WorldWideScience

Sample records for air preheaters

  1. Simple air collectors for preheating fresh air

    NARCIS (Netherlands)

    Hensen, J.L.M.; Wit, de M.H.; Ouden, den C.

    1984-01-01

    In dwellings with mechanical ventilation systems the fresh air can easily be preheated by means of simple solar air systems. These can be an integral part of the building facade or roof and the costs are expected to be low. By means of computer experiments a large number of systems were evaluated.

  2. Prediction of flame formation in highly preheated air combustion

    International Nuclear Information System (INIS)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool; Katsuki, Masashi

    2008-01-01

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  3. Prediction of flame formation in highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool [Pusan National University, Busan (Korea, Republic of); Katsuki, Masashi [Osaka University, Osaka (Japan)

    2008-11-15

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  4. Corrosion on air preheaters and economisers; Korrosion hos luftfoervaermare och ekonomisrar

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-05-15

    Combustion plants in Sweden are exposed to considerable stress regarding low temperature corrosion, and failures due to low temperature corrosion occur regularly. Particularly common is corrosion problems connected to air preheaters and economisers. The number of combustion plants having air preheaters and economisers is however large, and the result of a collection of experiences regarding corrosion on air preheaters and economisers therefore has the potential to give a broad knowledge base. The summary of collection of experiences that has been done here, complemented with a literature survey, is expected to give plant owners and plant constructors a valuable tool to prevent corrosion on the flue gas side of air preheaters and economisers. The choice of plants for the inquiry was made using a list from the Swedish Naturvaardsverket (Environmental Protection Agency) indicating the emissions of NO{sub x}gases from Swedish combustion plants. From that list mainly the plants with the largest emissions were chosen, resulting in a number of 30 plants. Depending on that most of the plants have several boilers, and that the connected tubes often have several economisers and air preheaters, the number of economisers and air preheaters in this experience collection is at least 85. The study was however not limited to economisers and air preheaters, but also experiences connected to corrosion of other units were collected when mentioned, and the most interesting information here is also included in the report. Also a number of the plants were visited to improve the basis of the report, e.g. by photographing the most interesting parts. As the insight of the extension of the problem increased, renewed interview rounds were made, and the last one was made in August 2011.

  5. Effect of air preheat temperature on the MILD combustion of syngas

    International Nuclear Information System (INIS)

    Huang, Mingming; Zhang, Zhedian; Shao, Weiwei; Xiong, Yan; Liu, Yan; Lei, Fulin; Xiao, Yunhan

    2014-01-01

    Highlights: • MILD combustion is achieved with reaction zone covering the entire combustion chamber. • Critical equivalence ratio for the occurrence of MILD combustion is identified. • MILD regime can be established for syngas fuel under air preheating conditions. - Abstract: The effect of air preheat temperature on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using numerical simulations and on global flame signatures, OH ∗ radicals distribution and exhaust emissions using experiments. The discrete and high speed air/fuel injections into the combustor is necessary for the establishment of MILD conditions, because they cause strong gas recirculation and form large mixing region between the air and fuel jets. The critical equivalence ratio above which MILD combustion occurred was identified. The MILD regime was established for syngas fuel under air preheating conditions with lean operational limit and suppressed NO x and CO emissions. In the MILD combustion regime, the air preheating resulted in higher NO x but lower CO emissions, while the increase of equivalence ratio led to the increase of NO x and the decrease of CO emissions

  6. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant

    International Nuclear Information System (INIS)

    Wang Hongyue; Zhao Lingling; Zhou Qiangtai; Xu Zhigao; Kim, Hyung Taek

    2008-01-01

    Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters

  7. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  8. Experimental and Modeling Investigation of the Effect of Air Preheat on the Formation of NOx in an RQL Combustor

    Science.gov (United States)

    Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.

    2012-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.

  9. Application of ground-to-air heat exchanger for preheating of supply air

    Science.gov (United States)

    Sorokins, Juris; Borodinecs, Anatolijs; Zemitis, Jurgis

    2017-10-01

    This study focuses on assessing the contribution of the passive ground-coupled air heat exchanger system to decreasing the energy consumption of air conditioning and ventilation systems for office buildings in the Latvian climate conditions. The theoretical part of the thesis deals with methods of office building ventilation, supply air preheating and heat recovery as well as particularities of using ground-coupled air heat exchangers, their design parameters and their joint impact on the thermal performance. The engineering project part includes a ventilation system for an office building with an integrated ground-coupled air heat exchanger. By simulating energy consumption of the ventilation system for a duration of one year, the thesis analyzes the contribution of the heat exchanger to the overall energy consumption, which totals 9.53 MWh and 4.02 MWh a year, according to the desired parameters of the indoor climate. The possible alternative heat recovery solutions are investigated to reach by European Regional Development Fund project Nr.1.1.1.1/16/A/048 “NEARLY ZERO ENERGY SOLUTIONS FOR UNCLASSIFIED BUILDINGS”.

  10. Instrumentation strategies for energy conservation in broiler barns with ventilation air solar pre-heaters

    Energy Technology Data Exchange (ETDEWEB)

    Cordeau, Sebastien; Barrington, Suzelle [Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore, Ste Anne de Bellevue, Quebec H9X 3V9 (Canada)

    2010-08-15

    At the present consumption rate, world fossil-fuel reserves are expected to be depleted by 2050 unless their consumption is optimized and supplemented with renewable energy sources. The objective of this project was to evaluate the performance of a simple data acquisition system installed to conduct an energy balance and identify energy saving strategies in two commercial broilers barns with ventilation air solar pre-heaters. Located near Montreal, Canada, the two identical barns were instrumented for inside and outside air conditions, ventilation rate and energy recovery by the solar air pre-heaters. Whereas the temperature, relative humidity and radiation sensors were reliable, inside air temperature stratification complicated energy balance analyses and broiler heat production rate calculations. Lack of room air mixing resulted in the loss of 25 and 15% of the generated heater load and recovered solar energy. The proper monitoring of all environmental conditions required their measurement every 5 rather than 20 min. Instead of using a data transmission service found to be unreliable in rural areas, all data loggers were downloaded onto a portable computer every 45 days during regular instrument maintenance. Accordingly, room air mixing is recommended to facilitate energy balance studies and improve the efficient use of heating energies. (author)

  11. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  12. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  13. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    Science.gov (United States)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  14. Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Franz; Nagle, Marcus; Leis, Hermann; Mueller, Joachim [Institute of Agricultural Engineering 440e, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart (Germany); Janjai, Serm [Department of Physics, Silpakorn University, Nakhon Pathom (Thailand); Mahayothee, Busarakorn [Department of Food Technology, Silpakorn University, Nakhon Pathom (Thailand); Haewsungcharoen, Methinee [Department of Food Engineering, Chiang Mai University, Chiang Mai (Thailand)

    2009-07-15

    Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 ({approx}US$ 1800 at US$ 1 THB 31). (author)

  15. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    OpenAIRE

    Zheng, Bin; Liu, Yongqi; Liu, Ruixiang; Meng, Jian; Mao, Mingming

    2015-01-01

    This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h) and catalytic oxidation bed average temperature (20°C to 560°C) within the preheated catalytic oxidation reactor. The pressure drop and res...

  16. Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air.

    Science.gov (United States)

    Guangul, Fiseha M; Sulaiman, Shaharin A; Ramli, Anita

    2012-12-01

    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The Effect of Air Preheat at Atmospheric Pressure on the Formation of NO(x) in the Quick-Mix Sections of an Axially Staged Combustor

    Science.gov (United States)

    Vardakas, M. A.; Leong, M. Y.; Brouwer, J.; Samuelsen, G. S.; Holdeman, J. D.

    1999-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of nitrogen oxides (NO(x)) in gas turbine systems. The success of this combustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and fuel-lean stages. Note that although these results were obtained from an experiment designed to study an RQL mixer, the link between mixing and NOx signatures is considerably broader than this application, in that the need to understand this link exists in most advanced combustors. The experiment reported herein was designed to study the effects of inlet air temperature on NO(x) formation in a mixing section. The results indicate that NO(x) emission is increased for all preheated cases compared to non-preheated cases. When comparing the various mixing modules, the affect of jet penetration is important, as this determines where NO(x) concentrations peak, and affects overall NO(x) production. Although jet air comprises 70 percent of the total airflow, the impact that jet air preheat has on overall NO(x) emissions is small compared to preheating both main and jet air flow.

  18. Experimental study of a single fuel jet in conditions of highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lille, Simon; Blasiak, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-04-01

    Highly Preheated Air Combustion (HPAC) is a technique to reduce consumption of fuel and decrease NO{sub x} formation in furnaces. The main change that occur in the furnace chamber is that the flow pattern of flue gases changes dramatically resulting in a more uniform heat transfer. The usefulness of regenerative combustion is very clear, but the advantages have so far been accompanied by high levels of pollutants, such as NO{sub x}. The combination of the regeneration technique and internal flue gas recirculation, thus decreasing NO{sub x} and keeping the other advantages, has made HPAC a very attractive combustion technology with application to heat treatment reheating and melting processes. This work gives an introduction to regenerative combustion with diluted air, including theory on flame stabilization. Furthermore, a description of a new test furnace is given with results from a parametric study and from tests using schlieren color visualization, direct photography, and laser Doppler anemometry. In the parametric study NO{sub x}-emission, CO-emission, lift-off, fluctuations, and some flame characteristics are related to nozzle diameter, oxygen concentration, and preheat temperature. For the schlieren technique and direct photography, both still and high-speed cameras were used.

  19. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  20. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  1. Products cooked in preheated versus non-preheated ovens. Baking times, calculated energy consumption, and product quality compared.

    Science.gov (United States)

    Odland, D; Davis, C

    1982-08-01

    Plain muffins, yellow cake, baked custard, apple pie, tuna casserole, frozen tuna casserole, cheese soufflé, and meat loaf were baked in preheated and non-preheated standard gas, continuous-clean gas, standard electric, and self-cleaning electric ovens. Products generally required 5 min. or less extra baking time when cooked in non-preheated rather than in preheated ovens. The variability in baking times often was less between preheated and non-preheated ovens than among oven types. Calculated energy consumption values showed that usually less energy was required to bake products in non-preheated than in preheated ovens; savings averaged about 10 percent. Few significant differences were found in physical measurements or eating quality either between preheated and non-preheated ovens or among oven types. Overall, for the products tested, findings confirmed that preheating the oven is not essential for good product quality and, therefore, is an unnecessary use of energy.

  2. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    Science.gov (United States)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  3. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  4. Regenerative heat exchanger for cowper combustion air preheating

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, R.; Otterbach, G.

    1986-01-13

    The waste gas leaving cowper units at a temperature of 200/sup 0/C to 300/sup 0/C was previously discharged unused into the atmosphere. By providing a suitable heat exchanger, the heat content of the waste gas can be used to preheat the combustion agents of cowpers to an extent allowing both to increase the efficiency of cowpers and to decrease the amount of rich gas required. The operating results confirm to a large extent the theoretical assumptions and calculations. One may therefore expect the entire investment to have been fully redeemed in a little more than two years. (orig.).

  5. Gravity mediated preheating

    International Nuclear Information System (INIS)

    Maity, Debaprasad

    2015-01-01

    In this work we propose a mechanism of natural preheating of our universe induced by the inflation field dependent effective mass term for the gravitational wave. For any single field inflationary model, the inflation must go through the oscillatory phase after the end of inflation. As has recently been shown, if the gravitational fluctuation has inflation dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflation though parametric resonance. Because of this large enhancement of the amplitude of the gravitational wave, we show that universe can be naturally pre-heated through a minimally coupled matter field with gravity. Therefore, during the pre-heating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflation. (author)

  6. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  7. Energy, exergy, environmental and economic analysis of industrial fired heaters based on heat recovery and preheating techniques

    International Nuclear Information System (INIS)

    Shekarchian, M.; Zarifi, F.; Moghavvemi, M.; Motasemi, F.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • 4-E analysis of a typical industrial grade fired heater unit is studied. • This analysis is accomplished for the first time in this study. • Heat recovery and air preheating lead to substantial reduction in the fuel consumption. • The company’s current costs are tremendously reduced by these methods. • The methods lead to mitigation in GHG emission and to reduction in the associated taxes. - Abstract: Fired heaters are ubiquitous in both the petroleum and petrochemical industries, due to it being vital in their day to day operations. They form major components in petroleum refineries, petrochemical facilities, and processing units. This study was commissioned in order to analyze the economic benefits of incorporating both heat recovery and air preheating methods into the existing fired heater units. Four fired heater units were analyzed from the energy and environmental point of views. Moreover, the second law efficiency and the rate of irreversibility were also analyzed via the exergy analysis. Both analyses was indicative of the fact that the heat recovery process enhances both the first and second law efficiencies while simultaneously assisting in the production of high and low pressure water steam. The implementation and usage of the process improves the thermal and exergy efficiencies from 63.4% to 71.7% and 49.4%, to 54.8%, respectively. Additionally, the heat recovery and air preheating methods leads to a substantial reduction in fuel consumption, in the realm of up to 7.4%, while also simultaneously decreasing heat loss and the irreversibility of the unit. Nevertheless, the results of the economic analysis posits that although utilizing an air preheater unit enhances the thermal performance of the system, due to the air preheater’s capital and maintenance costs, incorporating an air preheater unit to an existing fired heater is not economically justifiable. Furthermore, the results of the sensitivity analysis and payback period

  8. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    OpenAIRE

    Dolianitis Ioannis; Giannakopoulos Dionysios; Hatzilau Christina-Stavrula; Karellas Sotirios; Kakaras Emmanuil; Nikolova Evelina; Skarpetis Georgios; Christodoulou Nikolaos; Giannoulas Nikolaos; Zitounis Theodoros

    2016-01-01

    A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized containe...

  9. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  10. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  11. Preheating Mechanism in F-term SUSY Hybrid Inflation

    International Nuclear Information System (INIS)

    Mazumdar, Arindam

    2012-01-01

    Supersymmetric F-term hybrid inflation is one of the most popular models of inflation. Preheating process occurs in this model via two different mechanism. Firstly the standard parametric resonance and secondly, the tachyonic preheating. Generally tachyonic preheating dominates the parametric resonance for this type of models. For different values of the parameters of the theory dominance of tachyonic preheating can vary.

  12. 7 CFR 58.919 - Pre-heat, pasteurization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pre-heat, pasteurization. 58.919 Section 58.919... Procedures § 58.919 Pre-heat, pasteurization. When pasteurization is intended or required by either the vat... requirements outlined in § 58.128. Pre-heat temperatures prior to ultra pasteurization will be those that have...

  13. Hydrogen preheating through waste heat recovery of an open-cathode PEM fuel cell leading to power output improvement

    International Nuclear Information System (INIS)

    Mohamed, W.A.N.W.; Kamikl, M. Haziq M.

    2016-01-01

    Highlights: • A study on the effect of hydrogen preheating using waste heat for low temperature PEM fuel cells. • Theoretical, experimental and analytical framework was established. • The maximum electrical power output increases by 8–10% under specific operating conditions. • Open loop hydrogen supply gives a better performance than closed loop. • The waste heat utilization is less than 10% due to heat capacity limitations. - Abstract: The electrochemical reaction kinetics in a Polymer Electrolyte Membrane (PEM) fuel cell is highly influenced by the reactants supply pressures and electrode temperatures. For an open cathode PEM fuel cell stack, the power output is constrained due to the use of air simultaneously as reactant and coolant. Optimal stack operation temperatures are not achieved especially at low to medium power outputs. Based on the ideal gas law, higher reactant temperatures would lead to higher pressures and subsequently improve the reaction kinetics. The hydrogen supply temperature and its pressure can be increased by preheating; thus, slightly offsetting the limitation of low operating stack temperatures. The exit air stream offers an internal source of waste heat for the hydrogen preheating purpose. In this study, a PEM open-cathode fuel cell was used to experimentally evaluate the performance of hydrogen preheating based on two waste heat recovery approaches: (1) open-loop and (2) closed loop hydrogen flow. The stack waste heat was channelled into a heat exchanger to preheat the hydrogen line before it is being supplied (open loop) or resupplied (closed loop) into the stack. At a constant 0.3 bar hydrogen supply pressure, the preheating increases the hydrogen temperature in the range of 2–13 °C which was dependant on the stack power output and cathode air flow rates. The achievable maximum stack power was increased by 8% for the closed loop and 10% for the open loop. Due to the small hydrogen flow rates, the waste heat utilization

  14. Gravitational-wave mediated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Cormack, Sam, E-mail: samuel.c.cormack.gr@dartmouth.edu [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai (China); Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-04-09

    We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  15. Inflation After Preheating

    CERN Document Server

    Felder, G; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2000-01-01

    Preheating after inflation may lead to nonthermal phase transitions with symmetry restoration. These phase transitions may occur even if the total energy density of fluctuations produced during reheating is relatively small as compared with the vacuum energy in the state with restored symmetry. As a result, in some inflationary models one encounters a secondary, nonthermal stage of inflation due to symmetry restoration after preheating. We review the theory of nonthermal phase transitions and make a prediction about the expansion factor during the secondary inflationary stage. We then present the results of lattice simulations which verify these predictions, and discuss possible implications of our results for the theory of formation of topological defects during nonthermal phase transitions.

  16. Preheat operating experiences at the FFTF

    International Nuclear Information System (INIS)

    Tucker, W.R.

    1978-01-01

    The rather extensive test program performed on the FFTF preheat control system resulted in successful sodium fill of one secondary heat transport loop on July 2, 1978. The data obtained during testing and the attendant operating experience gained resulted in some design changes and provided the information necessary to fully characterize system performance. Temperature excursions and deviations from preset limits of only a minor nature were encountered during preheat for sodium fill. The addition of the rate alarm feature was beneficial to operation of the preheat system and allowed early detection and correction of impending excursions

  17. Low cost bare-plate solar air collector

    Science.gov (United States)

    Maag, W. L.; Wenzler, C. J.; Rom, F. E.; Vanarsdale, D. R.

    1980-09-01

    A low cost, bare plate solar collector for preheating ambient air was developed. This type of solar heating system would be applicable for preheating ventilation air for public buildings or other commercial and industrial ventilation requirements. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60 percent or greater with air preheat temperature uses up to 20 degrees for one of the prototypes. The economic analyses indicated that this type of solar system was economically viable. For the materials of construction and the type of fabrication and installation perceived, costs for the bare plate solar collector are attainable. Applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  18. Effect of inflation on parametric resonance during preheating

    International Nuclear Information System (INIS)

    Hirai, Shiro

    2002-01-01

    The effect of inflation on parametric resonance during preheating is investigated. The behaviour of the preheating scalar field during inflation is investigated and is found to become squeezed in cases ranging from small-scale cases to large-scale cases. However, the positive-frequency solution is usually adopted in the initial condition of the scalar field at preheating. Although large squeezing occurs during inflation, the difference in the comoving occupation number of particles n k between two initial conditions is shown to be not so large. Rather, the ratio n k varies from 0.2 to 5.0, depending on k. In order to clarify this situation, we introduce the squeeze formulation. The squeeze parameters r and φ are calculated not only in preheating, but also in inflation. Since the squeeze parameters are calculated from inflation to preheating, we can clarify the behaviour of the parametric resonance. In preheating, the behaviour of r is shown to remain relatively unchanged with respect to k; however, the squeeze angle φ displays different behaviour for large-scale cases and small-scale cases

  19. Behavior of the turbine - regenerating preheaters functional assembly

    International Nuclear Information System (INIS)

    Bigu, Melania; Nita, Iulian Pavel; Tenescu, Mircea

    2004-01-01

    In the classical calculation of pressure distribution in the turbine-regenerating heaters' assembly a uniform distribution of feedwater enthalpy rise at each regenerating preheating step is usually assumed. This is accurately enough as a basis of designing of the preheating installation operating at rated power regime. But at partial regimes this is not totally valid since the preheaters are already shaped and the quasi-equal distribution does not satisfy the equation system describing the heat transfer correlations in these installations. A more detailed analysis shows that pressure in the feeding line preheaters and the bleeding steam flow rates at the turbine outlets are described physically by solving simultaneously the equations of hydrodynamic flow through the turbine and the equations of the heat transfer in the preheaters of the feedwater preheating line. This work approaches this more accurate solving method at least from a theoretical standing point; two cases are illustrated in the annexes of the work: a case of a secondary circuit with a single regenerating inlet and a case with two regenerating inlets. A classical - Panzer method of transformation of a many regenerative stages scheme may lead to one or another of the above cases. (authors)

  20. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  1. Preheating in new inflation

    International Nuclear Information System (INIS)

    Desroche, Mariel; Felder, Gary N.; Kratochvil, Jan M.; Linde, Andrei

    2005-01-01

    During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We investigate preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long stage of decay of the inflaton field into other particles, which can be described by the perturbative approach to reheating after inflation. The resulting reheating temperature typically is rather low

  2. Thermal energy analysis of a lime production process: Rotary kiln, preheater and cooler

    International Nuclear Information System (INIS)

    Shahin, Hamed; Hassanpour, Saeid; Saboonchi, Ahmad

    2016-01-01

    Highlights: • The integrated model for lime production unit which includes cooler, preheater and rotary kiln is developed. • The effect of residence time in each section on efficiency is investigated. • Influence of material feed rate and excess air on specific fuel consumption is analyzed. • The significant effect of particle size on efficiency and specific fuel consumption is shown. - Abstract: In this paper, thermal energy analysis of three zones of a lime production process, which are preheater, rotary kiln and cooler, is performed. In order to perform a proper quantitative estimation, the system was modeled using energy balance equations including coupled heat transfer and chemical reaction mechanisms. A mathematical model was developed, and consequently, the thermal and chemical behavior of limestone was investigated. The model was verified using empirical data. After model confirmation, the variation of Specific Fuel Consumption (SFC) versus production rate was predicted and the optimum condition was determined. Subsequently, fuel consumption was calculated regarding to altered residence time inside each zone of lime production process, for a constant output. Results indicate that increasing the residence time inside each zone of lime production process, will enhance thermal efficiency and saves fuel consumption. Relative enhancement will be the same for different sizes of limestone. It was found that a 10-min increase in material residence time inside the preheater or rotary kiln can reduce fuel consumption by around two percent. Whereas, a 5-min increase in material residence time inside the cooler would be enough to obtain a similar result. Finally, the ratio of air-to-fuel and production rate are changed in such a way that the same product is achieved. The model predicts that lowering excess air from 15% to 10% leads to a 2.5% reduction of Specific Fuel Consumption (SFC).

  3. Pre-heating mitigates composite degradation.

    Science.gov (United States)

    Silva, Jessika Calixto da; Rogério Vieira, Reges; Rege, Inara Carneiro Costa; Cruz, Carlos Alberto dos Santos; Vaz, Luís Geraldo; Estrela, Carlos; Castro, Fabrício Luscino Alves de

    2015-01-01

    Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey's tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (pheated specimens presented higher radiopacity values than non-pre-heated specimens (pheated specimens (pheating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  4. Experimental investigation of laminar LPG-H{sub 2} jet diffusion flame with preheated reactants

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Mishra; P. Kumar [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-10-15

    This paper presents an experimental investigation of the effect of H{sub 2} addition on flame length, soot free length fraction (SFLF), flame radiant fraction, gas temperature and emission level in LPG-H{sub 2} composite fuel jet diffusion flame for two preheated cases namely, (i) preheated air and (ii) preheated air and fuel. Results show that the H{sub 2} addition leads to a reduction in flame length which may be caused due to an increased gas temperature. Besides this, the flame length is also observed to be reduced with increasing reactants temperature. The soot free length fraction (SFLF) increases as H{sub 2} is added to fuel stream. This might have been caused by decrease in the C/H ratio in the flame and is favorable to attenuate PAH formation rate. Interestingly, the SFLF is observed to be reduced with increasing reactants temperature that may be due to reduction in induction period of soot formation caused by enhanced flame temperature. Moreover, the decreased radiant heat fraction with hydrogen addition is pertinent with the reduction in soot concentration level. The reduction in NOx emission level with H{sub 2} addition to the fuel stream is also observed. On the contrary, NOx emission level is found to be enhanced significantly with reactant temperature that can be attributed to the increase in thermal NOx through Zeldovich mechanism. 31 refs., 4 figs., 2 tabs.

  5. On the generation of a non-gaussian curvature perturbation during preheating

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori; Lyth, David H. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Valenzuela-Toledo, Cesar A., E-mail: k.kohri@lancaster.ac.uk, E-mail: d.lyth@lancaster.ac.uk, E-mail: cavalto@ciencias.uis.edu.co [Escuela de Física, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia)

    2010-02-01

    The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ζ. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ζ based on the δN formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ζ, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual δN formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case.

  6. On the generation of a non-gaussian curvature perturbation during preheating

    International Nuclear Information System (INIS)

    Kohri, Kazunori; Lyth, David H.; Valenzuela-Toledo, Cesar A.

    2010-01-01

    The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ζ. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ζ based on the δN formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ζ, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual δN formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case

  7. Liquid-phase synthesis of vertically aligned carbon nanotubes and related nanomaterials on preheated alloy substrates

    Science.gov (United States)

    Yamagiwa, Kiyofumi

    2018-02-01

    Carbon nanotubes (CNTs) and related nanocarbons were selectively synthesized on commercially available alloy substrates by a simple liquid-phase technique. Fe- and Ni-rich stainless-steel (JIS SUS316L and Inconel®600, respectively) and Ni-Cu alloy (Monel®400) substrates were used for the synthesis, and each substrate was preheated in air to promote the self-formation of catalyst nanolayers on the surface. The substrates were resistance heated in ethanol without any addition of catalysts to grow CNTs. The yield of the CNTs effectively increased when the preheating process was employed. Highly aligned CNT arrays grew on the SUS316L substrate, while non-aligned CNTs and distinctive twisted fibers were observed on the other substrates. An Fe oxide layer was selectively formed on the preheated SUS316L substrate promoting the growth of the CNT arrays. Characterizations including cyclic voltammetry for the arrays revealed that the CNTs possess a comparatively defect-rich surface, which is a desirable characteristic for its application such as electrode materials for capacitors.

  8. Gravitational radiation from preheating with many fields

    International Nuclear Information System (INIS)

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier

    2010-01-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields

  9. Gravitational radiation from preheating with many fields

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier, E-mail: giblinj@kenyon.edu, E-mail: larry@gravity.phys.uwm.edu, E-mail: siemens@gravity.phys.uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin — Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2010-08-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.

  10. Method for pre-heating lmfbr type reactors

    International Nuclear Information System (INIS)

    Yokozawa, Atsushi; Kataoka, Hajime.

    1978-01-01

    Purpose: To enable pre-heating for the inside of the reactor container and the inside of the coolant recycling system with no additional facilities. Method: The coolant recycling system is composed of a heat exchanger, a mechanical pump, a check valve, a flow meter or the like and it is connected in series by way of a pipe line to a reactor container. The mechanical pump is used as a gas recycling device upon pre-heating and it is designed so that a blower such as a fan can be replaced for the impeller of the pump. The inside of the reactor container and the inside of the coolant recycling system is at first filled with an inert gas such as for use with cover gas. Then, nuclear fuels are loaded to attain criticality. Simultaneously, the blower is started and the control rods are operated while cooling the nuclear fuel with the inert gas thus to obtain heat required for pre-heating the pipe line or the like from the nuclear fuels. After the completion of the pre-heating, the liquid metal is charged. (Ikeda, J.)

  11. Powertrain preheating system of tracked hybrid electric vehicle in cold weather

    International Nuclear Information System (INIS)

    Wang, Rui; Wang, Yichun; Feng, Chaoqing; Zhang, Xilong

    2015-01-01

    In order to make sure that the heavy duty tracked vehicle can work in various conditions, especially severe cold weather, preheating system of powertrain should be adopted, and a novel preheating system is presented for the tracked hybrid electric vehicle (HEV) in which heat is generated by the low-speed drive motor. The new preheating system can meet the need of cold start without adding any additional device. The characteristic of heat generation by motor is tested when the rotor of motor is rotated in very low speed. The heat loss from power cabin to external environment has been simulated, and the relevant test has been done to verify the simulation results. Combining the characteristic of heat generation and heat loss situation about preheating system, the heat transfer model of preheating system was implemented by MATLAB. The total energy required for preheating in different ambient temperature was calculated by this model. The results showed that: the minimum heating power was 70 kW and energy required was about 180 MJ when the HEV worked in −46 °C. If lithium ferrous phosphate (LFP) battery was used in power system, the minimum battery capacity is about 290 A h. - Highlights: • A novel preheating method was proposed for heavy duty tracked HEV. • Thermal energy in preheating system is produced by the PMSM in driving system. • This method can achieve preheating target by its own components without any adding. • Analyzing low temperature performance of power battery and select its capacity.

  12. Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang Lifeng; Ye Wenhua; Li Yingjun

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)

  13. Susceptibility of CANDU steam generator preheater to cavitation erosion

    International Nuclear Information System (INIS)

    Laroche, S.L.; Sun, L.; Pietralik, J.M.

    2012-01-01

    In 2009, Darlington Steam Generator (SG) tube inspections revealed some tubes had degraded in the preheater. The tube degradation occurred at the clearance gap between the tube and the preheater baffle and reached up to 50% through-wall depth at the baffles in the middle portion of the preheater. The general pattern of the damage and the elemental composition analysis suggested that the degradation was the result of a hydrodynamic process, such as cavitation erosion. Cavitation erosion occurs when vapour bubbles exist or form in the flowing liquid and then these bubbles collapse violently in the vicinity of the wall. These bubbles collapse when steam bubbles contact water that is sufficiently subcooled, below the saturation temperature. In the gap between the tube and the preheater baffle, low flow will exist due to the pressure difference across the baffle plate. In addition, heat transfer occurs from the primary-side fluid to the secondary-side fluid within this clearance gap that is driven by the primary-to-secondary temperature difference. Factors, such as the tube position in the baffle hole and fouling, influence the local conditions and can cause subcooled boiling that result in cavitation. This paper presents a study of flow and heat transfer phenomena to determine the factors contributing to cavitation erosion in SG preheaters. The analysis used the THIRST1 code for a 3-dimensional thermalhydraulic simulation of the steam generators and the ANSYS FLUENT®2 code for detailed calculations of flow and heat transfer in the clearance gaps. This study identifies that tubes in the preheater region are susceptible to cavitation erosion and indicates that this area should be part of the station inspection program because, regardless of preheater design, some tubes may experience the thermalhydraulic conditions and undergo degradations similar to those observed for the tubes in Darlington SGs. (author)

  14. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh–Taylor Instability

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Wen-Hua, Ye; Ying-Jun, Li

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh–Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T) = κ SH [1 + f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001]. (physics of gases, plasmas, and electric discharges)

  15. Elevated temperature forming method and preheater apparatus

    Science.gov (United States)

    Krajewski, Paul E; Hammar, Richard Harry; Singh, Jugraj; Cedar, Dennis; Friedman, Peter A; Luo, Yingbing

    2013-06-11

    An elevated temperature forming system in which a sheet metal workpiece is provided in a first stage position of a multi-stage pre-heater, is heated to a first stage temperature lower than a desired pre-heat temperature, is moved to a final stage position where it is heated to a desired final stage temperature, is transferred to a forming press, and is formed by the forming press. The preheater includes upper and lower platens that transfer heat into workpieces disposed between the platens. A shim spaces the upper platen from the lower platen by a distance greater than a thickness of the workpieces to be heated by the platens and less than a distance at which the upper platen would require an undesirably high input of energy to effectively heat the workpiece without being pressed into contact with the workpiece.

  16. Gauge-preheating and the end of axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter; Sfakianakis, Evangelos I. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Giblin, John T. Jr.; Scully, Timothy R., E-mail: adshead@illinois.edu, E-mail: giblinj@kenyon.edu, E-mail: tscully2@illinois.edu, E-mail: esfaki@illinois.edu [Department of Physics, Kenyon College, 201 North College Rd, Gambier, Ohio 43022 (United States)

    2015-12-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m{sup 2φ2} inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.

  17. Gauge-preheating and the end of axion inflation

    International Nuclear Information System (INIS)

    Adshead, Peter; Sfakianakis, Evangelos I.; Giblin, John T. Jr.; Scully, Timothy R.

    2015-01-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m 2φ2 inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons

  18. Metric preheating and limitations of linearized gravity

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Tamburini, Fabrizio; Kaiser, David I.; Maartens, Roy

    1999-01-01

    During the preheating era after inflation, resonant amplification of quantum field fluctuations takes place. Recently it has become clear that this must be accompanied by resonant amplification of scalar metric fluctuations, since the two are united by Einstein's equations. Furthermore, this 'metric preheating' enhances particle production, and leads to gravitational rescattering effects even at linear order. In multi-field models with strong preheating (q>>1), metric perturbations are driven non-linear, with the strongest amplification typically on super-Hubble scales (k→0). This amplification is causal, being due to the super-Hubble coherence of the inflaton condensate, and is accompanied by resonant growth of entropy perturbations. The amplification invalidates the use of the linearized Einstein field equations, irrespective of the amount of fine-tuning of the initial conditions. This has serious implications on all scales - from large-angle cosmic microwave background (CMB) anisotropies to primordial black holes. We investigate the (q,k) parameter space in a two-field model, and introduce the time to non-linearity, t nl , as the timescale for the breakdown of the linearized Einstein equations. t nl is a robust indicator of resonance behavior, showing the fine structure in q and k that one expects from a quasi-Floquet system, and we argue that t nl is a suitable generalization of the static Floquet index in an expanding universe. Backreaction effects are expected to shut down the linear resonances, but cannot remove the existing amplification, which threatens the viability of strong preheating when confronted with the CMB. Mode-mode coupling and turbulence tend to re-establish scale invariance, but this process is limited by causality and for small k the primordial scale invariance of the spectrum may be destroyed. We discuss ways to escape the above conclusions, including secondary phases of inflation and preheating solely to fermions. The exclusion principle

  19. Spectroscopic Measurements of Target Preheating on OMEGA

    International Nuclear Information System (INIS)

    Elton, R.C.; Griem, H.R.; Iglesias, E.J.

    2000-01-01

    The preheating of laser-heated microballoon targets has been measured by time-resolved x-ray and extreme ultraviolet (euv) spectroscopy on the 30 kJ, 351 nm, 60-beam laser-fusion system at the University of Rochester Laboratory for Laser Energetics. Thin coatings of aluminum overcoated with magnesium served as indicators. both the sequence of the x-ray line emission and the intensity of euv radiation were used to determine a preheating peaking at ∼ 10 ns prior to onset of the main laser pulse, with a power density ≅1% of the main pulse. The measurements are supported by numerical modeling. Further information is provided by absorption spectra from the aluminum coating, backlighted by continuum from the heated surface. The exact source of the preheating energy remains unknown at present, but most likely arrives from early laser leakage through the system. The present target diagnostic is particularly useful when all beams cannot be monitored directly at all laser wavelengths

  20. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  1. Gravity waves from tachyonic preheating after hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dufaux, Jean-Francois [Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Felder, Gary [Department of Physics, Clark Science Center, Smith College, Northampton, MA 01063 (United States); Kofman, Lev [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Navros, Olga, E-mail: jeff.dufaux@uam.es, E-mail: gfelder@email.smith.edu, E-mail: kofman@cita.utoronto.ca, E-mail: navros@email.unc.edu [Department of Mathematics, University of North Carolina Chapel Hill, CB3250 Philips Hall, Chapel Hill, NC 27599 (United States)

    2009-03-15

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  2. Are black holes overproduced during preheating?

    International Nuclear Information System (INIS)

    Suyama, Teruaki; Tanaka, Takahiro; Bassett, Bruce; Kudoh, Hideaki

    2005-01-01

    We provide a simple but robust argument that primordial black hole production generically does not exceed astrophysical bounds during the resonant preheating phase after inflation. This conclusion is supported by fully nonlinear lattice simulations of various models in two and three dimensions which include rescattering but neglect metric perturbations. We examine the degree to which preheating amplifies density perturbations at the Hubble scale and show that, at the end of the parametric resonance, power spectra are universal, with no memory of the power spectrum at the end of inflation. In addition, we show how the probability distribution of density perturbations changes from exponential on very small scales to Gaussian when smoothed over the Hubble scale - the crucial length for studies of primordial black hole formation - hence justifying the standard assumption of Gaussianity

  3. Heat transfer intensification within tube recuperator by inserting secondary emitters inside air channels

    International Nuclear Information System (INIS)

    Sandor, P.; Soroka, B.; Kudryavtsev, V.; Zgurskyy, V.

    2009-01-01

    The research program was stipulated by reduction the service life of the tube recuperators of reheating furnaces at DUNAFERR metallurgical works in Dunaujvaros (Hungary) while replacement the natural gas by coke - oven gas as a furnace fuel took place and air preheating temperature was increased. The tests procedure consists in comparison of temperature and pressure distributions by air flows preheating under air moving inside the tube loops. Advantages of new recuperator design compared to ordinary one have been proven by validation of concept for adequacy to the testing results. The first tests have demonstrated enhancement of local specific and total heat fluxes transferred from flue gases to air flow within the MD tube loops in comparison with those for BD loops by 25 to 45% - dependence on temperature level within the heating (furnace) chamber and on preheated air flow rate. (author)

  4. Effects of Preheat on Weldments of NICOP Steel.

    Science.gov (United States)

    1983-09-01

    percent Nital solution (nitric acid (HNO3) ,* and ethanol (C2HsOH) which revealed the weld area, heat affected zone and base metal. A section 25.2mm (1 inch...electrolyte, consisting of 10% per- cloric acid (HC104 ) and 90% methanal (CH30H) was maintained at a temperature of -450C (-49 0 F). The Polipower was set...Preheated Weidment. N on Non-Preheated Weidment. Figre3. Loaton o McrhadnssTrvese I17 ~.4. .9 G° s s E 43 C 0 CL 44’ 00 Hda *SBUPJQH Figure 4. Comparison

  5. Effect of pre-heat treatment on a Fischer-Tropsch iron catalyst

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Ganguly, B.; Mahajan, V.; Huffman, G.P.; Davis, B.; O'Brien, R.J.; Xu Liguang; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy was used to investigate the effect of heating the Fischer-Tropsch catalyst 100 Fe/5 Cu/4.2 K/24 SiO 2 in two different atmospheres while ramping the temperature of the catalyst from room temperature to 280 C in 5.5 h prior to pretreatment of the catalyst. Preheating in H 2 /CO = 0.7 gave rise to an iron (Fe 2+ ) silicate, while preheating in helium resulted in the formation of ε'-carbide Fe 2.2 C. Iron oxides and χ-carbide Fe 5 C 2 were also formed in both preheat treatments. (orig.)

  6. Influence of preheating on grindability of coal

    Science.gov (United States)

    Lytle, J.; Choi, N.; Prisbrey, K.

    1992-01-01

    Enormous quantities of coal must be ground as feed to power generation facilities. The energy cost of grinding is significant at 5 to 15 kWh/ton. If grindability could be increased by preheating the coal with waste heat, energy costs could be reduced. The objective of this work was to determine how grindability was affected by preheating. The method was to use population balance grinding models to interpret results of grinding coal before and after a heat treatment. Simulation of locked cycle tests gave a 40% increase in grindability. Approximately 40% grinding energy saving can be expected. By using waste heat for coal treatment, the targeted energy savings would be maintained. ?? 1992.

  7. Effects of dissipation and fluctuation in preheating

    International Nuclear Information System (INIS)

    Vartuli, Rodrigo; Ramos, Rudnei de O.

    2006-01-01

    In this paper, we study the effects of dissipation and fluctuation in preheating after inflation. The effective equation of motion for a scalar field χ interacting with lighter fields is derived using the field theoretical method of closed time path due to Schwinger, winch is suitable to study nonequilibrium and time dependent process. In this derivation the emergent equation is intrinsically dissipative and stochastic in nature. The resulting dynamics is then studied both analytically and numerically. The results obtained are then discussed for then relevance for the reheating epoch right after an inflationary phase(preheating) for the case of the evolution of the scalar field χ and its decay into fermion. (author)

  8. Constraints on variations in inflaton decay rate from modulated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, Arindam [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-64 (India); Modak, Kamakshya Prasad, E-mail: arindam.mazumdar@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-64 (India)

    2016-06-01

    Modulated (p)reheating is thought to be an alternative mechanism for producing super-horizon curvature perturbations in CMB. But large non-gaussianity and iso-curvature perturbations produced by this mechanism rule out its acceptability as the sole process responsible for generating CMB perturbations. We explore the situation where CMB perturbations are mostly generated by usual quantum fluctuations of inflaton during inflation, but a modulated coupling constant between inflaton and a secondary scalar affects the preheating process and produces some extra curvature perturbations. If the modulating scalar field is considered to be a dark matter candidate, coupling constant between the fields has to be unnaturally fine tuned in order to keep the local-form non-gaussianity and the amplitude of iso-curvature perturbations within observational limit; otherwise parameters of the models have to be tightly constrained. Those constraints imply that the curvature perturbations generated by modulated preheating should be less than 15% of the total observed CMB perturbations. On the other hand if the modulating scalar field is not a dark matter candidate, parameters of the models could not be constrained, but the constraints on the maximum amount of the curvature perturbations coming from modulated preheating remain valid.

  9. Constraints on variations in inflaton decay rate from modulated preheating

    International Nuclear Information System (INIS)

    Mazumdar, Arindam; Modak, Kamakshya Prasad

    2016-01-01

    Modulated (p)reheating is thought to be an alternative mechanism for producing super-horizon curvature perturbations in CMB. But large non-gaussianity and iso-curvature perturbations produced by this mechanism rule out its acceptability as the sole process responsible for generating CMB perturbations. We explore the situation where CMB perturbations are mostly generated by usual quantum fluctuations of inflaton during inflation, but a modulated coupling constant between inflaton and a secondary scalar affects the preheating process and produces some extra curvature perturbations. If the modulating scalar field is considered to be a dark matter candidate, coupling constant between the fields has to be unnaturally fine tuned in order to keep the local-form non-gaussianity and the amplitude of iso-curvature perturbations within observational limit; otherwise parameters of the models have to be tightly constrained. Those constraints imply that the curvature perturbations generated by modulated preheating should be less than 15% of the total observed CMB perturbations. On the other hand if the modulating scalar field is not a dark matter candidate, parameters of the models could not be constrained, but the constraints on the maximum amount of the curvature perturbations coming from modulated preheating remain valid.

  10. Preheating with extra dimensions

    International Nuclear Information System (INIS)

    Tsujikawa, S.

    2000-01-01

    We investigate preheating in a higher-dimensional generalized Kaluza-Klein theory with a quadratic inflaton potential V(/φ) = /frac12 m 2 /φ 2 including metric perturbations explicitly. The system we consider is the multi-field model where there exists a dilaton field /σ which corresponds to the scale of compactifications and another scalar field /χ coupled to inflaton with the interaction frac12 g 2 /φ 2 /χ 2 +/g-tilde 2 /φ 3 /χ. In the case of g-tilde=0, we find that the perturbation of dilaton does not undergo parametric amplification while the χ field fluctuation can be enhanced in the usual manner by parametric resonance. In the presence of the /g-tilde 2 /φ 3 /χ coupling, the dilaton fluctuation in sub-Hubble scales is modestly amplified by the growth of metric perturbations for the large coupling g-tilde. In super-Hubble scales, the enhancement of the dilaton fluctuation as well as metric perturbations is weak, taking into account the backreaction effect of created /χ particles. We argue that not only is it possible to predict the ordinary inflationary spectrum in large scales but extra dimensions can be held static during preheating in our scenario. (author)

  11. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  12. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts

    Science.gov (United States)

    Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.

    Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.

  13. Feed water pre-heater with two steam spaces

    International Nuclear Information System (INIS)

    Tratz, H.; Kelp, F.; Netsch, E.

    1976-01-01

    A feed water pre-heater for the two stage heating of feed water by condensing steam, having a low installed height is described, which can be installed in the steam ducts of turbines of large output, as in LWRs in nuclear power stations. The inner steam space is closed on one side by the water vessel, while the tubes of the inner steam space go straight from the water vessel, and the tubes of the outer steam space are bent into a U shape and open out into the water vessel. The two-stage preheater is thus surrounded by feedwater in two ways. (UWI) [de

  14. Theory and numerics of gravitational waves from preheating after inflation

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Kofman, Lev; Bergman, Amanda; Felder, Gary; Uzan, Jean-Philippe

    2007-01-01

    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity-wave spectrum builds up with time and find that the amplitude and the frequency of its peak depend in a relatively simple way on the characteristic spatial scale amplified during preheating. We then estimate the peak frequency and amplitude of the spectrum produced in two models of preheating after hybrid inflation, which for some parameters may be relevant for gravity-wave interferometric experiments

  15. Experimental investigation and optimisation of burner systems for glass melting ends with regenerative air preheating. Final report; Experimentelle Untersuchung und Optimierung von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Scherello, A.; Flamme, M.; Kremer, H.

    2000-02-15

    The project comprised experiments on burner systems for glass melting ends with regenerative air preheating for the purpose of optimisation. The experimental set-up was to reflect realistic conditions. In the first stage of the investigations, modern burner systems were installed in a GWI test facility and investigated. [German] Ziel des oben genannten Forschungsvorhabens war die Durchfuehrung experimenteller Untersuchungen von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung sowie deren Optimierung. Dazu war es notwendig, einen experimentellen Aufbau zu realisieren, mit dessen Hilfe die Stroemungs-, Mischungs- und Umsetzungsphaenomene von Glasschmelzoefen realistisch nachgestellt und aussagekraeftige Untersuchungen durchgefuehrt werden koennen. In einem ersten Untersuchungsschritt wurden moderne Brennerlanzen an der GWI-Versuchsanlage installiert und untersucht. (orig.)

  16. DEFROST: a new code for simulating preheating after inflation

    International Nuclear Information System (INIS)

    Frolov, Andrei V

    2008-01-01

    At the end of inflation, dynamical instability can rapidly deposit the energy of homogeneous cold inflaton into excitations of other fields. This process, known as preheating, is rather violent, inhomogeneous and non-linear, and has to be studied numerically. This paper presents a new code for simulating scalar field dynamics in an expanding universe written for that purpose. Compared to available alternatives, it significantly improves both the speed and the accuracy of calculations, and is fully instrumented for 3D visualization. We reproduce previously published results on preheating in simple chaotic inflation models, and further investigate non-linear dynamics of the inflaton decay. Surprisingly, we find that the fields do not 'want' to thermalize in quite the way that one would think. Instead of directly reaching equilibrium, the evolution appears to be stuck in a rather simple but quite inhomogeneous state. In particular, a one-point distribution function of total energy density appears to be universal among various two-field preheating models, and is exceedingly well described by a log-normal distribution. It is tempting to attribute this state to scalar field turbulence

  17. Preheating of tap water with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Granum, H; Raaen, H

    1992-05-05

    In 1991 SINTEF Architecture and Building Technology won the second prize in 'The Nordic Competition for Low Energy Buildings' with a project proposal named 'LOWe'. The paper gives a description of the energy-saving features of this project, particularly the use of a solar collector for preheating of tap water. Compared with the economic profitability of other saving efforts in the project, such as good thermal insulation and efficient heat recovering system, the system for solar preheating of tap water does not seem very attractive for the time being. Loose estimates indicate a cost of close of NOK 1.00 per kWh for the produced energy in the solar collector, while the present price for electricity in Norway is about NOK 0.50 per kWh. Compared with a heat pump solution however the energy cost is not unreasonable.

  18. Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness

    Science.gov (United States)

    Baek, Gyeong Yun; Lee, Ki Yong; Park, Sang Hu; Shim, Do Sik

    2017-11-01

    This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes in the metallurgical and mechanical properties of the high-speed tool steel M4 deposited on an AISI D2 substrate with changes in the substrate preheating temperature. Five preheating temperatures (100-500 °C; interval of 100 °C) were selected, and the changes in the temperature of the substrate during deposition were observed. As the preheating temperature of the substrate was increased, the temperature gradient between the melting layer and the substrate decreased; this prevented the formation of internal cracks, owing to thermal stress relief. Field-emission scanning electron microscopy showed that a dendritic structure was formed at the interface between the deposited layer and the substrate while a cellular microstructure was formed in the deposited layer. As the preheating temperature was increased, the sizes of the cells and precipitated carbides also increased. Furthermore, the hardness increased slightly while the strength and toughness decreased. Moreover, the tensile and impact properties deteriorated rapidly at excessively high preheating temperatures (greater than 500 °C). The results of this study can be used as preheating criteria for achieving the desired mechanical properties during the hardfacing of dies and molds.

  19. The effect of preheating on the IRSL signal from feldspar

    DEFF Research Database (Denmark)

    Murray, A.S.; Buylaert, J.P.; Thomsen, Kristina Jørkov

    2009-01-01

    between the loss of blue IRSL and TL signals with preheating, and the effect of prior IRSL on the TL signal. Using IRSL measured at 50 °C and a SAR protocol, we then examine the dependence on preheat temperature of equivalent dose (De), laboratory fading rate (g), and the resulting luminescence age, from...... is consistent with a kinetic analysis of sensitivity-corrected IRSL data. The corollary to our observations is that shallow (unstable) traps do not give rise to a significant IRSL signal....

  20. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  1. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    Science.gov (United States)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  2. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  3. Efficiency of the pre-heater against flow rate on primary the beta test loop

    International Nuclear Information System (INIS)

    Edy Sumarno; Kiswanta; Bambang Heru; Ainur R; Joko P

    2013-01-01

    Calculation of efficiency of the pre-heater has been carried out against the flow rate on primary the BETA Test Loop. BETA test loop (UUB) is a facilities of experiments to study the thermal hydraulic phenomenon, especially for thermal hydraulic post-LOCA (Lost of Coolant Accident). Sequences removal on the BETA Test Loop contained a pre-heater that serves as a getter heat from the primary side to the secondary side, determination of efficiency is to compare the incoming heat energy with the energy taken out by a secondary fluid. Characterization is intended to determine the performance of a pre-heater, then used as tool for analysis, and as a reference design experiments. Calculation of efficiency methods performed by operating the pre-heater with fluid flow rate variation on the primary side. Calculation of efficiency on the results obtained that the efficiency change with every change of flow rate, the flow rate is 71.26% on 163.50 ml/s and 60.65% on 850.90 ml/s. Efficiency value can be even greater if the pre-heater tank is wrapped with thermal insulation so there is no heat leakage. (author)

  4. Enhanced preheating after multi-field inflation: on the importance of being special

    International Nuclear Information System (INIS)

    Battefeld, Thorsten; Eggemeier, Alexander; Giblin, John T. Jr.

    2012-01-01

    We discuss preheating after multi-field inflation in the presence of several preheat matter fields that become light in the vicinity of (but not at) the inflatons' VEV, at distinct extra-species-points (ESP); this setup is motivated by inflationary models that include particle production during inflation, e.g. trapped inflation, grazing ESP encounters or modulated trapping, among others. While de-phasing of inflatons tends to suppress parametric resonance, we find two new effects leading to efficient preheating: particle production during the first in-fall (efficient if many preheat matter fields are present) and a subsequent (narrow) resonance phase (efficient if an ESP happens to be at one of several distinct distances from the inflatons' VEV). Particles produced during the first in-fall are comprised of many species with low occupation number, while the latter are made up of a few species with high occupation number. We provide analytic descriptions of both phases in the absence of back-reaction, which we test numerically. We further perform lattice simulations to investigate the effects of back-reaction. We find resonances to be robust and the most likely cause of inflaton decay in multi-field trapped inflation if ESP distributions are dense

  5. Effect of pre-heating on the viscosity and microhardness of a resin composite.

    LENUS (Irish Health Repository)

    Lucey, S

    2010-04-01

    The effect of pre-heating resin composite on pre-cured viscosity and post-cured surface hardness was evaluated. Groups of uncured specimens were heated to 60 degrees C and compared with control groups (24 degrees C) with respect to viscosity and surface hardness. Mean (SD) viscosities of the pre-heated specimens (n = 15) were in the range of 285 (13)-377 (11) (Pa) compared with 642 (35)-800 (23) (Pa) at ambient temperature. There was a statistically significant difference between the two groups (P < 0.001). Mean (SD) Vickers microhardness (VHN) of the pre-heated group (n = 15) was 68.6 (2.3) for the top surface and 68.7 (1.8) for the bottom surface measured at 24 h post curing (specimen thickness = 1.5 mm). The corresponding values for the room temperature group were 60.6 (1.4) and 59.0 (3.5). There was a statistically significant difference between corresponding measurements taken at the top and bottom for the pre-heated and room temperature groups (P < 0.001). There was no significant difference between top and bottom measurements within each group. Pre-heating resin composite reduces its pre-cured viscosity and enhances its subsequent surface hardness. These effects may translate as easier placement together with an increased degree of polymerization and depth-of-cure.

  6. Preheat-induced signal enhancement in the infrared stimulated luminescence of young and bleached sediment samples

    International Nuclear Information System (INIS)

    Richardson, C.A.

    2000-01-01

    Natural and laboratory bleached surface and young samples of potassium feldspar sand separates and polymineral silt had their infrared stimulated luminescence (IRSL) signal measured before and after preheating at 220 deg. C for 10 min or 160 deg. C for 16 h. For both preheats, the laboratory bleached sand samples underwent a signal enhancement which was stable with laboratory storage. The youngest samples also showed natural signal enhancement. The silt sample showed no recuperation of bleached signal on preheating, but some in the natural signal. A range of filtered bleaches was applied to one surface sand sample. Signal levels before and after preheating were reduced by filtering out the UV from the bleaching spectrum. The unfiltered bleach, however, most closely reproduced the behaviour of the natural sample

  7. Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine

    Science.gov (United States)

    Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.

    2018-01-01

    The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.

  8. Preliminary studies of using preheated carrier gas for on-line membrane extraction of semivolatile organic compounds.

    Science.gov (United States)

    Liu, Xinyu; Pawliszyn, Janusz

    2007-04-01

    In this paper, we present results for the on-line determination of semivolatile organic compounds (SVOCs) in air using membrane extraction with a sorbent interface-ion mobility spectrometry (MESI-IMS) system with a preheated carrier (stripping) gas. The mechanism of the mass transfer of SVOCs across a membrane was initially studied. In comparison with the extraction of volatile analytes, the mass transfer resistance that originated from the slow desorption from the internal membrane surface during the SVOC extraction processes should be taken into account. A preheated carrier gas system was therefore built to facilitate desorption of analytes from the internal membrane surface. With the benefit of a temperature gradient existing between the internal and external membrane surfaces, an increase in the desorption rate of a specific analyte at the internal surface and the diffusion coefficient within the membrane could be achieved while avoiding a decrease of the distribution constant on the external membrane interface. This technique improved both the extraction rate and response times of the MESI-IMS system for the analysis of SVOCs. Finally, the MESI-IMS system was shown to be capable of on-site measurement by monitoring selected polynuclear aromatic hydrocarbons emitted from cigarette smoke.

  9. Enhanced preheating after multi-field inflation: on the importance of being special

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Thorsten; Eggemeier, Alexander [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Goettingen (Germany); Giblin, John T. Jr., E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: a.eggemeier@stud.uni-goettingen.de, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, Gambier, OH 43022 (United States)

    2012-11-01

    We discuss preheating after multi-field inflation in the presence of several preheat matter fields that become light in the vicinity of (but not at) the inflatons' VEV, at distinct extra-species-points (ESP); this setup is motivated by inflationary models that include particle production during inflation, e.g. trapped inflation, grazing ESP encounters or modulated trapping, among others. While de-phasing of inflatons tends to suppress parametric resonance, we find two new effects leading to efficient preheating: particle production during the first in-fall (efficient if many preheat matter fields are present) and a subsequent (narrow) resonance phase (efficient if an ESP happens to be at one of several distinct distances from the inflatons' VEV). Particles produced during the first in-fall are comprised of many species with low occupation number, while the latter are made up of a few species with high occupation number. We provide analytic descriptions of both phases in the absence of back-reaction, which we test numerically. We further perform lattice simulations to investigate the effects of back-reaction. We find resonances to be robust and the most likely cause of inflaton decay in multi-field trapped inflation if ESP distributions are dense.

  10. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  11. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  12. Measurement of preheat in aluminium target in indirect drive using the SGIII prototype facilities

    International Nuclear Information System (INIS)

    Zhang, C; Zheng, J; Wang, Z B; Liu, H; Peng, X S; Wang, F; Ding, Y K

    2016-01-01

    The velocity interferometer system for any reflector (VISAR) is used to demonstrate preheat effect in aluminium in indirect drive. The rear surface motion prior to shock front was observed and compared with a multi-group calculation. By properly adjusting the hard x-ray portion of the radiation source, the calculated rear surface motion fits well with the experimental results, which gives us confidence to predict the preheated temperature of the sample by hard x-rays. Further, the effect of hohlraum geometry is compared and discussed experimentally. The result suggests gas-filled hohlraum or hohlraum with low Z substrates should be considered to further reduce preheating. (paper)

  13. Calculation and design of natural gas preheater equipments. Berechnung und Auslegung von Erdgas-Vorwaermeanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fasold, H G [Ruhrgas AG, Essen (Germany); Wahle, H N [Ruhrgas AG, Essen (Germany)

    1994-04-01

    A greatly simplified model of a regulating station - consisting of the station components ''preheater'' and ''control unit'' - is used for the calculation and design of natural gas preheating plants. It is hereby possible to calculate the Joule-Thomson effect which occurs on the expansion of natural gas in the controller, the resulting drop in temperature and the thermal output required to compensate this which is to be supplied to the gas flow by the preheating plant. The calculation method and procedure are explained using a programming flowchart. The computational model presented was converted into a personal computer program, whose functioning is elucidated using a numerical example. (orig.)

  14. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  15. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin

    Directory of Open Access Journals (Sweden)

    Matthias Richard Kramer

    2016-01-01

    Full Text Available To test the impact of preheating (25, 37, 54, or 68 °C of TetricEvoCeram (TEC, FiltekSupremeXT (FSXT, and Venus (V on flexural strength (FS, shear bond strength (SBS and interfacial tension (IFT. FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC. SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05. Preheated TEC (37–68 °C showed higher FS compared to the control-group (25 °C (p < 0.001. FSXT presented higher FS than TEC (p < 0.001. For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015. TEC showed higher values than V and FSXT (p < 0.001. IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001.

  16. Reproducibility of LiF:Mg, Cup thermoluminescent dosimeter on kilo voltage and megavoltage photon beam using different preheat rate:A glow curve study

    International Nuclear Information System (INIS)

    Mohd Fahmi Mohd Yusof; Robert, T.S.B.; Puteri Norkhatijah Abdul Hamid; Nor Shazleen Abdul Shukor; Mohd Sazarman Mohd Salleh

    2013-01-01

    Full-text: Post-irradiation annealing or preheat of the LiF based TLD prior readout is commonly practiced for routine dosimetry to eliminate low temperature glow peaks. The aim of this study is to determine the effect of different preheating rate technique prior readout on the reproducibility and glow curve structure of LiF:Mg, Cu, P or TLD-1OOH exposed to low (109kVp) energy and high energy (6MV) photon beam. TLD chips were read after 24 hours of irradiation with three different preheat techniques; no preheat, low preheat rate (100 degree Celsius/ 10 minutes) and high preheat rate (135 degree Celsius/ 10 seconds) and reproducibility of TL signals were assessed in term of Standard Deviation (SD) and glow curve peaks. The high preheat rate technique was the most reproducible method for low energy photon with 1.05 % of mean reproducibility followed by low preheat rate (1.16 %) and no-preheat (1.33 %) techniques. The high preheat rate techniques was also the most reproducible method for high energy photon with 0.767 % of mean reproducibility as compared to low preheat rate (1.281 %). However the high preheat technique record highest TL signal lost with 10.35 % and 6.04 % for 24 and 72 hours of delayed TLD readout with respectively compared to 9.27 % and 4.51 % for 24 and 72 hours by low preheat rate. The low preheat was found to be optimal to eliminate low peaks (peak 1 and 2) but enable to remove peak 3 as it was shifted up word to combine with the main peak 4 of TL glow peak. It can be concluded that the reproducibility and structure of glow curve was strongly influenced by preheat technique prior readout. (author)

  17. Plasma formation and target preheating by prepulse of PW laser light

    Science.gov (United States)

    Sentoku, Yasuhiko; Iwata, Natsumi; Koga, James; Dover, Nicholas; Nishiuchi, Mamiko

    2017-10-01

    An intense short pulse laser with intensity over 1021 W/cm2 has become available, i.e. J-KAREN-P at QST. Although the contrast of the short pulse is improved to be of the order of 10-11, there is an unavoidable prepulse, which has multiple spikes (ps) on top of an exponential profile with intensity greater than 1014 W/cm2 about 50 ps in front of the main pulse. The prepulse preheats the target and also produces tenuous plasmas in front of a target before the main pulse arrives. It is critical to understand such preheating of the target, where the nonlocal heat transport is essential at intensity >1014 W/cm2, since the target condition might totally change before the interaction with the main pulse. Using a hydro code, FLASH, and a collisional particle-in-cell code, PICLS, we study the preplasma formation and target preheating over tens of picoseconds timescale, and discuss the prepulse effects on the main pulse interaction. Work supported by the JSPS KAKENHI under Grant No. JP15K21767.

  18. From (p)reheating to nucleosynthesis

    International Nuclear Information System (INIS)

    Jedamzik, Karsten

    2002-01-01

    This paper gives a brief qualitative description of the possible evolution of the early universe between the end of an inflationary epoch and the end of big-bang nucleosynthesis. After a general introduction, establishing the minimum requirements cosmologists impose on this cosmic evolutionary phase, namely, successful baryogenesis, the production of cosmic dark matter and successful light-element nucleosynthesis, a more detailed discussion on some recent developments follows. This latter includes the physics of preheating, the putative production of (alternative) dark matter and the current status of big bang nucleosynthesis

  19. Study on heat collector of the solar system utilizing outdoor air. Experimental results in cases of cold and warm regions; Gaiki donyushiki solar system no shunetsubu ni kansuru kenkyu. Kanreichi to ondanchi ni okeru shunetsu jikken to kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Komano, S; Ebara, Y [OM Solar Association, Shizuoka (Japan); Wada, H [Wada Building Constructors Co. Ltd., Hokkaido (Japan)

    1996-10-27

    An experiment on heat collection was made in the heat collector of a solar system utilizing outdoor air in cold and warm regions. In this system, outdoor air is heated by the air circulation layer on the roof exposed to solar radiation. The heated air is supplied to the object space for heating and ventilation. In the experiment in a cold region, the heat collection characteristics can be adjusted by putting a baffle plate in the air duct according to the experiment of a glass heat collector. The heat collecting air layer on only the iron roof may leak or freeze in the region subject to coldness or heavy snowfall. Therefore, preheat forms the space of a garret, and the preheat temperature comparatively becomes low. The data in which the heat collection characteristics can be adjusted using only a glass heat collector is required corresponding to the regional situation. In the experiment in a warm region, an experiment was made inclusive of the preheat for which outdoor air is absorbed at the eaves. As a result, the heat collection characteristics of preheat were improved. Moreover, a heat collection temperature of about 60{degree}C was obtained on the heat collection surface including the preheat. 1 ref., 12 figs., 3 tabs.

  20. Production of gravitational waves during preheating with nonminimal coupling

    Science.gov (United States)

    Fu, Chengjie; Wu, Puxun; Yu, Hongwei

    2018-04-01

    We study the preheating and the in-process production of gravitational waves (GWs) after inflation in which the inflaton is nonminimally coupled to the curvature in a self-interacting quartic potential with the method of lattice simulation. We find that the nonminimal coupling enhances the amplitude of the density spectrum of inflaton quanta, and as a result, the peak value of the GW spectrum generated during preheating is enhanced as well and might reach the limit of detection in future GW experiments. The peaks of the GW spectrum not only exhibit distinctive characteristics as compared to those of minimally coupled inflaton potentials but also imprint information on the nonminimal coupling and the parametric resonance, and thus the detection of these peaks in the future will provide us a new avenue to reveal the physics of the early universe.

  1. Hydrodynamic and thermal mechanisms of filtration combustion inclinational instability based on non-uniform distribution of initial preheating temperature

    Science.gov (United States)

    Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui

    2018-03-01

    Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.

  2. Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    Science.gov (United States)

    Kulesa, C. A.; Walker, C. K.; Schein, M.; Golish, D.; Tothill, N.; Siegel, P.; Weinreb, S.; Jones, G.; Bardin, J.; Jacobs, K.; Martin, C. L.; Storey, J.; Ashley, M.; Lawrence, J.; Luong-Van, D.; Everett, J.; Wang, L.; Feng, L.; Zhu, Z.; Yan, J.; Yang, J.; Zhang, X.-G.; Cui, X.; Yuan, X.; Hu, J.; Xu, Z.; Jiang, Z.; Yang, H.; Li, Y.; Sun, B.; Qin, W.; Shang, Z.

    2008-07-01

    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the 13CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented.

  3. The effect of preheated tendon as a lean meat replacement on the properties of fine emulsion sausages.

    Science.gov (United States)

    Sadler, D H; Young, O A

    1993-01-01

    Tendon from beef hind leg muscles was used to replace some of the lean in a conventional emulsion formulation. The tendon was homogenized and either used raw or preheated for 2·5 h at a range of temperatures (50, 60, 70, 80°C) before use. Texture analysis and sensory evaluation were performed on cylinders of cooked sausage. Texture analysis was carried out on formulations which had 20% of meat protein replaced by 20% tendons which were raw or had been preheated to 50, 60, 70, or 80°C. Fracturability decreased by about 40% with raw tendon, but was restored to within 20% of the no-replacement control if the tendon had been preheated. Hardness was approximately doubled by replacement with raw tendon or tendon heated at 50°C. At temperatures higher than that, hardness returned to approximately no-replacement levels. For sensory evaluation (0-25% replacement; preheating at 70°C), sausages were assessed by a 12-member panel for texture, flavour and overall acceptability. All attributes decreased with increasing collagen content, the decrease being less marked with preheated tendon. Thus more connective tissue could be added for the same panel score if the tissue was preheated. Comparison of the texture profile and the panel scores for texture at the same lean replacement level suggested that reduced fracturability was the texture parameter that panellists objected to when heated tendon replaced some of the lean. Other researchers have shown that connective tissue preheated to 100°C before addition in emulsion sausages results in improved yields and better sensory attributes, but the present results show that temperatures as low as 60°C can be effective for beef tendon. Copyright © 1993. Published by Elsevier Ltd.

  4. Area 3, SRC-II coal slurry preheater studies report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report reviews the raw data gathered from the Preheater B test runs at Ft. Lewis, and also the Preheater B results presented in the Solvent Refined Coal (SRC) Process Final Report, Volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and the Ft. Lewis Slurry Preheater Data Analysis, 1 1/2 Inch Coil by Gulf Science and Technology Corporation of Pittsburgh, Pennsylvania. attempts were made to correlate several variables not previously considered with slurry viscosity and thermal conductivity. Only partial success was realized. However, in the process of attempting to correlate these variables an understanding of why some variables could not be correlated was achieved. An attempt was also made, using multiple linear regression, to correlate coal slurry viscosity and thermal conductivity with several independent variables among which were temperature, coal concentration, total solids, coal type, slurry residence time, shear rate, and unit size. The final correlations included some, but not all, of these independent variables. This report is not a stand alone document and should be considered a supplement to work already done. It should be read in conjunction with the reports referenced above.

  5. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    Science.gov (United States)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  6. NRC Information Notice No. 92-67: Deficiency in design modifications to address failures of Hiller actuators upon a gradual loss of air pressure

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1993-01-01

    On January 7, 1992, Carolina Power and Light Company (Shearon Harris Plant) components associated with the air supply to the actuators of the three main feedwater preheater bypass isolation valves were not qualified for a Q class application. Specifically, the failure of the air pump in the non-Q Class, non-seismic instrument air supply to the valve actuator accumulator could prevent pressure switches upstream of the air pump from detecting slow leakage in the Q Class, seismic portion of the actuator air lines. The pressure switches were installed to ensure valve closure by sending an automatic close signal if the instrument air system pressure (upstream of the actuator air pump) dropped to 66 psig as discussed in IN 82-25. The main feedwater preheater bypass isolation valves function as containment isolation valves upon receipt of a feedwater isolation signal. The function of the air pump is to raise the normal instrument air supply pressure from 70 to 100 psig to approximately 150 psig. If accumulator pressure drops from 150 psig to 122 psig, the main feedwater preheater bypass isolation valve may not close within 10 seconds. If pressure drops to a value as low as 20 psig, it may not be sufficient to close the main feedwater preheater bypass isolation valve and keep it closed against the maximum differential pressure across the valve seat. Upon discovery of this condition, Shearon Harris established a surveillance interval for verifying that the actuators' components were functioning properly and that the accumulators were fully pressurized. On January 12, 1992, non-Q components were replaced with suitable components and testing was completed satisfactorily

  7. Solar pre-heating of water for steam generation in the friendship textile mill

    International Nuclear Information System (INIS)

    Sid -Ahmed, M.O.; Hussien, T.

    1994-01-01

    The technology of solar water heating is simple and can be used for pre-heating of water entering a boiler. In this paper the economics of solar pre-heating of water was calculated. The calculations were based on the performance and cost of a locally-made flat plate collector, and the performance and fuel consumption of a boiler in a textile mill. The results showed that a collector area of about 800 meter square with initial cost of about LS 5,000,000, could save annually about 130 tons of furnace oil. ( Author )

  8. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  9. Utilization of biogas released from palm oil mill effluent for power generation using self-preheated reactor

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2015-01-01

    Highlights: • A lab-scale reactor called self-preheating flameless combustion (SPFC) system is experimented. • Feasibility of power generation by POME biogas is modeled using SPFC system. • 4 MW power is available by POME biogas utilization in a typical palm oil mill with 300,000 tons production. • The rate of power generation increases when 2% hydrogen is added to POME biogas ingredients. - Abstract: In palm oil mills, for one ton crude palm oil (CPO) production, 70 m"3 biogas is released from palm oil mill effluent (POME) which can endanger the environment. Palm oil mills without appropriate strategies for biogas collection can participate in greenhouse gases (GHGs) generation actively. In this paper, a typical palm oil mill with annual capacity of 300,000 ton oil palm production and 3 MW electricity demand is considered as a pilot plant and feasibility of power generation by POME biogas is modeled by Aspen Plus considering flameless mode in combustion system. A new design of lab-scale flameless reactor called self-preheated flameless combustion (SPFC) system is presented and employed in power generation modeling. In SPFC system, the flameless chamber is employed as a heater to preheat an oxidizer over the self-ignition temperature of the fuel. A helical stainless steel pipe (called self-preheating pipe) is installed inside the chamber to conduct the oxidizer from exhaust zone to the combustion zone inside the chamber and preheat oxidizer. In the flameless mode, the diluted oxidizer is injected to the helical pipe from the exhaust zone and the preheated oxidizer at the burner is conducted to the flameless furnace through a distributor. In SPFC system external heater for preheating oxidizer is removed and the rate of power generation increases. The results show that 10.8 MW power could be generated in ultra-lean POME biogas SPFC. However, the rate of pollutant especially CO_2 and NO_x is high in this circumstances. In stoichiometric condition, 4 MW power

  10. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    International Nuclear Information System (INIS)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Gu, Yuqiu; Zhang, Baohan; Peng, Xiaoshi; Xu, Tao; Wang, Feng; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming

    2016-01-01

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  11. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Gu, Yuqiu, E-mail: yqgu@caep.cn; Zhang, Baohan [Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Peng, Xiaoshi; Xu, Tao; Wang, Feng; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); and others

    2016-06-15

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  12. When can preheating affect the CMB?

    Science.gov (United States)

    Tsujikawa, Shinji; Bassett, Bruce A.

    2002-05-01

    We discuss the principles governing the selection of inflationary models for which preheating can affect the CMB. This is a (fairly small) subset of those models which have nonnegligible entropy/isocurvature perturbations on large scales during inflation. We study new models which belong to this class-two-field inflation with negative nonminimal coupling and hybrid/double/supernatural inflation models where the tachyonic growth of entropy perturbations can lead to the variation of the curvature perturbation, /R, on super-Hubble scales. Finally, we present evidence against recent claims for the variation of /R in the absence of substantial super-Hubble entropy perturbations.

  13. Fresh fuel pre-heating device in reactor facility

    International Nuclear Information System (INIS)

    Samejima, Asakuni.

    1988-01-01

    Purpose: To simplify the structure of a fresh nuclear fuel pre-heating device and improve the reliability to gas supply. Constitution: Fresh fuels taken out from a fresh fuel stredge rack and contained in a fuel strage pipe of a fuel transportation cask are pre-heated at the pre-stage of transfer by sending heating gases from the outside. Gas outlet pipes of the device are led out from the lower portion of the strage pipe, disposed side by side at the top of the strage pipe and opened upwardly. Further, gas supply pipes are connected to the inside of a movable guiding cylinder on the side of the floor surface and the opening end of return pipes are opposed to the exit opening end of the strage pipe. In such a constitution, a gas recycling loop can be formed between the strage pipe and the gas heating device by way of the movable guiding cylinder only by the operation of combining the fuel strage pipe of the transportation cask and the movable guiding pipe disposed on the side of the floor surface. Thus, the coupling structure is facilitated, the connection operation can surely be conducted to improve the reliability as compared with the conventional case. (Horiuchi, T.)

  14. Interaction of regulation and innovation: Solar air heating collectors

    OpenAIRE

    Kramer, K.

    2012-01-01

    Solar Air Heating Collectors have still a very small share of 0.8% of the nominal installed capacity in the solar heating and cooling market (151.7 GWth) [1]. Although constituting a niche market, the potential of those kind of collectors to provide heat for industrial processes, processing food, room heating, air preheating, drying processes or air conditioning could be significant. However, the technical potentials of the various technological solutions are not easy to compare. Such a compa...

  15. Tekken testing to determine the preheating temperature on ASTM A514 GR B steel

    International Nuclear Information System (INIS)

    Asta, Eduardo; Zalazar, Monica; Quesada, Hector

    2003-01-01

    The cold cracking test methods are used to determine the preheating temperature in order to avoid cracking in steel welding.In this work Tekken tests on high strength quenching and tempering (ASTM A514 GrB) structural steel with a thickness of 25 mm have been made.The welds were done using a FCAW process with gas shielding and basic low hydrogen cored wire E 110T5-K4.The welding parameters and joint design applied in this work are similar to the ones used on site production.The base metal, HAZ and weld metal microstructure have been evaluated by optical and SEM microscopy.Thermal cycles records of each welding have been made to relate preheat temperature with the cooling time on the range of 800-500 degC (t8/5) or 800-100degC (t8/1) and the evidence of crack or no crack condition.Finally, a preheat temperature of 150degC and the cooling time larger than 17 s improve a welding integrity without cracks

  16. Experimental Investigation of the Effects of Concrete Alkalinity on Tensile Properties of Preheated Structural GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Hwasung Roh

    2017-01-01

    Full Text Available The combined effects of preexposure to high temperature and alkalinity on the tensile performance of structural GFRP reinforcing bars are experimentally investigated. A total of 105 GFRP bar specimens are preexposed to high temperature between 120°C and 200°C and then immersed into pH of 12.6 alkaline solution for 100, 300, and 660 days. From the test results, the elastic modulus obtained at 300 immersion days is almost the same as those of 660 immersion days. For all alkali immersion days considered in the test, the preheated specimens provide slightly lower elastic modulus than the unpreheated specimens, showing only 8% maximum difference. The tensile strength decreases for all testing cases as the increase of the alkaline immersing time, regardless of the prehearing levels. The tensile strength of the preheated specimens is about 90% of the unpreheated specimen for 300 alkali immersion days. However, after 300 alkali immersion days the tensile strengths are almost identical to each other. Such results indicate that the tensile strength and elastic modulus of the structural GFRP reinforcing bars are closely related to alkali immersion days, not much related to the preheating levels. The specimens show a typical tensile failure around the preheated location.

  17. Tekken tests in a steel 'ASTM A 514 GR B' to determine the preheating temperature

    International Nuclear Information System (INIS)

    Quesada, Hector Juan; Zalazar, Monica; Asta, Eduardo Pablo

    2004-01-01

    Cold fissure tests are used to determine the proper preheating temperature in order to prevent fissures during the steel welding process. Tekken tests were carried out on a quenched and tempered high resistance 25.4 mm thick steel (ASTM A514 Gr.B) used in structural applications. The welding was carried out using a FCAW semiautomatic process with gas protection and low hydrogen tubular electrode E110T5-K4. Similar parameters and splicing design were later applied in production. The microstructures of the base material and the welding were determined by optic and electron microscopy. The thermal cycles of the welding were recorded in order to relate the preheating temperature with the cooling time from 800 o C - 500 o C (t 8/5 ) and from 800 o C - 100 o C (tg/1) and the presence or not of fissures. Preheating at 150 o C and t 8/5 greater than 17 s was found to guarantee fissure free welding (CW)

  18. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations.

    Science.gov (United States)

    Alizadeh Oskoee, Parnian; Pournaghi Azar, Fatemeh; Jafari Navimipour, Elmira; Ebrahimi Chaharom, Mohammad Esmaeel; Naser Alavi, Fereshteh; Salari, Ashkan

    2017-01-01

    Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90]) and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C). Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P composite resin type, preheating and interactive effect of these variables on gap formation were significant (Pcomposite resins (Pcomposite resins at room temperature compared to composite resins after 40 preheating cycles (Pcomposite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation.

  19. Preheating curvaton perturbations

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2005-01-01

    We discuss the potentially important role played by preheating in certain variants of the curvaton mechanism in which isocurvature perturbations of a D-flat (and F-flat) direction become converted to curvature perturbations during reheating. We discover that parametric resonance of the isocurvature components amplifies the superhorizon fluctuations by a significant amount. As an example of these effects we develop a particle physics motivated model which involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The role of the curvaton field can be played either by usual Higgs field, or the lightest right-handed sneutrino. Our new results show that it is possible to achieve the correct curvature perturbations for initial values of the curvaton fields of order the weak scale. In this model we show that the prediction for the spectral index of the final curvature perturbation only depends on the mass of the curvaton during inflation, where consistency with current observational data requires the ratio of this mass to the Hubble constant to be 0.3

  20. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  1. Effect of pre-heating on the thermal decomposition kinetics of cotton

    Science.gov (United States)

    The effect of pre-heating at low temperatures (160-280°C) on the thermal decomposition kinetics of scoured cotton fabrics was investigated by thermogravimetric analysis under nonisothermal conditions. Isoconversional methods were used to calculate the activation energies for the pyrolysis after one-...

  2. Symbiotic potential: the integration of preheating and dry cooling in cokemaking

    Energy Technology Data Exchange (ETDEWEB)

    Barker, J E

    1978-06-01

    In the USSR and Japan, heat recovered from the dry cooling of coke is used to raise steam for power generation or process use. This heat could be used to dry and preheat coal to improve both coke quality and oven productivity.

  3. Delayed coking unit preheat train optimization; Otimizacao do preaquecimento das Unidades de Coque

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Edson R; Geraldelli, Washington O; Barros, Francisco C [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The oil industry has been investing in research and development of new techniques and process improvements with the objective to increase the residual fraction profitability and to fulfill the market demands. The adequacy of the refining scheme has led to the development of bottom of the barrel processes that has the objective to convert heavy fractions into products of higher aggregate value. In this context, the process of Delayed Coking presents a great importance in the production of distillates in the diesel range as well as the processing of heavy residues, mostly in the markets where the fuel oil consumption is being reduced. With the approach to help PETROBRAS decide which route to follow during new designs of Delayed Coking units, this work presents a comparative study of the preheat train performance among the energy recovery to preheat the feed, in contrast with preheating the feed and generating steam, simultaneously. In this study the Pinch Technology methodology was used as a procedure for heat integration with the objective of getting the maximum energy recovery from the process, finding the best trade-off between operational cost and investment cost. The alternative of steam generation aims to provide an appropriate flexibility in Delayed Coking units design and operation. (author)

  4. Modelling of preheated regenerative chain in Cernavoda NPP using MMS calculation code

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Prisecaru, I.; Dupleac, D.

    2005-01-01

    Full text: In this work it was studied operation of preheated regenerative chain from NPP Cernavoda. To obtain this analysis coupled analyses of condensate system, water supply system, and drain cooler system were effected. The analysis boundaries are: Upstream: - Steam condensers - Turbine Bleed Steam Downstream: - Steam Generators. The analysis was made in two steps: 1) Getting of hydraulic characteristic of pipe network from steam condensers to steam generators at nominal regime; this step was obtained with hydraulic package called PIPENET. 2) Real thermal hydraulic analyses were done based on hydraulic characteristic of pipe network and supplementary data required for heat transfer calculation in equipment of preheated regenerative chain. Thermal analyses were done using MMS package and refered to normal operating regimes, namely, nominal operating regime required for calibration of calculating model, shutdown regime, start-up regime from zero power hot to nominal power and to abnormal operating regimes, namely, turbine trip, reactor trip and loss of two condensate pumps. The results were compared with already existing analysis and showed the largest differences at interface areas (i.e. 5%). This led us to idea of extending analysis to all secondary circuits in order to reduce the number of boundary conditions which can generate uncertainty in analysis. In this analysis we obtained an advanced model of preheated regenerative chain of secondary circuit in Cernavoda NPP which could be extended up to cover the whole secondary circuit by including the analysis of steam generators, turbine, and steam condenser. (authors)

  5. Modelling of preheated regenerative chain in Cernavoda NPP using MMS calculation code

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Prisecaru, I.; Dupleac, D.

    2005-01-01

    In this work it was studied operation of preheated regenerative chain from NPP Cernavoda. To obtain this analysis coupled analyses of condensate system, water supply system, and drain cooler system were effected. The analysis boundaries are: Upstream: - Steam condensers - Turbine Bleed Steam Downstream: - Steam Generators. The analysis was made in two steps: 1) Getting of hydraulic characteristic of pipe network from steam condensers to steam generators at nominal regime; this step was obtained with hydraulic package called PIPENET. 2) Real thermal hydraulic analyses were done based on hydraulic characteristic of pipe network and supplementary data required for heat transfer calculation in equipment of preheated regenerative chain. Thermal analyses were done using MMS package and referred to normal operating regimes, namely, nominal operating regime required for calibration of calculating model, shutdown regime, start-up regime from zero power hot to nominal power and to abnormal operating regimes, namely, turbine trip, reactor trip and loss of two condensate pumps. The results were compared with already existing analysis and showed the largest differences at interface areas (i.e. 5%). This led US to idea of extending analysis to all secondary circuits in order to reduce the number of boundary conditions which can generate uncertainty in analysis. In this analysis we obtained an advanced model of preheated regenerative chain of secondary circuit in Cernavoda NPP which could be extended up to cover the whole secondary circuit by including the analysis of steam generators, turbine, and steam condenser. (authors)

  6. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  7. Thermographic study of the preheating plugs in diesel engines

    OpenAIRE

    Royo Pastor, Rafael; Albertos Arranz, M.A.; CÁRCEL CUBAS, JUAN ANTONIO; Payá Herrero, Jorge

    2012-01-01

    The use of direct injection diesel engines has been widely applied during the past ten years. In such engines, the preheating plugs are a key element which has a significant contribution in the pollutant emissions. In this paper, two different plug designs from Renault are analyzed. The new plug reduces substantially the required electrical consumption. Nevertheless, the pollutant emissions are higher (fundamentally CO and HCs) and hereby a thorough analysis is required to underst...

  8. Damage to Preheated Tungsten Targets after Multiple Plasma Impacts Simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlay, V.A.; Tereshin, V.I. [Kharkov Inst. of Physics and Technology, Inst. of Plasma Physics of National Science Center, Akademicheskaya street, 1, 61108 Kharkov (Ukraine); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Postfach 3640, D-7602 1 Karlsruhe (Germany)

    2007-07-01

    Full text of publication follows: The energy loads onto ITER divertor surfaces associated with the Type I ELMs are expected to be up to 1 MJ/m{sup 2} during 0.1-0.5 ms, with the number of pulses about 103 per discharge. Tungsten is a candidate material for major part of the surface, but its brittleness can result in substantial macroscopic erosion after the repetitive heat loads. To minimize the brittle destruction, tungsten may be preheated above the ductile-to-brittle transition temperature. In this work the behavior of preheated tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 450 pulses of the duration 0.25 ms and the heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is respectively below and above the melting threshold. During the exposures the targets were permanently kept preheated at 650 deg. C by a heater at target backside. In the course of exposures the irradiated surfaces were examined after regular numbers of pulses using the SEM and the optical microscopy. The profilometry, XRD, microhardness and weight loss measurements have been performed, as well as comparisons of surface damages after the heat loads both below and above the melting threshold. It is obtained that macro-cracks do not develop on the preheated surface. After the impacts with surface melting, a fine mesh of intergranular microcracks has appeared. The width of fine intergranular cracks grows with pulse number, achieving 1-1.5 microns after 100 pulses, and after 210 pulses the crack width increases up to 20 microns, which is comparable with grain sizes. Threshold changes in surface morphology resulting in corrugation structures and pits on the surface as well as importance of surface tension in resulted 'micro-brush' structures are discussed. Further evolution of the surface pattern is caused by loss of separated grains on exposed

  9. A pre-heating method based on sinusoidal alternating current for lithium-ion battery

    Science.gov (United States)

    Fan, Wentao; Sun, Fengchun; Guo, Shanshan

    2018-04-01

    In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.

  10. Energetic, Exergetic, and Economic Analysis of MED-TVC Water Desalination Plant with and without Preheating

    Directory of Open Access Journals (Sweden)

    Nuri Eshoul

    2018-03-01

    Full Text Available Desalination is the sole proven technique that can provide the necessary fresh water in arid and semi-arid countries in sufficient quantities and meet the modern needs of a growing world population. Multi effect desalination with thermal vapour compression (MED-TVC is one of most common applications of thermal desalination technologies. The present paper presents a comprehensive thermodynamic model of a 24 million litres per day thermal desalination plant, using specialised software packages. The proposed model was validated against a real data set for a large-scale desalination plant, and showed good agreement. The performance of the MED-TVC unit was investigated using different loads, entrained vapour, seawater temperature, salinity and number of effects in two configurations. The first configuration was the MED-TVC unit without preheating system, and the second integrated the MED-TVC unit with a preheating system. The study confirmed that the thermo-compressor and its effects are the main sources of exergy destruction in these desalination plants, at about 40% and 35% respectively. The desalination plant performance with preheating mode performs well due to high feed water temperature leading to the production of more distillate water. The seawater salinity was proportional to the fuel exergy and minimum separation work. High seawater salinity results in high exergy efficiency, which is not the case with membrane technology. The plant performance of the proposed system was enhanced by using a large number of effects due to greater utilisation of energy input and higher generation level. From an economic perspective, both indicators show that using a preheating system is more economically attractive.

  11. EFFECT OF PRE-HEAT TREATMENT ON MECHANICAL PROPERTIES OF Ti-6Al-4V WELDS

    Directory of Open Access Journals (Sweden)

    Gnofam Jacques TCHEIN

    2016-11-01

    Full Text Available The work presented here is related to the optimization of the Friction Stir Welding (FSW process. The objective is to study the influence of some parameters used in the production of welded joints by FSW. The most important parameters are the welding speed and the rotational speed of the tool. The effect of pre-heat treatment on the plates to be welded is also studied by the design of experimental methods. These pre-heat treatments result not only in a change of mechanical properties of plates to be welded, but also of their microstructure. The experiments were performed following a 16 lines fractional Taguchi table.

  12. A study on pre-heat conditions in equivalent-dose estimation of holocene loess using single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2007-01-01

    Through various arrangements of pre-heat and cut-heat temperatures in the equivalent-dose estimation of Holocene loess using a Double-SAR dating protocol, the paper estimated the equivalent-doses from several loess samples by application of IRSL and Post-IR OSL signals, respectively. The measured results present that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, showing the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears at the 200-300 degree C preheat temperatures and the 200-240 degree C cut-heat temperatures, furthermore, the equivalent-doses estimated by IRSL and Post-IR OSL signals respectively are close to each other, which resulted from the similar sensitivity change directions of optical stimulated signals and their smaller change ranges in the measurement cycles using the various temperatures of pre-heat and cut-heat. This suggests that the 200-300 degree C pre-heat temperatures and the 200-240 degree C cut-heat temperatures are fit for dating young Holocene loess samples. (authors)

  13. THE INFLUENCE OF PRE-HEAT TREATMENT ON WHITE CAST IRONS PLASTICITY

    Directory of Open Access Journals (Sweden)

    T. M. Myronova

    2013-11-01

    Full Text Available Purpose. The development of heat treatment modes of white cast irons for structure changes in their eutectic constituent, namely in disturbing the monolithic structure of ledeburite colonies cementite structure and eutectic net continuity. Also the mentioned heat treatment modes are targeted to the eutectic net shift for the most suitable position from the point of plastic deforming. Methodology. The hypoeutectic white cast irons with 2.92…3.35 % carbon content and additionally alloyed by 3.18 % vanadium have been used as the research materials. The mentioned alloys have been pre-heat treated and hot twist tested. Findings. The research results showed that the carbide net breaking by plastic deforming leads to cast irons mechanical properties increasing but has difficulties in implementation due to the white cast irons low plasticity. The influence of different pre-heat treatment modes on structure and plasticity of white hypoeutectic cast irons have been investigated. They include the isotherm soaking under the different temperatures as well as multiply soakings and thermo-cycling. The influence of eutectic level, as well as pre heat treatment modes on different composition white cast irons hot plasticity have been investigated. Originality. It was determined that the heat treatment, which leads to double α→γ recrystallization under 860 – 950 °С and reperlitization under 720-680 °С results in significant increase of plasticity, as well as in un-alloyed and alloyed by vanadium white cast irons. It takes place due to carbide matrix phase separation in ledeburite colonies by new phase boundaries forming especially due to carbide transformations under vanadium alloying. Practical value. The implementation of pre-heat treatment with phase recrystallization resulted in hypoeutectic white cast irons plasticity increasing. The obtained level of cast iron plasticity corresponds to the one of carbide class steels, which ensures the successful

  14. Influence of the Previous Preheating Temperature on the Static Coefficient of Friction with Lubrication

    Directory of Open Access Journals (Sweden)

    M. Živković

    2016-12-01

    Full Text Available Experimental investigations static coefficient of friction in lubricated conditions and pre-heating of the sample pin at high temperatures is discussed in this paper. The static coefficient of friction was measured in the sliding steel copper pins per cylinder of polyvinylchloride. Pins are previously heated in a special chamber from room temperature to a temperature of 800 oC with a step of 50 °C. Tribological changes in the surface layer of the pins caused by pre-heating the pins at high temperatures and cooling systems have very significantly influenced the increase in the coefficient of static friction. The results indicate the possibility of improving the friction characteristics of metal materials based on their thermal treatment at elevated temperatures.

  15. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    Science.gov (United States)

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.

  16. Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties

    International Nuclear Information System (INIS)

    Zhang, Fengming; Xu, Chunyan; Zhang, Yong; Chen, Shouyan; Chen, Guifang; Ma, Chunyuan

    2014-01-01

    A new process to generate multiple thermal fluids by supercritical water oxidation (SCWO) was proposed to enhance oil recovery. An inner preheating transpiring wall reactor for SCWO was designed and tested to avoid plugging in the preheating section. Hot water (400–600 °C) was used as auxiliary heat source to preheat the feed to the reaction temperature. The effect of different operating parameters on the performance of the inner preheating transpiring wall reactor was investigated, and the optimized operating parameters were determined based on temperature profiles and product properties. The reaction temperature is close to 900 °C at an auxiliary heat source flow of 2.79 kg/h, and the auxiliary heat source flow is determined at 6–14 kg/h to avoid the overheating of the reactor. The useful reaction time is used to quantitatively describe the feed degradation efficiency. The outlet concentration of total organic carbon (TOC out ) and CO in the effluent gradually decreases with increasing useful reaction time. The useful reaction time needed for complete oxidation of the feed is 10.5 s for the reactor. - Highlights: • A new process to generate multiple thermal fluids by SCWO was proposed. • An inner preheating transpiring wall reactor for SCWO was designed and tested. • Hot water was used as auxiliary heat source to preheat the feed at room temperature. • Effect of operating parameters on the performance of the reactor was investigated. • The useful reaction time required for complete oxidation of the feed is 10.5 s

  17. Preheating to around 100°C under endcap blocks before welding at KHI.

    CERN Multimedia

    Loveless, D

    2000-01-01

    The 600mm thick sector blocks of the CMS endcaps are made from three layers of 200mm plates welded together. During the manufacture at KHI, the blocks are preheated to around 100°C to prevent cracks in the welds.

  18. X-ray emission, ablation pressure, and preheating for foils irradiated at 0. 26. mu. m wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-11-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 ..mu..m laser at intensities approx.10/sup 15/ W cm/sup -2/ are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 ..mu..m), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant.

  19. X-ray emission, ablation pressure, and preheating for foils irradiated at 0.26 μm wavelength

    International Nuclear Information System (INIS)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-01-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 μm laser at intensities approx.10 15 W cm -2 are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 μm), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant

  20. Feasibility and economic analysis of solid desiccant wheel used for dehumidification and preheating in blast furnace: A case study of steel plant, Nanjing, China

    International Nuclear Information System (INIS)

    Guan, Yipeng; Zhang, Yufeng; Sheng, Ying; Kong, Xiangrui; Du, Song

    2015-01-01

    To overcome the shortcomings of huge energy consumption from conventional dehumidification using lithium bromide adsorption refrigerating (LBARD) system, a novel desiccant wheel dehumidification and preheating (DWDP) system using two-stage desiccant wheel for blast furnace is brought forward. The DWDP system was designed for dehumidification and preheating in blast furnace of steel plant. It takes waste heat in the slag flushing water as desiccant regeneration and preheating energy. To validate the feasibility of the new DWDP system, experimental studies were conducted based on a steel plant in Nanjing, China. The experiment was designed to use DWDP system in humid outdoor climates e.g. summer seasons. The experimental results indicate that the moisture removal capacity of DWDP system can reach 8.7 g/kg which will lead to the improvement of steel production by 0.9% and the coal is saved of about 2100 tons per year. With the DWDP system, the energy consumed by cooling tower of slag flushing water can decrease 7.3%. All of these energy saved equates to 10.3 million CNY annually. A comparison of initial investment and operating cost between DWDP system and LBRAD system was then carried out. The results show that the initial investment and operating cost of DWDP system is 37% and 57% of present LBARD system, and the payback period is shortened 66%. - Highlights: • A novel two-stage desiccant wheel dehumidification system for blast furnace is proposed. • Average moisture removal of 8.7 g/kg is achieved and dehumidification efficiency is 47%. • Outlet humidity ratio is less than 10 g/kg that satisfies the requirement of blast air. • Waste heat in slag flushing water is utilized and 61.4 million kJ is saved annually. • The investment and operating cost is 37% and 57% of former dehumidification system

  1. Effect of the Preheating Temperature on Process Time in Friction Stir Welding of Al 6061-T6

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    2013-01-01

    This paper presents the results obtained and the deductions made from an analytical modeling involving friction stir welding of Al 6061-T6. A new database was developed to simulate the contact temperature between the tool and the workpiece. A second-order equation is proposed for simulating...... the temperature in the contact boundary and the thermal history during the plunge phase. The effect of the preheating temperature on the process time was investigated with the proposed model. The results show that an increase of the preheating time leads to a decrease in the process time up to the plunge...

  2. Modification of preheated tungsten surface after irradiation at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Arzhannikov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Huber, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Ivanov, I.A. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kuklin, K.N. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V.; Postupaev, V.V.; Sinitsky, S.L. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vasilyev, A.A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-12-15

    Highlights: • Preheated tungsten was irradiated at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. • The crack pattern and the quantity of bubbles depend on the initial temperatures of the target. • The orientation of major crack networks correlates with the direction of machining of the samples. • Dust impact craters were found. - Abstract: The study is devoted to tungsten surface modification after irradiation at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. In order to emulate heating with a steady plasma flux in the ITER divertor, some of the tungsten samples were preheated up to 500 °C. It was found out that the behavior of the surface modification (the crack pattern and the number of bubbles) depends on the initial temperature of the targets. While the orientation of major crack networks correlates with the direction of machining of the samples. Afterwards we have observed the process of craters’ formation caused by dust particle impacts.

  3. Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2016-09-01

    Full Text Available In this paper, three alternative layouts (scenarios of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW. The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC can ensure primary energy savings (15%–24% and avoid equivalent CO2 emissions (14%–22%, about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.

  4. Phase change material thermal storage for biofuel preheating in micro trigeneration application: A numerical study

    International Nuclear Information System (INIS)

    Wu, Dawei; Chen, Junlong; Roskilly, Anthony P.

    2015-01-01

    Highlights: • Engine exhaust heat driven phase change material thermal storage. • Fuel preheating for direct use of straight plant oil on diesel engine. • CFD aided design of the phase change material thermal storage. • Melting and solidification model considering natural convection. - Abstract: A biofuel micro trigeneration prototype has been developed to utilise local energy crop oils as fuel in rural areas and developing countries. Straight plant oils (SPOs) only leave behind very little carbon footprint during its simply production process compared to commercial biodiesels in refineries, but the high viscosity of SPOs causes difficulties at engine cold starts, which further results in poor fuel atomisation, compromised engine performance and fast engine deterioration. In this study, a phase change material (PCM) thermal storage is designed to recover and store engine exhaust heat to preheat SPOs at cold starts. High temperature commercial paraffin is selected as the PCM to meet the optimal preheating temperature range of 70–90 °C, in terms of the SPO property study. A numerical model of the PCM thermal storage is developed and validated by references. The PCM melting and solidification processes with the consideration of natural convection in liquid zone are simulated in ANSYS-FLUENT to verify the feasibility of the PCM thermal storage as a part of the self-contained biofuel micro trigeneration prototype

  5. COSTEAU - preheating and cooling by means of underground collectors with water circulation - case study (Perret building at Satigny, Geneva) and generalisation; COSTEAU. Prechauffage et rafraichissement par collecteurs souterrains a eau. Etude de cas (batiment Perret a Satigny, Geneve) et generalisation

    Energy Technology Data Exchange (ETDEWEB)

    Hollmuller, P.; Lachal, B.

    2003-07-01

    Since a couple of years, underground collectors with air circulation have been becoming increasingly popular as a simple means for preheating (at winter time) and cooling (at summer time) of outdoor air ahead of a ventilation system for well insulated buildings. This report considers underground collectors with water circulation used for similar purposes. They are connected to the ventilation system via an air/water heat exchanger. Starting from a case study - one-year detailed in-situ measurements and data analysis from an air-heated office building near Geneva, Switzerland - computerised simulations have been performed as a sensitivity analysis tool as well as to establish recommendations and sizing rules for planners, including cost considerations. In the case study it turned out that the water-circulated underground collector, which is installed right under the basement of this well insulated building, is in thermal contact with the basement. Its main function is to damp the daily temperature oscillation of the inlet ventilation air, bringing the expected thermal comfort improvement in the summer time. However, this underground collector is unable to collect seasonally stored heat from the ground. Hence, in the winter time the main preheating contribution arises from the series-connected heat-recovery unit from the exit air. Numerical simulations show that optimal sizing of underground collectors is essential, and that both the underground collector and the well insulated building as a physical system with thermal inertia have to be simultaneously considered in the optimization process. Optimization also has to include parasitic energy (electricity) needed by fans and pumps. As outdoor air inlet can never be flooded in the case of underground collectors with water circulation the sanitary risk encountered with air-circulated underground collectors does not exist for them. Initial investment cost for water-circulated underground collectors is higher than for a

  6. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-01-01

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model κ(T)=κ SH [1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where κ SH is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  7. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite

    Directory of Open Access Journals (Sweden)

    Theobaldo JD

    2017-05-01

    Full Text Available Jéssica Dias Theobaldo,1 Flávio Henrique Baggio Aguiar,1 Núbia Inocencya Pavesi Pini,2 Débora Alves Nunes Leite Lima,1 Priscila Christiane Suzy Liporoni,3 Anderson Catelan3 1Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, 2Ingá University Center, Maringá, 3Departament of Dentistry, University of Taubaté, Taubaté, Brazil Objective: The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC, microhardness (KHN, plasticization (P, and depth of polymerization (DP of a bulk fill composite.Methods: Forty disc-shaped samples (n = 5 of a bulk fill composite were prepared (5 × 4 mm thick and randomly divided into 4 groups according to light-curing unit (quartz–tungsten–halogen [QTH] or light-emitting diode [LED] and preheating temperature (23 or 54 °C. A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey’s test (α = 0.05.Results: Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill.Conclusion: Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated. Keywords: composite resins, physicochemical phenomena, polymerization, hardness, heating

  8. Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Lorgeoux, Catherine; Andriatsihoarana, Sitraka; Colombano, Stéfan; Faure, Pierre

    2015-04-09

    Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Preheating the universe in hybrid inflation

    CERN Document Server

    García-Bellido, J

    1998-01-01

    One of the fundamental problems of modern cosmology is to explain the origin of all the matter and radiation in the Universe today. The inflationary model predicts that the oscillations of the scalar field at the end of inflation will convert the coherent energy density of the inflaton into a large number of particles, responsible for the present entropy of the Universe. The transition from the inflationary era to the radiation era was originally called reheating, and we now understand that it may consist of three different stages: preheating, in which the homogeneous inflaton field decays coherently into bosonic waves (scalars and/or vectors) with large occupation numbers; backreaction and rescattering, in which different energy bands get mixed; and finally decoherence and thermalization, in which those waves break up into particles that thermalize and acquire a black body spectrum at a certain temperature. These three stages are non-perturbative, non-linear and out of equilibrium, and we are just beginning ...

  10. Study on the preheating duration of Cu{sub 2}SnS{sub 3} thin films using RF magnetron sputtering technique for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuchen; He, Jun; Li, Xinran; Chen, Ye; Sun, Lin, E-mail: lsun@ee.ecnu.edu.cn; Yang, Pingxiong; Chu, Junhao

    2016-04-25

    Cu{sub 2}SnS{sub 3} (CTS) thin films are prepared by sulfurization the stacked metallic precursors deposited by raido-frequency magnetron sputtering method on molybdenum-coated soda lime glass substrates. The details of sulfurization process and the effect of preheating duration on the properties of CTS thin films have been investigated. It is found that the content of element tin strongly depend on the preheating duration. X-ray diffraction patterns identify that the CTS thin films exhibit the monoclinic structure. Raman scattering spectra make a further confirmation for the crystal structure. Fourier transform infrared reflectance spectroscopy (FTIR) is first used to study the properties of CTS thin films. The assigned active modes in Raman scattering spectra is consistent with the analysis in FTIR. Morphology analysis reveals long preheating duration would make the quality of films deteriorate. The thin film solar cell (TFSC) fabricated using the CTS absorber layer synthesized at preheating duration of 15 min shows that a power conversion efficiency up to 0.76% for a 0.19 cm{sup 2} area. The electrical characterization of CTS TFSC is first studied by electrochemical impedance spectroscopy, which implies the existence of MoS{sub x} and defects in the CTS/CdS interface. - Highlights: • CTS thin films and solar cells prepared by RF magnetron sputtering. • Preheating duration is a critical way to remain the Sn content in CTS thin film. • XRD, Raman, FTIR and XPS confirmed the single phase of CTS thin film. • The device characterization of CTS solar cell has been systematically investigated.

  11. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    Science.gov (United States)

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  12. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  13. Plan for radionuclide tracer studies of the residence time distribution in the Wilsonville dissolver and preheater

    International Nuclear Information System (INIS)

    Jolley, R.L.; Begovich, J.M.; Brashear, H.R.

    1983-12-01

    Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be 133 Xe, and 198 Au (on carbonized resin or as an aqueous colloidal suspension) will be used as the slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing

  14. Bruce NGS A Unit 4 preheater divider plate failure

    International Nuclear Information System (INIS)

    Landridge, M.; McInnes, D.

    1995-01-01

    On May 19, 1995, without any prior operational indications, Bruce A discovered preheater divider plate damage in Unit 4 that had the potential to have a major impact on the continued safe operation of the station. Further investigations indicated that Unit 4 may have been operating with this damage for as long as ten years. In the two months following the discovery, Bruce A has procured and replaced the 4 divider plates, located most of the missing pieces, retrieved pieces from the PHT system, investigated historical operational information, performed detailed analytical investigations, investigated root cause, performed in-situ and mock-up testing, updated operational procedures and installed DP monitoring equipment

  15. Symbiotic potential: the integration of preheating and dry cooling in cokemaking

    Energy Technology Data Exchange (ETDEWEB)

    Barker, J E [British Carbonization Research Association, England; Bruce, J M; Kemmetmueller, R

    1978-06-01

    The expression closed energy cycle has become popular in the last decade as descriptive of industrial systems in which exhaust heat is recovered from a primary energy-conversion stage and utilized either recuperatively or regeneratively within the overall complex. An old and well-proven means of utilizing the sensible heat of the incandescent coke discharged from coke ovens is known as dry cooling. This is being practiced widely in the USSR and Japan, but not yet to any significant extent in the western world. The waste heat recovered by this system is normally used to raise steam for power generation and process use. A recent advance in the carbonization of coal for the manufacture of metallurgical coke has been the application of the technique of coal drying and preheating as a means of improving both coke quality and oven productivity, and this is usually energized by burning gas as a fuel. An alternative configuration, having practical advantages in relation to efficiency of utilization of recovered energy and to safety in operation, is represented by a combination of coal drying and preheating with dry cooling of the coke. This paper is concerned with the case for this combination and the means whereby it may be effected in practice. The energy cycle of cokemaking would thus be more nearly closed.

  16. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  17. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    Science.gov (United States)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  18. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  19. Acid skim milk gels: The gelation process as affected by preheated pH

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Vliet, van T.

    2008-01-01

    The effect of preheating milk (10 min 80 [degree sign]C) at pH values from 6.20 to 6.90 on formation of acid skim milk gels was studied by dynamic oscillation measurements. Up to pH 6.65 a higher pH of heating (pHheating) resulted in a higher G'. Since below pH 4.9 the development of

  20. Non-Gaussian and nonscale-invariant perturbations from tachyonic preheating in hybrid inflation

    Science.gov (United States)

    Barnaby, Neil; Cline, James M.

    2006-05-01

    We show that in hybrid inflation it is possible to generate large second-order perturbations in the cosmic microwave background due to the instability of the tachyonic field during preheating. We carefully calculate this effect from the tachyon contribution to the gauge-invariant curvature perturbation, clarifying some confusion in the literature concerning nonlocal terms in the tachyon curvature perturbation; we show explicitly that such terms are absent. We quantitatively compute the non-Gaussianity generated by the tachyon field during the preheating phase and translate the experimental constraints on the nonlinearity parameter fNL into constraints on the parameters of the model. We also show that nonscale-invariant second-order perturbations from the tachyon field with spectral index n=4 can become larger than the inflaton-generated first-order perturbations, leading to stronger constraints than those coming from non-Gaussianity. The width of the excluded region in terms of the logarithm of the dimensionless coupling g, grows linearly with the log of the ratio of the Planck mass to the tachyon VEV, log⁡(Mp/v); hence very large regions are ruled out if the inflationary scale v is small. We apply these results to string-theoretic brane-antibrane inflation, and find a stringent upper bound on the string coupling, gs<10-4.5.

  1. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  2. Preheating of manure utilizing heat exchanger and flue gas. Forvarmning af gylle ved varmeveksling med roeggas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.

    1987-07-15

    It has been shown that preheating of manures in biomass conversion plants to a temperature of 50-60 deg. C, before the anaerobic digestion takes place at a temperature of 35-45 deg. C, results in an increase of methane production. But the method normally involves an increase in energy consumption. The aim of the project was to develope methods of utilizing heat from flue gas emitted from the boiler connected to the plant, with the help of a heat exchanger. The heat thus recovered would be used to preheat the manure. The chosen method was to inject the flue gas directly into the manure mass, following this up with heat exchanging and condensing. In order to mix the flue gas thoroughly into the manure an ejector was used, this was driven by the manure flow. Results were satisfactory. (AB).

  3. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  4. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire

    International Nuclear Information System (INIS)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-01-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs

  5. Experimental and analytical evaluation of preheating temperature during multipass repair welding

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2017-01-01

    Full Text Available Experimental measurement and analytical calculation of preheating, i. e. interpass temperature during multi-pass repair welding has been presented. Analytical calculation is based on heat transfer analysis, whereas measurements have been performed by thermovision camera. Repair welding was performed on crane wheels in the Steelworks Smederevo. Comparison of results indicated that analytical calculation is good enough as the first approximation, but it needs further elaboration, e. g. taking into account the radiation component of heat dissipation and/or temperature dependence of material thermomechanical properties.

  6. Gravitational waves from Abelian gauge fields and cosmic strings at preheating

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Figueroa, Daniel G.; Garcia-Bellido, Juan

    2010-01-01

    Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space. We show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to the mass scales in the problem. We also show how these new features in the spectra correlate with stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before entering a turbulent regime where the gravitational wave energy density saturates.

  7. A New Laser Preheat Protocol For Maglif

    Science.gov (United States)

    Weis, M. R.; Harvey-Thompson, A. J.; Geissel, M.; Jennings, C. A.; Peterson, K. J.; Glinsky, M. E.; Awe, T. J.; Bliss, D. E.; Gomez, M. R.; Harding, E. C.; Hansen, S. B.; Kimmel, M. W.; Knapp, P. F.; Lewis, S. M.; Porter, J. L.; Rochau, G. A.; Schollmeier, M.; Schwarz, J.; Shores, J. E.; Slutz, S. A.; Sinars, D. B.; Smith, I. C.; Speas, C. S.

    2017-10-01

    Previous Magnetized Liner Inertial Fusion experiments at Sandia National Labs have preheated the fuel with the unsmoothed 2 ω Z-Beamlet Laser. A new low intensity laser configuration, using phase plate smoothing and a low-power pulse shape, improved laser propagation and reduced stimulated Brillouin scattering in offline laser experiments. This allows for more efficient use of laser energy and better spot reproducibility. The new laser protocol is estimated to couple at least 650 J to the fuel, sufficient to produce comparable neutron yields with the previous unsmoothed configuration. Mid-Z dopants were also fielded on the underside of the window. Observation of these dopants provided evidence of window material mixing into the fuel with both the unsmoothed and smoothed beam, consistent with MHD simulation predictions. Sandia National Laboratories is a multi-mission laboratory managed and operated by NTESS, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's NNSA under contract DE-NA0003525.

  8. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-Ray Preheat

    International Nuclear Information System (INIS)

    Colvin, Jeffrey D.; Kalantar, Daniel H.

    2006-01-01

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, <<1013 W/cm2, compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flash-coating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe

  9. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-ray Preheat

    International Nuclear Information System (INIS)

    Colvin, J D; Kalantar, D H

    2005-01-01

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, 13 W/cm 2 , compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flashcoating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe

  10. Reheating the D-brane universe via instant preheating

    International Nuclear Information System (INIS)

    Panda, Sudhakar; Sami, M.; Thongkool, I.

    2010-01-01

    We investigate a possibility of reheating in a scenario of D-brane inflation in a warped deformed conifold background which includes perturbative corrections to throat geometry sourced by a chiral operator of dimension 3/2 in the conformal field theory. The effective D-brane potential, in this case, belongs to the class of nonoscillatory models of inflation for which the conventional reheating mechanism does not work. We find that gravitational particle production is inefficient and leads to reheating temperature of the order of 10 8 GeV. We show that instant preheating is quite suitable to the present scenario and can easily reheat the universe to a temperature which is higher by about 3 orders of magnitude than its counterpart associated with gravitational particle production. The reheating temperature is shown to be insensitive to a particular choice of inflationary parameters suitable to observations.

  11. Reducing the effects of X-ray pre-heat in double shell NIF capsules by over-coating the high Z shell

    Science.gov (United States)

    Wilson, Douglas; Milovich, J. L.; Daughton, W. S.; Loomis, E. N.; Sauppe, J. P.; Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Renner, D. B.; Haines, B. M.; Cardenas, T.; Desjardins, T.; Palaniyappan, S.; Batha, S. H.

    2017-10-01

    Hohlraum generated X-rays will penetrate the ablator of a double shell capsule and be absorbed in the outer surface of the inner capsule. The ablative pressure this generates drives a shock into the central fuel, and a reflected shock that reaches the inner high-Z shell surface before the main shock even enters the fuel. With a beryllium over-coat preheat X-rays deposit just inside the beryllium/high z interface. The beryllium tamps the preheat expansion, eliminating ablation, and dramatically reducing pressure. The slow shock or pressure wave it generates is then overtaken by the main shock, avoiding an early shock in the fuel and increasing capsule yield.

  12. Ways to achieve optimum utilization of waste gas heat in cement kiln plants with cyclone preheaters

    Energy Technology Data Exchange (ETDEWEB)

    Steinbiss, E

    1986-02-01

    Kiln exit gases and the exhaust gases from clinker coolers often cannot be fully utilized in drying plants. In such cases a part of the heat content of the gases should be utilized for water heating. In addition, it is possible to utilize the waste gas heat in conventional steam boilers, with which, depending on design, it is possible to generate electricity at a rate of between 10-30 kWh/t (net output). A new and promising method of utilization of waste gas heat is provided by precalcining systems with bypass, in which up to 100% of the kiln exit gases can be economically bypassed and be utilized in a steam boiler, without requiring any cooling. A development project, already started, gives information on the operational behaviour of such a plant and on the maximum energy recoverable. Alternatively, the bypass gases may, after partial cooling with air or preheater exit gas, be dedusted and then utilized in a grinding/drying plant. Furthermore, they can be used in the cement grinding process for the drying of wet granulated blastfurnace slag or other materials. For this it is not necessary to dedust the bypass gases.

  13. Effect of preheating on the damage to tungsten targets after repetitive ITER ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Makhlay, V A [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Tereshin, V I [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany)

    2007-03-15

    The behaviour of a preheated tungsten target under repetitive pulsed plasma impacts of the energy density 0.75 MJ m{sup -2} with the pulse duration of 0.25 ms was studied with the quasi-stationary plasma accelerator (QSPA) Kh-50. Two identical samples of pure sintered tungsten have been exposed to numbers of pulses exceeding 100. One sample was maintained at room temperature and the other sample preheated at 650 deg. C. The experiments demonstrated that on the cold surface some macro-cracks dominate, but on the hot surface they do not develop. However, in both cases some fine meshes of micro-cracks are observed. With increasing the number of exposures, the width of the micro-cracks gradually increases, achieving 0.8-1.5 {mu}m after 100 pulses. In addition, the SEM shows some cellular structure with the cell sizes about 0.3 {mu}m, and after large numbers of exposures some blisters of sizes up to 100-150 {mu}m appear.

  14. Useful work and the thermal efficiency in the ideal Lenolr cycle with regenerative preheating

    Science.gov (United States)

    Georgiou, Demos P.

    2000-11-01

    In the existing thermal engine concepts negative work transfer (usually needed to drive a compression process) is supplied by the work produced by the engine itself. The remaining difference (i.e., the net work transfer) becomes the useful work, since it is available for external consumption. The thermal efficiency is the parameter that compares this against the heat input into the system. It forms the main optimization parameter in any engine design. The objective of the present study is to show that for the case of the Lenoir cycle with regenerative preheating the entire positive work is available for external consumption, since the negative (i.e., the compression) work is supplied by the atmospheric air. Not only this, but, during the compression process and due to the pressure difference across the two sides of the moving piston, an additional (useful) work transfer may be generated. Thus, the proposed power plant may be considered as a combination of a thermal engine and a wind turbine. In the ideal cycle limit (at least), the total amount of useful work exceeds the heat entering the system. This leads to the definition of a new parameter for the efficiency (called the technical efficiency), which compares the combined positive work transfer (i.e., the useful one) against the heat entering the system and which may exceed the 100% level.

  15. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  16. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins.

    Science.gov (United States)

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (Pcomposite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (Pcomposite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.

  17. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)

    2008-06-15

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  18. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  19. Pretreatment and preheating of scrap. Tarkastelu koskien romun esikaesittely- ja esikuumennusmenetelmiae

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, P.; Hanni, J. (Outokumpu Oy Tornion Tehtaat, Tornio (Finland))

    1990-01-01

    As a background for this study has been those demands for scrap treatments and transportation, which are coming with increasing production of melting shop of Outokumpu Oy's Tornio works and also problems caused by snow among productionrate. Different pretreatment-, transport-, and preheatingmethods and some alternatives has been studied to arrange those as a functioning complete. Also very exact plannings for some pretreatmentmethods has been made. From preheatingmethods some methods, which are concerned to be effective and possible in the future has been studied. In addition those parameters, which are involved to the effectivity of preheating process in melting shop of Outokumpu Oy's Tornio works has been examined.

  20. Pretreatment and preheating of scrap; Tarkastelu koskien romun esikaesittely- ja esikuumennusmenetelmiae

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, P.; Hanni, J. [Outokumpu Oy Tornion Tehtaat, Tornio (Finland)

    1990-12-31

    As a background for this study has been those demands for scrap treatments and transportation, which are coming with increasing production of melting shop of Outokumpu Oy`s Tornio works and also problems caused by snow among productionrate. Different pretreatment-, transport-, and preheatingmethods and some alternatives has been studied to arrange those as a functioning complete. Also very exact plannings for some pretreatmentmethods has been made. From preheatingmethods some methods, which are concerned to be effective and possible in the future has been studied. In addition those parameters, which are involved to the effectivity of preheating process in melting shop of Outokumpu Oy`s Tornio works has been examined.

  1. Study of sensitivity change of OSL signals from quartz and feldspars as a function of preheat temperature

    DEFF Research Database (Denmark)

    Jungner, H.; Bøtter-Jensen, L.

    1994-01-01

    and as a result, the equivalent dose (ED) would be underestimated. A study of sensitivity changes in feldspars and quartz was carried out with emphasis on the effect of preheat and annealing on the OSL signal. Measurement results obtained are presented, and possible elimination of errors in dating caused...

  2. Performance evaluation of a state-of-the-art solar air-heating system with auxiliary heat pump

    Science.gov (United States)

    1980-01-01

    The system in Solar House 2 consists of 57.9 sq. m. of Solaron Series 300 Collectors, 10.3 cu. m. of pebble bed storage, domestic water preheating capability and a Carrier air-to-air heat pump as an auxiliary heater. Although the control subsystem was specially constructed to facilitate experimental changes and data reduction, the balance of the solar system was assembled with off-the-shelf components. Since all components of the system are commercially available the system is considered to be a state of the art solar air-heating system. The system design is one that is recommended for residential and small office buildings.

  3. Resistive vs. total power depositions by Alfven modes in pre-heated low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    2004-01-01

    The power deposition of fast waves launched by a LFS located antenna in a pre-heated, strongly non-uniform low aspect ratio tokamak (START) is investigated. The rigorous computational results indicate a total power deposition by far larger than that predicted for Alfven continuum eigenmodes in cylindrical plasmas. For toroidal wave numbers |N| > 1, the resistive and total power depositions are almost equal. (author)

  4. Solar air heating system for combined DHW and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-12-01

    The project deals with the development and testing of a simple system for utilization of the summer excess heat from small solar air heating systems for preheating of fresh air. The principle of the system is to lead the heated air down around a domestic hot water tank letting the surface of the tank act as heat exchanger between the air and the water. In order to increase the heat transfer, coefficient fins into the air stream were mounted on the tank. A complete system with 3 m{sup 2} solar air collector, ductworks and a 85 litre storage were set up and extensively monitored. The air stream through the system was created by a fan connected directly to one or two PV-panels leading to a solar radiation dependent flow rate without the use of any other control. Based on monitoring results the system was characterized and a TRNSYS model of the system was developed and calibrated/validated. The monitoring and the simulations with the TRNSYS model revealed several interesting things about the system. The monitoring revealed that the system is capable of bringing the temperature of the water in the storage above 60 deg. C at warm days with clear sky conditions. The storage is very stratified, which is beneficial as usable hot water temperatures rather quickly are obtained. The performance was highly dependent on the airflow rate through the system. It can be concluded that the investigated system will have a performance in the order of 500 kWh during the winter, spring and autumn months and around 250 kWh during the four summer months - or in total a yearly performance of 750 kWh/m{sup 2}. A small traditional solar heating system for preheating of domestic hot water would have a higher performance during the four summer months, but no performance during the rest of the year if the system is installed in a summer house, which only is occupied during the summer. The parametric analysis further indicates that it is possible to further optimise the system when the thermal

  5. Air solar collectors in building use - A review

    Science.gov (United States)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  6. Air solar collectors in building use - A review

    Directory of Open Access Journals (Sweden)

    Bejan Andrei-Stelian

    2018-01-01

    Full Text Available In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  7. Solar project description for Helio-Thermics, Inc., lot 6 single family residence; Greenville, South Carolina

    Science.gov (United States)

    Moore, D.

    1981-03-01

    An instrumented single family residence in Greenville, South Carolina, has approximately 1086 square feet on conditioned space. Solar energy is used for space heating the home and preheating domestic and water (DHW). Solar energy enters the attic through a 416 square foot aperture which is double glazed with corrugated, translucent, fiberglass reinforced, acrylic panels. Warm air accumulates in the peak of the attic roof and circulates through the conditioned space or through storage by an air handler. Solar energy is stored in an 870 cubic foot storage bin containing 85,460 pounds of crushed rock located under the house. cold water is preheated in the attic by thermosiphoning water from the 80 gallon preheat tank through a manifold system of copper tubes. These tubes are attached to black sheet metal plates. Preheated city water is stored in the preheat tank and supplied, on demand, to a conventional 80 gallon DHW tank. When solar energy is insufficient to satisfy the space heating load, a water to air heat exchanger in the hot air supply duct provides auxiliary energy for space heating. A gas fired water heater provides auxiliary energy for the water to air heat exchanger and the DHW.

  8. Exploiting the use of compact heat exchangers on preheating trains; Avaliacao de desempenho de trocadores compactos em bateria de pre-aquecimento - REDUC

    Energy Technology Data Exchange (ETDEWEB)

    Villas Boas, Alan Trugilho; Bolsoni, Adair [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Refinaria de Duque de Caxias (REDUC); Kuboski, Claudio; Cesario, Diomedes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The U-1210 distillation unit of Holding has being expected to suffer a metallurgical adaptation in order to process petroleum with higher naphthenic acids concentration. A heat integration study (pinch analysis) was realized, with the restriction of limited plot area and shut-down time. A full compabloc preheat train was preliminary concept. During conceptual design, REDUC found it to be a good idea to have a performance test. A compabloc CP30 unit has been installed, in order to evaluate the performance of this equipment under unit conditions. The operation service chosen was vacuum residue preheating crude before the dessalter, low crude temperature (100 deg C to 115 deg C). The objective was operational and maintenance experience. (author)

  9. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  10. Energy conservation with semi-controlled areas by air conditioning in nursery schools. The nursery school Dragvoll

    Energy Technology Data Exchange (ETDEWEB)

    Brattset, O; Hestnes, A G

    1985-02-01

    Dragvoll nursery school in Trondheim (Norway) is designed with a central winter garden built up by glazed walls and a glass roof, and surrounded by classrooms. The ventilating air is preheated in a heat exchanger, and then postheated in the said garden by the solar flux before entering the air conditioning system. A comparative evaluation of the energy consumption with the total floor area of about 57 m/sup 2/ is done in relation to a conventionally built nursery school with a floor area of about 520 m/sup 2/. The saving potential is found to 52%. 9 drawing.

  11. arXiv Gravitational wave production from preheating -- parameter dependence

    CERN Document Server

    Figueroa, Daniel G.

    2017-10-31

    Parametric resonance is among the most efficient phenomena generating gravitational waves (GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs, depend exclusively on the resonance parameter q. The latter is determined by the properties of each scenario: the initial amplitude and potential curvature of the oscillating field, and its coupling to other species. Previous works have only studied the GW production for fixed value(s) of q. We present an analytical derivation of the GW amplitude dependence on q, valid for any scenario, which we confront against numerical results. By running lattice simulations in an expanding grid, we study for a wide range of q values, the production of GWs in post-inflationary preheating scenarios driven by parametric resonance. We present simple fits for the final amplitude and position of the local maxima in the GW spectrum. Our parametrization allows to predict the location and amplitude of the GW background today, for an arbitrary q. The GW si...

  12. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Directory of Open Access Journals (Sweden)

    Snegirjovs A.

    2016-12-01

    Full Text Available Information on the electrical-driven solar air conditioning (SAC is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW. In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  13. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Science.gov (United States)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  14. New pre-heating system for natural gas pressure regulating stations

    International Nuclear Information System (INIS)

    Zullo, G.; Vertuani, C.; Borghesani, O.; Vignoli, F.

    1999-01-01

    Costs for running natural gas pressure regulating stations are mainly due to operation and maintenance of a natural gas preheating system, usually equipment with a hot water boiler or an armour-plated electric resistance immersed in a fluid. The article describe a system, considering a natural circulation boiler which uses steam/condensate (at 100 degrees C and 0,5 bar) as a thermal conductor, in thermodynamic balance and in absence of un condensable. This new boiler, already operating with satisfactory results in heating system for industrial buildings, does not require testing, notifications, periodical inspections by the competent authorities, constant monitoring by trained or patented staff. Besides, it allows easier installations procedures and running cost savings. The system, to be considered as static because it has no moving parts, is a good alternative to conventional forced hot water circulation or electric heating system [it

  15. The study on pre-heat conditions in the equivalent-dose estimation of holocene loess using the single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2008-01-01

    The thermal treatment in the equivalent-dose estimation often is carried in the OSL dating, and pre-heat is a main thermal treatment. Due to which will originate the problems of thermal transfer and thermal activation, the thermal treatment and the setup of their conditions are key problems influencing the accuracy of OSL dating. The paper combined the temperature of pre-heat and cut-heat used in the routine measurement of IRSL and Post-IR OSL, and then estimated the equivalent-dose of several loess samples. The estimated result presents that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, which is to say that the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears when using the 200-240 degree C cut-heat in the range of 200-300 degree C pre-heat, and the equivalent-doses estimated by IRSL and Post-IR OSL respectively are close to each other, which resulted from the similar sensitivity change direction of optical stimulated signals and its smaller change range in the measurement cycles using the combined temperature of pre- heat and cut-heat, and the incomplete calibration of sensitivity change of optical stimulated signals in the whole measurement cycles caused the variation of estimated equivalent-dose corresponding to the cut-heat temperature. (authors)

  16. Numerical analysis of the efficiency of earth to air heat exchange systems in cold and hot-arid climates

    International Nuclear Information System (INIS)

    Fazlikhani, Faezeh; Goudarzi, Hossein; Solgi, Ebrahim

    2017-01-01

    Highlights: • A numerical model is developed to evaluate performance of earth to air heat exchanger. • The cooling/heating potential of earth to air heat exchanger is investigated in hot-dry and cold climates. • The more performance of earth to air heat exchanger in hot-dry climates compared to cold climates. • The high efficiency of earth to air heat exchanger for pre-heating in both hot-dry and cold climates. - Abstract: In order to examine and compare the efficiency of earth to air heat exchanger (EAHE) systems in hot-arid (Yazd) and cold (Hamadan) climates in Iran a steady state model was developed to evaluate the impact of various parameters including inlet air temperatures, pipe lengths and ground temperatures on the cooling and heating potential of EAHEs in both climates. The results demonstrated the ability of the system to not only improve the average temperature and decrease the temperature fluctuation of the outlet air temperature of EAHE, but also to trigger considerable energy saving. It was found that in both climates, the system is highly utilized for pre-heating, and its usage is unfeasible in certain periods throughout the year. In winter, EAHEs have the potential of increasing the air temperature in the range of 0.2–11.2 °C and 0.1–17.2 °C for Yazd and Hamadan, respectively. However, in summer, the system decreases the air temperature for the aforementioned cities in the range of 1.3–11.4 °C and 5.7–11.1 °C, respectively. The system ascertains to be more efficient in the hot-arid climate of Yazd, where it can be used on 294 days of the year, leading to 50.1–63.6% energy saving, when compared to the cold climate of Hamadan, where it can be used on 225 days of the year resulting in a reduction of energy consumption by 24.5–47.9%.

  17. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai , David ,; Lacoste , Deanna ,; Laux , C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  18. Solar project description for homes by Marilynn multi-family residence, Albuquerque, New Mexico

    Science.gov (United States)

    Moore, D.

    1981-03-01

    The system is designed to provide solar energy for space heating and preheating DHW. Solar energy is collected by 18 liquid flat plate collectors with a gross area of 346 square feet. Solar energy is transferred from the collector array to a 1000 gallon storage tank. Freeze protection is provided by a 50% ethylene glycol and 50% water. Solar energy is delivered to a liquid-to-air heat exchanger in the space heating subsystem in order to preheat outside air for the heat pump. Preheated city water is stored in a 30 gallon preheat storage tank and supplied, on demand, to a conventional 40 gallon DHW tank.

  19. A method to minimise the fading effects of LiF:Mg,Ti (TLD-600 and TLD-700) using a pre-heat technique.

    Science.gov (United States)

    Lee, YoungJu; Won, Yuho; Kang, Kidoo

    2015-04-01

    Passive integrating dosemeters [thermoluminescent dosimeter (TLD) and optically stimulated luminescence (OSL)] are the only legally permitted individual dosemeters for occupational external radiation exposure monitoring in Korea. Also its maximum issuing cycle does not exceed 3 months, and the Korean regulations require personal dosemeters for official assessment of external radiation exposure to be issued by an approved or rather an accredited dosimetry service according to ISO/IEC 17025. KHNP (Korea Hydro & Nuclear Power, LTD), a unique operating company of nuclear power plants (NPPs) in Korea, currently has a plan to extend a TLD issuing cycle from 1 to 3 months under the authors' fading error criteria, ±10%. The authors have performed a feasibility study that minimises post-irradiation fading effects within their maximum reading cycle employing pre-heating technique. They repeatedly performed irradiation/reading a bare TLD chip to determine optimum pre-heating conditions by analysing each glow curve. The optimum reading conditions within the maximum reading cycle of 3 months were decided: a pre-heating temperature of 165°C, a pre-heating time of 9 s, a heating rate of 25°C s(-1), a reading temperature of 300°C and an acquisition time of 10 s. The fading result of TLD-600 and TLD-700 carried by newly developed time temperature profile (TTP) showed a much smaller fading effect than that of current TTP. The result showed that the fading error due to a developed TTP resulted in a ∼5% signal loss, whereas a current TTP caused a ∼15% loss. The authors also carried out a legal performance test on newly developed TTP to confirm its possibility as an official dosemeter. The legal performance tests that applied the developed TTP satisfied the criteria for all the test categories. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)], E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-04-30

    The behavior of a preheated at 650 deg. C tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 350 pulses of the duration 0.25 ms and the surface heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is below and above the melting threshold, respectively. The development of surface morphology of the exposed targets as well as cracking and swelling at the surface is discussed. First comparisons of obtained experimental results with corresponding numerical simulations of the code PEGASUS-3D are presented.

  1. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Yongping; Xu, Cheng; Xu, Gang; Han, Yu; Fang, Yaxiong; Zhang, Dongke

    2015-01-01

    Highlights: • A new cold-end design of boilers for CFPPs with waste heat recovery is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Higher energy efficiency improvement and greater economic benefits are achieved. • Lower exergy destruction and better matched energy level are obtained. - Abstract: After conducting an in-depth analysis of the conventional boiler cold-end design for waste heat recovery, this work proposed a new conceptual boiler cold-end design integrated with the steam cycle in a 1000 MW CFPP, in which the preheating of air was divided into high-temperature air preheater (HTAP), main air preheater (MAP) and low-temperature air preheater (LTAP). The HTAP and an economizer were installed in separate flue ducts, and the low temperature economizer (LTE) was situated between the MAP and the LTAP in the main flue duct to heat the condensed water. In the proposed boiler cold-end design, the flue gas waste heat was not only used to heat condensed water, but also to further preheat the combustion air. The air temperature at the air-preheater outlet increases and part of the steam bleeds with high exergy can be saved, resulting in greater energy-savings and better economics. Results showed that, for a typical 1000 MW CFPP in China, using the proposed boiler cold-end design for waste heat recovery could produce 13.3 MW e additional net power output with a heat rate reduction of approximately 112.0 kJ/kW h and could yield a net benefit of up to $85.8 M per year, which is much greater than those of the conventional cases. Exergy destruction is also reduced from 49.9 MW th in the conventional boiler cold-end design to 39.6 MW th in the proposed design

  2. Gravitational wave production from preheating: parameter dependence

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Daniel G. [Theory Division, CERN, 1211 Geneva (Switzerland); Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es [Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. (Spain)

    2017-10-01

    Parametric resonance is among the most efficient phenomena generating gravitational waves (GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs, depend exclusively on the resonance parameter q . The latter is determined by the properties of each scenario: the initial amplitude and potential curvature of the oscillating field, and its coupling to other species. Previous works have only studied the GW production for fixed value(s) of q . We present an analytical derivation of the GW amplitude dependence on q , valid for any scenario, which we confront against numerical results. By running lattice simulations in an expanding grid, we study for a wide range of q values, the production of GWs in post-inflationary preheating scenarios driven by parametric resonance. We present simple fits for the final amplitude and position of the local maxima in the GW spectrum. Our parametrization allows to predict the location and amplitude of the GW background today, for an arbitrary q . The GW signal can be rather large, as h {sup 2Ω}{sub GW}( f {sub p} ) ∼< 10{sup −11}, but it is always peaked at high frequencies f {sub p} ∼> 10{sup 7} Hz. We also discuss the case of spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  3. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    Science.gov (United States)

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  4. Enhancements to the hybrid pressurized air receiver (HPAR) concept in the SUNDISC cycle

    Science.gov (United States)

    Heller, Lukas; Hoffmann, Jaap

    2017-06-01

    A dual-pressure air receiver has previously been proposed as part of a hybrid receiver system preheating pressurized air in a solarized gas turbine and providing hot non-pressurized air to power the bottoming cycle of a combined cycle CSP plant. The receiver, based on a bundle of metallic tubular absorbers, was found to not be able to provide the non-pressurized air at the required temperature. Three enhancements to the basic design are presented and thermally modeled: (a) Finned absorber tubes to increase the convective heat transfer, (b) quartz glass elements to alleviate convective losses and improve the flow inside the tube bundle as well as (c) additional absorber elements behind the tube bundle. It could be shown that finned absorber tubes as well as the additional absorber elements have potential to improve the thermal performance of the receiver while a quartz glass window and flow-enhancing quartz elements could be indispensable additions to either of the other enhancements.

  5. Measurement of Preheat and Shock Melting in Be Ablators During the First Few ns of the NIF Ignition Pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D K; Prisbrey, S T; Page, R H; Braun, D G; Edwards, M J; Hibbard, R L; Moreno, K A; Mauldin, M P; Nikroo, A

    2008-05-28

    We have developed a scaled hohlraum platform to experimentally measure preheat in ablator materials during the first few nanoseconds of the radiation drive proposed for ignition experiments at the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, et al., Laser Focus World 30, 75 (1994)]. The platform design approximates the radiation environment of the pole of the capsule by matching both the laser spot intensity and illuminated hohlraum wall fraction in scaled halfraums driven by the OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton, et al., Optics Communications 133, 495 (1997)]. A VISAR reflecting from the rear surface of the sample was used to measure sample motion prior to shock breakout. The experiments show that the first {approx}20 {micro}m of a Be ablator will be melted by radiation preheat, with subsequent material melted by the initial shock, in agreement with simulations. The experiments also show no evidence of anomalous heating of buried high-z doped layers in the ablator.

  6. An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy

    International Nuclear Information System (INIS)

    Rajaseenivasan, T.; Srithar, K.

    2017-01-01

    Highlights: • A biomass based humidification dehumidification desalination system is tested. • System is analyzed with the direct and preheated air supply. • Highest distillate rate of 6.1 kg/h is collected with the preheated air supply. • The minimum fuel feed of 0.2 kg is needed to produce 1 kg of fresh water. - Abstract: This article describes a biomass powered bubble column humidification-dehumidification desalination system. This system mainly consists of a biomass stove, air heat exchanger, bubble column humidifier and dehumidifier. Saw dust briquettes are used as biomass fuel in the stove. First level of experiments are carried out in bubble column humidifier with ambient air supply to select the best water depth, bubble pipe hole diameter and water temperature. Experiments are conducted by integrating the humidifier with the dehumidifier. Air is sent to the humidifier with and without pre-heating. Preheating of air is carried out in the air heat exchanger by using the flue gas and flame from the combustion chamber. It is observed that the humidifier ability is augmented with the rise in water depth, water temperature, mass flow rate of air and cooling water flow rate, and reduction in bubble pipe hole diameter. It is found from Taguchi analysis that the water temperature dominates in controlling the humidifier performance compared to other parameters. Better specific humidity is recorded with a bubble pipe hole diameter of 1 mm, water depth of 170 mm and water temperature of 60 °C. Highest distillate of 6.1 kg/h and 3.5 kg/h is collected for the HDH desalination system with preheated air and direct air supply respectively. Recovery of waste heat using an air heat exchanger reduces the fuel consumption from 0.36 kg to 0.2 kg for producing 1 kg of distilled water. Lowest distilled water cost of 0.0133 US $/kg through preheated air supply and 0.0231 US $/kg through direct air supply is observed. A correlation is developed to estimate the mass transfer

  7. Maximization

    Directory of Open Access Journals (Sweden)

    A. Garmroodi Asil

    2017-09-01

    To further reduce the sulfur dioxide emission of the entire refining process, two scenarios of acid gas or air preheats are investigated when either of them is used simultaneously with the third enrichment scheme. The maximum overall sulfur recovery efficiency and highest combustion chamber temperature is slightly higher for acid gas preheats but air preheat is more favorable because it is more benign. To the best of our knowledge, optimization of the entire GTU + enrichment section and SRU processes has not been addressed previously.

  8. Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater

    International Nuclear Information System (INIS)

    Hamid, Mohammed O.A.; Zhang, Bo; Yang, Luopeng

    2014-01-01

    The big problems facing solar-assisted MED (multiple-effect distillation) desalination unit are the low efficiency and bulky heat exchangers, which worsen its systematic economic feasibility. In an attempt to develop heat transfer technologies with high energy efficiency, a mathematical study is established, and optimization analysis using FSP (field synergy principle) is proposed to support meaning of heat transfer enhancement of a pre-heater in a solar-assisted MED desalination unit. Numerical simulations are performed on fluid flow and heat transfer characteristics in a circular and elliptical tube bundle. The numerical results are analyzed using the concept of synergy angle and synergy number as an indication of synergy between velocity vector and temperature gradient fields. Heat transfer in elliptical tube bundle is enhanced significantly with increasing initial velocity of the feed seawater and field synergy number and decreasing of synergy angle. Under the same operating conditions of the two designs, the total average synergy angle is 78.97° and 66.31° in circular and elliptical tube bundle, respectively. Optimization of the pre-heater by FSP shows that in case of elliptical tube bundle design, the average synergy number and heat transfer rate are increased by 22.68% and 35.98% respectively. - Highlights: • FSP (field synergy principle) is used to investigate heat transfer enhancement. • Numerical simulations are performed in circular and elliptical tubes pre-heater. • Numerical results are analyzed using concept of synergy angle and synergy number. • Optimization of elliptical tube bundle by FSP has better performance

  9. Numerical study of effect of wall parameters on catalytic combustion characteristics of CH4/air in a heat recirculation micro-combustor

    International Nuclear Information System (INIS)

    Yan, Yunfei; Wang, Haibo; Pan, Wenli; Zhang, Li; Li, Lixian; Yang, Zhongqing; Lin, Changhai

    2016-01-01

    Highlights: • Combustion in heat recuperation micro-combustors with different materials was studied. • Heat concentration is more obvious with thermal conductivity decreasing. • Combustor with copper baffles has uniform temperature distribution and best preheating effectiveness. • Influence of wall thermal conductivity is negligible on OH(s) coverage. • Methane conversion rate firstly increases and then decreases with h increasing. - Abstract: Premixed combustion of methane/air mixture in heat recuperation micro-combustors made of different materials (corundum, quartz glass, copper and ferrochrome) was investigated. The effects of wall parameters on the combustion characters of a CH 4 /air mixture under Rhodium catalyst as well as the influence of wall materials and convection heat transfer coefficients on the stable combustion limit, temperature field, and free radicals was explored using numerical analysis methodology. The results show that with a decrease of thermal conductivity of wall materials, the temperature of the reaction region increases and hot spots becomes more obvious. The combustor with copper baffles has uniform temperature distribution and best preheating effectiveness, but when inlet velocity is too small, the maximum temperature in the combustor with copper or ferrochrome baffles is well beyond the melting point of the materials. With an increase in thermal conductivity, the preheat zone for premixed gas increases, but the influence of thermal conductivity on OH(s) coverage is negligible. With an increase of the wall convection heat transfer coefficient, the methane conversion rate firstly increases, then decreases reaching a maximum value at h = 8.5 W/m 2 K, however, the average temperature of both the axis and exterior surface of the combustor decrease.

  10. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  11. Formation And Distribution of Brittle Structures in Friction Stir Welding of AA 6061 To Copper. Influence of Preheat

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Safi

    2016-06-01

    Full Text Available In this paper, apart from introducing brand – new warm friction stir welding (WFSW method, the effect of preheating on friction stir welded of copper and aluminum alloys sheets and its influence on improving the mechanical properties of the weld were investigated. Sheets of aluminum alloy 6061 and copper with thickness of 5mm were used. The tool was made of tool steel of grade H13 with a threaded cone shape. Rotational speeds (w of 1200-1400 rpm and traverse speeds (v of 50-100 mm/min were used for better understanding the behavior of the tools during the heat input. The sheets were kept in furnace with temperature of 75 ˚C and 125˚C and welding was done afterwards. At last, tensile and micro hardness tests were done to compare the mechanical properties of the welds. Considering to the high thermal conductivity of both copper and aluminum, the reason of increase in strength of the joints could be related to the low temperature gradient between the weld zone and base metal because the heat gets out of the stir zone with lower steep. A significant increase in hardness is observed in the SZ for the following reasons: (i the presence of concentric grains with intensely refined recrystallization and (ii the presence of intermetallic compounds. The tensile test results showed 85% increase in the strength of preheated joints. The maximum strength occurs for preheating of 75˚C, rotational speed of 1200 rpm and traverse speed of 50 mm/min. In the present study, intermetallic compounds and the precipitates are moved to the grain boundaries during the welding process. These precipitates act as strong obstacles to the movements of dislocations and increase the deformation resistance of material. This phenomenon may result in locking of grain boundaries and consequently decrease of grain size. This grain refinement can improve the mechanical properties of welds. Accordingly, hardness and strength of the material will be increased.

  12. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2014-05-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ~800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  13. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    International Nuclear Information System (INIS)

    Fat'yanov, O V; Asimow, P D

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ∼800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  14. Establishment of welding process without PWHT and preheating in SGV480 plate for nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Watanabe, Nozomu; Higashikubo, Tomohiro; Nagamura, Takafumi; Yoshimoto Kentaro

    2000-01-01

    Ordinances of Japan's Ministry of International Trade and Industry provide that welded joints more than 38 mm thick used in nuclear reactor containment vessels undergo Post Weld Heat Treatment (PWHT). PWHT is difficult to apply in the field, however. We made SGV480 plate tougher and more weldable by using a Thermo-Mechanical Control Process (TMCP) in rolling. Such plate can be used without PWHT or preheating up to 55 mm thick at lowest service temperature -19degC. (author)

  15. Establishment of welding process without PWHT and preheating in SGV480 plate for nuclear reactor containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nozomu; Higashikubo, Tomohiro; Nagamura, Takafumi [Mitsubishi Heavy Industries. Ltd., Kobe Shipyard and Machinery Works (Japan); Yoshimoto Kentaro [Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan). Takasago Research and Development Center

    2000-07-01

    Ordinances of Japan's Ministry of International Trade and Industry provide that welded joints more than 38 mm thick used in nuclear reactor containment vessels undergo Post Weld Heat Treatment (PWHT). PWHT is difficult to apply in the field, however. We made SGV480 plate tougher and more weldable by using a Thermo-Mechanical Control Process (TMCP) in rolling. Such plate can be used without PWHT or preheating up to 55 mm thick at lowest service temperature -19degC. (author)

  16. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  17. Preheat effect on titanium plate fabricated by sputter-free selective laser melting in vacuum

    Science.gov (United States)

    Sato, Yuji; Tsukamoto, Masahiro; Shobu, Takahisa; Yamashita, Yorihiro; Yamagata, Shuto; Nishi, Takaya; Higashino, Ritsuko; Ohkubo, Tomomasa; Nakano, Hitoshi; Abe, Nobuyuki

    2018-04-01

    The dynamics of titanium (Ti) melted by laser irradiation was investigated in a synchrotron radiation experiment. As an indicator of wettability, the contact angle between a selective laser melting (SLM) baseplate and the molten Ti was measured by synchrotron X-rays at 30 keV during laser irradiation. As the baseplate temperature increased, the contact angle decreased, down to 28° at a baseplate temperature of 500 °C. Based on this result, the influence of wettability of a Ti plate fabricated by SLM in a vacuum was investigated. It was revealed that the improvement of wettability by preheating suppressed sputtering generation, and a surface having a small surface roughness was fabricated by SLM in a vacuum.

  18. Hoosier Magnetics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-09-30

    Hoosier Magnetics proposes to replace the indirect clinker water cooling system with a cooling system that recycles heat from the hot ferrite to preheat the combustion air. This innovative process would significantly reduce the amount of natural gas required to heat the combustion air while eliminating Hoosier’s largest source of downtime. According to the Department of Energy’s Industrial Technologies Program for Energy Efficiency and Renewable Energy, process temperature is customarily used as a rough indication of where preheating air will be cost effective. Previous studies have concluded that processes operating above 1,600° F are ideal candidates for the utilization of pre-heated combustion air. Hoosier Magnetics’ operating temperatures run between 1800-2200° F making Hoosier the perfect candidate. Using preheated air at 1200° F will result in 35% fuel savings, or $298,935 annually. Additionally, the new system would have improved process reliability and result in both production efficiency increases and cost savings. This technology is NOT practiced or utilized on a wide-spread basis but could have a significant energy reduction impact in many different high heat utilizing industries in the country. While the energy savings is apparent with this theory the application and design of such a process has not been studied.

  19. New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching

    Directory of Open Access Journals (Sweden)

    Cong Chunxiao

    2009-01-01

    Full Text Available Abstract We report a low-cost and simple method for fabrication of nonspherical colloidal lithographic nanopatterns with a long-range order by preheating and oxygen reactive ion etching of monolayer and double-layer polystyrene spheres. This strategy allows excellent control of size and morphology of the colloidal particles and expands the applications of the colloidal patterns as templates for preparing ordered functional nanostructure arrays. For the first time, various unique nanostructures with long-range order, including network structures with tunable neck length and width, hexagonal-shaped, and rectangular-shaped arrays as well as size tunable nanohole arrays, were fabricated by this route. Promising potentials of such unique periodic nanostructures in various fields, such as photonic crystals, catalysts, templates for deposition, and masks for etching, are naturally expected.

  20. Solid state NMR studies for a new carbonization process with high temperature preheating

    Science.gov (United States)

    Saito, Koji; Hatakeyama, Moriaki; Komaki, Ikuo; Katoh, Kenji

    2002-01-01

    A new carbonization process with rapid preheating and coke discharging at medium temperature has been developed in Japan. The result of this process shows that even when no or slightly coking coal is by 50 wt% the coking property is improved and a coking coke with cold strength usable at blast furnace can be manufactured with the new carbonization process. The mechanism of the coking property improvement was examined by coal properties using mainly solid state NMR ( 1H CRAMPS and 13C SPE/MAS, CP/MAS) and NMR imaging (single point imaging, in-situ imaging). It has been clarified that the molecular structure of coal is relaxed by the rapid heating treatment and, in addition, there is a close relation between hydrogen bonding and relaxation of the molecular structure of coal.

  1. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism

    International Nuclear Information System (INIS)

    Yang, Weihong; Blasiak, Wlodzimierz

    2005-01-01

    A study of the mathematical modelling of NO formation and emissions in a gas-fired regenerative furnace with high-preheated air was performed. The model of NO formation via N 2 O-intermediate mechanism was proposed because of the lower flame temperature in this case. The reaction rates of this new model were calculated basing on the eddy-dissipation-concept. This model accompanied with thermal-NO, prompt-NO and NO reburning models were used to predict NO emissions and formations. The sensitivity of the furnace temperature and the oxygen availability on NO generation rate has been investigated. The predicted results were compared with experimental values. The results show that NO emission formed by N 2 O-intermediate mechanism is of outstanding importance during the high-temperature air combustion (HiTAC) condition. Furthermore, it shows that NO models with N 2 O-route model can give more reasonable profile of NO formation. Additionally, increasing excess air ratio leads to increasing of NO emission in the regenerative furnace. (author)

  2. Experimental data and boundary conditions for a Double-Skin Facade building in external air curtain mode

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Jensen, Rasmus Lund

    Frequent discussions of double skin façade energy performance have started a dialogue about the methods, models and tools for simulation of double façade systems and reliability of their results. Their reliability will increase with empirical validation of the software. Detailed experimental work...... was carried out in a full scale test facility ‘The Cube’, in order to compile three sets of high quality experimental data for validation purposes. The data sets are available for preheating mode, external air curtain mode and transparent insulation mode. The objective of this article is to provide the reader......’. This covers such problem areas as measurements of naturally induced air flow, measurements of air temperature under direct solar radiation exposure, etc. Finally, in order to create a solid foundation for software validation, the uncertainty and limitations in the experimental results are discussed. In part...

  3. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  4. Experimental investigation of wood combustion in a fixed bed with hot air

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit

    2014-01-15

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of

  5. Ventilated Double Window for the Preheating of the Ventilation Air Comparison of Its Performance in a Northern and a Southern European Climate

    Directory of Open Access Journals (Sweden)

    Jorge S. Carlos

    2013-01-01

    Full Text Available Keeping the indoor air quality within the reference levels requires that the polluted indoor air be replaced by fresh air coming from the outside. This paper presents a sensitivity analysis and a series of simulations where the performance of this passive system is studied. The influence of each relevant factor, like the wind, the solar radiation, and the outdoor air temperature, is assessed. Two different local sets of climatic data were chosen, a mild and a cold winter.

  6. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    OpenAIRE

    Fat'yanov, Oleg V.; Asimow, P. D.

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority ...

  7. Capturing energy from ventilation air methane a preliminary design for a new approach

    International Nuclear Information System (INIS)

    Cluff, D.L.; Kennedy, G.A.; Bennett, J.G.; Foster, P.J.

    2015-01-01

    Methane is a potent greenhouse gas (GHG), discharged to the atmosphere by coalmining, the natural gas industry and natural biological processes, second only to carbon dioxide; thus, any reduction in atmospheric methane would be globally beneficial. The capture or use of ventilation air methane (VAM) is challenging because it is a high volume low concentration methane source. This results in the routine discharge of methane into the atmosphere. A review of VAM mitigation technologies is provided and the main disadvantages of the existing technologies are discussed. In the proposed VamTurBurner © system, the heat from the combustion chamber is transferred to the preheating zone either by a heat exchanger or by redirecting the combustion products to mix with the ventilation air stream from a coalmine. Gas turbines (GT) are used to produce electricity with the exhaust gases directed to mix with the incoming ventilation airflow. The turbulence introduced by the GT exhaust assists with mixing of the incoming ventilation airflow and the return flow of combustion products from the combustion chamber. The combustion products are a source of heat, which increases the temperature of the incoming ventilation air to a value high enough for the methane to undergo flameless combustion upon encountering the igniters. The high temperature combustion products enter a multi-generation system. The multi-generation system is based on mature engineering technology such as heat exchangers and steam turbines. The residual heat provides additional heat based products such as industrial scale drying, chilling by an absorption chiller or simply hot water. The VamTurBurner © uses the energy from the GT, igniters and VAM to provide clean efficient energy while mitigating the atmospheric emissions of methane. The opportunity to collect carbon credits may improve the economics. Since the VAM is a free energy source, the output of the system is greater than the purchased energy. - Highlights:

  8. Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant

    Directory of Open Access Journals (Sweden)

    Lingnan Wu

    2012-09-01

    Full Text Available In this paper, the exergoeconomic analysis was conducted to an existing ultra-supercritical coal-fired power plant in China to understand the cost-formation process, to evaluate the economic performance of each component and to find possible solutions for more cost-effective designs. The total revenue requirement (TRR and the specific exergy costing (SPECO methods were applied for economic analysis and exergy costing, respectively. Quantitative balances of exergy and exergetic costs as well as necessary auxiliary equations for both individual component and the overall system were established. The results show that the exergoeconomic factors of the furnace and heat exchangers at low temperature levels, including air preheater and low-pressure feedwater preheaters, are rather small; while those of other components are relatively large. Moving more heat absorption into furnace to use the effective radiation heat transfer, increasing the air preheating temperature and adding more low pressure feedwater preheaters can be promising solutions for future design.

  9. Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous-media reservoir used for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.

    1979-10-01

    The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.

  10. Air pollution control technologies and their interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nalbandian, H. [IEA Clean Coal Centre, London (United Kingdom)

    2004-11-01

    A large number of coal-fired power stations have been fitted/retrofitted with dedicated air pollutant control technologies. Experience shows that these technologies can have complex interactions and can impact each other as well as balance of plant, positively and/or negatively. Particulate matter (PM) is usually captured with electrostatic precipitators (ESPs) and fabric filters (FF). These technologies are efficient and reliable but their performance may be affected by modifying operating conditions and introducing primary measures for NOx reduction. Flue gas desulphurisation (FGD) systems for SO{sub 2} control have been installed in many facilities with the most popular technology being the wet limestone/gypsum scrubber. FGD use can decrease particulate matter and mercury emissions which is a major issue in the USA, cause an increase in carbon dioxide emissions, and in solids by-product. Primary measures such as low NOx burners (LNBs) and overfire air (OFA) minimise NOx formation but can increase carbon in ash (CIA) which can cause problems with fly ash sales but may also improve mercury capture. Reducing NOx emissions with selective catalytic reduction (SCR) can result in a decrease in particulate matter, an increase in SO{sub 3} emissions and trace increase in NH{sub 3}. This can cause fouling and loss of performance of the air preheater, due to the formation of ammonium sulphates. One way of alleviating this is improved soot-blowing and other cleaning capabilities. This report studies these and other interactions between existing air pollution control technologies in pulverised coal fired power plants. 249 refs., 13 figs., 18 tabs.

  11. Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine

    International Nuclear Information System (INIS)

    Bari, S.; Lim, T.H.; Yu, C.W.

    2002-01-01

    Crude palm oil (CPO) is one of the vegetable oils that have potential for use as fuels for diesel engines. CPO is renewable, and is safe and easy to handle. However, at room temperature (30-32 deg C) CPO has a viscosity about 10 times higher than that of diesel. To lower CPO's viscosity to the level of diesel's viscosity, a heating temperature of at least 92 deg C is needed. At this temperature, there is a concern that the close-fitting parts of the injection system might be affected. This study focused on finding out the effects of preheating of fuel on the injection system utilising a modified method of friction test, which involves injecting fuel outside the combustion chamber during motoring. Results show that preheating of CPO lowered CPO's viscosity and provided smooth fuel flow, but did not affect the injection system, even heating up to 100 deg C. Nevertheless, heating up to such a high temperature offered no benefits in terms of engine performance. However, heating is necessary for smooth flow and to avoid fuel filter clogging. Both can be achieved by heating CPO to 60 deg C. Combustion analyses comparisons between CPO and diesel found that CPO produced a higher peak pressure of 6%, a shorter ignition delay of 2.6 deg, a lower maximum heat release rate and a longer combustion period. Over the entire load range, CPO combustion produced average CO and NO emissions that were 9.2 and 29.3% higher, respectively, compared with those from diesel combustion. (Author)

  12. Modeling of crude oil fouling in preheat exchangers of refinery distillation units

    Energy Technology Data Exchange (ETDEWEB)

    Jafari Nasr, Mohammad Reza; Majidi Givi, Mehdi [National Petrochemical Research and Technology Company (NPC-RT), P.O. Box 14385, Tehran (Iran)

    2006-10-15

    The aim of this paper is to propose a new model for crude oil fouling in preheat exchangers of crude distillation units. The experimental results of Australian light crude oil with the tube side surface temperature between 200 and 260{sup o}C and fluid velocity ranged 0.25-0.4m/s were used [Z. Saleh, R. Sheikholeslami, A.P. Watkinson, Heat exchanger fouling by a light australian crude oil, in: Heat Exchanger Fouling and Cleaning Fundamentals and Applications, Santa Fe, 2003]. The amount of activation energy depends on the surface temperature has been calculated. A new model including a term for fouling formation and a term for fouling removal due to chemical and tube wall shear stress was proposed, respectively. The main superiority of the model are independent to Pr number, thermal fouling removal and determination of {beta} based on experimental tests. Finally using the proposed model the fouling rate of Australian light crude oil has been calculated and the threshold curves to identify fouling and no fouling formation zones have been drawn. (author)

  13. Modelling spontaneous ignition of wood, char and RDF in a lab-scale packed bed

    NARCIS (Netherlands)

    Blijderveen, M.; Bramer, Eduard A.; Brem, Gerrit

    2013-01-01

    Many municipal waste combustors use preheated primary air in the first zone to dry the waste. In most cases the preheat temperature does not exceed 140 °C. In previous experiments it is found that at temperatures around 200 °C, in some circumstances, self- or spontaneous ignition can be achieved.

  14. Modelling spontaneous ignition of wood, char and RDF in a lab-scale packed bed

    NARCIS (Netherlands)

    Blijderveen, M. van; Bramer, E.A.; Brem, G.

    2013-01-01

    Many municipal waste combustors use preheated primary air in the first zone to dry the waste. In most cases the preheat temperature does not exceed 140°C. In previous experiments it is found that at temperatures around 200°C, in some circumstances, self- or spontaneous ignition can be achieved.

  15. Spontaneous ignition of wood, char and RDF in a lab scale packed bed

    NARCIS (Netherlands)

    Blijderveen, M.; Gucho, Eyerusalem Merin; Gucho, Eyerusalem M.; Bramer, Eduard A.; Brem, Gerrit

    2010-01-01

    Many municipal waste combustors use preheated primary air in the first zone to dry the waste. In most cases the preheat temperature does not exceed 140 °C. In previous experiments it is found that at temperatures around 200 °C, in some circumstances, self- or spontaneous ignition can be achieved.

  16. AMBIENT CONDITIONS EFFECTS ON PERFORMANCE OF GAS TURBINE COGENERATION POWER PLANTS

    OpenAIRE

    Necmi Ozdemir*

    2016-01-01

    In this study, the performances of a simple and an air preheated cogeneration cycles in ambient conditions are compared with each other. A computer program written by the author in FORTRAN codes is used for the calculation of the enthalpy and entropy values of the streams, Exergy analysis is done and compared for the simple and the air preheated cogeneration cycles for different ambient conditions. The two cogeneration cycles are evaluated in terms of heat powers and electric, electrical to h...

  17. Operation of neat pine oil biofuel in a diesel engine by providing ignition assistance

    International Nuclear Information System (INIS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Lee, P.S.

    2014-01-01

    Highlights: • Operational feasibility of neat pine oil biofuel has been examined. • Pine oil suffers lower cetane number, which mandates for necessary ignition assistance. • Ignition support is provided by preheating the inlet air and incorporating a glow plug. • At an inlet air temperature of 60 °C, the BTE for pine oil was found to be in par with diesel. • CO and smoke emissions were reduced by 13.2% and 16.8%, respectively, for neat pine oil. - Abstract: The notion to provide ignition support for the effective operation of lower cetane fuels in a diesel engine has been ably adopted in the present study for the sole fuel operation of pine oil biofuel. Having noted that the lower cetane number and higher self-ignition temperature of pine oil biofuel would inhibit its direct use in a diesel engine, combined ignition support in the form of preheating the inlet air and installing a glow plug in the cylinder head has been provided to improve the auto-ignition of pine oil. While, an air preheater, installed in the inlet manifold of the engine, preheated the inlet air so as to provide ignition assistance partially, the incorporation of glow plug in the cylinder head imparted the further required ignition support appropriately. Subsequently, the operational feasibility of neat pine oil biofuel has been examined in a single cylinder diesel engine and the engine test results were analyzed. From the experimental investigation, though the engine performance and emissions such as CO (carbon monoxide) and smoke were noted to be better for pine oil with an inlet air temperature of 40 °C, the engine suffered the setback of knocking due to delayed SOC (start of combustion). However, with the ignition support through glow plug and preheating of inlet air, the engine knocking was prevented and the normal operation of the engine was ensured. Categorically, at an inlet air temperature of 60 °C, BTE (brake thermal efficiency) was found to be in par with diesel, while

  18. Preliminary engineering design and cost of Advanced Compressed-Air Storage (ACAS) A-5 hybrid

    Science.gov (United States)

    Sosnowicz, E. J.; Blackman, J.; Woodhull, A. S.; Zaugg, P.

    1981-08-01

    The advanced compressed air energy (ACAS) plant investiated operates on a partial adiabatic, partial fuel fired cycle. Only a limited advancement in state-of-the-art technology is projected for this hybrid arrangement. The A-5 hybrid systems stores the heat of compression from the low pressure and intermediate pressure compressors in a thermal energy store (TES). The heat collected in the TES is available for preheating the air from the storage cavern prior to its entering the low pressure turbine combustor. This reduces the amount of fuel consumed during power generation. The fuel heat rate for the hybrid cycle is 2660 Btu/kWh as compared to approximately 4000 Btu/kWh for a conventional CAES plant. A virtual stand-off between the hybrid plant and a conventional CAES plant at 235 mills/kWh in 1990 dollars is shown. With a lower cost and increased fuel cost projections, the hybrid system operating cost is less than that for a conventional CAES plant.

  19. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  20. Solar project description for Public Service Company of New Mexico (lot 7) single family residence, Rio Rancho, New Mexico

    Science.gov (United States)

    1981-08-01

    A solar space heating/domestic hot water system employing 150 square feet air flat plate collectors and 20,000 pounds of rock for storage is described. The collector, storage, energy to load, and auxiliary heat subsystems and five modes of operation are described. Auxiliary space heating is provided by an electric strip heater in the air ducts. The hot water system consists of an 80 gallon solar preheating tank which supplies a 40 gallon conventional tank. An electric heating element provides auxiliary heating in the preheat tank.

  1. Air quality in barns for milk-fed calves

    International Nuclear Information System (INIS)

    Lavoie, J.

    2007-01-01

    Seventy per cent of the veal produced in Canada comes from Quebec. This paper reported on the air quality in barns used for milk-fed calves. It is known that air quality inside livestock buildings has an impact on both workers and animals, particularly in winter when air circulation is reduced. In this study, air quality inside barns was studied during the winter, spring and summer. Three types of barns with 3 different types of ventilation typically found in Quebec were evaluated. These included those with preheated corridors, lateral air entries, and central chimneys. Gases were measured in order to determine concentrations and emissions of: ammonia (NH 3 ) which is toxic, colourless and flammable; hydrogen sulfide (H 2 S) which is very toxic, flammable; carbon dioxide (CO 2 ) which is colourless and odourless; nitrous oxide (N 2 O) which is colourless and flammable, but harmless to health in the short-term; carbon monoxide (CO) which is colourless, odourless and flammable; and methane (CH 4 ) which is the principal constituent released by animals, and is also colourless, odourless and extremely flammable. When exposed to air, both methane and carbon monoxide can produce an explosive mix especially in an enclosed area. Bacteria, mold, endotoxins, and dust are also present in barns. Samples of gases were analyzed with the help of different portable apparatuses. Results revealed that there are no significant problems with air quality in barns used for milk-fed calves in Quebec. It was determined that the inside temperature was appropriate even during summer periods, and although the relative humidity was higher than the recommended values for the care and handling of farm animals, it was still acceptable. In winter, ammonia was the only gas present in concentrations that reached values of weighted average exposure. Also, concentrations of bacteria were higher during winter. It was suggested that better air ventilation during the winter period would lower ammonia

  2. Process to dry and preheat fine-grained bituminous coal using non- or weakly baking coal and/or carbon materials. Verfahren zur Trocknung und Vorerhitzung von feinkoerniger Steinkohle unter Verwendung nicht oder nur schwach backender Kohle und/oder Kohlenstofftraegern

    Energy Technology Data Exchange (ETDEWEB)

    Echterhoff, J.; Frick, H.; Schaper, A.; Mohmeyer, H.

    1982-11-04

    Fine-grained bituminous coal is dried and preheated in an inert gas to prevent its oxidation. The inert gas consists essentially of steam which originates from the coal to be dried. The coal is heated besides by using steam intensively but gently. The drying is carried out in a drying drum in co-current flow. The coal is mixed with a binding agent in the presence of steam. The dried and preheated coal is taken out and, after being covered with a binding agent, transported without further safety measures to the atmosphere, stored and further processed. (KHH).

  3. Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell

    Science.gov (United States)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M. D.; Fowler, M. W.; Douglas, P. L.; Entchev, E.

    A two-dimensional mechanistic model of a tubular solid oxide fuel cell (SOFC) considering momentum, energy, mass and charge transport is developed. The model geometry of a single cell comprises an air-preheating tube, air channel, fuel channel, anode, cathode and electrolyte layers. The heat radiation between cell and air-preheating tube is also incorporated into the model. This allows the model to predict heat transfer between the cell and air-preheating tube accurately. The model is validated and shows good agreement with literature data. It is anticipated that this model can be used to help develop efficient fuel cell designs and set operating variables under practical conditions. The transport phenomena inside the cell, including gas flow behaviour, temperature, overpotential, current density and species concentration, are analysed and discussed in detail. Fuel and air velocities are found to vary along flow passages depending on the local temperature and species concentrations. This model demonstrates the importance of incorporating heat radiation into a tubular SOFC model. Furthermore, the model shows that the overall cell performance is limited by O 2 diffusion through the thick porous cathode and points to the development of new cathode materials and designs being important avenues to enhance cell performance.

  4. Design and simulation of a hybrid ventilation system with earth-air heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Athienitis, A.K.; Zhao, M. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Roy, M. [Martin Roy and Associes Group Conseil Inc., Montreal, PQ (Canada)

    2005-07-01

    A simulation study was conducted during the design phase of a new circus building in Montreal which includes a hybrid ventilation system through which fresh air is supplied from an earth-air heat exchanger (EAHE). The EAHE has the potential to satisfy the cooling needs of the building and can also be used to preheat fresh air, thereby satisfying one-third or more of the building's heating needs. Another feature of the building is that it uses displacement ventilation by which the air is supplied at low velocities through large diffusers behind the top level seats or under the seats. In this study, computational fluid dynamics (CFD) simulations were carried out to help size the supply and return units of the heating, ventilating and air conditioning (HVAC) system, as well as the exhaust chimney. The primary objective of the CFD simulation was to determine the maximum velocity and temperature in the seated area to ensure thermal comfort. CFD simulation predictions were found to be in good agreement with preliminary measurements taken in the building. In order to monitor the operation of the system over the next year, the underground ducts were equipped with temperature sensors at several depths into the soil. The energy efficiency of the hybrid HVAC system will be assessed and the velocity and temperature distribution in the theatre will be examined under various operating and energy load conditions. 8 refs., 6 figs.

  5. Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Houda Hachem

    2015-10-01

    Full Text Available In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger.

  6. An Analysis of the Microstructure, Macrostructure and Microhardness of Nicr-Ir Joints Produced by Laser Welding with and without Preheat

    Directory of Open Access Journals (Sweden)

    Różowicz S.

    2016-06-01

    Full Text Available This paper discusses some of the basic problems involved in laser welding of dissimilar materials with significant differences in melting points. It focuses on the micro and macrostructure of laser welded NiCr-Ir microjoints used in central spark plug electrodes. The joints were produced by welding with and without preheat using an Nd,YAG laser. The structure and composition of the welded joints were analyzed by means of a light microscope (LM and a scanning electron microscope (SEM equipped with an energy dispersive X-ray (EDX spectrometer. The microhardness of the weld area was also studied.

  7. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  8. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    Science.gov (United States)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  9. Combustion analysis of preheated crude sunflower oil in an IDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, Mustafa; Ozsezen, Ahmet Necati; Turkcan, Ali [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2009-05-15

    In this study, preheated crude sunflower oil (PCSO) was tested for combustion and emission properties against petroleum based diesel fuel (PBDF) in a naturally aspirated, indirect injection (IDI) engine. The cylinder gas pressure and heat release curves for PCSO at 75 C were similar to those of PBDF. The ignition delays for the PCSO were longer and the start of injection timing was earlier than for PBDF. The difference in the average brake torque was a decrease of 1.36% for PCSO though this was statistically insignificant. The brake specific fuel consumption increased by almost 5% more or less in proportion to the difference in calorific value, so that the 1.06% increase in thermal efficiency was again statistically insignificant. The emission test results showed that the decreases in CO{sub 2} emissions and smoke opacity 2.05% and 4.66%, respectively; however, this was not statistically significant, though in line with the apparent increase in thermal efficiency. There was a significant 34% improvement in the emissions of unburnt hydrocarbons. Carbon monoxide increased by 1.77% again the result was not statistically significant given the small number of repeat tests. The use of PCSO does not have any negative effects on the engine performance and emissions in short duration engine testing. (author)

  10. Synthesis and physical properties of zinc-oxide textured films by using a filtered preheated hydrothermal

    International Nuclear Information System (INIS)

    Qiu, Jijun; Shin, Dongmyeong; He, Weizhen; Kim, Hyungkook; Hwang, Yoonhwae; Li, Xiaomin; Gao, Xiangdong

    2014-01-01

    Axially (c-axis)-oriented ZnO thick films with a ∼8.1 μm thickness were fabricated on ZnO seed layer coated substrates by using a filtered preheated hydrothermal solution. The thick films composed of single-crystal ZnO microrods with various diameters were formed by coalescing each nanorod together along their side surfaces. From the X-ray diffraction result a biaxial stress exists was found to exist in the as-grown thick films, and the stress gradually increased with increasing annealing temperatures from 200 to 550 .deg. C due to a degradation in the crystalline quality. The biaxial stress is responsible for the red-shift of the optical band gap of the ZnO thick films. Photoluminescence and Hall results revealed that the optical and the electrical properties of the thick films were degenerated after high-temperature annealing (> 200 .deg. C), which was due to the introduction of point defects, such as oxygen interstitials and zinc vacancies.

  11. Synthesis and physical properties of zinc-oxide textured films by using a filtered preheated hydrothermal

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jijun [Pusan National University, Busan (Korea, Republic of); Shin, Dongmyeong; He, Weizhen; Kim, Hyungkook; Hwang, Yoonhwae [Pusan National University, Miryang (Korea, Republic of); Li, Xiaomin; Gao, Xiangdong [Chinese Academy of Sciences, Shanghai (China)

    2014-11-15

    Axially (c-axis)-oriented ZnO thick films with a ∼8.1 μm thickness were fabricated on ZnO seed layer coated substrates by using a filtered preheated hydrothermal solution. The thick films composed of single-crystal ZnO microrods with various diameters were formed by coalescing each nanorod together along their side surfaces. From the X-ray diffraction result a biaxial stress exists was found to exist in the as-grown thick films, and the stress gradually increased with increasing annealing temperatures from 200 to 550 .deg. C due to a degradation in the crystalline quality. The biaxial stress is responsible for the red-shift of the optical band gap of the ZnO thick films. Photoluminescence and Hall results revealed that the optical and the electrical properties of the thick films were degenerated after high-temperature annealing (> 200 .deg. C), which was due to the introduction of point defects, such as oxygen interstitials and zinc vacancies.

  12. Measuring skin necrosis in a randomised controlled feasibility trial of heat preconditioning on wound healing after reconstructive breast surgery: study protocol and statistical analysis plan for the PREHEAT trial.

    Science.gov (United States)

    Cro, Suzie; Mehta, Saahil; Farhadi, Jian; Coomber, Billie; Cornelius, Victoria

    2018-01-01

    Essential strategies are needed to help reduce the number of post-operative complications and associated costs for breast cancer patients undergoing reconstructive breast surgery. Evidence suggests that local heat preconditioning could help improve the provision of this procedure by reducing skin necrosis. Before testing the effectiveness of heat preconditioning in a definitive randomised controlled trial (RCT), we must first establish the best way to measure skin necrosis and estimate the event rate using this definition. PREHEAT is a single-blind randomised controlled feasibility trial comparing local heat preconditioning, using a hot water bottle, against standard care on skin necrosis among breast cancer patients undergoing reconstructive breast surgery. The primary objective of this study is to determine the best way to measure skin necrosis and to estimate the event rate using this definition in each trial arm. Secondary feasibility objectives include estimating recruitment and 30 day follow-up retention rates, levels of compliance with the heating protocol, length of stay in hospital and the rates of surgical versus conservative management of skin necrosis. The information from these objectives will inform the design of a larger definitive effectiveness and cost-effectiveness RCT. This article describes the PREHEAT trial protocol and detailed statistical analysis plan, which includes the pre-specified criteria and process for establishing the best way to measure necrosis. This study will provide the evidence needed to establish the best way to measure skin necrosis, to use as the primary outcome in a future RCT to definitively test the effectiveness of local heat preconditioning. The pre-specified statistical analysis plan, developed prior to unblinded data extraction, sets out the analysis strategy and a comparative framework to support a committee evaluation of skin necrosis measurements. It will increase the transparency of the data analysis for the

  13. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire; Influencia del precalentamiento en las propiedades de uniones soldadas de acero API 5L-X80 soldadas con alambre tubular autoprotegido

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-07-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs.

  14. Ceramic applications in the advanced Stirling automotive engine

    Science.gov (United States)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  15. Performance testing of an air/water heat pump using CO{sub 2} (R744) as refrigerant for the preparation of sanitary hot water in a hospital; Mesures des donnees energetiques d'une pompe a chaleur air/eau au CO{sub 2} (R744) pour preparation d'eau chaude sanitaire dans un hopital

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, P.

    2006-07-01

    This final report prepared for the Swiss Federal Office of Energy (SFOE) describes the monitoring equipment and the results of performance tests made on a prototype heat pump of 60 kW power output used for hot water production at the hospital of Le Locle, Switzerland. The heat pump uses carbon dioxide (R744) as the working fluid and ambient air as the heat source. The heat output and the coefficient of performance for various values of cold water temperature and air temperature have been measured. The practically measured values of heat output and COP showed a low reproducibility and remained far behind the theoretical values given by the manufacturer. Instead of producing hot water at 80 {sup o}C as intended originally the authors recommend to use the heat pump only for preheating the water to 60 {sup o}C.

  16. 锅炉给风管道技改初探%Preliminary Study on the Technological Reform of the Air Feeding Pipe of Boiler

    Institute of Scientific and Technical Information of China (English)

    常飞

    2014-01-01

    According to the original design, the air feeding pipe of NO.1 fan and No.2 fan is at the outdoor of the main workshop. The temperature of feeding air is the environmental temperature (The hottest month is24℃and the coldest month is-9.30℃ and the annual average temperature is 8.50℃ ). Now the air inlet is changed to located at the indoor of the boiler room. The heat air in the boiler room is sent to the air preheater through air pipe which improves the temperature of feeding air and improves the burning of the boiler. Thus, the coal is saved and the energy consumption is reduced.%原设计一、二次风机进风管道在主厂房室外,进风温度是环境温度,最热月是24℃,最冷月是-9.30℃,年平均气温是8.50℃;改为进风口放在锅炉房室内,由风管把锅炉房高空热空气(30~40℃)送入空预器,提高给风温度改善锅炉燃烧,节约燃煤,降低能耗。

  17. Operating experience of a portable thermophotovoltaic power supply

    Science.gov (United States)

    Becker, Frederick E.; Doyle, Edward F.; Shukla, Kailash

    1999-03-01

    Two configurations of man-portable thermophotovoltaic (TPV) power supplies based on Thermo Power's supported continuous fiber emitter have been designed, built, and are being tested. The systems use narrow-band, fibrous, ytterbia emitters radiating to bandgap matched silicon photovoltaic arrays with dielectric stack filters for optical energy recovery and recuperators for thermal energy recovery. The systems have been designed for operation with propane and with combustion air preheat temperatures of up to 1250 K. To operate at air preheat temperatures above the auto-ignition temperature of the fuel, a unique fuel delivery system was devised which results in the micromixing and rapid combustion of the fuel and air right in the emitter fibers. This allows the ytterbia emitter fibers to run much hotter (˜2000 K) than any of the surrounding structure.

  18. Heat exchangers of a new design and their use in thermal power engineering

    Science.gov (United States)

    Astanovskii, D. L.; Astanovskii, L. Z.

    2007-07-01

    We present a new design of a heat exchanger capable of handling flows of gases and liquids at temperatures from -270 to +1100°C and pressure of up to 30 MPa, for any throughput capacity required, and ensuring low loss of head of heat-transfer media. Examples illustrating the use of such an apparatus for supplying hot water, preheating natural gas, recuperating the heat of stack gases, and preheating air are given.

  19. Economic application, design analysis, and material availability for ceramic heat exchangers

    Science.gov (United States)

    Tennery, V. J.

    1981-01-01

    Fuel consumption in an industrial process can be reduced by 40% or more by using recuperation or regeneration to heat air for the burners compared with use of ambient temperature air for fuel combustion with furnace gases in the range of 1300 C and air preheat temperatures above 800 C. Alloy temperature limitations and corrosion of the alloys severely limit the use of metal recuperators to preheat air above about 600 C. Structural ceramics, such as silicon carbide, offer promise for use in high-temperature HXs for recovering waste heat from hot flue gases. An assessment was made of industrial attitudes toward advanced high-temperature ceramic recuperators. Three promising industrial processes are identified where these recuperators could be applied. Conceptual designs of ceramic recuperators are given consistent with the furnace requirements for these processes. The annual national fuel saving possible for the three applications of these recuperators was estimated.

  20. Test and evaluation of the Argonne BPAC10 Series air chamber calorimeter designed for 20 minute measurements

    International Nuclear Information System (INIS)

    Perry, R.B.; Fiarman, S.; Jung, E.A.; Cremers, T.

    1990-10-01

    This paper is the final report on DOE-OSS Task ANLE88002 ''Fast Air Chamber Calorimetry.'' The task objective was to design, construct, and test an isothermal air chamber calorimeter for plutonium assay of bulk samples that would meet the following requirements for sample power measurement: average sample measurement time less than 20 minutes. Measurement of samples with power output up to 10 W. Precision of better than 1% RSD for sample power greater than 1 W. Precision better than 0.010 watt SD, for sample power less than 1 W. This report gives a description of the calorimeter hardware and software and discusses the test results. The instrument operating procedure, included as an appendix, gives examples of typical input/output and explains the menu driven software. Sample measurement time of less than 20 minutes was attained by pre-equilibration of the samples in low cost precision preheaters and by prediction of equilibrium measurements. Tests at the TA55 Plutonium Facility at Los Alamos National Laboratory, on typical samples, indicates that the instrument meets all the measurement requirements

  1. Two-story residence with solar heating--Newman, Georgia

    Science.gov (United States)

    1981-01-01

    Report evaluates performance of warm-air collector system for 11 month period and provides operation and maintenance information. System consists of 14 warm air collectors, rock-storage bin, air handler, heat exchangers, hot-water preheat tank, associated controls, plumbing, and air ducting. Average building temperature was maintained at 72 F (22 C); solar equipment provided 47 percent of space-heating requirement.

  2. Nanotechnology based surface treatments for corrosion protection and deposit control of power plant equipment. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    Nanotechnology can provide possibilities for obtaining new valuable information regarding performance and corrosion protection in power plants. In general the desired performance of the contact surfaces is an easy-to-release effect. This is in order to prolong the time interval between cleaning periods or make the cleaning procedures easier and less expensive. Corrosion protection is also desired in order to extend the life time of various parts in the power plants and thus optimize the energy output and overall efficiency of the plant. Functional sol-gel coating based on nanotechnology is tested in a variety of conditions. Applications of functional sol-gel coatings were performed in the condenser and on seven air preheaters at Fynsvaerket, Odense, with corrosion protection as the main issue. Coatings with easy-to-clean effects were tested in the Flue Gas Desulphurization plant at Nordjyllandsvaerket, Aalborg, with the aim of reducing gipsum deposit. Thermo stabilized coatings were tested on tube bundles between in the passage from the 1st to 2end pass and on the wall between 1st and 2end pass at Amagervaerket, Copenhagen, and in the boiler at Haderslev CHP plant. The objective of this test were reducing deposits and increasing corrosion protection. The tested coatings were commercial available coatings and coatings developed in this project. Visual inspections have been performed of all applications except at Nordjyllandsvaerket. Corrosion assessment has been done at DTU - Mechanical Engineering. The results range from no difference between coated and uncoated areas to some improvements. At Amagervaerket the visual assessment showed in general a positive effect with a sol-gel hybrid system and a commercial system regarding removal of deposits. The visual assessment of the air preheaters at Fynsvaerket indicates reduced deposits on a sol-gel nanocomposite coated air preheater compared to an uncoated air preheater. (Author)

  3. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  4. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  5. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  6. Installation package - SIMS prototype system 1A

    Science.gov (United States)

    1976-01-01

    This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.

  7. Solar energy system performance evaluation report for IBM System 4 at Clinton, Mississippi

    Science.gov (United States)

    1980-07-01

    The IBM System 4 Solar Energy System is described and evaluated. The system was designed to provide 35 percent of the space heating and 63 percent of the domestic hot water preheating for a single family residence located within the United States. The system consists of 259 square feet of flat plate air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing. In general, the performance of the system did not meet design expectations, since the overall design solar fraction was 48 percent and the measured value was 32 percent. Although the measured space heating solar fraction at 32 percent did agree favorably with the design space heating solar fraction at 35 percent, the hot water measured solar fraction at 33 percent did not agree favorably with the design hot water solar fraction of 63 percent. In particular collector array air leakage, dust covered collectors, abnormal hot water demand, and the preheat tank by pass valve problem are main reasons for the lower performance.

  8. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Tang, Dapei

    2015-01-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained. (paper)

  9. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    Directory of Open Access Journals (Sweden)

    Grzegorz Czerski

    2014-08-01

    Full Text Available This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics software was used for calculation of the heat exchange in this kind of system. The studies and calculations have shown that the use of gas water heaters with a combustion chamber sealed with respect to the room significantly increases the efficiency of hot water production when compared to traditional heaters. It has also been proven that the pre-heating of combustion air in concentric chimney and air supply ducts essentially improves the energy efficiency of gas appliances for hot water production.

  10. Air/ground heat exchanger (GHE): Modelling, design, performance; Luft-/Erdwaermetauscher EWT: Modellierung, Auslegung und Betriebserfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, A. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany); Pfafferott, J. [Energieversorgung Spree-Schwarze Elster AG (ESSAG), Cottbus (Germany); Dibowski, G. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Abt. Sonnenofen

    1998-02-01

    Air/Ground Heat Exchanger (GHE) utilize soil for seasonal heat storage and are used for air preheating or -cooling. Design and layout require suitable tools which adequately describe the complex heat temperature mechanisms in soils. Since heat densities in soil and heat exchange coefficients between air and GHE are both low, a detailed characterization of the soil and a precise modeling of the heat exchange processes within the GHE are needed. Tools for the design and yield prediction of GHE are presented by way of examples. Results are compared with measured data and both opportunities and limitations of GHEs are discussed using calculated and actual data. (orig.) [Deutsch] Luft-/Erdwaermetauscher EWT nutzen das Erdreich als saisonalen Energiespeicher, sie werden beispielsweise zur Zuluft-Vorerwaermung oder -kuehlung eingesetzt. Die Planung und Auslegung von Luft-/Erdwaermetauschern erfordert geeignete Hilfsmittel, um das komplizierte Temperaturfeld im Erdreich mit ausreichender Genauigkeit abbilden zu koennen. Da die Waermestromdichten im Erdreich und der Waermeuebergang zwischen der Luft im Luft-/Erdwaermetauscher und dem umgebenden Erdreich gering sind, ist sowohl eine detaillierte Abbildung des Erdreichs als auch die Modellierung des Waermeuebergangs im Luft-/Erdwaermetauscher erforderlich. Verfahren zur Auslegung und Ertragsvorhersage von Luft-/Erdwaermetauschern werden vorgestellt und deren Anwendung demonstriert. Die Ergebnisse werden mit Betriebserfahrungen von realisierten Luft-/Erdwrmetauschern verglichen. Moeglichkeiten und Grenzen von Luft-/Erdwaermetauschern werden anhand von Praxis und Simulationsrechnungen diskutiert. (orig.)

  11. Analysis of the influence of the multipass welding, welding preheat and welding post heat treatments on the behaviour of GMAW joints of HARDOX 400 microalloyed steel; Influencia de la tecnica de soldaduramultipasada y de los tratamientos termicos de precalentamiento y post-soldadura en el comportamiento de uniones GMAW de un acero microaleado HARDOX 400

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, A.; Miguel, V.; Coello, J.; Navarro, A.; Calatayud, A.; Manjabacas, M. C.

    2011-07-01

    The microalloyed steels may be supplied in a hardened state. In these cases, the weldability can be improved by pre-heat and/or post-heat welding treatments. In this paper, the effect of those treatments and the influence of multipass welding on GMAW joints behavior are analyzed for a Hardox 400 microalloyed steel. The microstructure evaluation of the different heat affected zones of the steel has been made and the mechanical properties of those zones are obtained for different conditions as it has been mentioned. The obtained results indicate that preheating the steel leads to a beneficial action that consists on the distance increasing from the bead to the zone in which the hardness is lowest. The post heat treatment strengthens that zone and improves the joint plasticity. This benefit is higher if the joint has been made with preheating. Multipass welding has not been found to have any advantage if it is compared to a single welding pass. (Author) 18 refs.

  12. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  13. Development program for MHD power generation. Interim technical report June 1974

    International Nuclear Information System (INIS)

    1974-06-01

    A total of 33,000 kilowatt hours of accumulated operating experience has been built up on the Mark VI MHD generator experiment. A total absence of arcing during the last 68 hours indicates that this major determinant of long-duration reliability has been brought under control, and a new Avco-designed burner has been put in service which has made possible, on a routine basis, power-levels in the Mark VI of from 400 to 500 kilowatts. A metal tubular air preheater and compressor have been ordered for the purpose of reducing the hourly consumption of liquid oxidizer, thus allowing more hours of operation between refills. Testing of the high-temperature air heater has also yielded highly satisfactory results. To date, air preheat temperatures of 3000 0 F and higher have been reached in continuous cyclic operation for more than 600 hours. Alumina cored brick is the heater matrix and the mode of operation corresponds to separate firing. Air preheat temperature strongly influences the overall efficiency of an MHD plant and an efficiency of between 55-60 percent is possible with the performance obtained to date. Detailed analysis of the radiation cooling and kinetics of the MHD generator exhaust gas in the radiant section of the downstream boiler, have shown that the level of NO/sub x/ can be reduced to a fraction of the corresponding EPA standard in a furnace of reasonable size

  14. Seawater feed reverse osmosis preheating appraisal, Part I: leading element performance

    International Nuclear Information System (INIS)

    Karameldin, A.; Saadawy, M.S.

    2006-01-01

    This paper is concerned with the seawater reverse osmosis preheating process, and presents a parametric study of the process. The basic transport equations describing the leading element are exhibited and appraised. The leading element, which governs the whole system performance, is studied and analysed. The incorporated and investigated operating parameters are the feed pressure and the temperature for different feed salt concentrations. In addition, different feed flow rates, effects on permeate flux and permeator salt rejection, together with the permeator recovery, are studied. A seawater membrane of a well-known data, for instance FT30SW380HR, is used to perform the study. The membrane water permeability coefficient K w is determined and correlated. Furthermore, the membrane salt permeability coefficient K s from the manufacturer system analysis program (ROSA) is given and discussed. The transport governing equations are programmed in a way that facilitates the achievement of a realistic parametric study. The results showed that the permeate flux increases significantly as the feed pressure increases. Also, it increases significantly as the feed salt concentration decreases, and also as the feed temperature and pressure increase. Meanwhile, the permeator salt rejection increases significantly as the feed pressure increases, and decreases significantly as the feed temperature increases. The study of the leading element of the array showed that there are constraints that must be considered, such as maximum membrane flux, maximum applied feed pressure, maximum feed flow rate and maximum feed temperature. Therefore, to attain the maximum membrane flux, the applied feed pressure must be lowered when the feed temperature is increased. In the case where the feed temperature is increased from 18 deg.. C to 45 deg.. C, a pressure saving of between 7% and 26% is achieved, according to the feed salt concentration and feed flow rate. (author)

  15. Increase in the boiler's performance in terms of the acid dew point temperature: Environmental advantages of replacing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.M.; Pena, F. [Dpto. Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieria, Universidad del Pais Vasco/E.H.U., Alameda de Urquijo s/n (48013) Bilbao (Spain)

    2008-05-15

    The aim of air pre-heaters is to raise the temperature of the combustion air in boilers, using heat recovered from the power plant combustion gases. On the one hand, this paper compares the effects of the acid dew point temperature (ADT) on pre-heaters in a reference thermal power plant for two types of fuel, ''fuel No. 2'' and ''low sulphur fuel'' respectively and on the other hand, it shows how a changeover to this latter fuel would increase the useful lifetime of this equipment, reducing this way cost of maintenance due to the considerable decrease in the area exposed to ADT with the subsequent increase in the boiler's performance. (author)

  16. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  17. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-07-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  18. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    Science.gov (United States)

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Seka, W.; Michel, P.; Hohenberger, M.; Short, R. W.; Epstein, R.; Regan, S. P.; Campbell, E. M.; Chapman, T.; Goyon, C.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.; Bates, J. W.

    2018-01-01

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (˜500 to 700 μ m ), electron temperature (˜3 to 5 keV), and laser intensity (6 to 16 ×1014 W /cm2 ) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ˜0.7 % to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ˜4×10 14 to ˜6 ×1014 W /cm2 . These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  19. Development of an expert system for preheating temperatures determination. Desarrollo dse uns sistema experto para la determinacion de temperatura de precalentamiento

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, E; Silva, M; Gonalvez, P; Fernandez, A A [Oporto Univ. (Portugal) Facultad de Ingenieria

    1989-01-01

    This work describes the development of an expert system designed to control the cold fissuration phenomenon caused by H{sup 2} on welded joints of carbonated, C-Mn and light alloy steels, obtained through fusion welding (manual electric arc, MIG/MAG, TIG and submerged arc). This system, implemented in PROLOG language, allows a quick and simple calculation of preheating temperatures. The aim of this system, which does not require programming knowledge to be updated, is to help welding engineers to design welding procedures which are safe as regards to the joint resistance to cold fissuration. Being an expert system, the user has the opportunity to obtain interactive explanations about the way any conclusions are obtained, as well as information about the concepts and parameters on which the reasoning is based.(Author)

  20. Low-temperature baseboard heaters with integrated air supply - An analytical and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ploskic, Adnan; Holmberg, Sture [Fluid and Climate Technology, School of Architecture and Built Environment, KTH, Marinens vaeg 30, SE-13640 Handen, Stockholm (Sweden)

    2011-01-15

    The functioning of a hydronic baseboard heating system with integrated air supply was analyzed. The aim was to investigate thermal performance of the system when cold outdoor (ventilation) airflow was forced through the baseboard heater. The performance of the system was evaluated for different ventilation rates at typical outdoor temperatures during the Swedish winter season. Three different analytical models and Computational Fluid Dynamics (CFD) were used to predict the temperature rise of the airflow inside the baseboard heater. Good agreement between numerical (CFD) and analytical calculations was obtained. Calculations showed that it was fully possible to pre-heat the incoming airflow to the indoor temperature and to cover transmission losses, using 45 C supply water flow. The analytical calculations also showed that the airflow per supply opening in the baseboard heater needed to be limited to 7.0 l/s due to pressure losses inside the channel. At this ventilation rate, the integrated system with one air supply gave about 2.1 more heat output than a conventional baseboard heating system. CFD simulations also showed that the integrated system was capable of countering downdraught created by 2.0 m high glazed areas and a cold outdoor environment. Draught discomfort in the case with the conventional system was slightly above the recommended upper limit, but heat distribution across whole analyzed office space was uniform for both heating systems. It was concluded that low-temperature baseboard heating systems with integrated air supply can meet both international comfort requirements, and lead to energy savings in cold climates. (author)

  1. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Maruki, Shin-ichiro.

    1991-01-01

    Radioactive off-gases extracted from a turbine main condensator by using an air extractor flown by way of an off-gas preheater and enter to an off-gas recombiner. Hydrogen in the off-gases is combined with oxygen into steams by the effect of catalysts in the off-gas recombiner. In this case, the off-gases are heated to a high temperature by the reaction heat due to the effect of the catalysts and discharged from the exit of the off-gas recombiner. The off-gases at a high temperature are returned once to the off-gas preheater at the upstream to be used as a heat source for the off-gas preheater. With such a constitution, since the amount of heat for exchange required for heating to about 160degC can be supplied, a heated steam supply device which has been disposed to the off-gas preheater can be saved. Further, the off-gases cooled through heat exchange upon heating the off-gas preheater are flown to the off-gas condensator and the steams are returned into the condensates. Since cooled off-gases enter into a cooling water supply device, the load thereof can be reduced compared with a conventional case. (T.M.)

  2. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  3. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K [Tel Aviv University, Ramat Aviv (Israel); Cuperman, S [Tel Aviv University, Ramat Aviv (Israel); Bruma, C [Tel Aviv University, Ramat Aviv (Israel)

    2007-09-15

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined.

  4. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    International Nuclear Information System (INIS)

    Komoshvili, K; Cuperman, S; Bruma, C

    2007-01-01

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined

  5. Heat pipe air preheater for gas-/oil-fired power plants

    International Nuclear Information System (INIS)

    Teixeira, D.P.

    1993-02-01

    With the rising costs of fuel, utilities are constantly looking for ways to improve the net plant heat rate of new and existing units. Significant heat rate improvements can be obtained by reducing the exit stack flue gas temperature. This project evaluated two technologies to reduce flue gas temperatures: heat pipes and liquid-coupled heat exchangers. The specific unit chosen for evaluating these systems was Pacific Gas ampersand Electric's 750 MW Moss Landing Power Plant, Unit 7. Both natural gas and low sulfur (0.5%) fuel oil are fired at this plant. Accordingly, the heat exchangers were required to operate on both fuels. This study investigated the heat recovery installation through the preliminary engineering level of detail. At the conclusion of this effort, the results indicated that neither concept was economically attractive for the retrofit situation involved. In addition, several major technical questions remained unresolved concerning the design of a single heat-exchange device capable of operating on gas (sulfur-free) and oil (sulfur-containing) environments over the full normal operating load range. While the technologies this study reviewed have been installed in actual power plant applications, the site-specific aspects of Moss Landing Unit 7 significantly influenced the estimated costs and performance of each alternative. Using more cost-effective and corrosion-resistant materials may help reduce costs. The following conditions would further enhance the viability of lowering exit gas temperatures: Higher capacity factors; rising fuel costs; greater use of sulfur-free fuels, such as natural gas; lower manufacturing costs for heat exchanger technologies; or new unit application

  6. Use of air/ground heat exchangers for heating and cooling of buildings - in-situ measurements, analytical modeling, numerical simulation and system analysis[Dissertation 3357]; Utilisation des echangeurs air/sol pour le chauffage et le rafraichissement des batiments. Mesures in situ, modelisation analytique, simulation numerique et analyse systemique

    Energy Technology Data Exchange (ETDEWEB)

    Hollmuller, P.

    2002-07-01

    In this thesis, physical properties and practical implementation of air/ground heat exchangers were studied. These exchangers consist in ducts placed in the upper ground layer (up to a depth of several meters). Air is circulated through the ducts, with heat transfer from and to the surrounding earth/sand/gravel material, with heat diffusion (conductive and capacitive effects) through this material. Air/ground heat exchangers are used to preheat or cool the air needed by the ventilation system of a building (open loop systems), or to heat up or cool the air in a greenhouse (closed loop systems). The reported study consisted in: (i) case studies of built examples, by detailed measuring and monitoring and data analysis. (ii) modeling the basic system. (iii) solving the basic equations both numerically (by computerized simulation) and analytically. (iv) identifying the basic features of these systems. (v) establishing recommendations for the practical implementation, especially in what regards sizing. It turned out that daily and seasonal heat storage/delivery by means of an air/ground heat exchanger have to be considered separately, with ad hoc rules of thumb each. Depending on parameter values a phase shift by as much as half the period may even be observed, with very little damping of the temperature oscillation. In Switzerland the main relevance for these systems is for improving thermal comfort in buildings in the summer time when outdoor temperature is higher than 26 {sup o}C, and for damping the amplitude of day/night temperature variations in horticultural greenhouses. The work carried out can be considered as of basic relevance for all applications of the systems studied.

  7. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.

    Science.gov (United States)

    Rosenberg, M J; Solodov, A A; Myatt, J F; Seka, W; Michel, P; Hohenberger, M; Short, R W; Epstein, R; Regan, S P; Campbell, E M; Chapman, T; Goyon, C; Ralph, J E; Barrios, M A; Moody, J D; Bates, J W

    2018-02-02

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700  μm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14}  W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14}  W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  8. Filter for underground mining for suction of preferably full cut and part cut machines, to be provided with preheated air, to avoid dropping below the dew point

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.

    1976-10-28

    Particularly when cutting hard rock, the cutting room to be provided with suction is wetted with water from nozzles, which, when sucking out air containing dust with high humidity leads to encrustation in the filter cloth. In order to avoid this, it is proposed that the air should be heated, using heat from the motor driving the ventilator, so that one avoids dropping below the dew point in the filter.

  9. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system

    International Nuclear Information System (INIS)

    Yao, Erren; Wang, Huanran; Wang, Ligang; Xi, Guang; Maréchal, François

    2017-01-01

    Highlights: • A novel tri-generation based compressed air energy storage system. • Trade-off between efficiency and cost to highlight the best compromise solution. • Components with largest irreversibility and potential improvements highlighted. - Abstract: Compressed air energy storage technologies can improve the supply capacity and stability of the electricity grid, particularly when fluctuating renewable energies are massively connected. While incorporating the combined cooling, heating and power systems into compressed air energy storage could achieve stable operation as well as efficient energy utilization. In this paper, a novel combined cooling, heating and power based compressed air energy storage system is proposed. The system combines a gas engine, supplemental heat exchangers and an ammonia-water absorption refrigeration system. The design trade-off between the thermodynamic and economic objectives, i.e., the overall exergy efficiency and the total specific cost of product, is investigated by an evolutionary multi-objective algorithm for the proposed combined system. It is found that, with an increase in the exergy efficiency, the total product unit cost is less affected in the beginning, while rises substantially afterwards. The best trade-off solution is selected with an overall exergy efficiency of 53.04% and a total product unit cost of 20.54 cent/kWh, respectively. The variation of decision variables with the exergy efficiency indicates that the compressor, turbine and heat exchanger preheating the inlet air of turbine are the key equipment to cost-effectively pursuit a higher exergy efficiency. It is also revealed by an exergoeconomic analysis that, for the best trade-off solution, the investment costs of the compressor and the two heat exchangers recovering compression heat and heating up compressed air for expansion should be reduced (particularly the latter), while the thermodynamic performance of the gas engine need to be improved

  10. Performance and emission study of preheated Jatropha oil on medium capacity diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Bhupendra Singh; Du Jun, Yong; Lee, Kum Bae [Division of Automobile and Mechanical Engineering, Kongju National University (Korea); Kumar, Naveen [Department of Mechanical Engineering, Delhi Technological University, Bawana Road, Delhi 42 (India)

    2010-06-15

    Diesel engines have proved their utility in transport, agriculture and power sector. Environmental norms and scared fossil fuel have attracted the attention to switch the energy demand to alternative energy source. Oil derived from Jatropha curcas plant has been considered as a sustainable substitute to diesel fuel. However, use of straight vegetable oil has encountered problem due to its high viscosity. The aim of present work is to reduce the viscosity of oil by heating from exhaust gases before fed to the engine, the study of effects of FIT (fuel inlet temperature) on engine performance and emissions using a dual fuel engine test rig with an appropriately designed shell and tube heat exchanger (with exhaust bypass arrangement). Heat exchanger was operated in such a way that it could give desired FIT. Results show that BTE (brake thermal efficiency) of engine was lower and BSEC (brake specific energy consumption) was higher when the engine was fueled with Jatropha oil as compared to diesel fuel. Increase in fuel inlet temperature resulted in increase of BTE and reduction in BSEC. Emissions of NO{sub x} from Jatropha oil during the experimental range were lower than diesel fuel and it increases with increase in FIT. CO (carbon monoxide), HC (hydrocarbon), CO{sub 2} (carbon dioxide) emissions from Jatropha oil were found higher than diesel fuel. However, with increase in FIT, a downward trend was observed. Thus, by using heat exchanger preheated Jatropha oil can be a good substitute fuel for diesel engine in the near future. Optimal fuel inlet temperature was found to be 80 C considering the BTE, BSEC and gaseous emissions. (author)

  11. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  12. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    International Nuclear Information System (INIS)

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  13. Summary and evaluation of the conceptual design study of a potential early commercial MHD power plant (CSPEC)

    Science.gov (United States)

    Staiger, P. J.; Penko, P. F.

    1982-01-01

    The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.

  14. Influence of the Steam Addition on Premixed Methane Air Combustion at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-07-01

    Full Text Available Steam-diluted combustion in gas turbine systems is an effective approach to control pollutant emissions and improve the gas turbine efficiency. The primary purpose of the present research is to analyze the influence of steam dilution on the combustion stability, flame structures, and CO emissions of a swirl-stabilized gas turbine model combustor under atmospheric pressure conditions. The premixed methane/air/steam flame was investigated with three preheating temperatures (384 K/434 K/484 K and the equivalence ratio was varied from stoichiometric conditions to the flammability limits where the flame was physically blown out from the combustor. In order to represent the steam dilution intensity, the steam fraction Ω defined as the steam to air mass flow rate ratio was used in this work. Exhaust gases were sampled with a water-cooled emission probe which was mounted at the combustor exit. A 120 mm length quartz liner was used which enabled the flame visualization and optical measurement. Time-averaged CH chemiluminescence imaging was conducted to characterize the flame location and it was further analyzed with the inverse Abel transform method. Chemical kinetics calculation was conducted to support and analyze the experimental results. It was found that the LBO (lean blowout limits were increased with steam fraction. CH chemiluminescence imaging showed that with a high steam fraction, the flame length was elongated, but the flame structure was not altered. CO emissions were mapped as a function of the steam fraction, inlet air temperature, and equivalence ratios. Stable combustion with low CO emission can be achieved with an appropriate steam fraction operation range.

  15. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon

    2017-08-05

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  16. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon; Kang, Sun Kil; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Kumaresan, Yogeenth; Lee, Sungeun; Lee, Chaedeok; Ham, Moon-Ho; Jung, Gun Young

    2017-01-01

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  17. OUT Success Stories: Transpired Solar Collectors

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Transpired solar collectors are a reliable, low-cost technology for preheating building ventilation air. With simple payback periods ranging from 3 to 12 years and an estimated 30-year life span, transpired collector systems offer building owners substantial cost savings

  18. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Fan, Kai-Shiung; Chen, Sih-Han; Tsai, Chia-Hao

    2010-01-01

    Transparent semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol-gel method and spin-coating technique. In this study, authors investigate the influence of the heating rate of the preheating process (4 or 10 o C/min) on the crystallization, surface morphology, and optical properties of sol-gel derived ZnO thin films. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding monoethanolamine. The as-coated films were preheated at 300 o C for 10 min and annealed at 500 o C for 1 h in air ambiance. Experimental results indicate that the heating rate of the preheating process strongly affected the surface morphology and transparency of ZnO thin film. Specifically, a heating rate of 10 o C/min for the preheating process produces a preferred orientation along the (0 0 2) plane and a high transmittance of 92% at a wavelength of 550 nm. Furthermore, this study reports the fabrication of thin-film transistors (TFTs) with a transparent ZnO active channel layer and evaluates their electrical performance.

  19. Magnetohydrodynamic generation method

    International Nuclear Information System (INIS)

    Masai, Tadahisa; Ishibashi, Eiichi; Kojima, Akihiro.

    1967-01-01

    The present invention relates to a magneto-hydrodynamic generation method which increases the conductivity of active gas and the generated energy. In the conventional method of open-cycle magnetohydrodynamic generation, the working fluid does not possess a favorable electric conductivity since the collision cross section is large when the combustion is carried out in a condition of excess oxygen. Furthermore, combustion under a condition of oxygen shortage is uncapable of completely converting the generated energy. The air preheater or boiler is not sufficient to collect the waste gas resulting in damage and other economic disadvantages. In the present invention, the combustion gas caused by excess fuel in the combuster is supplied to the generator as the working gas, to which air or fully oxidized air is added to be reheated. While incomplete gas used for heat collection is not adequate, the unburned damage may be eliminated by combusting again and increasing the gas temperature and heat collection rate. Furthermore, a diffuser is mounted at the rear side of the generator to decrease the gas combustion rate. Thus, even when directly absorbing the preheated fully oxidized air or the ordinary air, the boiler is free from damage caused by combustion delay or impulsive force. (M. Ishida)

  20. Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia

    Science.gov (United States)

    1980-07-01

    The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.

  1. Heat exchanger operation in the externally heated air valve engine with separated settling chambers

    International Nuclear Information System (INIS)

    Kazimierski, Zbyszko; Wojewoda, Jerzy

    2014-01-01

    The crucial role in the externally heated air valve engine is played by its heat exchangers which work in a closed cycle. These are: a heater and a cooler and they are subject to a numerical analysis in the paper. Both of them are equipped with fixed volumes that are separate settling chambers causing that heat exchangers behave as almost stationary recuperators and analysis of the stationary behaviour is the main goal of the paper. Power and efficiency of the engine must be not lower than their averaged values for the same engine working in unsteady conditions. The results of calculations confirm such a statement. The pressure drop in the exchanger is another natural phenomenon presented. It has been overcome by use of additional blowers and the use of them is an additional focus of the presented analysis. A separation of settling chambers and additional blowers is a novelty in the paper. There is also a pre-heater applied in the engine which does not differ from well-known heat exchangers met in energy generation devices. The main objective of the paper is to find the behaviour of the engine model under stationary conditions of the heat exchangers and compare it with the non-stationary ones. - Highlights: • Externally heated air engine combined with forced working gas flow (supercharging). • Separate settling chambers allow for achieving stable and constant heat exchange parameters. • Pressure drop in heat exchangers overcome by additional blowers. • Reciprocating piston air engine, cam governing system, standard lubrication for externally heated engine. • Different fuels: oil, coal, gas, biomass also solar or nuclear energy

  2. Dictionary of cement. Manufacture and technology. German-English. English-German. 2. Rev. and enlarged Ed. Zementwoerterbuch. Herstellung und Technologie. Deutsch-Englisch. Englisch-Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Van Amerongen, C

    1986-01-01

    This book deals with the following fields: cement chemistry; chemical and physical testing; quarrying (drilling, blasting, excavating and loading machinery, haulage vehicles); crushing and grinding; sampling; materials handling; blending, homogenizing, storage (blending beds, silos); kilns, preheaters, precalciners; firing technology (fuels, burners); refractories; clinker coolers; air separators (classifiers); dust collecting equipment (filters, electrostatic precipitators); air pollution and noise control; bulk handling installations; sack packing machines; packaging, palletizing, dispatch.

  3. Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Juan Carlos; Coronas, Alberto

    2012-01-01

    data from different authors for downdraft, fluidized-bed gasifiers and different biomasses, showing good agreement between reported data and modeled values. In addition, it has been used to evaluate the influence of different operating parameters [equivalence ratio (ER), air preheating, steam injection...

  4. Studies of MHD generator performance with oxygen enriched coal combustion

    Science.gov (United States)

    Wormhoudt, J.; Yousefian, V.; Kolb, C. E.; Martinez-Sanchez, M.

    1980-07-01

    This paper presents calculations made using the Aerodyne PACKAGE (Plasma Analysis, Chemical Kinetics, and Generator Efficiency) computer code which bear on two questions which arise in connection with choices between oxygen enrichment and air preheating to attain the high combustion temperatures needed for open-cycle, coal-fired MHD power generation. The first question is which method produces the highest enthalpy extraction per unit channel length. The second is, in test facilities intended to study tradeoffs between oxygen enrichment and preheated air, can good generator performance be obtained from the same physical channel for different combustor compositions. The answer to the first question is found to depend on what combustor conditions are taken to be comparable. As for the second question, it is found that operation with channel input from off-design combustor conditions can cause serious problems, which can be partially alleviated by changing the channel load factors.

  5. Distilling carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Karrick, L C

    1926-11-02

    Coal, shale and the like are distilled in a current of superheated steam which is passed into a retort at about midway between its ends a further supply being if necessary introduced at the bottom to generate water-gas, and the coke being dry quenched in a hopper below the retort. Combustion products may also be introduced and the temperature may be varied from 950 to 1725/sup 0/F, oil, gas, resin and a residual coke having good adsorbent value, being obtained. The charge from hoppers and auxiliary hoppers is fed to retorts situated between gas and steam preheaters, the rate of downward movement being controlled by discharge rollers having arms, counterweighted rocking arms allowing the residue to be fed downwards into hoppers. Steam from a pipe is superheated in horizontal passages, and admitted through ports into the retort. Preheated fuel gas is burnt in combustion flues and passes down through vertical flues, across horizontal flues and up flues adjacent the retorts, from which by ports and flues it passes down a chamber having an air or gas preheater each having two independent systems, one discharging into the combustion chamber beneath it and the other into an adjacent chamber. Air or gas enters by pipes and after being heated in pipes is fed by ports to the chamber. The volatiles pass off through outlets leading to a main air cooled condenser and a water-cooled condenser delivering to a separating tank connecting with pipes for quenching the residues and with pipes to preheat the charge in the hoppers and maintain a gas barrier the rein. Superheated steam may also be admitted through ports to generate water-gas and increase the total volume of gases and combustion products may be introduced through ports. The upper part of the retort is made of cast iron, the high temperature parts of silica or carborundum brick, and the lower part of chrome iron or other metal.

  6. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    International Nuclear Information System (INIS)

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    Highlights: • An integrated thermal management system is proposed for electric vehicle. • The parallel branch of battery chiller can supply additional cooling capacity. • Heat pipe performance on preheating mode is better than that on cooling mode. • Heat pipe heat exchanger is a feasible choice for battery thermal management. - Abstract: An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is designed to meet the basic cabinet cooling demand, the additional parallel branch of battery chiller is a good way to solve the battery group cooling problem, which can supply about 20% additional cooling capacity without input power increase. Its coefficient of performance for cabinet heating is around 1.34 at −20 °C out-car temperature and 20 °C in-car temperature. The specific heat of the battery group is tested about 1.24 kJ/kg °C. There exists a necessary temperature condition for the heat pipe heat exchanger to start action. The heat pipe heat transfer performance is around 0.87 W/°C on cooling mode and 1.11 W/°C on preheating mode. The gravity role makes the heat transfer performance of the heat pipe on preheating mode better than that on cooling mode.

  7. Effects of N2 gas on preheated laminar LPG jet diffusion flame

    International Nuclear Information System (INIS)

    Mishra, D.P.; Kumar, P.

    2010-01-01

    This paper presents an experimental investigation of the inert gas effect on flame length, NO x and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO x emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N 2 for fuel-diluted stream. In contrast, SFLF remains almost constant when N 2 is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO x emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO x emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO x emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO x through Zeldovich mechanism.

  8. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and absorption heat pump

    DEFF Research Database (Denmark)

    Cachorro, Irene Albacete; Daraban, Iulia Maria; Lainé, Guillaume

    2013-01-01

    . The heat pump is a heat driven system and is running with the heat recovered by a heat exchanger from the exhausted gases from SOFC. The working fluid pair is NH3-H2O and is driven in two evaporators which are working at two different pressures. Thus, the heat pump will operate at tree pressure level...... with natural gas. The natural gas is first converted to a mixture of H2 and CO which feed the anode after a preheating step. The cathode is supplied with preheated air and gives, as output, electrical energy. The anode output is the exhaust gas which represents the thermal energy reservoir for heating...

  9. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    Science.gov (United States)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  10. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    Science.gov (United States)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the

  11. Fiscal 2000 achievement report. Model project for international energy consumption efficiency improvement (Model project for improvement of boiler and turbine efficiency); 2000 nendo seika hokoku. Kokusai energy shohi koritsuka tou model jigyo (Boira tabin koritsu kojo model jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    A project was implemented for Japan to transfer its energy conservation technologies for helping Indonesia conserve energy and reduce CO2 emissions, which occurred at Muara Karang Thermal Power Plant of an Indonesian power company named PT PJB. Items to be introduced are condenser tubes (material change from cupro-nickel to titanium), ball cleaning equipment, turbine gland seal improvement, air preheater improvement, thermal efficiency management system, and so forth. In this fiscal year, turbine gland seals and air preheater elements were manufactured, and the thermal efficiency management system was designed. As an dissemination activity, 10 engineers were invited to Japan from the Indonesian Ministry of Energy and Mineral Resources, PT PLN, and PT PJB. They attended a training program lasting approximately two weeks, which included study tours to the factories actually building the equipment to be introduced and field/classroom training/education on thermal efficiency management and others. The engineers actively performed their boiler improvement work back in Indonesia. (NEDO)

  12. Effect of air ingress on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Siddhartha Bhatt, M.

    2007-01-01

    Ingress of air in boilers leads to drops in energy efficiency. This paper presents the effects of air ingress in the combustion zone, post-combustion zone and air pre-heater (APH) on the energy efficiency and loading capacity of a coal fired thermal power plant operating on fuel with high ash (35-45%). The optimal O 2 in the flue gas for a pulverized coal fired system is 3.5% (corresponding to 20% excess air). The operating values are in the range of 4.2-6.0% in membrane type boilers and up to 10% in refractory type boilers (after sustained periods of operation). The leakage rate of boilers (up to the entrance of the APH) is designed at 0.2% while the average operating values are 7.25% for membrane type enclosures and 33.61% for refractory enclosures. The leakage rate of the APH is designed at 5.0% while the operating values range from 13.66% to 20.13% for rotary and tubular APHs. When the O 2 in the combustion zone varies from 3.5% to 8.0%, efficiency drops of 2.0% points are experienced in the boiler and turbine separately, and the gross overall efficiency drop is ∼3.0% points. The units do not experience any capacity drop up to an O 2 in the flue gas of 6.0% before the APH. At an O 2 in the flue gas (before APH) of 7.2%, a mild limitation on the unit capacity of around 2-3% is experienced. When O 2 in the flue gas (before APH) reaches a level of 9.0%, 20% capacity drop of the unit is experienced due to which the plant load cannot be raised higher than 80%. Beyond the level of 9.0% (rare occurrence), the unit is quite difficult to operate and has to be taken off for overhaul

  13. Inyección de aire secundario caliente en calderas de vapor bagaceras y su influencia en el rendimiento térmico Injection of heated secondary air in steam bagasse boilers and its influence on thermal efficiency

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2005-12-01

    Full Text Available Como alternativa para aumentar la eficiencia térmica de calderas bagaceras productoras de vapor, se evalúa la inyección de aire secundario al hogar, previamente calentado. Además, se reúne información sobre la combustión y los factores que influyen en dicho fenómeno. Se calculó el rendimiento térmico en una caldera bagacera con inyección de aire secundario frío, mediante el empleo de balances de masa y energía con datos de ensayos experimentales. Se planteó luego un modelo teórico para el caso de calentar todo este aire secundario, y se determinó el nuevo rendimiento térmico. Finalmente se realizó un análisis técnico-económico para evaluar la rentabilidad del uso de esta tecnología, teniendo en cuenta el ahorro de bagazo y su equivalente en gas natural. Para el caso analizado, los resultados mostraron: aumento del rendimiento térmico de la caldera (1,62 puntos; mejora del índice de generación de vapor (2,27%; reducción del consumo de bagazo (2,45%; aceptable periodo de repago de la inversión (114 días de zafra.Previously heated secondary air injection is evaluated as an alternative to increase thermal efficiency of bagasse steam boilers. Aspects regarding the combustion process and the factors affecting it are also described. Tests were made in a bagasse boiler of a sugar mill. Thermal efficiency of the bagasse boiler with cold secondary air injection was determined by solving mass and energy balances. A new thermal efficiency for the case in which all secondary air is pre-heated with hot gases was determined afterwards. Finally, a technical-economic analysis was made to evaluate the yield of this technology, taking into account bagasse saving and its equivalent in natural gas. For the analyzed case, the results showed: an increase in the thermal efficiency of the boiler (1,62 points; a higher steam production index (2,27%; a reduction in bagasse consumption (2,45%; an acceptable payback period of the investment (114

  14. Flow characterization and dilution effects of N2 and CO2 on premixed CH4/air flames in a swirl-stabilized combustor

    International Nuclear Information System (INIS)

    Han Yue; Cai Guo-Biao; Wang Hai-Xing; Bruno Renou; Abdelkrim Boukhalfa

    2014-01-01

    Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH 4 /air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhaust-gas recirculation technology. Two main diluting species, N 2 and CO 2 , are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for N 2 -diluted flames by changing excess air and dilution rate. CO 2 -diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N 2 and CO 2 dilution affect the lean blowout (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NO x emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NO x emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise

  15. Experimental Analysis and Model Validation of an Opaque Ventilated Facade

    DEFF Research Database (Denmark)

    López, F. Peci; