dioxide, particulate matter (PM10) and sulphur dioxide for 2010 up to 2020 on standing and proposed Dutch and European policies. That means that the Netherlands and other European countries will meet their National Emissions Ceilings (NEC) by 2010 and the emissions according to the ambitions of the Thematic Strategy on Air Pollution of the European Commission up to 2020, as assumed in the calculations. The large-scale concentrations of NO2 and PM10, presented by the GCN maps, are in 2006 and for the 2010-2020 period, below the European limit value of yearly averaged 40 μg m 3 everywhere in the Netherlands. The large-scale concentration exceeds the European limit value for the daily average of PM10 of maximally 35 days above 50 μg m 3 in some locations in 2006. This applies close to the harbours of Amsterdam and Rotterdam and is associated with storage and handling of dry bulk material. The large-scale concentration of PM10 is below the European limit value for the daily average everywhere in 2010-2020. Several changes have been implemented, in addition to the changes in the GCN maps of last year (report March 2006). New insights into

  5. Large-scale exact diagonalizations reveal low-momentum scales of nuclei

    Science.gov (United States)

    Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.

    2018-03-01

    Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

  6. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Rossbach, M.; Jayasekera, R.; Kniewald, G.

    2000-01-01

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  7. Effect of air gap on uniformity of large-scale surface-wave plasma

    International Nuclear Information System (INIS)

    Lan Chaohui; Hu Xiwei; Jiang Zhonghe; Liu Minghai

    2009-01-01

    The effect of air gap on the uniformity of large-scale surface-wave plasma (SWP) in a rectangular chamber device is studied by using three-dimensional numerical analyses based on the finite difference time-domain (FDTD) approximation to Maxwell's equations and plasma fluid model. The spatial distributions of surface wave excited by slot-antenna array and the plasma parameters such as electron density and temperature are presented. For different air gap thicknesses, the results show that the existence of air gap would severely weaken the excitations of the surface wave and thereby the SWP. Thus the air gap should be eliminated completely in the design of the SWP source, which is opposite to the former research results. (authors)

  8. Maps on large-scale air quality concentrations in the Netherlands. Report on 2008

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Blom, W.F.; Van Dam, J.D.; Elzenga, H.E.; Geilenkirchen, G.P.; Hammingh, P.; Hoen, A.; Jimmink, B.A.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Schilderman, C.B.W.; Van der Sluis, O.C.; De Vries, W.J.

    2008-01-01

    Decrease expected in the number of locations exceeding the air quality limit values In the Netherlands, the number of locations were the European limit values for particulate matter and nitrogen dioxide will be exceeded is expected to decrease by 70-90%, in the period up to 2011, respectively 2015. The limit value for particulate matter from 2011 onwards, and for nitrogen dioxide from 2015 onwards, is expected to be exceeded at a small number of locations in the Netherlands, based on standing and proposed Dutch and European policies. These locations are situated mainly in the Randstad, Netherlands, in the vicinity of motorway around the large cities and in the busiest streets in large cities. Whether the limit values will actually be exceeded depends also on local policies and meteorological fluctuations. This estimate is based on large-scale concentration maps (called GCN maps) of air quality components and on additional local contributions. The concentration maps provide the best possible estimate of large-scale air quality. The degree of uncertainty about the local concentrations of particulate matter and nitrogen dioxide is estimated to be approximately 20%. This report presents the methods used to produce the GCN maps and the included emissions. It also shows the differences with respect to the maps of 2007. These maps are used by local, provincial and other authorities. MNP emphasises to keep the uncertainties in the concentrations in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www.mnp.nl/gcn.html [nl

  9. Long-Term Calculations with Large Air Pollution Models

    DEFF Research Database (Denmark)

    Ambelas Skjøth, C.; Bastrup-Birk, A.; Brandt, J.

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  10. Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES

    Directory of Open Access Journals (Sweden)

    Zhongguang Fu

    2015-08-01

    Full Text Available As an important solution to issues regarding peak load and renewable energy resources on grids, large-scale compressed air energy storage (CAES power generation technology has recently become a popular research topic in the area of large-scale industrial energy storage. At present, the combination of high-expansion ratio turbines with advanced gas turbine technology is an important breakthrough in energy storage technology. In this study, a new gas turbine power generation system is coupled with current CAES technology. Moreover, a thermodynamic cycle system is optimized by calculating for the parameters of a thermodynamic system. Results show that the thermal efficiency of the new system increases by at least 5% over that of the existing system.

  11. Maps on large-scale air quality concentrations in the Netherlands. Report on 2010

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Diederen, H.S.M.A.; Drissen, E; Geilenkirchen, G.P.; Jimmink, B.A.; Koekoek, A.F.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Van Rijn, F.J.A.; De Vries, W.J.

    2010-06-01

    In the Netherlands, the number of locations for which the European limit values for nitrogen dioxide concentrations could be exceeded is larger than was estimated last year. The limit value, from 2015 onwards, might be exceeded along 100 to 150 kilometres of city roads and along about 100 kilometres of motorways, based on standing and proposed national and European policies, not taking local policies into account. The exceedances occur mainly in the Randstad area, along motorways around the large cities, and in streets within these cities. The number of locations is about twice as large as was estimated last year, as a result of new measurements of emissions from heavy-duty vehicles, and meeting the limit value in time may require additional national and local policies. The new estimates were based on large-scale concentration maps (called GCN maps) of air quality components, and on additional local contributions. The concentration maps provided the best possible estimate of large-scale air quality. The degree of uncertainty in local concentrations of particulate matter and nitrogen dioxide was estimated at approximately 15 to 20 per cent. This report presents the methods and emissions used for producing the GCN maps. It also shows the differences with the maps produced in 2009. These maps are used by local, provincial and other authorities to define additional local measures. The PBL would like to emphasise that uncertainties in the concentrations must be kept in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www.pbl.nl/gcn. Keywords: GCN; particulate matter; PM10; nitrogen dioxide; limit value. [nl

  12. Group Centric Networking: Large Scale Over the Air Testing of Group Centric Networking

    Science.gov (United States)

    2016-11-01

    Large Scale Over-the-Air Testing of Group Centric Networking Logan Mercer, Greg Kuperman, Andrew Hunter, Brian Proulx MIT Lincoln Laboratory...performance of Group Centric Networking (GCN), a networking protocol developed for robust and scalable communications in lossy networks where users are...devices, and the ad-hoc nature of the network . Group Centric Networking (GCN) is a proposed networking protocol that addresses challenges specific to

  13. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    Science.gov (United States)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  14. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  15. Maps on large-scale air quality concentrations in the Netherlands. Report on 2009

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Blom, W.F.; Diederen, H.S.M.A.; Geilenkirchen, G.P.; Jimmink, B.A.; Koekoek, A.F.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Van Rijn, F.J.A.; Van Schijndel, M.W.; Van der Sluis, O.C.; De Vries, W.J.

    2009-06-01

    In the Netherlands, the number of locations where the European limit values for particulate matter and nitrogen dioxide concentrations could be exceeded is lower than was estimated last year. The limit value for particulate matter, from 2011 onwards, is possibly be exceeded at only a few locations in the Netherlands, based on standing and proposed national and European policies. These locations are situated mainly in the Randstad area in the Netherlands, in the vicinity of motorways around the large cities, and close to stables in agricultural areas. The limit value for nitrogen dioxide, from 2015 onwards, is possibly to be exceeded along 100 kilometres of roads in cities and along 50 kilometres of motorways. Whether the limit values will actually be exceeded depends also on local policies and meteorological fluctuations. This estimate was based on large-scale concentration maps (called GCN maps) of air quality components, and on additional local contributions. The concentration maps provided the best possible estimate of large-scale air quality. The degree of uncertainty in local concentrations of particulate matter and nitrogen dioxide was estimated to be approximately 15 to 20%. This report presents the methods and emissions used for producing the GCN maps. It also shows the differences with respect to the maps of 2008. These maps are used by local, provincial and other authorities to define additional local measures. PBL would like to emphasise that uncertainties in the concentrations must be kept in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www. pbl.nl/gcn [nl

  16. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  17. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  18. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

    Science.gov (United States)

    Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey

    2014-04-15

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

  19. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  20. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    Science.gov (United States)

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pulsed corona demonstrator for semi-industrial scale air purification

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Huiskamp, T.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although pulsed corona technology for air purification is widely investigated by the lab experiments, large-scale application has yet to be proven. Industrial systems require large flow handling and thus, high corona power. An autonomous semi-industrial scale pilot wire-cylinder type corona reactor

  2. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure

    Directory of Open Access Journals (Sweden)

    Tyler Epp

    2018-03-01

    Full Text Available Structural Health Monitoring (SHM has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC structures.

  3. Outbreaks associated to large open air festivals, including music festivals, 1980 to 2012.

    Science.gov (United States)

    Botelho-Nevers, E; Gautret, P

    2013-03-14

    In the minds of many, large scale open air festivals have become associated with spring and summer, attracting many people, and in the case of music festivals, thousands of music fans. These festivals share the usual health risks associated with large mass gatherings, including transmission of communicable diseases and risk of outbreaks. Large scale open air festivals have however specific characteristics, including outdoor settings, on-site housing and food supply and the generally young age of the participants. Outbreaks at large scale open air festivals have been caused by Cryptosporium parvum, Campylobacter spp., Escherichia coli, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, hepatitis A virus, influenza virus, measles virus, mumps virus and norovirus. Faecal-oral and respiratory transmissions of pathogens result from non-compliance with hygiene rules, inadequate sanitation and insufficient vaccination coverage. Sexual transmission of infectious diseases may also occur and is likely to be underestimated and underreported. Enhanced surveillance during and after festivals is essential. Preventive measures such as immunisations of participants and advice on-site and via social networks should be considered to reduce outbreaks at these large scale open air festivals.

  4. Large scale features and energetics of the hybrid subtropical low `Duck' over the Tasman Sea

    Science.gov (United States)

    Pezza, Alexandre Bernardes; Garde, Luke Andrew; Veiga, José Augusto Paixão; Simmonds, Ian

    2014-01-01

    New aspects of the genesis and partial tropical transition of a rare hybrid subtropical cyclone on the eastern Australian coast are presented. The `Duck' (March 2001) attracted more recent attention due to its underlying genesis mechanisms being remarkably similar to the first South Atlantic hurricane (March 2004). Here we put this cyclone in climate perspective, showing that it belongs to a class within the 1 % lowest frequency percentile in the Southern Hemisphere as a function of its thermal evolution. A large scale analysis reveals a combined influence from an existing tropical cyclone and a persistent mid-latitude block. A Lagrangian tracer showed that the upper level air parcels arriving at the cyclone's center had been modified by the blocking. Lorenz energetics is used to identify connections with both tropical and extratropical processes, and reveal how these create the large scale environment conducive to the development of the vortex. The results reveal that the blocking exerted the most important influence, with a strong peak in barotropic generation of kinetic energy over a large area traversed by the air parcels just before genesis. A secondary peak also coincided with the first time the cyclone developed an upper level warm core, but with insufficient amplitude to allow for a full tropical transition. The applications of this technique are numerous and promising, particularly on the use of global climate models to infer changes in environmental parameters associated with severe storms.

  5. The application of liquid air energy storage for large scale long duration solutions to grid balancing

    Science.gov (United States)

    Brett, Gareth; Barnett, Matthew

    2014-12-01

    Liquid Air Energy Storage (LAES) provides large scale, long duration energy storage at the point of demand in the 5 MW/20 MWh to 100 MW/1,000 MWh range. LAES combines mature components from the industrial gas and electricity industries assembled in a novel process and is one of the few storage technologies that can be delivered at large scale, with no geographical constraints. The system uses no exotic materials or scarce resources and all major components have a proven lifetime of 25+ years. The system can also integrate low grade waste heat to increase power output. Founded in 2005, Highview Power Storage, is a UK based developer of LAES. The company has taken the concept from academic analysis, through laboratory testing, and in 2011 commissioned the world's first fully integrated system at pilot plant scale (300 kW/2.5 MWh) hosted at SSE's (Scottish & Southern Energy) 80 MW Biomass Plant in Greater London which was partly funded by a Department of Energy and Climate Change (DECC) grant. Highview is now working with commercial customers to deploy multi MW commercial reference plants in the UK and abroad.

  6. Investigation of the Contamination Control in a Cleaning Room with a Moving AGV by 3D Large-Scale Simulation

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2013-01-01

    Full Text Available The motions of the airflow induced by the movement of an automatic guided vehicle (AGV in a cleanroom are numerically studied by large-scale simulation. For this purpose, numerical experiments scheme based on domain decomposition method is designed. Compared with the related past research, the high Reynolds number is treated by large-scale computation in this work. A domain decomposition Lagrange-Galerkin method is employed to approximate the Navier-Stokes equations and the convection diffusion equation; the stiffness matrix is symmetric and an incomplete balancing preconditioned conjugate gradient (PCG method is employed to solve the linear algebra system iteratively. The end wall effects are readily viewed, and the necessity of the extension to 3 dimensions is confirmed. The effect of the high efficiency particular air (HEPA filter on contamination control is studied and the proper setting of the speed of the clean air flow is also investigated. More details of the recirculation zones are revealed by the 3D large-scale simulation.

  7. Operational design and pressure response of large-scale compressed air energy storage in porous formations

    Science.gov (United States)

    Wang, Bo; Bauer, Sebastian

    2017-04-01

    With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per

  8. Assessment of long-term and large-scale even-odd license plate controlled plan effects on urban air quality and its implication

    Science.gov (United States)

    Zhao, Suping; Yu, Ye; Qin, Dahe; Yin, Daiying; He, Jianjun

    2017-12-01

    To solve traffic congestion and to improve urban air quality, long-lasting and large-scale even-odd license plate controlled plan was implemented by local government during 20 November to 26 December 2016 in urban Lanzhou, a semi-arid valley city of northwest China. The traffic control measures provided an invaluable opportunity to evaluate its effects on urban air quality in less developed cities of northwest China. Based on measured simultaneously air pollutants and meteorological parameters, the abatement of traffic-related pollutants induced by the implemented control measures such as CO, PM2.5 and PM10 (the particulate matter with diameter less than 2.5 μm and 10 μm) concentrations were firstly quantified by comparing the air quality data in urban areas with those in rural areas (uncontrolled zones). The concentrations of CO, NO2 from motor vehicles and fine particulate matter (PM2.5) were shown to have significant decreases of 15%-23% during traffic control period from those measured before control period with hourly maximum CO, PM2.5, and NO2/SO2 reduction of 43%, 35% and 141.4%, respectively. The influence of the control measures on AQI (air quality index) and ozone was less as compared to its effect on other air pollutants. Therefore, to alleviate serious winter haze pollution in China and to protect human health, the stringent long-term and large-scale even-odd license plate controlled plan should be implemented aperiodically in urban areas, especially for the periods with poor diffusion conditions.

  9. Air pollutant dispersion from a large semi-enclosed stadium in an urban area: high-resolution CFD modeling versus full-scale measurements

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.; Seppelt, R.; Voinov, A.A.; Lange, S.; Bankamp, D.

    2012-01-01

    Abstract: High-resolution CFD simulations and full-scale measurements have been performed to assess the dispersion of air pollutants (CO2) from the large semi-enclosed Amsterdam ArenA football stadium. The dispersion process is driven by natural ventilation by the urban wind flow and by buoyancy,

  10. Status: Large-scale subatmospheric cryogenic systems

    International Nuclear Information System (INIS)

    Peterson, T.

    1989-01-01

    In the late 1960's and early 1970's an interest in testing and operating RF cavities at 1.8K motivated the development and construction of four large (300 Watt) 1.8K refrigeration systems. in the past decade, development of successful superconducting RF cavities and interest in obtaining higher magnetic fields with the improved Niobium-Titanium superconductors has once again created interest in large-scale 1.8K refrigeration systems. The L'Air Liquide plant for Tore Supra is a recently commissioned 300 Watt 1.8K system which incorporates new technology, cold compressors, to obtain the low vapor pressure for low temperature cooling. CEBAF proposes to use cold compressors to obtain 5KW at 2.0K. Magnetic refrigerators of 10 Watt capacity or higher at 1.8K are now being developed. The state of the art of large-scale refrigeration in the range under 4K will be reviewed. 28 refs., 4 figs., 7 tabs

  11. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  12. Extreme air pollution events in Hokkaido, Japan, traced back to early snowmelt and large-scale wildfires over East Eurasia: Case studies.

    Science.gov (United States)

    Yasunari, Teppei J; Kim, Kyu-Myong; da Silva, Arlindo M; Hayasaki, Masamitsu; Akiyama, Masayuki; Murao, Naoto

    2018-04-25

    To identify the unusual climate conditions and their connections to air pollutions in a remote area due to wildfires, we examine three anomalous large-scale wildfires in May 2003, April 2008, and July 2014 over East Eurasia, as well as how products of those wildfires reached an urban city, Sapporo, in the northern part of Japan (Hokkaido), significantly affecting the air quality. NASA's MERRA-2 (the Modern-Era Retrospective analysis for Research and Applications, Version 2) aerosol re-analysis data closely reproduced the PM 2.5 variations in Sapporo for the case of smoke arrival in July 2014. Results show that all three cases featured unusually early snowmelt in East Eurasia, accompanied by warmer and drier surface conditions in the months leading to the fires, inducing long-lasting soil dryness and producing climate and environmental conditions conducive to active wildfires. Due to prevailing anomalous synoptic-scale atmospheric motions, smoke from those fires eventually reached a remote area, Hokkaido, and worsened the air quality in Sapporo. In future studies, continuous monitoring of the timing of Eurasian snowmelt and the air quality from the source regions to remote regions, coupled with the analysis of atmospheric and surface conditions, may be essential in more accurately predicting the effects of wildfires on air quality.

  13. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  14. Comparing the performance of SIMD computers by running large air pollution models

    DEFF Research Database (Denmark)

    Brown, J.; Hansen, Per Christian; Wasniewski, J.

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on these computers. Using a realistic large-scale model, we gained detailed insight about the performance of the computers involved when used to solve large-scale scientific...... problems that involve several types of numerical computations. The computers used in our study are the Connection Machines CM-200 and CM-5, and the MasPar MP-2216...

  15. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  16. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    Science.gov (United States)

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  17. Emptying of large-scale pipeline by pressurized air

    NARCIS (Netherlands)

    Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuckovic, S.; Hou, Q.; Tijsseling, A.S.; Anderson, A.; Gale, J.; Westende, van 't J.M.C.

    2012-01-01

    Emptying of an initially water-filled horizontal PVC pipeline driven by different upstream compressed air pressures and with different outflow restriction conditions, with motion of an air-water front through the pressurized pipeline, is investigated experimentally. Simple numerical modeling is used

  18. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets

    Directory of Open Access Journals (Sweden)

    Max Lam

    2017-11-01

    Full Text Available Here, we present a large (n = 107,207 genome-wide association study (GWAS of general cognitive ability (“g”, further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker, and LY97241, a potassium channel inhibitor. Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched for genes expressed across all brain regions (most strongly in the cerebellum. Enrichment was exclusive to genes expressed in neurons but not oligodendrocytes or astrocytes. Finally, we report genetic correlations between cognitive ability and disparate phenotypes including psychiatric disorders, several autoimmune disorders, longevity, and maternal age at first birth.

  19. Toward Instructional Leadership: Principals' Perceptions of Large-Scale Assessment in Schools

    Science.gov (United States)

    Prytula, Michelle; Noonan, Brian; Hellsten, Laurie

    2013-01-01

    This paper describes a study of the perceptions that Saskatchewan school principals have regarding large-scale assessment reform and their perceptions of how assessment reform has affected their roles as principals. The findings revealed that large-scale assessments, especially provincial assessments, have affected the principal in Saskatchewan…

  20. Experimental study of falling film evaporation in large scale rectangular channel

    International Nuclear Information System (INIS)

    Huang, X.G.; Yang, Y.H.; Hu, P.

    2015-01-01

    Highlights: • This paper studies the falling film evaporation in large scale rectangular channel experimentally. • The effects of air flow rate, film temperature and film flow rate on falling film evaporation are analyzed. • Increasing the air flow rate is considered as an efficient method to enhance the evaporation rate. • A correlation including the wave effect for falling film evaporation is derived based on heat and mass transfer analogy. - Abstract: The falling film evaporation in a large scale rectangular channel is experimentally studied in this paper for the design and improvement of passive containment cooling system. The evaporation mass transfer coefficient h D is obtained by the evaporation rate and vapor partial pressure difference of film surface and air bulk. The experimental results indicate that increasing of air flow rate appears to enhance h D , while the film temperature and film flow rate have little effect on h D . Since the wave effect on evaporation is noticed in experiment, the evaporation mass transfer correlation including the wave effect is developed on the basis of heat and mass transfer analogy and experimental data

  1. Large-scale weather dynamics during the 2015 haze event in Singapore

    Science.gov (United States)

    Djamil, Yudha; Lee, Wen-Chien; Tien Dat, Pham; Kuwata, Mikinori

    2017-04-01

    The 2015 haze event in South East Asia is widely considered as a period of the worst air quality in the region in more than a decade. The source of the haze was from forest and peatland fire in Sumatra and Kalimantan Islands, Indonesia. The fires were mostly came from the practice of forest clearance known as slash and burn, to be converted to palm oil plantation. Such practice of clearance although occurs seasonally but at 2015 it became worst by the impact of strong El Nino. The long period of dryer atmosphere over the region due to El Nino makes the fire easier to ignite, spread and difficult to stop. The biomass emission from the forest and peatland fire caused large-scale haze pollution problem in both Islands and further spread into the neighboring countries such as Singapore and Malaysia. In Singapore, for about two months (September-October, 2015) the air quality was in the unhealthy level. Such unfortunate condition caused some socioeconomic losses such as school closure, cancellation of outdoor events, health issues and many more with total losses estimated as S700 million. The unhealthy level of Singapore's air quality is based on the increasing pollutant standard index (PSI>120) due to the haze arrival, it even reached a hazardous level (PSI= 300) for several days. PSI is a metric of air quality in Singapore that aggregate six pollutants (SO2, PM10, PM2.5, NO2, CO and O3). In this study, we focused on PSI variability in weekly-biweekly time scales (periodicity < 30 days) since it is the least understood compare to their diurnal and seasonal scales. We have identified three dominant time scales of PSI ( 5, 10 and 20 days) using Wavelet method and investigated their large-scale atmospheric structures. The PSI associated large-scale column moisture horizontal structures over the Indo-Pacific basin are dominated by easterly propagating gyres in synoptic (macro) scale for the 5 days ( 10 and 20 days) time scales. The propagating gyres manifest as cyclical

  2. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  3. Large scale particle image velocimetry with helium filled soap bubbles

    Science.gov (United States)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  4. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  5. The role of large-scale, extratropical dynamics in climate change

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop's University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database

  6. Global Wildfire Forecasts Using Large Scale Climate Indices

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  7. Parallel runs of a large air pollution model on a grid of Sun computers

    DEFF Research Database (Denmark)

    Alexandrov, V.N.; Owczarz, W.; Thomsen, Per Grove

    2004-01-01

    Large -scale air pollution models can successfully be used in different environmental studies. These models are described mathematically by systems of partial differential equations. Splitting procedures followed by discretization of the spatial derivatives leads to several large systems...

  8. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  9. Impacts of large-scale introduction of hydrogen in the road transport sector on urban air pollution and human exposure in Copenhagen

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, S.S.; Ketzel, M.; Brandt, J.; Frohn, L.M.; Winther, M.; Nielsen, O.K. (Aarhus Univ.. National Environmental Research Institute, Roskilde (Denmark)); Joergensen, K.; Karlsson, K. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Dept. of System Analysis, Roskilde (Denmark))

    2011-07-15

    The aim of the project 'Environmental and Health Impact Assessment of Scenarios for Renewable Energy Systems with Hydrogen' (HYSCENE) is to improve modelling of the environmental impacts and related socio-cultural and welfare economic impacts of a proposed hydrogen/renewable energy system with focus on large-scale introduction of hydrogen as energy carrier in the road transport sector (http://hyscene.dmu.dk). This extended abstract will focus on the impacts on urban air pollution and human exposure. (Author)

  10. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    Science.gov (United States)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  11. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  12. Modeling large-scale adoption of intercropping as a sustainable agricultural practice for food security and air pollution mitigation around the globe

    Science.gov (United States)

    Fung, K. M.; Tai, A. P. K.; Yong, T.; Liu, X.

    2017-12-01

    The fast-growing world population will impose a severe pressure on our current global food production system. Meanwhile, boosting crop yield by increasing fertilizer use comes with a cascade of environmental problems including air pollution. In China, agricultural activities contribute to 95% of total ammonia emissions. Such emissions are attributable to 20% of the fine particulate matter (PM2.5) formed in the downwind regions, which imposes severe health risks to the citizens. Field studies of soybean intercropping have demonstrated its potential to enhance crop yield, lower fertilizer use, and thus reduce ammonia emissions by taking advantage of legume nitrogen fixation and enabling mutualistic crop-crop interactions between legumes and non-legume crops. In our work, we revise the process-based biogeochemical model, DeNitrification-DeComposition (DNDC) to capture the belowground interactions of intercropped crops and show that with intercropping, only 58% of fertilizer is required to yield the same maize production of its monoculture counterpart, corresponding to a reduction in ammonia emission by 43% over China. Using the GEOS-Chem global 3-D chemical transport model, we estimate that such ammonia reduction can lessen downwind inorganic PM2.5 by up to 2.1% (equivalent to 1.3 μg m-3), which saves the Chinese air pollution-related health costs by up to US$1.5 billion each year. With the more enhanced crop growth and land management algorithms in the Community Land Model (CLM), we also implement into CLM the new parametrization of the belowground interactions to simulate large-scale adoption of intercropping around the globe and study their beneficial effects on food production, fertilizer usage and ammonia reduction. This study can serve as a scientific basis for policy makers and intergovernmental organizations to consider promoting large-scale intercropping to maintain a sustainable global food supply to secure both future crop production and air quality.

  13. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  14. Relationship between Eurasian large-scale patterns and regional climate variability over the Black and Baltic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Stankunavicius, G.; Pupienis, D. [Vilnius Univ. (Lithuania). Dept. of Hydrology and Climatology; Basharin, D. [National Academy of Science of Ukraine, Sevastopol (Ukraine). Sevastopol Marine Hydrophysical Inst.

    2012-11-01

    Using a NCEP/NCAR Reanalysis dataset and the empirical orthogonal function (EOF) analysis approach we studied interannual to decadal variabilities of the sea-level air pressure (SLP) and the surface air temperature (SAT) fields over Eurasia during the 2nd part of the 20th century. Our results agree with those of the previous studies, which conclude that Eurasian trends are the result of storm-path changes driven by the interdecadal behaviour of the NAO-like meridional dipole pattern in the Atlantic. On interannual and decadal time scales, significant synchronous correlations between correspondent modes of SAT and SLP EOF patterns were found. This fact suggests that there is a strong and stable Eurasian interrelationship between SAT and SLP large-scale fields which affects the local climate of two sub-regions: the Black and Baltic Seas. The climate variability in these sub-regions was studied in terms of Eurasian large-scale surface-temperature and air-pressure patterns responses. We concluded that the sub-regional climate variability substantially differs over the Black and Baltic Seas, and depends on different Eurasian large-scale patterns. We showed that the Baltic Sea region is influenced by the patterns arising primary from NAO-like meridional dipole, as well as Scandinavian patterns, while the Black Sea's SAT/SLP variability is influenced mainly by the second mode EOF (eastern Atlantic) and large scale tropospheric wave structures. (orig.)

  15. Large-scaled biomonitoring of trace-element air pollution: goals and approaches

    International Nuclear Information System (INIS)

    Wolterbeek, H.T.

    2000-01-01

    Biomonitoring is often used in multi-parameter approaches in especially larger scaled surveys. The information obtained may consist of thousands of data points, which can be processed in a variety of mathematical routines to permit a condensed and strongly-smoothed presentation of results and conclusions. Although reports on larger-scaled biomonitoring surveys are 'easy- to-read' and often include far-reaching interpretations, it is not possible to obtain an insight into the real meaningfulness or quality of the survey performed. In any set-up, the aims of the survey should be put forward as clear as possible. Is the survey to provide information on atmospheric element levels, or on total, wet and dry deposition, what should be the time- or geographical scale and resolution of the survey, which elements should be determined, is the survey to give information on emission or immission characteristics? Answers to all these questions are of paramount importance, not only regarding the choice of the biomonitoring species or necessary handling/analysis techniques, but also with respect to planning and personnel, and, not to forget, the expected/available means of data interpretation. In considering a survey set-up, rough survey dimensions may follow directly from the goals; in practice, however, they will be governed by other aspects such as available personnel, handling means/capacity, costs, etc. In what sense and to what extent these factors may cause the survey to drift away from the pre-set goals should receive ample attention: in extreme cases the survey should not be carried out. Bearing in mind the above considerations, the present paper focuses on goals, quality and approaches of larger-scaled biomonitoring surveys on trace element air pollution. The discussion comprises practical problems, options, decisions, analytical means, quality measures, and eventual survey results. (author)

  16. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant

    Science.gov (United States)

    Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei

    2015-01-01

    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase. PMID:25989417

  17. Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned

    International Nuclear Information System (INIS)

    Shuifer, M. I.; Argal, É. S.

    2012-01-01

    Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

  18. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  19. Use of a large-scale rainfall simulator reveals novel insights into stemflow generation

    Science.gov (United States)

    Levia, D. F., Jr.; Iida, S. I.; Nanko, K.; Sun, X.; Shinohara, Y.; Sakai, N.

    2017-12-01

    Detailed knowledge of stemflow generation and its effects on both hydrological and biogoechemical cycling is important to achieve a holistic understanding of forest ecosystems. Field studies and a smaller set of experiments performed under laboratory conditions have increased our process-based knowledge of stemflow production. Building upon these earlier works, a large-scale rainfall simulator was employed to deepen our understanding of stemflow generation processes. The use of the large-scale rainfall simulator provides a unique opportunity to examine a range of rainfall intensities under constant conditions that are difficult under natural conditions due to the variable nature of rainfall intensities in the field. Stemflow generation and production was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions at several different rainfall intensities (15, 20, 30, 40, 50, and 100 mm h-1) using a large-scale rainfall simulator in National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan). Stemflow production and rates and funneling ratios were examined in relation to both rainfall intensity and canopy structure. Preliminary results indicate a dynamic and complex response of the funneling ratios of individual trees to different rainfall intensities among the species examined. This is partly the result of different canopy structures, hydrophobicity of vegetative surfaces, and differential wet-up processes across species and rainfall intensities. This presentation delves into these differences and attempts to distill them into generalizable patterns, which can advance our theories of stemflow generation processes and ultimately permit better stewardship of forest resources. ________________ Funding note: This research was supported by JSPS Invitation Fellowship for Research in

  20. Update of the Large-scale Concentration Maps for the Netherlands (GCN)

    International Nuclear Information System (INIS)

    Van den Elshout, S.; Molenaar, R.

    2011-01-01

    Every year the RIVM and PBL publish the so-called Large-scale concentration maps of the Netherlands (GCN maps). These maps offer an approximation of the background concentrations of several air-polluting substances. Sometimes these maps need to be updated to realize a better approximation of the background concentrations. [nl

  1. Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach

    Science.gov (United States)

    Dorrestijn, Jesse; Kahn, Brian H.; Teixeira, João; Irion, Fredrick W.

    2018-05-01

    Satellite observations are used to obtain vertical profiles of variance scaling of temperature (T) and specific humidity (q) in the atmosphere. A higher spatial resolution nadir retrieval at 13.5 km complements previous Atmospheric Infrared Sounder (AIRS) investigations with 45 km resolution retrievals and enables the derivation of power law scaling exponents to length scales as small as 55 km. We introduce a variable-sized circular-area Monte Carlo methodology to compute exponents instantaneously within the swath of AIRS that yields additional insight into scaling behavior. While this method is approximate and some biases are likely to exist within non-Gaussian portions of the satellite observational swaths of T and q, this method enables the estimation of scale-dependent behavior within instantaneous swaths for individual tropical and extratropical systems of interest. Scaling exponents are shown to fluctuate between β = -1 and -3 at scales ≥ 500 km, while at scales ≤ 500 km they are typically near β ≈ -2, with q slightly lower than T at the smallest scales observed. In the extratropics, the large-scale β is near -3. Within the tropics, however, the large-scale β for T is closer to -1 as small-scale moist convective processes dominate. In the tropics, q exhibits large-scale β between -2 and -3. The values of β are generally consistent with previous works of either time-averaged spatial variance estimates, or aircraft observations that require averaging over numerous flight observational segments. The instantaneous variance scaling methodology is relevant for cloud parameterization development and the assessment of time variability of scaling exponents.

  2. Efficient stochastic approaches for sensitivity studies of an Eulerian large-scale air pollution model

    Science.gov (United States)

    Dimov, I.; Georgieva, R.; Todorov, V.; Ostromsky, Tz.

    2017-10-01

    Reliability of large-scale mathematical models is an important issue when such models are used to support decision makers. Sensitivity analysis of model outputs to variation or natural uncertainties of model inputs is crucial for improving the reliability of mathematical models. A comprehensive experimental study of Monte Carlo algorithms based on Sobol sequences for multidimensional numerical integration has been done. A comparison with Latin hypercube sampling and a particular quasi-Monte Carlo lattice rule based on generalized Fibonacci numbers has been presented. The algorithms have been successfully applied to compute global Sobol sensitivity measures corresponding to the influence of several input parameters (six chemical reactions rates and four different groups of pollutants) on the concentrations of important air pollutants. The concentration values have been generated by the Unified Danish Eulerian Model. The sensitivity study has been done for the areas of several European cities with different geographical locations. The numerical tests show that the stochastic algorithms under consideration are efficient for multidimensional integration and especially for computing small by value sensitivity indices. It is a crucial element since even small indices may be important to be estimated in order to achieve a more accurate distribution of inputs influence and a more reliable interpretation of the mathematical model results.

  3. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  4. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  5. Human visual system automatically represents large-scale sequential regularities.

    Science.gov (United States)

    Kimura, Motohiro; Widmann, Andreas; Schröger, Erich

    2010-03-04

    Our brain recordings reveal that large-scale sequential regularities defined across non-adjacent stimuli can be automatically represented in visual sensory memory. To show that, we adopted an auditory paradigm developed by Sussman, E., Ritter, W., and Vaughan, H. G. Jr. (1998). Predictability of stimulus deviance and the mismatch negativity. NeuroReport, 9, 4167-4170, Sussman, E., and Gumenyuk, V. (2005). Organization of sequential sounds in auditory memory. NeuroReport, 16, 1519-1523 to the visual domain by presenting task-irrelevant infrequent luminance-deviant stimuli (D, 20%) inserted among task-irrelevant frequent stimuli being of standard luminance (S, 80%) in randomized (randomized condition, SSSDSSSSSDSSSSD...) and fixed manners (fixed condition, SSSSDSSSSDSSSSD...). Comparing the visual mismatch negativity (visual MMN), an event-related brain potential (ERP) index of memory-mismatch processes in human visual sensory system, revealed that visual MMN elicited by deviant stimuli was reduced in the fixed compared to the randomized condition. Thus, the large-scale sequential regularity being present in the fixed condition (SSSSD) must have been represented in visual sensory memory. Interestingly, this effect did not occur in conditions with stimulus-onset asynchronies (SOAs) of 480 and 800 ms but was confined to the 160-ms SOA condition supporting the hypothesis that large-scale regularity extraction was based on perceptual grouping of the five successive stimuli defining the regularity. 2010 Elsevier B.V. All rights reserved.

  6. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  7. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  8. Combustion of biodiesel in a large-scale laboratory furnace

    International Nuclear Information System (INIS)

    Pereira, Caio; Wang, Gongliang; Costa, Mário

    2014-01-01

    Combustion tests in a large-scale laboratory furnace were carried out to assess the feasibility of using biodiesel as a fuel in industrial furnaces. For comparison purposes, petroleum-based diesel was also used as a fuel. Initially, the performance of the commercial air-assisted atomizer used in the combustion tests was scrutinized under non-reacting conditions. Subsequently, flue gas data, including PM (particulate matter), were obtained for various flame conditions to quantify the effects of the atomization quality and excess air on combustion performance. The combustion data was complemented with in-flame temperature measurements for two representative furnace operating conditions. The results reveal that (i) CO emissions from biodiesel and diesel combustion are rather similar and not affected by the atomization quality; (ii) NO x emissions increase slightly as spray quality improves for both liquid fuels, but NO x emissions from biodiesel combustion are always lower than those from diesel combustion; (iii) CO emissions decrease rapidly for both liquid fuels as the excess air level increases up to an O 2 concentration in the flue gas of 2%, beyond which they remain unchanged; (iv) NO x emissions increase with an increase in the excess air level for both liquid fuels; (v) the quality of the atomization has a significant impact on PM emissions, with the diesel combustion yielding significantly higher PM emissions than biodiesel combustion; and (vi) diesel combustion originates PM with elements such as Cr, Na, Ni and Pb, while biodiesel combustion produces PM with elements such as Ca, Mg and Fe. - Highlights: • CO emissions from biodiesel and diesel tested are similar. • NO x emissions from biodiesel tested are lower than those from diesel tested. • Diesel tested yields significantly higher PM (particulate matter) emissions than biodiesel tested. • Diesel tested originates PM with Cr, Na, Ni and Pb, while biodiesel tested produces PM with Ca, Mg and Fe

  9. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).

  10. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  11. Large scale Tesla coil guided discharges initiated by femtosecond laser filamentation in air

    Science.gov (United States)

    Arantchouk, L.; Point, G.; Brelet, Y.; Prade, B.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-07-01

    The guiding of meter scale electric discharges produced in air by a Tesla coil is realized in laboratory using a focused terawatt laser pulse undergoing filamentation. The influence of the focus position, the laser arrival time, or the gap length is studied to determine the best conditions for efficient laser guiding. Discharge parameters such as delay, jitter, and resistance are characterized. An increase of the discharge length by a factor 5 has been achieved with the laser filaments, corresponding to a mean breakdown field of 2 kV/cm for a 1.8 m gap length. Consecutive guided discharges at a repetition rate of 10 Hz are also reported.

  12. Large-scale grid management

    International Nuclear Information System (INIS)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-01-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series

  13. A large-scale perspective on stress-induced alterations in resting-state networks

    Science.gov (United States)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  14. An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies.

    Science.gov (United States)

    Noorman, Henk

    2011-08-01

    For industrial bioreactor design, operation, control and optimization, the scale-down approach is often advocated to efficiently generate data on a small scale, and effectively apply suggested improvements to the industrial scale. In all cases it is important to ensure that the scale-down conditions are representative of the real large-scale bioprocess. Progress is hampered by limited detailed and local information from large-scale bioprocesses. Complementary to real fermentation studies, physical aspects of model fluids such as air-water in large bioreactors provide useful information with limited effort and cost. Still, in industrial practice, investments of time, capital and resources often prohibit systematic work, although, in the end, savings obtained in this way are trivial compared to the expenses that result from real process disturbances, batch failures, and non-flyers with loss of business opportunity. Here we try to highlight what can be learned from real large-scale bioprocess in combination with model fluid studies, and to provide suitable computation tools to overcome data restrictions. Focus is on a specific well-documented case for a 30-m(3) bioreactor. Areas for further research from an industrial perspective are also indicated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations

    Directory of Open Access Journals (Sweden)

    Clare Kimblin

    2017-09-01

    Full Text Available Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air are examined as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS reliably correlates reactions involving atomic Al and aluminum monoxide (AlO with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosive detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ∼10-5 s, roughly 100 times faster than the Al and AlO decay rates (∼10-3 s observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N2+. In studies where the height of the ablating laser’s focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.

  16. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  17. Interzonal air and moisture transport through large horizontal openings in a full-scale two-story test-hut: Part 2 - CFD study

    Energy Technology Data Exchange (ETDEWEB)

    Vera, S. [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec (Canada); Department of Construction Engineering and Management, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, San Agustin building, 3rd floor, Campus San Joaquin, Macul, Santiago 6904411 (Chile); Fazio, P.; Rao, J. [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec (Canada)

    2010-03-15

    The aim of this paper is to study the air and moisture transport through a large horizontal opening in a full-scale two-story test-hut with mixed ventilation by means of computational fluid dynamics (CFD) simulations. CFD allows extending the experimental study presented in the companion paper and overcoming some limitations of experimental data. More than 80 cases were simulated for conditions similar to those tested experimentally and for additional ventilation rates and temperature difference between the two rooms. CFD simulations were performed in Airpak and the indoor zero-equation turbulence model was used. The CFD model was extensively validated with the distributions of air speed, temperature and humidity ratio measured across the two rooms, as well as with the measured interzonal mass airflows through the horizontal opening. CFD simulation results show that temperature difference between the two rooms and ventilation rate strongly influence the interzonal mass airflows through the opening when the upper room is colder than the lower room, while warm convective air currents from the baseboard heater and from the moisture source placed in the lower room cause upward mass airflows when the upper room is warmer than the lower room. Finally, empirical relationships between the upward mass airflow and the temperature difference between the two rooms are developed. (author)

  18. Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia.

    Science.gov (United States)

    Leavey, Katherine; Bainbridge, Shannon A; Cox, Brian J

    2015-01-01

    Preeclampsia (PE) is a life-threatening hypertensive pathology of pregnancy affecting 3-5% of all pregnancies. To date, PE has no cure, early detection markers, or effective treatments short of the removal of what is thought to be the causative organ, the placenta, which may necessitate a preterm delivery. Additionally, numerous small placental microarray studies attempting to identify "PE-specific" genes have yielded inconsistent results. We therefore hypothesize that preeclampsia is a multifactorial disease encompassing several pathology subclasses, and that large cohort placental gene expression analysis will reveal these groups. To address our hypothesis, we utilized known bioinformatic methods to aggregate 7 microarray data sets across multiple platforms in order to generate a large data set of 173 patient samples, including 77 with preeclampsia. Unsupervised clustering of these patient samples revealed three distinct molecular subclasses of PE. This included a "canonical" PE subclass demonstrating elevated expression of known PE markers and genes associated with poor oxygenation and increased secretion, as well as two other subclasses potentially representing a poor maternal response to pregnancy and an immunological presentation of preeclampsia. Our analysis sheds new light on the heterogeneity of PE patients, and offers up additional avenues for future investigation. Hopefully, our subclassification of preeclampsia based on molecular diversity will finally lead to the development of robust diagnostics and patient-based treatments for this disorder.

  19. Conference on Large Scale Optimization

    CERN Document Server

    Hearn, D; Pardalos, P

    1994-01-01

    On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con­ ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program­ ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At­ tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com­ puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abro...

  20. Model of large scale man-machine systems with an application to vessel traffic control

    NARCIS (Netherlands)

    Wewerinke, P.H.; van der Ent, W.I.; ten Hove, D.

    1989-01-01

    Mathematical models are discussed to deal with complex large-scale man-machine systems such as vessel (air, road) traffic and process control systems. Only interrelationships between subsystems are assumed. Each subsystem is controlled by a corresponding human operator (HO). Because of the

  1. Simulation of large scale air detritiation operations by computer modeling and bench-scale experimentation

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Land, R.H.; Maroni, V.A.; Mintz, J.M.

    1978-01-01

    Although some experience has been gained in the design and construction of 0.5 to 5 m 3 /s air-detritiation systems, little information is available on the performance of these systems under realistic conditions. Recently completed studies at ANL have attempted to provide some perspective on this subject. A time-dependent computer model was developed to study the effects of various reaction and soaking mechanisms that could occur in a typically-sized fusion reactor building (approximately 10 5 m 3 ) following a range of tritium releases (2 to 200 g). In parallel with the computer study, a small (approximately 50 liter) test chamber was set up to investigate cleanup characteristics under conditions which could also be simulated with the computer code. Whereas results of computer analyses indicated that only approximately 10 -3 percent of the tritium released to an ambient enclosure should be converted to tritiated water, the bench-scale experiments gave evidence of conversions to water greater than 1%. Furthermore, although the amounts (both calculated and observed) of soaked-in tritium are usually only a very small fraction of the total tritium release, the soaked tritium is significant, in that its continuous return to the enclosure extends the cleanup time beyond the predicted value in the absence of any soaking mechanisms

  2. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States

    Science.gov (United States)

    Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.

    2018-03-01

    from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.

  3. Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene.

    Science.gov (United States)

    Crees, Jennifer J; Carbone, Chris; Sommer, Robert S; Benecke, Norbert; Turvey, Samuel T

    2016-03-30

    The use of short-term indicators for understanding patterns and processes of biodiversity loss can mask longer-term faunal responses to human pressures. We use an extensive database of approximately 18,700 mammalian zooarchaeological records for the last 11,700 years across Europe to reconstruct spatio-temporal dynamics of Holocene range change for 15 large-bodied mammal species. European mammals experienced protracted, non-congruent range losses, with significant declines starting in some species approximately 3000 years ago and continuing to the present, and with the timing, duration and magnitude of declines varying individually between species. Some European mammals became globally extinct during the Holocene, whereas others experienced limited or no significant range change. These findings demonstrate the relatively early onset of prehistoric human impacts on postglacial biodiversity, and mirror species-specific patterns of mammalian extinction during the Late Pleistocene. Herbivores experienced significantly greater declines than carnivores, revealing an important historical extinction filter that informs our understanding of relative resilience and vulnerability to human pressures for different taxa. We highlight the importance of large-scale, long-term datasets for understanding complex protracted extinction processes, although the dynamic pattern of progressive faunal depletion of European mammal assemblages across the Holocene challenges easy identification of 'static' past baselines to inform current-day environmental management and restoration. © 2016 The Author(s).

  4. Political consultation and large-scale research

    International Nuclear Information System (INIS)

    Bechmann, G.; Folkers, H.

    1977-01-01

    Large-scale research and policy consulting have an intermediary position between sociological sub-systems. While large-scale research coordinates science, policy, and production, policy consulting coordinates science, policy and political spheres. In this very position, large-scale research and policy consulting lack of institutional guarantees and rational back-ground guarantee which are characteristic for their sociological environment. This large-scale research can neither deal with the production of innovative goods under consideration of rentability, nor can it hope for full recognition by the basis-oriented scientific community. Policy consulting knows neither the competence assignment of the political system to make decisions nor can it judge succesfully by the critical standards of the established social science, at least as far as the present situation is concerned. This intermediary position of large-scale research and policy consulting has, in three points, a consequence supporting the thesis which states that this is a new form of institutionalization of science: These are: 1) external control, 2) the organization form, 3) the theoretical conception of large-scale research and policy consulting. (orig.) [de

  5. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE

    Science.gov (United States)

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.

    2015-03-01

    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal <0.05 m thick regime of saltating/rolling particles and shifting sand waves, capped by a 2.5-4.5 m thick, turbulent suspension that grades upward to lower particle concentrations. Resulting deposits include stratified dunes, wavy and planar laminated beds, and thin ash cloud fall layers. Concentrated currents segregate into a dense basal underflow of <0.6 m thickness that remains aerated. This is capped by an upper ash cloud surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  6. Air emissions of small-scale (< 10 MW) biomass boilers. Review of three field tests

    International Nuclear Information System (INIS)

    Autret, E.

    2011-01-01

    Objectives of greenhouse gases emission reduction, which encourages bio-energy development for heat purposes, are compatible with air-quality policies if the concept of clean biomass combustion is applied. This paper presents actual emission levels of atmospheric pollutants of small-scale ( 2 , NO x , fine particulate matters, metallic compounds. Installation design (power, flue-gas cleaning techno logy) also has a major impact on organic pollutants and fine particulate matter emissions. A large majority of boilers have very low emission levels. Guidelines are finally stated to keep on promoting small-scale biomass boilers in order to be air-quality compatible and efficient to fight climate change. (author)

  7. Large-Scale, Parallel, Multi-Sensor Data Fusion in the Cloud

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.

    2012-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To efficiently assemble such decade-scale datasets in a timely manner, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. "SciReduce" is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, in which simple tuples (keys & values) are passed between the map and reduce functions, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Thus, SciReduce uses the native datatypes (geolocated grids, swaths, and points) that geo-scientists are familiar with. We are deploying within Sci

  8. Simulating urban-scale air pollutants and their predicting capabilities over the Seoul metropolitan area.

    Science.gov (United States)

    Park, Il-Soo; Lee, Suk-Jo; Kim, Cheol-Hee; Yoo, Chul; Lee, Yong-Hee

    2004-06-01

    Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.

  9. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  10. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  11. Movement reveals scale dependence in habitat selection of a large ungulate

    Science.gov (United States)

    Northrup, Joseph; Anderson, Charles R.; Hooten, Mevin B.; Wittemyer, George

    2016-01-01

    Ecological processes operate across temporal and spatial scales. Anthropogenic disturbances impact these processes, but examinations of scale dependence in impacts are infrequent. Such examinations can provide important insight to wildlife–human interactions and guide management efforts to reduce impacts. We assessed spatiotemporal scale dependence in habitat selection of mule deer (Odocoileus hemionus) in the Piceance Basin of Colorado, USA, an area of ongoing natural gas development. We employed a newly developed animal movement method to assess habitat selection across scales defined using animal-centric spatiotemporal definitions ranging from the local (defined from five hour movements) to the broad (defined from weekly movements). We extended our analysis to examine variation in scale dependence between night and day and assess functional responses in habitat selection patterns relative to the density of anthropogenic features. Mule deer displayed scale invariance in the direction of their response to energy development features, avoiding well pads and the areas closest to roads at all scales, though with increasing strength of avoidance at coarser scales. Deer displayed scale-dependent responses to most other habitat features, including land cover type and habitat edges. Selection differed between night and day at the finest scales, but homogenized as scale increased. Deer displayed functional responses to development, with deer inhabiting the least developed ranges more strongly avoiding development relative to those with more development in their ranges. Energy development was a primary driver of habitat selection patterns in mule deer, structuring their behaviors across all scales examined. Stronger avoidance at coarser scales suggests that deer behaviorally mediated their interaction with development, but only to a degree. At higher development densities than seen in this area, such mediation may not be possible and thus maintenance of sufficient

  12. Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations

    Science.gov (United States)

    Xie, Z.

    2015-12-01

    In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.

  13. Numerical study by large-eddy simulation on effects and mechanism of air-cooling enhancing technologies

    International Nuclear Information System (INIS)

    Tamura, Akinori; Kawamura, Toshinori; Ishida, Naoyuki; Kitou, Kazuaki

    2014-01-01

    Learning from the lessons of the Fukushima Daiichi nuclear incident in which a long-term station black-out occurred, we have been developing an air-cooling system for boiling water reactors that can operate without electricity for a virtually indefinite time. Improvement in the heat transfer performance of air-cooling is key to the development of the air-cooling system. We developed air-cooling enhancing technologies for the air-cooling system by using heat transfer fins, turbulence-enhancing ribs and a micro-fabrication surface. In our previous study, the performance of these air-cooling enhancing technologies was evaluated by heat transfer tests using a single pipe of the air-cooling heat exchanger. To achieve further improvement of the heat transfer performance, it is important to understand the mechanism of the air-cooling enhancing technologies. In this study, we used the numerical analysis which is based on the filtered incompressible Navier-Stokes equation and the filtered energy equation with the large-eddy simulation in order to investigate the effects and the mechanism of the developed air-cooling enhancing technologies. We found that the analysis results agreed well with the experimental results and the empirical formula results. The heat transfer enhancement mechanism of the heat transfer fin is due to an increase in the heat transfer area. Due to a decrease in the flow velocity at the base of the fins, the increase in the Nusselt number was approximately 15% smaller than the estimated value from the area increase. In the heat transfer enhancement by the turbulence-enhancing ribs, the unsteady behavior of the large-scale vortex generated by the flow separation plays an important role. The enhancement ratio of the Nusselt number by the micro-fabrication surface can be explained by the apparent thermal conductivity. The Nusselt number was increased 4-8% by the micro-fabrication surface. The effect of the micro-fabrication surface is increased by applying

  14. Large capacity water and air bath calorimeters

    International Nuclear Information System (INIS)

    James, S.J.; Kasperski, P.W.; Renz, D.P.; Wetzel, J.R.

    1993-01-01

    EG and G Mound Applied Technologies has developed an 11 in. x 17 in. sample size water bath and an 11 in. x 17 in. sample size air bath calorimeter which both function under servo control mode of operation. The water bath calorimeter has four air bath preconditioners to increase sample throughput and the air bath calorimeter has two air bath preconditioners. The large capacity calorimeters and preconditioners were unique to Mound design which brought about unique design challenges. Both large capacity systems calculate the optimum set temperature for each preconditioner which is available to the operator. Each system is controlled by a personal computer under DOS which allows the operator to download data to commercial software packages when the calorimeter is idle. Qualification testing yielded a one standard deviation of 0.6% for 0.2W to 3.0W Pu-238 heat standard range in the water bath calorimeter and a one standard deviation of 0.3% for the 6.0W to 20.0W Pu-238 heat standard range in the air bath calorimeter

  15. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  16. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  17. Fire simulation in large compartments with a fire model 'CFAST'. Part 1. Survey of applicability for analyzing air-temperature profile in compartments

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Shirai, Koji; Eguchi, Yuzuru; Sano, Tadashi

    2012-01-01

    The basic performance of numerical analysis of air-temperature profiles in large-scale compartments by using a zone model, CFAST (Consolidated model of Fire growth And Smoke Transport), which has been widely applied for fire protection design of buildings is examined. Special attentions are paid to the dependence of the setting boundary conditions and the choosing model parameters. The simulations carried out under the denkyoken-test conditions, in which the air-temperature profiles in compartments and the heat-release rate of a fire have been precisely measured, indicate that the CFAST has a capability to appropriately represent the time-histories of air-temperature in the high air-temperature layer generated in the vicinity of ceiling of the compartment which includes the source of a fire, by applying the proper boundary conditions, i.e., time-histories of air-temperature in the upper (high temperature) layer given by the CFAST agree well with those of observations. The sensitivity analysis in the simulations also reveals that the appropriately setting of the boundary-conditions, especially for the heat-release ratio from a fire and the heat-transfer rate from walls of compartments to ambient air is vital. Contrary to this, the impacts of choosing numerical parameters on the air-temperature analysis are quite small. (author)

  18. Large scale anisotropy studies with the Auger Observatory

    International Nuclear Information System (INIS)

    Santos, E.M.; Letessier-Selvon, A.

    2006-01-01

    With the increasing Auger surface array data sample of the highest energy cosmic rays, large scale anisotropy studies at this part of the spectrum become a promising path towards the understanding of the origin of ultra-high energy cosmic particles. We describe the methods underlying the search for distortions in the cosmic rays arrival directions over large angular scales, that is, bigger than those commonly employed in the search for correlations with point-like sources. The widely used tools, known as coverage maps, are described and some of the issues involved in their calculations are presented through Monte Carlo based studies. Coverage computation requires a deep knowledge on the local detection efficiency, including the influence of weather parameters like temperature and pressure. Particular attention is devoted to a new proposed method to extract the coverage, based upon the assumption of time factorization of an extensive air shower detector acceptance. We use Auger monitoring data to test the goodness of such a hypothesis. We finally show the necessity of using more than one coverage to extract any possible anisotropic pattern on the sky, by pointing to some of the biases present in commonly used methods based, for example, on the scrambling of the UTC arrival times for each event. (author)

  19. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  20. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    Science.gov (United States)

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  1. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    Directory of Open Access Journals (Sweden)

    Alex Theodosiou

    Full Text Available This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF. Particulate samples of Magnox Reactor Pile Grade-A (PGA graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  2. Comparison between full- and small-scale sensory assessments of air quality

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Sabikova, J.; Lagercrantz, Love Per

    2002-01-01

    Thirty-nine untrained subjects made small- and full-scale evaluations of the acceptability of the quality of air at 22 deg.C and 40% RH, polluted by either carpet, felt floor covering, painted gypsum board, linoleum or chipboard. Small-scale evaluations were made on the air extracted from 200-L......-scale sensory ratings of acceptability of air polluted by carpet and by linoleum were systematically better than small-scale assessments, but not for the other three materials. Calculated sensory emission rates from carpet and linoleum were significantly lower in full scale than in small scale. When modelling...

