WorldWideScience

Sample records for air pressure

  1. Microfluidic pressure sensing using trapped air compression.

    Science.gov (United States)

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  2. Simultaneous velocity and pressure quantification using pressure-sensitive flow tracers in air

    Science.gov (United States)

    Zhang, Peng; Peterson, Sean; Porfiri, Maurizio

    2017-11-01

    Particle-based measurement techniques for assessing the velocity field of a fluid have advanced rapidly over the past two decades. Full-field pressure measurement techniques have remained elusive, however. In this work, we aim to demonstrate the possibility of direct simultaneous planar velocity and pressure measurement of a high speed aerodynamic flow by employing novel pressure-sensitive tracer particles for particle image velocimetry (PIV). Specifically, the velocity and pressure variations of an airflow through a converging-diverging channel are studied. Polystyrene microparticles embedded with a pressure-sensitive phosphorescent dye-platinum octaethylporphyrin (PtOEP)-are used as seeding particles. Due to the oxygen quenching effect, the emission lifetime of PtOEP is highly sensitive to the oxygen concentration, that is, the partial pressure of oxygen, in the air. Since the partial pressure of oxygen is linearly proportional to the air pressure, we can determine the air pressure through the phosphorescence emission lifetime of the dye. The velocity field is instead obtained using traditional PIV methods. The particles have a pressure resolution on the order of 1 kPa, which may be improved by optimizing the particle size and dye concentration to suit specific flow scenarios. This work was supported by the National Science Foundation under Grant Number CBET-1332204.

  3. Pressure ulcer incidence and progression in critically ill subjects: influence of low air loss mattress versus a powered air pressure redistribution mattress.

    Science.gov (United States)

    Black, Joyce; Berke, Christine; Urzendowski, Gail

    2012-01-01

    The primary objective of this study was to compare facility-acquired pressure ulcer incidence and progression of pressure ulcers present on admission in critically ill patients, using 2 different support surfaces. We completed a comparison cohort study in a surgical intensive care unit (ICU). The study setting was a 12-bed cardiovascular ICU in a university-based hospital in the Midwestern United States. The sample comprised 52 critically ill patients; 31 were placed on low air loss weight-based pressure redistribution-microclimate management system beds and 21 were placed on integrated powered air pressure redistribution beds. Prior to the start of the study, 5 low airloss beds were placed in open rooms in the cardiovascular surgical ICU. Inclusion criteria were anticipated ICU stay of 3 days, and patients did not receive a speciality bed for pulmonary or wound issues. Initial assessment of the patients included risk assessment and prior events that would increase risk for pressure ulcer development such as extended time in operating room, along with skin assessment for existing pressure ulcers. Subjects in both groups had ongoing skin assessment every 3 to 4 days and a subjective evaluation of heel elevation and turning or repositioning by the researcher. Data were collected until the subjects were dismissed from the ICU. Patients admitted to the unit were assigned to open rooms following the usual protocols. The mean length of stay was 7.0 days, with an 8.1-day length of stay for subjects on "low air loss with microclimate management" beds (LAL-MCM) and 6.6 days on the integrated power pressure air redistribution (IP-AR) beds (P = NS). The incidence of pressure ulcers on the buttocks, sacrum, or coccyx was 0% (0/31) on the low air loss bed and 18% (4/21) on the IP-AR bed (P = .046). Five subjects had 6 pressure ulcers on admission. Two pressure ulcers on 2 patients worsened on the integrated power air redistribution beds, which required specialty bed rental

  4. Emptying of large-scale pipeline by pressurized air

    NARCIS (Netherlands)

    Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuckovic, S.; Hou, Q.; Tijsseling, A.S.; Anderson, A.; Gale, J.; Westende, van 't J.M.C.

    2012-01-01

    Emptying of an initially water-filled horizontal PVC pipeline driven by different upstream compressed air pressures and with different outflow restriction conditions, with motion of an air-water front through the pressurized pipeline, is investigated experimentally. Simple numerical modeling is used

  5. Prenatal air pollution exposure and newborn blood pressure

    NARCIS (Netherlands)

    van Rossem, Lenie; Rifas-Shiman, Sheryl L.; Melly, Steven J.; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A.; Schwartz, Joel D.; Mittleman, Murray A.; Oken, Emily; Gillman, Matthew W.; Koutrakis, Petros; Gold, Diane R.

    2015-01-01

    Background: Air pollution exposure has been associated with increased blood pressure in adults. oBjective: We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). Methods: We studied 1,131 mother–infant pairs in a Boston, Massachusetts,

  6. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    Science.gov (United States)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  7. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Science.gov (United States)

    2010-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...

  8. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C.O.; Kruger, C.H.; Zare, R.N.

    2001-01-01

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  9. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    Science.gov (United States)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  10. Pressurized solid oxide fuel cell integral air accumular containment

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  11. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  12. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    KAUST Repository

    He, Weihua

    2016-09-30

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of −0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m, with balanced air and water pressures of 10–25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  13. Effects of oxygen partial pressure on Li-air battery performance

    Science.gov (United States)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  14. A noncontact intraocular pressure measurement device using a micro reflected air pressure sensor for the prediagnosis of glaucoma

    International Nuclear Information System (INIS)

    Kim, Kyoung Hwan; Kim, Byeong Hee; Seo, Young Ho

    2012-01-01

    This study investigates a novel, portable tonometer using a micro reflected air pressure sensor for the prediagnosis of glaucoma. Because glaucoma progresses slowly and is not painful, glaucoma patients require a portable prediagnosis system to periodically measure intraocular pressure at home. Conventionally, intraocular pressure is measured by an air-puff tonometer whereby the cornea is deformed by a short pulse of air pressure and the magnitude of the corneal deformation is measured by optic systems such as a combination of laser- and photodiodes. In this study, a micro reflected air pressure sensor was designed, fabricated, and tested in order to measure the magnitude of corneal deformation without optic systems. In an experimental study, artificial eyes with different internal pressures were fabricated and these pressures were measured by the aforementioned system. (paper)

  15. Pressure loss of the annular air-liquid flow in vertical tufes

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Cantalino, A [Rio de Janeiro Univ. (Brazil). Dept. de Engenharia Quimica

    1976-01-01

    In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants.

  16. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    International Nuclear Information System (INIS)

    Compton, J.A.

    1994-01-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another's estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended

  17. The Influence of Shaping Air Pressure of Pneumatic Spray Gun

    Science.gov (United States)

    Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo

    2018-02-01

    The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.

  18. Security of bottle to fill in a high pressure air

    Science.gov (United States)

    Todic, M.; Latinovic, T.; Golubovic-Bugarski, V.; Majstorovic, A.

    2018-01-01

    Charging the bottle of high pressure air isolation devices is performed by a high-pressure compressor. The charging time is in function of the compressor capacity and the intensity of the nominal pressure of the air in the bottle. However, in accident situations this time is long and therefore high-pressure accumulators are used where the filling time of the bottle of isolation apparatus has been drastically reduced. Due to the short filling time of the bottle through the air flow, there is a thermodynamic load of bottle material that could endanger the safety of users and other participants in the area. It is therefore necessary to determine the critical parameters of the rapid charge and their intensity.

  19. Compressed air injection technique to standardize block injection pressures.

    Science.gov (United States)

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes (18G, 20G, 21G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed.

  20. The effect of form pressure on the air void structure of SCC

    DEFF Research Database (Denmark)

    Jensen, Mikkel Vibæk; Hasholt, Marianne Tange; Geiker, Mette Rica

    2005-01-01

    The high workability of self-compacting concrete (SCC) invites to high casting rates. However, casting walls at high rate may result in large pressure at the bottom of the form and subsequently compression of the air voids. This paper deals with the influence of hydrostatic pressure during setting...... on the air void structure of hardened, air entrained SCC. The subject was examined through laboratory investigations of SCC with two different amounts of air entrainment. The condition in the form was simulated by using containers making it possible to cure concrete under various pressures corresponding...... to the bottom of castings of 0, 2, 4, and 6 meters height. The laboratory investigations were supplemented with data from two full-scale wall castings. The air void structure of the hardened concretes was determined on plane sections. The results indicate that the pressure related changes of the air void...

  1. Pressurized air ionization chamber with aluminium walls for radiometric dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Netto, T.G.

    1996-01-01

    A pressurized air ionization chamber with 23 cm 3 and aluminium walls is evaluated concerning its sensitiveness in low exposure rate. Considering conventional ionization chambers, this chamber shows a better performance since the air pressure of 2500 kPa minimizes the energy dependence to less than 5% between 40 and 1.250 keV

  2. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  3. Risk for intracranial pressure increase related to enclosed air in post-craniotomy patients during air ambulance transport: a retrospective cohort study with simulation.

    Science.gov (United States)

    Brändström, Helge; Sundelin, Anna; Hoseason, Daniela; Sundström, Nina; Birgander, Richard; Johansson, Göran; Winsö, Ola; Koskinen, Lars-Owe; Haney, Michael

    2017-05-12

    Post-craniotomy intracranial air can be present in patients scheduled for air ambulance transport to their home hospital. We aimed to assess risk for in-flight intracranial pressure (ICP) increases related to observed intracranial air volumes, hypothetical sea level pre-transport ICP, and different potential flight levels and cabin pressures. A cohort of consecutive subdural hematoma evacuation patients from one University Medical Centre was assessed with post-operative intracranial air volume measurements by computed tomography. Intracranial pressure changes related to estimated intracranial air volume effects of changing atmospheric pressure (simulating flight and cabin pressure changes up to 8000 ft) were simulated using an established model for intracranial pressure and volume relations. Approximately one third of the cohort had post-operative intracranial air. Of these, approximately one third had intracranial air volumes less than 11 ml. The simulation estimated that the expected changes in intracranial pressure during 'flight' would not result in intracranial hypertension. For intracranial air volumes above 11 ml, the simulation suggested that it was possible that intracranial hypertension could develop 'inflight' related to cabin pressure drop. Depending on the pre-flight intracranial pressure and air volume, this could occur quite early during the assent phase in the flight profile. DISCUSSION: These findings support the idea that there should be radiographic verification of the presence or absence of intracranial air after craniotomy for patients planned for long distance air transport. Very small amounts of air are clinically inconsequential. Otherwise, air transport with maintained ground-level cabin pressure should be a priority for these patients.

  4. Preliminary Investigation on the Behavior of Pore Air Pressure During Rainfall Infiltration

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Min, Ng Soon; Hasliza Hamzah, Nur; Hazreek Zainal Abidin, Mohd; Madun, Aziman; Tajudin, Saiful Azhar Ahmad

    2018-04-01

    This paper focused on the preliminary investigation of pore air pressure behaviour during rainfall infiltration in order to substantiate the mechanism of rainfall induced slope failure. The actual behaviour or pore air pressure during infiltration is yet to be clearly understood as it is regularly assumed as atmospheric. Numerical modelling of one dimensional (1D) soil column was utilized in this study to provide a preliminary insight of this highlighted uncertainty. Parametric study was performed by using rainfall intensities of 1.85 x 10-3m/s and 1.16 x 10-4m/s applied on glass beads to simulate intense and modest rainfall conditions. Analysis results show that the high rainfall intensity causes more development of pore air pressure compared to low rainfall intensity. This is because at high rainfall intensity, the rainwater cannot replace the pore air smoothly thus confining the pore air. Therefore, the effect of pore air pressure has to be taken into consideration particularly during heavy rainfall.

  5. An AlN cantilever for a wake-up switch triggered by air pressure change

    International Nuclear Information System (INIS)

    Kaiho, Y; Itoh, T; Maeda, R; Takahashi, H; Matsumoto, K; Shimoyama, I; Tomimatsu, Y; Kobayashi, T

    2013-01-01

    This research reports an AlN cantilever with an air chamber for a wake-up switch triggered by air pressure change. The proposed sensor is designed to fulfil both high sensitivity and low power consumption. By combining an air chamber to the one side of the AlN cantilever surface, the barometric pressure change generates a piezoelectric voltage. Thus, a wake-up switch triggered by air pressure change can be achieved using an AlN cantilever. The size of the fabricated AlN cantilever was 2000 μm × 1000 μm × 2 μm. The sensitivity to static differential pressure was 11.5 mV/Pa at the range of −20 Pa to 20 Pa. We evaluated the response of the sensor, which was composed of the AlN cantilever and the chamber of 60 ml in volume, when air pressure change was applied. The output voltage increased with increasing the applied air pressure change. It was observed that the maximum output voltage of 50 mV was generated when the air pressure change was 13 Pa

  6. Method and apparatus for monitoring oxygen partial pressure in air masks

    Science.gov (United States)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  7. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure.

    Science.gov (United States)

    Razak, Nasrul Anuar Abd; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ali, Sadeeq

    2014-08-01

    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. The subject's dynamic pressure on the socket that's applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics.

  8. Double Contact During Drop Impact on a Solid Under Reduced Air Pressure

    KAUST Repository

    Li, Erqiang

    2017-11-20

    Drops impacting on solid surfaces entrap small bubbles under their centers, owing to the lubrication pressure which builds up in the thin intervening air layer. We use ultrahigh-speed interference imaging, at 5 Mfps, to investigate how this air layer changes when the ambient air pressure is reduced below atmospheric. Both the radius and the thickness of the air disc become smaller with reduced air pressure. Furthermore, we find the radial extent of the air disc bifurcates, when the compressibility parameter exceeds similar to 25. This bifurcation is also imprinted onto some of the impacts, as a double contact. In addition to the central air disc inside the first ring contact, this is immediately followed by a second ring contact, which entraps an outer toroidal strip of air, which contracts into a ring of bubbles. We find this occurs in a regime where Navier slip, due to rarefied gas effects, enhances the rate gas can escape from the path of the droplet.

  9. Comparison of pressure between barium reduction and air reduction of the intussusception in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hwan; Park, Sang Gyu; Park, Choong Ki; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1989-08-15

    There are many method of treatment of the intussusception in children, including surgery, barium reduction, air reduction, and saline enema under ultrasonographic monitoring. Among them, barium reduction and air reduction have been used widely as nonsurgical method of treatment in radiologic department. During barium reduction, the bottle filled with barium solution must not be elevated over a 3 feet from the operating table. In air reduction, diagnostic pressure is about 60 mmHg and pressure during reduction usually is maintained between 90 mmHg and 130 mmHg. The authors have studied about pressure difference of barium solution by changing height of the bottle filled with barium solution, and have compared with pressure in air reduction. The results are as follows; 1. Pressure of 20 w/v % barium solution at the 60 cm height is 44.4 mmHg, and 69.6 mmHg at the 90 cm height. 2. Pressure of 40 w/v % barium solution at the 60 cm height is 51.4 mmHg, and 80.1 mmHg at the 90 cm height. 3. Pressure of 40 w/v % barium solution at the 90cm height is much lower than the pressure maintained during air reduction, and this difference in pressure may be one of the causes of low reduction rate in barium reduction then air reduction. 4. The pressure gradient per 10 cm height is about 8.45 mmHg in 20 w/v % barium solution, about 9.21 mmHg in 30 w/v % barium solution, and about 9.72 mmHg 40 w/v % barium solution. 5. Intraluminal pressure difference between the barium reduction and the air reduction is probably of the major causes of rapid diagnosis and high reduction rate in the air reduction.

  10. Comparison of pressure between barium reduction and air reduction of the intussusception in children

    International Nuclear Information System (INIS)

    Lee, Kyung Hwan; Park, Sang Gyu; Park, Choong Ki; Yoon, Jong Sup

    1989-01-01

    There are many method of treatment of the intussusception in children, including surgery, barium reduction, air reduction, and saline enema under ultrasonographic monitoring. Among them, barium reduction and air reduction have been used widely as nonsurgical method of treatment in radiologic department. During barium reduction, the bottle filled with barium solution must not be elevated over a 3 feet from the operating table. In air reduction, diagnostic pressure is about 60 mmHg and pressure during reduction usually is maintained between 90 mmHg and 130 mmHg. The authors have studied about pressure difference of barium solution by changing height of the bottle filled with barium solution, and have compared with pressure in air reduction. The results are as follows; 1. Pressure of 20 w/v % barium solution at the 60 cm height is 44.4 mmHg, and 69.6 mmHg at the 90 cm height. 2. Pressure of 40 w/v % barium solution at the 60 cm height is 51.4 mmHg, and 80.1 mmHg at the 90 cm height. 3. Pressure of 40 w/v % barium solution at the 90cm height is much lower than the pressure maintained during air reduction, and this difference in pressure may be one of the causes of low reduction rate in barium reduction then air reduction. 4. The pressure gradient per 10 cm height is about 8.45 mmHg in 20 w/v % barium solution, about 9.21 mmHg in 30 w/v % barium solution, and about 9.72 mmHg 40 w/v % barium solution. 5. Intraluminal pressure difference between the barium reduction and the air reduction is probably of the major causes of rapid diagnosis and high reduction rate in the air reduction

  11. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  12. Optical diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C O; Spence, T G; Kruger, C H; Zare, R N

    2003-01-01

    Atmospheric pressure air plasmas are often thought to be in local thermodynamic equilibrium owing to fast interspecies collisional exchange at high pressure. This assumption cannot be relied upon, particularly with respect to optical diagnostics. Velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. This paper reviews diagnostic techniques based on optical emission spectroscopy and cavity ring-down spectroscopy that we have found useful for making temperature and concentration measurements in atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium

  13. Compressed-air work is entering the field of high pressures.

    Science.gov (United States)

    Le Péchon, J Cl; Gourdon, G

    2010-01-01

    Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges.

  14. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  15. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and... METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13015 Inspection of compressed-air receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels...

  16. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and...-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13015 Inspection of compressed-air receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure...

  17. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Science.gov (United States)

    2010-10-01

    ... compressed air (air brakes) or a commercial motor vehicle towing a vehicle with service brakes activated by compressed air (air brakes) must be equipped with a pressure gauge and a warning signal. Trucks, truck... vehicles which were not subject to FMVSS No. 105 on the date of manufacture.) (c) Air brakes. A commercial...

  18. Air Circulation and Heat Exchange under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  19. Spectrally resolved pressure dependence measurements of air fluorescence emission with AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.; Klages, H.

    2008-01-01

    The knowledge of the fluorescence emission as a function of atmospheric parameters is essential for the detection of extensive air showers with the fluorescence technique. In this paper, we summarize AIRFLY published measurements of the pressure dependence of the fluorescence yield. The spectral distribution of the fluorescent light between 280 and 429 nm has been measured with high resolution. Relative intensities of 34 spectral lines have been determined. The pressure dependence of 25 lines was measured in terms of quenching reference pressures p λ ' in air. This set of AIRFLY measurements yields the most comprehensive parametrization of the pressure dependence of the fluorescent spectrum.

  20. Branching of positive discharge streamers in air at varying pressures

    NARCIS (Netherlands)

    Briels, T.M.P.; Veldhuizen, van E.M.; Ebert, U.M.

    2005-01-01

    The formation of positive streamers in a 17-mm gap in air is studied at pressures varying in the range from 1010 to 100 mbar. An intensified charge coupled device camera is used to image the discharge. At high pressures, the discharge shows many branches, while at low pressure, fewer branches arise.

  1. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry

  2. Multi-stage versus single-stage inflation and deflation cycle for alternating low pressure air mattresses to prevent pressure ulcers in hospitalised patients: a randomised-controlled clinical trial.

    Science.gov (United States)

    Demarré, L; Beeckman, D; Vanderwee, K; Defloor, T; Grypdonck, M; Verhaeghe, S

    2012-04-01

    The duration and the amount of pressure and shear must be reduced in order to minimize the risk of pressure ulcer development. Alternating low pressure air mattresses with multi-stage inflation and deflation cycle of the air cells have been developed to relieve pressure by sequentially inflating and deflating the air cells. Evidence about the effectiveness of this type of mattress in clinical practice is lacking. This study aimed to compare the effectiveness of an alternating low pressure air mattress that has a standard single-stage inflation and deflation cycle of the air cells with an alternating low pressure air mattress with multi-stage inflation and deflation cycle of the air cells. A randomised controlled trial was performed in a convenience sample of 25 wards in five hospitals in Belgium. In total, 610 patients were included and randomly assigned to the experimental group (n=298) or the control group (n=312). In the experimental group, patients were allocated to an alternating low pressure air mattress with multi-stage inflation and deflation cycle of the air cells. In the control group, patients were allocated to an alternating low pressure air mattress with a standard single-stage inflation and deflation cycle of the air cells. The outcome was defined as cumulative pressure ulcer incidence (Grade II-IV). An intention-to-treat analysis was performed. There was no significant difference in cumulative pressure ulcer incidence (Grade II-IV) between both groups (Exp.=5.7%, Contr.=5.8%, p=0.97). When patients developed a pressure ulcer, the median time was 5.0 days in the experimental group (IQR=3.0-8.5) and 8.0 days in the control group (IQR=3.0-8.5) (Mann-Whitney U-test=113, p=0.182). The probability to remain pressure ulcer free during the observation period in this trial did not differ significantly between the experimental group and the control group (log-rank χ(2)=0.013, df=1, p=0.911). An alternating low pressure air mattress with multi-stage inflation

  3. Air and gas pockets in sewerage pressure mains.

    Science.gov (United States)

    Lubbers, C L; Clemens, F

    2005-01-01

    In The Netherlands, wastewater is collected in municipal areas and transported to large centralised WWTPs by means of an extensive system of pressure mains. Over the past decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. For that reason, in practice their state of functioning is often not known. Failure of operation is only noticed when the capacity of the system proves to be insufficient to fulfil the minimum design capacity demand. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. Many causes may account for the reduction of the system's nominal capacity like an increased wall roughness, scaling or occurrence of free gas in the pipeline. The occurrence of free gas may be caused by degassing of dissolved (bio) gas or by air entrained at the pumps' inlet or at air valves. A research study is started that will focus on three main issues: The description of the gas-water phenomena in wastewater pressure mains with respect to transportation and dynamic hydraulic behaviour, A method to diagnose gas problems, and To overcome future problems by either applying remedial measures or improving the design of wastewater pressure systems. For this study, two experimental facilities are constructed, a small circuit for the study of multi-phase flow and a second, larger one for the research into diagnostic methods. This paper describes the preliminary results of the experiments in the multi-phase circuit.

  4. Discussion of mechanical design for pressured cavity-air-receiver in solar power tower system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhilin; Zhang, Yaoming; Liu, Deyou; Wang, Jun; Liu, Wei [Hohai Univ., Nanjing (China). New Materials and Energy Sources Research and Exploitation Inst.

    2008-07-01

    In 2005, Hohai university and Nanjing Chunhui science and technology Ltd. of China, cooperating with Weizmann Institute of Science and EDIG Ltd. of Israel, built up a 70kWe solar power tower test plant in Nanjing, Jiangsu province, China, which was regarded as the first demonstration project to demonstrate the feasibility of solar power tower system in China. The system consists of heliostats field providing concentrated sunlight, a solar tower with a height of 33 meter, a pressured cavity-air-receiver transforming solar energy to thermal energy, a modified gas turbine adapting to solar power system, natural gas subsystem for solar-hybrid generation, cooling water subsystem for receiver and CPC, controlling subsystem for whole plant, et al. In this system, air acts as actuating medium and the system works in Brayton cycle. Testing results show that solar power tower system is feasible in China. To promote the development of solar powered gas turbine system and the pressured cavity-air-receiver technology in China, it is necessary to study the mechanical design for pressured Cavity-air-receiver. Mechanical design of pressured cavity-air-receiver is underway and some tentative principles for pressured cavity-air-receiver design, involving in power matching, thermal efficiency, material choosing, and equipment security and machining ability, are presented. At the same time, simplified method and process adapted to engineering application for the mechanical design of pressured cavity-air-receiver are discussed too. Furthermore, some design parameters and appearance of a test sample of pressured cavity-air-receiver designed in this way is shown. It is appealed that, in China, the research in this field should be intensified and independent knowledge patents for pivotal technological equipments such as receiver in solar power tower system should be formed. (orig.)

  5. Enhancements to the hybrid pressurized air receiver (HPAR) concept in the SUNDISC cycle

    Science.gov (United States)

    Heller, Lukas; Hoffmann, Jaap

    2017-06-01

    A dual-pressure air receiver has previously been proposed as part of a hybrid receiver system preheating pressurized air in a solarized gas turbine and providing hot non-pressurized air to power the bottoming cycle of a combined cycle CSP plant. The receiver, based on a bundle of metallic tubular absorbers, was found to not be able to provide the non-pressurized air at the required temperature. Three enhancements to the basic design are presented and thermally modeled: (a) Finned absorber tubes to increase the convective heat transfer, (b) quartz glass elements to alleviate convective losses and improve the flow inside the tube bundle as well as (c) additional absorber elements behind the tube bundle. It could be shown that finned absorber tubes as well as the additional absorber elements have potential to improve the thermal performance of the receiver while a quartz glass window and flow-enhancing quartz elements could be indispensable additions to either of the other enhancements.

  6. Torricelli and the ocean of air: the first measurement of barometric pressure.

    Science.gov (United States)

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  7. Comparison of air-charged and water-filled urodynamic pressure measurement catheters.

    Science.gov (United States)

    Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S

    2011-03-01

    Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.

  8. Effect analysis of air introduced by pressurization on fuel rod performances

    International Nuclear Information System (INIS)

    Ren Qisen; Liu Tong; Sheng Guofu

    2012-01-01

    In the process of pressurization and seal welding, it is common practice to vacuumize before gas filling for the sake of preventing introducing air and other impurities, which would affect the gas composition inside of the fuel rod. However, vacuumization during pressurization is likely not being required sometimes in order to simplify the fabrication procedure. In the present work, based on the AFA3G fuel rod design with 2 MPa of filling gas, analyses on fuel rod performances were carried out under the condition of pressurization with and without vacuumization, respectively. Furthermore, the effect on hydrogen content in fuel rod was preliminarily discussed. Results indicate that the impacts of air composition introduced by pressurization on fuel rod thermal-mechanical performances, such as internal pressure and fuel center temperature, were extremely slight. The gap conductance varies to some extent as a result of the change of gas composition due to air introduced in fuel rod. The impact of humidity on water content in fuel rod is negligible at a low temperature of around 25℃. However, at higher temperature, it is essential to pay attention on the control of fabrication process, and prevent much moisture entering into the fuel rod and increasing the probability of hydriding failure. (authors)

  9. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    Science.gov (United States)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  10. Improved fireman's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  11. Air Flow and Pressure Drop Measurements Across Porous Oxides

    Science.gov (United States)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  12. Microcontrolled air-mattress for ulcer by pressure prevention

    Science.gov (United States)

    Pasluosta, Cristian F.; Fontana, Juan M.; Beltramone, Diego A.; Taborda, Ricardo A. M.

    2007-11-01

    An ulcer by pressure is produced when a constant pressure is exerted over the skin. This generates the collapse of the blood vessels and, therefore, a lack in the contribution of the necessary nutrients for the affected zone. As a consequence, the skin deteriorates, eventually causing an ulcer. In order to prevent it, a protocol must be applied to the patient, which is reflected on time and cost of treatment. There are some air mattresses available for this purpose, but whose performance does not fulfill all requirements. The prototype designed in our laboratory is based on the principle of the air mattress. Its objective is to improve on existing technologies and, due to an increased automation, reduce time dedication for personnel in charge of the patient. A clinical experience was made in the local Emergencies Hospital and also in an institution dedicated to aged patients care. In both cases, the results obtained and the comments from the personnel involved were favorable.

  13. Microcontrolled air-mattress for ulcer by pressure prevention

    International Nuclear Information System (INIS)

    Pasluosta, Cristian F; Fontana, Juan M; Beltramone, Diego A; Taborda, Ricardo A M

    2007-01-01

    An ulcer by pressure is produced when a constant pressure is exerted over the skin. This generates the collapse of the blood vessels and, therefore, a lack in the contribution of the necessary nutrients for the affected zone. As a consequence, the skin deteriorates, eventually causing an ulcer. In order to prevent it, a protocol must be applied to the patient, which is reflected on time and cost of treatment. There are some air mattresses available for this purpose, but whose performance does not fulfill all requirements. The prototype designed in our laboratory is based on the principle of the air mattress. Its objective is to improve on existing technologies and, due to an increased automation, reduce time dedication for personnel in charge of the patient. A clinical experience was made in the local Emergencies Hospital and also in an institution dedicated to aged patients care. In both cases, the results obtained and the comments from the personnel involved were favorable

  14. Microcontrolled air-mattress for ulcer by pressure prevention

    Energy Technology Data Exchange (ETDEWEB)

    Pasluosta, Cristian F; Fontana, Juan M; Beltramone, Diego A; Taborda, Ricardo A M [Universidad Nacional de Cordoba. Cordoba (Argentina)

    2007-11-15

    An ulcer by pressure is produced when a constant pressure is exerted over the skin. This generates the collapse of the blood vessels and, therefore, a lack in the contribution of the necessary nutrients for the affected zone. As a consequence, the skin deteriorates, eventually causing an ulcer. In order to prevent it, a protocol must be applied to the patient, which is reflected on time and cost of treatment. There are some air mattresses available for this purpose, but whose performance does not fulfill all requirements. The prototype designed in our laboratory is based on the principle of the air mattress. Its objective is to improve on existing technologies and, due to an increased automation, reduce time dedication for personnel in charge of the patient. A clinical experience was made in the local Emergencies Hospital and also in an institution dedicated to aged patients care. In both cases, the results obtained and the comments from the personnel involved were favorable.

  15. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  16. The Effects of Air Pressure on Spontaneous Otoacoustic Emissions of Lizards

    NARCIS (Netherlands)

    van Dijk, Pim; Manley, Geoffrey A.

    Small changes of air pressure outside the eardrum of five lizard species led to changes in frequency, level, and peak width of spontaneous otoacoustic emissions (SOAE). In contrast to humans, these changes generally occurred at very small pressures (<20 mbar). As in humans, SOAE amplitudes were

  17. Traffic-related air pollution and noise and children's blood pressure: results from the PIAMA birth cohort study.

    Science.gov (United States)

    Bilenko, Natalya; van Rossem, Lenie; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; Hoek, Gerard; Houthuijs, Danny; de Jongste, Johan C; van Kempen, Elise; Koppelman, Gerard H; Meliefste, Kees; Oldenwening, Marieke; Smit, Henriette A; Wijga, Alet H; Gehring, Ulrike

    2015-01-01

    Elevation of a child's blood pressure may cause possible health risks in later life. There is evidence for adverse effects of exposure to air pollution and noise on blood pressure in adults. Little is known about these associations in children. We investigated the associations of air pollution and noise exposure with blood pressure in 12-year-olds. Blood pressure was measured at age 12 years in 1432 participants of the PIAMA birth cohort study. Annual average exposure to traffic-related air pollution [NO2, mass concentrations of particulate matter with diameters of less than 2.5 µm (PM2.5) and less than 10 µm (PM10), and PM2.5 absorbance] at the participants' home and school addresses at the time of blood pressure measurements was estimated by land-use regression models. Air pollution exposure on the days preceding blood pressure measurements was estimated from routine air monitoring data. Long-term noise exposure was assessed by linking addresses to modelled equivalent road traffic noise levels. Associations of exposures with blood pressure were analysed by linear regression. Effects are presented for an interquartile range increase in exposure. Long-term exposure to NO2 and PM2.5 absorbance were associated with increased diastolic blood pressure, in children who lived at the same address since birth [adjusted mean difference (95% confidence interval) [mmHg] 0.83 (0.06 to 1.61) and 0.75 (-0.08 to 1.58), respectively], but not with systolic blood pressure. We found no association of blood pressure with short-term air pollution or noise exposure. Long-term exposure to traffic-related air pollution may increase diastolic blood pressure in children. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Pressure Measurement and Flowfield Characterization of a Two-Dimensional Ideally Expanded, Constant Area, Air/air Ejector.

    Science.gov (United States)

    Benjamin, Michael Anthony

    A detailed experimental investigation of a two -dimensional, Mach 1.8 air-primary, Mach 0.3 air-secondary ejector at high Reynolds number has been performed, from which a nonintrusive method for whole-field visualization using turbulent wall-pressure has been developed. The experiments were conducted using mean and time-accurate wall pressure measurements, impact-pressure measurements using a traversing probe, and Schlieren and shadowgraph visualization techniques. The time-accurate pressure measurements were recorded using a sealed Kulite miniature pressure transducer with a 0.7 mm diameter sensing diaphragm. For all except the optical methods, measurements were taken from the initial flow interface to about 13 hydraulic tube-diameters downstream in the constant-area mixing section. From the mean measurements, values of stagnation pressure, density, velocity, static pressure, Mach number, and dynamic pressure were developed and are presented. Using the time-accurate pressure measurements, a color contour plot of the rms pressure was developed that definitively shows the regions of the flow in agreement with the other measurements. Additionally, probability density functions, skewness, and kurtosis were calculated. Peak values of skewness (S) and kurtosis (K) on the centerline at about 2.5 hydraulic diameters are S = 1.85 and K = 11.5. The inlet rms pressure values, normalized by freestream dynamic pressure for the primary (~0.001), were found to be in fair agreement with previous experimental values; however, those in the secondary were much higher (~0.2), apparently due to the acoustic radiation from the primary. Fourier analysis of the time-accurate pressure measurements show that the autospectra contain k ^{-1}, k^{-7/3}, and k^{-11/3} pressure spectrum functions as predicted by prevailing theory for the overlap layer, turbulence-turbulence interaction, and turbulence-mean-shear interaction, respectively. It is believed that this is the first experiment in

  19. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...

  20. Air pressure distribution and radon entry processes in east Tennessee schools

    International Nuclear Information System (INIS)

    Sinclair, L.D.; Dudney, C.S.; Wilson, D.L.; Saultz, R.J.

    1990-01-01

    Many building characteristics have been found to influence radon entry, including building size and configuration, substructure, location of utility supply lines, and design and operation of the heating, ventilation, and air conditioning (HVAC) system. One of the most significant factors is room depressurization resulting from the HVAC system exhausting more than it supplies. This paper represents a preliminary assessment of HVAC characteristics and how they may relate to radon entry. During the summer of 1989, a limited survey was made of air pressure and radon levels in four schools in eastern Tennessee. Short-term samples of radon and pressure were made in all rooms in contact with the soil using alpha scintillation cells and an electronic microanometer, respectively. The pressure difference and radon concentration changes induced by operation of the building ventilation system varied among sites within individual schools

  1. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    Science.gov (United States)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  2. Construction and testing of a blower-door assembly for regulation of air pressure within structures

    International Nuclear Information System (INIS)

    Steele, W.D.

    1987-09-01

    The Technical Measurements Center is evaluating several methods to decrease the time required to determine an annual average radon-daughter concentration in structures. One method involves stabilizing the air pressure within the structure at a constant pressure with reference to external atmospheric or soil-gas pressure. This report describes the construction and preliminary testing of a blower-door system to maintain a constant differential air pressure within a structure. The blower-door assembly includes a collapsible frame and a large fan to occlude a doorway, a damper with an actuator to control air flow, a controller to drive the damper actuator, and a pressure transducer to measure the differential pressure. Preliminary testing of the system indicates that pressure within the structure in the range of 1 to 20 Pascals can be held to within approximately +-1 Pa of the set point. Further testing of the blower-door system is planned to provide data on the applicability of this method to short-duration tests for annual average radon-daughter concentration estimates. 13 figs., 1 tab

  3. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2010-04-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  4. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2012-02-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  5. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Directory of Open Access Journals (Sweden)

    Dvořák Lukáš

    2015-01-01

    Full Text Available Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  6. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Science.gov (United States)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  7. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  8. Pressure Injury Development in Patients Treated by Critical Care Air Transport Teams: A Case-Control Study.

    Science.gov (United States)

    Dukes, Susan F; Maupin, Genny M; Thomas, Marilyn E; Mortimer, Darcy L

    2018-04-01

    The US Air Force transports critically ill patients from all over the world, with transport times commonly ranging from 6 to 11 hours. Few outcome measures have been tracked for these patients. Traditional methods to prevent pressure injuries in civilian hospitals are often not feasible in the military transport environment. The incidence rate and risk factors are described of en route-related pressure injuries for patients overseen by the Critical Care Air Transport Team. This retrospective, case-control, medical records review investigated risk factors for pressure injury in patients who developed a pressure injury after their transport flight compared with those with no documented pressure injuries. The pressure injury rate was 4.9%. Between 2008 and 2012, 141 patients in whom pressure injuries developed and who had received care by the team were matched with 141 patients cared for by the team but did not have pressure injury. According to regression analysis, body mass index and 2 or more Critical Care Air Transport Team transports per patient were associated with pressure injury development. Although the pressure injury rate of 4.9% in this cohort of patients is consistent with that reported by civilian critical care units, the rate must be interpreted with caution, because civilian study data frequently represent the entire intensive care unit length of stay. Targeted interventions for patients with increased body mass index and 2 or more critical care air transports per patient may help decrease the development of pressure injury in these patients. ©2018 American Association of Critical-Care Nurses.

  9. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    Science.gov (United States)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  10. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Science.gov (United States)

    2010-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...

  11. Modelling of pulsed RF corona discharges in high-pressure air

    International Nuclear Information System (INIS)

    Auzas, F; Makarov, M; Naidis, G V

    2012-01-01

    An approach to description of pulsed RF corona discharges in high-pressure air is developed, based on the model of a filamentary discharge sustained by an electromagnetic wave guided along the plasma filament. Results of numerical simulation of spatial-temporal discharge dynamics at the quasi-stationary stage are obtained for various values of gas pressure and wave frequency. Experimental data on the discharge length versus the power absorbed by the discharge are presented. Their comparison with simulation results is given. (paper)

  12. Plate heat exchangers in air conditioning applications. Development of air-coolers, air-heaters and air-conditioning units with low pressure loss. Plattenwaermetauscher in raumlufttechnischen Anlagen. Entwicklung stroemungsoptimierter Luftkuehler, Lufterhitzer und Klimageraete

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Diemer, R; Eisenmann, G; Goettling, D; Madjidi, M

    1989-08-01

    To prepare the development of a water to air plate heat exchanger the state of the art, i.e. the technological knowhow and the design basis are given. The concept and ideas are presented which lead to a slightly wavy plate. Furthermore an exemplary design of a plate heat exchanger and an air-conditioning unit is described and finally the application of plate heat exchangers as direct evaporators and the potential icing problems are investigated. Comparing measured and calculated data shows that the performance of plates with plane surfaces can be predicted fairly well by the presented design methods. The performance of plates with strongly wavy surface however has to be measured. Optimization calculations yield to an air gap of slightly over 4 mm. Comparison with an air-conditioning unit demonstrates that the strongest advantage is for the air cooler (one third of the pressure loss) that a new concept of an air-conditioning unit has lower losses in the fan unit and that it does not need an eliminator. This results in half the volume for the new unit, in a pressure drop of 88%, fan power of 90% and fan revolutions of 50%. (orig./GL).

  13. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  14. Elevated plasma endothelin-1 and pulmonary arterial pressure in children exposed to air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J; Reed, William

    2007-08-01

    Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O(3) that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. We conducted a study of 81 children, 7.9 +/- 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O(3) levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 mum in aerodynamic diameter (PM(2.5)) before endothelin-1 measurement (p = 0.03). Chronic exposure of children to PM(2.5) is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure.

  15. Elevated Plasma Endothelin-1 and Pulmonary Arterial Pressure in Children Exposed to Air Pollution

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J.; Reed, William

    2007-01-01

    Background Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. Objectives The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O3 that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. Methods We conducted a study of 81 children, 7.9 ± 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O3 levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Results Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 μm in aerodynamic diameter (PM2.5) before endothelin-1 measurement (p = 0.03). Conclusions Chronic exposure of children to PM2.5 is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure. PMID:17687455

  16. Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, Peter John

    2009-01-01

    Abstract Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective...... of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse...

  17. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant

    International Nuclear Information System (INIS)

    Han, Long; Deng, Guangyi; Li, Zheng; Wang, Qinhui; Ileleji, Klein E.

    2017-01-01

    Highlights: • IGCC thermodynamic model was setup carefully. • Simulations focus on integration between an elevated pressure ASU with gas turbine. • Different recommended solutions from those of low pressure ASUs are figured out. • Full N 2 injection and 80% air extraction was suggested as the optimum integration. - Abstract: The integration optimisation between an elevated pressure air separation unit (EP-ASU) and gas turbine is beneficial to promote net efficiency of an integrated gasification combined cycle (IGCC) power plant. This study sets up the thermodynamic model for a 400 MW plant specially coupled with an EP-ASU, aiming to examine system performances under different integrations and acquire the optimum solution. Influences of air extraction rate at conditions of without, partial and full N 2 injection, as well as the effects of N 2 injection rate when adopting separate ASU, partial and full integrated ASU were both analysed. Special attention has been paid to performance differences between utilising an EP-ASU and a low pressure unit. Results indicated that integration solution with a separate EP-ASU or without N 2 injection would not be reasonable. Among various recommended solutions for different integration conditions, N 2 injection rate increased with the growth of air extraction rate. The integration with an air extraction rate of 80% and full N 2 injection was suggested as the optimum solution. It is concluded that the optimum integration solution when adopting an EP-ASU is different from that using a low pressure one.

  18. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-11-01

    Full Text Available We demonstrated a miniature and in situ ~13-layer graphene nanomechanical resonator by utilizing a simple optical fiber Fabry-Perot (F-P interferometric excitation and detection scheme. The graphene film was transferred onto the endface of a ferrule with a 125-μm inner diameter. In contrast to the pre-tension induced in membrane that increased quality (Q factor to ~18.5 from ~3.23 at room temperature and normal pressure, the limited effects of air damping on resonance behaviors at 10−2 and 105 Pa were demonstrated by characterizing graphene F-P resonators with open and micro-air-gap cavities. Then in terms of optomechanical behaviors of the resonator with an air micro-cavity configuration using a polished ferrule substrate, measured resonance frequencies were increased to the range of 509–542 kHz from several kHz with a maximum Q factor of 16.6 despite the lower Knudsen number ranging from 0.0002 to 0.0006 in damping air over a relative pressure range of 0–199 kPa. However, there was the little dependence of Q on resonance frequency. Note that compared with the inferior F-P cavity length response to applied pressures due to interfacial air leakage, the developed F-P resonator exhibited a consistent fitted pressure sensitivity of 1.18 × 105 kHz3/kPa with a good linearity error of 5.16% in the tested range. These measurements shed light on the pre-stress-dominated pressure-sensitive mechanisms behind air damping in in situ F-P resonant sensors using graphene or other 2D nanomaterials.

  19. Traffic-related air pollution and noise and children's blood pressure : Results from the PIAMA birth cohort study

    NARCIS (Netherlands)

    Bilenko, Natalya; van Rossem, Lenie; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; Hoek, Gerard; Houthuijs, Danny; de Jongste, Johan C.; van Kempen, Elise; Koppelman, Gerard H.; Meliefste, Kees; Oldenwening, Marieke; Smit, Henriette A.; Wijga, Alet H.; Gehring, Ulrike

    Aims Elevation of a child's blood pressure may cause possible health risks in later life. There is evidence for adverse effects of exposure to air pollution and noise on blood pressure in adults. Little is known about these associations in children. We investigated the associations of air pollution

  20. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Gorji-Bandpy Mofid

    2012-04-01

    Full Text Available This paper presents a computational fluid dynamics (CFD calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  1. Air charged and microtip catheters cannot be used interchangeably for urethral pressure measurement: a prospective, single-blind, randomized trial.

    Science.gov (United States)

    Zehnder, Pascal; Roth, Beat; Burkhard, Fiona C; Kessler, Thomas M

    2008-09-01

    We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.

  2. Prenatal air pollution exposure and newborn blood pressure.

    Science.gov (United States)

    van Rossem, Lenie; Rifas-Shiman, Sheryl L; Melly, Steven J; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A; Schwartz, Joel D; Mittleman, Murray A; Oken, Emily; Gillman, Matthew W; Koutrakis, Petros; Gold, Diane R

    2015-04-01

    Air pollution exposure has been associated with increased blood pressure in adults. We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). We studied 1,131 mother-infant pairs in a Boston, Massachusetts, area pre-birth cohort. We calculated average exposures by trimester and during the 2 to 90 days before birth for temporally resolved fine particulate matter (≤ 2.5 μm; PM2.5), black carbon (BC), nitrogen oxides, nitrogen dioxide, ozone (O3), and carbon monoxide measured at stationary monitoring sites, and for spatiotemporally resolved estimates of PM2.5 and BC at the residence level. We measured SBP at a mean age of 30 ± 18 hr with an automated device. We used mixed-effects models to examine associations between air pollutant exposures and SBP, taking into account measurement circumstances; child's birth weight; mother's age, race/ethnicity, socioeconomic position, and third-trimester BP; and time trend. Estimates represent differences in SBP associated with an interquartile range (IQR) increase in each pollutant. Higher mean PM2.5 and BC exposures during the third trimester were associated with higher SBP (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32-μg/m3 increase in mean 90-day residential BC). In contrast, O3 was negatively associated with SBP (e.g., -2.3 mmHg; 95% CI: -4.4, -0.2 for a 13.5-ppb increase during the 90 days before birth). Exposures to PM2.5 and BC in late pregnancy were positively associated with newborn SBP, whereas O3 was negatively associated with SBP. Longitudinal follow-up will enable us to assess the implications of these findings for health during later childhood and adulthood.

  3. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    Science.gov (United States)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  4. High performance electrodes for low pressure H{sub 2}-air PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Besse, S; Bronoel, G; Fauvarque, J F [Laboratoires SORAPEC (France)

    1998-12-31

    Proton exchange membrane fuel cells (PEMFCs) were first developed for space applications in the 1960s. Currently, they are being manufactured for terrestrial portable power applications. One of the challenges is to develop a low pressure H{sub 2}/Air PEMFC in order to minimize the cathodic mass transport overpotentials. The hydrogen oxidation reaction is considered to be sufficiently rapid. Hydrogen transport limitations are very low even at high current densities. The different applications considered for hydrogen/air PEMFC need to work at atmospheric pressure. An optimization of the structure of the oxygen electrode and the membrane electrode assembly (MEA) are essential in order to decrease mass transport limitations and to obtain good water management even at low pressures. Efforts have been made to produce electrodes and MEA for PEMFC with low platinum loading. The electrode structure was developed to ensure a good diffusion of reactants and an effective charge collection. It has also been optimized for low pressure restrictions. It was concluded that high performances can be achieved even at low pressures by improving the electrode gas diffusion layer (PTFE content) and by improving the catalyst. 12 refs., 7 figs.

  5. Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae

    Science.gov (United States)

    Schödel, René; Walkov, Alexander; Voigt, Michael; Bartl, Guido

    2018-06-01

    The refractive index of air is a major limiting factor in length measurements by interferometry, which are mostly performed under atmospheric conditions. Therefore, especially in the last century, measurement and description of the air refractive index was a key point in order to achieve accuracy in the realisation of the length by interferometry. Nevertheless, interferometric length measurements performed in vacuum are much more accurate since the wavelength of the light is not affected by the air refractive index. However, compared with thermal conditions in air, in high vacuum heat conduction is missing. In such a situation, dependent on the radiative thermal equilibrium, a temperature distribution can be very inhomogeneous. Using a so-called contact gas instead of high vacuum is a very effective way to enable heat conduction on nearly the same level as under atmospheric pressure conditions whereby keeping the effect of the air refractive index on a small level. As physics predicts, and as we have demonstrated previously, helium seems like the optimal contact gas because of its large heat conduction and its refractive index that can be calculated from precisely known parameters. On the other hand, helium gas situated in a vacuum chamber could easily be contaminated, e.g. by air leakage from outside. Above the boiling point of oxygen (‑183 °C) it is therefore beneficial to use dry air as a contact gas. In such an approach, the air refractive index could be calculated based on measured quantities for pressure and temperature. However, existing formulas for the air refractive index are not valid in the low-pressure regime. Although it seems reasonable that the refractivity (n  ‑  1) of dry air simply downscales with the pressure, to our knowledge there is no experimental evidence for the applicability of any empirical formula. This evidence is given in the present paper which reports on highly accurate measurements of the air refractive index for the

  6. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  7. Air Compressor Pressure Control System Based On Gearshift Integral PID Controller

    OpenAIRE

    PAN Chunyue

    2017-01-01

    The application of gearshift integral PID controller to air compressor pressure control system is introduced, Its kernel is single chip microcomputer PIC16F877.The design of hardware and solfware are introduced too. Practical application shows that this system has many advantages.

  8. SOIL-AIR PERMEABILITY MEASUREMENT WITH A TRANSIENT PRESSURE BUILDUP METHOD

    Science.gov (United States)

    An analytical solution for transient pressure change in a single venting well was derived from mass conservation of air, Darcy's law of flow in porous media, and the ideal gas law equation of state. Slopes of plots of Pw2 against ln (t+Δt)/Δt similar to Homer's plot were used to ...

  9. Prevention of pressure ulcers with a static air support surface: A systematic review.

    Science.gov (United States)

    Serraes, Brecht; van Leen, Martin; Schols, Jos; Van Hecke, Ann; Verhaeghe, Sofie; Beeckman, Dimitri

    2018-03-05

    The aims of this study were to identify, assess, and summarise available evidence about the effectiveness of static air mattress overlays to prevent pressure ulcers. The primary outcome was the incidence of pressure ulcers. Secondary outcomes included costs and patient comfort. This study was a systematic review. Six electronic databases were consulted: Cochrane Library, EMBASE, PubMed (Medline), CINAHL (EBSCOhost interface), Science direct, and Web of Science. In addition, a hand search through reviews, conference proceedings, and the reference lists of the included studies was performed to identify additional studies. Potential studies were reviewed and assessed by 2 independent authors based on the title and abstract. Decisions regarding inclusion or exclusion of the studies were based on a consensus between the authors. Studies were included if the following criteria were met: reporting an original study; the outcome was the incidence of pressure ulcer categories I to IV when using a static air mattress overlay and/or in comparison with other pressure-redistribution device(s); and studies published in English, French, and Dutch. No limitation was set on study setting, design, and date of publication. The methodological quality assessment was evaluated using the Critical Appraisal Skills Program Tool. Results were reported in a descriptive way to reflect the exploratory nature of the review. The searches included 13 studies: randomised controlled trials (n = 11) and cohort studies (n = 2). The mean pressure ulcer incidence figures found in the different settings were, respectively, 7.8% pressure ulcers of categories II to IV in nursing homes, 9.06% pressure ulcers of categories I to IV in intensive care settings, and 12% pressure ulcers of categories I to IV in orthopaedic wards. Seven comparative studies reported a lower incidence in the groups of patients on a static air mattress overlay. Three studies reported a statistical (P pressure ulcers. There

  10. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS; FINAL

    International Nuclear Information System (INIS)

    Ralph T Yang

    2001-01-01

    Li-X zeolite (Si/Al= 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters

  11. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  12. Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures

    International Nuclear Information System (INIS)

    Ribière, M.; D'Almeida, T.; Gaufridy de Dortan, F. de; Maulois, M.; Delbos, C.; Garrigues, A.; Cessenat, O.; Azaïs, B.

    2016-01-01

    A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 10"1"0" cm"−"3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.

  13. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column...

  14. Air Compressor Pressure Control System Based On Gearshift Integral PID Controller

    Directory of Open Access Journals (Sweden)

    PAN Chunyue

    2017-01-01

    Full Text Available The application of gearshift integral PID controller to air compressor pressure control system is introduced, Its kernel is single chip microcomputer PIC16F877.The design of hardware and solfware are introduced too. Practical application shows that this system has many advantages.

  15. A study on the effects of system pressure on heat and mass transfer rates of an air cooler

    International Nuclear Information System (INIS)

    Jung, Hyung Ho

    2002-01-01

    In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements

  16. A retrospective study to determine the incidence of pressure ulcers in burn patients using a low air loss pressure relieving mattress.

    Science.gov (United States)

    Still, Joseph M; Wilson, Joan; Rinker, Connie; Law, Edward; Craft-Coffman, Beretta

    2003-06-01

    In immobilized patients, unrelieved pressure can create decubitus ulcers over bony prominences. Those burn patients who require prolonged bed rest, are prone to the development of such problems. Various methods of reducing pressure on these areas, including frequent turning and the use of air fluidized and low air loss beds, have been adopted to attempt to prevent the development of this complication. The Pegasus Renaissance alternating pressure mattress is such a device, intended to reduce the incidence of decubitus ulcers. It was introduced at our burn unit and evaluated over a 29-month period. During the study period, 186 (13.4%) of 1390 acutely burned patients, believed to be at high risk for the development of decubiti, were placed on this mattress. Other patients were treated in the standard hospital bed. Care was otherwise the same. No decubitus ulcers developed in any of the patients treated on the Pegasus Renaissance mattress.

  17. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, demand and pressure demand class; minimum requirements. 84.149 Section 84.149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.149 Type C supplied-air respirator...

  18. Air ejector augmented compressed air energy storage system

    Science.gov (United States)

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  19. Burning Behaviour of High-Pressure CH4-H2-Air Mixtures

    Directory of Open Access Journals (Sweden)

    Jacopo D'Alessio

    2013-01-01

    Full Text Available Experimental characterization of the burning behavior of gaseous mixtures has been carried out, analyzing spherical expanding flames. Tests were performed in the Device for Hydrogen-Air Reaction Mode Analysis (DHARMA laboratory of Istituto Motori—CNR. Based on a high-pressure, constant-volume bomb, the activity is aimed at populating a systematic database on the burning properties of CH4, H2 and other species of interest, in conditions typical of internal combustion (i.c. engines and gas turbines. High-speed shadowgraph is used to record the flame growth, allowing to infer the laminar burning parameters and the flame stability properties. Mixtures of CH4, H2 and air have been analyzed at initial temperature 293÷305 K, initial pressure 3÷18 bar and equivalence ratio  = 1.0. The amount of H2 in the mixture was 0%, 20% and 30% (vol.. The effect of the initial pressure and of the Hydrogen content on the laminar burning velocity and the Markstein length has been evaluated: the relative weight and mutual interaction has been assessed of the two controlling parameters. Analysis has been carried out of the flame instability, expressed in terms of the critical radius for the onset of cellularity, as a function of the operating conditions.

  20. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianhui; Yang, Si-ze [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Dongping [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Sun, Yue [School of Physics, Changchun University of Science and Technology, Changchun 130022 (China)

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  1. Pressure Relief, Visco-Elastic Foam with Inflated Air? A Pilot Study in a Dutch Nursing Home

    Directory of Open Access Journals (Sweden)

    Martin Van Leen

    2015-02-01

    Full Text Available Objective: There is still little evidence regarding the type of mattress that is the best for preventing pressure ulcers (PUs. In a Dutch nursing home, a new type of overlay mattress (air inflated visco-elastic foam was tested to analyze the opportunity for replacement of the normally used static air overlay mattress in its three-step PU prevention protocol In this small pilot the outcome measures were: healing of a category one pressure ulcer, new development or deterioration of a category one PU and need for repositioning. Methods: We included 20 nursing home residents with a new category one pressure ulcer, existing for no longer than 48 h following a consecutive sampling technic. All residents were staying for more than 30 days in the nursing home and were lying on a visco-elastic foam mattress without repositioning (step one of the 3-step protocol at the start of the pilot study. They had not suffered from a PU in the month before. The intervention involved use of an air inflated foam overlay instead of a static air overlay (normally step 2 of the 3-step protocol. At the start; the following data were registered: age; gender; main diagnosis and presence of incontinence. Thereafter; all participating residents were checked weekly for PU healing tendency; deterioration of PUs; new PUs and need of repositioning. Only when residents showed still a category one PU after 48 h or deterioration of an existing pressure ulcer or if there was development of a new pressure ulcer, repositioning was put into practice (step 3 of the PU protocol. All residents participated during 8 weeks. Results: Seven residents developed a new pressure ulcer category one and still had a category one pressure ulcer at the end of the study period. One resident developed a pressure ulcer category 2. Fifteen residents needed repositioning from one week after start of the study until the end of the study. Conclusions: Overall 40% of the residents developed a pressure ulcer

  2. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Tarasenko, V. F.

    2011-01-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ∼5 × 10 10 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  3. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  4. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  5. Assessing the reproducibility of high definition urethral pressure profilometry and its correlation with an air-charged system.

    Science.gov (United States)

    Klünder, Mario; Amend, Bastian; Sawodny, Oliver; Stenzl, Arnulf; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Feuer, Ronny

    2017-06-01

    Recently, a new urodynamic method for the assessment of stress urinary incontinence called high definition urethral pressure profilometry (HD-UPP) has been introduced. This method combines a novel microtip catheter with advanced signal processing to enable spatial data location and the reconstruction of a pressure image inside the urethra. In order to assess the reproducibility of HD-UPP data, we statistically evaluate HD-UPP datasets and compare them to data from a double balloon air-charged system. Both catheters are used on sedated female minipigs. Data from the microtip catheter are processed through a signal reconstruction algorithm, urodynamic features are extracted, and compared to the air-charged system. Reproducibility of HD-UPP data is assessed by statistically evaluating consecutive, intra-individual datasets. HD-UPP delivers results in agreement with previous comparisons of microtip and air-charged systems. The average deviation of two consecutive, intra-individual pressure images is very low at 7 cm H 2 O. HD-UPP provides physicians with detailed information on the pressure distribution inside the urethra. Through comparison with an air-charged catheter, it is shown that HD-UPP delivers results in agreement with previous studies on the comparison of microtip and air-charged catheters. It provides excellent reproducibility, as the difference between sequentially measured profiles from the same minipig is significantly lower than the one between profiles from different minipigs. © 2016 Wiley Periodicals, Inc.

  6. Reduced injection pressures using a compressed air injection technique (CAIT): an in vitro study.

    Science.gov (United States)

    Tsui, Ban C H; Knezevich, Mark P; Pillay, Jennifer J

    2008-01-01

    High injection pressures have been associated with intraneural injection and persistent neurological injury in animals. Our objective was to test whether a reported simple compressed air injection technique (CAIT) would limit the generation of injection pressures to below a suggested 1,034 mm Hg limit in an in vitro model. After ethics board approval, 30 consenting anesthesiologists injected saline into a semiclosed system. Injection pressures using 30 mL syringes connected to a 22 gauge needle and containing 20 mL of saline were measured for 60 seconds using: (1) a typical "syringe feel" method, and (2) CAIT, thereby drawing 10 mL of air above the saline and compressing this to 5 mL prior to and during injections. All anesthesiologists performed the syringe feel method before introduction and demonstration of CAIT. Using CAIT, no anesthesiologist generated pressures above 1,034 mm Hg, while 29 of 30 produced pressures above this limit at some time using the syringe feel method. The mean pressure using CAIT was lower (636 +/- 71 vs. 1378 +/- 194 mm Hg, P = .025), and the syringe feel method resulted in higher peak pressures (1,875 +/- 206 vs. 715 +/- 104 mm Hg, P = .000). This study demonstrated that CAIT can effectively keep injection pressures under 1,034 mm Hg in this in vitro model. Animal and clinical studies will be needed to determine whether CAIT will allow objective, real-time pressure monitoring. If high pressure injections are proven to contribute to nerve injury in humans, this technique may have the potential to improve the safety of peripheral nerve blocks.

  7. A Modified Triples Algorithm for Flush Air Data Systems that Allows a Variety of Pressure Port Configurations

    Science.gov (United States)

    Millman, Daniel R.

    2017-01-01

    Air Data Systems (FADS) are becoming more prevalent on re-entry vehicles, as evi- denced by the Mars Science Laboratory and the Orion Multipurpose Crew Vehicle. A FADS consists of flush-mounted pressure transducers located at various locations on the fore-body of a flight vehicle or the heat shield of a re-entry capsule. A pressure model converts the pressure readings into useful air data quantities. Two algorithms for converting pressure readings to air data have become predominant- the iterative Least Squares State Estimator (LSSE) and the Triples Algorithm. What follows herein is a new algorithm that takes advantage of the best features of both the Triples Algorithm and the LSSE. This approach employs the potential flow model and strategic differencing of the Triples Algorithm to obtain the defective flight angles; however, the requirements on port placement are far less restrictive, allowing for configurations that are considered optimal for a FADS.

  8. Breakdown of air pockets in downwardly inclined sewerage pressure mains.

    Science.gov (United States)

    Lubbers, C L; Clemens, F H L R

    2006-01-01

    In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.

  9. Characterization of the pressure field induced by the explosions in air of a hydrocarbon-air mixture with slow deflagration of fast deflagration

    International Nuclear Information System (INIS)

    Garnier, J.L.; Perrot, J.; Brossard, J.; Di Fabio, N.; Lannoy, A.; Desbordes, D.; Leyer, J.C.; Saint-Cloud, J.P.

    1984-11-01

    The present research contract, carried out in the framework of a French working group CEA-EDF-ENSMA, was divided into four phases: 1) Phase 1: Scaling effects on a pressure field generated by spontaneous accelerations of deflagrations in a homogeneous medium: these ''CHARLES'' tests performed on completely unconfined charges of ethylene-air and acetylene-air mixture (V approximately= 12 m 3 ) have demonstrated the high sensitivity of the pressure field to the flame acceleration, particularly at the end of the propagation. 2) Phase 2: Effect of a sudden discontinuity in the concentration of the combustible gas on the deflagration speed in a heterogeneous medium: this discontinuity was obtained using two concentric latex balloons, filled with different hydrocarbon concentrations and also destroyed before firing. 3) Phase 3: Study of pseudo-detonation modes for the explosion of spherical ethylene-air mixtures: these modes were sought by increasing an explosive plastic mass associated to the igniter. 4) Phase 4: Study of the influence of cloud shape, ignition point location and simple obstacles in the flame path on the pressure field generated by the explosion. A retractable enclosure was designed, built and unfortunately destroyed by the second test

  10. Air separation by pressure swing adsorption on a carbon molecular sieve

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, M M; Ruthven, D M; Raghaven, N S

    1986-01-01

    A simplified dynamic model for a PSA air separation process is developed based on linearized mass transfer rate expressions and binary Langmuir equilibrium. Constant pressure is assumed during adsorption and desorption steps but the variation in flow rate through the column due to adsorption is accounted for. The model predictions, using independently measured kinetic and equilibrium data are compared with experimental results obtained in a simple two-bed air separation PSA system packed with a carbon molecular sieve adsorbent. The model is shown to provide a good representation of the experimentally observed behavior over a wide range of conditions.

  11. The conceptual design of high temporal resolution HCN interferometry for atmospheric pressure air plasmas

    Science.gov (United States)

    Zhang, J. B.; Liu, H. Q.; Jie, Y. X.; Wei, X. C.; Hu, L. Q.

    2018-01-01

    A heterodyne interferometer operating at the frequency f = 890 GHz has been designed for measuring the electron density of atmospheric pressure air plasmas, it's density range is from 1015 to 3×1019 m-3 and the pressure range is from 1 Pa to 20 kPa. The system is configured as a Mach\

  12. NRC Information Notice No. 92-67: Deficiency in design modifications to address failures of Hiller actuators upon a gradual loss of air pressure

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1993-01-01

    On January 7, 1992, Carolina Power and Light Company (Shearon Harris Plant) components associated with the air supply to the actuators of the three main feedwater preheater bypass isolation valves were not qualified for a Q class application. Specifically, the failure of the air pump in the non-Q Class, non-seismic instrument air supply to the valve actuator accumulator could prevent pressure switches upstream of the air pump from detecting slow leakage in the Q Class, seismic portion of the actuator air lines. The pressure switches were installed to ensure valve closure by sending an automatic close signal if the instrument air system pressure (upstream of the actuator air pump) dropped to 66 psig as discussed in IN 82-25. The main feedwater preheater bypass isolation valves function as containment isolation valves upon receipt of a feedwater isolation signal. The function of the air pump is to raise the normal instrument air supply pressure from 70 to 100 psig to approximately 150 psig. If accumulator pressure drops from 150 psig to 122 psig, the main feedwater preheater bypass isolation valve may not close within 10 seconds. If pressure drops to a value as low as 20 psig, it may not be sufficient to close the main feedwater preheater bypass isolation valve and keep it closed against the maximum differential pressure across the valve seat. Upon discovery of this condition, Shearon Harris established a surveillance interval for verifying that the actuators' components were functioning properly and that the accumulators were fully pressurized. On January 12, 1992, non-Q components were replaced with suitable components and testing was completed satisfactorily

  13. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2017-01-01

    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  14. Electrical characterization of atmospheric pressure DBD in air

    International Nuclear Information System (INIS)

    Shrestha, P.; Joshi, U.M.; Subedi, D.P.

    2013-01-01

    Atmospheric pressure dielectric barrier discharge (DBD) in air was generated between two rectangular copper electrodes covering the lower electrode with a dielectric (glass or polycarbonate -PC) using low frequency (line frequency-50Hz) high voltage power supply. The discharge was studied for inter-electrode gap spacing in the range of 2 mm – 5 mm and their influence on breakdown voltage. Voltage-current characteristics and the analysis of the distribution of current pulses per half cycle of the current waveform indicated that the discharge is more uniform in 3 mm inter-electrode gap spacing with PC as a dielectric rather than glass. (author)

  15. Determination of air and hydrofoil pressure coefficient by laser doppler anemometry

    Directory of Open Access Journals (Sweden)

    Ristić Slavica S.

    2010-01-01

    Full Text Available Some results of experiments performed in water cavitation tunnel are presented. Pressure coefficient (Cp was experimentally determined by Laser Doppler Anemometry (LDA measurements. Two models were tested: model of airplane G4 (Super Galeb and hydrofoil of high speed axial pump. These models are not prepared for conventional pressure measurements, so that LDA is applied for Cp determination. Numerical results were obtained using a code for average Navier-Stokes equations solutions. Comparisons between computational and experimental results prove the effectiveness of the LDA. The advantages and disadvantages of LDA application are discussed. Flow visualization was made by air bubbles.

  16. Operational design and pressure response of large-scale compressed air energy storage in porous formations

    Science.gov (United States)

    Wang, Bo; Bauer, Sebastian

    2017-04-01

    With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per

  17. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Jin; Choi, Hyo Hyun [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Sohn, Chae Hoon, E-mail: chsohn@sejong.ac.kr [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  18. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    International Nuclear Information System (INIS)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-01

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  19. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  20. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air......Silicon dioxides-water systems are abundant in nature and play fundamental roles in a diversity of novel science and engineering applications. Although extensive research has been devoted to study the nature of the interaction between silica and water a complete understanding of the system has...... perform extensive simulations of the water- air equilibrium and calibrate the water-air interaction to match the experimental solubility of N2 and O2 in water. For the silica-water system we calibrate the water-silica interaction to match the experimental contact angle of 27º. We subsequently study...

  1. Anode pattern formation in atmospheric pressure air glow discharges with water anode

    NARCIS (Netherlands)

    Verreycken, T.; Bruggeman, P.J.; Leys, C.

    2009-01-01

    Pattern formation in the anode layer at a water electrode in atmospheric pressure glow discharges in air is studied. With increasing current a sequence of different anode spot structures occurs from a constricted homogeneous spot in the case of small currents to a pattern consisting of small

  2. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    Science.gov (United States)

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  3. Evaluation of pressure response in the Los Alamos controlled air incinerator during three incident scenarios

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Elsberry, K.; Thompson, T.K.; Pendergrass, J.A.

    1996-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is a system designed to accept radioactive mixed waste containing alpha-emitting radionuclides. A mathematical model was developed to predict the pressure response throughout the offgas treatment system of the CAI during three hypothetical incident scenarios. The scenarios examined included: (1) loss of burner flame and failure of the flame safeguard system with subsequent reignition of fuel gas in the primary chamber, (2) pyrolytic gas buildup from a waste package due to loss of induced draft and subsequent restoration of induced draft, and (3) accidental charging of propellant spray cans in a solid waste package to the primary chamber during a normal feed cycle. For each of the three scenarios, the finite element computer model was able to determine the transient pressure surge and decay response throughout the system. Of particular interest were the maximum absolute pressures attainable at critical points in the system as well as maximum differential pressures across the high efficiency particulate air (HEPA) filters. Modeling results indicated that all three of the scenarios resulted in maximum HEPA filter differential pressures well below the maximum allowable levels

  4. Vandenberg Air Force Base Pressure Gradient Wind Study

    Science.gov (United States)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  5. Validation of a dew-point generator for pressures up to 6 MPa using nitrogen and air

    Science.gov (United States)

    Bosma, R.; Mutter, D.; Peruzzi, A.

    2012-08-01

    A new primary humidity standard was developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated with other carrier gases such as natural gas at pressures up to 6 MPa and SF6 at pressures up to 1 MPa. The temperature range of the standard is from -80 °C to +20 °C. In this paper, we report the validation of the new primary dew-point generator in the temperature range -41 °C to +5 °C and the pressure range 0.1 MPa to 6 MPa using nitrogen and air. For the validation the flow through the dew-point generator was varied up to 10 l min-1 (at 23 °C and 1013 hPa) and the dew point of the gas entering the generator was varied up to 15 °C above the dew point exiting the generator. The validation results showed that the new generator, over the tested temperature and pressure range, can be used with a standard uncertainty of 0.02 °C frost/dew point. The measurements used for the validation at -41 °C and -20 °C with nitrogen and at +5 °C with air were also used to calculate the enhancement factor at pressures up to 6 MPa. For +5 °C the differences between the measured and literature values were compatible with the respective uncertainties. For -41 °C and -20 °C they were compatible only up to 3 MPa. At 6 MPa a discrepancy was observed.

  6. Human factors assessment of conflict resolution aid reliability and time pressure in future air traffic control.

    Science.gov (United States)

    Trapsilawati, Fitri; Qu, Xingda; Wickens, Chris D; Chen, Chun-Hsien

    2015-01-01

    Though it has been reported that air traffic controllers' (ATCos') performance improves with the aid of a conflict resolution aid (CRA), the effects of imperfect automation on CRA are so far unknown. The main objective of this study was to examine the effects of imperfect automation on conflict resolution. Twelve students with ATC knowledge were instructed to complete ATC tasks in four CRA conditions including reliable, unreliable and high time pressure, unreliable and low time pressure, and manual conditions. Participants were able to resolve the designated conflicts more accurately and faster in the reliable versus unreliable CRA conditions. When comparing the unreliable CRA and manual conditions, unreliable CRA led to better conflict resolution performance and higher situation awareness. Surprisingly, high time pressure triggered better conflict resolution performance as compared to the low time pressure condition. The findings from the present study highlight the importance of CRA in future ATC operations. Practitioner Summary: Conflict resolution aid (CRA) is a proposed automation decision aid in air traffic control (ATC). It was found in the present study that CRA was able to promote air traffic controllers' performance even when it was not perfectly reliable. These findings highlight the importance of CRA in future ATC operations.

  7. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    Science.gov (United States)

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  8. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    Science.gov (United States)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control

    Directory of Open Access Journals (Sweden)

    Qiaoling YUAN

    2014-05-01

    Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.

  10. A comparison between the dimensions of positive transtibial residual limb molds prepared by air pressure casting and weight-bearing casting methods.

    Science.gov (United States)

    Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam

    2016-01-01

    Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements.

  11. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  12. Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air

    Science.gov (United States)

    Liu, Wenzheng; Zhao, Shuai; Niu, Jiangqi; Chai, Maolin

    2017-09-01

    During the process of discharge, appropriately changing the paths corresponding to electric field lines and the field strength distribution along these paths, as well as increasing the number of initial electrons, can effectively enhance the uniformity of discharge and inhibit the formation of filamentary discharge. A method is proposed that uses a microelectrode to initiate the macroscopic discharge phenomenon. An asymmetric structure was designed comprising a single electrode of carbon fiber; this electrode structure is of helical-contact type. Benefitting from the special electric field distribution and the microdischarge process, a three-dimensional atmospheric pressure glow discharge was achieved in air, characterized by low discharge voltage, low energy consumption, good diffusion performance, and less ozone generation. The plasma studied is uniform and stable with good diffusion characteristics and low levels of contaminants and hence has potential applications in the field of air purification.

  13. Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights

    International Nuclear Information System (INIS)

    Benard, N; Balcon, N; Moreau, E

    2008-01-01

    The effects of the ambient air pressure level on the electric wind produced by a single dielectric barrier discharge (DBD) have been investigated by Pitot velocity measurements. Pressures from 1 down to 0.2 atm were tested with a 32 kV p-p 1 kHz excitation. This preliminary study confirms the effectiveness of surface DBD at low pressure. Indeed, the induced velocity is strongly dependent on the ambient air pressure level. Quite surprisingly the produced airflow presents a local maximum at 0.6 atm. The measured velocities at 1 atm and 0.2 atm are 2.5 m s -1 and 3 m s -1 , respectively while 3.5 m s -1 is reached at 0.6 atm. The position of the maximal velocity always coincides with the plasma extension. Mass flow rate calculations indicate that the DBD is effective in real flight pressure conditions. (fast track communication)

  14. Spontaneous ignition of methane-air mixtures in a wide range of pressures

    NARCIS (Netherlands)

    Zhukov, VP; Sechenov, VA; Starikovskii, AY

    2003-01-01

    The ignition delay in methane-air mixtures (phi = 0.5) within the range of temperatures of 1200-1700 K and pressures of 3-450 atm behind reflected shock waves in a shock tube is measured on the basis of emission of the electron-excited OH radical (transition A(2)Sigma(+) - X(2)Pi) at the wavelength

  15. Pulmonary artery pressure increases during commercial air travel in healthy passengers.

    Science.gov (United States)

    Smith, Thomas G; Talbot, Nick P; Chang, Rae W; Wilkinson, Elizabeth; Nickol, Annabel H; Newman, David G; Robbins, Peter A; Dorrington, Keith L

    2012-07-01

    It is not known whether the mild hypoxia experienced by passengers during commercial air travel triggers hypoxic pulmonary vasoconstriction and increases pulmonary artery pressure in flight. Insidious pulmonary hypertensive responses could endanger susceptible passengers who have cardiopulmonary disease or increased hypoxic pulmonary vascular sensitivity. Understanding these effects may improve pre-flight assessment of fitness-to-fly and reduce in-flight morbidity and mortality. Eight healthy volunteers were studied during a scheduled commercial airline flight from London, UK, to Denver, CO. The aircraft was a Boeing 777 and the duration of the flight was 9 h. Systolic pulmonary artery pressure (sPAP) was assessed by portable Doppler echocardiography during the flight and over the following week in Denver, where the altitude (5280 ft/1610 m) simulates a commercial airliner environment. Cruising cabin altitude ranged between 5840 and 7170 ft (1780 to 2185 m), and mean arterial oxygen saturation was 95 +/- 0.6% during the flight. Mean sPAP increased significantly in flight by 6 +/- 1 mmHg to 33 +/- 1 mmHg, an increase of approximately 20%. After landing in Denver, sPAP was still 3 +/- 1 mmHg higher than baseline and remained elevated at 30 +/- 1 mmHg for a further 12 h. Pulmonary artery pressure increases during commercial air travel in healthy passengers, raising the possibility that hypoxic pulmonary hypertension could develop in susceptible individuals. A hypoxia altitude simulation test with simultaneous echocardiography ('HAST-echo') may be beneficial in assessing fitness to fly in vulnerable patients.

  16. Ion composition of a propane-butane-air flame at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.B.; Fialkov, B.S.

    1985-06-01

    Ion types and distributions are determined experimentally for propane-butane-air flames with excess oxidizer coefficients of 0.7-1.2 in the pressure range 4-65 KPa. It is shown that nonthermal ionization occurs not only in the known chemiionization zone (which practically coincides with the chemiluminescence zone) but also in the mixture preparation zone. A general mechanism for ion formation in the flame is proposed. 42 references.

  17. Pressure-Application Device for Testing Pressure Sensors

    Science.gov (United States)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  18. Effect of air content and mass inflow on the pressure rise in a containment during blowdown

    International Nuclear Information System (INIS)

    Marshall, J.; Holland, P.G.

    1977-01-01

    Experiments were made to investigate conditions arising during blowdown of a vessel filled with saturated steam/water at 7 MPa pressure into a containment vessel. The initial air pressure in the containment vessel was varied from one atmosphere to near vacuum. The initial water content of the high pressure vessel was varied. Pressure and temperature distributions were measured during the blowdown transient and compared with calculations based on a simple lumped-parameter model. The effect of condensation heat transfer on the containment pressure is discussed and attention drawn to the inadequacy of most available data. (Author)

  19. Radial Distribution of the Nanosecond Dielectric Barrier Discharge Current in Atmospheric-Pressure Air

    Science.gov (United States)

    Malashin, M. V.; Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.

    2018-01-01

    Experimental results on the radial distribution of the nanosecond dielectric barrier discharge (DBD) current in flat millimeter air gaps under atmospheric pressure and natural humidity of 40-60% at a voltage rise rate at the electrodes of 250 V/ns are presented. The time delay of the appearance of discharge currents was observed to increase from the center to the periphery of the air gap at discharge gap heights above 3 mm, which correlated with the appearance of constricted channels against the background of the volume DBD plasma. Based on the criterion of the avalanche-streamer transition, it is found out that the development of a nanosecond DBD in air gaps of 1-3 mm occurs by the streamer mechanism.

  20. Study of air entrainment in high pressure spray: optics diagnostics and application to the Diesel injection; Etude de l'entrainement d'air dans un spray haute pression: diagnostics optiques et application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Arbeau, A.

    2004-12-15

    The actual development of the engine must reply to a will of fuel consumption reduction and to norms more and more strict concerning the pollutant emissions. Although the Diesel engines are efficient, the NO{sub x} and particle emissions mainly come from the existence of wealthy fuel zone preventing an optimal combustion. Therefore, the air / fuel mixing preparation, highly controlled by the air entrainment in spray, is essential. In this context, we have developed metrological tools in order to analyse the air entrainment mechanism in a dense spray. The Particle Image Velocimetry (PIV) technique is first applied to a conical spray with an injection pressure less than 100 bars to study the air entrainment in spray. A transfer of the methodologies allows then the characterisation and the understanding of the air entrainment mechanism in high pressure full spray (injection pressure less than 1600 bars) type Diesel one. The influence of injection parameters (injection pressure and back pressure) on the mixing rate is studied. The increase of the injection pressure from 800 to 1600 bars implies an increase of the mixing rate of 60 %. Moreover, the thermodynamic conditions of the ambient air, simulated by the chamber back pressure, widely favours the mixing rate. Actually, this latter increases of 350 % when the chamber back pressure varies from 1 to 7 bars. The experimental results do not follow classical laws of air entrainment in one-phase flow jet with variable density, but are in good agreement with an integral model for air entrainment in an axisymmetric full spray. Finally, the Fluorescence Particle Image Velocimetry (FPIV) is introduced in order to extend the PIV application field in dense two-phase flows. (author)

  1. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Science.gov (United States)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  2. Characterization of the pressure field induced by the explosion in air of a hydrocarbon-air a mixture with slow deflagration or fast deflagration

    International Nuclear Information System (INIS)

    Brossard, J.; Desbordes, D.; Leyer, J.C.; Saint-Cloud, J.P.; Di Fabio, N.; Lannoy, A.

    1985-01-01

    The protection of nuclear power plants against external explosions of hydrocarbons more particularly, originating, e.g. in transportation accidents, as a relevant topic of nuclear safety studies. The present research contract has been carried out in the framework of a French working group CEA-EDF-ENSMA. The ''Charles'' tests performed on completely unconfined charges of ethylene-air and acetylene-air mixtures (V approximately equal 12 m 3 ) have demonstrated the high sensitivity of the pressure field to the flame acceleration, particularly at the end of the propagation. The effect of a sudden discontinuity in the concentration of the combustible gas on the deflagration speed in a heterogeneous medium has been studied: this discontinuity was obtained using two concentric latex balloons, filled with different hydrocarbon concentrations and also destroyed before firing. The pseudo-detonation modes for the explosion of spherical ethylene-air mixtures, modes sought by increasing an explosive plastic mass associated to the igniter, have also been studied. The influence of cloud shape and ignition point location on the pressure field generated by the explosion has been tested finally

  3. Liquid- and air-filled catheters without balloon as an alternative to the air-filled balloon catheter for measurement of esophageal pressure.

    Science.gov (United States)

    Beda, Alessandro; Güldner, Andreas; Carvalho, Alysson R; Zin, Walter Araujo; Carvalho, Nadja C; Huhle, Robert; Giannella-Neto, Antonio; Koch, Thea; de Abreu, Marcelo Gama

    2014-01-01

    Measuring esophageal pressure (Pes) using an air-filled balloon catheter (BC) is the common approach to estimate pleural pressure and related parameters. However, Pes is not routinely measured in mechanically ventilated patients, partly due to technical and practical limitations and difficulties. This study aimed at comparing the conventional BC with two alternative methods for Pes measurement, liquid-filled and air-filled catheters without balloon (LFC and AFC), during mechanical ventilation with and without spontaneous breathing activity. Seven female juvenile pigs (32-42 kg) were anesthetized, orotracheally intubated, and a bundle of an AFC, LFC, and BC was inserted in the esophagus. Controlled and assisted mechanical ventilation were applied with positive end-expiratory pressures of 5 and 15 cmH2O, and driving pressures of 10 and 20 cmH2O, in supine and lateral decubitus. Cardiogenic noise in BC tracings was much larger (up to 25% of total power of Pes signal) than in AFC and LFC (<3%). Lung and chest wall elastance, pressure-time product, inspiratory work of breathing, inspiratory change and end-expiratory value of transpulmonary pressure were estimated. The three catheters allowed detecting similar changes in these parameters between different ventilation settings. However, a non-negligible and significant bias between estimates from BC and those from AFC and LFC was observed in several instances. In anesthetized and mechanically ventilated pigs, the three catheters are equivalent when the aim is to detect changes in Pes and related parameters between different conditions, but possibly not when the absolute value of the estimated parameters is of paramount importance. Due to a better signal-to-noise ratio, and considering its practical advantages in terms of easier calibration and simpler acquisition setup, LFC may prove interesting for clinical use.

  4. Liquid- and air-filled catheters without balloon as an alternative to the air-filled balloon catheter for measurement of esophageal pressure.

    Directory of Open Access Journals (Sweden)

    Alessandro Beda

    Full Text Available BACKGROUND: Measuring esophageal pressure (Pes using an air-filled balloon catheter (BC is the common approach to estimate pleural pressure and related parameters. However, Pes is not routinely measured in mechanically ventilated patients, partly due to technical and practical limitations and difficulties. This study aimed at comparing the conventional BC with two alternative methods for Pes measurement, liquid-filled and air-filled catheters without balloon (LFC and AFC, during mechanical ventilation with and without spontaneous breathing activity. Seven female juvenile pigs (32-42 kg were anesthetized, orotracheally intubated, and a bundle of an AFC, LFC, and BC was inserted in the esophagus. Controlled and assisted mechanical ventilation were applied with positive end-expiratory pressures of 5 and 15 cmH2O, and driving pressures of 10 and 20 cmH2O, in supine and lateral decubitus. MAIN RESULTS: Cardiogenic noise in BC tracings was much larger (up to 25% of total power of Pes signal than in AFC and LFC (<3%. Lung and chest wall elastance, pressure-time product, inspiratory work of breathing, inspiratory change and end-expiratory value of transpulmonary pressure were estimated. The three catheters allowed detecting similar changes in these parameters between different ventilation settings. However, a non-negligible and significant bias between estimates from BC and those from AFC and LFC was observed in several instances. CONCLUSIONS: In anesthetized and mechanically ventilated pigs, the three catheters are equivalent when the aim is to detect changes in Pes and related parameters between different conditions, but possibly not when the absolute value of the estimated parameters is of paramount importance. Due to a better signal-to-noise ratio, and considering its practical advantages in terms of easier calibration and simpler acquisition setup, LFC may prove interesting for clinical use.

  5. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  6. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  7. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  8. Air Leakage and Air Transfer Between Garage and Living Space

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  9. An experimental verification of the compensation of length change of line scales caused by ambient air pressure

    International Nuclear Information System (INIS)

    Takahashi, Akira; Miwa, Nobuharu

    2010-01-01

    Line scales are used as a working standard of length for the calibration of optical measuring instruments such as profile projectors, measuring microscopes and video measuring systems. The authors have developed a one-dimensional calibration system for line scales to obtain a lower uncertainty of measurement. The scale calibration system, named Standard Scale Calibrator SSC-05, employs a vacuum interferometer system for length measurement, a 633 nm iodine-stabilized He–Ne laser to calibrate the oscillating frequency of the interferometer laser light source and an Abbe's error compensation structure. To reduce the uncertainty of measurement, the uncertainty factors of the line scale and ambient conditions should not be neglected. Using the length calibration system, the expansion and contraction of a line scale due to changes in ambient air pressure were observed and the measured scale length was corrected into the length under standard atmospheric pressure, 1013.25 hPa. Utilizing a natural rapid change in the air pressure caused by a tropical storm (typhoon), we carried out an experiment on the length measurement of a 1000 mm long line scale made of glass ceramic with a low coefficient of thermal expansion. Using a compensation formula for the length change caused by changes in ambient air pressure, the length change of the 1000 mm long line scale was compensated with a standard deviation of less than 1 nm

  10. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    Science.gov (United States)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  11. A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2014-12-01

    Full Text Available As intermittent renewable energy is receiving increasing attention, the combination of intermittent renewable energy with large-scale energy storage technology is considered as an important technological approach for the wider application of wind power and solar energy. Pumped hydro combined with compressed air energy storage system (PHCA is one of the energy storage systems that not only integrates the advantages but also overcomes the disadvantages of compressed air energy storage (CAES systems and pumped hydro energy storage systems to solve the problem of energy storage in China’s arid regions. Aiming at the variable working conditions of PHCA system technology, this study proposes a new constant-pressure PHCA. The most significant characteristics of this system were that the water pump and hydroturbine work under stable conditions and this improves the working efficiency of the equipment without incurring an energy loss. In addition, the constant-pressure PHCA system was subjected to energy and exergy analysis, in expectation of exploring an attractive solution for the large-scale storage of existing intermittent renewable energy.

  12. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Lotte [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Buczynska, Anna [Departement of Chemistry, UA, Wilrijk (Belgium); Walgraeve, Christophe [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); Delcloo, Andy [Royal Meteorological Institute, Brussels (Belgium); Potgieter-Vermaak, Sanja [Departement of Chemistry, UA, Wilrijk (Belgium); Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg (South Africa); Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester (United Kingdom); Van Grieken, Rene [Departement of Chemistry, UA, Wilrijk (Belgium); Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); De Backer, Hugo [Royal Meteorological Institute, Brussels (Belgium); Nemery, Benoit, E-mail: ben.nemery@med.kuleuven.be [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Nawrot, Tim S. [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium)

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  13. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  14. Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode

    Czech Academy of Sciences Publication Activity Database

    Bruggeman, P.; Ribežl, E.; Degroote, J.; Malesevic, A.; Rego, R.; Vierendeels, J.; Leys, C.; Mašláni, Alan

    2008-01-01

    Roč. 17, č. 2 (2008), s. 1-11 ISSN 0963-0252 Institutional research plan: CEZ:AV0Z20430508 Keywords : atmospheric pressure air discharge * liquid cathode * voltage drop * optical emission spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.685, year: 2008

  15. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  16. Study on nitrogen diluted propane-air premixed flames at elevated pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chenglong; Zheng Jianjun [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Huang Zuohua, E-mail: zhhuang@mail.xjtu.edu.c [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang Jinhua [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-02-15

    Using a high pressure constant volume combustion vessel, the propagation and morphology of spark-ignited outwardly expanding nitrogen diluted propane-air flames were imaged and recorded by schlieren photography and high-speed digital camera. The unstretched laminar burning velocities and Markstein lengths were subsequently determined over wide range of initial temperatures, initial pressures and nitrogen dilution ratios. Two recently developed mechanisms were used to predict the reference laminar burning velocity. The results show that the measured unstretched laminar burning velocities agree well with those in the literature and the computationally predicted results. The flame images show that the diffusional-thermal instability is promoted as the mixture becomes richer, and the hydrodynamic instability is increased with the increase of the initial pressure and it is decreased with the increase of dilution ratio. The normalized laminar burning velocities show a linear correlation with respect to the dilution ratio, indicating that the effect of nitrogen dilution is more obvious at higher pressures.

  17. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen; Hernandez Perez, Francisco; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  18. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen

    2017-04-12

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  19. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  20. Filterability of freshly-collected sickle erythrocytes under venous oxygen pressure without exposure to air.

    Science.gov (United States)

    Shah, Siddharth; Acholonu, Rhonda Graves; Ohene-Frempong, Kwaku; Asakura, Toshio

    2015-12-01

    We previously found that blood samples collected from steady-state patients with sickle cell disease (SCD) without exposure to air contain a new type of reversibly sickled cells (RSCs) with blunt edges at a level of as high as 78%. Since partial oxygenation of once-deoxygenated sickled cells with pointy edges to near venous oxygen pressure generates similar sickled cells with blunt edges in vitro, we named them as partially oxygenated sickled cells (POSCs). On the other hand, partial deoxygenation of once-oxygenated SS cells to venous oxygen pressure generates partially deoxygenated sickled cells (PDSCs) with pointy edges. In this study, we obtained blood samples from 6 steady-state patients with SCD under venous oxygen pressure without exposure to air, subjected them to various oxygenation/deoxygenation/reoxygenation cycles, and studied their filterability through a membrane filter with pore diameter of 3μm, the theoretical minimum diameter of a capillary. Our results indicated that discocytes, POSCs with blunt edges, and irreversibly sickled cells could deform and pass through the filter, while PDSCs with pointy edges were rigid and could not. The filterability of SS cells seems to be related to the length and amount of deoxy-hemoglobin S fibers in the cells. Copyright © 2015. Published by Elsevier Inc.

  1. Calculation of the net emission coefficient of an air thermal plasma at very high pressure

    International Nuclear Information System (INIS)

    Billoux, T; Cressault, Y; Teulet, Ph; Gleizes, A

    2012-01-01

    The aim of this paper is to present an accurate evaluation of the phenomena appearing for high pressure air plasmas supposed to be in local thermodynamic equilibrium (LTE). In the past, we already calculated the net emission coefficient for air mixtures at atmospheric pressure and for temperatures up to 30kK (molecular contribution being restricted to 10kK). Unfortunately, the existence of high pressures does not allow us to use this database due to the non-ideality of the plasma (Viriel and Debye corrections, energy cut-off ...), and due to the significant shifts of molecular reactions towards upper temperatures. Consequently, this paper proposes an improvement of our previous works with a consideration of high pressure corrections in the composition algorithm in order to take into account the pressure effects, and with a new calculation of all the contributions of the plasma radiation (atomic lines and continuum, molecular continuum, and molecular bands) using an updated database. A particular attention is paid to calculate the contribution of all the major molecular band systems to the radiation: O 2 (Schumann–Runge), N 2 (VUV, 1st and 2nd positive), NO (IR, β, γ, δ, element of ) and N 2 + (1st negative and Meinel). The discrete atomic lines and molecular bands radiation including the overlapping are calculated by a line-by-line method up to 30kK and 100 bar. This updated database is validated in the case of optically thin plasmas and pressure of 1bar by the comparison of our integrated emission strength with the published results. Finally, this work shows the necessity to extend the molecular radiation database up to 15kK at high pressure (bands and continuum) since their corresponding contributions could not be neglected at high temperature.

  2. Air pollutants and atmospheric pressure increased risk of ED visit for spontaneous pneumothorax.

    Science.gov (United States)

    Park, Joo Hyung; Lee, Sun Hwa; Yun, Seong Jong; Ryu, Seokyong; Choi, Seung Woon; Kim, Hye Jin; Kang, Tae Kyung; Oh, Sung Chan; Cho, Suk Jin

    2018-04-14

    To investigate the impact of short-term exposure to air pollutants and meteorological variation on ED visits for primary spontaneous pneumothorax (PSP). We retrospectively identified PSP cases that presented at the ED of our tertiary center between January 2015 and September 2016. We classified the days into three types: no PSP day (0 case/day), sporadic days (1-2 cases/day), and cluster days (PSP, ≥3 cases/day). Association between the daily incidence of PSP with air pollutants and meteorological data were determined using Poisson generalized-linear-model to calculate incidence rate ratio (IRRs) and the use of time-series (lag-1 [the cumulative air pollution level on the previous day of PSP], lag-2 [two days ago], and lag-3 [three days ago]). Using multivariate logistic regression analysis, O 3 (p = 0.010), NO 2 (p = 0.047), particulate matters (PM) 10 (p = 0.021), and PM 2.5 (p = 0.008) were significant factors of PSP occurrence. When the concentration of O 3 , NO 2 , PM 10 , and PM 2.5 were increased, PSP IRRs increased approximately 15, 16, 3, and 5-fold, respectively. With the time-series analyses, atmospheric pressure in lag-3 was significantly lower and in lag-2, was significantly higher in PSP days compared with no PSP days. Among air pollutant concentrations, O 3 in lag-1 (p = 0.017) and lag-2 (p = 0.038), NO 2 in lag-1 (p = 0.015) and lag-2 (p = 0.009), PM 10 in lag-1 (p = 0.012), and PM 2.5 in lag-1 (p = 0.021) and lag-2 (p = 0.032) were significantly different between no PSP and PSP days. Increased concentrations of air pollutants and abrupt change in atmospheric pressure were significantly associated with increased IRR of PSP. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Science.gov (United States)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  4. Air clearing pressure oscillation produced in a quenching tank by a prototype unit cell sparger of the APR1400

    International Nuclear Information System (INIS)

    Cho, Seok; Song, Chul-Hwa; Park, Choon-Kyong; Kim, Hwan-Yeol; Baek, Won-Pil

    2008-01-01

    KAERI has performed a series of experiments to investigate the performance of a prototype sparger for the APR1400 in view of a dynamic load oscillation with a variation of the test conditions such as a discharged air mass, a submergence of the sparger, the valve opening time, and the pool temperature during an air clearing phase. The air mass and pool temperature are in the range of 0.8-1.5 kg and 20-90 o C, respectively. The valve opening time can be adjusted within the range of 0.6-1.8 s. The maximum positive pressure amplitude, which is observed at the bottom of the quenching tank, is increased with the maximum header pressure of the sparger. The valve opening time has a considerable effect on the maximum amplitude. As the opening time decreases, the maximum amplitude at the tank wall is increased. Air mass and pool temperature, however, have a weak effect on the maximum amplitude. Oscillation frequency is decreased with an increase of the air mass in the range of 2.5-4.5 Hz

  5. Endotracheal tube cuff pressures during general anaesthesia while using air versus a 50% mixture of nitrous oxide and oxygen as inflating agents

    Directory of Open Access Journals (Sweden)

    Jesni Joseph Manissery

    2007-01-01

    Full Text Available The present study was aimed at assessing the efficacy of filling a 50% mixture of nitrous oxide : oxygen (50%N 2 O:O 2 in the endotracheal tube cuff to provide stable cuff pressures during general anaesthesia with 67%N 2 O. The endotracheal tube cuff pressures with air (control as the inflating agent in the tubes were found to have a total mean pressure of 62.60±12.33 at the end of one hour of general anaesthesia. When comparing the endotracheal tube cuff pressures in the Mallinckrodt tubes with that of the Portex tubes, with air as the inflating agent, the Portex tubes showed a significantly lower cuff pressures at the end of one hour. The endotracheal tube cuff pressures with 50%N 2 O:O 2 as the inflating agent showed a total mean pressure of 27.63 ± 3.221 at the end of one hour of general anaesthesia. This indicates that inflation of the cuff of the endotracheal tubes with a 50%N 2 O:O 2 rather than air maintains a stable intra cuff pressure. Therefore, the method of using a 50%N 2 O:O 2 for filling endotracheal tube cuff can be adopted for endotracheal tubes with high-volume, low-pressure cuffs to prevent both excessive cuff pressure and disruption of cuff seal, during general anaesthesia lasting up to one hour.

  6. Low Pressure Robot-assisted Radical Prostatectomy With the AirSeal System at OLV Hospital: Results From a Prospective Study.

    Science.gov (United States)

    La Falce, Sabrina; Novara, Giacomo; Gandaglia, Giorgio; Umari, Paolo; De Naeyer, Geert; D'Hondt, Frederiek; Beresian, Jean; Carette, Rik; Penicka, Martin; Mo, Yujiing; Vandenbroucke, Geert; Mottrie, Alexandre

    2017-12-01

    Limited studies examined effects of pneumoperiotneum during robot-assisted radical prostatectomy (RARP) and with AirSeal. The aim of this study was to assess the effect on hemodynamics of a lower pressure pneumoperitoneum (8 mmHg) with AirSeal, during RARP in steep Trendelenburg 45° (ST). This is an institutional review board-approved, prospective, interventional, single-center study including patients treated with RARP at OLV Hospital by one extremely experienced surgeon (July 2015-February 2016). Intraoperative monitoring included: arterial pressure, central venous pressure, cardiac output, heart rate, stroke volume, systemic vascular resistance, intrathoracic pressure, airways pressures, left ventricular end-diastolic and end-systolic areas/volumes and ejection fraction, by transesophageal echocardiography, an esophageal catheter, and FloTrac/Vigileo system. Measurements were performed after induction of anesthesia with patient in horizontal (T0), 5 minutes after 8 mmHg pneumoperitoneum (TP), 5 minutes after ST (TT1) and every 30 minutes thereafter until the end of surgery (TH). Parameters modification at the prespecified times was assessed by Wilcoxon and Friedman tests, as appropriate. All analyses were performed by SPSS v. 23.0. A total of 53 consecutive patients were enrolled. The mean patients age was 62.6 ± 6.9 years. Comorbidity was relatively limited (51% with Charlson Comorbidity Index as low as 0). Despite the ST, working always at 8 mmHg with AirSeal, only central venous pressure and mean airways pressure showed a statistically significant variation during the operative time. Although other significant hemodynamic/respiratory changes were observed adding pneumoperitoneum and then ST, all variables remained always within limits safely manageable by anesthesiologists. The combination of ST, lower pressure pneumoperitoneum and extreme surgeon's experience enables to safely perform RARP. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  8. Parameters of an avalanche of runaway electrons in air under atmospheric pressure

    Science.gov (United States)

    Oreshkin, E. V.

    2018-01-01

    The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  9. Development, validity and reliability of a new pressure air biofeedback device (PAB) for measuring isometric extension strength of the lumbar spine.

    Science.gov (United States)

    Pienaar, Andries W; Barnard, Justhinus G

    2017-04-01

    This study describes the development of a new portable muscle testing device, using air pressure as a biofeedback and strength testing tool. For this purpose, a pressure air biofeedback device (PAB ® ) was developed to measure and record the isometric extension strength of the lumbar multifidus muscle in asymptomatic and low back pain (LBP) persons. A total of 42 subjects (age 47.58 years, ±18.58) participated in this study. The validity of PAB ® was assessed by comparing a selected measure, air pressure force in millibar (mb), to a standard criterion; calibrated weights in kilograms (kg) during day-to-day tests. Furthermore, clinical trial-to-trial and day-to-day tests of maximum voluntary isometric contraction (MVIC) of L5 lumbar multifidus were done to compare air pressure force (mb) to electromyography (EMG) in microvolt (μV) and to measure the reliability of PAB ® . A highly significant relationship were found between air pressure output (mb) and calibrated weights (kg). In addition, Pearson correlation calculations showed a significant relationship between PAB ® force (mb) and EMG activity (μV) for all subjects (n = 42) examined, as well as for the asymptomatic group (n = 24). No relationship was detected for the LBP group (n = 18). In terms of lumbar extension strength, we found that asymptomatic subjects were significantly stronger than LBP subjects. The results of the PAB ® test differentiated between LBP and asymptomatic subject's lumbar isometric extension strength without any risk to the subjects and also indicate that the lumbar isometric extension test with the new PAB ® device is reliable and valid.

  10. Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    International Nuclear Information System (INIS)

    Walsh, J L; Liu, D X; Iza, F; Kong, M G; Rong, M Z

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O 2 by helium metastables is significantly more efficient than electron dissociative excitation of O 2 , electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O 2 plasmas for excited atomic oxygen based chemistry. (fast track communication)

  11. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    Science.gov (United States)

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  12. Atmospheric Pressure Indicator.

    Science.gov (United States)

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  13. Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.; Yoon, Sam S. [Dept. of Mechanical, Korea University Anamdong, 5-Ga, Sungbukgu, 136-713 Seoul (Korea); James, Scott C. [Thermal/Fluid Science and Engineering, Sandia National Labs, PO Box 969, Livermore, CA 94551 (United States)

    2010-11-15

    Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynolds numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)

  14. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    Science.gov (United States)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  15. Compressed air injection technique to standardize block injection pressures : [La technique d'injection d'air comprimé pour normaliser les pressions d'injection d'un blocage nerveux].

    Science.gov (United States)

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes ( 18G, 20G, 21 G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed. Présentement, aucune technique normalisée ne permet de vérifier les pressions d'injection pendant les blocages nerveux périphériques. Nous voulions vérifier si une technique d'injection d'air comprimé, utilisant un modèle in vitro fondé sur la loi de Boyle et du matériel propre à l'anesthésie régionale, pouvait maintenir avec régularité les

  16. Computational simulation of reactive species production by methane-air DBD at high pressure and high temperature

    Science.gov (United States)

    Takana, H.; Tanaka, Y.; Nishiyama, H.

    2012-01-01

    Computational simulations of a single streamer in DBD in lean methane-air mixture at pressure of 1 and 3 atm and temperature of 300 and 500 K were conducted for plasma-enhanced chemical reactions in a closed system. The effects of surrounding pressure and temperature are characterized for reactive species production by a DBD discharge. The results show that the production characteristics of reactive species are strongly influenced by the total gas number density and the higher concentration of reactive species are produced at higher pressure and lower gas temperature for a given initial reduced electric field.

  17. Rebubbling in Descemet Membrane Endothelial Keratoplasty: Influence of Pressure and Duration of the Intracameral Air Tamponade.

    Science.gov (United States)

    Pilger, Daniel; Wilkemeyer, Ina; Schroeter, Jan; Maier, Anna-Karina B; Torun, Necip

    2017-06-01

    To explore the impact of intracameral air tamponade pressure and duration on graft attachment and rebubbling rates. A prospective, interventional, nonrandomized study. setting: Department of Ophthalmology, Charité - Universitätsmedizin Berlin. One hundred seventeen patients who underwent Descemet membrane endothelial keratoplasty (DMEK). Intraocular pressure (IOP) at the end of the surgery, immediately after filling the anterior chamber with air, categorized into low (20 mm Hg), and the time until partial removal of the air. Rebubbling rates and endothelial cell density over a 3-month follow-up period analyzed by a multivariable Cox regression model and an analysis of covariance model. Thirty-two patients required a rebubbling (27% [95% CI 19%-35%]). Nine patients required more than 1 rebubbling (7% [95% CI 3%-12%]). Compared with normal IOP, lower (HR 8.98 [95% CI 1.07-75.41]) and higher IOP (HR 10.63 [95% CI 1.44-78.27]) increased the risk of requiring a rebubbling (P = .006). Independent of the IOP, an air tamponade duration beyond 2 hours reduced the risk of rebubbling (HR 0.36 [95% CI 0.18-0.71, P = .003]). One month after surgery, the mean endothelial cell loss was 13% (95% CI 2%-25%) and 23% (95% CI 17%-29%) in the group with air tamponade duration of below and above 2 hours, respectively (P = .126). At 3 months after surgery, it was 31% (95% CI 17%-42%) and 42% (95% CI 32%-52%) in the respective groups (P = .229). A postsurgical air tamponade of at least 2 hours with an IOP within the physiological range could help to reduce rebubbling rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Directory of Open Access Journals (Sweden)

    Nicolas Craquelin

    2010-12-01

    Full Text Available We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  19. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  20. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  1. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Haiyan [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China); Institute of High Performance Computing, A-star (Singapore); Ji, Min; Jiao, Qi; Huang, Qian; Huang, Zuohua [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China)

    2009-04-15

    Flame propagation of premixed nitrogen diluted natural gas/hydrogen/air mixtures was studied in a constant volume combustion bomb under various initial pressures. Laminar burning velocities and Markstein lengths were obtained for the diluted stoichiometric fuel/air mixtures with different hydrogen fractions and diluent ratios under various initial pressures. The results showed that both unstretched flame speed and unstretched burning velocity are reduced with the increase in initial pressure (except when the hydrogen fraction is 80%) as well as diluent ratio. The velocity reduction rate due to diluent addition is determined mainly by hydrogen fraction and diluent ratio, and the effect of initial pressure is negligible. Flame stability was studied by analyzing Markstein length. It was found that the increase of initial pressure and hydrogen fraction decreases flame stability and the flame tends to be more stable with the addition of diluent gas. Generally speaking, Markstein length of a fuel with low hydrogen fraction is more sensitive to the change of initial pressure than that of a one with high hydrogen fraction. (author)

  2. Bifurcation and Nonlinear Dynamic Analysis of Externally Pressurized Double Air Films Bearing System

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2014-01-01

    Full Text Available This paper studies the chaotic and nonlinear dynamic behaviors of a rigid rotor supported by externally pressurized double air films (EPDAF bearing system. A hybrid numerical method combining the differential transformation method and the finite difference method is used to calculate pressure distribution of EPDAF bearing system and bifurcation phenomenon of rotor center orbits. The results obtained for the orbits of the rotor center are in good agreement with those obtained using the traditional finite difference approach. The results presented summarize the changes which take place in the dynamic behavior of the EPDAF bearing system as the rotor mass and bearing number are increased and therefore provide a useful guideline for the bearing system.

  3. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges

    Science.gov (United States)

    Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.

    2017-11-01

    Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.

  4. Counteracting negative venous line pressures to avoid arterial air bubbles: an experimental study comparing two different types of miniaturized extracorporeal perfusion systems.

    Science.gov (United States)

    Aboud, Anas; Mederos-Dahms, Hendrikje; Liebing, Kai; Zittermann, Armin; Schubert, Harald; Murray, Edward; Renner, Andre; Gummert, Jan; Börgermann, Jochen

    2015-05-29

    Because of its low rate of clinical complications, miniaturized extracorporeal perfusion systems (MEPS) are frequently used in heart centers worldwide. However, many recent studies refer to the higher probability of gaseous microemboli formation by MEPS, caused by subzero pressure values. This is the main reason why various de-airing devices were developed for today's perfusion systems. In the present study, we investigated the potential benefits of a simple one-way-valve connected to a volume replacement reservoir (OVR) for volume and pressure compensation. In an experimental study on 26 pigs, we compared MEPS (n = 13) with MEPS plus OVR (n = 13). Except OVR, perfusion equipment was identical in both groups. Primary endpoints were pressure values in the venous line and the right atrium as well as the number and volume of air bubbles. Secondary endpoints were biochemical parameters of systemic inflammatory response, ischemia, hemodilution and hemolysis. One animal was lost in the MEPS + OVR group. In the MEPS + OVR group no pressure values below -150 mmHg in the venous line and no values under -100 mmHg in right atrium were noticed. On the contrary, nearly 20% of venous pressure values in the MEPS group were below -150 and approximately 10% of right atrial pressure values were below -100 mmHg. Compared with the MEPS group, the bubble counter device showed lower numbers of arterial air bubbles in the MEPS + OVR group (mean ± SD: 13444 ± 5709 vs. 1 ± 2, respectively; p pressures and to reduce the number and volume of arterial air bubbles. This approach may lead to a lower rate of neurological complications.

  5. Eye retraction and rotation during Corvis ST 'air puff' intraocular pressure measurement and its quantitative analysis.

    Science.gov (United States)

    Boszczyk, Agnieszka; Kasprzak, Henryk; Jóźwik, Agnieszka

    2017-05-01

    The aim of this study was to analyse the indentation and deformation of the corneal surface, as well as eye retraction, which occur during air puff intraocular pressure (IOP) measurement. A group of 10 subjects was examined using a non-contact Corvis ST tonometer, which records image sequences of corneas deformed by an air puff. Obtained images were processed numerically in order to extract information about corneal deformation, indentation and eyeball retraction. The time dependency of the apex deformation/eye retraction ratio and the curve of dependency between apex indentation and eye retraction take characteristic shapes for individual subjects. It was noticed that the eye globes tend to rotate towards the nose in response to the air blast during measurement. This means that the eye globe not only displaces but also rotates during retraction. Some new parameters describing the shape of this curve are introduced. Our data show that intraocular pressure and amplitude of corneal indentation are inversely related (r 8  = -0.83, P = 0.0029), but the correlation between intraocular pressure and amplitude of eye retraction is low and not significant (r 8  = -0.24, P = 0.51). The curves describing corneal behaviour during air puff tonometry were determined and show that the eye globe rotates towards the nose during measurement. In addition, eye retraction amplitudes may be related to elastic or viscoelastic properties of deeper structures in the eye or behind the eye and this should be further investigated. Many of the proposed new parameters present comparable or even higher repeatability than the standard parameters provided by the Corvis ST. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  6. Pressure ulcers prevention efficacy of an alternating pressure air mattress in elderly patients: E²MAO a randomised study.

    Science.gov (United States)

    Sauvage, P; Touflet, M; Pradere, C; Portalier, F; Michel, J-M; Charru, P; Passadori, Y; Fevrier, R; Hallet-Lezy, A-M; Beauchêne, F; Scherrer, B

    2017-06-02

    Our aim was to compare Axtair One, an alternating pressure air mattress (APAM), with a viscoelastic foam mattress (VFM) in elderly patients at moderate to high risk of developing pressure ulcers (PUs). A randomised, controlled, superiority, parallel-group, open-label, multicentre study, was conducted, between February 2012 and March 2015, in nine French, medium- and long-term stay facilities. Eligible patients were aged 70 and over, had no PUs on enrolment, were bedridden for at least 15 hours per day, had reduced mobility, an absent or minimal positioning capability, a Braden score 12 and a Karnofsky score elderly patients, bedridden for more than 15 hours per day, severely dependent, at moderate-to high-risk of PUs, with an instantaneous risk for the appearance of PUs 7.57 times greater in the VFM group than in the APAM group. This study provides descriptive information and evidence for practice.

  7. Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation

    Science.gov (United States)

    Rivetti, A.; Angulo, M.; Lucino, C.; Hene, M.; Capezio, O.; Liscia, S.

    2016-11-01

    Blade tip cavitation is a well-known phenomenon that affects the performance of large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has been found to yield promising results in reducing those damaging effects. In this work, the results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. Experiments were performed for several load conditions and for two different net heads. Accelerations, pressure pulsation and noise emission were monitored for every tested condition. Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces a decrease on the level of vibration from 57% up to 84%, depending on the load condition. Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ (respect to the discharge at the best efficiency point).

  8. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    Science.gov (United States)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  9. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  10. Air Leakage and Air Transfer Between Garage and Living Space

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Westford, MA (United States)

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  11. Vibration and recoil control of pneumatic hammers. [by air flow pressure regulation

    Science.gov (United States)

    Constantinescu, I. N.; Darabont, A. V.

    1974-01-01

    Vibration sources are described for pneumatic hammers used in the mining industry (pick hammers), in boiler shops (riveting hammers), etc., bringing to light the fact that the principal vibration source is the variation in air pressure inside the cylinder. The present state of the art of vibration control of pneumatic hammers as it is practiced abroad, and the solutions adopted for this purpose, are discussed. A new type of pneumatic hammer with a low noise and vibration level is presented.

  12. Water-column mass losses during the emptying of a large-scale pipeline by pressurized air

    NARCIS (Netherlands)

    Laanearu, J.; Hou, Q.; Annus, I.; Tijsseling, A.S.

    2015-01-01

    In many industrial applications the liquid trapped inside long pipelines can cause a number of problems. Intrusion of the pressurized air on top of the water column inside the horizontal pipeline can result in a less or more mixed stratified flow. The dynamics of a moving air–water front during the

  13. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    OpenAIRE

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-01

    Abstract This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreove...

  14. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-01-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  15. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    Science.gov (United States)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  16. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    Science.gov (United States)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  17. Validation of New Crack Monitoring Technique for Victoria Class High-Pressure Air Bottles

    Science.gov (United States)

    2014-06-01

    Defence Research and Development Canada Recherche et développement pour la défense Canada Validation of new crack monitoring technique for Victoria ...Validation of new crack monitoring technique for Victoria class high-pressure air bottles Ian Thompson John R. MacKay Defence Research and Development...Canada Scientific Report DRDC-RDDC-2014-R81 June 2014 © Her Majesty the Queen in Right of Canada (Department of National Defence), 2014 © Sa Majesté

  18. A Comprehensive Probabilistic Framework to Learn Air Data from Surface Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Ankur Srivastava

    2015-01-01

    Full Text Available Use of probabilistic techniques has been demonstrated to learn air data parameters from surface pressure measurements. Integration of numerical models with wind tunnel data and sequential experiment design of wind tunnel runs has been demonstrated in the calibration of a flush air data sensing anemometer system. Development and implementation of a metamodeling method, Sequential Function Approximation (SFA, are presented which lies at the core of the discussed probabilistic framework. SFA is presented as a tool capable of nonlinear statistical inference, uncertainty reduction by fusion of data with physical models of variable fidelity, and sequential experiment design. This work presents the development and application of these tools in the calibration of FADS for a Runway Assisted Landing Site (RALS control tower. However, the multidisciplinary nature of this work is general in nature and is potentially applicable to a variety of mechanical and aerospace engineering problems.

  19. Heat transfer and pressure drop for air-water mixtures in an isoflux vertical annulus

    International Nuclear Information System (INIS)

    Khattab, M.; El-Sallak, M.; Morcos, S.M.; Salama, A.

    1996-01-01

    Heat transfer and pressure drop in flows of air-water mixtures have been investigated experimentally in an isoflux vertical annulus. The superficial liquid Reynolds number, as a reference parameter, varied from 4500 to 30 000, at different values of gas-to-liquid superficial velocity ratios up to 20 and surface heat fluxes from 50 to 240 kW/m 2 . Enhancement of the two-phase heat transfer coefficient is pronounced particularly at low liquid superficial velocities. The results are correlated and compared with some models of two-phase, two-component flows for air-water mixtures within their range of validity. Satisfactory agreement is obtained from the trend of the experimental data. (orig.) [de

  20. Thermotechnical comparison of possible operation variants for air conditioning system of mine air with high pressure heat exchanger and hydrodistributor

    OpenAIRE

    Korsun, F. O.

    2015-01-01

    Problem. There are vast losses of cold that take place during the transition of cold to deep horizons of shafts by the mine air conditioning system (MASC) with high pressure heat exchanger. Cold is transferred by the recuperative way. Vast losses of cold mean vast losses of electricity to in order to supply it. Any enterprise requires the reduction of electricity consumption. This article gives proposals on how to replace HPHE into hydrodistributor which will considerably reduce cold losses. ...

  1. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    International Nuclear Information System (INIS)

    Li, D D; Jiang, J; Zhao, Z; Yi, W S; Lan, G

    2013-01-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system

  2. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    Science.gov (United States)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  3. Simultaneous in vivo comparison of water-filled and air-filled pressure measurement catheters: Implications for good urodynamic practice.

    Science.gov (United States)

    Gammie, A; Abrams, P; Bevan, W; Ellis-Jones, J; Gray, J; Hassine, A; Williams, J; Hashim, H

    2016-11-01

    This study aimed to evaluate whether the pressure readings obtained from air-filled catheters (AFCs) are the same as the readings from simultaneously inserted water-filled catheters (WFCs). It also aimed to make any possible recommendations for the use of AFCs to conform to International Continence Society (ICS) Good Urodynamic Practices (GUP). Female patients undergoing urodynamic studies in a single center had water-filled and air-filled catheters simultaneously measuring abdominal and intravesical pressure during filling with saline and during voiding. The pressures recorded by each system at each event during the test were compared using paired t-test and Bland-Altman analyses. 62 patients were recruited, of whom 51 had pressures that could be compared during filling, and 23 during voiding. On average, the pressures measured by the two systems were not significantly different during filling and at maximum flow, but the values for a given patient were found to differ by up to 10 cmH 2 O. This study shows that AFCs and WFCs cannot be assumed to register equal values of pressure. It has further shown that even when the p det readings are compared with their value at the start of a test, a divergence of values of up to 10 cmH 2 O remains. If AFCs are used, care must be taken to compensate for any p det variations that occur during patient movement. Before AFCs are adopted, new normal values for resting pressures need to be developed to allow good quality AFC pressure readings to be made. Neurourol. Urodynam. 35:926-933, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    Science.gov (United States)

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air

    International Nuclear Information System (INIS)

    Wang, Zidong; Chen, Hanping; Weng, Shilie

    2013-01-01

    The article proposes a new calculation method for thermodynamic properties (i.e. specific enthalpy, specific entropy and specific volume) of humid air in humid air turbine cycle. The research pressure range is from 0.1 MPa to 5 MPa. The fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. The new model proposes and verifies the relationship between total gas mixture pressure and gas component pressures. This provides a good explanation of the fundamental behaviors of gas components in gas mixture from a new perspective. Another discovery is that the water vapor component pressure of saturated humid air equals P S , always smaller than its partial pressure (f·P S ) which was believed in the past researches. In the new model, “Local Gas Constant” describes the interaction between similar molecules. “Improvement Factor” is proposed for the first time by this article, and it quantitatively describes the magnitude of interaction between dissimilar molecules. They are combined to fully describe the real thermodynamic properties of humid air. The average error of Revised Dalton's Method is within 0.1% compared to experimentally-based data. - Highlights: • Our new model is suitable to calculate thermodynamic properties of humid air in HAT cycle. • Fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. • Local-Gas-Constant describes existing alone component and Improvement Factor describes interaction between different components. • The new model proposes and verifies the relationship between total gas mixture pressure and component pressures. • It solves saturated humid air thoroughly and deviates from experimental data less than 0.1%

  6. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  7. Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere

    International Nuclear Information System (INIS)

    Kim, Hyeon Hwan; Kim, Hyeong Joon

    2006-01-01

    Carbon nanotubes (CNTs) were grown using a DC arc discharge process in an air atmosphere and relevant process parameters were investigated. Without using an inert gas, multi walled carbon nanotubes could be synthesized in the deposit area of the cathode even in an air atmosphere, but single walled carbon nanotubes were not detected in the soot area despite using the same process conditions as in the inert gas. The air pressure for the highest yield of multi walled CNTs was 300 Torr. In addition, the quantity of amorphous carbon and other nanoparticles in the process chamber was remarkably reduced by this technique, showing that an efficient, feasible method of large scale CNT fabrication could be achieved by the arc discharge process

  8. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet.

    Science.gov (United States)

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-07-01

    A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances.

  9. Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

    Directory of Open Access Journals (Sweden)

    Eman Z. Al-Shehri,

    2017-06-01

    Full Text Available Objectives To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC on the shear bond strength (SBS of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide (Al2O3 particles at different pressures. Materials and Methods Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar, and each group was further divided into 2 groups depending on aging parameters (n = 12. Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and χ2 tests (α = 0.05. Results The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05. The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006 for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

  10. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    Science.gov (United States)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  11. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... the drain cocks in the service and supply reservoir on the truck or truck-tractor. Note the pressure.... Close the drain cocks, and, with the trailer(s) uncoupled, check air pressure buildup at the... brakes fully applied. (b) Air brake system hoses, tubes and connections. Air system tubes, hoses and...

  12. Ventilation air conditioner for a reactor container

    International Nuclear Information System (INIS)

    Ikegame, Noboru; Nakagawa, Takeshi.

    1980-01-01

    Purpose: To suppress the variations in the internal pressure of a reactor container and smoothly ventilate the reactor container. Constitution: The air conditioner provides an air-flow-rate-control damper, a purge-air supply fan, and a filter device in the air-supply pipe of a reactor container. Furthermore, it provides a pressure difference detector at a part of the container. The air-flow-rate-control damper is connected electrically through a position-modulator-comparison amplifier to the pressure difference detector. When the filtration becomes insufficient by clogging of the filter device and the internal pressure increased abruptly in the container, the pressure-difference detector can detect it, and the damper is operated by a pressure regulator and the comparator so as to control the air flow to the container. Thus, the internal pressure variation is controlled so as to easily ventilate the container. (J.P.N.)

  13. Multistage open-tube trap for enrichment of part-per-trillion trace components of low-pressure (below 27-kPa) air samples

    Science.gov (United States)

    Ohara, D.; Vo, T.; Vedder, J. F.

    1985-01-01

    A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.

  14. Pressure transients across HEPA filters

    International Nuclear Information System (INIS)

    Gregory, W.; Reynolds, G.; Ricketts, C.; Smith, P.R.

    1977-01-01

    Nuclear fuel cycle facilities require ventilation for health and safety reasons. High efficiency particulate air (HEPA) filters are located within ventilation systems to trap radioactive dust released in reprocessing and fabrication operations. Pressure transients within the air cleaning systems may be such that the effectiveness of the filtration system is questioned under certain accident conditions. These pressure transients can result from both natural and man-caused phenomena: atmospheric pressure drop caused by a tornado or explosions and nuclear excursions initiate pressure pulses that could create undesirable conditions across HEPA filters. Tornado depressurization is a relatively slow transient as compared to pressure pulses that result from combustible hydrogen-air mixtures. Experimental investigation of these pressure transients across air cleaning equipment has been undertaken by Los Alamos Scientific Laboratory and New Mexico State University. An experimental apparatus has been constructed to impose pressure pulses across HEPA filters. The experimental equipment is described as well as preliminary results using variable pressurization rates. Two modes of filtration of an aerosol injected upstream of the filter is examined. A laser instrumentation for measuring the aerosol release, during the transient, is described

  15. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  16. Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface

    Directory of Open Access Journals (Sweden)

    Frederik Neuhaus

    2017-06-01

    Full Text Available It is currently not possible to directly measure the lateral pressure of a biomembrane. Mechanoresponsive fluorescent probes are an elegant solution to this problem but it requires first the establishment of a direct correlation between the membrane surface pressure and the induced color change of the probe. Here, we analyze planarizable dithienothiophene push–pull probes in a monolayer at the air/water interface using fluorescence microscopy, grazing-incidence angle X-ray diffraction, and infrared reflection–absorption spectroscopy. An increase of the lateral membrane pressure leads to a well-packed layer of the ‘flipper’ mechanophores and a clear change in hue above 18 mN/m. The fluorescent probes had no influence on the measured isotherm of the natural phospholipid DPPC suggesting that the flippers probe the lateral membrane pressure without physically changing it. This makes the flipper probes a truly useful addition to the membrane probe toolbox.

  17. Technology Solutions Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    In this project, Building Science Corporation worked with production homebuilder K. Hovnanian to evaluate air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multipoint fan pressurization tests and additional zone pressure diagnostic testing measured the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  18. Impact of ventilation/pressurization on indoor air contaminants in schools

    International Nuclear Information System (INIS)

    Shaughnessy, R.J.; Levetin, E.; Fisher, E.J.; Ligman, B.K.

    1993-01-01

    As part of a continuing technology development effort to control radon in schools, The U.S. Environmental Protection Agency's (EPA) School Evaluation Program (SEP) team in cooperation with U.S. EPA's Region 6 office has performed radon mitigation in two Southwestern United States schools utilizing the method of ventilation/pressurization control technology. Schools were inspected and IAQ measurements made with respect to carbon dioxide, bioaerosols, volatile organic compounds, and respirable particles. Premitigation results indicated poor ventilation conditions existed throughout the school buildings. Elevated levels of respirable particles were measured, yet no conclusions with respect to health could be implied. Post-mitigation results support, but do not prove the hypothesis that improved ventilation to control radon will also reduce other indicator indoor air contaminants. (orig.). (9 refs., 4 tabs.)

  19. Simulation of convection-stabilized low-current glow and arc discharges in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Naidis, G V

    2007-01-01

    A two-dimensional model of stationary convection-stabilized low-current glow and arc discharge columns in atmospheric-pressure air is developed which accounts for deviation of the plasma state from the local thermodynamic equilibrium (LTE). In addition to equations of energy, continuity and momentum (analogous to those used in LTE arc models), the non-LTE model includes balance equations for plasma species and for the vibrational energy of nitrogen molecules. The kinetic scheme is used which was developed recently for the simulation of low-current wall-stabilized discharges in air. Results of calculation of discharge parameters over a wide current range are presented. It is shown that the non-equilibrium effects are substantial at currents lower than ∼ 100 mA. The calculated plasma parameters agree with available experimental data

  20. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    Science.gov (United States)

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  1. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  2. Model for Predicting DC Flashover Voltage of Pre-Contaminated and Ice-Covered Long Insulator Strings under Low Air Pressure

    Directory of Open Access Journals (Sweden)

    Zhijin Zhang

    2011-04-01

    Full Text Available In the current study, a multi-arc predicting model for DC critical flashover voltage of iced and pre-contaminated long insulator strings under low atmospheric pressure is developed. The model is composed of a series of different polarity surface arcs, icicle-icicle air gap arcs, and residual layer resistance. The calculation method of the residual resistance of the ice layer under DC multi-arc condition is established. To validate the model, 7-unit and 15-unit insulator strings were tested in a multi-function artificial climate chamber under the coexistent conditions of low air pressure, pollution, and icing. The test results showed that the values calculated by the model satisfactorily agreed with those experimentally measured, with the errors within the range of 10%, validating the rationality of the model.

  3. Development of a Blood Pressure Measurement Instrument with Active Cuff Pressure Control Schemes

    Directory of Open Access Journals (Sweden)

    Chung-Hsien Kuo

    2017-01-01

    Full Text Available This paper presents an oscillometric blood pressure (BP measurement approach based on the active control schemes of cuff pressure. Compared with conventional electronic BP instruments, the novelty of the proposed BP measurement approach is to utilize a variable volume chamber which actively and stably alters the cuff pressure during inflating or deflating cycles. The variable volume chamber is operated with a closed-loop pressure control scheme, and it is activated by controlling the piston position of a single-acting cylinder driven by a screw motor. Therefore, the variable volume chamber could significantly eliminate the air turbulence disturbance during the air injection stage when compared to an air pump mechanism. Furthermore, the proposed active BP measurement approach is capable of measuring BP characteristics, including systolic blood pressure (SBP and diastolic blood pressure (DBP, during the inflating cycle. Two modes of air injection measurement (AIM and accurate dual-way measurement (ADM were proposed. According to the healthy subject experiment results, AIM reduced 34.21% and ADM reduced 15.78% of the measurement time when compared to a commercial BP monitor. Furthermore, the ADM performed much consistently (i.e., less standard deviation in the measurements when compared to a commercial BP monitor.

  4. Environmental pressure group strength and air pollution. An empirical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Seth; Neumayer, Eric [Department of Geography and Environment and Center for Environmental Policy and Governance (CEPG), London School of Economics and Political Science, Houghton Street, London WC2A 2AE (United Kingdom)

    2005-12-01

    There is an established theoretical and empirical case-study literature arguing that environmental pressure groups have a real impact on pollution levels. Our original contribution to this literature is to provide the first systematic quantitative test of the strength of environmental non-governmental organizations (ENGOs) on air pollution levels. We find that ENGO strength exerts a statistically significant impact on sulfur dioxide, smoke and heavy particulates concentration levels in a cross-country time-series regression analysis. This result holds true both for ordinary least squares and random-effects estimation. It is robust to controlling for the potential endogeneity of ENGO strength with the help of instrumental variables. The effect is also substantively important. Strengthening ENGOs represents an important strategy by which aid donors, foundations, international organizations and other stakeholders can try to achieve lower pollution levels around the world.

  5. Environmental pressure group strength and air pollution. An empirical analysis

    International Nuclear Information System (INIS)

    Binder, Seth; Neumayer, Eric

    2005-01-01

    There is an established theoretical and empirical case-study literature arguing that environmental pressure groups have a real impact on pollution levels. Our original contribution to this literature is to provide the first systematic quantitative test of the strength of environmental non-governmental organizations (ENGOs) on air pollution levels. We find that ENGO strength exerts a statistically significant impact on sulfur dioxide, smoke and heavy particulates concentration levels in a cross-country time-series regression analysis. This result holds true both for ordinary least squares and random-effects estimation. It is robust to controlling for the potential endogeneity of ENGO strength with the help of instrumental variables. The effect is also substantively important. Strengthening ENGOs represents an important strategy by which aid donors, foundations, international organizations and other stakeholders can try to achieve lower pollution levels around the world

  6. PA171 Containers on a Wood Pallet with Metal Top Adapter, Air Pressure Tests During MIL-STD-1660 Tests

    National Research Council Canada - National Science Library

    2004-01-01

    ... (PM-MAS) to conduct Air Pressure Tests during MIL-STD-1660, "Design Criteria for Ammunition Unit Loads" testing on the PA171 containers on a wood pallet with metal top adapter as manufactured by Alliant Tech...

  7. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  8. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  9. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    KAUST Repository

    Zhou, Zhen; Shoshin, Yuriy; Hernandez Perez, Francisco; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with the increase of pressure. This experimentally observed phenomenon is qualitatively predicted by numerical simulations. The structure of ball-like and cap-like lean limit flames at all tested pressures is analysed in detail based on the numerical predictions. The results show that the lean limit flames are located inside a recirculation zone at all tested pressures. For the leading edges of the lean limit flames at all tested pressures, the fuel transport is controlled by both convection and diffusion. For the trailing edge of the ball-like lean limit flame at 2 bar, the fuel transport is dominated by diffusion. However, with increasing pressure, the transport contribution caused by convection in the trailing edges of the lean limit flames increases. Finally, the influence of transport and chemistry on the predicted ultra lean flames and lean flammability limit is analysed at elevated pressures.

  10. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    KAUST Repository

    Zhou, Zhen

    2017-05-25

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with the increase of pressure. This experimentally observed phenomenon is qualitatively predicted by numerical simulations. The structure of ball-like and cap-like lean limit flames at all tested pressures is analysed in detail based on the numerical predictions. The results show that the lean limit flames are located inside a recirculation zone at all tested pressures. For the leading edges of the lean limit flames at all tested pressures, the fuel transport is controlled by both convection and diffusion. For the trailing edge of the ball-like lean limit flame at 2 bar, the fuel transport is dominated by diffusion. However, with increasing pressure, the transport contribution caused by convection in the trailing edges of the lean limit flames increases. Finally, the influence of transport and chemistry on the predicted ultra lean flames and lean flammability limit is analysed at elevated pressures.

  11. Fully wireless pressure sensor based on endoscopy images

    Science.gov (United States)

    Maeda, Yusaku; Mori, Hirohito; Nakagawa, Tomoaki; Takao, Hidekuni

    2018-04-01

    In this paper, the result of developing a fully wireless pressure sensor based on endoscopy images for an endoscopic surgery is reported for the first time. The sensor device has structural color with a nm-scale narrow gap, and the gap is changed by air pressure. The structural color of the sensor is acquired from camera images. Pressure detection can be realized with existing endoscope configurations only. The inner air pressure of the human body should be measured under flexible-endoscope operation using the sensor. Air pressure monitoring, has two important purposes. The first is to quantitatively measure tumor size under a constant air pressure for treatment selection. The second purpose is to prevent the endangerment of a patient due to over transmission of air. The developed sensor was evaluated, and the detection principle based on only endoscopy images has been successfully demonstrated.

  12. Compressed air energy storage system

    Science.gov (United States)

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  13. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    NARCIS (Netherlands)

    Zhou, Z.; Shoshyn, Y.; Hernandez Perez, F.E.; van Oijen, J.A.; de Goey, L.P.H.

    2017-01-01

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with

  14. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  15. Air pressure-induced iridocornea contact in a patient with primary angle closure observed with a dynamic Scheimpflug analyzer.

    Science.gov (United States)

    Kawashima, Rumi; Matsushita, Kenji; Fujimoto, Hisataka; Maeda, Naoyuki; Nishida, Kohji

    2015-01-01

    To report air pressure-induced corneal deformation and iridocornea contact in eyes with primary angle closure (PAC) during intraocular pressure (IOP) measurement performed using a novel noncontact tonometer. A single case report. We report a patient with bilateral angle closure. One eye had acute PAC and the other had PAC. The latter was evaluated by the movements of the cornea and iris during IOP measurement using a noncontact tonometer. During the examination, the corneal endothelium and the iris came into contact at the mid-peripheral pupillary area in the left eye with PAC during the corneal reaction to an air puff. In contrast, the corneal endothelium in the pupillary area did not come into contact with the iris. Although we observed only 1 case and there could be limitations in its interpretation, IOP measurements using a noncontact tonometer may create mechanical stress on the corneal endothelium in eyes with PAC with a very shallow anterior chamber.

  16. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  17. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth

    Science.gov (United States)

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-09-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.

  18. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES

    Science.gov (United States)

    Cicoria, David; Chan, C. K.

    2017-07-01

    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.

  19. Effects of hyperbaric treatment in cerebral air embolism on intracranial pressure, brain oxygenation, and brain glucose metabolism in the pig

    NARCIS (Netherlands)

    van Hulst, Robert A.; Drenthen, Judith; Haitsma, Jack J.; Lameris, Thomas W.; Visser, Gerhard H.; Klein, Jan; Lachmann, Burkhard

    2005-01-01

    OBJECTIVE: To evaluate the effects of hyperbaric oxygen treatment after cerebral air embolism on intracranial pressure, brain oxygenation, brain glucose/lactate metabolism, and electroencephalograph. DESIGN: Prospective animal study. SETTING: Hyperbaric chamber. SUBJECTS: Eleven Landrace/Yorkshire

  20. Experimental investigation of pressure and blockage effects on combustion limits in H2-air-steam mixtures

    International Nuclear Information System (INIS)

    Sherman, M.P.; Berman, M.; Beyer, R.F.

    1993-06-01

    Experiments with hydrogen-air-steam mixtures, such as those found within a containment system following a reactor accident, were conducted in the Heated Detonation Tube (43 cm diameter and 12 m long) to determine the region of benign combustion; i.e., the region between the flammability limits and the deflagration-to-detonation transition limits. Obstacles were used to accelerate the flame; these include 30% blockage ratio annular rings, and alternate rings and disks of 60% blockage ratio. The initial conditions were 110 degree C and one or three atmospheres pressure. A benign burning region exists for rich mixtures, but is generally smaller than for lean mixtures. Effects of the different obstacles and of the different pressures are discussed

  1. Analysis of air temperature changes on blood pressure and heart rate and performance of undergraduate students.

    Science.gov (United States)

    Siqueira, Joseana C F; da Silva, Luiz Bueno; Coutinho, Antônio S; Rodrigues, Rafaela M

    2017-01-01

    The increase in air temperature has been associated with human deaths, some of which are related to cardiovascular dysfunctions, and with the reduction of physical and cognitive performance in humans. To analyze the relationship between blood pressure (BP) and heart rate (HR) and the cognitive performance of students who were submitted to temperature changes in classrooms. The university students answered a survey that was adapted from the Battery of Reasoning Tests over 3 consecutive days at different air temperatures while their thermal state and HR were measured. During those 3 days, BP and HR were evaluated before and after the cognitive test. The average and final HR increased at high temperatures; the tests execution time was reduced at high temperatures; and the cognitive tests was related to Mean BP at the beginning of the test, the maximum HR during the test and the air temperature. The cognitive performance of undergraduate students in the field of engineering and technology will increase while performing activities in a learning environment with an air temperature of approximately 23.3°C (according to their thermal perception), if students have an initial MBP of 93.33 mmHg and a 60 bpm HRmax.

  2. Study of heat transfer and pressure drop characteristics of air heat exchanger using PCM for free cooling applications

    Directory of Open Access Journals (Sweden)

    Kalaiselvam Sivakumar

    2016-01-01

    Full Text Available Free cooling is the process of storing the cool energy available in the night ambient air and using it during the day. The heat exchanger used in this work is a modular type which is similar to the shell and tube heat exchanger. The shell side is filled with Phase Change Materials (PCM and air flow is through the tubes in the module. The modules of the heat exchanger are arranged one over other with air spacers in between each module. The air space provided in between the module in-creases the retention time of the air for better heat transfer. Transient Computational Fluid Dynamics modeling is carried out for single air passage in a modular heat exchanger. It shows that the PCM phase transition time in the module in which different shape of fins is adopted. The module with rectangular fins has 17.2 % reduction in solidification compared with the plain module. Then steady state numerical analysis is accomplished to the whole module having the fin of high heat transfer, so that pressure drop, flow and thermal characteristics across the module and the air spacers are deter-mined for various air inlet velocities of 0.4 to 1.6 m/s. To validate the computational results, experiments are carried out and the agreement was found to be good.

  3. Effect of inhomogeneities on streamer propagation: II. Streamer dynamics in high pressure humid air with bubbles

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    The branching of electric discharge streamers in atmospheric pressure air, dense gases and liquids is a common occurrence whose origins are likely found with many causes, both deterministic and stochastic. One mechanism for streamer branching may be inhomogeneities in the path of a streamer which either divert the streamer (typically a region of lower ionization) or produce a new branch (a region of higher ionization). The propagation and branching of streamers in liquids is likely aided by low density inhomogeneities, bubbles; however, modeling of streamers in liquids is made difficult by the lack of transport coefficients. As a first step towards understanding the propagation and branching of streamers in liquids, we investigated the consequences of random inhomogeneities in the form of low pressure bubbles on the propagation of streamers in high pressure humid air. By virtue of their lower density, bubbles have larger E/N (electric field/gas number density) than the ambient gas with larger rates of ionization. The intersection of a streamer with a bubble will focus the plasma into the bubble by virtue of that higher rate of ionization but the details of the interaction depend on the relative sizes of the bubble and streamer. When a streamer intersects a field of bubbles, the large E/N in the bubble avalanches seed electrons produced by photoionization from the streamer. Each bubble then launches both a negative and positive going streamer that may link with those from adjacent bubbles or the original streamer. The total process then appears as streamer branching.

  4. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  5. Study of spatiotemporal dynamics of a nanosecond atmospheric-pressure dielectric barrier discharge in millimeter-long air gaps

    Energy Technology Data Exchange (ETDEWEB)

    Malashin, M. V.; Moshkunkov, S. I.; Khomich, V. Yu.; Shershunova, E. A., E-mail: eshershunova@gmail.com [Russian Academy of Sciences, Institute for Electrophysics and Electric Power (Russian Federation)

    2017-02-15

    The spatiotemporal dynamics of a nanosecond atmospheric-pressure dielectric barrier discharge in 1- to 3-mm-long air gaps was studied experimentally. By using a segmented electrode, data on the time evolution of the discharge in different regions of the discharge gap were obtained. The uniformity of the discharge over the cross section is estimated by analyzing the spatial distribution of its glow.

  6. Effect of Initial Moisture Content on the in-Vessel Composting Under Air Pressure of Organic Fraction of MunicipalSolid Waste in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelhadi Makan

    2013-01-01

    Full Text Available This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  7. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    Science.gov (United States)

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  8. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    Directory of Open Access Journals (Sweden)

    Mountadar Mohammed

    2013-01-01

    Full Text Available Abstract This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  9. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  10. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  11. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Barni, R; Biganzoli, I; Dell'Orto, E; Riccardi, C

    2014-01-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma

  12. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  13. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  14. Control of multidrug-resistant planktonic Acinetobacter baumannii: biocidal efficacy study by atmospheric-pressure air plasma

    Science.gov (United States)

    Zhe, RUAN; Yajun, GUO; Jing, GAO; Chunjun, YANG; Yan, LAN; Jie, SHEN; Zimu, XU; Cheng, CHENG; Xinghao, LIU; Shumei, ZHANG; Wenhui, DU; Paul, K. CHU

    2018-04-01

    In this research, an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid. The efficacy of the air plasma on bacterial deactivation and the cytobiological variations after the plasma treatment are investigated. According to colony forming units, nearly all the bacteria (6-log) are inactivated after 10 min of air plasma treatment. However, 7% of the bacteria enter a viable but non-culturable state detected by the resazurin based assay during the same period of plasma exposure. Meanwhile, 86% of the bacteria lose their membrane integrity in the light of SYTO 9/PI staining assay. The morphological changes in the cells are examined by scanning electron microscopy and bacteria with morphological changes are rare after plasma exposure in the liquid. The concentrations of the long-living RS, such as H2O2, {{{{NO}}}3}-, and O3, in liquid induced by plasma treatment are measured, and they increase with plasma treatment time. The changes of the intracellular ROS may be related to cell death, which may be attributed to oxidative stress and other damage effects induced by RS plasma generated in liquid. The rapid and effective bacteria inactivation may stem from the RS in the liquid generated by plasma and air plasmas may become a valuable therapy in the treatment of infected wounds.

  15. Air Circulation and Heat Exchange Under Reduced Pressures

    Science.gov (United States)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  16. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  17. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    Science.gov (United States)

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  18. Effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss

    Science.gov (United States)

    Koval, L. R.

    1976-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. Flow is shown to provide a modest increase in TL that is uniform with frequency up to the critical frequency. The increase is about 2 dB at Mach number M = 0.5, and about 3.5 dB at M = 1. Above the critical frequency where TL is damping controlled, the increase can be slightly larger at certain frequencies. Curvature is found to stiffen the panel, thereby increasing the TL at low frequencies, but also to introduce a dip at the 'ring frequency' of a full cylinder having the same radius as the panel. Pressurization appears to produce a slight decrease in TL throughout the frequency range, and also slightly shifts the dips at the critical frequency and at the ring frequency.

  19. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    International Nuclear Information System (INIS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-01-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA–grafted NWPE (GMA–g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA–g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h −1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  20. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    Science.gov (United States)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  1. Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air

    International Nuclear Information System (INIS)

    Fang, Z; Xie, X; Li, J; Yang, H; Qiu, Y; Kuffel, E

    2009-01-01

    Non-equilibrium plasmas generated by a dielectric barrier discharge (DBD) are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, polypropylene (PP) films are modified using a non-equilibrium plasma generated by a DBD in air in homogeneous mode and in filamentary mode. The filamentary DBD is generated in ambient air, and the homogeneous DBD is generated at medium pressure with an operating pressure value of 3 kPa. The characteristics of homogeneous DBD are studied and compared with those of filamentary DBD by measuring their electrical discharge parameters and observing their light emission phenomena, and the surface properties of the PP films before and after the treatments are studied using contact angle and surface energy measurement, x-ray photoelectron spectroscopy and scanning electron microscopy. It is found that the homogeneous DBD is even and stable in the whole gas gap, which differs from the commonly filamentary DBD. The plasma treatments modify the PP surface in both morphology and composition. The PP films modified in both treatments show a remarkable decrease in the water contact angle and a remarkable increase in surface energy due to the introduction of oxygen-containing groups on the surface and the etching of the surface. The homogeneous DBD is more effective in PP surface modification than the filamentary DBD as it can make the contact angle decrease to a lower level by introducing more oxygen-containing groups. This effect could be explained by the evenly distributed plasma at a homogeneous DBD than at a filamentary DBD, and by the more efficient introduction of atomic oxygen to the PP surface in the case of homogeneous DBD.

  2. Negative pressure of the environmental air in the cleaning area of the materials and sterilization center: a systematic review

    Directory of Open Access Journals (Sweden)

    Caroline Lopes Ciofi-Silva

    Full Text Available ABSTRACT Objective: to analyze the scientific evidence on aerosols generated during cleaning activities of health products in the Central Service Department (CSD and the impact of the negative pressure of the ambient air in the cleaning area to control the dispersion of aerosols to adjacent areas. Method: for this literature systematic review the following searches were done: search guidelines, manuals or national and international technical standards given by experts; search in the portal and databases PubMed, Scopus, CINAHL and Web of Science; and a manual search of scientific articles. Results: the five technical documents reviewed recommend that the CSD cleaning area should have a negative differential ambient air pressure, but scientific articles on the impact of this intervention were not found. The four articles included talked about aerosols formed after the use of a ultrasonic cleaner (an increased in the contamination especially during use and pressurized water jet (formation of smaller aerosols 5μm. In a study, the aerosols formed from contaminated the hot tap water with Legionella pneumophila were evaluated. Conclusions: there is evidence of aerosol formation during cleanup activities in CSD. Studies on occupational diseases of respiratory origin of workers who work in CSD should be performed.

  3. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    Directory of Open Access Journals (Sweden)

    Jagdish Narayan

    2016-02-01

    Full Text Available We report a direct conversion of hexagonal boron nitride (h-BN into pure cubic boron nitride (c-BN by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN. The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  4. Optimizing the Air Dissolution Parameters in an Unpacked Dissolved Air Flotation System

    Directory of Open Access Journals (Sweden)

    Adam Dassey

    2011-12-01

    Full Text Available Due to the various parameters that influence air solubility and microbubble production in dissolved air flotation (DAF, a multitude of values that cover a large range for these parameters are suggested for field systems. An unpacked saturator and an air quantification unit were designed to specify the effects of power, pressure, temperature, hydraulic retention time, and air flow on the DAF performance. It was determined that a pressure of 621 kPa, hydraulic retention time of 18.2 min, and air flow of 8.5 L/h would be the best controlled parameters for maximum efficiency in this unit. A temperature of 7 °C showed the greatest microbubble production, but temperature control would not be expected in actual application. The maximum microbubble flow from the designed system produced 30 mL of air (±1.5 per L of water under these conditions with immediate startup. The maximum theoretical dissolved air volume of 107 mL (±6 was achieved at a retention time of 2 h and a pressure of 621 kPa. To isolate and have better control over the various DAF operational parameters, the DAF unit was operated without the unsaturated flow stream. This mode of operation led to the formation of large bubbles at peak bubble production rates. In a real-world application, the large bubble formation will be avoided by mixing with raw unsaturated stream and by altering the location of dissolved air output flow.

  5. Localized etching of polymer films using an atmospheric pressure air microplasma jet

    International Nuclear Information System (INIS)

    Guo, Honglei; Liu, Jingquan; Yang, Bin; Chen, Xiang; Yang, Chunsheng

    2015-01-01

    A direct-write process device based on the atmospheric pressure air microplasma jet (AμPJ) has been developed for the localized etching of polymer films. The plasma was generated by the air discharge ejected out through a tip-nozzle (inner diameter of 100 μm), forming the microplasma jet. The AμPJ was capable of reacting with the polymer surface since it contains a high concentration of oxygen reactive species and thus resulted in the selective removal of polymer films. The experimental results demonstrated that the AμPJ could fabricate different microstructures on a parylene-C film without using any masks or causing any heat damage. The etch rate of parylene-C reached 5.1 μm min −1 and microstructures of different depth and width could also be realized by controlling two process parameters, namely, the etching time and the distance between the nozzle and the substrate. In addition, combining XPS analysis and oxygen-induced chemical etching principles, the potential etching mechanism of parylene-C by the AμPJ was investigated. Aside from the etching of parylene-C, micro-holes on the photoresist and polyimide film were successfully created by the AμPJ. In summary, maskless pattern etching of polymer films could be achieved using this AμPJ. (paper)

  6. Impact of Spatial Resolution on Wind Field Derived Estimates of Air Pressure Depression in the Hurricane Eye

    Directory of Open Access Journals (Sweden)

    Linwood Jones

    2010-03-01

    Full Text Available Measurements of the near surface horizontal wind field in a hurricane with spatial resolution of order 1–10 km are possible using airborne microwave radiometer imagers. An assessment is made of the information content of the measured winds as a function of the spatial resolution of the imager. An existing algorithm is used which estimates the maximum surface air pressure depression in the hurricane eye from the maximum wind speed. High resolution numerical model wind fields from Hurricane Frances 2004 are convolved with various HIRAD antenna spatial filters to observe the impact of the antenna design on the central pressure depression in the eye that can be deduced from it.

  7. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study).

    Science.gov (United States)

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP.

  8. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study

    Directory of Open Access Journals (Sweden)

    Julie Méline

    2015-01-01

    Full Text Available Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP, diastolic blood pressure (DBP, and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI: +0.12, +2.60 for 65-80 dB(A vs 30-45 dB(A] and DBP [+1.07 (95% CI: +0.28, +1.86], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP.

  9. Efficiency at Sorting Cards in Compressed Air

    Science.gov (United States)

    Poulton, E. C.; Catton, M. J.; Carpenter, A.

    1964-01-01

    At a site where compressed air was being used in the construction of a tunnel, 34 men sorted cards twice, once at normal atmospheric pressure and once at 3½, 2½, or 2 atmospheres absolute pressure. An additional six men sorted cards twice at normal atmospheric pressure. When the task was carried out for the first time, all the groups of men performing at raised pressure were found to yield a reliably greater proportion of very slow responses than the group of men performing at normal pressure. There was reliably more variability in timing at 3½ and 2½ atmospheres absolute than at normal pressure. At 3½ atmospheres absolute the average performance was also reliably slower. When the task was carried out for the second time, exposure to 3½ atmospheres absolute pressure had no reliable effect. Thus compressed air affected performance only while the task was being learnt; it had little effect after practice. No reliable differences were found related to age, to length of experience in compressed air, or to the duration of the exposure to compressed air, which was never less than 10 minutes at 3½ atmospheres absolute pressure. PMID:14180485

  10. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai , David ,; Lacoste , Deanna ,; Laux , C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  11. The Effect of Conceptual Change Approach to Eliminate 9th Grade High School Students' Misconceptions about Air Pressure

    Science.gov (United States)

    Akbas, Yavuz; Gencturk, Ebru

    2011-01-01

    The aim of this study was to determine the effectiveness of teaching based on conceptual change overcome misconceptions of 9th grade high school students about the subject of air pressure. The sampling of the study was formed with two classes of 9th grade students from a general high school in the city-center of Trabzon. A quasi-experimental…

  12. Supra-thermal charged particle energies in a low pressure radio-frequency electrical discharge in air

    International Nuclear Information System (INIS)

    Littlefield, R.G.

    1976-01-01

    Velocity spectra of supra-thermal electrons escaping from a low-pressure radio-frequency discharge in air have been measured by a time-of-flight method of original design. In addition, the energy spectra of the supra-thermal electrons and positive ions escaping from the rf discharge have been measured by a retarding potential method. Various parameters affecting the energy of the supra-thermal charged particles are experimentally investigated. A model accounting for the supra-thermal charged particle energies is developed and is shown to be consistent with experimental observations

  13. The Influence od Air Temperature and Barometric Pressure on Radon and Carbon Dioxide Levels in Air of a Karst Cave

    International Nuclear Information System (INIS)

    Obu, K.; Cencur Curk, B.; Gregoric, A.; Smerajec, M.; Vaupotic, J.; Fujiyoshi, R.; Sakuta, Y.

    2011-01-01

    the instrument failures. At several points along the guided tourist route, instantaneous concentrations of radon and carbon dioxide were measured monthly from August 2009 to March 2010. Outdoor air temperature and barometric pressure for the nearby meteorological station were obtained from the Office of Meteorology of the Environmental Agency of the Republic of Slovenia. Change of ventilation regime in the cave is reflected in seasonal variation of radon concentration. It is high in summer (1800 - 2200 Bq m -3 ) and substantially reduced in winter (20 - 500 Bq m -3 ), when temperature in the cave is higher than outside and radon is diluted by the inflow of outside air, caused by natural air draught. This draught is minimal or reversed in summer. Concentrations of both gases, radon and CO 2 , are well correlated. (author)

  14. Electric field measurements in near-atmospheric pressure nitrogen and air based on a four-wave mixing scheme

    International Nuclear Information System (INIS)

    Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe; Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi

    2010-01-01

    Electric fields are measured for the first time in molecular nitrogen at atmospheric pressures. Measurements are performed in either pure nitrogen or air. The laser spectroscopic technique applied here is based on a CARS-like four-wave mixing scheme originally developed for measurements in molecular hydrogen by Ochkin and Tskhai in 1995. The technique is ideal for investigation of microdischarges at atmospheric pressures. The frequencies of two focussed laser beams in the visible are tuned to match the energy difference between the two lowest vibrational levels in nitrogen. The presence of a static electric field then leads to the emission of coherent IR radiation at this difference frequency. The signal intensity scales with the square of the static electric field strength. Parallel to this process also anti-Stokes radiation by the standard CARS process is generated. Normalization of the IR signal by the CARS signal provides a population independent measurement quantity. Experimental results at various pressures and electric field strengths are presented.

  15. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  16. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  17. Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition

    International Nuclear Information System (INIS)

    Park, Young Sung; Jeong, Ji Hwan; Ahn, Byoung Ha

    2014-01-01

    Highlights: • New heat pump control method was developed. • Experimental investigation on performance of heat pump with various control method. • New control method appeared to improve the stability of indoor air temperature. • New control method appeared to have a potential to reduce power consumption. - Abstract: The control systems of conventional heat pumps have an input of refrigerant temperature at the evaporator outlet to maintain superheat at proper level. In order to develop a control method that can be used to achieve better indoor thermal comfort and energy efficiency at a low cooling load condition than the current control method, a new method of the evaporation pressure control based on the evaporator outlet pressure reading (EPCP) was developed. The changes in the stability of indoor air temperature and power consumption were measured while changing the compressor frequency in accordance with the new control method. Compared with the evaporation pressure control based on the evaporator outlet temperature reading, the EPCP control method appeared to improve the stability of room air temperature or occupant thermal comfort significantly

  18. Leak detector for reactor pressure vessel

    International Nuclear Information System (INIS)

    Morimoto, Mikio.

    1991-01-01

    A branched pipe is disposed to a leak off pipeline led from a flange surface which connects the main body and the upper lid of a reactor pressure vessel. An exhaust pump is disposed to the branched pipe and a moisture gage is disposed on the side of the exhaustion and a dry air supplier is connected to the branched pipe. Upon conducting a pressure-proof leak test for the reactor pressure vessel, the exhaust pump is operated and an electromagnet valve disposed at the upstream of the dry air supplier is opened and closed repeatedly. The humidity of air sucked by the exhaust pump is detected by the moisture gage. If leaks should be caused in the joining surface of the flange, leaked water is diffused as steams. Accordingly, occurrence of leak can be detected instantly based on the comparison with the moisture level of the dry air as a standard. In this way, a leak test can be conducted reliably in a short period of time with no change of for the reactor pressure container itself. (I.N.)

  19. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed

    2015-03-30

    A set of coflow diffusion flames are simulated to study the formation, growth, and oxidation of soot in flames of diluted hydrocarbon fuels, with focus on the effects of pressure. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled with a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Finally, a sensitivity study is performed assessing the effect of the boundary conditions and kinetic mechanisms on the flame structure and stabilization properties.

  20. The results of air treatment process modeling at the location of the air curtain in the air suppliers and ventilation shafts

    Directory of Open Access Journals (Sweden)

    Nikolaev Aleksandr

    2017-01-01

    Full Text Available In the existing shaft air heater installations (AHI, that heat the air for air suppliers in cold seasons, a heater channel is used. Some parts of the air from the heater go to the channel, other parts are sucked through a pithead by the general shaft pressure drawdown formed by the main ventilation installation (MVI. When this happens, a mix of two air flows leads to a shaft heat regime violation that can break pressurization of intertubular sealers. The problem of energy saving while airing underground mining enterprises is also very important. The proposed solution of both tasks due to the application of an air curtain is described in the article. In cold seasons the air treatment process should be used and it is offered to place an air curtain in the air suppliers shaft above the place of interface of the calorifer channel to a trunk in order to avoid an infiltration (suction of air through the pithead. It’s recommended to use an air curtain in a ventilation shaft because it reduces external air leaks thereby improving energy efficiency of the MVI work. During the mathematical modeling of ventilation and air preparation process (in SolidWorks Flowsimulation software package it was found out that the use of the air curtain in the air supply shaft can increase the efficiency of the AHI, and reduce the electricity consumption for ventilation in the ventilation shaft.

  1. Comparison of the Effect of 1-MCP and Low-Pressure Air on Shelflife of Strawberry Fruit (Fragaria ananassa cv. Camarossa

    Directory of Open Access Journals (Sweden)

    B. Modares

    2013-10-01

    Full Text Available Strawberry (Fragaria×ananassa has tasteful, fragrant and nutritious fruits. But, because of delicate texture and high metabolic activities of the fruits at maturity, are very sensitive and easily decayed, and thus have short shelflife. Ethylene is one of the main causes of postharvest fruit losses, which could reduce the shelflife of strawberry. Therefore, an experiment was carried out to examine the effect of 1 µL/L 1-MCP treatment and low-pressure air pretreatment at 0.2 atm in 2 hours on apparent and physicochemical characteristics of strawberry fruit, cultivar Camarossa, during storage in cold store. The study was performed as split plots in time, based on complete randomized design with 3 replications. The results showed that the highest marketability (90%, fruit firmness (7.95 N, titrable organic acids (1.15 g/100 cc, vitamin C (78.13 mg/100 cc and total soluble solids (10.48 % and the lowest amount of apparent decay (13.3 %, acidity (3.63 and taste index (9.04 were obtained in 1-MCP and low-pressure air treatments, which shows the effect of treatments on reducing the rate of biochemical variations in fruit texture. Correlation coefficients between all treatments were significant (P≤0.01. Meanwhile, the positive effect of 1-MCP on appearance and studied physicochemical characteristics was more than low-pressure air pretreatment. Even, the combination of these two treatments had no significant difference with 1-MCp treatment alone. In general, this observation depicts the more positive and significant effect of 1-MCP treatment in delaying the maturity and improving the qualitative traits of strawberry fruits after being stored in cold storage.

  2. Development of a Dew-Point Generator for Gases Other than Air and Nitrogen and Pressures up to 6 MPa

    Science.gov (United States)

    Bosma, R.; Peruzzi, A.

    2012-09-01

    A new primary humidity standard is currently being developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated also with special carrier gases such as natural gas and SF6 and at pressures up to 6 MPa. In this paper, the design and construction of this new primary dew-point generator and the preliminary tests performed on the generator are reported. The results of the first efficiency tests, performed for the dew-point temperature range from -50 °C to 20°C, for pressures up to 0.7MPa and for carrier gas flow rates up to 4L· min-1, showed satisfactory generator performance when used in the single-pass mode, i.e., with no recirculation of the carrier gas.

  3. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    Science.gov (United States)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  4. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunming, E-mail: zcm1229@126.com [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Sunvim Grp Co Ltd, Gaomi 261500 (China); Zhao, Meihua; Wang, Libing; Qu, Lijun [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Men, Yajing [Sunvim Grp Co Ltd, Gaomi 261500 (China)

    2017-04-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  5. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    International Nuclear Information System (INIS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-01-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  6. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing

  7. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    Directory of Open Access Journals (Sweden)

    Renwu Zhou

    Full Text Available Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS. Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  8. Characterization of an air jet haptic lump display.

    Science.gov (United States)

    Bianchi, Matteo; Gwilliam, James C; Degirmenci, Alperen; Okamura, Allison M

    2011-01-01

    During manual palpation, clinicians rely on distributed tactile information to identify and localize hard lumps embedded in soft tissue. The development of tactile feedback systems to enhance palpation using robot-assisted minimally invasive surgery (RMIS) systems is challenging due to size and weight constraints, motivating a pneumatic actuation strategy. Recently, an air jet approach has been proposed for generating a lump percept. We use this technique to direct a thin stream of air through an aperture directly on the finger pad, which indents the skin in a hemispherical manner, producing a compelling lump percept. We hypothesize that the perceived parameters of the lump (e.g. size and stiffness) can be controlled by jointly adjusting air pressure and the aperture size through which air escapes. In this work, we investigate how these control variables interact to affect perceived pressure on the finger pad. First, we used a capacitive tactile sensor array to measure the effect of aperture size on output pressure, and found that peak output pressure increases with aperture size. Second, we performed a psychophysical experiment for each aperture size to determine the just noticeable difference (JND) of air pressure on the finger pad. Subject-averaged pressure JND values ranged from 19.4-24.7 kPa, with no statistical differences observed between aperture sizes. The aperture-pressure relationship and the pressure JND values will be fundamental for future display control.

  9. Computer program for obtaining thermodynamic and transport properties of air and products of combustion of ASTM-A-1 fuel and air

    Science.gov (United States)

    Hippensteele, S. A.; Colladay, R. S.

    1978-01-01

    A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.

  10. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  11. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    International Nuclear Information System (INIS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Zenhausern, Frederic; Rivera, Andrew; Birdsell, Dawn N; Wagner, David M

    2015-01-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30–100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis. (paper)

  12. Influence of the Steam Addition on Premixed Methane Air Combustion at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-07-01

    Full Text Available Steam-diluted combustion in gas turbine systems is an effective approach to control pollutant emissions and improve the gas turbine efficiency. The primary purpose of the present research is to analyze the influence of steam dilution on the combustion stability, flame structures, and CO emissions of a swirl-stabilized gas turbine model combustor under atmospheric pressure conditions. The premixed methane/air/steam flame was investigated with three preheating temperatures (384 K/434 K/484 K and the equivalence ratio was varied from stoichiometric conditions to the flammability limits where the flame was physically blown out from the combustor. In order to represent the steam dilution intensity, the steam fraction Ω defined as the steam to air mass flow rate ratio was used in this work. Exhaust gases were sampled with a water-cooled emission probe which was mounted at the combustor exit. A 120 mm length quartz liner was used which enabled the flame visualization and optical measurement. Time-averaged CH chemiluminescence imaging was conducted to characterize the flame location and it was further analyzed with the inverse Abel transform method. Chemical kinetics calculation was conducted to support and analyze the experimental results. It was found that the LBO (lean blowout limits were increased with steam fraction. CH chemiluminescence imaging showed that with a high steam fraction, the flame length was elongated, but the flame structure was not altered. CO emissions were mapped as a function of the steam fraction, inlet air temperature, and equivalence ratios. Stable combustion with low CO emission can be achieved with an appropriate steam fraction operation range.

  13. Monitoring the levels of toxic air pollutants in the ambient air of ...

    African Journals Online (AJOL)

    user

    The ambient air quality in Freetown, Sierra Leone was investigated for the first time for toxic air pollutants. ..... 215 Switzerland), in a water bath at temperature of 55°C and pressure of ..... scraps. Furthermore, the prolonged use of generators.

  14. Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2011-01-01

    A glass-fibre-reinforced polyester (GFRP) plate was treated with dielectric barrier discharge (DBD) at atmospheric pressure in air for adhesion improvement. The effects of ultrasonic irradiation using a high-power gas-jet generator during the treatment were investigated. The optical emission...... damage of the GFRP plates. The polar component of the surface energy of the polyester plate was 21 mJ/m2 before the treatment, increased markedly to 52 mJ/m2 after 2-s plasma treatment without ultrasonic irradiation, and further increased slightly after longer treatments. In addition, the polar component...

  15. A comparative pressure analysis of air flow between horizontal and V-Tail of UAV MALE of NACA0012H with speed variation

    Directory of Open Access Journals (Sweden)

    Riza Rahmat

    2018-01-01

    Full Text Available NACA0012H is an airfoil type that could be used for Unmanned Aerial Vehicle Medium Altitude Long Endurance. This experiment was used to analyze stress in the surface of Tail of UAV MALE that was caused by air flow. The experiment was conducted using Computational Fluid Dynamics Software. Two designs of tail, horizontal and V-tail, were considered to simulate pressure occurred on the surface of leading edge, chamber and trailing edge. The simulation was developed varying the speed of the UAV MALE. The results showed that pressure occurred on the surface of horizontal tail higher than pressure on the V-tail.

  16. Interfacial area transport of vertical upward air-water two-phase flow in an annulus at elevated pressures

    International Nuclear Information System (INIS)

    Ozar, Basar; Hibiki, Takashi; Ishii, Mamoru; Euh, Dong-Jin

    2009-01-01

    The interfacial area transport of vertical, upward, air-water two-phase flows in an annular channel has been investigated at different system pressures. The inner and outer diameters of the annular channel were 19.1 mm and 38.1 mm, respectively. Twenty three inlet flow conditions were selected, which coverED bubbly, cap-slug, and churn-turbulent flows. These flow conditions also overlapped with twelve conditions of our previous study for comparison. The local flow parameters, such as void fractions, interfacial area concentrations (IAC), and bubble interface velocities, were measured at nine radial positions for the three axial locations (z/D h =52, 149 and 230) and converted into area-averaged parameters. The axial evolutions of local flow structure was interpreted in terms of bubble coalescence, breakup, expansion of the gas-phase due to pressure drop and system pressure. An assessment of interfacial area transport equation (IATE) was made and compared with the experimental data. A discussion of the comparison between model prediction and the experimental results were made. (author)

  17. Companded total condensation loxboil air distillation

    International Nuclear Information System (INIS)

    Erickson, D.C.

    1989-01-01

    This patent describes a dual pressure cryogenic distillation process for producing gaseous oxygen from a supply of compressed and cleaned air, comprising: a. cooling a major fraction of the compressed and cleaned air; b. rectifying the major fraction in a high pressure rectifier to liquid nitrogen overhead product and kettle liquid bottom product; c. distilling the kettle liquid in a low pressure column to liquid oxygen bottom product and gaseous nitrogen overhead product; d. working expanding a compensating vapor comprised of at least 77% N/sub 2/ thereby producing refrigeration; and e. further compressing the remaining minor fraction comprising no more than about 30% of the compressed, cleaned warm air in a compressor powered by the expansion

  18. Glucose changes and working memory in individuals with type 1 diabetes during air pressure changes simulating skydiving.

    Science.gov (United States)

    Yousef, Mohammad; Westman, Anton; Lindberg, Ann; de Lacerda, Cecilia; Jendle, Johan

    2014-01-01

    Several countries restrict individuals with type 1 diabetes mellitus (T1DM) from skydiving because of concerns over possible alterations in consciousness. To our knowledge, glucose levels and working memory in individuals with T1DM during skydiving have not been assessed earlier. The objective of this study was to investigate changes in glucose levels and working memory in selected subjects with T1DM compared with control subjects without diabetes mellitus (DM) during ambient air pressure changes as those anticipated during standard skydiving. Six subjects with T1DM and six controls were included. Using a hypobaric chamber, the ambient air pressure was changed to simulate a standard skydive from 4,000 m (13,000 feet) above mean sea level. The procedure was repeated six times to mimic a day of skydiving activity with a median of 8.7 h/day (5(th), 95(th) percentile: 8.1, 9.8 h). All subjects carried a continuous glucose monitor (CGM). Capillary glucose tests were taken in order to calibrate the CGM. Hemoglobin oxygen saturation, heart rate, and working memory, evaluated through digit span, were monitored regularly. No subject experienced documented symptomatic hypoglycemia with impaired working memory during the simulations. One asymptomatic hypoglycemia episode with a plasma glucose level of glucose levels. Interstitial glucose levels of memory between the T1DM patients and the controls. This study of interstitial glucose levels and working memory could not show the activity-specific risk factor (i.e., repetitive rapid-onset hypobaric hypoxia exposures) to be a greater safety concern for selected subjects with T1DM compared with subjects without DM during a simulated day of skydiving. Further studies are needed to clarify the suitability of subjects with T1DM to participate in this air sport.

  19. Pressure dynamic characteristics of pressure controlled ventilation system of a lung simulator.

    Science.gov (United States)

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems.

  20. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  1. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    International Nuclear Information System (INIS)

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  2. Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames: A computational and experimental study

    Science.gov (United States)

    Cao, Su; Ma, Bin; Giassi, Davide; Bennett, Beth Anne V.; Long, Marshall B.; Smooke, Mitchell D.

    2018-03-01

    In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane-air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P-1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.

  3. Estimating Subglottal Pressure from Neck-Surface Acceleration during Normal Voice Production

    Science.gov (United States)

    Fryd, Amanda S.; Van Stan, Jarrad H.; Hillman, Robert E.; Mehta, Daryush D.

    2016-01-01

    Purpose: The purpose of this study was to evaluate the potential for estimating subglottal air pressure using a neck-surface accelerometer and to compare the accuracy of predicting subglottal air pressure relative to predicting acoustic sound pressure level (SPL). Method: Indirect estimates of subglottal pressure (P[subscript sg]') were obtained…

  4. Aircraft vibration and other factors related to high systolic blood pressure in Indonesian Air Force pilots

    Directory of Open Access Journals (Sweden)

    Minarma Siagian

    2013-05-01

    Indonesian Air Force pilots doing annual medical check-ups at the Saryanto Institute for Medical and Health Aviation and Aerospace (LAKESPRA from 2003 – 2008. The data extracted from medical records were age, total flight hours, type of aircraft, fasting blood glucose and cholesterol levels, waist circumference, height and weight (Body Mass Index, and blood pressure.Results: Of 336 pilots, there were 16 with systolic pressure  140 mmHg. The pilot who had high vibration than low vibration had 2.8-fold to be high systolic blood pressure [adjusted odds ratio (ORa = 2.83; 95%confidence interval (CI =1.16-22.04. In term of average flight hours, those who had average flight hours of 300-622 hours per year compared to 29-299 hours per year had 5-fold increased risk to be high systolic blood pressure (ORa = 5.05; 95% CI =1.16-22.04]. Furthermore, those who had high than normal resting pulse rate had 2.4 times to be high systolic blood pressure (ORa = 2.37; 95 CI =0.81-6.97; P = 0.115.Conclusion:High aircraft vibration, high average flight hours per year, and high resting pulse rate increase risk high systolic blood pressure in air force pilots.Keywords: systolic blood pressure, aircraft vibration, resting pulse rate, pilots

  5. Direct atmospheric pressure chemical ionization-tandem mass spectrometry for the continuous real-time trace analysis of benzene, toluene, ethylbenzene, and xylenes in ambient air.

    Science.gov (United States)

    Badjagbo, Koffi; Picard, Pierre; Moore, Serge; Sauvé, Sébastien

    2009-05-01

    Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1-2 microg/m(3) are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.

  6. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Science.gov (United States)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  7. [Experimental study on spectra of compressed air microwave plasma].

    Science.gov (United States)

    Liu, Yong-Xi; Zhang, Gui-Xin; Wang, Qiang; Hou, Ling-Yun

    2013-03-01

    Using a microwave plasma generator, compressed air microwave plasma was excited under 1 - 5 atm pressures. Under different pressures and different incident microwave power, the emission spectra of compressed air microwave plasma were studied with a spectra measuring system. The results show that continuum is significant at atmospheric pressure and the characteristic will be weakened as the pressure increases. The band spectra intensity will be reduced with the falling of the incident microwave power and the band spectra were still significant. The experimental results are valuable to studying the characteristics of compressed air microwave plasma and the generating conditions of NO active groups.

  8. Cryogenic and Gas System Piping Pressure Tests (A Collection of PT Permits)

    International Nuclear Information System (INIS)

    Rucinski, Russell A.

    2002-01-01

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  9. 49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.

    Science.gov (United States)

    2010-10-01

    ... generant and, in some cases, a pressure vessel (cylinder)) is a gas generator used to inflate an air bag in... domestic transportation by highway, rail freight, cargo vessel or cargo aircraft, a serviceable air bag...

  10. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  11. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  12. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems.

  13. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    Science.gov (United States)

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318

  14. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  15. The application of air pressure difference in reducing indoor radon concentration

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Tso, M.Y.W.

    2000-01-01

    In densely populated tropical cities like Hong Kong, people usually live and work inside high-rise buildings. And because of the hot and humid climate, air conditioning systems are used throughout the year, particularly in commercial buildings. Previous territory-wide surveys have shown that over 10% of commercial buildings in Hong Kong have indoor radon concentrations above 200 Bq m -3 . Since the major source of indoor radon in high-rise buildings is the building materials, increasing ventilation and applying radon barriers on wall surfaces seem to be the only ways to reduce the indoor radon concentration. But it was noted that the ventilation rate the many commercial buildings are not efficient enough to remove the radon because of various reasons such as energy saving, lack of maintenance, etc. In this study, radon mitigation was achieved by reducing the rate of radon exhaled from the building materials. A special laboratory, which has the capability of simulating any meteorological conditions that could be faced by high-rise buildings in Hong Kong, was built. The reduction of radon exhalation rate by applying pressure difference and temperature difference across walls was studied in the laboratory. This paper summarizes the results and tactics for applying pressure difference in existing commercial buildings. A new technique of reducing radon exhalation rate in new buildings by depressurizing the interior of walls was also developed. Tunnels can be embedded in the concrete walls of new buildings during construction. By using simple vacuum pumps, radon exhalation rate from the walls can be reduced significantly by depressurizing the tunnels. The feasibility and applicability of the technique is presented in this paper. (author)

  16. Simulation of static pressure reset control in comfort ventilation

    DEFF Research Database (Denmark)

    Koulani, Chrysanthi Sofia; Prunescu, Remus Mihail; Hviid, Christian Anker

    2014-01-01

    Variable air volume (VAV) ventilation systems reduce fan power consumption compared to constant air volume (CAV) systems because they supply air according to the airflow demand. However VAV ventilation systems do not take fully into account the potential energy savings as the control strategy...... management system. In this way the operation of central plant equipment is adjusted in real time according to the actual pressure demand; this control scheme can be implemented by the static pressure reset (SPR) method. The SPR control method ensures that at least one damper remains fully opened; thus...... of the art is represented by the method of trim and respond based on pressure alarms. This study investigates the operation of the SPR control method of trim and respond based on pressure alarms in a CO2 demand application where large air volumes are provided to three classrooms. The investigation was based...

  17. Leakage of pressurized gases through unlined concrete containment structures

    International Nuclear Information System (INIS)

    Rizkalla, S.H.; Simmonds, S.H.

    1983-01-01

    Eight reinforced concrete specimens were fabricated and subjected to tensile membrane forces and air pressure to study the air leakage characteristics in cracked reinforced concrete members. A mathematical expression for the rate of pressurized air flowing through an idealized crack is presented. The mathematical expression is refined by using the experimental data to describe the air flow rate through any given crack pattern. Graphical charts are also presented for the calculation of the air leakage rate through concrete cracks. The concept of equivalent crack width for a given crack pattern is introduced. The mathematical expression and graphical charts are modified to include this equivalent crack width concept. The proposed technique is applicable for the prediction of the leakage from concrete containment structures or any similar structures due to high internal pressure sufficient to initiate cracking. (orig.)

  18. Helium Tracer Tests for Assessing Air Recovery and Air Distribution During In Situ Air Sparging

    National Research Council Canada - National Science Library

    Johnson, Richard

    2001-01-01

    ...) systems for capturing contaminant vapors liberated by in situ air sparging (IAS). The tracer approach is simple to conduct and provides more direct and reliable measures than the soil-gas pressure approach...

  19. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  20. Air data system optimization using a genetic algorithm

    Science.gov (United States)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  1. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    Science.gov (United States)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  2. Final air test results for the 1/5-scale Mark I boiling water reactor pressure suppression experiment

    International Nuclear Information System (INIS)

    Collins, E.K.; Lai, W.

    1977-01-01

    A loss-of-coolant accident (LOCA) in a boiling-water reactor (BWR) power plant has never occurred. However, because this type of accident is particularly severe, it is used as a principal basis for design. During a hypothetical LOCA in a Mark I BWR, air followed by steam is injected from a drywell into a toroidal wetwell about half-filled with water. A series of consistent, versatile, and accurate air-water tests simulating LOCA conditions was completed in the Lawrence Livermore Laboratory 1/5-Scale Mark I BWR Pressure Suppression Experimental Facility. Results from this test series were used to quantify the vertical loading function and to study the associated fluid dynamic phenomena. Detailed histories of vertical loads on the wetwell are shown. In particular, variations of hydrodynamic-generated vertical loads with changes in drywell pressurization rate, downcomer submergence, and the vent-line loss coefficient are established. Initial drywell overpressure, which partially preclears the downcomers of water, substantially reduces the peak vertical loads. Scaling relationships, developed from dimensional analysis and verified by bench-top experiments, allow the 1/5-scale results to be applied to a full-scale BWR power plant. This analysis leads to dimensionless groupings which are invariant. These groupongs show that if water is used as the working fluid, the magnitude of the forces in a scaled facility is reduced by the cube of the scale factor; the time when these forces occur is reduced by the square root of the scale factor

  3. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  4. Electric field determination in streamer discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Bonaventura, Z; Bourdon, A; Celestin, S; Pasko, V P

    2011-01-01

    The electric field in streamer discharges in air can be easily determined by the ratio of luminous intensities emitted by N 2 (C 3 Π u ) and N 2 + (B 2 Σ u + ) if the steady-state assumption of the emitting states is fully justified. At ground pressure, the steady-state condition is not fulfilled and it is demonstrated that its direct use to determine the local and instantaneous peak electric field in the streamer head may overestimate this field by a factor of 2. However, when spatial and time-integrated optical emissions (OEs) are considered, the reported results show that it is possible to formulate a correction factor in the framework of the steady-state approximation and to accurately determine the peak electric field in an air discharge at atmospheric pressure. A correction factor is defined as Γ = E s /E e , where E e is the estimated electric field and E s is the true peak electric field in the streamer head. It is shown that this correction stems from (i) the shift between the location of the peak electric field and the maximum excitation rate for N 2 (C 3 Π u ) and N 2 + (B 2 Σ u + ) as proposed by Naidis (2009 Phys. Rev. E 79 057401) and (ii) from the cylindrical geometry of the streamers as stated by Celestin and Pasko (2010 Geophys. Res. Lett. 37 L07804). For instantaneous OEs integrated over the whole radiating plasma volume, a correction factor of Γ ∼ 1.4 has to be used. For time-integrated OEs, the reported results show that the ratio of intensities can be used to derive the electric field in discharges if the time of integration is sufficiently long (i.e. at least longer than the longest characteristic lifetime of excited species) to have the time to collect all the light from the emitting zones of the streamer. For OEs recorded using slits (i.e. a window with a small width but a sufficiently large radial extension to contain the total radial extension of the discharge) the calculated correction factor is Γ ∼ 1.4. As for OEs observed

  5. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  6. Investigating Liquid Leak from Pre-Filled Syringes upon Needle Shield Removal: Effect of Air Bubble Pressure.

    Science.gov (United States)

    Chan, Edwin; Maa, Yuh-Fun; Overcashier, David; Hsu, Chung C

    2011-01-01

    This study is to investigate the effect of headspace air pressure in pre-filled syringes on liquid leak (dripping) from the syringe needle upon needle shield removal. Drip tests to measure drip quantity were performed on syringes manually filled with 0.5 or 1.0 mL of various aqueous solutions. Parameters assessed included temperature (filling and test), bulk storage conditions (tank pressure and the type of the pressurized gas), solution composition (pure water, 0.9% sodium chloride, and a monoclonal antibody formulation), and testing procedures. A headspace pressure analyzer was used to verify the drip test method. Results suggested that leakage is indeed caused by headspace pressure increase, and the temperature effect (ideal gas expansion) is a major, but not the only, factor. The dissolved gases in the liquid bulk prior to or during filling may contribute to leakage, as these gases could be released into the headspace due to solubility changes (in response to test temperature and pressure conditions) and cause pressure increase. Needle shield removal procedures were found to cause dripping, but liquid composition played little role. Overall, paying attention to the processing history (pressure and temperature) of the liquid bulk is the key to minimize leakage. The headspace pressure could be reduced by decreasing liquid bulk storage pressure, filling at a higher temperature, or employing lower solubility gas (e.g., helium) for bulk transfer and storage. Leakage could also be mitigated by simply holding the syringe needle pointing upward during needle shield removal. Substantial advances in pre-filled syringe technology development, particularly in syringe filling accuracy, have been made. However, there are factors, as subtle as how the needle shield (or tip cap) is removed, that may affect dosing accuracy. We recently found that upon removal of the tip cap from a syringe held vertically with needle pointed downwards, a small amount of solution, up to 3-4% of

  7. Firefighter's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  8. An investigation on the supersonic ejectors working with mixture of air and steam

    International Nuclear Information System (INIS)

    Shafaee, Maziar; Tavakol, Mohsen; Riazi, Rouzbeh; Sharifi, Navid

    2015-01-01

    This study evaluated the performance of an ejector using two streams of fluids as suction flow. Three motive flow pressures were considered when investigating ejector performance; the suction flow pressure was assumed to be constant. The suction flow consisted of a mixture of air and steam and the mass fraction of air in this mixture varied from 0 to 1. The ejector performance curves were analyzed for different mass fractions of air. The results indicate that variation of the mass fraction of air in the suction flow mixture had a significant effect on ejector performance. At all motive flow pressures, the ejector entertainment ratio increased as the mass fraction of air in the suction flow increased. The results also show that the sensitivity of ejector performance to variation in the mass fraction of air in the suction flow decreases at higher motive flow pressures. An increase in motive flow pressure caused the transition from supersonic to subsonic flow to occur at higher ejector discharge pressures

  9. An investigation on the supersonic ejectors working with mixture of air and steam

    Energy Technology Data Exchange (ETDEWEB)

    Shafaee, Maziar; Tavakol, Mohsen; Riazi, Rouzbeh [University of Tehran, Tehran (Iran, Islamic Republic of); Sharifi, Navid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-11-15

    This study evaluated the performance of an ejector using two streams of fluids as suction flow. Three motive flow pressures were considered when investigating ejector performance; the suction flow pressure was assumed to be constant. The suction flow consisted of a mixture of air and steam and the mass fraction of air in this mixture varied from 0 to 1. The ejector performance curves were analyzed for different mass fractions of air. The results indicate that variation of the mass fraction of air in the suction flow mixture had a significant effect on ejector performance. At all motive flow pressures, the ejector entertainment ratio increased as the mass fraction of air in the suction flow increased. The results also show that the sensitivity of ejector performance to variation in the mass fraction of air in the suction flow decreases at higher motive flow pressures. An increase in motive flow pressure caused the transition from supersonic to subsonic flow to occur at higher ejector discharge pressures.

  10. Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Nudnova, M. M.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2010-01-01

    The properties of a surface barrier discharge in atmospheric-pressure air at different polarities of applied voltage were studied experimentally. The influence of the voltage polarity on the spatial structure of the discharge and the electric field in the discharge plasma was determined by means of spectroscopic measurements. It is found that the energy deposited in the discharge does not depend on the voltage polarity and that discharges of positive polarity are more homogenous and the electric fields in them are higher.

  11. Numerical Modelling and Analysis of Hydrostatic Thrust Air Bearings for High Loading Capacities and Low Air Consumption

    Science.gov (United States)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    The paper presents a numerical simulation study on hydrostatic thrust air bearings to assess the load capacity, compressed air consumptions, and the dynamic response. Finite Difference Method (FDM) and Finite Volume Method (FVM) are combined to solve the non-linear Reynolds equation to find the pressure distribution of the air bearing gas film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, supplied pressure, depth of the groove and external load, are investigated based on the proposed FDM model. The simulation results show that the thrust air bearings with a groove have a higher load capacity and air consumption than without a groove, and the load capacity and air consumption both increase with the depth of the groove. Bearings without the groove are better damped than those with the grooves, and the stability of thrust bearing decreases when the groove depth increases. The stability of the thrust bearings is also affected by their loading.

  12. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus.

    Science.gov (United States)

    Koprowski, Robert; Ambrósio, Renato

    2015-11-01

    One of the current methods for measuring intraocular pressure is the air-puff method. A tonometer which uses this method is the Corvis device. With the ultra-high-speed (UHS) Scheimpflug camera, it is also possible to observe corneal deformation during measurement. The use of modern image analysis and processing methods allows for analysis of higher harmonics of corneal deflection above 100 Hz. 493 eyes of healthy subjects and 279 eyes of patients with keratoconus were used in the measurements. For each eye, 140 corneal deformation images were recorded during intraocular pressure measurement. Each image was recorded every 230 µs and had a resolution of 200 × 576 pixels. A new, original algorithm for image analysis and processing has been proposed. It enables to separate the eyeball reaction as well as low-frequency and high-frequency corneal deformations from the eye response to an air puff. Furthermore, a method for classification of healthy subjects and patients with keratoconus based on decision trees has been proposed. The obtained results confirm the possibility to distinguish between patients with keratoconus and healthy subjects. The features used in this classification are directly related to corneal vibrations. They are only available in the proposed software and provide specificity of 98%, sensitivity-85%, and accuracy-92%. This confirms the usefulness of the proposed method in this type of classification that uses corneal vibrations during intraocular pressure measurement with the Corvis tonometer. With the new proposed algorithm for image analysis and processing allowing for the separation of individual features from a corneal deformation image, it is possible to: automatically measure corneal vibrations in a few characteristic points of the cornea, obtain fully repeatable measurement of vibrations for the same registered sequence of images and measure vibration parameters for large inter-individual variability in patients. Copyright © 2015 Elsevier

  13. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    Science.gov (United States)

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  14. Inverse Flush Air Data System (FADS) for Real Time Simulations

    Science.gov (United States)

    Madhavanpillai, Jayakumar; Dhoaya, Jayanta; Balakrishnan, Vidya Saraswathi; Narayanan, Remesh; Chacko, Finitha Kallely; Narayanan, Shyam Mohan

    2017-12-01

    Flush Air Data Sensing System (FADS) forms a mission critical sub system in future reentry vehicles. FADS makes use of surface pressure measurements from the nose cap of the vehicle for deriving the air data parameters of the vehicle such as angle of attack, angle of sideslip, Mach number, etc. These parameters find use in the flight control and guidance systems, and also assist in the overall mission management. The FADS under consideration in this paper makes use of nine pressure ports located in the nose cap of a technology demonstrator vehicle. In flight, the air data parameters are obtained from the FADS estimation algorithm using the pressure data at the nine pressure ports. But, these pressure data will not be available, for testing the FADS package during ground simulation. So, an inverse software to FADS which estimates the pressure data at the pressure ports for a given flight condition is developed. These pressure data at the nine ports will go as input to the FADS package during ground simulation. The software is run to generate the pressure data for the descent phase trajectory of the technology demonstrator. This data is used again to generate the air data parameters from FADS algorithm. The computed results from FADS algorithm match well with the trajectory data.

  15. The Air Blast Wave from a Nuclear Explosion

    Science.gov (United States)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of

  16. Mitigate Strategy of Very High Temperature Reactor Air-ingress Accident

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Tae Kyu [KHNP CRI, Daejeon (Korea, Republic of); Arcilesi, David J.; Sun, Xiaodong; Christensen, Richard N. [The Ohio State University, Columbus (United States); Oh, Chang H.; Kim, Eung S. [Idaho National Laboratory, Idaho (United States)

    2016-10-15

    A critical safety event of the Very High Temperature Reactor (VHTR) is a loss-of-coolant accident (LOCA). Since a VHTR uses graphite as a core structure, if there is a break on the pressure vessel, the air in the reactor cavity could ingress into the reactor core. The worst case scenario of the accident is initiated by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. The operating pressures in the vessel and containment are about 7 and 0.1 MPa, respectively. In the VHTR, the reactor pressure vessel is located within a reactor cavity which is filled with air during normal operation. Therefore, the air-helium mixture in the cavity may ingress into the reactor pressure vessel after the depressurization process. In this paper, a commercial computational fluid dynamics (CFD) tool, FLUENT, was used to figure out air-ingress mitigation strategies in the gas-turbine modular helium reactor (GT-MHR) designed by General Atomics, Inc. After depressurization, there is almost no air in the reactor cavity; however, the air could flow back to the reactor cavity since the reactor cavity is placed in the lowest place in the reactor building. The heavier air could flow to the reactor cavity through free surface areas in the reactor building. Therefore, Argon gas injection in the reactor cavity is introduced. The injected argon would prevent the flow by pressurizing the reactor cavity initially, and eventually it prevents the flow by making the gas a heavier density than air in the reactor cavity. The gate opens when the reactor cavity is pressurized during the depressurization and it closes by gravity when the depressurization is terminated so that it can slow down the air flow to the reactor cavity.

  17. Foundations for computer simulation of a low pressure oil flooded single screw air compressor

    Science.gov (United States)

    Bein, T. W.

    1981-12-01

    The necessary logic to construct a computer model to predict the performance of an oil flooded, single screw air compressor is developed. The geometric variables and relationships used to describe the general single screw mechanism are developed. The governing equations to describe the processes are developed from their primary relationships. The assumptions used in the development are also defined and justified. The computer model predicts the internal pressure, temperature, and flowrates through the leakage paths throughout the compression cycle of the single screw compressor. The model uses empirical external values as the basis for the internal predictions. The computer values are compared to the empirical values, and conclusions are drawn based on the results. Recommendations are made for future efforts to improve the computer model and to verify some of the conclusions that are drawn.

  18. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  19. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  20. 30 CFR 77.412 - Compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  1. A study on calculation method for mechanical impedance of air spring

    International Nuclear Information System (INIS)

    Changgeng, Shuai; Penghui, Li; Rustighi, Emiliano

    2016-01-01

    This paper proposes an approximate analytic method of obtaining the mechanical impedance of air spring. The sound pressure distribution in cylindrical air spring is calculated based on the linear air wave theory. The influences of different boundary conditions on the acoustic pressure field distribution in cylindrical air spring are analysed. A 1-order ordinary differential matrix equation for the state vector of revolutionary shells under internal pressure is derived based on the non-moment theory of elastic thin shell. Referring to the transfer matrix method, a kind of expanded homogeneous capacity high precision integration method is introduced to solve the non-homogeneous matrix differential equation. Combined the solved stress field of shell with the calculated sound pressure field in air spring under the displacement harmonic excitation, the approximate analytical expression of the input and transfer mechanical impedance for the air spring can be achieved. The numerical simulation with the Comsol Multiphysics software verifies the correctness of theoretical analysis result. (paper)

  2. Fabrication and Characterization of Device Pressure Regulation System Orifice of Manufacturing Process Gel Uranium Column Gelation External

    International Nuclear Information System (INIS)

    Triyono; Sutarni; Indra Suryawan

    2009-01-01

    The device pressure regulation orifice system of manufacturing process gel uranium on external column gelation has been made and characterized. The device consists : compressor 5.75-6.75 kg / cm 2 , air container tank, power supply 24 volts dc, solenoid valve 24 volts dc, pressure indicator 0-100 mbar, pressure indicator 0-250 mbar, mechanical valve and power electric 380 volts 50 Hz. The activity includes: installation device system and characterization with pressure variation orifice 5-75 mbar on the compressor 5.75-6.5 kg/cm 2 continuously for 1 minute. The method of installation i.e: wiring and piping to first component and support component (compressor and pressure air indicator, air container tank and pressure air indicator, solenoid valve, power supply 220 volts / 24 volts dc and orifice). After apparatus installed has been tested by the characterization without feed under air pressure varied to orifice of 5-75 mbar and device characterization with variation diameter orifice of 0.5-1 mm and orifice pressure of 5-75 mbar. The result in the characterization an every component good function, can be operation by input pressure range of 15-185 mbar orifice pressure range of 5-75 mbar. The characterization result device pressure regulation orifice system showed that: the system can be good operation of air pressure regulation orifice between 5-75 mbar with diameter orifice 0.5 mm to result gelation range of 10-25 piece / minute with variation air pressure input between 15-185 mbar of air pressure compressor 5.75-6.5 kg cm 2 . (author)

  3. Accretion in Radiative Equipartition (AiRE) Disks

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada)

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  4. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    Science.gov (United States)

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  5. Corneal Vibrations during Intraocular Pressure Measurement with an Air-Puff Method

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2018-01-01

    Full Text Available Introduction. The paper presents a commentary on the method of analysis of corneal vibrations occurring during eye pressure measurements with air-puff tonometers, for example, Corvis. The presented definition and measurement method allow for the analysis of image sequences of eye responses—cornea deformation. In particular, the outer corneal contour and sclera fragments are analysed, and 3D reconstruction is performed. Methods. On this basis, well-known parameters such as eyeball reaction or corneal response are determined. The next steps of analysis allow for automatic and reproducible separation of four different corneal vibrations. These vibrations are associated with (1 the location of the maximum of cornea deformation; (2 the cutoff area measured in relation to the cornea in a steady state; (3 the maximum of peaks occurring between applanations; and (4 the other characteristic points of the corneal contour. Results. The results obtained enable (1 automatic determination of the amplitude of vibrations; (2 determination of the frequency of vibrations; and (3 determination of the correlation between the selected types of vibrations. Conclusions. These are diagnostic features that can be directly applied clinically for new and archived data.

  6. Membrane Biotreatment of VOC-Laden Air

    National Research Council Canada - National Science Library

    Peretti, Stephen

    2000-01-01

    ...%, depending primarily on air contact time. Octanol was used as the stripping fluid because of its low vapor pressure and water solubility, its high partitioning of VOCs from air, and its compatibility...

  7. Measurements of laminar burning velocities and flame stability analysis for dissociated methanol-air-diluent mixtures at elevated temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan; Huang, Zuohua; Zhang, Zhiyuan; Zheng, Jianjun; Yu, Wu; Jiang, Deming [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-06-15

    The laminar burning velocities and Markstein lengths for the dissociated methanol-air-diluent mixtures were measured at different equivalence ratios, initial temperatures and pressures, diluents (N{sub 2} and CO{sub 2}) and dilution ratios by using the spherically outward expanding flame. The influences of these parameters on the laminar burning velocity and Markstein length were analyzed. The results show that the laminar burning velocity of dissociated methanol-air mixture increases with an increase in initial temperature and decreases with an increase in initial pressure. The peak laminar burning velocity occurs at equivalence ratio of 1.8. The Markstein length decreases with an increase in initial temperature and initial pressure. Cellular flame structures are presented at early flame propagation stage with the decrease of equivalence ratio or dilution ratio. The transition positions can be observed in the curve of flame propagation speed to stretch rate, indicating the occurrence of cellular structure at flame fronts. Mixture diluents (N{sub 2} and CO{sub 2}) will decrease the laminar burning velocities of mixtures and increase the sensitivity of flame front to flame stretch rate. Markstein length increases with an increase in dilution ratio except for very lean mixture (equivalence ratio less than 0.8). CO{sub 2} dilution has a greater impact on laminar flame speed and flame front stability compared to N{sub 2}. It is also demonstrated that the normalized unstretched laminar burning velocity is only related to dilution ratio and is not influenced by equivalence ratio. (author)

  8. The effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss. [acoustic propagation through aircraft fuselage

    Science.gov (United States)

    Koval, L. R.

    1975-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. These effects are incorporated into the classical equations for the TL of single panels, and the resulting double integral for field-incidence TL is numerically evaluated for a specific set of parameters.

  9. DEPENDENCE OF AIR SPRING PARAMETERS ON THROTTLE RESISTANCE

    Directory of Open Access Journals (Sweden)

    O. H. Reidemeister

    2016-04-01

    Full Text Available Purpose. In this paper it is necessary to conduct: 1 research and analyse the influence of throttle element pneumatic resistance on elastic and damping parameters of air spring; 2 to obtain the dependence of air spring parameters on throttle element pneumatic resistance value. Methodology. The work presents the elaborated model of the air spring as a dynamic system with three phase coordinates (cylinder pressure, auxiliary reservoir pressure, cylinder air mass. Stiffness and viscosity coefficients were determined on the basis of system response to harmonic kinematic disturbance. The data for the analysis are obtained by changing the capacity of the connecting element and the law of pressure variation between the reservoir and the cylinder. The viscosity coefficient is regarded as the viscosity ratio of the hydraulic damper, which for one oscillation cycle consumes the same energy as the air spring. The process of air condition change inside the cylinder (reservoir is considered to be adiabatic; the mass air flow through the connecting element depends on the pressure difference. Findings. We obtained the curves for spring viscosity and stiffness coefficients dependence on the throttle resistance at three different laws, linking airflow through the cylinder with the pressure difference in cylinder and reservoir. At both maximum and minimum limiting resistance values the spring viscosity tends to zero, reaching its peak in the mean resistance values. Stiffness increases monotonically with increasing resistance, tends to the limit corresponding to the absence of an auxiliary reservoir (at high resistance and the increase in cylinder volume by the reservoir volume (at low resistance. Originality.The designed scheme allows determining the optimal parameters of elastic and damping properties of the pneumatic system as function of the throttle element air resistance. Practical value.The ability to predict the parameters of elastic and damping properties

  10. Numerical study on the characteristics of air bubble oscillation in water

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Bae, Yoon Yeong

    2003-01-01

    In both a boiling water reactor and an advanced type of pressurized water reactor under construction in Korea named APR1400, when a pressure relieving system is in operation, water, air and steam discharge successively into a sub-cooled water pool through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds with a low-frequency and high-amplitude oscillation may result in significant damage to the submerged structures if the resonance between the bubble clouds and structures occur. The phenomena involved are so complicated that most predictions of frequency and pressure loads have resorted to experimental work and computational approach has been precluded. This study deals with a numerical prediction of the pressure field generated by the oscillation of air bubble. The analysis was performed by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. The multiphase flows of water, air and steam were simulated by the VOF (Volume Of Fluid) model contained in the code. Unlike the author's previous study, the LRR (Load Reduction Ring) of the sparger is artificially blocked for the investigation of LRR effects on the pressure field. It also includes the effect of air mass and inlet pressure in the piping on the pressure field. (author)

  11. Multicenter comparison of the efficacy on prevention of pressure ulcer in postoperative patients between two types of pressure-relieving mattresses in China

    Science.gov (United States)

    Jiang, Qixia; Li, Xiaohua; Zhang, Aiqin; Guo, Yanxia; Liu, Yahong; Liu, Haiying; Qu, Xiaolong; Zhu, Yajun; Guo, Xiujun; Liu, Li; Zhang, Liyan; Bo, Suping; Jia, Jing; Chen, Yuejuan; Zhang, Rui; Wang, Jiandong

    2014-01-01

    Objective: Present study is designed to evaluate the effects of preventing pressure ulcer in surgical patients with two types of pressure-relieving mattresses. Methods: 1074 surgical patients from 12 hospitals in China were divided into A group (static air mattress with repositioning every 2 hours, n = 562) and B group (power pressure air mattress with repositioning every 2 hours, n = 512). The patient was subjected to a pressure-relieving mattress and observed from 0-5 days after surgery. Indications include the Braden scores, hospital-acquired pressure ulcers (HAPU) incidence and stage. Results: The Braden scores between two groups in five days after surgery were no significant (P > 0.05). The incidence of HAPU between two groups in same days also was no significant (1.07% vs. 0.98%, P > 0.05). The incidence of Stage I and stage II pressure ulcers in group A and B were 1.07% (6/562) and 0.98% (5/512), respectively (χ2 = 0.148, P = 0.882). Conclusion: The effects of preventing pressure ulcer in surgical patients with two types of pressure-relieving mattresses are similar, but the protocol by static air mattress with repositioning every 2 hours is benefit when no power. PMID:25356144

  12. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  13. Air Consumption Analysis of Air-Jet Weaving

    Directory of Open Access Journals (Sweden)

    RAJ KUMAR KHIANI

    2016-07-01

    Full Text Available In Textile industry, production is mostly key concern for Industry owner. This always has attracted researchers and machines manufacturers to make new developments in process and machines. Air-jet is one of the leading and successful highest productive weaving machines. However, it is now well established that due to add of charges of compressed air, manufacturing cost of air-jet weaving machine is higher as compared with rapier and projectile weaving machines. This is why countries having energy issues do not prefer air-jet weaving machines comparing projectile weaving machines. In this regard, several researchers and machine manufacturers have continuously been working to improve the efficiency of air-jet weft insertion. However, industry practice is as important as design made by researchers. The aim of this research is to investigate the air consumption of air-jet weaving on industrial scale practice. In this study, five weaving machine of same manufacturer and model were selected. It was observed that despite of manufacturing same quality of fabric, air consumption was varying almost in all weaving machines. Conventionally, mill workers adopt hit and trial practice in weaving industry including airpressure setting which leads to variation of nozzle pressure. Main reason of disparity of air consumption in air-jet weaving machines may be variation of distance from compressor to weaving machines, number of joints, un-necessary valve opening and pipes leakages cause an increase of compressed air consumption.

  14. Simplified pressure method for respirator fit testing.

    Science.gov (United States)

    Han, D; Xu, M; Foo, S; Pilacinski, W; Willeke, K

    1991-08-01

    A simplified pressure method has been developed for fit testing air-purifying respirators. In this method, the air-purifying cartridges are replaced by a pressure-sensing attachment and a valve. While wearers hold their breath, a small pump extracts air from the respirator cavity until a steady-state pressure is reached in 1 to 2 sec. The flow rate through the face seal leak is a unique function of this pressure, which is determined once for all respirators, regardless of the respirator's cavity volume or deformation because of pliability. The contaminant concentration inside the respirator depends on the degree of dilution by the flow through the cartridges. The cartridge flow varies among different brands and is measured once for each brand. The ratio of cartridge to leakflow is a measure of fit. This flow ratio has been measured on human subjects and has been compared to fit factors determined on the same subjects by means of photometric and particle count tests. The aerosol tests gave higher values of fit.

  15. Air riding seal with purge cavity

    Science.gov (United States)

    Sexton, Thomas D; Mills, Jacob A

    2017-08-15

    An air riding seal for a turbine in a gas turbine engine, where an annular piston is axial moveable within an annular piston chamber formed in a stator of the turbine and forms a seal with a surface on the rotor using pressurized air that forms a cushion in a pocket of the annular piston. A purge cavity is formed on the annular piston and is connected to a purge hole that extends through the annular piston to a lower pressure region around the annular piston or through the rotor to an opposite side. The annular piston is sealed also with inner and outer seals that can be a labyrinth seal to form an additional seal than the cushion of air in the pocket to prevent the face of the air riding seal from overheating.

  16. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  17. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  18. Working characteristics of variable intake valve in compressed air engine.

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  19. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  20. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  1. Simulation of low pressure water hammer

    Science.gov (United States)

    Himr, D.; Habán, V.

    2010-08-01

    Numerical solution of water hammer is presented in this paper. The contribution is focused on water hammer in the area of low pressure, which is completely different than high pressure case. Little volume of air and influence of the pipe are assumed in water, which cause sound speed change due to pressure alterations. Computation is compared with experimental measurement.

  2. 29 CFR 1926.803 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... ventilated, and there shall be no pockets of dead air. Outlets may be required at intermediate points along the main low-pressure air supply line to the heading to eliminate such pockets of dead air... of structures of wood over or near shafts. (6) Tunnels shall be provided with a 2-inch minimum...

  3. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  4. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Science.gov (United States)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  5. Modified swelling pressure apparatus using vapor pressure technique for compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, Tomoyoshi

    2012-01-01

    to measure swelling pressure in a constant relative humidity environment. A relative humidity was created using salt solutions. The total volume of compacted bentonite was maintained constant during absorption process. Change of swelling pressure with elapsed time and influences of suction value are discussed in this study. In addition, unconfined compression tests were conducted for compacted bentonite with three difference suction values. Deformation of both height and diameter for samples due to change of suction were measured before shear tests. It was observed that all samples were occurred large cracks at failure condition. The shear strengths were determined from stress and strain curves Sodium bentonite was in for this test program. The specimen was statically compacted in rigid steel mold. The modified SWCC apparatus was used for soil-water characteristic curve from 0 kPa to 450 kPa in matric suction ranges. The modified SWCC apparatus consist of a triaxial chamber, air apply system, basement with ceramic filter, drain measurement system and consolidation pressure loading system. The ceramic filter had an air entry value of 500 kPa. Absorption was allowed from the top surface portion of compacted bentonite during swelling under constant volume condition. The swelling pressure was measured over two months. After swelling pressure equilibrium, the SWCC test was performed using axis-translation technique. The vertical deformation and drainage of bentonite were measured during applying ambience positive air pressure. Degree of saturation of compacted bentonite was calculated with suctions. The vapor pressure technique was conducted for high soil suction ranges. The range is from 2.8 MPa to 296 MPa corresponding to from RH 98 % to RH 11 %. The diameter and height of compacted bentonite were directly measured for determination of degree of saturation. The swelling pressure tests were conducted using newly swelling pressure test apparatus. The apparatus consisted

  6. Air pocket removal from downward sloping pipes

    NARCIS (Netherlands)

    Pothof, I.W.M.; Clemens, F.H.L.R.

    2012-01-01

    Air-water flow is an undesired condition in water pipelines and hydropower tunnels. Water pipelines and wastewater pressure mains in particular are subject to air pocket accumulation in downward sloping reaches, such as inverted siphons or terrain slopes. Air pockets cause energy losses and an

  7. Fiber Optic Pressure Sensor Array, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array System for measuring air flow pressure at multiple points on the skin of aircrafts for Flight...

  8. Compressed Air/Vacuum Transportation Techniques

    Science.gov (United States)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  9. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  10. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Qihui Yu

    2014-01-01

    Full Text Available A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  11. Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet

    Science.gov (United States)

    Meda, Adimurthy; Katti, Vadiraj V.

    2017-08-01

    The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.

  12. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  13. Investigation of HEPA filters subjected to tornado pressure pulses

    International Nuclear Information System (INIS)

    Gregory, W.S.; Horak, H.L.; Smith, P.R.; Ricketts, C.

    1977-03-01

    An experimental program is described that will determine the response of 0.6-x 0.6-m (24-x 24-in.) high-efficiency particulate air (HEPA) filters to tornado-induced pressure transients. A blow-down system will be used to impose pressure differentials across the filters. Progress in construction of this system is reported with a description of the component parts and their functions. The test facility is essentially complete with the exception of an air dryer system that has not yet been delivered. Initial structural testing will begin in March 1977. A description is given of the instrumentation needed to measure air pressure, velocity, turbulence, humidity and particulate concentration. This instrumentation includes pressure transducers, humidity equipment, laser Doppler velocimeters (LDV), signal processors and a data acquisition system. Operational theory of the LDV and its proposed use as a particle counting device are described

  14. Numerical simulations of pressure fluctuations at branch piping in BWR main steam line

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio; Yoshikawa, Kazuhiro; Takahashi, Shiro

    2009-01-01

    The power uprating of a nuclear power plant may increase/accelerate degradation phenomena such as flow-induced vibration and wall thinking. A steam dryer was damaged by a high cycle fatigue due to an acoustic-induced vibration at the branch piping of safety relief valves (SRVs) in main steam lines. In this study, we conducted the numerical simulations of steam/air flow around a simplified branch piping to clarify the basic characteristics of resonance. LES simulations were conducted in ordinary pressure/temperature air and steam under BWR plant conditions. In both cases, the excitation of the pressure fluctuations at the branch was observed under some inlet velocity conditions. These fluctuations and inlet conditions were normalized and the obtained results were compared. The normalized results showed that the range and maximum amplitude of pressure fluctuations were almost the same in low-pressure/temperature air and high-pressure/temperature steam. We found that ordinary pressure/temperature air experiments and simulations can possibly clarify the characteristics of the resonance in high-pressure/temperature steam. (author)

  15. Electric air filtration movie

    International Nuclear Information System (INIS)

    Bergman, W.; Jaeger, R.

    1984-01-01

    The use of electrostatics to improve the performance of conventional air filters has gained considerable attention in recent years. This interest is due to the higher efficiency and reduced pressure drop of electrically enhanced filters compared to conventional fibrous filters. This 30-minute movie presents a state of the art review of electric air filters in the United States with major illustrations provided by the research and development program at the Lawrence Livermore National Laboratory sponsored by the Department of Energy. The electric air filters described in this movie are mechanical air filters to which electrical forces have been added

  16. Comparison Of Vented And Absolute Pressure Transducers For Water-Level Monitoring In Hanford Site Central Plateau Wells

    International Nuclear Information System (INIS)

    Mcdonald, J.P.

    2011-01-01

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  17. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  18. Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer.

    Science.gov (United States)

    Huang, Guangming; Gao, Liang; Duncan, Jason; Harper, Jason D; Sanders, Nathaniel L; Ouyang, Zheng; Cooks, R Graham

    2010-01-01

    The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem.2006, 78, 5994-6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds' permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  19. Air-tighten test for used glove boxes

    International Nuclear Information System (INIS)

    Itoh, Masanori; Kashiro, Kashio; Matsumoto, Masaki; Ogiya, Takashi; Nakata, Keiji; Gohda, Masahiko

    2000-05-01

    All of the glove boxes in Plutonium Fuel Fabrication facilities are operated after confirming their condition by conducting negative pressure maintenance test and air-tighten test. Although we check the negative pressure maintenance condition before operating glove boxes in a daily basis, we have not been conducted the air-tighten test. Hence, we have conduct air-tighten test using the glove box that will be dismantled in the near future. In order to compare the present data to the criteria of licensing and to the measurement data for new glove box, the test was conducted by leak tightness vessel which is used the competent authority's test for newly constructed equipments. We also have confirmed the leakage condition in case failure of keeping negative pressure. The main results are as follows: 1. No leakage was detected after leaving the glove box 21 days in case failure of keeping negative pressure condition. 2. The measurement result of the air-tighten test was 0.025 vol%/h, and it was confirmed that this result is within the range of licensing criteria (-0.04 - 0.06 vol%/h). 3. The measurement result was also within the error of leak tightness vessel, and it was confirmed that the air-tighten condition was in force within this past 10 years after installing this glove box (the corresponding value for used the competent authority test for newly constructed equipments was 0.019 vol%/h). (author)

  20. Cerebral Air Embolism in a Patient with a Tuberculous-Destroyed Lung during Commercial Air Travel: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Seok; Jeong, Hae Woong; In, Hyun Sin [Dept. of Radiology, Pusan Paik Hospital, Inje University School of Medicine, Pusdan (Korea, Republic of)

    2011-08-15

    A cerebral air embolism is a rare cause of stroke, but may occur in patients undergoing invasive cardiac and pulmonary procedures, as well as in divers suffering pulmonary barotrauma from rapid ascent. A cerebral air embolism due to other causes, especially a change of air pressure from air travel, is particularly rare. Here, we report a case of cerebraenr embolism during commercial air travel in a patient with an tuberculous-destroyed lung.

  1. Numerical study on pressure drop and heat transfer for designing sodium-to-air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, Hie-Chan; Eoh, Jae-Hyuk; Cha, Jae-Eun; Kim, Seong-O.

    2013-01-01

    Highlights: ► Numerical simulation for the heat flow characteristic of the sodium-to-air heat exchanger (AHX) and tube banks. ► Parallelogram tube banks showed almost similar thermal and hydraulic characteristics to the rectangular tube banks. ► Pressure drop and heat transfer of the staggered and rectangular tube banks compared with Zhukauskas’ correlation. ► AHX was modeled as porous media and suggested design guide to enhance the performance. - Abstract: A numerical study is performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX are modeled as porous media and simulated heat and momentum transfer by a commercial program. Two-dimensional flow characteristic appears differently at the inlet region of the AHX annulus, and the required length of the inlet region is shorter for an inlet having a 45 degree chamber or a round shape than for one with a perpendicular corner. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX are evaluated and discussed. Pressure drop and heat transfer shows similar trends and underestimated values, respectively, when compared with Zhukauskas empirical correlations. The parallelogram tube bank shows similar results to the rectangular arrangement.

  2. Calculation Of Pneumatic Attenuation In Pressure Sensors

    Science.gov (United States)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  3. Pressure ulcers : predicting factors, prevention and costs

    OpenAIRE

    Demarré, Liesbet

    2014-01-01

    The research outline pursued with this thesis can be divided in three parts. In the first part, studies to compare the effectiveness of several interventions for the prevention of pressure ulcers were conducted. Pressure ulcer prevention focusses on the reduction of the amount and duration of pressure and shear. An alternating device intermittently removes pressure and shear from vulnerable areas. It provides pressure relief via cyclic inflating and deflating air cells. Systematic reviews an...

  4. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  5. Boost Pressure Control Strategy to Account for Transient Behavior and Pumping Losses in a Two-Stage Turbocharged Air Path Concept

    Directory of Open Access Journals (Sweden)

    Thivaharan Albin

    2016-07-01

    Full Text Available Increasingly complex air path concepts are investigated to achieve a substantial reduction in fuel consumption while improving the vehicle dynamics. One promising technology is the two-stage turbocharging for gasoline engines, where a high pressure and a low pressure turbocharger are placed in series. For exploiting the high potential, a control concept has to be developed that allows for coordinated management of the two turbocharger stages. In this paper, the control strategy is investigated. Therefore, the effect of the actuated values on transient response and pumping losses is analyzed. Based on these findings, an optimization-based control algorithm is developed that allows taking both requirements into account. The developed new controller allows achieving a fast transient response, while at the same time reducing pumping losses in stationary operation.

  6. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  7. Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment

    Directory of Open Access Journals (Sweden)

    Xiong Yang

    2018-04-01

    Full Text Available Recovery and treatment of methane from coal mine ventilation air methane (VAM with cost-effective technologies have been an ongoing challenge due to low methane concentrations. In this study, a type of coconut shell-based active carbon was employed to enrich VAM with a three-bed vacuum pressure swing adsorption unit. A new vacuum exhaust step for the VPSA process was introduced. The results show that the vacuum exhaust step can increase the methane concentration of the product without changing adsorption and desorption pressure. Under laboratory conditions, the concentration of product increased from 0.4% to 0.69% as the vacuum exhaust ratio increased from 0 to 3.1 when the feed gas concentration was 0.2%. A 500 m³/h pilot-scale test system for VAM enrichment was built rendering good correlation with the laboratory results in terms of the vacuum exhaust step. By using a two-stage three-bed separation unit, the VAM was enriched from 0.2% to over 1.2%.

  8. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    International Nuclear Information System (INIS)

    Lockett, R D

    2006-01-01

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio φ > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks

  9. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  10. Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines

    Directory of Open Access Journals (Sweden)

    Ciro Apollonio

    2016-01-01

    Full Text Available One of the main issues arising during the rapid filling of a pipeline is the pressure transient which originates after the entrapped air has been expelled at the air release valve. Because of the difference in density between water and air, a pressure transient originates at the impact of the water column. Many authors have analyzed the problem, both from the theoretical and the experimental standpoint. Nevertheless, mainly vertical or horizontal pipelines have been analyzed, whereas in real field applications, the pipe profile is a sequence of ascending and descending pipes, with air release/vacuum valves at high points. To overcome lack of knowledge regarding this latter case, laboratory experiments were carried out to simulate the filling of an undulating pipeline, initially empty at atmospheric pressure. The pipe profile has a high point where an orifice is installed for air venting, so as to simulate the air release valve at intermediate high point of a supply pipeline. In the experiments, the diameter of the orifice and the opening degree of both upstream and downstream valves were varied, in order to analyze their effect on the pressure transient. The experiments were also carried out with a longer descending pipe, in order to assess the effects on the pressure surge of the air volume downstream of the orifice.

  11. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    Science.gov (United States)

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  12. Full scale measurements of pressure equalization on air permeable facade elements

    NARCIS (Netherlands)

    Bentum, C.A. van; Geurts, C.P.W.

    2015-01-01

    Wind-induced pressure differences over rain screens are determined by the external pressures and the pressures inside the cavity. Minimizing this pressure difference decreases the risk of water leakage and also helps to minimize the local loads on the façade elements. Current rules to determine the

  13. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Ioannis [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hall, Christopher [Centre for Materials Science and Engineering and School of Engineering and Electronics, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JL (United Kingdom); Wilson, Moira A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hoff, William D [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Carter, Margaret A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom)

    2003-12-21

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 {mu}m. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials.

  14. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    International Nuclear Information System (INIS)

    Ioannou, Ioannis; Hall, Christopher; Wilson, Moira A; Hoff, William D; Carter, Margaret A

    2003-01-01

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 μm. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials

  15. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  16. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions

    International Nuclear Information System (INIS)

    Gong Jianying; Gao Tieyu; Yuan Xiuling; Huang Dong

    2008-01-01

    The effects of air flow maldistribution on the performance of an air source heat pump chiller under frosting conditions were investigated experimentally. The results indicated that air flow maldistribution was the dominant factor leading to hunting of the thermostatic expansion valve for medium and/or large size finned tube evaporators. With air flow maldistribution degree (AMD) increasing, frost occurred earlier, and the frost layer grew faster. The operating characteristics became lower when AMD was increased. We found such phenomenon seemed to be related to both the difference of refrigerant outlet superheat and the frosting velocity. In the hunting stage, the frost block effect became the main factor degrading the refrigeration system performance. With AMD increasing, the heat pump system pertinent performance data (suction pressure, evaporation temperature, discharge pressure, refrigerant outlet temperature, etc.) were degraded more dramatically

  17. A Calibration Facility for Dew Point in Air up to 1 MPa

    Science.gov (United States)

    Carroll, P. A.; Bell, S. A.; Stevens, M.

    2015-12-01

    The provision of primary dew-point standards for humidified air and nitrogen at atmospheric pressure is well established, and measurement traceability to these standards provides confidence in a vast number of air humidity measurements. However, hygrometers are used industrially at a wide range of pressures. Both the performance of hygrometers and the properties of humid gases are known to vary with gas pressure. The pressure-dependence of gas non-ideality for air-water mixtures (water-vapor enhancement factor) is well enough known at moderate pressures, but there remains a need to characterize hygrometers at the pressure of use. To address this, a humidity calibration capability of wider scope is under development at the UK National Physical Laboratory (NPL). As an initial stage in the development of this capability, a humidity standard generating air or nitrogen in the dew-point range from -60° C to +10° C, at pressures up to 1 MPa (10 bar) has been validated for the calibration of hygrometers. The expanded uncertainty of the dew-point generator in this range with a coverage factor k= 2 is ± 0.07° C.

  18. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  19. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    Science.gov (United States)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  20. Do psychosocial stress and social disadvantage modify the association between air pollution and blood pressure?: the multi-ethnic study of atherosclerosis.

    Science.gov (United States)

    Hicken, Margaret T; Adar, Sara D; Diez Roux, Ana V; O'Neill, Marie S; Magzamen, Sheryl; Auchincloss, Amy H; Kaufman, Joel D

    2013-11-15

    Researchers have theorized that social and psychosocial factors increase vulnerability to the deleterious health effects of environmental hazards. We used baseline examination data (2000-2002) from the Multi-Ethnic Study of Atherosclerosis. Participants were 45-84 years of age and free of clinical cardiovascular disease at enrollment (n = 6814). The modifying role of social and psychosocial factors on the association between exposure to air pollution comprising particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) and blood pressure measures were examined using linear regression models. There was no evidence of synergistic effects of higher PM2.5 and adverse social/psychosocial factors on blood pressure. In contrast, there was weak evidence of stronger associations of PM2.5 with blood pressure in higher socioeconomic status groups. For example, those in the 10th percentile of the income distribution (i.e., low income) showed no association between PM2.5 and diastolic blood pressure (b = -0.41 mmHg; 95% confidence interval: -1.40, 0.61), whereas those in the 90th percentile of the income distribution (i.e., high income) showed a 1.52-mmHg increase in diastolic blood pressure for each 10-µg/m(3) increase in PM2.5 (95% confidence interval: 0.22, 2.83). Our results are not consistent with the hypothesis that there are stronger associations between PM2.5 exposures and blood pressure in persons of lower socioeconomic status or those with greater psychosocial adversity.

  1. Liquid return from gas pressurization of grouted waste

    International Nuclear Information System (INIS)

    Powell, W.J.; Benny, H.L.

    1994-05-01

    The ability to force pore liquids out of a simulated waste grout matrix using air pressure was measured. Specimens cured under various conditions were placed in a permeameter and subjected to increasing air pressure. The pressure was held constant for 24 hours and then stepped up until either liquid was released or 150 psi was reached. One specimen was taken to 190 psi with no liquid release. Permeability to simulated tank waste was then measured. Compressive strength was measured following these tests. This data is to assess the amount of fluid that might be released from grouted waste resulting from the buildup of radiolytically generated hydrogen and other gasses within the waste form matrix. A plot of the unconfined compressive strength versus breakthrough pressures identifies a region of ''good'' grout, which will resist liquid release

  2. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  3. Efficiency of an air-cooled thermodynamic cycle

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1979-01-01

    The application of air, nitrogen, helium and the chemically reacting N 2 O 4 reversible 2NO 2 reversible 2NO + O 2 system as working agents and coolants for a low capacity nuclear power plant is investigated. The above system due to its physico-chemical and thermo-physical properties allows both a gaseous cycle and a cycle with condensation. The analysis has shown that a thermodynamic air-cooled cycle with the dissociating nitrogen tetroxide in the temperature range from 500 to 600 deg C has an advantage over cycles with air and nitrogen. To identify the chemical reaction kinetics in the thermodynamic processes, thermodynamic calculations of the gas-liquid cycle with N 2 O 4 both with simple and intermediate heat regeneration at different pressures over hot side were performed. At gas pressures lower than 12 - 15 atm, the cycle with a simple regeneration is more effective, and at pressure increase, the cycle with an intermediate regeneration is preferable

  4. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.

    Science.gov (United States)

    Pack, Min; Kaneelil, Paul; Kim, Hyoungsoo; Sun, Ying

    2018-05-01

    Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

  5. Low-Cost Fiber Optic Pressure Sensor

    Science.gov (United States)

    Sheem, Sang K.

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  6. Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures

    Science.gov (United States)

    Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi

    Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.

  7. Printed Self-Powered Miniature Air Sampling Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Birmingham

    2017-07-01

    Full Text Available The recent geo-political climate has increased the necessity for autonomous, chip-sized, lightweight, air sampling systems which can quickly detect and characterize chemical, biological, radiological, nuclear, and high explosive (CBRNE hazardous materials and relay the results. To address these issues, we have developed a self-powered 3-D chip architecture that processes air to produce concentrated size- sorted particle (and vapor samples that could be integrated with on-chip nanoelectronic detectors for the discovery of weapons of mass destruction (WMD. The unique air movement approach is composed of a nanoscale energy harvester that provides electricity to a printed ion-drag pump to push air through coated-microstructured arrays. The self-powered microstructured array air sampler was designed using computational fluid dynamics (CFD modeling to collect particles from 1-10 microns at greater than 99.9999 % efficiency with less than 100 Pascal [Pa] pressure drop at a specified air flow rate. Surprisingly, even at minimum air flow rates below specifications, these CFD predictions were matched by experimental results gathered in a Government aerosol chamber. The microstructured array engineered filter equaled the collection capability of a membrane or a high efficiency particle air (HEPA filter at a fraction of the filter pressure drop.

  8. Atmospheric Pressure and Onset of Episodes of Menière's Disease - A Repeated Measures Study.

    Science.gov (United States)

    Gürkov, Robert; Strobl, Ralf; Heinlin, Nina; Krause, Eike; Olzowy, Bernhard; Koppe, Christina; Grill, Eva

    2016-01-01

    External changes of air pressure are transmitted to the middle and inner ear and may be used therapeutically in Menière's disease, one of the most common vertigo disorders. We analyzed the possible relationship of atmospheric pressure and other meteorological parameters with the onset of MD vertigo episodes in order to determine whether atmospheric pressure changes play a role in the occurrence of MD episodes. Patients of a tertiary outpatient dizziness clinic diagnosed with MD were asked to keep a daily vertigo diary to document MD episodes (2004-2009). Local air pressure, absolute temperature and dew point temperature were acquired on an hourly basis. Change in meteorological parameters was conceptualized as the maximum difference in a 24 hour time frame preceding each day. Effects were estimated using additive mixed models with a random participant effect. We included lagged air parameters, age, sex, weekday and season in the model. A total of 56 persons (59% female) with mean age 54 years were included. Mean follow-up time was 267 days. Persons experienced on average 10.3 episodes during the observation period (median 8). Age and change in air pressure were significantly associated with vertigo onset risk (Odds Ratio = 0.979 and 1.010). We could not show an effect of sex, weekday, season, air temperature, and dew point temperature. Change in air pressure was significantly associated with onset of MD episodes, suggesting a potential triggering mechanism in the inner ear. MD patients may possibly use air pressure changes as an early warning system for vertigo attacks in the future.

  9. Air/delta/sea surface temperature, pressure, and other data from MISS GAIL in a world-wide distribution from 21 October 1957 to 18 April 1961 (NODC Accession 0000366)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Air/delta/sea surface temperature, pressure, and other data were collected from the MISS GAIL in a world-wide distribution from October 21, 1957 to April 18, 1961....

  10. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  11. Experimental studies on radiation effects under high pressure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, E [Osaka Univ. (Japan). School of Dentistry

    1974-06-01

    The effect of oxygen tension on the radiosensitivity of tumor cells is well known, but its clinical application for radiotherapy is not yet established. Rabbits with V x 2 carcinoma in the maxilla were irradiated by /sup 60/Co under high pressure oxygen (experimental group), and compared with those treated in air (control group). For the purpose of examining the clinical effects of high pressure oxygen, an experiment was made in vivo. The following items were compared respectively: a) Tumor regression effect b) Tumor clearance rate c) Survival days d) Half size reduction time e) Inhibition of DNA synthesis in the tumor tissue. Results obtained were as follows: a) 56 per cent of animals showed tumor regression in the experimental group, whereas it occured 26 per cent in the control group. b) 53 per cent of animals showed tumor disappearance in the experimental group, while it was observed only in 13 per cent in the control group. c) Only 2 of 30 rabbits irradiated in air survived over 180 days, whereas 11 of 30 rabbits survived meanwhile in the group irradiated under high pressure oxygen. d) About 11 days were necessary to reduce the tumor size by half after irradiation in the group under high pressure oxygen, while it took 17 days in the group treated in normal air. e) DNA synthesis was inhibited more prominently in the group irradiated under high pressure oxygen in normal air.

  12. A Cabin Air Separator for EVA Oxygen

    Science.gov (United States)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  13. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    International Nuclear Information System (INIS)

    Wang, Shang; Larin, K V; Li, Jiasong; Vantipalli, S; Twa, M D; Manapuram, R K; Aglyamov, S; Emelianov, S

    2013-01-01

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo. (letter)

  14. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    Science.gov (United States)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure

  15. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    Science.gov (United States)

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  16. Nanoporous TiO_2 electrode grown by laser ablation of titanium in air at atmospheric pressure and room temperature

    International Nuclear Information System (INIS)

    Białous, Anna; Gazda, Maria; Grochowska, Katarzyna; Atanasov, Petar; Dikovska, Anna; Nedyalkov, Nikolay; Reszczyńska, Joanna; Zaleska-Medynska, Adriana; Śliwiński, Gerard

    2016-01-01

    Recently, fabrication of the nanoporous TiO_2 photoelectrode on metal foils by means of sputtering of the Ti film on preheated metal substrate followed by the TiO_2 deposition (doctor blade technique) and sintering represents the frequently applied technique. This is despite the relatively complicated procedure and number of parameters to be controlled in order to fabricate films of required properties. In this work an approach is applied and discussed in which the nanoporous TiO_2 electrode is fabricated under conditions similar to pulsed laser deposition but with the deposit formed directly on the ablated target at atmospheric pressure and room temperature. The titanium dioxide thin film is grown by ablation of the Ti foil with the nanosecond UV laser (266 nm) at fluence up to 1.5 J/cm"2. The rutile–anatase phase transformation takes place during this one-step process and no thermal pre-and post-treatment of the deposit is needed. In samples produced in air, the presence of mixed phases of the non-stoichiometric anatase (> 70%), rutile and negligible amount of TiN is consistently confirmed by the X-ray diffraction, energy-dispersive X-ray and Raman spectra. For applications of the reported films as electrode material in the third generation photovoltaic cells, the use of industrial lasers could significantly improve the process efficiency. - Highlights: • TiO_2 films via laser ablation of Ti in air under standard temperature and pressure conditions • Nanoporous crystalline structure from one-step process • Anatase content > 70% in the mixed phase film

  17. Measured air overpressures, soil-particle pressures, and slumps during the pre-ASIAGO U2Ar stemming experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freynik, H.S. Jr.; Roach, D.R.; Dittbenner, G.R.

    1978-01-04

    On November 15, 1976, Lawrence Livermore Laboratory completed its first comprehensive stemming experiment for measuring downhole parameters while varying fill material and rate. Stemming can be defined as backfilling a hole in which a device has been placed to prevent leakage of radioactive materials or gases to the surface. A computer code is being developed for stemming operations, and this experiment was designed to measure parameters under different stemming conditions so the code could be verified and modified. The experiment was conducted in the lower half of a steel-cased, 4-ft-diam, 2000-ft-deep hole at Nevada Test Site. The two stemming materials used in the experiment, Overton sand and LLL II mix, were tested at three fill rates. Significant results of this experiment included successful measurement of downhole air overpressures, vertical and horizontal soil-particle pressures, and temperature. Vertical soil-particle pressures were higher than expected. All surface measurements were valid. The slump-displacement measurements system provided a timing mark to indicate the occurrence of a slump. A major slump occurred on the third day of stemming; a minor slump occurred on the fourth day.

  18. Measured air overpressures, soil-particle pressures, and slumps during the pre-ASIAGO U2Ar stemming experiment

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Dittbenner, G.R.

    1978-01-01

    On November 15, 1976, Lawrence Livermore Laboratory completed its first comprehensive stemming experiment for measuring downhole parameters while varying fill material and rate. Stemming can be defined as backfilling a hole in which a device has been placed to prevent leakage of radioactive materials or gases to the surface. A computer code is being developed for stemming operations, and this experiment was designed to measure parameters under different stemming conditions so the code could be verified and modified. The experiment was conducted in the lower half of a steel-cased, 4-ft-diam, 2000-ft-deep hole at Nevada Test Site. The two stemming materials used in the experiment, Overton sand and LLL II mix, were tested at three fill rates. Significant results of this experiment included successful measurement of downhole air overpressures, vertical and horizontal soil-particle pressures, and temperature. Vertical soil-particle pressures were higher than expected. All surface measurements were valid. The slump-displacement measurements system provided a timing mark to indicate the occurrence of a slump. A major slump occurred on the third day of stemming; a minor slump occurred on the fourth day

  19. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    Science.gov (United States)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  20. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Paepe, M. de [Ghent University (Belgium). Department of Flow, Heat and Combustion Mechanics; Janssens, A. [Ghent University (Belgium). Department of Architecture and Urbanism

    2003-05-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  1. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent (Belgium); Janssens, A. [Department of Architecture and Urbanism, Ghent University, Ghent (Belgium)

    2003-07-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  2. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Rakha, Ihsan Allah

    2015-05-01

    The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth, and oxidation of soot, with a focus on the effects of pressure on soot yield. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements, like the temperature field, the species’ concentrations and the soot volume fraction. Fully coupled conservation equations for mass, momentum, energy, and species mass fractions are solved using a low Mach number formulation. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydrocarbons up to cyclopenta[cd]pyrene is used. Soot is modeled using a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Reasonable agreement is observed for the flame height, temperature, and the concentrations of various species. In each case, the peak soot volume fraction is predicted along the centerline as observed in the experiments. The predicted integrated soot mass at pressures ranging from 4-8 atm, scales as P2.1, in satisfactory agreement with the measured integrated soot pressure scaling (P2.27). Significant differences in the mole fractions of benzene and PAHs, and the predicted soot volume fractions are found, using two well-validated chemical kinetic mechanisms. At 4 atm, one mechanism over-predicts the peak soot volume fraction by a factor of 5, while the other under-predicts it by a factor of 5. A detailed analysis shows that the fuel tube wall temperature has an effect on flame stabilization.

  3. Long-term associations of modeled and self-reported measures of exposure to air pollution and noise at residence on prevalent hypertension and blood pressure.

    Science.gov (United States)

    Pitchika, Anitha; Hampel, Regina; Wolf, Kathrin; Kraus, Ute; Cyrys, Josef; Babisch, Wolfgang; Peters, Annette; Schneider, Alexandra

    2017-09-01

    Air pollution, traffic noise and noise annoyance are suggested to be associated with hypertension and blood pressure (BP); however, the evidence remains inconsistent. Our study examined the long-term associations of modeled and self-reported measures of air pollution and traffic noise on prevalent hypertension and BP. We analyzed cross-sectional data from 2552 participants aged 31-72years from the KORA F4 (2006-2008) study conducted in the region of Augsburg, Germany. Land-use regression models were used to estimate residential long-term exposure to particulate matter residences. Participants filled-in a questionnaire on noise annoyance and heavy traffic passing their residence. Linear and logistic regression models adjusting for confounders were used to assess the association between exposure measures and hypertension and BP. An interquartile increase in annual mean PM 2.5 (1μg/m 3 ) was significantly associated with 15% higher prevalence of hypertension, without (95% CI: 2.5; 28.0%) and with (95% CI: 0.7; 30.8%) adjustment for traffic noise. Diastolic blood pressure (DBP) was associated with air pollutants and traffic noise with percent increases in mean of 0.7 (95% CI: 0.2; 1.2), 0.6 (95% CI: 0.1; 1.1) and 0.3 (95% CI: 0.0; 0.7) for an interquartile increase in PM 2.5 (1μg/m 3 ) and PM 2.5 abs (0.2∗10 -5 /m), and 5dB(A) increase in 24-hour road traffic noise, respectively. Associations of PM 2.5 abs and NO 2 with hypertension or DBP were stronger in men and diabetic individuals. No clear associations were seen with systolic BP or noise annoyance. In conclusion, self-reported measures of air pollution or noise did not perform better than the objective measures. Our findings provide further evidence for a link between air pollution, noise and cardiovascular disease and indicate a stronger association for men and diabetic individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Air Travel Health Tips

    Science.gov (United States)

    ... if you touch anything in your seat back pocket. The air pressure in the plane can change ... counter Products Procedures & Devices Prescription Medicines Health Tools Dictionary Symptom Checker BMI Calculator myhealthfinder Immunization Schedules Nutrient ...

  5. Pressure drop and heat transfer in the sodium to air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, H.; Eoh, J.; Cha, J.; Kim, S.

    2011-01-01

    A numerical study was performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX were modeled as porous media and simulated heat and momentum transfer. Two-dimensional flow characteristic appeared at the most region of AHX annulus. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX were evaluated and compared with Zhukauskas empirical correlations. (author)

  6. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-11-01

    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  7. ISLSCP II Air-Sea Carbon Dioxide Gas Exchange

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the calculated net ocean-air carbon dioxide (CO2) flux and sea-air CO2 partial pressure (pCO2) difference. The estimates are based on...

  8. The influence of droplet evaporation on fuel-air mixing rate in a burner

    Science.gov (United States)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  9. Building air exhaustion device

    International Nuclear Information System (INIS)

    Suzuki, Seijiro.

    1995-01-01

    An opening is formed on the side wall of a building such as of a nuclear power plant, and a blow out panel is held (supported) by a clip for closing the opening. A large-diameter pipeline is connected at one end to the opening so as to cover the blow out panel, and immersed at the other end in a pool water. When a pipeline such as of main steam pipelines is ruptured in the building, high temperature and high pressure coolants are flown out from the ruptured port, and the pressure in the building is elevated. The blow out panel falls off from the side of the building by the elevation of the pressure in the building. Steams or compressed air discharged from the opening is introduced to the pool through the large diameter pipeline, then the steams are condensed by the pool water and radioactive materials contained in the condensed steams are kept in the pool water. Radioactive materials contained in the released compression air are also removed into the pool water. (I.N.)

  10. Changes in entrapped gas content and hydraulic conductivity with pressure.

    Science.gov (United States)

    Marinas, Maricris; Roy, James W; Smith, James E

    2013-01-01

    Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi-saturated) hydraulic conductivity, K(quasi), thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand-packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi-saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding K(quasi) ranging between 2 and 6 times lower compared to the K(s) value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in K(quasi) by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in K(quasi) with compression-expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models. © Ground Water 2012 and © Her Majesty the Queen in Right of Canada 2012. Ground Water © 2012, National Ground Water Association.

  11. Effects of air vessel on water hammer in high-head pumping station

    International Nuclear Information System (INIS)

    Wang, L; Wang, F J; Zou, Z C; Li, X N; Zhang, J C

    2013-01-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled

  12. Effects of air vessel on water hammer in high-head pumping station

    Science.gov (United States)

    Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.

    2013-12-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.

  13. Air Monitoring: New Advances in Sampling and Detection

    Directory of Open Access Journals (Sweden)

    Nicola Watson

    2011-01-01

    Full Text Available As the harmful effects of low-level exposure to hazardous organic air pollutants become more evident, there is constant pressure to improve the detection limits of indoor and ambient air monitoring methods, for example, by collecting larger air volumes and by optimising the sensitivity of the analytical detector. However, at the other end of the scale, rapid industrialisation in the developing world and growing pressure to reclaim derelict industrial land for house building is driving the need for air monitoring methods that can reliably accommodate very-high-concentration samples in potentially aggressive matrices. This paper investigates the potential of a combination of two powerful gas chromatography—based analytical enhancements—sample preconcentration/thermal desorption and time-of-flight mass spectrometry—to improve quantitative and qualitative measurement of very-low-(ppt level organic chemicals, even in the most complex air samples. It also describes new, practical monitoring options for addressing equally challenging high-concentration industrial samples.

  14. A Tire Air Maintenance Technology

    Science.gov (United States)

    Pierce, Alan

    2012-01-01

    Improperly inflated car tires can reduce gas mileage and car performance, speed up tire wear, and even cause a tire to blow out. The AAA auto club recommends that someone check the air pressure of one's car's tires at least once a month. Wouldn't it be nice, though, if someone came up with a tire pressure-monitoring system that automatically kept…

  15. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Tsukada, A; Haas, O; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  16. Project of energy saving in compressed air; Proyecto de ahorro de energia en aire comprimido

    Energy Technology Data Exchange (ETDEWEB)

    Automatizacion, Productividad y Calidad S.A. de C.V. Puebla, (Mexico)

    2005-07-01

    The objective of this project is to reduce the operation costs by means of the energy saving through the use of the compressed air system. For this purpose the solenoid valves controlled per time and the manually acted valves of sphere must be replaced by pneumatic purges that remove from the system the condensed humidity without discharging air and which act automatically when the water reaches the level of unloading in its deposit. The pressure level is the reduction of the operation rank of pressure in the compressors, satisfying the operation requirements of the process equipment. [Spanish] El objetivo de este proyecto es reducir el costo de operacion mediante el ahorro de energia en la utilizacion del sistema de aire comprimido. Para ello se tienen que remplazar las valvulas solenoides controladas por tiempo y valvulas de esfera actuadas manualmente por purgas neumaticas que remueven del sistema la humedad condensada sin descargar aire y que actuan en forma automatica al alcanzar el agua el nivel de descarga en su deposito. El nivel de presion es la reduccion del rango de operacion de presion de los compresores, satisfaciendo los requerimientos de operacion de los equipos de proceso.

  17. Double throat pressure pulsation dampener for oil-free screw compressors

    Science.gov (United States)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  18. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    International Nuclear Information System (INIS)

    Begum, Asma; Laroussi, Mounir; Pervez, Mohammad Rasel

    2013-01-01

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10 11 cm -3 and it reaches to the maximum of 10 12 cm -3 .

  19. Study of containment air cooler capacity in steam air environment during accident conditions

    International Nuclear Information System (INIS)

    Kansal, M.; Mohan, N.; Bhawal, R.N.; Bajaj, S.S.

    2002-01-01

    Full text: The air coolers are provided for controlling the temperature in the reactor building during normal operation. These air coolers also serve as the main heat sink for the removal of energy from high enthalpy air-steam mixture expected in reactor building under accident conditions. A subroutine COOLER has been developed to estimate the heat removal rate of the air coolers at high temperature and steam conditions. The subroutine COOLER has been attached with the code PACSR (post accident containment system response) used for containment pressure temperature calculation. The subroutine was validated using design parameters at normal operating condition. A study was done to estimate the heat removal rate for some postulated accident conditions. The study reveals that, under accident conditions, the heat removal rate of air coolers increases several times compared with normal operating conditions

  20. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...... and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation...... of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also...

  1. Adiabatic liquid piston compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tage [Danish Technological Institute, Aarhus (Denmark); Elmegaard, B. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Schroeder Pedersen, A. [Technical Univ. of Denmark. DTU Energy Conversion, Risoe Campus, Roskilde (Denmark)

    2013-01-15

    This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting the mechanical energy into electricity at times of high electricity demand. Two such systems are currently in operation; one in Germany (Huntorf) and one in the USA (Macintosh, Alabama). In both cases, an underground cavern is used as a pressure vessel for the storage of the compressed air. Both systems are in the range of 100 MW electrical power output with several hours of production stored as compressed air. In this range, enormous volumes are required, which make underground caverns the only economical way to design the pressure vessel. Both systems use axial turbine compressors to compress air when charging the system. The compression leads to a significant increase in temperature, and the heat generated is dumped into the ambient. This energy loss results in a low efficiency of the system, and when expanding the air, the expansion leads to a temperature drop reducing the mechanical output of the expansion turbines. To overcome this, fuel is burned to heat up the air prior to expansion. The fuel consumption causes a significant cost for the storage. Several suggestions have been made to store compression heat for later use during expansion and thereby avoid the use of fuel (so called Adiabatic CAES units), but no such units are in operation at present. The CAES system investigated in this project uses a different approach to avoid compression heat loss. The system uses a pre-compressed pressure vessel full of air. A liquid is pumped into the bottom of the vessel when charging and the same liquid is withdrawn through a turbine when discharging. In this case, the liquid works effectively as a piston compressing the gas in the vessel, hence the name &apos

  2. Engineering Model of High Pressure Moist Air

    OpenAIRE

    Hyhlík Tomáš

    2017-01-01

    The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept ...

  3. Pressure Scalings and Influence Region Research

    Science.gov (United States)

    2018-01-01

    AFRL-RQ-WP-TP-2018-0015 PRESSURE SCALINGS AND INFLUENCE REGION RESEARCH James H. Miller High Speed Systems Division...inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH... RESEARCH 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F 6. AUTHOR(S) James H. Miller 5d. PROJECT NUMBER

  4. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  5. Water-Based Pressure-Sensitive Paints

    Science.gov (United States)

    Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.

    2006-01-01

    Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).

  6. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  7. A retrospective study to determine the incidence of pressure ulcers in burn patients using an alternating pressure mattress.

    Science.gov (United States)

    Still, Joseph M; Wilson, Joan; Rinker, Connie; Law, Edward; Craft-Coffman, Beretta

    2003-08-01

    In immobilized patients, unrelieved pressure can create decubitus ulcers over bony prominences. Those burn patients who require prolonged bed rest, are prone to the development of such problems. Various methods of reducing pressure on these areas, including frequent turning and the use of air fluidized and low air loss beds, have been adopted to attempt to prevent the development of this complication. The Pegasus Renaissance alternating pressure mattress is such a device, intended to reduce the incidence of decubitus ulcers. It was introduced at our burn unit and evaluated over a 29-month period. During the study period, 186 (13.4%) of 1390 acutely burned patients, believed to be at high risk for the development of decubiti, were placed on this mattress. Other patients were treated in the standard hospital bed. Care was otherwise the same. No decubitus ulcers developed in any of the patients treated on the Pegasus Renaissance mattress.

  8. Radon mitigation with mechanical supply and exhaust ventilation adjusted by a pressure control unit

    International Nuclear Information System (INIS)

    Kokotti, H.; Keskikuru, T.; Kalliokoski, P.

    1993-01-01

    Effective ventilation and positive or low negative pressure indoors are suggested to low indoor radon levels. The aim of this study is to develop and to test an equipment, which makes it possible to achieve simultaneously effective ventilation and minimum outdoor-pressure difference. The unit includes mechanical supply and exhaust air fans, a exchanger and a pressure control unit in direct digital control (DDC), which adjusts continuously air exchange based on the pressure difference transmitter information. (orig.). (8 refs., 6 figs.)

  9. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.

    Science.gov (United States)

    Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas

    2018-03-01

    Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Nanoporous TiO{sub 2} electrode grown by laser ablation of titanium in air at atmospheric pressure and room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Białous, Anna [Polish Academy of Sciences, The Szewalski Institute, Photophysics Dept., 14 Fiszera St, 80-231 Gdańsk (Poland); Gazda, Maria [Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, 11/12 Narutowicza St, 80-233 Gdańsk (Poland); Grochowska, Katarzyna [Polish Academy of Sciences, The Szewalski Institute, Photophysics Dept., 14 Fiszera St, 80-231 Gdańsk (Poland); Atanasov, Petar; Dikovska, Anna; Nedyalkov, Nikolay [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Shouse 72, Sofia 1784 (Bulgaria); Reszczyńska, Joanna; Zaleska-Medynska, Adriana [University of Gdańsk, Faculty of Chemistry, 63 W. Stwosza St, 80-308 Gdańsk (Poland); Śliwiński, Gerard, E-mail: gerards@imp.gda.pl [Polish Academy of Sciences, The Szewalski Institute, Photophysics Dept., 14 Fiszera St, 80-231 Gdańsk (Poland)

    2016-02-29

    Recently, fabrication of the nanoporous TiO{sub 2} photoelectrode on metal foils by means of sputtering of the Ti film on preheated metal substrate followed by the TiO{sub 2} deposition (doctor blade technique) and sintering represents the frequently applied technique. This is despite the relatively complicated procedure and number of parameters to be controlled in order to fabricate films of required properties. In this work an approach is applied and discussed in which the nanoporous TiO{sub 2} electrode is fabricated under conditions similar to pulsed laser deposition but with the deposit formed directly on the ablated target at atmospheric pressure and room temperature. The titanium dioxide thin film is grown by ablation of the Ti foil with the nanosecond UV laser (266 nm) at fluence up to 1.5 J/cm{sup 2}. The rutile–anatase phase transformation takes place during this one-step process and no thermal pre-and post-treatment of the deposit is needed. In samples produced in air, the presence of mixed phases of the non-stoichiometric anatase (> 70%), rutile and negligible amount of TiN is consistently confirmed by the X-ray diffraction, energy-dispersive X-ray and Raman spectra. For applications of the reported films as electrode material in the third generation photovoltaic cells, the use of industrial lasers could significantly improve the process efficiency. - Highlights: • TiO{sub 2} films via laser ablation of Ti in air under standard temperature and pressure conditions • Nanoporous crystalline structure from one-step process • Anatase content > 70% in the mixed phase film.

  11. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    Science.gov (United States)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  12. Pressure ulcer prevention in high-risk postoperative cardiovascular patients.

    Science.gov (United States)

    Jackson, Melissa; McKenney, Teresa; Drumm, Jennifer; Merrick, Brian; LeMaster, Tamara; VanGilder, Catherine

    2011-08-01

    Little has been published about how to prevent pressure ulcers in severely debilitated, immobile patients in intensive care units. To present a possible prevention strategy for postoperative cardiovascular surgery patients at high risk for development of pressure ulcers. Staff chose to implement air fluidized therapy beds, which provide maximal immersion and envelopment as a measure for preventing pressure ulcers in patients who (1) required vasopressors for at least 24 hours and (2) required mechanical ventilation for at least 24 hours postoperatively. Only 1 of 27 patients had a pressure ulcer develop while on the air fluidized therapy bed (February 2008 through August 2008), and that ulcer was only a stage I ulcer, compared with 40 ulcers in 25 patients before the intervention. Patients spent a mean of 7.9 days on the mattress, and the cost of bed rental was approximately $18000, which was similar to the cost of treatment of 1 pressure ulcer in stage III or IV (about $40000) and was considered cost-effective.

  13. Experimental measurements of static pressure and pressure drop in a duct enclosing a seven wire-wrapped rod bundle

    International Nuclear Information System (INIS)

    Graca, M.C.; Ballve, H.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-01-01

    The friction factor and the static pressure distributions, in the axial and transversal directions, in the wall of the hexagonal duct, enclosing a seven wire-wrapped rod bundle, were experimentally measured, using an air opened loop. The Reynolds numbers are the range 10 3 - 5x10 4 . The friction factors are compared to existing correlations. The static pressure distributions show that the static pressure is not hydrostatic in the cross section of the flow. (Author) [pt

  14. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  15. Atmospheric Pressure and Onset of Episodes of Menière’s Disease - A Repeated Measures Study

    Science.gov (United States)

    Strobl, Ralf; Heinlin, Nina; Krause, Eike; Olzowy, Bernhard; Koppe, Christina; Grill, Eva

    2016-01-01

    Background External changes of air pressure are transmitted to the middle and inner ear and may be used therapeutically in Menière’s disease, one of the most common vertigo disorders. We analyzed the possible relationship of atmospheric pressure and other meteorological parameters with the onset of MD vertigo episodes in order to determine whether atmospheric pressure changes play a role in the occurrence of MD episodes. Methods Patients of a tertiary outpatient dizziness clinic diagnosed with MD were asked to keep a daily vertigo diary to document MD episodes (2004–2009). Local air pressure, absolute temperature and dew point temperature were acquired on an hourly basis. Change in meteorological parameters was conceptualized as the maximum difference in a 24 hour time frame preceding each day. Effects were estimated using additive mixed models with a random participant effect. We included lagged air parameters, age, sex, weekday and season in the model. Results A total of 56 persons (59% female) with mean age 54 years were included. Mean follow-up time was 267 days. Persons experienced on average 10.3 episodes during the observation period (median 8). Age and change in air pressure were significantly associated with vertigo onset risk (Odds Ratio = 0.979 and 1.010). We could not show an effect of sex, weekday, season, air temperature, and dew point temperature. Conclusions Change in air pressure was significantly associated with onset of MD episodes, suggesting a potential triggering mechanism in the inner ear. MD patients may possibly use air pressure changes as an early warning system for vertigo attacks in the future. PMID:27096752

  16. Effects of low-pressure air on oxygen contamination and lithium corrosion of a tantalum alloy, T-111, at 980 and 1260 C

    Science.gov (United States)

    Gahn, R. F.

    1974-01-01

    The effects were studied of low-pressure air on contamination and corrosion in the tantalum alloy T-111/lithium system at 980 and 1260 C. Capsules of T-111 containing lithium were exposed to six vacuum levels between 1 x 10 to the 8th power and 0.0003 torr by controlled air leakage into a vacuum system. Capsules exposed at 980 C and 0.0002 torr failed from intragranular oxidation. The remainder of the capsules completed the 96-hour tests. The depth of oxygen contamination was greater at 980 C than at 1260 C. Tests made at 0.0001 and 0.00001 torr levels caused large increases in the oxygen content of the T-111. Tests at 0.000001 torr or less produced no significant contamination. No lithium corrosion of the T-111 was observed under any of the conditions.

  17. Influence of corneal biomechanical properties on intraocular pressure differences between an air-puff tonometer and the Goldmann applanation tonometer.

    Science.gov (United States)

    Tranchina, Laura; Lombardo, Marco; Oddone, Francesco; Serrao, Sebastiano; Schiano Lomoriello, Domenico; Ducoli, Pietro

    2013-01-01

    To estimate the influence of corneal properties on intraocular pressure (IOP) differences between an air-puff tonometer (NT530P; Nidek) and the Goldmann applanation tonometer (Haag-Streit). The influence of central corneal thickness (CCT), keratometry, and Ocular Response Analyzer (Reichert) measurements of corneal viscoelasticity [corneal hysteresis (CH) and corneal resistance factor (CRF)] on IOP differences between tonometers was evaluated. The CRF was calculated to be the best predictor of the differences in IOP readings between tonometers (r2=0.23; Ptonometers. Corneal resistance to applanation induced by either contact or noncontact tonometers was calculated to be the most determinant factor in influencing IOP differences between applanation tonometers.

  18. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Ho, Kin-Fai; Lin, Lian-Yu; Chang, Ta-Yuan; Hong, Gui-Bing; Ma, Chi-Ming; Liu, I-Jung; Chuang, Kai-Jen

    2017-09-01

    The association of short-term air pollution filtration with cardiovascular health has been documented. However, the effect of long-term indoor air conditioner filtration on the association between air pollution and cardiovascular health is still unclear. We recruited 200 homemakers from Taipei and randomly assigned 100 of them to air filtration or control intervention; six home visits were conducted per year from 2013 to 2014. The participants under air filtration intervention during 2013 were reassigned to control intervention in 2014. The air pollution measurements consisted of particulate matter less than or equal to 2.5μm in diameter (PM 2.5 ) and total volatile organic compounds (VOCs); blood pressure was monitored for each participant during each visit. The following morning, blood samples were collected after air pollution monitoring. The blood samples were used to analyze biological markers, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and fibrinogen. Household information, including cleaning, cooking, and air conditioning, was collected by a questionnaire. Mixed-effects models were used to investigate the associations among air pollution measurements, blood pressure and biological markers. The results showed that increased levels of PM 2.5 and total VOCs were associated with increased hs-CRP, 8-OHdG and blood pressure. The health variables were higher among participants in the control intervention phase than among those in the air filtration intervention phase. We concluded that air pollution exposure was associated with systemic inflammation, oxidative stress and elevated blood pressure. The long-term filtration of air pollution with an air conditioner filter was associated with cardiovascular health of adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminova, Anna [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Vandrovcová, Marta [Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4 (Czech Republic); Shelemin, Artem [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Choukourov, Andrei; Hanuš, Jan [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Bačáková, Lucie [Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4 (Czech Republic); Slavínská, Danka; Biederman, Hynek [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic)

    2015-12-01

    Highlights: • Effect of atmospheric pressure DBD plasma on PET foils was investigated. • DBD treatment causes increase in surface density of O-containing functional groups. • DBD plasma causes increase of wettability, roughness and complex modulus of PET. • DBD treatment positively influences cells growth on PET. • Enhancement of cell growth on treated PET depends on the cell type. - Abstract: In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  20. Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

    International Nuclear Information System (INIS)

    Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang

    2015-01-01

    Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.

  1. Quantile Regression Analysis of the Distributional Effects of Air Pollution on Blood Pressure, Heart Rate Variability, Blood Lipids, and Biomarkers of Inflammation in Elderly American Men: The Normative Aging Study.

    Science.gov (United States)

    Bind, Marie-Abele; Peters, Annette; Koutrakis, Petros; Coull, Brent; Vokonas, Pantel; Schwartz, Joel

    2016-08-01

    Previous studies have observed associations between air pollution and heart disease. Susceptibility to air pollution effects has been examined mostly with a test of effect modification, but little evidence is available whether air pollution distorts cardiovascular risk factor distribution. This paper aims to examine distributional and heterogeneous effects of air pollution on known cardiovascular biomarkers. A total of 1,112 men from the Normative Aging Study and residents of the greater Boston, Massachusetts, area with mean age of 69 years at baseline were included in this study during the period 1995-2013. We used quantile regression and random slope models to investigate distributional effects and heterogeneity in the traffic-related responses on blood pressure, heart rate variability, repolarization, lipids, and inflammation. We considered 28-day averaged exposure to particle number, PM2.5 black carbon, and PM2.5 mass concentrations (measured at a single monitor near the site of the study visits). We observed some evidence suggesting distributional effects of traffic-related pollutants on systolic blood pressure, heart rate variability, corrected QT interval, low density lipoprotein (LDL) cholesterol, triglyceride, and intercellular adhesion molecule-1 (ICAM-1). For example, among participants with LDL cholesterol below 80 mg/dL, an interquartile range increase in PM2.5 black carbon exposure was associated with a 7-mg/dL (95% CI: 5, 10) increase in LDL cholesterol, while among subjects with LDL cholesterol levels close to 160 mg/dL, the same exposure was related to a 16-mg/dL (95% CI: 13, 20) increase in LDL cholesterol. We observed similar heterogeneous associations across low versus high percentiles of the LDL distribution for PM2.5 mass and particle number. These results suggest that air pollution distorts the distribution of cardiovascular risk factors, and that, for several outcomes, effects may be greatest among individuals who are already at high risk

  2. Indoor air pollution and its association with poor lung function, microalbuminuria and variations in blood pressure among kitchen workers in India: a cross-sectional study.

    Science.gov (United States)

    Singh, Amarnath; Kesavachandran, Chandrasekharan Nair; Kamal, Ritul; Bihari, Vipin; Ansari, Afzal; Azeez, Parappurath Abdul; Saxena, Prem Narain; Ks, Anil Kumar; Khan, Altaf Hussain

    2017-04-04

    The present study is an attempt to explore the association between kitchen indoor air pollutants and physiological profiles in kitchen workers with microalbuminuria (MAU) in north India (Lucknow) and south India (Coimbatore). The subjects comprised 145 control subjects, 233 kitchen workers from north India and 186 kitchen workers from south India. Information related to the personal and occupational history and health of the subjects at both locations were collected using a custom-made questionnaire. Worker lung function was measured using a spirometer. Blood pressure was monitored using a sphygmomanometer. Urinary MAU was measured using a urine analyzer. Indoor air monitoring in kitchens for particulate matter (PM), total volatile organic compounds (TVOC), carbon dioxide (CO 2 ) and carbon monoxide (CO) was conducted using indoor air quality monitors. The size and shape of PM in indoor air was assessed using a scanning electron microscope (SEM). Fourier transform infrared (FTIR) spectroscopy was used to detect organic or inorganic compounds in the air samples. Particulate matter concentrations (PM 2.5 and PM 1 ) were significantly higher in both north and south Indian kitchens than in non-kitchen areas. The concentrations of TVOC, CO and CO 2 were higher in the kitchens of north and south India than in the control locations (non-kitchen areas). Coarse, fine and ultrafine particles and several elements were also detected in kitchens in both locations by SEM and elemental analysis. The FTIR spectra of kitchen indoor air at both locations show the presence of organic chemicals. Significant declines in systolic blood pressure and lung function were observed in the kitchen workers with MAU at both locations compared to those of the control subjects. A higher prevalence of obstruction cases with MAU was observed among the workers in the southern region than in the controls (p workers in south India have lower lung capacities and a greater risk of obstructive and

  3. CFD application on IRWST hydrodynamic analysis during the sparger air venting

    International Nuclear Information System (INIS)

    Kim, Y. I.; Hwang, Y. D.; Kim, H. Y.; Bae, Y. Y.; Park, J. K.

    1998-01-01

    A numerical study was performed using preleased FLUENT V4.5 to investigate the applicability of the CFD model for IRWST hydrodynamic analysis during the sparger air venting. Transient calculations were performed with the compressible VOF model on the selected ABB-Atom Unit Cell Test data. This study was mainly focused on the simulation of the bubble formation process in the water pool and time varying pressure history during the air venting from the sparger. The simulated peak pressure was over-predicted in general, but the main frequency is in good agreement with the simulated data. It was shown that there was a strong dependence on the mass discharge rate of the air trapped in the vent line. The peak pressure acceptable for the conservative evaluation of the sparger performance was obtained by reducing the air discharge velocity. This indicates that the proper estimations of the air venting velocity consistent with the sparger design and operating conditions is essential for the application of FLUENT V4.5 to the sparger performance analysis of KNGR

  4. Air change. Ventilation requirements of closed rooms

    Energy Technology Data Exchange (ETDEWEB)

    Cords, W

    1988-04-01

    Closed rooms have to be ventilated in order to compensate influences changing the composition and quality of air. Details are given on the conditions and factors determining the required change of air as well as the design of ventilation systems. Reference is made to the respiratory consumption of oxygen, the increase of hazardous carbon dioxide contents causing headaches and indispositions, water vapor exhalations, body heat, odors, cold air coming in from outside, bodily heat losses, carbon dioxide limiting values, air speeds, and air pressures inside rooms. The humidity and temperatures of frequented rooms should keep within the maximum values. (HWJ).

  5. Modeling of air flow through a narrow crack

    International Nuclear Information System (INIS)

    Trojek, T.; Cechak, T.; Moucka, L.; Fronka, A.

    2004-01-01

    Radon transport in dwellings is governed to a significant extent by pressure differences and properties of transport pathways. A model of air flow through narrow cracks was created in order to facilitate prediction of air velocity and air flow. Theoretical calculations, based on numerical solution of a system of differential equations, were compared with measurements carried out on a window crack. (P.A.)

  6. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  7. Numerical analysis on flows in supersonic air intakes. Choonsoku kuki toriireguchi no nagare no suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, T.; Tamura, N.; Sekino, N.; Tsujimura, N. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1992-06-25

    By applying computational fluid dynamics (CFD) to a flow in the supersonic air intake of rocket, appropriateness of computational result was confirmed from a comparison with the wind tunnel test result. In order for the air intake type rocket to heighten the combustion efficiency of fuel and air, it is important to possibly minimize the total pressure loss of air which has been taken in and maintain the air flow rate. A numerical analysis was made through modeling the sectional shape of wind tunnel test body and analyzing the two-dimensional flow by Reynolds-averaged Navier-Stokes equations. The computational result of analysis coincided well with the pressure measurement result in wind tunnel test. Having elucidated the main factors of total pressure loss in a two-dimensionally curved flow passage, the CFD computation gave a possibility that the total pressure loss is considerably low against that passage if improved in shape. If simultaneously used with a characteristic curve method, the CFD computation made it possible to optimize the pressure recovery characteristics in the axially symmetric air intake. The CFD can be expected to be an effective method of designing the basic shape of supersonic air intake. 9 refs., 14 figs.

  8. New intraocular pressure measurement method using reflected pneumatic pressure from cornea deformed by air puff of ring-type nozzle.

    Science.gov (United States)

    Kim, Hyung Jin; Seo, Yeong Ho; Kim, Byeong Hee

    2017-01-01

    In this study, a non-contact type intraocular pressure (IOP) measuring system using reflected pneumatic pressure is proposed to overcome the disadvantages of existing measurement systems. A ring-type nozzle, a key component in the proposed system, is designed via computational fluid analysis. It predicts the reflected pneumatic pressure based on the nozzle exit angle and inner and outer diameters of the nozzle, which are 30°, 7 mm, and 9 mm, respectively. Performance evaluation is conducted using artificial eyes fabricated using polydimethylsiloxane with the specifications of human eyes. The IOP of the fabricated artificial eyes is adjusted to 10, 30, and 50 mm Hg, and the reflected pneumatic pressure is measured as a function of the distance between the ring-type nozzle and artificial eye. The measured reflected pneumatic pressure is high when the measurement distance is short and eye pressure is low. The cornea of an artificial eye is significantly deformed at a low IOP, and the applied pneumatic pressure is more concentrated in front of the ring-type nozzle because of the deformed cornea. Thus, the reflected pneumatic pressure at a low IOP has more inflows into the pressure sensor inserted inside the nozzle. The sensitivity of the output based on the IOP at measurement distances between 3-5 mm is -0.0027, -0.0022, -0.0018, -0.0015, and -0.0012. Sensitivity decreases as the measurement distance increases. In addition, the reflected pneumatic pressure owing to the misalignment at the measurement distances of 3-5 mm is not affected within a range of 0.5 mm. Therefore, the measurement range is acceptable up to a 1 mm diameter from the center of an artificial eye. However, the accuracy gradually decreases as the reflected pneumatic pressure from a misalignment of 1 mm or more decreases by 26% or more.

  9. 49 CFR 232.217 - Train brake tests conducted using yard air.

    Science.gov (United States)

    2010-10-01

    ... reduction of brake pipe air pressure at the same, or slower, rate as an engineer's brake valve. (b) The yard... 49 Transportation 4 2010-10-01 2010-10-01 false Train brake tests conducted using yard air. 232... Train brake tests conducted using yard air. (a) When a train air brake system is tested from a yard air...

  10. “A System for Automatically Maintaining Pressure in a Commercial Truck Tire”

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, John [The Goodyear Tire and Rubber Company, Akron, OH (United States)

    2017-07-07

    Under-inflated tires significantly reduce a vehicle’s fuel efficiency by increasing rolling resistance (drag force). The Air Maintenance Technology (“AMT”) system developed through this project replenishes lost air and maintains optimal tire cavity pressure whenever the tire is rolling in service, thus improving overall fuel economy by reducing the tire’s rolling resistance. The system consists of an inlet air filter, an air pump driven by tire deformation during rotation, and a pressure regulating device. Pressurized air in the tire cavity naturally escapes by diffusion through the tire and wheel, leaks in tire seating, and through the filler valve and its seating. As a result, tires require constant maintenance to replenish lost air. Since manual tire inflation maintenance is both labor intensive and time consuming, it is frequently overlooked or ignored. By automating the maintenance of optimal tire pressure, the tire’s contribution to the vehicle’s overall fuel economy can be maximized. The work was divided into three phases. The objectives of Phase 1, Planning and Initial Design, resulted in an effective project plan and to create a baseline design. The objectives for Phase 2, Design and Process Optimization, were: to identify finalized design for the pump, regulator and filter components; identify a process to build prototype tires; assemble prototype tires; test prototype tires and document results. The objectives of Phase 3, Design Release and Industrialization, were to finalize system tire assembly, perform release testing and industrialize the assembly process.

  11. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  12. A scalable pressure sensor based on an electrothermally and electrostatically operated resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Hafiz, Md Abdullah Al; Ilyas, Saad; Younis, Mohammad I.

    2017-01-01

    We present a pressure sensor based on the convective cooling of the air surrounding an electrothermally heated resonant bridge. Unlike conventional pressure sensors that rely on diaphragm deformation in response to pressure, the sensor does

  13. Support surfaces for pressure ulcer prevention: A network meta-analysis

    Science.gov (United States)

    Dumville, Jo C.; Cullum, Nicky

    2018-01-01

    Background Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. Objectives To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. Methods We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. Main results We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). Conclusions This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard

  14. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Science.gov (United States)

    Shi, Chunhu; Dumville, Jo C; Cullum, Nicky

    2018-01-01

    Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or

  15. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Directory of Open Access Journals (Sweden)

    Chunhu Shi

    Full Text Available Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult.To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness.We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence.We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR 0.42, 95% confidence intervals (CI 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively. The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence.This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was

  16. EXPERIMENTAL INVESTIGATION OF AN AIR CHARGED LOW POWERED STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    Can ÇINAR

    2004-01-01

    Full Text Available In this study, an air charged, low powered manufactured ? type Stirling engine was investigated experimentally. Tests were conducted at 800, 900 and 1000 °C hot source temperatures, 1, 1.5, 2, 2.5, 3, 3.5 bars air charge pressure. The variation of engine power depending on the charge pressure and hot source temperature for two different heat transfer area was investigated experimentally. Maximum output power was obtained at 1000 °C and 3 bars charge pressure as 58 W at 441 rpm. Engine speed was reached at 846 rpm without load.

  17. Noninvasive CPAP with face mask: comparison among new air-entrainment masks and the Boussignac valve.

    Science.gov (United States)

    Mistraletti, Giovanni; Giacomini, Matteo; Sabbatini, Giovanni; Pinciroli, Riccardo; Mantovani, Elena S; Umbrello, Michele; Palmisano, Debora; Formenti, Paolo; Destrebecq, Anne L L; Iapichino, Gaetano

    2013-02-01

    The performances of 2 noninvasive CPAP systems (high flow and low flow air-entrainment masks) were compared to the Boussignac valve in 3 different scenarios. Scenario 1: pneumatic lung simulator with a tachypnea pattern (tidal volume 800 mL at 40 breaths/min). Scenario 2: Ten healthy subjects studied during tidal breaths and tachypnea. Scenario 3: Twenty ICU subjects enrolled for a noninvasive CPAP session. Differences between set and effective CPAP level and F(IO(2)), as well as the lowest airway pressure and the pressure swing around the imposed CPAP level, were analyzed. The lowest airway pressure and swing were correlated to the pressure-time product (area of the airway pressure curve below the CPAP level) measured with the simulator. P(aO(2)) was a subject's further performance index. Lung simulator: Boussignac F(IO(2)) was 0.54, even if supplied with pure oxygen. The air-entrainment masks had higher swing than the Boussignac (P = .007). Pressure-time product correlated better with pressure swing (Spearman correlation coefficient [ρ] = 0.97) than with lowest airway pressure (ρ = 0.92). In healthy subjects, the high-flow air-entrainment mask showed lower difference between set and effective F(IO(2)) (P mask had lower swing than the Boussignac valve (P = .03) with similar P(aO(2)) increase. High-flow air-entrainment mask showed the best performance in human subjects. During high flow demand, the Boussignac valve delivered lower than expected F(IO(2)) and showed higher dynamic hyper-pressurization than the air-entrainment masks. © 2013 Daedalus Enterprises.

  18. The effect of reduced air density on streamer-to-leader transition and on properties of long positive leader

    International Nuclear Information System (INIS)

    Bazelyan, E M; Raizer, Yu P; Aleksandrov, N L

    2007-01-01

    New results of observations of the leader process in a pressure chamber are presented for reduced air pressures. The analysis of these data and observations of the leader discharge in peak regions shows that the length of the leader tip and some other characteristics vary by several times as pressure decreases from 1 to 0.3 atm, whereas, under the conditions considered, the leader velocity remains almost independent of air density, the leader current being the same. These data are used to extract relationships between discharge parameters. It is shown that, at reduced air densities, electric field in a 'young' section of the leader channel exceeds electric field in the streamer zone. Therefore, transition of the leader process to the final-jump phase is not inevitably followed by a breakdown of the gap for reduced pressures, as opposed to the discharge in atmospheric pressure air. The model suggested previously by the authors for the streamer-to- leader transition at atmospheric pressure is amended to take into account hydrodynamic expansion of the channel and used to simulate the process at a relative air density of 0.3. The calculated results are used to interpret the observations of the leader process at reduced air pressures

  19. Design of a Hydraulic Motor System Driven by Compressed Air

    Directory of Open Access Journals (Sweden)

    Jyun-Jhe Yu

    2013-06-01

    Full Text Available This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power. To evaluate the theoretical efficiency, the principle of balance of energy is applied. The theoretical efficiency of converting air into hydraulic energy is found to be a function of pressure; thus, the maximum converting efficiency can be determined. To confirm the theoretical evaluation, a prototype of the pneumatic hydraulic system is built. The experiment verifies that the theoretical evaluation of the system efficiency is reasonable, and that the layout of the system is determined by the results of theoretical evaluation.

  20. Numerical study on the influence of entrapped air bubbles on the time-dependent pore pressure distribution in soils due to external changes in water level

    Directory of Open Access Journals (Sweden)

    Ausweger Georg M.

    2016-01-01

    Full Text Available In practical geotechnical engineering soils below the groundwater table are usually regarded as a two-phase medium, consisting of solids and water. The pore water is assumed to be incompressible. However, under certain conditions soils below the groundwater table may exhibit a liquid phase consisting of water and air. The air occurs in form of entrapped air bubbles and dissolved air. Such conditions are named quasi-saturated and the assumption of incompressibility is no longer justified. In addition the entrapped air bubbles influence the hydraulic conductivity of soils. These effects are usually neglected in standard problems of geotechnical engineering. However, sometimes it is required to include the pore fluid compressibility when modelling the hydraulic behaviour of soils in order to be able to explain certain phenomena observed in the field. This is for example true for fast fluctuating water levels in reservoirs. In order to study these phenomena, numerical investigations on the influence of the pore fluid compressibility on the pore water pressure changes in a soil layer beneath a reservoir with fast fluctuating water levels were performed. Preliminary results of this study are presented and it could be shown that numerical analysis and field data are in good agreement.

  1. Comparison of effects of ProSeal LMA™ laryngeal mask airway cuff inflation with air, oxygen, air:oxygen mixture and oxygen:nitrous oxide mixture in adults: A randomised, double-blind study

    Directory of Open Access Journals (Sweden)

    Mona Sharma

    2016-01-01

    Full Text Available Background and Aims : Laryngeal mask airway (LMA cuff pressure increases when the air is used for the cuff inflation during oxygen: nitrous oxide (O 2 :N 2 O anaesthesia, which may lead to various problems. We compared the effects of different gases for ProSeal LMA™ (PLMA cuff inflation in adult patients for various parameters. Methods: A total of 120 patients were randomly allocated to four groups, according to composition of gases used to inflate the PLMA cuff to achieve 40 cmH 2 O cuff pressure, air (Group A, 50% O 2 :air (Group OA, 50% O 2 :N 2 O (Group ON and 100% O 2 (Group O. Cuff pressure, cuff volume and ventilator parameters were monitored intraoperatively. Pharyngolaryngeal parameters were assessed at 1, 2 and 24 h postoperatively. Statistical analysis was performed using ANOVA, Fisher′s exact test and step-wise logistic regression. Results: Cuff pressure significantly increased at 10, 15 and 30 min in Group A, OA and O from initial pressure. Cuff pressure decreased at 5 min in Group ON (36.6 ± 3.5 cmH 2 O (P = 0.42. PLMA cuff volume increased in Group A, OA, O, but decreased in Group ON (6.16 ± 2.8 ml [P < 0.001], 4.7 ± 3.8 ml [P < 0.001], 1.4 ± 3.19 ml [P = 0.023] and − 1.7 ± 4.9 ml [P = 0.064], respectively, from basal levels. Ventilatory parameters were comparable in all four groups. There was no significant association between sore throat and cuff pressure, with odds ratio 1.002. Conclusion: Cuff inflation with 50% O 2 :N 2 O mixture provided more stable cuff pressure in comparison to air, O 2 :air, 100% O 2 during O 2 :N 2 O anaesthesia. Ventilatory parameters did not change with variation in PLMA cuff pressure. Post-operative sore throat had no correlation with cuff pressure.

  2. Liquid air fueled open–closed cycle Stirling engine

    International Nuclear Information System (INIS)

    Xu, Weiqing; Wang, Jia; Cai, Maolin; Shi, Yan

    2015-01-01

    Highlights: • Energy of liquid air is divided into cryogenic energy and expansion energy. • Open–closed cycle Stirling mechanism is employed to improve efficiency. • The Schmidt theory is modified to describe temperature variation in cold space. - Abstract: An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, the added Stirling mechanism helps achieve its high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. On one hand, based on Stirling mechanism, gas in the hot space absorbs heat from atmosphere when expanding; gas in the cold space is cooled down by liquid air when compressed. Taking atmosphere as heat source and liquid air as heat sink, a closed Stirling cycle is formed. On the other hand, an exhaust port is set in the hot space. When expanding in the hot space, the vaporized gas is discharged through the exhaust port. Thus, an open cycle is established. To model and analyze the system, the Schmidt theory is modified to describe temperature variation in the cold space, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The results obtained from the model show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Its efficiency could be improved by reducing temperature difference between the regenerator and the cold/hot space, increasing the swept volume ratio, decreasing the liquid–gas ratio. To keep

  3. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  4. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, S.J., E-mail: f62rugas@uco.es [Departamento de Fisica, Campus de Rabanales, Edificio Einstein, Planta Baja, Universidad de Cordoba (Spain); Quintero, M.C.; Rodero, A. [Departamento de Fisica, Campus de Rabanales, Edificio Einstein, Planta Baja, Universidad de Cordoba (Spain)

    2011-02-15

    In this study, the destruction rate of a volatile waste destruction system based on a microwave plasma torch operating at atmospheric pressure was investigated. Atmospheric air was used to maintain the plasma and was introduced by a compressor, which resulted in lower operating costs compared to other gases such as argon and helium. To isolate the output gases and control the plasma discharge atmosphere, the plasma was coupled to a reactor. The effect of the gas flow rate, microwave power and initial concentration of compound on the destruction efficiency of the system was evaluated. In this study, trichloroethylene and carbon tetrachloride were used as representative volatile organic compounds to determine the destruction rate of the system. Based on the experimental results, at an applied microwave power less than 1000 W, the proposed system can reduce input concentrations in the ppmv range to output concentrations at the ppbv level. High air flow rates and initial concentrations produced energy efficiency values greater than 1000 g/kW h. The output gases and species present in the plasma were analysed by gas chromatography and optical emission spectroscopy, respectively, and negligible amounts of halogenated compounds resulting from the cleavage of C{sub 2}HCl{sub 3} and CCl{sub 4} were observed. The gaseous byproducts of decomposition consisted mainly of CO{sub 2}, NO and N{sub 2}O, as well as trace amounts of Cl{sub 2} and solid CuCl.

  5. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure.

    Science.gov (United States)

    Rubio, S J; Quintero, M C; Rodero, A

    2011-02-15

    In this study, the destruction rate of a volatile waste destruction system based on a microwave plasma torch operating at atmospheric pressure was investigated. Atmospheric air was used to maintain the plasma and was introduced by a compressor, which resulted in lower operating costs compared to other gases such as argon and helium. To isolate the output gases and control the plasma discharge atmosphere, the plasma was coupled to a reactor. The effect of the gas flow rate, microwave power and initial concentration of compound on the destruction efficiency of the system was evaluated. In this study, trichloroethylene and carbon tetrachloride were used as representative volatile organic compounds to determine the destruction rate of the system. Based on the experimental results, at an applied microwave power less than 1000 W, the proposed system can reduce input concentrations in the ppmv range to output concentrations at the ppbv level. High air flow rates and initial concentrations produced energy efficiency values greater than 1000 g/kW h. The output gases and species present in the plasma were analysed by gas chromatography and optical emission spectroscopy, respectively, and negligible amounts of halogenated compounds resulting from the cleavage of C(2)HCl(3) and CCl(4) were observed. The gaseous byproducts of decomposition consisted mainly of CO(2), NO and N(2)O, as well as trace amounts of Cl(2) and solid CuCl. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  7. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Asma [Independent University, Bangladesh, School of Engineering and Computer Science, Bashundhara, Dhaka (Bangladesh); Laroussi, Mounir [Old Dominion University, Department of Electrical and Computer Engineering, Norfolk, Virginia (United States); Pervez, Mohammad Rasel [Master Mind College, Department of Physics, Dhanmondi, Dhaka (Bangladesh)

    2013-06-15

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10{sup 11} cm{sup -3} and it reaches to the maximum of 10{sup 12} cm{sup -3}.

  8. A comparative pressure analysis of air flow between horizontal and V-Tail of UAV MALE of NACA0012H with speed variation

    OpenAIRE

    Riza Rahmat; Kurniawan Dicky; Wicaksono Arif Budi

    2018-01-01

    NACA0012H is an airfoil type that could be used for Unmanned Aerial Vehicle Medium Altitude Long Endurance. This experiment was used to analyze stress in the surface of Tail of UAV MALE that was caused by air flow. The experiment was conducted using Computational Fluid Dynamics Software. Two designs of tail, horizontal and V-tail, were considered to simulate pressure occurred on the surface of leading edge, chamber and trailing edge. The simulation was developed varying the speed of the UAV M...

  9. Gas heating dynamics during leader inception in long air gaps at atmospheric pressure

    International Nuclear Information System (INIS)

    Liu, Lipeng; Becerra, Marley

    2017-01-01

    The inception of leader discharges in long air gaps at atmospheric pressure is simulated with a thermo-hydrodynamic model and a detailed kinetic scheme for N 2 /O 2 /H 2 O mixtures. In order to investigate the effect of humidity, the kinetic scheme includes the most important reactions with the H 2 O molecule and its derivatives, resulting in a scheme with 45 species and 192 chemical reactions. The heating of a thin plasma channel in front of an anode electrode during the streamer to leader transition is evaluated with a detailed 1D radial model. The analysis includes the simulation of the corresponding streamer bursts, dark periods and aborted leaders that may occur prior to the inception of a propagating leader discharge. The simulations are performed using the time-varying discharge current in two laboratory discharge events of positive polarity reported in the literature as input. Excellent agreement between the simulated and the experimental time variation of the thermal radius for a 1 m rod-plate air gap discharge event reported in the literature has been found. The role of different energy transfer and loss mechanisms prior to the inception of a stable leader is also discussed. It is found that although a small percentage of water molecules can accelerate the vibrational-translational relaxation to some extent, this effect leads to a negligible temperature increase during the streamer-to-leader transition. It is also found that the gas temperature should significantly exceed 2000 K for the transition to lead to the inception of a propagating leader. Otherwise, the strong convection loss produced by the gas expansion during the transition causes a drop in the translational temperature below 2000 K, aborting the incepted leader. Furthermore, it is shown that the assumptions used by the widely-used model of Gallimberti do not hold when evaluating the streamer-to-leader transition. (paper)

  10. Transconjunctival orbital emphysema caused by compressed air injury: a case report.

    Science.gov (United States)

    Mathew, Sunu; Vasu, Usha; Francis, Febson; Nazareth, Colin

    2008-01-01

    Orbital emphysema following conjunctival tear in the absence of orbital wall fracture, caused by air under pressure is rare. Usually orbital emphysema is seen in facial trauma associated with damage to the adjacent paranasal sinuses or facial bones. To the best of our knowledge, there have been only eight reports of orbital emphysema following use of compressed air during industrial work. The air under pressure is pushed through the subconjunctival space into the subcutaneous and retrobulbar spaces. We present here a rare cause of orbital emphysema in a young man working with compressed air gun. Although the emphysema was severe, there were no orbital bone fracture and the visual recovery of the patient was complete without attendant complications.

  11. Reduced energy and volume air pump for a seat cushion

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, M.R.; Constantineau, E.J.; Groves, G.E.

    1997-08-19

    An efficient pump system is described for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers. 12 figs.

  12. Reduced energy and volume air pump for a seat cushion

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, Mark R. (Albuquerque, NM); Constantineau, Edward J. (Albuquerque, NM); Groves, Gordon E. (Tijeras, NM)

    1997-01-01

    An efficient pump system for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers.

  13. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    Science.gov (United States)

    Mraihi, A.; Merbahi, N.; Yousfi, M.; Abahazem, A.; Eichwald, O.

    2011-12-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV-visible-NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  14. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Mraihi, A; Merbahi, N; Yousfi, M; Abahazem, A; Eichwald, O

    2011-01-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV–visible–NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  15. Comparative Autoignition Trends in Butanol Isomers at Elevated Pressure

    KAUST Repository

    Weber, Bryan W.

    2013-03-21

    Autoignition experiments of stoichiometric mixtures of s-, t-, and i-butanol in air have been performed using a heated rapid compression machine (RCM). At compressed pressures of 15 and 30 bar and for compressed temperatures in the range 715-910 K, no evidence of a negative temperature coefficient region in terms of ignition delay response is found. The present experimental results are also compared with previously reported RCM data of n-butanol in air. The order of reactivity of the butanols is n-butanol > s-butanol ≈ i-butanol > t-butanol at the lower pressure but changes to n-butanol > t-butanol > s-butanol > i-butanol at higher pressure. In addition, t-butanol shows preignition heat release behavior, which is especially evident at higher pressures. To help identify the controlling chemistry leading to this preignition heat release, off-stoichiometric experiments are further performed at 30 bar compressed pressure, for t-butanol at φ = 0.5 and φ = 2.0 in air. For these experiments, higher fuel loading (i.e., φ = 2.0) causes greater preignition heat release (as indicated by greater pressure rise) than the stoichiometric or φ = 0.5 cases. Comparison of the experimental ignition delays with the simulated results using two literature kinetic mechanisms shows generally good agreement, and one mechanism is further used to explore and compare the fuel decomposition pathways of butanol isomers. Using this mechanism, the importance of peroxy chemistry in the autoignition of the butanol isomers is highlighted and discussed. © 2013 American Chemical Society.

  16. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate...

  17. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  18. The pressure gradient in the human respiratory tract

    Directory of Open Access Journals (Sweden)

    Chovancová Michaela

    2014-03-01

    Full Text Available Respiratory airways cause resistance to air flow during inhalation and exhalation. The pressure gradient is necessary to transport the air from the mount (or nose to pulmonary alveoli. The knowledge of pressure gradient (i.e. respiratory airways resistance is also needed to solve the question of aerosol deposition in the human respiratory tract. The obtained data will be used as boundary conditions for CFD simulations of aerosol transport. Understanding of aerosol transport in the human lungs can help us to determine the health hazard of harmful particles. On the other hand it can be used to set the conditions for transport of medication to the desirable place. This article deals with the description of the mathematical equations defining the pressure gradient and resistance in the bronchial three and describes the geometry used in the calculation.

  19. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  20. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...