  3. Polar night vortex breakdown and large-scale stirring in the southern stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Alvaro de la [Universidad Complutense de Madrid, Departamento de Geofisica y Meteorologia, Madrid (Spain); University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Mechoso, C.R. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Ide, K. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); University of Maryland, Department of Atmospheric and Oceanic Science, Collage Park, MD (United States); Walterscheid, R. [The Aerospace Corporation, Space Sciences Department, Los Angeles, CA (United States); Schubert, G. [University of California, Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States)

    2010-11-15

    The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Strateole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex. (orig.)

  4. Phylogenetic distribution of large-scale genome patchiness

    Directory of Open Access Journals (Sweden)

    Hackenberg Michael

    2008-04-01

    Full Text Available Abstract Background The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level. Results The local variations in the scaling exponent of the Detrended Fluctuation Analysis are used here to analyze large-scale genome structure and directly uncover the characteristic scales present in genome sequences. Furthermore, through shuffling experiments of selected genome regions, computationally-identified, isochore-like regions were identified as the biological source for the uncovered large-scale genome structure. The phylogenetic distribution of short- and large-scale patchiness was determined in the best-sequenced genome assemblies from eleven eukaryotic genomes: mammals (Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, and Canis familiaris, birds (Gallus gallus, fishes (Danio rerio, invertebrates (Drosophila melanogaster and Caenorhabditis elegans, plants (Arabidopsis thaliana and yeasts (Saccharomyces cerevisiae. We found large-scale patchiness of genome structure, associated with in silico determined, isochore-like regions, throughout this wide phylogenetic range. Conclusion Large-scale genome structure is detected by directly analyzing DNA sequences in a wide range of eukaryotic chromosome sequences, from human to yeast. In all these genomes, large-scale patchiness can be associated with the isochore-like regions, as directly detected in silico at the sequence level.

  5. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    1981-05-01

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  6. Large Scale Self-Organizing Information Distribution System

    National Research Council Canada - National Science Library

    Low, Steven

    2005-01-01

    This project investigates issues in "large-scale" networks. Here "large-scale" refers to networks with large number of high capacity nodes and transmission links, and shared by a large number of users...

  7. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens.

    Science.gov (United States)

    Jiang, Zhenhong; He, Fei; Zhang, Ziding

    2017-07-01

    Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study

  8. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  9. Automatic management software for large-scale cluster system

    International Nuclear Information System (INIS)

    Weng Yunjian; Chinese Academy of Sciences, Beijing; Sun Gongxing

    2007-01-01

    At present, the large-scale cluster system faces to the difficult management. For example the manager has large work load. It needs to cost much time on the management and the maintenance of large-scale cluster system. The nodes in large-scale cluster system are very easy to be chaotic. Thousands of nodes are put in big rooms so that some managers are very easy to make the confusion with machines. How do effectively carry on accurate management under the large-scale cluster system? The article introduces ELFms in the large-scale cluster system. Furthermore, it is proposed to realize the large-scale cluster system automatic management. (authors)

  10. Environment and host as large-scale controls of ectomycorrhizal fungi.

    Science.gov (United States)

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  11. Large scale land acquisitions and REDD+: a synthesis of conflicts and opportunities

    NARCIS (Netherlands)

    Carter, Sarah; Manceur, Ameur M.; Seppelt, Ralf; Hermans, Kathleen; Herold, Martin; Verchot, Louis V.

    2017-01-01

    Large scale land acquisitions (LSLA), and Reducing Emissions from Deforestation and forest Degradation (REDD+) are both land based phenomena which when occurring in the same area, can compete with each other for land. A quantitative analysis of country characteristics revealed that land available

  12. Experimental and Numerical Investigations of Air Cooling for a Large-Scale Motor

    Directory of Open Access Journals (Sweden)

    Chih-Chung Chang

    2009-01-01

    Full Text Available This article experimentally and numerically investigates the thermal performance of a 2350-kW completely enclosed motor, which is cooled through an air-to-air heat exchanger. The air in the heat exchanger includes external and internal flow paths. The external air driven by the rotation of the centrifugal fan goes through the heat exchanger mounted on the top of the frame. The internal air absorbs heat released from the stator and the rotor and then transfers the heat to the heat exchanger through the motion of two axial fans and the rotor. Several test rigs have been set up to measure the performance of the fan and the motor. The Fluent software package is adopted to analyze the complicated thermal-fluid interactions among the centrifugal fan, two axial fans, heat exchanger, stator, and rotor. The measured data, including the fan performance curves and the temperature profiles of the heat exchanger and the stator, show good agreement with the simulated results. The numerical calculations also show that the nonuniform external flow distribution through the heat exchanger and the air leakage between the axial fan and the rotor reduces the cooling ability of the motor. A detailed discussion is also included to improve the motor cooling performance.

  13. Large-scale tests of aqueous scrubber systems for LMFBR vented containment

    International Nuclear Information System (INIS)

    McCormack, J.D.; Hilliard, R.K.; Postma, A.K.

    1980-01-01

    Six large-scale air cleaning tests performed in the Containment Systems Test Facility (CSTF) are described. The test conditions simulated those postulated for hypothetical accidents in an LMFBR involving containment venting to control hydrogen concentration and containment overpressure. Sodium aerosols were generated by continously spraying sodium into air and adding steam and/or carbon dioxide to create the desired Na 2 O 2 , Na 2 CO 3 or NaOH aerosol. Two air cleaning systems were tested: (a) spray quench chamber, educator venturi scrubber and high efficiency fibrous scrubber in series; and (b) the same except with the spray quench chamber eliminated. The gas flow rates ranged up to 0.8 m 3 /s (1700 acfm) at temperatures to 313 0 C (600 0 F). Quantities of aerosol removed from the gas stream ranged up to 700 kg per test. The systems performed very satisfactorily with overall aerosol mass removal efficiencies exceeding 99.9% in each test

  14. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  15. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  16. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework

    NARCIS (Netherlands)

    Akita, Yasuyuki; Baldasano, Jose M.; Beelen, Rob; Cirach, Marta; De Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L.; De Nazelle, Audrey

    2014-01-01

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also

  17. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    International Nuclear Information System (INIS)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-01-01

    Highlights: • A 1/8th geometric-scale test facility that models the VHTR hot plenum is proposed. • Geometric scaling analysis is introduced for VHTR to analyze air-ingress accident. • Design calculations are performed to show that accident phenomenology is preserved. • Some analyses include time scale, hydraulic similarity and power scaling analysis. • Test facility has been constructed and shake-down tests are currently being carried out. - Abstract: A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time

  18. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  19. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  20. A spatial picture of the synthetic large-scale motion from dynamic roughness

    Science.gov (United States)

    Huynh, David; McKeon, Beverley

    2017-11-01

    Jacobi and McKeon (2011) set up a dynamic roughness apparatus to excite a synthetic, travelling wave-like disturbance in a wind tunnel, boundary layer study. In the present work, this dynamic roughness has been adapted for a flat-plate, turbulent boundary layer experiment in a water tunnel. A key advantage of operating in water as opposed to air is the longer flow timescales. This makes accessible higher non-dimensional actuation frequencies and correspondingly shorter synthetic length scales, and is thus more amenable to particle image velocimetry. As a result, this experiment provides a novel spatial picture of the synthetic mode, the coupled small scales, and their streamwise development. It is demonstrated that varying the roughness actuation frequency allows for significant tuning of the streamwise wavelength of the synthetic mode, with a range of 3 δ-13 δ being achieved. Employing a phase-locked decomposition, spatial snapshots are constructed of the synthetic large scale and used to analyze its streamwise behavior. Direct spatial filtering is used to separate the synthetic large scale and the related small scales, and the results are compared to those obtained by temporal filtering that invokes Taylor's hypothesis. The support of AFOSR (Grant # FA9550-16-1-0361) is gratefully acknowledged.

  1. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics

    Science.gov (United States)

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model’s components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  2. Diacetyl and 2,3-pentanedione in breathing zone and area air during large-scale commercial coffee roasting, blending and grinding processes.

    Science.gov (United States)

    McCoy, Michael J; Hoppe Parr, Kimberly A; Anderson, Kim E; Cornish, Jim; Haapala, Matti; Greivell, John

    2017-01-01

    Recently described scientific literature has identified the airborne presence of 2,3-butanedione (diacetyl) and 2,3-pentanedione at concentrations approaching or potentially exceeding the current American Conference of Industrial Hygienists' (ACGIH) Threshold Limit Values (TLVs) at commercial coffee roasting and production facilities. Newly established National Institutes of Occupational Safety and Health (NIOSH) Recommended Exposure Limits for diacetyl and 2,3-pentanedione are even more conservative. Chronic exposure to these alpha-diketones at elevated airborne concentrations has been associated with lung damage, specifically bronchiolitis obliterans, most notably in industrial food processing facilities. Workers at a large commercial coffee roaster were monitored for both eight-hour and task-based, short-term, 15-min sample durations for airborne concentrations of these alpha-diketones during specific work processes, including the coffee bean roasting, blending and grinding processes, during two separate 8-h work periods. Additionally, the authors performed real-time Fourier transform infrared spectroscopy (FTIR) analysis of the workers' breathing zone as well as the area workplace air for the presence of organic compounds to determine the sources, as well as quantitate and identify various organic compounds proximal to the roasting and grinding processes. Real-time FTIR measurements provided both the identification and quantitation of diacetyl and 2,3-pentanedione, as well as other organic compounds generated during coffee bean roasting and grinding operations. Airborne concentrations of diacetyl in the workers' breathing zone, as eight-hour time-weighted averages were less than the ACGIH TLVs for diacetyl, while concentrations of 2,3-pentanedione were below the limit of detection in all samples. Short-term breathing zone samples revealed airborne concentrations for diacetyl that exceeded the ACGIH short-term exposure limit of 0.02 parts per million (ppm) in

  3. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.; Chin, Y.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  4. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    International Nuclear Information System (INIS)

    Liang, Z.; Chin, Y.S.

    2014-01-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  5. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that

  6. Algorithm 896: LSA: Algorithms for Large-Scale Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009

  7. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  8. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  9. Results of Large-Scale Spacecraft Flammability Tests

    Science.gov (United States)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot

  10. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  11. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  12. Computational models of consumer confidence from large-scale online attention data: crowd-sourcing econometrics.

    Science.gov (United States)

    Dong, Xianlei; Bollen, Johan

    2015-01-01

    Economies are instances of complex socio-technical systems that are shaped by the interactions of large numbers of individuals. The individual behavior and decision-making of consumer agents is determined by complex psychological dynamics that include their own assessment of present and future economic conditions as well as those of others, potentially leading to feedback loops that affect the macroscopic state of the economic system. We propose that the large-scale interactions of a nation's citizens with its online resources can reveal the complex dynamics of their collective psychology, including their assessment of future system states. Here we introduce a behavioral index of Chinese Consumer Confidence (C3I) that computationally relates large-scale online search behavior recorded by Google Trends data to the macroscopic variable of consumer confidence. Our results indicate that such computational indices may reveal the components and complex dynamics of consumer psychology as a collective socio-economic phenomenon, potentially leading to improved and more refined economic forecasting.

  13. Computational models of consumer confidence from large-scale online attention data: crowd-sourcing econometrics.

    Directory of Open Access Journals (Sweden)

    Xianlei Dong

    Full Text Available Economies are instances of complex socio-technical systems that are shaped by the interactions of large numbers of individuals. The individual behavior and decision-making of consumer agents is determined by complex psychological dynamics that include their own assessment of present and future economic conditions as well as those of others, potentially leading to feedback loops that affect the macroscopic state of the economic system. We propose that the large-scale interactions of a nation's citizens with its online resources can reveal the complex dynamics of their collective psychology, including their assessment of future system states. Here we introduce a behavioral index of Chinese Consumer Confidence (C3I that computationally relates large-scale online search behavior recorded by Google Trends data to the macroscopic variable of consumer confidence. Our results indicate that such computational indices may reveal the components and complex dynamics of consumer psychology as a collective socio-economic phenomenon, potentially leading to improved and more refined economic forecasting.

  14. Air-water oxygen exchange in a large whitewater river

    Science.gov (United States)

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  15. Large-scale grid management; Storskala Nettforvaltning

    Energy Technology Data Exchange (ETDEWEB)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-07-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series.

  16. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  17. Bio-inspired wooden actuators for large scale applications.

    Science.gov (United States)

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.

  18. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  19. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  20. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  1. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  2. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  3. Using Large Scale Test Results for Pedagogical Purposes

    DEFF Research Database (Denmark)

    Dolin, Jens

    2012-01-01

    The use and influence of large scale tests (LST), both national and international, has increased dramatically within the last decade. This process has revealed a tension between the legitimate need for information about the performance of the educational system and teachers to inform policy......, and the teachers’ and students’ use of this information for pedagogical purposes in the classroom. We know well how the policy makers interpret and use the outcomes of such tests, but we know less about how teachers make use of LSTs to inform their pedagogical practice. An important question is whether...... there is a contradiction between the political system’s use of LST and teachers’ (possible) pedagogical use of LST. And if yes: What is a contradiction based on? This presentation will give some results from a systematic review on how tests have influenced the pedagogical practice. The research revealed many of the fatal...

  4. Diacetyl and 2,3-pentanedione in breathing zone and area air during large-scale commercial coffee roasting, blending and grinding processes

    Directory of Open Access Journals (Sweden)

    Michael J. McCoy

    Full Text Available Recently described scientific literature has identified the airborne presence of 2,3-butanedione (diacetyl and 2,3-pentanedione at concentrations approaching or potentially exceeding the current American Conference of Industrial Hygienists’ (ACGIH Threshold Limit Values (TLVs at commercial coffee roasting and production facilities. Newly established National Institutes of Occupational Safety and Health (NIOSH Recommended Exposure Limits for diacetyl and 2,3-pentanedione are even more conservative. Chronic exposure to these alpha-diketones at elevated airborne concentrations has been associated with lung damage, specifically bronchiolitis obliterans, most notably in industrial food processing facilities.Workers at a large commercial coffee roaster were monitored for both eight-hour and task-based, short-term, 15-min sample durations for airborne concentrations of these alpha-diketones during specific work processes, including the coffee bean roasting, blending and grinding processes, during two separate 8-h work periods. Additionally, the authors performed real-time Fourier transform infrared spectroscopy (FTIR analysis of the workers’ breathing zone as well as the area workplace air for the presence of organic compounds to determine the sources, as well as quantitate and identify various organic compounds proximal to the roasting and grinding processes. Real-time FTIR measurements provided both the identification and quantitation of diacetyl and 2,3-pentanedione, as well as other organic compounds generated during coffee bean roasting and grinding operations.Airborne concentrations of diacetyl in the workers’ breathing zone, as eight-hour time-weighted averages were less than the ACGIH TLVs for diacetyl, while concentrations of 2,3-pentanedione were below the limit of detection in all samples. Short-term breathing zone samples revealed airborne concentrations for diacetyl that exceeded the ACGIH short-term exposure limit of 0

  5. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele; Attili, Antonio; Bisetti, Fabrizio; Elsinga, Gerrit E.

    2015-01-01

    from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  6. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing......, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a 609MW utility boiler is numerically studied, in which...... calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations of the same...

  7. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    Science.gov (United States)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at

  8. A 10-year Ground-Based Radar Climatology of Convective Penetration of Stratospheric Intrusions and Associated Large-Scale Transport over the CONUS

    Science.gov (United States)

    Homeyer, C. R.

    2017-12-01

    Deep convection reaching the upper troposphere and lower stratosphere (UTLS) and its impact on atmospheric composition through rapid vertical transport of lower troposphere air and stratosphere-troposphere exchange has received increasing attention in the past 5-10 years. Most efforts focused on convection have been directed toward storms that reach and/or penetrate the coincident environmental lapse-rate tropopause. However, convection has also been shown to reach into large-scale stratospheric intrusions (depressions of stratospheric air lying well below the lapse-rate tropopause on the cyclonic side of upper troposphere jet streams). Such convective penetration of stratospheric intrusions is not captured by studies of lapse-rate tropopause-penetrating convection. In this presentation, it will be shown using hourly, high-quality mergers of ground-based radar observations from 2004 to 2013 in the contiguous United States (CONUS) and forward large-scale trajectory analysis that convective penetration of stratospheric intrusions: 1) is more frequent than lapse-rate tropopause-penetrating convection, 2) occurs over a broader area of the CONUS than lapse-rate tropopause-penetrating convection, and 3) can influence the composition of the lower stratosphere through large-scale advection of convectively influenced air to altitudes above the lapse-rate tropopause, which we find to occur for about 8.5% of the intrusion volumes reached by convection.

  9. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  10. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  11. High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake

    Science.gov (United States)

    Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew

    2017-12-01

    Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.

  12. Methodology for Air Quality Forecast Downscaling from Regional- to Street-Scale

    Science.gov (United States)

    Baklanov, Alexander; Nuterman, Roman; Mahura, Alexander; Amstrup, Bjarne; Hansen Saas, Bent; Havskov Sørensen, Jens; Lorenzen, Thomas; Weismann, Jakob

    2010-05-01

    The most serious air pollution events occur in cities where there is a combination of high population density and air pollution, e.g. from vehicles. The pollutants can lead to serious human health problems, including asthma, irritation of the lungs, bronchitis, pneumonia, decreased resistance to respiratory infections, and premature death. In particular air pollution is associated with increase in cardiovascular disease and lung cancer. In 2000 WHO estimated that between 2.5 % and 11 % of total annual deaths are caused by exposure to air pollution. However, European-scale air quality models are not suited for local forecasts, as their grid-cell is typically of the order of 5 to 10km and they generally lack detailed representation of urban effects. Two suites are used in the framework of the EC FP7 project MACC (Monitoring of Atmosphere Composition and Climate) to demonstrate how downscaling from the European MACC ensemble to local-scale air quality forecast will be carried out: one will illustrate capabilities for the city of Copenhagen (Denmark); the second will focus on the city of Bucharest (Romania). This work is devoted to the first suite, where methodological aspects of downscaling from regional (European/ Denmark) to urban scale (Copenhagen), and from the urban down to street scale. The first results of downscaling according to the proposed methodology are presented. The potential for downscaling of European air quality forecasts by operating urban and street-level forecast models is evaluated. This will bring a strong support for continuous improvement of the regional forecast modelling systems for air quality in Europe, and underline clear perspectives for the future regional air quality core and downstream services for end-users. At the end of the MACC project, requirements on "how-to-do" downscaling of European air-quality forecasts to the city and street levels with different approaches will be formulated.

  13. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    Science.gov (United States)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux

  14. Air Mass Origin in the Arctic and its Response to Future Warming

    Science.gov (United States)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  15. Quantification of the urban air pollution increment and its dependency on the use of down-scaled and bottom-up city emission inventories

    NARCIS (Netherlands)

    Timmermans, R.M.A.; Denier van der Gon, H.A.C.; Kuenen, J.J.P.; Segers, A.J.; Honoré, C.; Perrussel, O.; Builtjes, P.J.H.; Schaap, M.

    2013-01-01

    The impact of large cities on air pollution levels usually is determined with models driven by so-called downscaled emission inventories. This implies that annual emissions of air pollutants at the national scale are spatially distributed over a grid using proxy data like population density. These

  16. Experimental validation of large-eddy simulation for swirling methane-air non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H.; Xu, C.S. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    Large-eddy simulation of swirling methane-air non-premixed combustion was carried out using a Smagorinsky-Lilly subgrid scale stress model and a presumed-PDF fast-chemistry combustion model. The LES statistical results are validated by PIV, temperature and species concentration measurements made by the present authors. The results indicate that in the present case the presumed-PDF fast-chemistry combustion model is a fairish one. The instantaneous vorticity and temperature maps show clearly the development and the interaction between coherent structures and combustion.

  17. A fiber-optic ice detection system for large-scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  18. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  19. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  20. Large-Scale 3D Printing: The Way Forward

    Science.gov (United States)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  1. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment.

    Directory of Open Access Journals (Sweden)

    Brandon Smith

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short non-coding RNAs predicted to regulate one third of protein coding genes via mRNA targeting. In conjunction with key transcription factors, such as the repressor REST (RE1 silencing transcription factor, miRNAs play crucial roles in neurogenesis, which requires a highly orchestrated program of gene expression to ensure the appropriate development and function of diverse neural cell types. Whilst previous studies have highlighted select groups of miRNAs during neural development, there remains a need for amenable models in which miRNA expression and function can be analyzed over the duration of neurogenesis. PRINCIPAL FINDINGS: We performed large-scale expression profiling of miRNAs in human NTera2/D1 (NT2 cells during retinoic acid (RA-induced transition from progenitors to fully differentiated neural phenotypes. Our results revealed dynamic changes of miRNA patterns, resulting in distinct miRNA subsets that could be linked to specific neurodevelopmental stages. Moreover, the cell-type specific miRNA subsets were very similar in NT2-derived differentiated cells and human primary neurons and astrocytes. Further analysis identified miRNAs as putative regulators of REST, as well as candidate miRNAs targeted by REST. Finally, we confirmed the existence of two predicted miRNAs; pred-MIR191 and pred-MIR222 associated with SLAIN1 and FOXP2, respectively, and provided some evidence of their potential co-regulation. CONCLUSIONS: In the present study, we demonstrate that regulation of miRNAs occurs in precise patterns indicative of their roles in cell fate commitment, progenitor expansion and differentiation into neurons and glia. Furthermore, the similarity between our NT2 system and primary human cells suggests their roles in molecular pathways critical for human in vivo neurogenesis.

  2. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its......The Subject of large scale networks is approached from the perspective of the network planner. An analysis of the long term planning problems is presented with the main focus on the changing requirements for large scale networks and the potential problems in meeting these requirements. The problems...... the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...

  3. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  4. Large scale reflood test

    International Nuclear Information System (INIS)

    Hirano, Kemmei; Murao, Yoshio

    1980-01-01

    The large-scale reflood test with a view to ensuring the safety of light water reactors was started in fiscal 1976 based on the special account act for power source development promotion measures by the entrustment from the Science and Technology Agency. Thereafter, to establish the safety of PWRs in loss-of-coolant accidents by joint international efforts, the Japan-West Germany-U.S. research cooperation program was started in April, 1980. Thereupon, the large-scale reflood test is now included in this program. It consists of two tests using a cylindrical core testing apparatus for examining the overall system effect and a plate core testing apparatus for testing individual effects. Each apparatus is composed of the mock-ups of pressure vessel, primary loop, containment vessel and ECCS. The testing method, the test results and the research cooperation program are described. (J.P.N.)

  5. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    Science.gov (United States)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  6. Reverse flow through a large scale multichannel nozzle

    International Nuclear Information System (INIS)

    Duignan, M.R.; Nash, C.A.

    1992-01-01

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 44 cm long, had an entrance diameter of 95 mm, an exit opening of 58 mm x 356 mm, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. All data were taken at steady-state and isothermal (300 K ± 1.5 K) conditions. During the reverse flow of water through the nozzle the point at which air begins to enter was predicted within 90% by a critical weir-flow calculation. The point of air entry into the plenum itself was found to be a function of flow conditions

  7. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  8. Bio-inspired wooden actuators for large scale applications.

    Directory of Open Access Journals (Sweden)

    Markus Rüggeberg

    Full Text Available Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.

  9. The influence of Seychelles Dome on the large scale Tropical Variability

    Science.gov (United States)

    Manola, Iris; Selten, Frank; Hazeleger, Wilco

    2013-04-01

    The Seychelles Dome (SD) is the thermocline ridge just South of the equator in the Western Indian Ocean basin. It is characterized by strong atmospheric convection and a shallow thermocline and is associated with large intraseasonal convection and SST variability (Harrison and Vecchi 2001). The SD is influenced by surface and subsurface processes, such as air-sea fluxes, Ekman upwelling from wind stress curl, ocean dynamics (vertical mixing) and oceanic Rossby waves from southeastern Indian Ocean. The favoring season for a strong SD is the boreal winter, where the thermocline is most shallow. Then the southeasterly trade winds converge with the northwesterly monsoonal winds over the intertropical convergence zone and cause cyclonic wind stress curl that drives Ekman divergence and a ridging of the thermocline. It is found that the subseasonal and interranual variability of the SD is influenced by large scale events, such as the Indian Ocean Dipole (IOD), the ENSO and the Madden-Julian Oscillation (MJO) (Tozuka et al., 2010, Lloyd and Vecchi, 2010). The SD is enhanced by cooling events in the Western Indian Ocean and easterly winds that raise the thermocline and increase the upwelling. This can be associated with a strong Walker circulation, like negative IOD conditions or La Nina-like conditions. So far the studies focus on the origins of the SD variability, but the influence of the SD itself on regional or large scale climate is largely unknown. In this study we focus on the influence of the SD variations on the large scale tropical circulation. We analyze the covariance of the SD variations and the tropical circulation in a 200 year control imulation of the climate model EC-EARTH and perform idealized SST forced simulations to study the character of the atmospheric response and its relation to ENSO, IOD and MJO. References -Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 3717-3720. -Lloyd, I. D., and G. A

  10. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  11. RESOLVING NEIGHBORHOOD-SCALE AIR TOXICS MODELING: A CASE STUDY IN WILMINGTON, CALIFORNIA

    Science.gov (United States)

    Air quality modeling is useful for characterizing exposures to air pollutants. While models typically provide results on regional scales, there is a need for refined modeling approaches capable of resolving concentrations on the scale of tens of meters, across modeling domains 1...

  12. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  13. Large Scale Community Detection Using a Small World Model

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Behera

    2017-11-01

    Full Text Available In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.

  14. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    1975-01-01

    Applications of superconductors capable of carrying large current densities in large-scale electrical devices are examined. Discussions are included on critical current density, superconducting materials available, and future prospects for improved superconducting materials. (JRD)

  15. Large-scale influences in near-wall turbulence.

    Science.gov (United States)

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  16. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio

    International Nuclear Information System (INIS)

    Foley, A.; Díaz Lobera, I.

    2013-01-01

    Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio

  17. PKI security in large-scale healthcare networks.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  18. Large Scale Demand Response of Thermostatic Loads

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana

    This study is concerned with large populations of residential thermostatic loads (e.g. refrigerators, air conditioning or heat pumps). The purpose is to gain control over the aggregate power consumption in order to provide balancing services for the electrical grid. Without affecting the temperat......This study is concerned with large populations of residential thermostatic loads (e.g. refrigerators, air conditioning or heat pumps). The purpose is to gain control over the aggregate power consumption in order to provide balancing services for the electrical grid. Without affecting....... The control architecture is defined by parsimonious communication requirements that also have a high level data privacy, and it furthermore guarantees a robust and secure local operation. Mathematical models are put forward, and the effectiveness is shown by numerical simulations. A case study of 10000...

  19. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  20. Photocatalytic degradation of air pollutants : from modeling to large scale application

    NARCIS (Netherlands)

    Hunger, M.; Hüsken, G.; Brouwers, H.J.H.

    2010-01-01

    Indoor as well as outdoor air quality and their limiting values remain a major problem to our present-day society. This paper addresses the modeling of the decomposition process of nitrogen monoxide (NO) on reactive concrete surfaces under the controlled exposition of a UV source. Within this model

  1. The Large Scale Distribution of Water Ice in the Polar Regions of the Moon

    Science.gov (United States)

    Jordan, A.; Wilson, J. K.; Schwadron, N.; Spence, H. E.

    2017-12-01

    For in situ resource utilization, one must know where water ice is on the Moon. Many datasets have revealed both surface deposits of water ice and subsurface deposits of hydrogen near the lunar poles, but it has proved difficult to resolve the differences among the locations of these deposits. Despite these datasets disagreeing on how deposits are distributed on small scales, we show that most of these datasets do agree on the large scale distribution of water ice. We present data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO), LRO's Lunar Exploration Neutron Detector (LEND), the Neutron Spectrometer on Lunar Prospector (LPNS), LRO's Lyman Alpha Mapping Project (LAMP), LRO's Lunar Orbiter Laser Altimeter (LOLA), and Chandrayaan-1's Moon Mineralogy Mapper (M3). All, including those that show clear evidence for water ice, reveal surprisingly similar trends with latitude, suggesting that both surface and subsurface datasets are measuring ice. All show that water ice increases towards the poles, and most demonstrate that its signature appears at about ±70° latitude and increases poleward. This is consistent with simulations of how surface and subsurface cold traps are distributed with latitude. This large scale agreement constrains the origin of the ice, suggesting that an ancient cometary impact (or impacts) created a large scale deposit that has been rendered locally heterogeneous by subsequent impacts. Furthermore, it also shows that water ice may be available down to ±70°—latitudes that are more accessible than the poles for landing.

  2. Large-scale regions of antimatter

    International Nuclear Information System (INIS)

    Grobov, A. V.; Rubin, S. G.

    2015-01-01

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era

  3. Large-scale regions of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  4. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference

  5. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  6. The Expanded Large Scale Gap Test

    Science.gov (United States)

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  7. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  8. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  9. Large scale cluster computing workshop

    International Nuclear Information System (INIS)

    Dane Skow; Alan Silverman

    2002-01-01

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community

  10. Experimental study of air delivery into water-conveyance system of the radial-axial turbine

    Science.gov (United States)

    Maslennikova, Alexandra; Platonov, Dmitry; Minakov, Andrey; Dekterev, Dmitry

    2017-10-01

    The paper presents an experimental study of oscillatory response in the Francis turbine of hydraulic unit. The experiment was performed on large-scale hydrodynamic test-bench with impeller diameter of 0.3 m. The effect of air injection on the intensity of pressure pulsations was studied at the maximum pressure pulsations in the hydraulic unit. It was revealed that air delivery into the water-conveyance system of the turbine results in almost two-fold reduction of pressure pulsations.

  11. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  12. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    , the impact of large-scale agriculture and outgrower schemes on productivity, household welfare and wages in developing countries is highly contentious. Chapter 1 of this thesis provides an introduction to the study, while also reviewing the key debate in the contemporary land ‘grabbing’ and historical large...... sugarcane outgrower scheme on household income and asset stocks. Chapter 5 examines the wages and working conditions in ‘formal’ large-scale and ‘informal’ small-scale irrigated agriculture. The results in Chapter 2 show that moisture stress, the use of untested planting materials, and conflict over land...... commands a higher wage than ‘formal’ large-scale agriculture, while rather different wage determination mechanisms exist in the two sectors. Human capital characteristics (education and experience) partly explain the differences in wages within the formal sector, but play no significant role...

  13. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  14. Scale Effect of Premixed Methane-Air Combustion in Confined Space Using LES Model

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2015-12-01

    Full Text Available Gas explosion is the most hazardous incident occurring in underground airways. Computational Fluid Dynamics (CFD techniques are sophisticated in simulating explosions in confined spaces; specifically, when testing large-scale gaseous explosions, such as methane explosions in underground mines. The dimensions of a confined space where explosions could occur vary significantly. Thus, the scale effect on explosion parameters is worth investigating. In this paper, the impact of scaling on explosion overpressures is investigated by employing two scaling factors: The Gas-fill Length Scaling Factor (FLSF and the Hydraulic Diameter Scaling Factor (HDSF. The combinations of eight FLSFs and five HDSFs will cover a wide range of space dimensions where flammable gas could accumulate. Experiments were also conducted to evaluate the selected numerical models. The Large Eddy Simulation turbulence model was selected because it shows accuracy compared to the widely used Reynolds’ averaged models for the scenarios investigated in the experiments. Three major conclusions can be drawn: (1 The overpressure increases with both FLSF and HDSF within the deflagration regime; (2 In an explosion duct with a length to diameter ratio greater than 54, detonation is more likely to be triggered for a stoichiometric methane/air mixture; (3 Overpressure increases as an increment hydraulic diameter of a geometry within deflagration regime. A relative error of 7% is found when predicting blast peak overpressure for the base case compared to the experiment; a good agreement for the wave arrival time is also achieved.

  15. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  16. Full scale demonstration of air-purifying pavement

    NARCIS (Netherlands)

    Ballari, M.; Brouwers, H.J.H.

    2013-01-01

    Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO2 over a length of 150 m ("DeNOx street"). Another part of the street, about 100 m, was paved with

  17. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    Science.gov (United States)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  18. Large Scale Processes and Extreme Floods in Brazil

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  19. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data

  20. A cellphone based system for large-scale monitoring of black carbon

    Science.gov (United States)

    Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praveen, P. S.; Honles, T.; Leong, I.; Rehman, I. H.; Schauer, J. J.; Ramanathan, V.

    2011-08-01

    Black carbon aerosols are a major component of soot and are also a major contributor to global and regional climate change. Reliable and cost-effective systems to measure near-surface black carbon (BC) mass concentrations (hereafter denoted as [BC]) globally are necessary to validate air pollution and climate models and to evaluate the effectiveness of BC mitigation actions. Toward this goal we describe a new wireless, low-cost, ultra low-power, BC cellphone based monitoring system (BC_CBM). BC_CBM integrates a Miniaturized Aerosol filter Sampler (MAS) with a cellphone for filter image collection, transmission and image analysis for determining [BC] in real time. The BC aerosols in the air accumulate on the MAS quartz filter, resulting in a coloration of the filter. A photograph of the filter is captured by the cellphone camera and transmitted by the cellphone to the analytics component of BC_CBM. The analytics component compares the image with a calibrated reference scale (also included in the photograph) to estimate [BC]. We demonstrate with field data collected from vastly differing environments, ranging from southern California to rural regions in the Indo-Gangetic plains of Northern India, that the total BC deposited on the filter is directly and uniquely related to the reflectance of the filter in the red wavelength, irrespective of its source or how the particles were deposited. [BC] varied from 0.1 to 1 μg m -3 in Southern California and from 10 to 200 μg m -3 in rural India in our field studies. In spite of the 3 orders of magnitude variation in [BC], the BC_CBM system was able to determine the [BC] well within the experimental error of two independent reference instruments for both indoor air and outdoor ambient air. Accurate, global-scale measurements of [BC] in urban and remote rural locations, enabled by the wireless, low-cost, ultra low-power operation of BC_CBM, will make it possible to better capture the large spatial and temporal variations in

  1. Application of Parallel Algorithms in an Air Pollution Model

    DEFF Research Database (Denmark)

    Georgiev, K.; Zlatev, Z.

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  2. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  3. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  4. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed; Elsawy, Hesham; Gharbieh, Mohammad; Alouini, Mohamed-Slim; Adinoyi, Abdulkareem; Alshaalan, Furaih

    2017-01-01

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end

  5. Tile-Based Semisupervised Classification of Large-Scale VHR Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Haikel Alhichri

    2018-01-01

    Full Text Available This paper deals with the problem of the classification of large-scale very high-resolution (VHR remote sensing (RS images in a semisupervised scenario, where we have a limited training set (less than ten training samples per class. Typical pixel-based classification methods are unfeasible for large-scale VHR images. Thus, as a practical and efficient solution, we propose to subdivide the large image into a grid of tiles and then classify the tiles instead of classifying pixels. Our proposed method uses the power of a pretrained convolutional neural network (CNN to first extract descriptive features from each tile. Next, a neural network classifier (composed of 2 fully connected layers is trained in a semisupervised fashion and used to classify all remaining tiles in the image. This basically presents a coarse classification of the image, which is sufficient for many RS application. The second contribution deals with the employment of the semisupervised learning to improve the classification accuracy. We present a novel semisupervised approach which exploits both the spectral and spatial relationships embedded in the remaining unlabelled tiles. In particular, we embed a spectral graph Laplacian in the hidden layer of the neural network. In addition, we apply regularization of the output labels using a spatial graph Laplacian and the random Walker algorithm. Experimental results obtained by testing the method on two large-scale images acquired by the IKONOS2 sensor reveal promising capabilities of this method in terms of classification accuracy even with less than ten training samples per class.

  6. Temporal sequencing of throughfall drop generation as revealed by use of a large-scale rainfall simulator

    Science.gov (United States)

    Nanko, K.; Levia, D. F., Jr.; Iida, S.; SUN, X.; Shinohara, Y.; Sakai, N.

    2017-12-01

    Scientists have been interested in throughfall drop size and its distribution because of its importance to soil erosion and the forest water balance. An indoor experiment was employed to deepen our understanding of throughfall drop generation processes to promote better management of forested ecosystems. The indoor experiment provides a unique opportunity to examine an array of constant rainfall intensities that are ideal conditions to pick up the effect of changing intensities and not found in the fields. Throughfall drop generation was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), and Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions in the large-scale rainfall simulator in the National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan) at varying rainfall intensities ranging from15 to 100 mm h-1. Drop size distributions of the applied rainfall and throughfall were measured simultaneously by 20 laser disdrometers. Utilizing the drop size dataset, throughfall was separated into three components: free throughfall, canopy drip, and splash throughfall. The temporal sequencing of the throughfall components were analyzed on a 1-min interval during each experimental run. The throughfall component percentage and drop size of canopy drip differed among tree species and rainfall intensities and by elapsed time from the beginning of the rainfall event. Preliminary analysis revealed that the time differences to produce branch drip as compared to leaf (or needle) drip was partly due to differential canopy wet-up processes and the disappearance of branch drips due to canopy saturation, leading to dissimilar throughfall drop size distributions beneath the various tree species examined. This research was supported by JSPS Invitation Fellowship for Research in Japan (Grant No.: S16088) and JSPS KAKENHI (Grant No.: JP15H05626).

  7. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  8. Large high altitude air shower observatory (LHAASO) project

    International Nuclear Information System (INIS)

    He Huihai

    2010-01-01

    The Large High Altitude Air Shower Observatory (LHAASO) project focuses mainly on the study of 40 GeV-1 PeV gamma ray astronomy and 10 TeV-1 EeV cosmic ray physics. It consists of a 1 km 2 extensive air shower array with 40 000 m 2 muon detectors, 90,000m 2 water Cerenkov detector array, 5 000 m 2 shower core detector array and an air Cerenkov/fluorescence telescope array. Prototype detectors are designed with some of them already in operation. A prototype array of 1% size of LHAASO will be built at the Yangbajing Cosmic Ray Observatory and used to coincidently measure cosmic rays with the ARGO-YBJ experiment. (authors)

  9. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising w...

  10. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  11. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  12. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  13. Urban land use, air toxics and public health: Assessing hazardous exposures at the neighborhood scale

    International Nuclear Information System (INIS)

    Corburn, Jason

    2007-01-01

    Land use data are increasingly understood as important indicators of potential environmental health risk in urban areas where micro-scale or neighborhood level hazard exposure data are not routinely collected. This paper aims to offer a method for estimating the distribution of air toxics in urban neighborhoods using land use information because actual air monitoring data rarely exist at this scale. Using Geographic Information System spatial modeling tools, we estimate air toxics concentrations across neighborhoods in New York City and statistically compare our model with the US Environmental Protection Agency's National Air Toxic Assessment and air monitoring data across three NYC neighborhoods. We conclude that land use data can act as a good proxy for estimating neighborhood scale air toxics, particularly in the absence of monitoring data. In addition, the paper suggests that land use data can expand the reach of environmental impact assessments that routinely exclude analyses of potential exposures to urban air toxics at the neighborhood scale

  14. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, William J. N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trinity College Dublin, Dublin (Ireland); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  15. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  16. Large-scale fracture mechancis testing -- requirements and possibilities

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1993-01-01

    Application of fracture mechanics to very important and/or complicated structures, like reactor pressure vessels, brings also some questions about the reliability and precision of such calculations. These problems become more pronounced in cases of elastic-plastic conditions of loading and/or in parts with non-homogeneous materials (base metal and austenitic cladding, property gradient changes through material thickness) or with non-homogeneous stress fields (nozzles, bolt threads, residual stresses etc.). For such special cases some verification by large-scale testing is necessary and valuable. This paper discusses problems connected with planning of such experiments with respect to their limitations, requirements to a good transfer of received results to an actual vessel. At the same time, an analysis of possibilities of small-scale model experiments is also shown, mostly in connection with application of results between standard, small-scale and large-scale experiments. Experience from 30 years of large-scale testing in SKODA is used as an example to support this analysis. 1 fig

  17. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  18. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    International Nuclear Information System (INIS)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-01-01

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  19. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  20. Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model

    International Nuclear Information System (INIS)

    Dimov, I.; Georgieva, R.; Ostromsky, Tz.

    2012-01-01

    Variance-based approaches for global sensitivity analysis have been applied and analyzed to study the sensitivity of air pollutant concentrations according to variations of rates of chemical reactions. The Unified Danish Eulerian Model has been used as a mathematical model simulating a remote transport of air pollutants. Various Monte Carlo algorithms for numerical integration have been applied to compute Sobol's global sensitivity indices. A newly developed Monte Carlo algorithm based on Sobol's quasi-random points MCA-MSS has been applied for numerical integration. It has been compared with some existing approaches, namely Sobol's ΛΠ τ sequences, an adaptive Monte Carlo algorithm, the plain Monte Carlo algorithm, as well as, eFAST and Sobol's sensitivity approaches both implemented in SIMLAB software. The analysis and numerical results show advantages of MCA-MSS for relatively small sensitivity indices in terms of accuracy and efficiency. Practical guidelines on the estimation of Sobol's global sensitivity indices in the presence of computational difficulties have been provided. - Highlights: ► Variance-based global sensitivity analysis is performed for the air pollution model UNI-DEM. ► The main effect of input parameters dominates over higher-order interactions. ► Ozone concentrations are influenced mostly by variability of three chemical reactions rates. ► The newly developed MCA-MSS for multidimensional integration is compared with other approaches. ► More precise approaches like MCA-MSS should be applied when the needed accuracy has not been achieved.

  1. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions

    KAUST Repository

    Francis, Lijo

    2014-04-01

    The flux performance of different hydrophobic microporous flat sheet commercial membranes made of poly tetrafluoroethylene (PTFE) and poly propylene (PP) was tested for Red Sea water desalination using the direct contact membrane distillation (DCMD) process, under bench scale (high δT) and large scale module (low δT) operating conditions. Membranes were characterized for their surface morphology, water contact angle, thickness, porosity, pore size and pore size distribution. The DCMD process performance was optimized using a locally designed and fabricated module aiming to maximize the flux at different levels of operating parameters, mainly feed water and coolant inlet temperatures at different temperature differences across the membrane (δT). Water vapor flux of 88.8kg/m2h was obtained using a PTFE membrane at high δT (60°C). In addition, the flux performance was compared to the first generation of a new locally synthesized and fabricated membrane made of a different class of polymer under the same conditions. A total salt rejection of 99.99% and boron rejection of 99.41% were achieved under extreme operating conditions. On the other hand, a detailed water characterization revealed that low molecular weight non-ionic molecules (ppb level) were transported with the water vapor molecules through the membrane structure. The membrane which provided the highest flux was then tested under large scale module operating conditions. The average flux of the latter study (low δT) was found to be eight times lower than that of the bench scale (high δT) operating conditions.

  2. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Amy, Gary L.

    2014-01-01

    The flux performance of different hydrophobic microporous flat sheet commercial membranes made of poly tetrafluoroethylene (PTFE) and poly propylene (PP) was tested for Red Sea water desalination using the direct contact membrane distillation (DCMD) process, under bench scale (high δT) and large scale module (low δT) operating conditions. Membranes were characterized for their surface morphology, water contact angle, thickness, porosity, pore size and pore size distribution. The DCMD process performance was optimized using a locally designed and fabricated module aiming to maximize the flux at different levels of operating parameters, mainly feed water and coolant inlet temperatures at different temperature differences across the membrane (δT). Water vapor flux of 88.8kg/m2h was obtained using a PTFE membrane at high δT (60°C). In addition, the flux performance was compared to the first generation of a new locally synthesized and fabricated membrane made of a different class of polymer under the same conditions. A total salt rejection of 99.99% and boron rejection of 99.41% were achieved under extreme operating conditions. On the other hand, a detailed water characterization revealed that low molecular weight non-ionic molecules (ppb level) were transported with the water vapor molecules through the membrane structure. The membrane which provided the highest flux was then tested under large scale module operating conditions. The average flux of the latter study (low δT) was found to be eight times lower than that of the bench scale (high δT) operating conditions.

  3. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  4. A small-scale, rolled-membrane microfluidic artificial lung designed towards future large area manufacturing.

    Science.gov (United States)

    Thompson, A J; Marks, L H; Goudie, M J; Rojas-Pena, A; Handa, H; Potkay, J A

    2017-03-01

    Artificial lungs have been used in the clinic for multiple decades to supplement patient pulmonary function. Recently, small-scale microfluidic artificial lungs (μAL) have been demonstrated with large surface area to blood volume ratios, biomimetic blood flow paths, and pressure drops compatible with pumpless operation. Initial small-scale microfluidic devices with blood flow rates in the μ l/min to ml/min range have exhibited excellent gas transfer efficiencies; however, current manufacturing techniques may not be suitable for scaling up to human applications. Here, we present a new manufacturing technology for a microfluidic artificial lung in which the structure is assembled via a continuous "rolling" and bonding procedure from a single, patterned layer of polydimethyl siloxane (PDMS). This method is demonstrated in a small-scale four-layer device, but is expected to easily scale to larger area devices. The presented devices have a biomimetic branching blood flow network, 10  μ m tall artificial capillaries, and a 66  μ m thick gas transfer membrane. Gas transfer efficiency in blood was evaluated over a range of blood flow rates (0.1-1.25 ml/min) for two different sweep gases (pure O 2 , atmospheric air). The achieved gas transfer data closely follow predicted theoretical values for oxygenation and CO 2 removal, while pressure drop is marginally higher than predicted. This work is the first step in developing a scalable method for creating large area microfluidic artificial lungs. Although designed for microfluidic artificial lungs, the presented technique is expected to result in the first manufacturing method capable of simply and easily creating large area microfluidic devices from PDMS.

  5. Lichen elemental content bioindicators for air quality in upper Midwest, USA: A model for large-scale monitoring

    Science.gov (United States)

    Susan Will-Wolf; Sarah Jovan; Michael C. Amacher

    2017-01-01

    Our development of lichen elemental bioindicators for a United States of America (USA) national monitoring program is a useful model for other large-scale programs. Concentrations of 20 elements were measured, validated, and analyzed for 203 samples of five common lichen species. Collections were made by trained non-specialists near 75 permanent plots and an expert...

  6. Climate dynamics of South America during summer: Connections between the large-scale circulation and regional precipitation

    Science.gov (United States)

    Lenters, Johh Derick

    1997-05-01

    Relationships between the large-scale circulation and regional precipitation over South America during austral summer are examined using a GCM, linear model, and observational analyses. Emphasis is placed on understanding the origin of upper-tropospheric circulation features such as the Bolivian high and its effects on South American precipitation variability, particularly on the Central Andean Altiplano. Results from the linear model indicate that the Bolivian high and 'Nordeste low' are generated in response to precipitation over the Amazon basin, Central Andes, and South Atlantic convergence zone (SACZ), with African precipitation also playing a crucial role in the formation of the low. The direct mechanical and sensible heating effects of the Andes are minimal, acting only to induce a weak lee trough in midlatitudes and a shallow monsoonal circulation over the Central Andes. In the GCM the effects of the Andes include a strengthening of the Bolivian high and northward shift of the Nordeste low, primarily through changes in the precipitation field. The position of the Bolivian high is primarily determined by Amazonian precipitation and is little affected by the removal of the Andes. Strong subsidence to the west of the high is found to be important for the maintenance of the high's warm core, while large-scale convective overshooting to the east is responsible for a layer of cold air above the high. Observations from eight summer seasons reveal a close relationship between precipitation variability in the Central Andes and the position and intensity of the Bolivian high. The physical mechanisms of this connection are explored using composite, EOF, and correlation techniques. On intraseasonal to interannual timescales, rainy episodes on the Altiplano are found to be associated with warm, moist, poleward flow along the eastern flank of the Andes, often in conjunction with extratropical disturbances and a westward displacement of the SACZ. Corresponding to this

  7. Needs, opportunities, and options for large scale systems research

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  8. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  9. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  10. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Tanushree [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of); Kim, Ki-Hyun, E-mail: kkim61@hanyang.ac.kr [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of); Uchimiya, Minori [USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 (United States); Kumar, Pawan [Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 11016 (India); Das, Subhasish; Bhattacharya, Satya Sundar [Soil & Agro-Bioengineering Lab, Department of Environmental Science, Tezpur University, Napaam 784028 (India); Szulejko, Jan [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of)

    2016-11-15

    Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g., perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.

  11. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    International Nuclear Information System (INIS)

    Dutta, Tanushree; Kim, Ki-Hyun; Uchimiya, Minori; Kumar, Pawan; Das, Subhasish; Bhattacharya, Satya Sundar; Szulejko, Jan

    2016-01-01

    Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g., perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.

  12. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    International Nuclear Information System (INIS)

    Rivetti, A; Angulo, M; Lucino, C; Liscia, S

    2014-01-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors

  13. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    Science.gov (United States)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  14. Large-scale genomic 2D visualization reveals extensive CG-AT skew correlation in bird genomes

    Directory of Open Access Journals (Sweden)

    Deng Xuemei

    2007-11-01

    Full Text Available Abstract Background Bird genomes have very different compositional structure compared with other warm-blooded animals. The variation in the base skew rules in the vertebrate genomes remains puzzling, but it must relate somehow to large-scale genome evolution. Current research is inclined to relate base skew with mutations and their fixation. Here we wish to explore base skew correlations in bird genomes, to develop methods for displaying and quantifying such correlations at different scales, and to discuss possible explanations for the peculiarities of the bird genomes in skew correlation. Results We have developed a method called Base Skew Double Triangle (BSDT for exhibiting the genome-scale change of AT/CG skew as a two-dimensional square picture, showing base skews at many scales simultaneously in a single image. By this method we found that most chicken chromosomes have high AT/CG skew correlation (symmetry in 2D picture, except for some microchromosomes. No other organisms studied (18 species show such high skew correlations. This visualized high correlation was validated by three kinds of quantitative calculations with overlapping and non-overlapping windows, all indicating that chicken and birds in general have a special genome structure. Similar features were also found in some of the mammal genomes, but clearly much weaker than in chickens. We presume that the skew correlation feature evolved near the time that birds separated from other vertebrate lineages. When we eliminated the repeat sequences from the genomes, the AT and CG skews correlation increased for some mammal genomes, but were still clearly lower than in chickens. Conclusion Our results suggest that BSDT is an expressive visualization method for AT and CG skew and enabled the discovery of the very high skew correlation in bird genomes; this peculiarity is worth further study. Computational analysis indicated that this correlation might be a compositional characteristic

  15. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  16. Downscaling modelling system for multi-scale air quality forecasting

    Science.gov (United States)

    Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.

    2010-09-01

    Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -ɛ linear eddy-viscosity model, k - ɛ non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a

  17. Disruption of circumstellar discs by large-scale stellar magnetic fields

    Science.gov (United States)

    ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan

    2018-05-01

    Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.

  18. Factors influencing pollutant gas emissions of VOC recuperative incinerators-Large-scale parametric study

    International Nuclear Information System (INIS)

    Salvador, S.; Commandre, J.-M.; Kara, Y.

    2006-01-01

    This work establishes quantitative links between the operation parameters-plus one geometrical parameter-and the gas pollutant emissions of a recuperative incinerator (RI) of volatile organic compounds (VOCs). Using experimental design methodology, and based on a large number of experiments carried out on a half-industrial-scale pilot unit, mathematical expressions are established to calculate each of the pollutant emissions from the value of all the operation and design parameters. The gas emissions concerned are total hydrocarbons, and CO and NO x emissions, while the control parameters are the flow rate of the treated air flow, the concentration of VOCs in the air flow, the preheating temperature of the flow, and the temperature at the exit of the combustion chamber. One design parameter-the aperture of the diaphragms-is also considered. We show that the constraining emissions are only that of CO and NO x . Polynomials to predict them with a high accuracy are established. The air preheating temperature has an effect on the natural gas consumption, but not on CO and NO x emissions. There is an optimal value for the aperture of the diaphragms, and this value is quantitatively established. If the concentration of VOCs in the air flow is high, CO and NO x emissions both decrease and a high rate of efficiency in VOC destruction is attained. This demonstrates that a pre-concentration of VOCs in the air flow prior to treatment by RI is recommended. (author)

  19. In situ vitrification large-scale operational acceptance test analysis

    International Nuclear Information System (INIS)

    Buelt, J.L.; Carter, J.G.

    1986-05-01

    A thermal treatment process is currently under study to provide possible enhancement of in-place stabilization of transuranic and chemically contaminated soil sites. The process is known as in situ vitrification (ISV). In situ vitrification is a remedial action process that destroys solid and liquid organic contaminants and incorporates radionuclides into a glass-like material that renders contaminants substantially less mobile and less likely to impact the environment. A large-scale operational acceptance test (LSOAT) was recently completed in which more than 180 t of vitrified soil were produced in each of three adjacent settings. The LSOAT demonstrated that the process conforms to the functional design criteria necessary for the large-scale radioactive test (LSRT) to be conducted following verification of the performance capabilities of the process. The energy requirements and vitrified block size, shape, and mass are sufficiently equivalent to those predicted by the ISV mathematical model to confirm its usefulness as a predictive tool. The LSOAT demonstrated an electrode replacement technique, which can be used if an electrode fails, and techniques have been identified to minimize air oxidation, thereby extending electrode life. A statistical analysis was employed during the LSOAT to identify graphite collars and an insulative surface as successful cold cap subsidence techniques. The LSOAT also showed that even under worst-case conditions, the off-gas system exceeds the flow requirements necessary to maintain a negative pressure on the hood covering the area being vitrified. The retention of simulated radionuclides and chemicals in the soil and off-gas system exceeds requirements so that projected emissions are one to two orders of magnitude below the maximum permissible concentrations of contaminants at the stack

  20. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    Science.gov (United States)

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness. PMID:28328939

  1. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  2. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Growth and luminescence characterization of large-scale zinc oxide nanowires

    CERN Document Server

    Dai, L; Wang, W J; Zhou, T; Hu, B Q

    2003-01-01

    Large-scale zinc oxide (ZnO) nanowires were grown via a simple chemical reaction involving water vapour. Electron microscopy observations reveal that the ZnO nanowires are single crystalline and grow along the c-axis ([001]) direction. Room temperature photoluminescence measurements show a striking blue emission at 466 nm along with two other emissions in the ultraviolet and yellow regions. Annealing treatment of the as-grown ZnO nanowires results in an apparent reduction of the intensity of the blue emission, which indicates that the blue emission might be originating from the oxygen or zinc defects generated in the process of growth of the ZnO nanowires.

  4. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...

  5. Large-scale weakly supervised object localization via latent category learning.

    Science.gov (United States)

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  6. A revised method of presenting wavenumber-frequency power spectrum diagrams that reveals the asymmetric nature of tropical large-scale waves

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Winston C. [NASA/Goddard Space Flight Center, Global Modeling and Assimilation Office, Mail Code 610.1, Greenbelt, MD (United States); Yang, Bo; Fu, Xiouhua [University of Hawaii at Manoa, School of Ocean and Earth Science and Technology, International Pacific Research Center, Honolulu, HI (United States)

    2009-11-15

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called ''convectively coupled Kelvin (mixed Rossby-gravity) waves'' are presented as existing only in the symmetric (anti-symmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of ''convectively coupled Kelvin waves,'' which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, ''convectively coupled Kelvin waves'' do show anti-symmetric components, and ''convectively coupled mixed Rossby-gravity waves (also known as Yanai waves)'' do show a hint of symmetric components. These results bolster a published proposal that these waves should be called ''chimeric Kelvin waves,'' ''chimeric mixed Rossby-gravity waves,'' etc. This revised method of presenting power spectrum diagrams offers an additional means of comparing the GCM output with observations by calling attention to the capability of GCMs to correctly simulate the asymmetric characteristics of equatorial waves. (orig.)

  7. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  8. Large-scale experiments on aerosol behavior in light water reactor containments

    International Nuclear Information System (INIS)

    Schock, W.; Bunz, H.; Adams, R.E.; Tobias, M.L.; Rahn, F.J.

    1988-01-01

    Recently, three large-scale experimental programs were carried out dealing with the behavior of aerosols during core-melt accidents in light water reactors (LWRs). In the Nuclear Safety Pilot Plant (NSPP) program, the principal behaviors of different insoluble aerosols and of mixed aerosols were measured in dry air atmospheres and in condensing steam-air atmospheres contained in a 38-m/sup 3/ steel vessel. The Demonstration of Nuclear Aerosol Behavior (DEMONA) program used a 640-m/sup 3/ concrete containment model to simulate typical accident sequence conditions, and measured the behavior of different insoluble aerosols and mixed aerosols in condensing and transient atmospheric conditions. Part of the LWR Aerosol Containment Experiments (LACE) program was also devoted to aerosol behavior in containment; and 852-m/sup 3/ steel vessel was used, and the aerosols were composed of mixtures of insoluble and soluble species. The results of these experiments provide a suitable data base for validation of aerosol behavior codes. Fundamental insight into details of aerosol behavior in condensing environments has been gained through the results of the NSPP tests. Code comparisons have been and are being performed in the DEMONA and LACE experiments

  9. Placement of the dam for the no. 2 kambaratinskaya HPP by large-scale blasting: some observations

    International Nuclear Information System (INIS)

    Shuifer, M. I.; Argal, É. S.

    2011-01-01

    Results of complex instrument observations of large-scale blasting during construction of the dam for the No. 2 Kambaratinskaya HPP on the Naryn River in the Republic of Kirgizia are analyzed. The purpose of these observations was: to determine the actual parameters of the seismic process, evaluate the effect of air and acoustic shock waves, and investigate the kinematics of the surface formed by the blast in its core region within the mass of fractured rocks.

  10. Composite and case study analyses of the large-scale environments associated with West Pacific Polar and subtropical vertical jet superposition events

    Science.gov (United States)

    Handlos, Zachary J.

    Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific

  11. An Novel Architecture of Large-scale Communication in IOT

    Science.gov (United States)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  12. 1 million-Q optomechanical microdisk resonators for sensing with very large scale integration

    Science.gov (United States)

    Hermouet, M.; Sansa, M.; Banniard, L.; Fafin, A.; Gely, M.; Allain, P. E.; Santos, E. Gil; Favero, I.; Alava, T.; Jourdan, G.; Hentz, S.

    2018-02-01

    Cavity optomechanics have become a promising route towards the development of ultrasensitive sensors for a wide range of applications including mass, chemical and biological sensing. In this study, we demonstrate the potential of Very Large Scale Integration (VLSI) with state-of-the-art low-loss performance silicon optomechanical microdisks for sensing applications. We report microdisks exhibiting optical Whispering Gallery Modes (WGM) with 1 million quality factors, yielding high displacement sensitivity and strong coupling between optical WGMs and in-plane mechanical Radial Breathing Modes (RBM). Such high-Q microdisks with mechanical resonance frequencies in the 102 MHz range were fabricated on 200 mm wafers with Variable Shape Electron Beam lithography. Benefiting from ultrasensitive readout, their Brownian motion could be resolved with good Signal-to-Noise ratio at ambient pressure, as well as in liquid, despite high frequency operation and large fluidic damping: the mechanical quality factor reduced from few 103 in air to 10's in liquid, and the mechanical resonance frequency shifted down by a few percent. Proceeding one step further, we performed an all-optical operation of the resonators in air using a pump-probe scheme. Our results show our VLSI process is a viable approach for the next generation of sensors operating in vacuum, gas or liquid phase.

  13. Benefits of transactive memory systems in large-scale development

    OpenAIRE

    Aivars, Sablis

    2016-01-01

    Context. Large-scale software development projects are those consisting of a large number of teams, maybe even spread across multiple locations, and working on large and complex software tasks. That means that neither a team member individually nor an entire team holds all the knowledge about the software being developed and teams have to communicate and coordinate their knowledge. Therefore, teams and team members in large-scale software development projects must acquire and manage expertise...

  14. Study of a large scale neutron measurement channel

    International Nuclear Information System (INIS)

    Amarouayache, Anissa; Ben Hadid, Hayet.

    1982-12-01

    A large scale measurement channel allows the processing of the signal coming from an unique neutronic sensor, during three different running modes: impulses, fluctuations and current. The study described in this note includes three parts: - A theoretical study of the large scale channel and its brief description are given. The results obtained till now in that domain are presented. - The fluctuation mode is thoroughly studied and the improvements to be done are defined. The study of a fluctuation linear channel with an automatic commutation of scales is described and the results of the tests are given. In this large scale channel, the method of data processing is analogical. - To become independent of the problems generated by the use of a an analogical processing of the fluctuation signal, a digital method of data processing is tested. The validity of that method is improved. The results obtained on a test system realized according to this method are given and a preliminary plan for further research is defined [fr

  15. Near scale-free dynamics in neural population activity of waking/sleeping rats revealed by multiscale analysis.

    Directory of Open Access Journals (Sweden)

    Leonid A Safonov

    Full Text Available A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.

  16. Removal of iodomethane from air using a plot-scale corona discharge scrubber

    International Nuclear Information System (INIS)

    Dickson, L.W.; Toft-Hall, A.; Torgerson, D.F.

    1985-12-01

    This report presents the results of a study of the removal of iodomethane from air using a pilot-scale corona discharge scrubber. The removal was measured in the following parameter ranges: bulk air flow, 30 to 350 m 3 /h; initial CH 3 I concentration, 6 to 230 μmol/m 3 ; and discharge current, 0 to 75 mA DC (negative polarity). Approximately five to ten moles of iodomethane are removed per mole of electrons added to the air stream at a discharge voltage of ∼ 10 kV. This removal efficiency suggests that both ion-molecule and radical-molecule reactions may be important in the removal of iodomethane from air in a corona discharge. The results of this pilot-scale demonstration indicate that a corona discharge scrubber would be suitable for removing iodine species from air as part of the emergency filtered-air discharge system of a nuclear reactor. The application of this technology to the control of nitrogen oxide, sulfur dioxide and hydrogen sulfide emissions is being investigated. 15 refs

  17. Bacterial community structure of a full-scale biofilter treating pig house exhaust air

    DEFF Research Database (Denmark)

    Kristiansen, Anja; Pedersen, Kristina Hadulla; Nielsen, Per Halkjær

    2011-01-01

    Biological air filters represent a promising tool for treating emissions of ammonia and odor from pig facilities. Quantitative fluorescence in situ hybridization (FISH) and 16S rRNA gene sequencing were used to investigate the bacterial community structure and diversity in a full-scale biofilter ...... consisting of two consecutive compartments (front and back filter). The analysis revealed a highly specialized bacterial community of limited diversity, dominated by a few groups of Betaproteobacteria (especially Comamonas) and diverse Bacteroidetes. Actinobacteria, Gammaproteobacteria......, and betaproteobacterial ammoniaoxidizers (Nitrosomonas eutropha/Nitrosococcus mobilis-lineage) were also quantitatively important. Only a few quantitative differences existed between the two filter compartments at the group level, with a lower relative abundance of Actinobacteria and a higher relative abundance...

  18. GAS MIXING ANALYSIS IN A LARGE-SCALED SALTSTONE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S

    2008-05-28

    Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns mainly driven by temperature gradients inside vapor space in a large-scaled Saltstone vault facility at Savannah River site (SRS). The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations by taking a three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the potential operating conditions. The baseline model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference nominal case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information. Detailed results and the cases considered in the calculations will be discussed here.

  19. Capabilities of the Large-Scale Sediment Transport Facility

    Science.gov (United States)

    2016-04-01

    pump flow meters, sediment trap weigh tanks , and beach profiling lidar. A detailed discussion of the original LSTF features and capabilities can be...ERDC/CHL CHETN-I-88 April 2016 Approved for public release; distribution is unlimited. Capabilities of the Large-Scale Sediment Transport...describes the Large-Scale Sediment Transport Facility (LSTF) and recent upgrades to the measurement systems. The purpose of these upgrades was to increase

  20. Spatiotemporal property and predictability of large-scale human mobility

    Science.gov (United States)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  1. Problems of large-scale vertically-integrated aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Webber, H H; Riordan, P F

    1976-01-01

    The problems of vertically-integrated aquaculture are outlined; they are concerned with: species limitations (in the market, biological and technological); site selection, feed, manpower needs, and legal, institutional and financial requirements. The gaps in understanding of, and the constraints limiting, large-scale aquaculture are listed. Future action is recommended with respect to: types and diversity of species to be cultivated, marketing, biotechnology (seed supply, disease control, water quality and concerted effort), siting, feed, manpower, legal and institutional aids (granting of water rights, grants, tax breaks, duty-free imports, etc.), and adequate financing. The last of hard data based on experience suggests that large-scale vertically-integrated aquaculture is a high risk enterprise, and with the high capital investment required, banks and funding institutions are wary of supporting it. Investment in pilot projects is suggested to demonstrate that large-scale aquaculture can be a fully functional and successful business. Construction and operation of such pilot farms is judged to be in the interests of both the public and private sector.

  2. Experimental facilities for large-scale and full-scale study of hydrogen accidents

    Energy Technology Data Exchange (ETDEWEB)

    Merilo, E.; Groethe, M.; Colton, J. [SRI International, Poulter Laboratory, Menlo Park, CA (United States); Chiba, S. [SRI Japan, Tokyo (Japan)

    2007-07-01

    This paper summarized some of the work that has been performed at SRI International over the past 5 years that address safety issues for the hydrogen-based economy. Researchers at SRI International have conducted experiments at the Corral Hollow Experiment Site (CHES) near Livermore California to obtain fundamental data on hydrogen explosions for risk assessment. In particular, large-scale hydrogen tests were conducted using homogeneous mixtures of hydrogen in volumes from 5.3 m{sup 3} to 300 m{sup 3} to represent scenarios involving fuel cell vehicles as well as transport and storage facilities. Experiments have focused on unconfined deflagrations of hydrogen and air, and detonations of hydrogen in a semi-open space to measure free-field blast effects; the use of blast walls as a mitigation technique; turbulent enhancement of hydrogen combustion due to obstacles within the mixture, and determination of when deflagration-to-detonation transition occurs; the effect of confined hydrogen releases and explosions that could originate from an interconnecting hydrogen pipeline; and, large and small accidental releases of hydrogen. The experiments were conducted to improve the prediction of hydrogen explosions and the capabilities for performing risk assessments, and to develop mitigation techniques. Measurements included hydrogen concentration; flame speed; blast overpressure; heat flux; and, high-speed, standard, and infrared video. The data collected in these experiments is used to correlate computer models and to facilitate the development of codes and standards. This work contributes to better safety technology by evaluating the effectiveness of different blast mitigation techniques. 13 refs., 13 figs.

  3. Large-scale computing with Quantum Espresso

    International Nuclear Information System (INIS)

    Giannozzi, P.; Cavazzoni, C.

    2009-01-01

    This paper gives a short introduction to Quantum Espresso: a distribution of software for atomistic simulations in condensed-matter physics, chemical physics, materials science, and to its usage in large-scale parallel computing.

  4. A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility

    NARCIS (Netherlands)

    David Carmona, F.; Mackie, Sarah L.; Martin, Jose-Ezequiel; Taylor, John C.; Vaglio, Augusto; Eyre, Stephen; Bossini-Castillo, Lara; Castaneda, Santos; Cid, Maria C.; Hernandez-Rodriguez, Jose; Prieto-Gonzalez, Sergio; Solans, Roser; Ramentol-Sintas, Marc; Francisca Gonzalez-Escribano, M.; Ortiz-Fernandez, Lourdes; Morado, Inmaculada C.; Narvaez, Javier; Miranda-Filloy, Jose A.; Beretta, Lorenzo; Lunardi, Claudio; Cimmino, Marco A.; Gianfreda, Davide; Santilli, Daniele; Ramirez, Giuseppe A.; Soriano, Alessandra; Muratore, Francesco; Pazzola, Giulia; Addimanda, Olga; Wijmenga, Cisca; Witte, Torsten; Schirmer, Jan H.; Moosig, Frank; Schoenau, Verena; Franke, Andre; Palm, Oyvind; Molberg, Oyvind; Diamantopoulos, Andreas P.; Carette, Simon; Cuthbertson, David; Forbess, Lindsy J.; Hoffman, Gary S.; Khalidi, Nader A.; Koening, Curry L.; Langford, Carol A.; McAlear, Carol A.; Moreland, Larry; Monach, Paul A.; Pagnoux, Christian; Seo, Philip; Spiera, Robert; Sreih, Antoine G.; Warrington, Kenneth J.; Ytterberg, Steven R.; Gregersen, Peter K.; Pease, Colin T.; Gough, Andrew; Green, Michael; Hordon, Lesley; Jarrett, Stephen; Watts, Richard; Levy, Sarah; Patel, Yusuf; Kamath, Sanjeet; Dasgupta, Bhaskar; Worthington, Jane; Koeleman, Bobby P. C.; de Bakker, Paul I. W.; Barrett, Jennifer H.; Salvarani, Carlo; Merkel, Peter A.; Gonzalez-Gay, Miguel A.; Morgan, Ann W.; Martin, Javier

    2015-01-01

    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip

  5. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    Science.gov (United States)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mie; Eshow, Michelle

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  6. Update of the Large-scale Concentration Maps for the Netherlands (GCN); De aangepaste GCN

    Energy Technology Data Exchange (ETDEWEB)

    Van den Elshout, S.; Molenaar, R. [DCMR Milieudienst Rijnmond, Rotterdam (Netherlands)

    2011-04-15

    Every year the RIVM and PBL publish the so-called Large-scale concentration maps of the Netherlands (GCN maps). These maps offer an approximation of the background concentrations of several air-polluting substances. Sometimes these maps need to be updated to realize a better approximation of the background concentrations. [Dutch] Jaarlijks publiceren het RIVM en het PBL de zogenoemde Grootschalige Concentratiekaarten van Nederland (GCN-kaarten). Deze kaarten geven een benadering van de achtergrondconcentraties van enkele luchtvervuilende stoffen. Soms is het nodig de kaarten aan te passen om tot een betere benadering van de achtergrondconcentratie te komen.

  7. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  8. Airborne observations of large scale accumulations of air traffic emissions in the North Atlantic flight corridor within a stagnant anticyclone

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, H; Schulte, P; Ziereis, H; Schumann, U [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Ovarlez, J [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie; Velthoven, P van [Koninklijk Nederlands Meteorologisch Inst., De Bilt (Netherlands)

    1998-12-31

    Vertical and horizontal trace gas distributions were measured west of Ireland during a 7-day period in June 1995 within an extended stagnant anticyclone located in the North Atlantic flight corridor. Four subsequent flights (21, 24, 26, 28 June) with the DLR Falcon research aircraft were performed including observations of NO, O{sub 3}, HNO{sub 3}, CO{sub 2}, and meteorological parameters. NO volume mixing ratios in the upper troposphere from vertical profile measurements averaged over the corridor height range increased by 74 pptv (60%) during the observation period. Averaged NO concentrations measured along constant level flight legs at 10.7 km from 50 to 54 deg N increased by 87 pptv. Corresponding simulations with a 3-d chemistry transport model of KNMI reveal similar increases of NO{sub x} for the measuring area over the 7-day period for a model run with air traffic emissions which is not obtained for a run with no air traffic NO{sub x}. (author) 15 refs.

  9. Airborne observations of large scale accumulations of air traffic emissions in the North Atlantic flight corridor within a stagnant anticyclone

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, H.; Schulte, P.; Ziereis, H.; Schumann, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Ovarlez, J. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie; Velthoven, P. van [Koninklijk Nederlands Meteorologisch Inst., De Bilt (Netherlands)

    1997-12-31

    Vertical and horizontal trace gas distributions were measured west of Ireland during a 7-day period in June 1995 within an extended stagnant anticyclone located in the North Atlantic flight corridor. Four subsequent flights (21, 24, 26, 28 June) with the DLR Falcon research aircraft were performed including observations of NO, O{sub 3}, HNO{sub 3}, CO{sub 2}, and meteorological parameters. NO volume mixing ratios in the upper troposphere from vertical profile measurements averaged over the corridor height range increased by 74 pptv (60%) during the observation period. Averaged NO concentrations measured along constant level flight legs at 10.7 km from 50 to 54 deg N increased by 87 pptv. Corresponding simulations with a 3-d chemistry transport model of KNMI reveal similar increases of NO{sub x} for the measuring area over the 7-day period for a model run with air traffic emissions which is not obtained for a run with no air traffic NO{sub x}. (author) 15 refs.

  10. Protein homology model refinement by large-scale energy optimization.

    Science.gov (United States)

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  11. Bridging the scales in a eulerian air quality model to assess megacity export of pollution

    Science.gov (United States)

    Siour, G.; Colette, A.; Menut, L.; Bessagnet, B.; Coll, I.; Meleux, F.

    2013-08-01

    In Chemistry Transport Models (CTMs), spatial scale interactions are often represented through off-line coupling between large and small scale models. However, those nested configurations cannot give account of the impact of the local scale on its surroundings. This issue can be critical in areas exposed to air mass recirculation (sea breeze cells) or around regions with sharp pollutant emission gradients (large cities). Such phenomena can still be captured by the mean of adaptive gridding, two-way nesting or using model nudging, but these approaches remain relatively costly. We present here the development and the results of a simple alternative multi-scale approach making use of a horizontal stretched grid, in the Eulerian CTM CHIMERE. This method, called "stretching" or "zooming", consists in the introduction of local zooms in a single chemistry-transport simulation. It allows bridging online the spatial scales from the city (∼1 km resolution) to the continental area (∼50 km resolution). The CHIMERE model was run over a continental European domain, zoomed over the BeNeLux (Belgium, Netherlands and Luxembourg) area. We demonstrate that, compared with one-way nesting, the zooming method allows the expression of a significant feedback of the refined domain towards the large scale: around the city cluster of BeNeLuX, NO2 and O3 scores are improved. NO2 variability around BeNeLux is also better accounted for, and the net primary pollutant flux transported back towards BeNeLux is reduced. Although the results could not be validated for ozone over BeNeLux, we show that the zooming approach provides a simple and immediate way to better represent scale interactions within a CTM, and constitutes a useful tool for apprehending the hot topic of megacities within their continental environment.

  12. Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity

    Science.gov (United States)

    Katul, Gabriel; Liu, Heping

    2017-02-01

    A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL˜(νɛ)1/4, where ν is the kinematic water viscosity and ɛ is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.

  13. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  14. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Administrator

    structure and chemical purity of 99⋅1% by inductively coupled plasma optical emission spectroscopy on a large scale. Keywords. Sol–gel; yttria-stabilized zirconia; large scale; nanopowder; Pechini method. 1. Introduction. Zirconia has attracted the attention of many scientists because of its tremendous thermal, mechanical ...

  15. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  16. On unravelling mechanism of interplay between cloud and large scale circulation: a grey area in climate science

    Science.gov (United States)

    De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.

    2018-04-01

    The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.

  17. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    Science.gov (United States)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  18. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  19. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Quinby, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Caulfield, Emmet [Stanford Univ., CA (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Diffendorfer, Jay [U.S. Geological Survey, Boulder, CO (United States); Haines, Seth [U.S. Geological Survey, Boulder, CO (United States)

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  20. Large-scale Agricultural Land Acquisitions in West Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will examine large-scale agricultural land acquisitions in nine West African countries -Burkina Faso, Guinea-Bissau, Guinea, Benin, Mali, Togo, Senegal, Niger, and Côte d'Ivoire. ... They will use the results to increase public awareness and knowledge about the consequences of large-scale land acquisitions.

  1. Modeling quiescent phase transport of air bubbles induced by breaking waves

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.

  2. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  3. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  4. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    International Nuclear Information System (INIS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Buitink, S.; Erdmann, M.; Krause, R.; Haungs, A.; Hiller, R.; Huege, T.; Link, K.; Schröder, F. G.; Norden, M. J.; Scholten, O.

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  5. Cerebral methodology based computing to estimate real phenomena from large-scale nuclear simulation

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2011-01-01

    Our final goal is to estimate real phenomena from large-scale nuclear simulations by using computing processes. Large-scale simulations mean that they include scale variety and physical complexity so that corresponding experiments and/or theories do not exist. In nuclear field, it is indispensable to estimate real phenomena from simulations in order to improve the safety and security of nuclear power plants. Here, the analysis of uncertainty included in simulations is needed to reveal sensitivity of uncertainty due to randomness, to reduce the uncertainty due to lack of knowledge and to lead a degree of certainty by verification and validation (V and V) and uncertainty quantification (UQ) processes. To realize this, we propose 'Cerebral Methodology based Computing (CMC)' as computing processes with deductive and inductive approaches by referring human reasoning processes. Our idea is to execute deductive and inductive simulations contrasted with deductive and inductive approaches. We have established its prototype system and applied it to a thermal displacement analysis of a nuclear power plant. The result shows that our idea is effective to reduce the uncertainty and to get the degree of certainty. (author)

  6. The influence of scales of atmospheric motion on air pollution over Portugal

    Science.gov (United States)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  7. Improving Prediction of Large-scale Regime Transitions

    Science.gov (United States)

    Gyakum, J. R.; Roebber, P.; Bosart, L. F.; Honor, A.; Bunker, E.; Low, Y.; Hart, J.; Bliankinshtein, N.; Kolly, A.; Atallah, E.; Huang, Y.

    2017-12-01

    Cool season atmospheric predictability over the CONUS on subseasonal times scales (1-4 weeks) is critically dependent upon the structure, configuration, and evolution of the North Pacific jet stream (NPJ). The NPJ can be perturbed on its tropical side on synoptic time scales by recurving and transitioning tropical cyclones (TCs) and on subseasonal time scales by longitudinally varying convection associated with the Madden-Julian Oscillation (MJO). Likewise, the NPJ can be perturbed on its poleward side on synoptic time scales by midlatitude and polar disturbances that originate over the Asian continent. These midlatitude and polar disturbances can often trigger downstream Rossby wave propagation across the North Pacific, North America, and the North Atlantic. The project team is investigating the following multiscale processes and features: the spatiotemporal distribution of cyclone clustering over the Northern Hemisphere; cyclone clustering as influenced by atmospheric blocking and the phases and amplitudes of the major teleconnection indices, ENSO and the MJO; composite and case study analyses of representative cyclone clustering events to establish the governing dynamics; regime change predictability horizons associated with cyclone clustering events; Arctic air mass generation and modification; life cycles of the MJO; and poleward heat and moisture transports of subtropical air masses. A critical component of the study is weather regime classification. These classifications are defined through: the spatiotemporal clustering of surface cyclogenesis; a general circulation metric combining data at 500-hPa and the dynamic tropopause; Self Organizing Maps (SOM), constructed from dynamic tropopause and 850 hPa equivalent potential temperature data. The resultant lattice of nodes is used to categorize synoptic classes and their predictability, as well as to determine the robustness of the CFSv2 model climate relative to observations. Transition pathways between these

  8. Hierarchical hybrid control of manipulators: Artificial intelligence in large scale integrated circuits

    Science.gov (United States)

    Greene, P. H.

    1972-01-01

    Both in practical engineering and in control of muscular systems, low level subsystems automatically provide crude approximations to the proper response. Through low level tuning of these approximations, the proper response variant can emerge from standardized high level commands. Such systems are expressly suited to emerging large scale integrated circuit technology. A computer, using symbolic descriptions of subsystem responses, can select and shape responses of low level digital or analog microcircuits. A mathematical theory that reveals significant informational units in this style of control and software for realizing such information structures are formulated.

  9. Remote sensing of the biological dynamics of large-scale salt evaporation ponds

    Science.gov (United States)

    Richardson, Laurie L.; Bachoon, Dave; Ingram-Willey, Vebbra; Chow, Colin C.; Weinstock, Kenneth

    1992-01-01

    Optical properties of salt evaporation ponds associated with Exportadora de Sal, a salt production company in Baja California Sur, Mexico, were analyzed using a combination of spectroradiometer and extracted pigment data, and Landsat-5 Thematic Mapper imagery. The optical characteristics of each pond are determined by the biota, which consists of dense populations of algae and photosynthetic bacteria containing a wide variety of photosynthetic and photoprotective pigments. Analysis has shown that spectral and image data can differentiate between taxonomic groups of the microbiota, detect changes in population distributions, and reveal large-scale seasonal dynamics.

  10. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  11. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  12. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  13. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  14. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  15. Experimental study of combustion characteristics of isolated pockets of hydrogen-air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Manoubi, M.; LaFleche, M. [Univ. of Ottawa, Dept. of Mechanical Engineering, Ottawa, Ontario (Canada); Liang, Z., E-mail: zhe.liang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Radulescu, M. [Univ. of Ottawa, Dept. of Mechanical Engineering, Ottawa, Ontario (Canada)

    2016-06-15

    This paper examines the dynamics of unconfined hydrogen-air flames and the criterion for flame propagation between neighbouring pockets of reactive gas separated by air using the soap bubble technique. The combustion events were visualized using high-speed schlieren or large-scale shadowgraph systems. It was revealed that for sufficiently lean hydrogen-air mixtures characterized by low flame speeds, buoyancy effects become important at small scales. The critical radius of hemispherical flame that will rise due to buoyancy is highly sensitive to the hydrogen concentration. The test results demonstrate that for transition of a flame between neighbouring pockets, the separation distance between the bubbles is mainly determined by the expansion ratio for near stoichiometric mixture, but it becomes much smaller for leaner mixtures because the flame kernel rises due to buoyant effects before the flame can reach the second bubble, thus the separation distance is no longer governed by the expansion ratio. (author)

  16. Geospatial Augmented Reality for the interactive exploitation of large-scale walkable orthoimage maps in museums

    Science.gov (United States)

    Wüest, Robert; Nebiker, Stephan

    2018-05-01

    In this paper we present an app framework for augmenting large-scale walkable maps and orthoimages in museums or public spaces using standard smartphones and tablets. We first introduce a novel approach for using huge orthoimage mosaic floor prints covering several hundred square meters as natural Augmented Reality (AR) markers. We then present a new app architecture and subsequent tests in the Swissarena of the Swiss National Transport Museum in Lucerne demonstrating the capabilities of accurately tracking and augmenting different map topics, including dynamic 3d data such as live air traffic. The resulting prototype was tested with everyday visitors of the museum to get feedback on the usability of the AR app and to identify pitfalls when using AR in the context of a potentially crowded museum. The prototype is to be rolled out to the public after successful testing and optimization of the app. We were able to show that AR apps on standard smartphone devices can dramatically enhance the interactive use of large-scale maps for different purposes such as education or serious gaming in a museum context.

  17. A novel bonding method for large scale poly(methyl methacrylate) micro- and nanofluidic chip fabrication

    Science.gov (United States)

    Qu, Xingtian; Li, Jinlai; Yin, Zhifu

    2018-04-01

    Micro- and nanofluidic chips are becoming increasing significance for biological and medical applications. Future advances in micro- and nanofluidics and its utilization in commercial applications depend on the development and fabrication of low cost and high fidelity large scale plastic micro- and nanofluidic chips. However, the majority of the present fabrication methods suffer from a low bonding rate of the chip during thermal bonding process due to air trapping between the substrate and the cover plate. In the present work, a novel bonding technique based on Ar plasma and water treatment was proposed to fully bond the large scale micro- and nanofluidic chips. The influence of Ar plasma parameters on the water contact angle and the effect of bonding conditions on the bonding rate and the bonding strength of the chip were studied. The fluorescence tests demonstrate that the 5 × 5 cm2 poly(methyl methacrylate) chip with 180 nm wide and 180 nm deep nanochannels can be fabricated without any block and leakage by our newly developed method.

  18. Large Scale Water Vapor Sources Relative to the October 2000 Piedmont Flood

    Science.gov (United States)

    Turato, Barbara; Reale, Oreste; Siccardi, Franco

    2003-01-01

    Very intense mesoscale or synoptic-scale rainfall events can occasionally be observed in the Mediterranean region without any deep cyclone developing over the areas affected by precipitation. In these perplexing cases the synoptic situation can superficially look similar to cases in which very little precipitation occurs. These situations could possibly baffle the operational weather forecasters. In this article, the major precipitation event that affected Piedmont (Italy) between 13 and 16 October 2000 is investigated. This is one of the cases in which no intense cyclone was observed within the Mediterranean region at any time, only a moderate system was present, and yet exceptional rainfall and flooding occurred. The emphasis of this study is on the moisture origin and transport. Moisture and energy balances are computed on different space- and time-scales, revealing that precipitation exceeds evaporation over an area inclusive of Piedmont and the northwestern Mediterranean region, on a time-scale encompassing the event and about two weeks preceding it. This is suggestive of an important moisture contribution originating from outside the region. A synoptic and dynamic analysis is then performed to outline the potential mechanisms that could have contributed to the large-scale moisture transport. The central part of the work uses a quasi-isentropic water-vapor back trajectory technique. The moisture sources obtained by this technique are compared with the results of the balances and with the synoptic situation, to unveil possible dynamic mechanisms and physical processes involved. It is found that moisture sources on a variety of atmospheric scales contribute to this event. First, an important contribution is caused by the extratropical remnants of former tropical storm Leslie. The large-scale environment related to this system allows a significant amount of moisture to be carried towards Europe. This happens on a time- scale of about 5-15 days preceding the

  19. Large-scale numerical simulations of plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2004-01-01

    The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)

  20. MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate

    Science.gov (United States)

    Baklanov, A.; Lawrence, M.; Pandis, S.; Mahura, A.; Finardi, S.; Moussiopoulos, N.; Beekmann, M.; Laj, P.; Gomes, L.; Jaffrezo, J.-L.; Borbon, A.; Coll, I.; Gros, V.; Sciare, J.; Kukkonen, J.; Galmarini, S.; Giorgi, F.; Grimmond, S.; Esau, I.; Stohl, A.; Denby, B.; Wagner, T.; Butler, T.; Baltensperger, U.; Builtjes, P.; van den Hout, D.; van der Gon, H. D.; Collins, B.; Schluenzen, H.; Kulmala, M.; Zilitinkevich, S.; Sokhi, R.; Friedrich, R.; Theloke, J.; Kummer, U.; Jalkinen, L.; Halenka, T.; Wiedensholer, A.; Pyle, J.; Rossow, W. B.

    2010-11-01

    The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.

  1. Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.; Shaikh, D.

    2006-01-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  2. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  3. Persistence of Initial Conditions in Continental Scale Air Quality Simulations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data used in Figures 1 – 6 and Table 2 of the technical note "Persistence of Initial Conditions in Continental Scale Air Quality...

  4. Learning from large scale neural simulations

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Large-scale neural simulations have the marks of a distinct methodology which can be fruitfully deployed to advance scientific understanding of the human brain. Computer simulation studies can be used to produce surrogate observational data for better conceptual models and new how...

  5. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek; Verma, Mahendra K.; Sukhatme, Jai

    2017-01-01

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  6. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek

    2017-01-11

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  7. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  8. Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf

    Science.gov (United States)

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798

  9. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    Directory of Open Access Journals (Sweden)

    Luis Carlos Pinto de Macedo-Soares

    Full Text Available Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  10. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    Science.gov (United States)

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  11. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    Science.gov (United States)

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-11-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes.

  12. Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective

    Directory of Open Access Journals (Sweden)

    Mona Kurppa

    2018-02-01

    Full Text Available Buildings and vegetation alter the wind and pollutant transport in urban environments. This comparative study investigates the role of orientation and shape of perimeter blocks on the dispersion and ventilation of traffic-related air pollutants, and the street-level concentrations along a planned city boulevard. A large-eddy simulation (LES model PALM is employed over a highly detailed representation of the urban domain including street trees and forested areas. Air pollutants are represented by massless and passive particles (non-reactive gases, which are released with traffic-related emission rates. High-resolution simulations for four different city-block-structures are conducted over a 8.2 km 2 domain under two contrasting inflow conditions with neutral and stable atmospheric stratification corresponding the general and wintry meteorological conditions. Variation in building height together with multiple cross streets along the boulevard improves ventilation, resulting in 7–9% lower mean concentrations at pedestrian level. The impact of smaller scale variability in building shape was negligible. Street trees further complicate the flow and dispersion. Notwithstanding the surface roughness, atmospheric stability controls the concentration levels with higher values under stably stratified inflow. Little traffic emissions are transported to courtyards. The results provide urban planners direct information to reduce air pollution by proper structural layout of perimeter blocks.

  13. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D)

    International Nuclear Information System (INIS)

    Pitsch, H.; Steiner, H.

    2000-01-01

    The Lagrangian Flamelet Model is formulated as a combustion model for large-eddy simulations of turbulent jet diffusion flames. The model is applied in a large-eddy simulation of a piloted partially premixed methane/air diffusion flame (Sandia flame D). The results of the simulation are compared to experimental data of the mean and RMS of the axial velocity and the mixture fraction and the unconditional and conditional averages of temperature and various species mass fractions, including CO and NO. All quantities are in good agreement with the experiments. The results indicate in accordance with experimental findings that regions of high strain appear in layer like structures, which are directed inwards and tend to align with the reaction zone, where the turbulence is fully developed. The analysis of the conditional temperature and mass fractions reveals a strong influence of the partial premixing of the fuel. (c) 2000 American Institute of Physics

  14. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  15. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  16. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  17. Psychometric properties of the AIR Self-Determination Scale: the Chinese version (AIR SDS-C) for Chinese people with intellectual disabilities.

    Science.gov (United States)

    Wong, P K S; Wong, D F K; Zhuang, X Y; Liu, Y

    2017-03-01

    The construct of self-determination has received considerable attention in the international field of intellectual disabilities (ID). Recently, there has been a rapid development of this construct in Chinese societies including Hong Kong. However, there is no locally validated instrument to measure self-determination in people with ID. This article explains the validation process of the AIR Self-Determination Scale - Chinese version (AIR SDS-C) adapted from the 24-item AIR Self-Determination Scale, developed by Wolman and his colleagues, which is used in school setting. People with mild/moderate ID aged 15 years or above were recruited from special schools and social services units in different regions of Hong Kong. Factor analysis and reliability tests were conducted. Data for a total of 356 participants were used for the analysis. A confirmatory factor analysis was performed to test the factorial construct, and Mplus 7.0 was used for the analysis. The factor structure proposed in the original English version was supported by the data, and all factor loadings were between 0.42 and 0.76. The whole scale achieved good reliability (Cronbach's α = 0.88 and ω = 0.90). The AIR SDS-C appears to be a valid and reliable scale. This study examined adult groups as well as student groups. The application of the scale can thus be extended to a wider population. The implications for theory building and practice are discussed. © 2016 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  18. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  19. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  20. Large-scale retrieval for medical image analytics: A comprehensive review.

    Science.gov (United States)

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recent Suicidal Ideation and Suicide Attempts in a Large-Scale Survey of the U.S. Air Force: Prevalences and Demographic Risk Factors

    Science.gov (United States)

    Snarr, Jeffery D.; Heyman, Richard E.; Slep, Amy M. Smith

    2010-01-01

    One-year prevalences of self-reported noteworthy suicidal ideation and nonfatal suicide attempts were assessed in a large sample of U.S. Air Force active duty members (N = 52,780). Participants completed the 2006 Community Assessment, which was conducted online. Over 3% of male and 5.5% of female participants reported having experienced noteworthy…

  2. Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS) Fact Sheet

    Science.gov (United States)

    In fall 2017, the U.S. Environmental Protection Agency (EPA) launched the Kansas City Transportation Local-Scale Air Quality Study (KC-TRAQS) to learn more about local community air quality in three neighborhoods in Kansas City, KS.

  3. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  4. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  5. Centralized manure digestion. Selection of locations and estimation of costs of large-scale manure storage application

    International Nuclear Information System (INIS)

    1995-03-01

    A study to assess the possibilities and the consequences of the use of existing Dutch large scale manure silos at centralised anaerobic digestion plants (CAD-plants) for manure and energy-rich organic wastes is carried out. Reconstruction of these large scale manure silos into digesters for a CAD-plant is not self-evident due to the high height/diameter ratio of these silos and the extra investments that have to be made for additional facilities for roofing, insulation, mixing and heating. From the results of an inventory and selection of large scale manure silos with a storage capacity above 1,500 m 3 it appeared that there are 21 locations in The Netherlands that can be qualified for realisation of a CAD plant with a processing capacity of 100 m 3 biomass (80% manure, 20% additives) per day. These locations are found in particular at the 'shortage-areas' for manure fertilisation in the Dutch provinces Groningen and Drenthe. Three of these 21 locations with large scale silos are considered to be the most suitable for realisation of a large scale CAD-plant. The selection is based on an optimal scale for a CAD-plant of 300 m 3 material (80% manure, 20% additives) to be processed per day and the most suitable consuming markets for the biogas produced at the CAD-plant. The three locations are at Middelharnis, Veendam, and Klazinaveen. Applying the conditions as used in this study and accounting for all costs for transport of manure, additives and end-product including the costs for the storage facilities, a break-even operation might be realised at a minimum income for the additives of approximately 50 Dutch guilders per m 3 (including TAV). This income price is considerably lower than the prevailing costs for tipping or processing of organic wastes in The Netherlands. This study revealed that a break-even exploitation of a large scale CAD-plant for the processing of manure with energy-rich additives is possible. (Abstract Truncated)

  6. The impact of large scale biomass production on ozone air pollution in Europe

    NARCIS (Netherlands)

    Beltman, J.B.; Hendriks, C.; Tum, M.; Schaap, M.

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely

  7. Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2015-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, MODIS, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. HySDS is a Hybrid-Cloud Science Data System that has been developed and applied under NASA AIST, MEaSUREs, and ACCESS grants. HySDS uses the SciFlow workflow engine to partition analysis workflows into parallel tasks (e.g. segmenting by time or space) that are pushed into a durable job queue. The tasks are "pulled" from the queue by worker Virtual Machines (VM's) and executed in an on-premise Cloud (Eucalyptus or OpenStack) or at Amazon in the public Cloud or govCloud. In this way, years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the transferred data. We are using HySDS to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a MEASURES grant. We will present the architecture of HySDS, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. Our system demonstrates how one can pull A-Train variables (Levels 2 & 3) on-demand into the Amazon Cloud, and cache only those variables that are heavily used, so that any number of compute jobs can be

  8. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China

    Science.gov (United States)

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  9. Study on the wide-angle Michelson interferometer with large air gap.

    Science.gov (United States)

    Gao, Haiyang; Tang, Yuanhe; Hua, Dengxin; Liu, Hanchen

    2011-10-10

    A wide-angle Michelson interferometer with large air gap is proposed to effectively reduce the size of the glass arms and constraint on material. It provides a novel and practical instrument for ground based wind measurement of the upper atmosphere. The field widening conditions for the large air gap are calculated in theory. For the five spectral lines of 557.7 nm, 630.0 nm, 732.0 nm, 834.6 nm, and 865.7 nm, the optimal results under ideal condition are obtained with air gaps of 1.0 cm, 1.5 cm, and 2.0 cm, respectively. With the fixed optical path difference (OPD) of 7.495 cm, three pairs of glass arms are optimized. The pair with length of 1.5 cm for air gap, 5.765 cm for H-ZF12, and 2.956 cm for H-ZLaF54, has better effect of field widening than the other two pairs and its OPD variation is only within 0.30 wavelengths at incident angle of 3°. For developing a more practical wide-angle Michelson interferometer, the H-K9L glass with size of 4.445 cm is employed as the arm material of solid interferometer. The experiment for field of view of 3° is designed and the data processing and analysis for 60 images show the agreement between experimental results and theoretical simulation. The OPD variations are only within 0.27 wavelengths for image edge. The feasibility and practicality of the wide-angle Michelson interferometer with large air gap is proved by means of theory and experiment. © 2011 Optical Society of America

  10. A field-scale demonstration of air sparging to remediate tritiated fluids

    International Nuclear Information System (INIS)

    Russell, C.E.; Gillespie, D.R.; Hokett, S.L.; Donithan, J.D.

    1996-09-01

    Two pilot field-scale studies were conducted during the period of May 24 to July 22, 1996, to evaluate the potential of air sparging to remediate tritiated fluids. Previous analytical solutions to the rate of tritium removal were evaluated and compared to the experimental results. The analytical solution of Craig and Gordon that describes isotopic fractionation of an evaporating body of water appears to most accurately describe the process, versus the more limited isotopic exchange equation of Slattery and Ingraham and the mass transfer equation of Wilson and Fordham, which are accurate only at moderate to high humidities and do not describe the tritium enrichment process that would occur at low humidities. The results of the two experiments demonstrated that air sparging of tritium is a viable process in the field. Tritium removal rates of 60 percent were reported during the first experiment and 66 percent for the second experiment. Comparison to previous laboratory work revealed that rates could have been improved by starting with higher concentrations, utilizing smaller bubbles, and longer bubble path lengths. Risks associated with the pilot study were greater the closer one worked to the experiment with a maximum increase in the Lifetime Excess Total Risk per Unit Uptake of 2.4 x 10 -5 . Conduct of this experiment at locations with much higher activities of tritium would significantly increase the associated risk

  11. Biomass Gasification - A synthesis of technical barriers and current research issues for deployment at large scale

    Energy Technology Data Exchange (ETDEWEB)

    Heyne, Stefan [Chalmers Univ. of Technology, Gothenburg (Sweden); Liliedahl, Truls [KTH, Royal Inst. of Technology, Stockholm (Sweden); Marklund, Magnus [Energy Technology Centre, Piteaa (Sweden)

    2013-09-01

    Thermal gasification at large scale for cogeneration of power and heat and/or production of fuels and materials is a main pathway for a sustainable deployment of biomass resources. However, so far no such full scale production exists and biomass gasification projects remain at the pilot or demonstration scale. This report focuses on the key critical technology challenges for the large-scale deployment of the following biomass-based gasification concepts: Direct Fluidized Bed Gasification (FBG), Entrained Flow Gasification (EFG) and indirect Dual Fluidized Bed Gasification (DFBG). The main content in this report is based on responses from a number of experts in biomass gasification obtained from a questionnaire. The survey was composed of a number of more or less specific questions on technical barriers as to the three gasification concepts considered. For formalising the questionnaire, the concept of Technology Readiness Level (TRL 1-9) was used for grading the level of technical maturity of the different sub-processes within the three generic biomass gasification technologies. For direct fluidized bed gasification (FBG) it is mentioned that the technology is already available at commercial scale as air-blown technology and thus that air-blown FBG gasification may be reckoned a mature technology. The remaining technical challenge is the conversion to operation on oxygen with the final goal of producing chemicals or transport fuels. Tar reduction, in particular, and gas cleaning and upgrading in general are by far the most frequently named technical issues considered problematic. Other important aspects are problems that may occur when operating on low-grade fuels - i.e. low-cost fuels. These problems include bed agglomeration/ash sintering as well as alkali fouling. Even the preparation and feeding of these low-grade fuels tend to be problematic and require further development to be used on a commercial scale. Furthermore, efficient char conversion is mentioned by

  12. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    Science.gov (United States)

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost.

  13. Accelerating Relevance Vector Machine for Large-Scale Data on Spark

    Directory of Open Access Journals (Sweden)

    Liu Fang

    2017-01-01

    Full Text Available Relevance vector machine (RVM is a machine learning algorithm based on a sparse Bayesian framework, which performs well when running classification and regression tasks on small-scale datasets. However, RVM also has certain drawbacks which restricts its practical applications such as (1 slow training process, (2 poor performance on training large-scale datasets. In order to solve these problem, we propose Discrete AdaBoost RVM (DAB-RVM which incorporate ensemble learning in RVM at first. This method performs well with large-scale low-dimensional datasets. However, as the number of features increases, the training time of DAB-RVM increases as well. To avoid this phenomenon, we utilize the sufficient training samples of large-scale datasets and propose all features boosting RVM (AFB-RVM, which modifies the way of obtaining weak classifiers. In our experiments we study the differences between various boosting techniques with RVM, demonstrating the performance of the proposed approaches on Spark. As a result of this paper, two proposed approaches on Spark for different types of large-scale datasets are available.

  14. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  15. Creating Large Scale Database Servers

    International Nuclear Information System (INIS)

    Becla, Jacek

    2001-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region

  16. Creating Large Scale Database Servers

    Energy Technology Data Exchange (ETDEWEB)

    Becla, Jacek

    2001-12-14

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region.

  17. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  18. Decentralised stabilising controllers for a class of large-scale linear ...

    Indian Academy of Sciences (India)

    subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...

  19. Large Scale Survey Data in Career Development Research

    Science.gov (United States)

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  20. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  1. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    Science.gov (United States)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  2. Large-Scale, Parallel, Multi-Sensor Atmospheric Data Fusion Using Cloud Computing

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2013-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the 'A-Train' platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (MERRA), stratify the comparisons using a classification of the 'cloud scenes' from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Figure 1 shows the architecture of the full computational system, with SciReduce at the core. Multi-year datasets are automatically 'sharded' by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will

  3. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  4. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  5. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  6. Performance of Air Pollution Models on Massively Parallel Computers

    DEFF Research Database (Denmark)

    Brown, John; Hansen, Per Christian; Wasniewski, Jerzy

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on the computers. Using a realistic large-scale model, we gain detailed insight about the performance of the three computers when used to solve large-scale scientific problems...

  7. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    Science.gov (United States)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  8. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  9. How Can the Evidence from Global Large-scale Clinical Trials for Cardiovascular Diseases be Improved?

    Science.gov (United States)

    Sawata, Hiroshi; Tsutani, Kiichiro

    2011-06-29

    Clinical investigations are important for obtaining evidence to improve medical treatment. Large-scale clinical trials with thousands of participants are particularly important for this purpose in cardiovascular diseases. Conducting large-scale clinical trials entails high research costs. This study sought to investigate global trends in large-scale clinical trials in cardiovascular diseases. We searched for trials using clinicaltrials.gov (URL: http://www.clinicaltrials.gov/) using the key words 'cardio' and 'event' in all fields on 10 April, 2010. We then selected trials with 300 or more participants examining cardiovascular diseases. The search revealed 344 trials that met our criteria. Of 344 trials, 71% were randomized controlled trials, 15% involved more than 10,000 participants, and 59% were funded by industry. In RCTs whose results were disclosed, 55% of industry-funded trials and 25% of non-industry funded trials reported statistically significant superiority over control (p = 0.012, 2-sided Fisher's exact test). Our findings highlighted concerns regarding potential bias related to funding sources, and that researchers should be aware of the importance of trial information disclosures and conflicts of interest. We should keep considering management and training regarding information disclosures and conflicts of interest for researchers. This could lead to better clinical evidence and further improvements in the development of medical treatment worldwide.

  10. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  11. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  12. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  13. Air-chemistry "turbulence": power-law scaling and statistical regularity

    Directory of Open Access Journals (Sweden)

    H.-m. Hsu

    2011-08-01

    Full Text Available With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO2, NOx, CO, SO2, and O3 and aerosol (PM10 measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with a mixed combination of geographic settings, and include urban/rural, coastal/inland, plain/hill, and industrial/agricultural locations. In addition to the well-known semi-diurnal and diurnal oscillations, weekly, and intermediate (20 ~ 30 days peaks are also identified with the continuous wavelet transform (CWT. The spectra indicate power-law scaling regions for the frequencies higher than the diurnal and those lower than the diurnal with the average exponents of −5/3 and −1, respectively. These dual-exponents are corroborated with those with the detrended fluctuation analysis in the corresponding time-lag regions. These exponents are mostly independent of the averages and standard deviations of time series measured at various geographic settings, i.e., the spatial inhomogeneities. In other words, they possess dominant universal structures. After spectral coefficients from the CWT decomposition are grouped according to the spectral bands, and inverted separately, the PDFs of the reconstructed time series for the high-frequency band demonstrate the interesting statistical regularity, −3 power-law scaling for the heavy tails, consistently. Such spectral peaks, dual-exponent structures, and power-law scaling in heavy tails are important structural information, but their relations to turbulence and mesoscale variability require further investigations. This could lead to a better understanding of the processes controlling air quality.

  14. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  15. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  16. Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion: Design and Comparison With Other Scales.

    Science.gov (United States)

    Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe

    2016-07-01

    We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.

  17. Association of Taiwan’s Rainfall Patterns with Large-Scale Oceanic and Atmospheric Phenomena

    Directory of Open Access Journals (Sweden)

    Yi-Chun Kuo

    2016-01-01

    Full Text Available A 50-year (1960–2009 monthly rainfall gridded dataset produced by the Taiwan Climate Change Projection and Information Platform Project was presented in this study. The gridded data (5 × 5 km displayed influence of topography on spatial variability of rainfall, and the results of the empirical orthogonal functions (EOFs analysis revealed the patterns associated with the large-scale sea surface temperature variability over Pacific. The first mode (65% revealed the annual peaks of large rainfall in the southwestern mountainous area, which is associated with southwest monsoons and typhoons during summertime. The second temporal EOF mode (16% revealed the rainfall variance associated with the monsoon and its interaction with the slopes of the mountain range. This pattern is the major contributor to spatial variance of rainfall in Taiwan, as indicated by the first mode (40% of spatial variance EOF analysis. The second temporal EOF mode correlated with the El Niño Southern Oscillation (ENSO. In particular, during the autumn of the La Niña years following the strong El Niño years, the time-varying amplitude was substantially greater than that of normal years. The third temporal EOF mode (7% revealed a north-south out-of-phase rainfall pattern, the slowly evolving variations of which were in phase with the Pacific Decadal Oscillation. Because of Taiwan’s geographic location and the effect of local terrestrial structures, climate variability related to ENSO differed markedly from other regions in East Asia.

  18. Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings.

    Science.gov (United States)

    Portelli, Geoffrey; Barrett, John M; Hilgen, Gerrit; Masquelier, Timothée; Maccione, Alessandro; Di Marco, Stefano; Berdondini, Luca; Kornprobst, Pierre; Sernagor, Evelyne

    2016-01-01

    How a population of retinal ganglion cells (RGCs) encodes the visual scene remains an open question. Going beyond individual RGC coding strategies, results in salamander suggest that the relative latencies of a RGC pair encode spatial information. Thus, a population code based on this concerted spiking could be a powerful mechanism to transmit visual information rapidly and efficiently. Here, we tested this hypothesis in mouse by recording simultaneous light-evoked responses from hundreds of RGCs, at pan-retinal level, using a new generation of large-scale, high-density multielectrode array consisting of 4096 electrodes. Interestingly, we did not find any RGCs exhibiting a clear latency tuning to the stimuli, suggesting that in mouse, individual RGC pairs may not provide sufficient information. We show that a significant amount of information is encoded synergistically in the concerted spiking of large RGC populations. Thus, the RGC population response described with relative activities, or ranks, provides more relevant information than classical independent spike count- or latency- based codes. In particular, we report for the first time that when considering the relative activities across the whole population, the wave of first stimulus-evoked spikes is an accurate indicator of stimulus content. We show that this coding strategy coexists with classical neural codes, and that it is more efficient and faster. Overall, these novel observations suggest that already at the level of the retina, concerted spiking provides a reliable and fast strategy to rapidly transmit new visual scenes.

  19. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    Full Text Available Birds are highly mobile organisms and there is increasing evidence that studies at large spatial scales are needed if we are to properly understand their population dynamics. While classical metapopulation models have rarely proved useful for birds, more general metapopulation ideas involving collections of populations interacting within spatially structured landscapes are highly relevant (Harrison, 1994. There is increasing interest in understanding patterns of synchrony, or lack of synchrony, between populations and the environmental and dispersal mechanisms that bring about these patterns (Paradis et al., 2000. To investigate these processes we need to measure abundance, demographic rates and dispersal at large spatial scales, in addition to gathering data on relevant environmental variables. There is an increasing realisation that conservation needs to address rapid declines of common and widespread species (they will not remain so if such trends continue as well as the management of small populations that are at risk of extinction. While the knowledge needed to support the management of small populations can often be obtained from intensive studies in a few restricted areas, conservation of widespread species often requires information on population trends and processes measured at regional, national and continental scales (Baillie, 2001. While management prescriptions for widespread populations may initially be developed from a small number of local studies or experiments, there is an increasing need to understand how such results will scale up when applied across wider areas. There is also a vital role for monitoring at large spatial scales both in identifying such population declines and in assessing population recovery. Gathering data on avian abundance and demography at large spatial scales usually relies on the efforts of large numbers of skilled volunteers. Volunteer studies based on ringing (for example Constant Effort Sites [CES

  20. Safety Effect Analysis of the Large-Scale Design Changes in a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan; Lee, Hyun-Gyo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    These activities were predominantly focused on replacing obsolete systems with new systems, and these efforts were not only to prolong the plant life, but also to guarantee the safe operation of the units. This review demonstrates the safety effect evaluation using the probabilistic safety assessment (PSA) of the design changes, system improvements, and Fukushima accident action items for Kori unit 1 (K1). For the large scale of system design changes for K1, the safety effects from the PSA perspective were reviewed using the risk quantification results before and after the system improvements. This evaluation considered the seven significant design changes including the replacement of the control building air conditioning system and the performance improvement of the containment sump using a new filtering system as well as above five system design changes. The analysis results demonstrated that the CDF was reduced by 12% overall from 1.62E-5/y to 1.43E-5/y. The CDF reduction was larger in the transient group than in the loss of coolant accident (LOCA) group. In conclusion, the analysis using the K1 PSA model supports that the plant safety has been appropriately maintained after the large-scale design changes in consideration of the changed operation factors and failure modes due to the system improvements.

  1. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  2. Managing Risk and Uncertainty in Large-Scale University Research Projects

    Science.gov (United States)

    Moore, Sharlissa; Shangraw, R. F., Jr.

    2011-01-01

    Both publicly and privately funded research projects managed by universities are growing in size and scope. Complex, large-scale projects (over $50 million) pose new management challenges and risks for universities. This paper explores the relationship between project success and a variety of factors in large-scale university projects. First, we…

  3. Parallel clustering algorithm for large-scale biological data sets.

    Science.gov (United States)

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.

  4. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism

    Science.gov (United States)

    Wang, Zhihao; Chen, Zhengqing; Wang, Jianhui

    2012-09-01

    Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.

  5. Adaptive visualization for large-scale graph

    International Nuclear Information System (INIS)

    Nakamura, Hiroko; Shinano, Yuji; Ohzahata, Satoshi

    2010-01-01

    We propose an adoptive visualization technique for representing a large-scale hierarchical dataset within limited display space. A hierarchical dataset has nodes and links showing the parent-child relationship between the nodes. These nodes and links are described using graphics primitives. When the number of these primitives is large, it is difficult to recognize the structure of the hierarchical data because many primitives are overlapped within a limited region. To overcome this difficulty, we propose an adaptive visualization technique for hierarchical datasets. The proposed technique selects an appropriate graph style according to the nodal density in each area. (author)

  6. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  7. Large scale structures in liquid crystal/clay colloids

    Science.gov (United States)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  8. Large scale structures in liquid crystal/clay colloids

    International Nuclear Information System (INIS)

    Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M

    2005-01-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods

  9. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  10. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  11. Can air pollutant controls change global warming?

    International Nuclear Information System (INIS)

    Strefler, Jessica; Luderer, Gunnar; Kriegler, Elmar; Meinshausen, Malte

    2014-01-01

    Highlights: • Air pollution policies do not affect long-term climate targets. • Reduction of aerosols counteracts a fraction of the reduction of Kyoto forcing. • Air pollution policies may affect the rate of climate change in the short term. • There is no tradeoff between clean air and climate policies. - Abstract: In this paper we analyze the interaction between climate and air pollution policies using the integrated assessment model REMIND coupled to the reduced-form climate model MAGICC. Since overall, aerosols tend to cool the atmosphere, there is a concern that a reduction of pollutant emissions could accelerate global warming and offset the climate benefits of carbon dioxide emission reductions. We investigate scenarios which independently reduce emissions from either large-scale sources, such as power plants, or small-scale sources, such as cooking and heating stoves. Large-scale sources are likely to be easier to control, but their aerosol emissions are characterized by a relatively high sulfur content, which tends to result in atmospheric cooling. Pollution from small-scale sources, by contrast, is characterized by a high share of carbonaceous aerosol, which is an important contributor to global warming. We find that air pollution policies can significantly reduce aerosol emissions when no climate policies are in place. Stringent climate policies lead to a large reduction of fossil fuel use, and therefore result in a concurrent reduction of air pollutant emissions. These reductions partly reduce aerosol masking, thus initially counteracting the reduction of greenhouse gas forcing, however not overcompensating it. If climate policies are in place, air pollution policies have almost no impacts on medium- and long-term radiative forcing. Therefore there is no conflict of objectives between clean air and limiting global warming. We find that the stringency of air pollution policies may influence the rate of global temperature change in the first decade

  12. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  13. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.

    Directory of Open Access Journals (Sweden)

    Helen L Ramsden

    2015-01-01

    Full Text Available Neural circuits in the medial entorhinal cortex (MEC encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.

  14. Rectal perforation by compressed air.

    Science.gov (United States)

    Park, Young Jin

    2017-07-01

    As the use of compressed air in industrial work has increased, so has the risk of associated pneumatic injury from its improper use. However, damage of large intestine caused by compressed air is uncommon. Herein a case of pneumatic rupture of the rectum is described. The patient was admitted to the Emergency Room complaining of abdominal pain and distension. His colleague triggered a compressed air nozzle over his buttock. On arrival, vital signs were stable but physical examination revealed peritoneal irritation and marked distension of the abdomen. Computed tomography showed a large volume of air in the peritoneal cavity and subcutaneous emphysema at the perineum. A rectal perforation was found at laparotomy and the Hartmann procedure was performed.

  15. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    International Nuclear Information System (INIS)

    Fonseca, R A; Vieira, J; Silva, L O; Fiuza, F; Davidson, A; Tsung, F S; Mori, W B

    2013-01-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ∼10 6 cores and sustained performance over ∼2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios. (paper)

  16. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  17. APPLICATIONS OF CFD METHOD TO GAS MIXING ANALYSIS IN A LARGE-SCALED TANK

    International Nuclear Information System (INIS)

    Lee, S; Richard Dimenna, R

    2007-01-01

    The computational fluid dynamics (CFD) modeling technique was applied to the estimation of maximum benzene concentration for the vapor space inside a large-scaled and high-level radioactive waste tank at Savannah River site (SRS). The objective of the work was to perform the calculations for the benzene mixing behavior in the vapor space of Tank 48 and its impact on the local concentration of benzene. The calculations were used to evaluate the degree to which purge air mixes with benzene evolving from the liquid surface and its ability to prevent an unacceptable concentration of benzene from forming. The analysis was focused on changing the tank operating conditions to establish internal recirculation and changing the benzene evolution rate from the liquid surface. The model used a three-dimensional momentum coupled with multi-species transport. The calculations included potential operating conditions for air inlet and exhaust flows, recirculation flow rate, and benzene evolution rate with prototypic tank geometry. The flow conditions are assumed to be fully turbulent since Reynolds numbers for typical operating conditions are in the range of 20,000 to 70,000 based on the inlet conditions of the air purge system. A standard two-equation turbulence model was used. The modeling results for the typical gas mixing problems available in the literature were compared and verified through comparisons with the test results. The benchmarking results showed that the predictions are in good agreement with the analytical solutions and literature data. Additional sensitivity calculations included a reduced benzene evolution rate, reduced air inlet and exhaust flow, and forced internal recirculation. The modeling results showed that the vapor space was fairly well mixed and that benzene concentrations were relatively low when forced recirculation and 72 cfm ventilation air through the tank boundary were imposed. For the same 72 cfm air inlet flow but without forced recirculation

  18. Air-Sea Interaction

    Science.gov (United States)

    Csanady, G. T.

    2001-03-01

    In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.

  19. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif

    2017-01-07

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  20. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif; Orakzai, Faisal Moeen; Abdelaziz, Ibrahim; Khayyat, Zuhair

    2017-01-01

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  1. An interactive display system for large-scale 3D models

    Science.gov (United States)

    Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman

    2018-04-01

    With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.

  2. Large-scale hydrology in Europe : observed patterns and model performance

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Lukas

    2011-06-15

    In a changing climate, terrestrial water storages are of great interest as water availability impacts key aspects of ecosystem functioning. Thus, a better understanding of the variations of wet and dry periods will contribute to fully grasp processes of the earth system such as nutrient cycling and vegetation dynamics. Currently, river runoff from small, nearly natural, catchments is one of the few variables of the terrestrial water balance that is regularly monitored with detailed spatial and temporal coverage on large scales. River runoff, therefore, provides a foundation to approach European hydrology with respect to observed patterns on large scales, with regard to the ability of models to capture these.The analysis of observed river flow from small catchments, focused on the identification and description of spatial patterns of simultaneous temporal variations of runoff. These are dominated by large-scale variations of climatic variables but also altered by catchment processes. It was shown that time series of annual low, mean and high flows follow the same atmospheric drivers. The observation that high flows are more closely coupled to large scale atmospheric drivers than low flows, indicates the increasing influence of catchment properties on runoff under dry conditions. Further, it was shown that the low-frequency variability of European runoff is dominated by two opposing centres of simultaneous variations, such that dry years in the north are accompanied by wet years in the south.Large-scale hydrological models are simplified representations of our current perception of the terrestrial water balance on large scales. Quantification of the models strengths and weaknesses is the prerequisite for a reliable interpretation of simulation results. Model evaluations may also enable to detect shortcomings with model assumptions and thus enable a refinement of the current perception of hydrological systems. The ability of a multi model ensemble of nine large-scale

  3. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wani, Irshad A.; Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmed, Jahangeer; Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmad, Tokeer, E-mail: tokeer.ch@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  4. Large-scale perturbations from the waterfall field in hybrid inflation

    International Nuclear Information System (INIS)

    Fonseca, José; Wands, David; Sasaki, Misao

    2010-01-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10 −54 on cosmological scales

  5. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  6. Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae

    Directory of Open Access Journals (Sweden)

    Glaw Frank

    2011-04-01

    Full Text Available Abstract Background Evolutionary novelties often appear by conferring completely new functions to pre-existing structures or by innovating the mechanism through which a particular function is performed. Sound production plays a central role in the behavior of frogs, which use their calls to delimit territories and attract mates. Therefore, frogs have evolved complex vocal structures capable of producing a wide variety of advertising sounds. It is generally acknowledged that most frogs call by moving an air column from the lungs through the glottis with the remarkable exception of the family Pipidae, whose members share a highly specialized sound production mechanism independent of air movement. Results Here, we performed behavioral observations in the poorly known African pipid genus Pseudhymenochirus and document that the sound production in this aquatic frog is almost certainly air-driven. However, morphological comparisons revealed an indisputable pipid nature of Pseudhymenochirus larynx. To place this paradoxical pattern into an evolutionary framework, we reconstructed robust molecular phylogenies of pipids based on complete mitochondrial genomes and nine nuclear protein-coding genes that coincided in placing Pseudhymenochirus nested among other pipids. Conclusions We conclude that although Pseudhymenochirus probably has evolved a reversal to the ancestral non-pipid condition of air-driven sound production, the mechanism through which it occurs is an evolutionary innovation based on the derived larynx of pipids. This strengthens the idea that evolutionary solutions to functional problems often emerge based on previous structures, and for this reason, innovations largely depend on possibilities and constraints predefined by the particular history of each lineage.

  7. Estimation of air quality by air pollution indices

    International Nuclear Information System (INIS)

    Liblik, Valdo; Kundel, Helmut

    1999-01-01

    A novel system for estimating the quality of atmospheric air in the over-ground air layer with the help of air pollution indices was developed. The method is based on a comparison of measured or calculated maximum short-term concentrations and average annual concentrations of pollutants with maximum permissible concentrations (with regard to human beings and vegetation). Special air quality estimation scales for residential areas and natural systems are presented. On the basis of the concentration of the substance under study zones of very high, high, rather high, moderate, low and very low air pollution were distinguished in the over-ground layer of the atmosphere. These are projected to land surface for landscape zonation. The application of the system of indices is demonstrated in the analysis of air quality for the towns of Kohtla-Jarve, Johvi and Kivioli (in 1997-1998). A comparative analysis of the air pollution zones distinguished on the basis of emissions and data from bio monitoring yielded satisfactory results. The system of air pollution indices developed enables to process the results of air monitoring in case of pollution fields of complicated composition so that the result for estimating the quality of ambient air in a residential area is easily understood by inhabitants and interpretable with the help of a special scale; analyse temporal changes in the quality of the air in towns, villages and other residential areas and use the results as basis for developing measures for reducing the pollution of ambient air; carry out zonation of large territories on the basis of air pollution levels (spatial air pollution zones are projected on the ground surface) and estimate air quality in places where air monitoring is lacking to forecast the possible effect of air pollution on natural systems (author)

  8. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  9. Scale changes in air quality modelling and assessment of associated uncertainties

    International Nuclear Information System (INIS)

    Korsakissok, Irene

    2009-01-01

    After an introduction of issues related to a scale change in the field of air quality (existing scales for emissions, transport, turbulence and loss processes, hierarchy of data and models, methods of scale change), the author first presents Gaussian models which have been implemented within the Polyphemus modelling platform. These models are assessed by comparison with experimental observations and with other commonly used Gaussian models. The second part reports the coupling of the puff-based Gaussian model with the Eulerian Polair3D model for the sub-mesh processing of point sources. This coupling is assessed at the continental scale for a passive tracer, and at the regional scale for photochemistry. Different statistical methods are assessed

  10. A practical process for light-water detritiation at large scales

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Robinson, J., E-mail: jr@tyne-engineering.com [Tyne Engineering, Burlington, ON (Canada); Gnanapragasam, N.V.; Castillo, I.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    AECL and Tyne Engineering have recently completed a preliminary engineering design for a modest-scale tritium removal plant for light water, intended for installation at AECL's Chalk River Laboratories (CRL). This plant design was based on the Combined Electrolysis and Catalytic Exchange (CECE) technology developed at CRL over many years and demonstrated there and elsewhere. The general features and capabilities of this design have been reported as well as the versatility of the design for separating any pair of the three hydrogen isotopes. The same CECE technology could be applied directly to very large-scale wastewater detritiation, such as the case at Fukushima Daiichi Nuclear Power Station. However, since the CECE process scales linearly with throughput, the required capital and operating costs are substantial for such large-scale applications. This paper discusses some options for reducing the costs of very large-scale detritiation. Options include: Reducing tritium removal effectiveness; Energy recovery; Improving the tolerance of impurities; Use of less expensive or more efficient equipment. A brief comparison with alternative processes is also presented. (author)

  11. How do large-scale agricultural investments affect land use and the environment on the western slopes of Mount Kenya? Empirical evidence based on small-scale farmers' perceptions and remote sensing.

    Science.gov (United States)

    Zaehringer, Julie G; Wambugu, Grace; Kiteme, Boniface; Eckert, Sandra

    2018-05-01

    Africa has been heavily targeted by large-scale agricultural investments (LAIs) throughout the last decade, with scarcely known impacts on local social-ecological systems. In Kenya, a large number of LAIs were made in the region northwest of Mount Kenya. These large-scale farms produce vegetables and flowers mainly for European markets. However, land use in the region remains dominated by small-scale crop and livestock farms with less than 1 ha of land each, who produce both for their own subsistence and for the local markets. We interviewed 100 small-scale farmers living near five different LAIs to elicit their perceptions of the impacts that these LAIs have on their land use and the overall environment. Furthermore, we analyzed remotely sensed land cover and land use data to assess land use change in the vicinity of the five LAIs. While land use change did not follow a clear trend, a number of small-scale farmers did adapt their crop management to environmental changes such as a reduced river water flows and increased pests, which they attributed to the presence of LAIs. Despite the high number of open conflicts between small-scale land users and LAIs around the issue of river water abstraction, the main environmental impact, felt by almost half of the interviewed land users, was air pollution with agrochemicals sprayed on the LAIs' land. Even though only a low percentage of local land users and their household members were directly involved with LAIs, a large majority of respondents favored the presence of LAIs nearby, as they are believed to contribute to the region's overall economic development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and

  13. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...

  14. Low-Complexity Transmit Antenna Selection and Beamforming for Large-Scale MIMO Communications

    Directory of Open Access Journals (Sweden)

    Kun Qian

    2014-01-01

    Full Text Available Transmit antenna selection plays an important role in large-scale multiple-input multiple-output (MIMO communications, but optimal large-scale MIMO antenna selection is a technical challenge. Exhaustive search is often employed in antenna selection, but it cannot be efficiently implemented in large-scale MIMO communication systems due to its prohibitive high computation complexity. This paper proposes a low-complexity interactive multiple-parameter optimization method for joint transmit antenna selection and beamforming in large-scale MIMO communication systems. The objective is to jointly maximize the channel outrage capacity and signal-to-noise (SNR performance and minimize the mean square error in transmit antenna selection and minimum variance distortionless response (MVDR beamforming without exhaustive search. The effectiveness of all the proposed methods is verified by extensive simulation results. It is shown that the required antenna selection processing time of the proposed method does not increase along with the increase of selected antennas, but the computation complexity of conventional exhaustive search method will significantly increase when large-scale antennas are employed in the system. This is particularly useful in antenna selection for large-scale MIMO communication systems.

  15. The biology and polymer physics underlying large-scale chromosome organization.

    Science.gov (United States)

    Sazer, Shelley; Schiessel, Helmut

    2018-02-01

    Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome. © 2017 The Authors. Traffic published by John Wiley & Sons Ltd.

  16. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kenison, LaVesta [URS, Pittsburgh, PA (United States); Flanigan, Thomas [URS, Pittsburgh, PA (United States); Hagerty, Gregg [URS, Pittsburgh, PA (United States); Gorrie, James [Air Liquide, Kennesaw, GA (United States); Leclerc, Mathieu [Air Liquide, Kennesaw, GA (United States); Lockwood, Frederick [Air Liquide, Kennesaw, GA (United States); Falla, Lyle [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Macinnis, Jim [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Fedak, Mathew [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Yakle, Jeff [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Williford, Mark [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States); Wood, Paul [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States)

    2016-04-01

    The primary objectives of the FutureGen 2.0 CO2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO2 capture in steady-state operations. The project was to be fully integrated in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will

  17. Ocean Acidification Experiments in Large-Scale Mesocosms Reveal Similar Dynamics of Dissolved Organic Matter Production and Biotransformation

    Directory of Open Access Journals (Sweden)

    Maren Zark

    2017-09-01

    Full Text Available Dissolved organic matter (DOM represents a major reservoir of carbon in the oceans. Environmental stressors such as ocean acidification (OA potentially affect DOM production and degradation processes, e.g., phytoplankton exudation or microbial uptake and biotransformation of molecules. Resulting changes in carbon storage capacity of the ocean, thus, may cause feedbacks on the global carbon cycle. Previous experiments studying OA effects on the DOM pool under natural conditions, however, were mostly conducted in temperate and coastal eutrophic areas. Here, we report on OA effects on the existing and newly produced DOM pool during an experiment in the subtropical North Atlantic Ocean at the Canary Islands during an (1 oligotrophic phase and (2 after simulated deep water upwelling. The last is a frequently occurring event in this region controlling nutrient and phytoplankton dynamics. We manipulated nine large-scale mesocosms with a gradient of pCO2 ranging from ~350 up to ~1,030 μatm and monitored the DOM molecular composition using ultrahigh-resolution mass spectrometry via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS. An increase of 37 μmol L−1 DOC was observed in all mesocosms during a phytoplankton bloom induced by simulated upwelling. Indications for enhanced DOC accumulation under elevated CO2 became apparent during a phase of nutrient recycling toward the end of the experiment. The production of DOM was reflected in changes of the molecular DOM composition. Out of the 7,212 molecular formulae, which were detected throughout the experiment, ~50% correlated significantly in mass spectrometric signal intensity with cumulative bacterial protein production (BPP and are likely a product of microbial transformation. However, no differences in the produced compounds were found with respect to CO2 levels. Comparing the results of this experiment with a comparable OA experiment in the Swedish Gullmar Fjord, reveals

  18. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  19. Temporal flexibility and careers: The role of large-scale organizations for physicians

    OpenAIRE

    Forrest Briscoe

    2006-01-01

    Temporal flexibility and careers: The role of large-scale organizations for physicians. Forrest Briscoe Briscoe This study investigates how employment in large-scale organizations affects the work lives of practicing physicians. Well-established theory associates larger organizations with bureaucratic constraint, loss of workplace control, and dissatisfaction, but this author finds that large scale is also associated with greater schedule and career flexibility. Ironically, the bureaucratic p...

  20. How Can the Evidence from Global Large-scale Clinical Trials for Cardiovascular Diseases be Improved?

    Directory of Open Access Journals (Sweden)

    Tsutani Kiichiro

    2011-06-01

    Full Text Available Abstract Background Clinical investigations are important for obtaining evidence to improve medical treatment. Large-scale clinical trials with thousands of participants are particularly important for this purpose in cardiovascular diseases. Conducting large-scale clinical trials entails high research costs. This study sought to investigate global trends in large-scale clinical trials in cardiovascular diseases. Findings We searched for trials using clinicaltrials.gov (URL: http://www.clinicaltrials.gov/ using the key words 'cardio' and 'event' in all fields on 10 April, 2010. We then selected trials with 300 or more participants examining cardiovascular diseases. The search revealed 344 trials that met our criteria. Of 344 trials, 71% were randomized controlled trials, 15% involved more than 10,000 participants, and 59% were funded by industry. In RCTs whose results were disclosed, 55% of industry-funded trials and 25% of non-industry funded trials reported statistically significant superiority over control (p = 0.012, 2-sided Fisher's exact test. Conclusions Our findings highlighted concerns regarding potential bias related to funding sources, and that researchers should be aware of the importance of trial information disclosures and conflicts of interest. We should keep considering management and training regarding information disclosures and conflicts of interest for researchers. This could lead to better clinical evidence and further improvements in the development of medical treatment worldwide.

  1. The role of large scale motions on passive scalar transport

    Science.gov (United States)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  2. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  3. Continuous phosphorus measurements reveal catchment-scale transport processes

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.

    2012-01-01

    A small fraction of the nutrients used for agriculture is transported by rivers and artificial drainage networks to downstream waters. In lakes and coastal seas such as the Baltic Sea and the Gulf of Mexico these nutrients cause large-scale algal blooms and hypoxia and thus are a major

  4. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer

    Science.gov (United States)

    Monks, P. S.; Archibald, A. T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K. S.; Mills, G. E.; Stevenson, D. S.; Tarasova, O.; Thouret, V.; von Schneidemesser, E.; Sommariva, R.; Wild, O.; Williams, M. L.

    2015-08-01

    Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. Much effort is focused on the reduction of surface levels of ozone owing to its health and vegetation impacts, but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve owing to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner. The review shows that there remain a number of clear challenges for ozone such as explaining surface trends, incorporating new chemical understanding, ozone-climate coupling, and a better assessment of impacts. There is a clear and present need to treat ozone across the range of scales, a transboundary issue, but with an emphasis on the hemispheric scales. New observational opportunities are offered both by satellites and small sensors that bridge the scales.

  5. Configuration management in large scale infrastructure development

    NARCIS (Netherlands)

    Rijn, T.P.J. van; Belt, H. van de; Los, R.H.

    2000-01-01

    Large Scale Infrastructure (LSI) development projects such as the construction of roads, rail-ways and other civil engineering (water)works is tendered differently today than a decade ago. Traditional workflow requested quotes from construction companies for construction works where the works to be

  6. Dual Decomposition for Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Vandenberghe, Lieven

    2013-01-01

    Dual decomposition is applied to power balancing of exible thermal storage units. The centralized large-scale problem is decomposed into smaller subproblems and solved locallyby each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption through a negotiation...

  7. Generation of large-scale vortives in compressible helical turbulence

    International Nuclear Information System (INIS)

    Chkhetiani, O.G.; Gvaramadze, V.V.

    1989-01-01

    We consider generation of large-scale vortices in compressible self-gravitating turbulent medium. The closed equation describing evolution of the large-scale vortices in helical turbulence with finite correlation time is obtained. This equation has the form similar to the hydromagnetic dynamo equation, which allows us to call the vortx genertation effect the vortex dynamo. It is possible that principally the same mechanism is responsible both for amplification and maintenance of density waves and magnetic fields in gaseous disks of spiral galaxies. (author). 29 refs

  8. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  9. Assessing soil hydrological variability at the cm- to dm-scale using air permeameter measurements

    Science.gov (United States)

    Beerten, K.; Vandersmissen, N.; Rogiers, B.; Mallants, D.

    2012-04-01

    Soils and surficial sediments are crucial elements in the hydrological cycle since they are the medium through which infiltrating precipitation percolates to the aquifer. At the same time, soil horizons and shallow stratigraphy may act as hydraulic barriers that can promote runoff or interflow and hamper deep infiltration. For most catchments little is known about the small-scale horizontal and vertical variability of soil hydrological properties. Such information is however required to calculate detailed soil water flow paths and estimate small scale spatial variability in recharge and run-off. We present the results from field air permeameter measurements to assess the small-scale variability of saturated hydraulic conductivity in heterogeneous 2-D soil profiles. To this end, several outcrops in the unsaturated zone (sandy soils with podzolisation) of an interfluve in the Kleine Nete river catchment (Campine area, Northern Belgium) were investigated using a hand-held permeameter. Measurements were done each 10 cm on ~ 2 x 1 m or ~ 2 x 0.5 m grids. The initial results of the measurements (air permeability Kair; millidarcy) are recalculated to saturated hydraulic conductivity (Ks; m/s) using specific transfer functions (Loll et al., 1999; Iversen et al., 2003). Validation of the results is done with independent lab-based constant head Ks measurements. The results show that field based Ks values generally range between 10-3 m/s and 10-7 m/s within one profile, but extremely high values (up to 10-1 m/s) have been measured as well. The lowest values are found in the organic- and silt-rich Bh horizon of podzol soils observed within the profiles (~ 10-6-10-7m/s), while the highest values are observed in overlying dune sands less than 40 cm deep (up to 10-3 m/s with outliers to 10-1 m/s). Comparison of field and laboratory based Ks data reveals there is fair agreement between both methods, apart from several outliers. Scatter plots indicate that almost all points

  10. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    Science.gov (United States)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  11. Large-scale Intelligent Transporation Systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  12. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  13. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  14. Pro website development and operations streamlining DevOps for large-scale websites

    CERN Document Server

    Sacks, Matthew

    2012-01-01

    Pro Website Development and Operations gives you the experience you need to create and operate a large-scale production website. Large-scale websites have their own unique set of problems regarding their design-problems that can get worse when agile methodologies are adopted for rapid results. Managing large-scale websites, deploying applications, and ensuring they are performing well often requires a full scale team involving the development and operations sides of the company-two departments that don't always see eye to eye. When departments struggle with each other, it adds unnecessary comp

  15. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  16. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  17. Evaluation of Large-scale Public Sector Reforms

    DEFF Research Database (Denmark)

    Breidahl, Karen Nielsen; Gjelstrup, Gunnar; Hansen, Hanne Foss

    2017-01-01

    and more delimited policy areas take place. In our analysis we apply four governance perspectives (rational-instrumental, rational-interest based, institutional-cultural and a chaos perspective) in a comparative analysis of the evaluations of two large-scale public sector reforms in Denmark and Norway. We...

  18. Highly Scalable Trip Grouping for Large Scale Collective Transportation Systems

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach; Risch, Tore

    2008-01-01

    Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost...... and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous...

  19. Penalized Estimation in Large-Scale Generalized Linear Array Models

    DEFF Research Database (Denmark)

    Lund, Adam; Vincent, Martin; Hansen, Niels Richard

    2017-01-01

    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

  20. Large-scale coastal impact induced by a catastrophic storm

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Johannessen, Peter N

    breaching. Our results demonstrate that violent, millennial-scale storms can trigger significant large-scale and long-term changes on barrier coasts, and that coastal changes assumed to take place over centuries or even millennia may occur in association with a single extreme storm event....

  1. Large-eddy simulation with accurate implicit subgrid-scale diffusion

    NARCIS (Netherlands)

    B. Koren (Barry); C. Beets

    1996-01-01

    textabstractA method for large-eddy simulation is presented that does not use an explicit subgrid-scale diffusion term. Subgrid-scale effects are modelled implicitly through an appropriate monotone (in the sense of Spekreijse 1987) discretization method for the advective terms. Special attention is

  2. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  3. Macroecological factors explain large-scale spatial population patterns of ancient agriculturalists

    NARCIS (Netherlands)

    Xu, C.; Chen, B.; Abades, S.; Reino, L.; Teng, S.; Ljungqvist, F.C.; Huang, Z.Y.X.; Liu, X.

    2015-01-01

    Aim: It has been well demonstrated that the large-scale distribution patterns of numerous species are driven by similar macroecological factors. However, understanding of this topic remains limited when applied to our own species. Here we take a large-scale look at ancient agriculturalist

  4. Large Scale Investments in Infrastructure : Competing Policy regimes to Control Connections

    NARCIS (Netherlands)

    Otsuki, K.; Read, M.L.; Zoomers, E.B.

    2016-01-01

    This paper proposes to analyse implications of large-scale investments in physical infrastructure for social and environmental justice. While case studies on the global land rush and climate change have advanced our understanding of how large-scale investments in land, forests and water affect

  5. Rotation invariant fast features for large-scale recognition

    Science.gov (United States)

    Takacs, Gabriel; Chandrasekhar, Vijay; Tsai, Sam; Chen, David; Grzeszczuk, Radek; Girod, Bernd

    2012-10-01

    We present an end-to-end feature description pipeline which uses a novel interest point detector and Rotation- Invariant Fast Feature (RIFF) descriptors. The proposed RIFF algorithm is 15× faster than SURF1 while producing large-scale retrieval results that are comparable to SIFT.2 Such high-speed features benefit a range of applications from Mobile Augmented Reality (MAR) to web-scale image retrieval and analysis.

  6. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the

  7. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  8. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  9. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  10. A large scale field experiment in the Amazon basin (LAMBADA/BATERISTA)

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C.

    1995-01-01

    A description is given of a large-scale field experiment planned in the Amazon basin, aimed at assessing the large-scale balances of energy, water and carbon dioxide. The embedding of this experiment in global change programmes is described, viz. the Biospheric Aspects of the Hydrological Cycle

  11. Large-scale derived flood frequency analysis based on continuous simulation

    Science.gov (United States)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  12. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  13. The impact of large scale biomass production on ozone air pollution in Europe

    OpenAIRE

    Beltman, Joost B.; Hendriks, Carlijn; Tum, Markus; Schaap, Martijn

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely to affect atmospheric ozone concentrations. Here, we use the chemical transport model LOTOS-EUROS (dedicated to the regional modeling of trace gases in Europe) to study a scenario in which 5% of t...

  14. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nusser, Adi [Physics Department and the Asher Space Science Institute-Technion, Haifa 32000 (Israel); Branchini, Enzo [Department of Physics, Universita Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Davis, Marc, E-mail: adi@physics.technion.ac.il, E-mail: branchin@fis.uniroma3.it, E-mail: mdavis@berkeley.edu [Departments of Astronomy and Physics, University of California, Berkeley, CA 94720 (United States)

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  15. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  16. Planck intermediate results XLII. Large-scale Galactic magnetic fields

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured ...

  17. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Directory of Open Access Journals (Sweden)

    Hui He

    2013-01-01

    Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  18. CO2 isotope analyses using large air samples collected on intercontinental flights by the CARIBIC Boeing 767

    NARCIS (Netherlands)

    Assonov, S.S.; Brenninkmeijer, C.A.M.; Koeppel, C.; Röckmann, T.

    2009-01-01

    Analytical details for 13C and 18O isotope analyses of atmospheric CO2 in large air samples are given. The large air samples of nominally 300 L were collected during the passenger aircraft-based atmospheric chemistry research project CARIBIC and analyzed for a large number of trace gases and

  19. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  20. No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation

    OpenAIRE

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2010-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the clas...

  1. Large Scale Emerging Properties from Non Hamiltonian Complex Systems

    Directory of Open Access Journals (Sweden)

    Marco Bianucci

    2017-06-01

    Full Text Available The concept of “large scale” depends obviously on the phenomenon we are interested in. For example, in the field of foundation of Thermodynamics from microscopic dynamics, the spatial and time large scales are order of fraction of millimetres and microseconds, respectively, or lesser, and are defined in relation to the spatial and time scales of the microscopic systems. In large scale oceanography or global climate dynamics problems the time scales of interest are order of thousands of kilometres, for space, and many years for time, and are compared to the local and daily/monthly times scales of atmosphere and ocean dynamics. In all the cases a Zwanzig projection approach is, at least in principle, an effective tool to obtain class of universal smooth “large scale” dynamics for few degrees of freedom of interest, starting from the complex dynamics of the whole (usually many degrees of freedom system. The projection approach leads to a very complex calculus with differential operators, that is drastically simplified when the basic dynamics of the system of interest is Hamiltonian, as it happens in Foundation of Thermodynamics problems. However, in geophysical Fluid Dynamics, Biology, and in most of the physical problems the building block fundamental equations of motions have a non Hamiltonian structure. Thus, to continue to apply the useful projection approach also in these cases, we exploit the generalization of the Hamiltonian formalism given by the Lie algebra of dissipative differential operators. In this way, we are able to analytically deal with the series of the differential operators stemming from the projection approach applied to these general cases. Then we shall apply this formalism to obtain some relevant results concerning the statistical properties of the El Niño Southern Oscillation (ENSO.

  2. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    Science.gov (United States)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  3. A new system of labour management in African large-scale agriculture?

    DEFF Research Database (Denmark)

    Gibbon, Peter; Riisgaard, Lone

    2014-01-01

    This paper applies a convention theory (CT) approach to the analysis of labour management systems in African large-scale farming. The reconstruction of previous analyses of high-value crop production on large-scale farms in Africa in terms of CT suggests that, since 1980–95, labour management has...

  4. Pseudoscalar-photon mixing and the large scale alignment of QsO ...

    Indian Academy of Sciences (India)

    physics pp. 679-682. Pseudoscalar-photon mixing and the large scale alignment of QsO optical polarizations. PANKAJ JAIN, sUKANTA PANDA and s sARALA. Physics Department, Indian Institute of Technology, Kanpur 208 016, India. Abstract. We review the observation of large scale alignment of QSO optical polariza-.

  5. On the universal character of the large scale structure of the universe

    International Nuclear Information System (INIS)

    Demianski, M.; International Center for Relativistic Astrophysics; Rome Univ.; Doroshkevich, A.G.

    1991-01-01

    We review different theories of formation of the large scale structure of the Universe. Special emphasis is put on the theory of inertial instability. We show that for a large class of initial spectra the resulting two point correlation functions are similar. We discuss also the adhesion theory which uses the Burgers equation, Navier-Stokes equation or coagulation process. We review the Zeldovich theory of gravitational instability and discuss the internal structure of pancakes. Finally we discuss the role of the velocity potential in determining the global characteristics of large scale structures (distribution of caustics, scale of voids, etc.). In the last chapter we list the main unsolved problems and main successes of the theory of formation of large scale structure. (orig.)

  6. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    Science.gov (United States)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2015-04-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  7. LAVA: Large scale Automated Vulnerability Addition

    Science.gov (United States)

    2016-05-23

    LAVA: Large-scale Automated Vulnerability Addition Brendan Dolan -Gavitt∗, Patrick Hulin†, Tim Leek†, Fredrich Ulrich†, Ryan Whelan† (Authors listed...released, and thus rapidly become stale. We can expect tools to have been trained to detect bugs that have been released. Given the commercial price tag...low TCN) and dead (low liveness) program data is a powerful one for vulnera- bility injection. The DUAs it identifies are internal program quantities

  8. Large-Scale Transit Signal Priority Implementation

    OpenAIRE

    Lee, Kevin S.; Lozner, Bailey

    2018-01-01

    In 2016, the District Department of Transportation (DDOT) deployed Transit Signal Priority (TSP) at 195 intersections in highly urbanized areas of Washington, DC. In collaboration with a broader regional implementation, and in partnership with the Washington Metropolitan Area Transit Authority (WMATA), DDOT set out to apply a systems engineering–driven process to identify, design, test, and accept a large-scale TSP system. This presentation will highlight project successes and lessons learned.

  9. Probing cosmology with the homogeneity scale of the Universe through large scale structure surveys

    International Nuclear Information System (INIS)

    Ntelis, Pierros

    2017-01-01

    This thesis exposes my contribution to the measurement of homogeneity scale using galaxies, with the cosmological interpretation of results. In physics, any model is characterized by a set of principles. Most models in cosmology are based on the Cosmological Principle, which states that the universe is statistically homogeneous and isotropic on a large scales. Today, this principle is considered to be true since it is respected by those cosmological models that accurately describe the observations. However, while the isotropy of the universe is now confirmed by many experiments, it is not the case for the homogeneity. To study cosmic homogeneity, we propose to not only test a model but to test directly one of the postulates of modern cosmology. Since 1998 the measurements of cosmic distances using type Ia supernovae, we know that the universe is now in a phase of accelerated expansion. This phenomenon can be explained by the addition of an unknown energy component, which is called dark energy. Since dark energy is responsible for the expansion of the universe, we can study this mysterious fluid by measuring the rate of expansion of the universe. The universe has imprinted in its matter distribution a standard ruler, the Baryon Acoustic Oscillation (BAO) scale. By measuring this scale at different times during the evolution of our universe, it is then possible to measure the rate of expansion of the universe and thus characterize this dark energy. Alternatively, we can use the homogeneity scale to study this dark energy. Studying the homogeneity and the BAO scale requires the statistical study of the matter distribution of the universe at large scales, superior to tens of Mega-parsecs. Galaxies and quasars are formed in the vast over densities of matter and they are very luminous: these sources trace the distribution of matter. By measuring the emission spectra of these sources using large spectroscopic surveys, such as BOSS and eBOSS, we can measure their positions

  10. LongLine: Visual Analytics System for Large-scale Audit Logs

    Directory of Open Access Journals (Sweden)

    Seunghoon Yoo

    2018-03-01

    Full Text Available Audit logs are different from other software logs in that they record the most primitive events (i.e., system calls in modern operating systems. Audit logs contain a detailed trace of an operating system, and thus have received great attention from security experts and system administrators. However, the complexity and size of audit logs, which increase in real time, have hindered analysts from understanding and analyzing them. In this paper, we present a novel visual analytics system, LongLine, which enables interactive visual analyses of large-scale audit logs. LongLine lowers the interpretation barrier of audit logs by employing human-understandable representations (e.g., file paths and commands instead of abstract indicators of operating systems (e.g., file descriptors as well as revealing the temporal patterns of the logs in a multi-scale fashion with meaningful granularity of time in mind (e.g., hourly, daily, and weekly. LongLine also streamlines comparative analysis between interesting subsets of logs, which is essential in detecting anomalous behaviors of systems. In addition, LongLine allows analysts to monitor the system state in a streaming fashion, keeping the latency between log creation and visualization less than one minute. Finally, we evaluate our system through a case study and a scenario analysis with security experts.

  11. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  12. Response of deep and shallow tropical maritime cumuli to large-scale processes

    Science.gov (United States)

    Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.

    1976-01-01

    The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.

  13. Accuracy assessment of planimetric large-scale map data for decision-making

    Directory of Open Access Journals (Sweden)

    Doskocz Adam

    2016-06-01

    Full Text Available This paper presents decision-making risk estimation based on planimetric large-scale map data, which are data sets or databases which are useful for creating planimetric maps on scales of 1:5,000 or larger. The studies were conducted on four data sets of large-scale map data. Errors of map data were used for a risk assessment of decision-making about the localization of objects, e.g. for land-use planning in realization of investments. An analysis was performed for a large statistical sample set of shift vectors of control points, which were identified with the position errors of these points (errors of map data.

  14. Reviving large-scale projects

    International Nuclear Information System (INIS)

    Desiront, A.

    2003-01-01

    For the past decade, most large-scale hydro development projects in northern Quebec have been put on hold due to land disputes with First Nations. Hydroelectric projects have recently been revived following an agreement signed with Aboriginal communities in the province who recognized the need to find new sources of revenue for future generations. Many Cree are working on the project to harness the waters of the Eastmain River located in the middle of their territory. The work involves building an 890 foot long dam, 30 dikes enclosing a 603 square-km reservoir, a spillway, and a power house with 3 generating units with a total capacity of 480 MW of power for start-up in 2007. The project will require the use of 2,400 workers in total. The Cree Construction and Development Company is working on relations between Quebec's 14,000 Crees and the James Bay Energy Corporation, the subsidiary of Hydro-Quebec which is developing the project. Approximately 10 per cent of the $735-million project has been designated for the environmental component. Inspectors ensure that the project complies fully with environmental protection guidelines. Total development costs for Eastmain-1 are in the order of $2 billion of which $735 million will cover work on site and the remainder will cover generating units, transportation and financial charges. Under the treaty known as the Peace of the Braves, signed in February 2002, the Quebec government and Hydro-Quebec will pay the Cree $70 million annually for 50 years for the right to exploit hydro, mining and forest resources within their territory. The project comes at a time when electricity export volumes to the New England states are down due to growth in Quebec's domestic demand. Hydropower is a renewable and non-polluting source of energy that is one of the most acceptable forms of energy where the Kyoto Protocol is concerned. It was emphasized that large-scale hydro-electric projects are needed to provide sufficient energy to meet both

  15. Large-scale Flow and Transport of Magnetic Flux in the Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Horizontal large-scale velocity field describes horizontal displacement of the photospheric magnetic flux in zonal and meridian directions. The flow systems of solar plasma, constructed according to the velocity field, create the large-scale cellular-like patterns with up-flow in the center and the down-flow on the ...

  16. Air pollution and economics: Alternate use of fuels in small scale industries

    International Nuclear Information System (INIS)

    Rao, B.P.S.; Pandit, V.I.

    1999-01-01

    In developing countries the problem of air pollution was recognized earlier, however, it has acquired a greater dimension due to the conventional use of low grade fuels like coal, baggase, rice husk, etc. having high sulphur and ash content. The industrial sources contribute about 30--40% of the total emissions. In India, the small scale industries (low investment group) contribute about 60--80% of the total industrial emissions. These industries are characterized with various environmental pollution problems due to cluster of small scale industries located in sensitive area; use of low grade fuel, primitive processing techniques without emission abatement facilities etc., thus leading to enormous pollution in an confined region. Acute need was felt to reduce the pollution problem associated with small scale industries by use of cleaner fuel so as to reduce the localized problem. The paper presents the emissions associated with use of coal/coke, natural gas, LPG, and propane along with the fuel cost for small scale industrial sector of Agra, Firozabad and Mathura region. The studies carried out would find applicability to meet the air pollution standards based on shift in fuel and associated cost

  17. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    Science.gov (United States)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  18. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  19. Facile Large-scale synthesis of stable CuO nanoparticles

    Science.gov (United States)

    Nazari, P.; Abdollahi-Nejand, B.; Eskandari, M.; Kohnehpoushi, S.

    2018-04-01

    In this work, a novel approach in synthesizing the CuO nanoparticles was introduced. A sequential corrosion and detaching was proposed in the growth and dispersion of CuO nanoparticles in the optimum pH value of eight. The produced CuO nanoparticles showed six nm (±2 nm) in diameter and spherical feather with a high crystallinity and uniformity in size. In this method, a large-scale production of CuO nanoparticles (120 grams in an experimental batch) from Cu micro-particles was achieved which may met the market criteria for large-scale production of CuO nanoparticles.

  20. Large-Scale Cooperative Task Distribution on Peer-to-Peer Networks

    Science.gov (United States)

    2012-01-01

    SUBTITLE Large-scale cooperative task distribution on peer-to-peer networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...disadvantages of ML- Chord are its fixed size (two layers), and limited scala - bility for large-scale systems. RC-Chord extends ML- D. Karrels et al...configurable before runtime. This can be improved by incorporating a distributed learning algorithm to tune the number and range of the DLoE tracking

  1. Comparative Analysis of Different Protocols to Manage Large Scale Networks

    OpenAIRE

    Anil Rao Pimplapure; Dr Jayant Dubey; Prashant Sen

    2013-01-01

    In recent year the numbers, complexity and size is increased in Large Scale Network. The best example of Large Scale Network is Internet, and recently once are Data-centers in Cloud Environment. In this process, involvement of several management tasks such as traffic monitoring, security and performance optimization is big task for Network Administrator. This research reports study the different protocols i.e. conventional protocols like Simple Network Management Protocol and newly Gossip bas...

  2. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments

    CERN Document Server

    Marliere, C; Etienne, P; Woignier, T; Dieudonné, P; Phalippou, J

    2001-01-01

    During the last few years the bulk structure of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light). It has been shown that small silica particles aggregate to constitute a fractal network. Its spatial extension and fractal dimension are strongly dependent on the synthesis conditions (e.g., pH of gelifying solutions). These typical lengths range from 1 to 10 nm. Ultra-small angle X-ray scattering (USAXS) and atomic force microscopy (AFM) experiments have been carried out on aerogels at different steps of densification. The results presented in this paper reveal the existence of a spatial arrangement of the solid part at a very large length scale. The evolution of this very large-scale structure during the densification process has been studied and reveals a contraction of this macro-structure made of aggregates of clusters. (16 refs).

  3. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  4. Personalized Opportunistic Computing for CMS at Large Scale

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    **Douglas Thain** is an Associate Professor of Computer Science and Engineering at the University of Notre Dame, where he designs large scale distributed computing systems to power the needs of advanced science and...

  5. Stability of large scale interconnected dynamical systems

    International Nuclear Information System (INIS)

    Akpan, E.P.

    1993-07-01

    Large scale systems modelled by a system of ordinary differential equations are considered and necessary and sufficient conditions are obtained for the uniform asymptotic connective stability of the systems using the method of cone-valued Lyapunov functions. It is shown that this model significantly improves the existing models. (author). 9 refs

  6. Large scale cross hole testing

    International Nuclear Information System (INIS)

    Ball, J.K.; Black, J.H.; Doe, T.

    1991-05-01

    As part of the Site Characterisation and Validation programme the results of the large scale cross hole testing have been used to document hydraulic connections across the SCV block, to test conceptual models of fracture zones and obtain hydrogeological properties of the major hydrogeological features. The SCV block is highly heterogeneous. This heterogeneity is not smoothed out even over scales of hundreds of meters. Results of the interpretation validate the hypothesis of the major fracture zones, A, B and H; not much evidence of minor fracture zones is found. The uncertainty in the flow path, through the fractured rock, causes sever problems in interpretation. Derived values of hydraulic conductivity were found to be in a narrow range of two to three orders of magnitude. Test design did not allow fracture zones to be tested individually. This could be improved by testing the high hydraulic conductivity regions specifically. The Piezomac and single hole equipment worked well. Few, if any, of the tests ran long enough to approach equilibrium. Many observation boreholes showed no response. This could either be because there is no hydraulic connection, or there is a connection but a response is not seen within the time scale of the pumping test. The fractional dimension analysis yielded credible results, and the sinusoidal testing procedure provided an effective means of identifying the dominant hydraulic connections. (10 refs.) (au)

  7. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  8. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  9. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  10. Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data.

    Science.gov (United States)

    Gray, Vanessa E; Hause, Ronald J; Luebeck, Jens; Shendure, Jay; Fowler, Douglas M

    2018-01-24

    Large datasets describing the quantitative effects of mutations on protein function are becoming increasingly available. Here, we leverage these datasets to develop Envision, which predicts the magnitude of a missense variant's molecular effect. Envision combines 21,026 variant effect measurements from nine large-scale experimental mutagenesis datasets, a hitherto untapped training resource, with a supervised, stochastic gradient boosting learning algorithm. Envision outperforms other missense variant effect predictors both on large-scale mutagenesis data and on an independent test dataset comprising 2,312 TP53 variants whose effects were measured using a low-throughput approach. This dataset was never used for hyperparameter tuning or model training and thus serves as an independent validation set. Envision prediction accuracy is also more consistent across amino acids than other predictors. Finally, we demonstrate that Envision's performance improves as more large-scale mutagenesis data are incorporated. We precompute Envision predictions for every possible single amino acid variant in human, mouse, frog, zebrafish, fruit fly, worm, and yeast proteomes (https://envision.gs.washington.edu/). Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Methods for Large-Scale Nonlinear Optimization.

    Science.gov (United States)

    1980-05-01

    STANFORD, CALIFORNIA 94305 METHODS FOR LARGE-SCALE NONLINEAR OPTIMIZATION by Philip E. Gill, Waiter Murray, I Michael A. Saunden, and Masgaret H. Wright...typical iteration can be partitioned so that where B is an m X m basise matrix. This partition effectively divides the vari- ables into three classes... attention is given to the standard of the coding or the documentation. A much better way of obtaining mathematical software is from a software library

  12. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  13. Recent Advances in Understanding Large Scale Vapour Explosions

    International Nuclear Information System (INIS)

    Board, S.J.; Hall, R.W.

    1976-01-01

    In foundries, violent explosions occur occasionally when molten metal comes into contact with water. If similar explosions can occur with other materials, hazardous situations may arise for example in LNG marine transportation accidents, or in liquid cooled reactor incidents when molten UO 2 contacts water or sodium coolant. Over the last 10 years a large body of experimental data has been obtained on the behaviour of small quantities of hot material in contact with a vaporisable coolant. Such experiments generally give low energy yields, despite producing fine fragmentation of the molten material. These events have been interpreted in terms of a wide range of phenomena such as violent boiling, liquid entrainment, bubble collapse, superheat, surface cracking and many others. Many of these studies have been aimed at understanding the small scale behaviour of the particular materials of interest. However, understanding the nature of the energetic events which were the original cause for concern may also be necessary to give confidence that violent events cannot occur for these materials in large scale situations. More recently, there has been a trend towards larger experiments and some of these have produced explosions of moderately high efficiency. Although occurrence of such large scale explosions can depend rather critically on initial conditions in a way which is not fully understood, there are signs that the interpretation of these events may be more straightforward than that of the single drop experiments. In the last two years several theoretical models for large scale explosions have appeared which attempt a self contained explanation of at least some stages of such high yield events: these have as their common feature a description of how a propagating breakdown of an initially quasi-stable distribution of materials is induced by the pressure and flow field caused by the energy release in adjacent regions. These models have led to the idea that for a full

  14. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  15. Large Scale GW Calculations on the Cori System

    Science.gov (United States)

    Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven

    The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.

  16. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  17. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  18. Electron drift in a large scale solid xenon

    International Nuclear Information System (INIS)

    Yoo, J.; Jaskierny, W.F.

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon

  19. Wind and Photovoltaic Large-Scale Regional Models for hourly production evaluation

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Maule, Petr; Hahmann, Andrea N.

    2015-01-01

    This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesosca...... of the transmission system, especially regarding the cross-border power flows. The tuning of these regional models is done using historical meteorological data acquired on a per-country basis and using publicly available data of installed capacity.......This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesoscale...

  20. On very-large-scale motions (VLSMs) and long-wavelength patterns in turbine wakes

    Science.gov (United States)

    Önder, Asim; Meyers, Johan

    2017-11-01

    It is now widely accepted that very-large-scale motions (VLSMs) are a prominent feature of thermally-neutral atmospheric boundary layers (ABL). Up to date, the influence of these very long active motions on wind-energy harvesting is not sufficiently explored. This work is an effort in this direction. We perform large-eddy simulation of a turbine row operating under neutral conditions. The ABL data is produced separately in a very long domain of 240 δ . VLSMs are isolated from smaller-scale ABL and wake motions using a spectral cutoff at streamwise wavelength λx = 3.125 δ . Reynolds-averaging of low-pass filtered fields shows that the interaction of VLSMs and turbines produce very-long-wavelength motions in the wake region, which contain about 20 % of the Reynolds-shear stress, and 30 % of the streamwise kinetic energy. A conditional analysis of filtered fields further reveals that these long-wavelength wakes are produced by modification of very long velocity streaks in ABL. In particular, the turbine row acts as a sharp boundary between low and high velocity streaks, and accompanying roller structures remain relatively unaffected. This reorganization creates a two-way flux towards the wake region, which elucidates the side-way domination in turbulent transport. The authors acknowledg funding from ERC Grant No 306471.

  1. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    International Nuclear Information System (INIS)

    Jin Zhenxing; Wu Yong; Li Baizhan; Gao Yafeng

    2009-01-01

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  2. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenxing; Li, Baizhan; Gao, Yafeng [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China); Wu, Yong [The Department of Science and Technology, Ministry of Construction, Beijing 100835 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China. (author)

  3. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin Zhenxing [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)], E-mail: jinzhenxing33@sina.com; Wu Yong [Department of Science and Technology, Ministry of Construction, Beijing 100835 (China); Li Baizhan; Gao Yafeng [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  4. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  5. The Large-Scale Structure of Scientific Method

    Science.gov (United States)

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  6. Test of large-scale specimens and models as applied to NPP equipment materials

    International Nuclear Information System (INIS)

    Timofeev, B.T.; Karzov, G.P.

    1993-01-01

    The paper presents the test results on low-cycle fatigue, crack growth rate and fracture toughness of large-scale specimens and structures, manufactured from steel, widely applied in power engineering industry and used for the production of NPP equipment with VVER-440 and VVER-1000 reactors. The obtained results are compared with available test results of standard specimens and calculation relations, accepted in open-quotes Calculation Norms on Strength.close quotes At the fatigue crack initiation stage the experiments were performed on large-scale specimens of various geometry and configuration, which permitted to define 15X2MFA steel fracture initiation resistance by elastic-plastic deformation of large material volume by homogeneous and inhomogeneous state. Besides the above mentioned specimen tests in the regime of low-cycle loading, the test of models with nozzles were performed and a good correlation of the results on fatigue crack initiation criterium was obtained both with calculated data and standard low-cycle fatigue tests. It was noted that on the Paris part of the fatigue fracture diagram a specimen thickness increase does not influence fatigue crack growth resistance by tests in air both at 20 and 350 degrees C. The estimation of the comparability of the results, obtained on specimens and models was also carried out for this stage of fracture. At the stage of unstable crack growth by static loading the experiments were conducted on specimens of various thickness for 15X2MFA and 15X2NMFA steels and their welded joints, produced by submerged arc welding, in as-produced state (the beginning of service) and after embrittling heat treatment, simulating neutron fluence attack (the end of service). The obtained results give evidence of the possibility of the reliable prediction of structure elements brittle fracture using fracture toughness test results on relatively small standard specimens. 35 refs., 23 figs

  7. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    Science.gov (United States)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  8. Bottom-Up Accountability Initiatives and Large-Scale Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Security can help increase accountability for large-scale land acquisitions in ... to build decent economic livelihoods and participate meaningfully in decisions ... its 2017 call for proposals to establish Cyber Policy Centres in the Global South.

  9. Large-scale and synoptic meteorology in the south-east Pacific during the observations campaign VOCALS-REx in austral Spring 2008

    Directory of Open Access Journals (Sweden)

    T. Toniazzo

    2011-05-01

    Full Text Available We present a descriptive overview of the meteorology in the south eastern subtropical Pacific (SEP during the VOCALS-REx intensive observations campaign which was carried out between October and November 2008. Mainly based on data from operational analyses, forecasts, reanalysis, and satellite observations, we focus on spatio-temporal scales from synoptic to planetary. A climatological context is given within which the specific conditions observed during the campaign are placed, with particular reference to the relationships between the large-scale and the regional circulations. The mean circulations associated with the diurnal breeze systems are also discussed. We then provide a summary of the day-to-day synoptic-scale circulation, air-parcel trajectories, and cloud cover in the SEP during VOCALS-REx. Three meteorologically distinct periods of time are identified and the large-scale causes for their different character are discussed. The first period was characterised by significant variability associated with synoptic-scale systems interesting the SEP; while the two subsequent phases were affected by planetary-scale disturbances with a slower evolution. The changes between initial and later periods can be partly explained from the regular march of the annual cycle, but contributions from subseasonal variability and its teleconnections were important. Across the whole of the two months under consideration we find a significant correlation between the depth of the inversion-capped marine boundary layer (MBL and the amount of low cloud in the area of study. We discuss this correlation and argue that at least as a crude approximation a typical scaling may be applied relating MBL and cloud properties with the large-scale parameters of SSTs and tropospheric temperatures. These results are consistent with previously found empirical relationships involving lower-tropospheric stability.

  10. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  11. Measuring the topology of large-scale structure in the universe

    Science.gov (United States)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  12. Measuring the topology of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Gott, J.R. III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data. 45 references

  13. How the Internet Will Help Large-Scale Assessment Reinvent Itself

    Directory of Open Access Journals (Sweden)

    Randy Elliot Bennett

    2001-02-01

    Full Text Available Large-scale assessment in the United States is undergoing enormous pressure to change. That pressure stems from many causes. Depending upon the type of test, the issues precipitating change include an outmoded cognitive-scientific basis for test design; a mismatch with curriculum; the differential performance of population groups; a lack of information to help individuals improve; and inefficiency. These issues provide a strong motivation to reconceptualize both the substance and the business of large-scale assessment. At the same time, advances in technology, measurement, and cognitive science are providing the means to make that reconceptualization a reality. The thesis of this paper is that the largest facilitating factor will be technological, in particular the Internet. In the same way that it is already helping to revolutionize commerce, education, and even social interaction, the Internet will help revolutionize the business and substance of large-scale assessment.

  14. Upscaling of Large-Scale Transport in Spatially Heterogeneous Porous Media Using Wavelet Transformation

    Science.gov (United States)

    Moslehi, M.; de Barros, F.; Ebrahimi, F.; Sahimi, M.

    2015-12-01

    Modeling flow and solute transport in large-scale heterogeneous porous media involves substantial computational burdens. A common approach to alleviate this complexity is to utilize upscaling methods. These processes generate upscaled models with less complexity while attempting to preserve the hydrogeological properties comparable to the original fine-scale model. We use Wavelet Transformations (WT) of the spatial distribution of aquifer's property to upscale the hydrogeological models and consequently transport processes. In particular, we apply the technique to a porous formation with broadly distributed and correlated transmissivity to verify the performance of the WT. First, transmissivity fields are coarsened using WT in such a way that the high transmissivity zones, in which more important information is embedded, mostly remain the same, while the low transmissivity zones are averaged out since they contain less information about the hydrogeological formation. Next, flow and non-reactive transport are simulated in both fine-scale and upscaled models to predict both the concentration breakthrough curves at a control location and the large-scale spreading of the plume around its centroid. The results reveal that the WT of the fields generates non-uniform grids with an average of 2.1% of the number of grid blocks in the original fine-scale models, which eventually leads to a significant reduction in the computational costs. We show that the upscaled model obtained through the WT reconstructs the concentration breakthrough curves and the spreading of the plume at different times accurately. Furthermore, the impacts of the Hurst coefficient, size of the flow domain and the orders of magnitude difference in transmissivity values on the results have been investigated. It is observed that as the heterogeneity and the size of the domain increase, better agreement between the results of fine-scale and upscaled models can be achieved. Having this framework at hand aids

  15. Contribution of large scale coherence to wind turbine power: A large eddy simulation study in periodic wind farms

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2018-03-01

    Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.

  16. Microbial responses of forest soil to moderate anthropogenic air pollution - a large scale field survey

    International Nuclear Information System (INIS)

    Vanhala, P.; Kiikkila, O.; Fritze, H.

    1996-01-01

    There is a need to introduce soil microbiological methods into long term ecological monitoring programs. For this purpose we studied the impact of moderate anthropogenic air pollution in polluted and less polluted area districts, forest site types Calluna (CT), Vaccinium (VT) and Myrtillus (MT) and the amount of organic matter, measured as carbon content on the soil respiration activity and the ATP content. The main sources of local air pollutants (SO 2 and NO x ) in the polluted area district were from the capital region and an oil refinery. Humus (F/H-layer) and the underlying 0 to 5 cm mineral soil samples were collected from 193 study plots located in the 5300 km 2 study area. We found that the soil respiration rate in humus layer samples was lower in the polluted area district compared to the less polluted one (16.0 and 19.5μL CO 2 h -1 g -1 dw, respectively), but the difference occurred only in the dry, coarse-textured CT forest site type. The mineral soil respiration rate and the mineral soil and humus layer ATP content were not affected by the air pollution. Most of the variations of the biological variables were explained primarily by the soil carbon content, secondly by the forest site type and thirdly by the area division. 38 refs., 1 fig., 6 tabs

  17. Bottom-Up Accountability Initiatives and Large-Scale Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    fuel/energy, climate, and finance has occurred and one of the most ... this wave of large-scale land acquisitions. In fact, esti- ... Environmental Rights Action/Friends of the Earth,. Nigeria ... map the differentiated impacts (gender, ethnicity,.

  18. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    Science.gov (United States)

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks

  19. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    Directory of Open Access Journals (Sweden)

    Valerio Santangelo

    2018-02-01

    Full Text Available Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010 to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory in one spatial location. The analysis of the independent components (ICs revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC. The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among

  20. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.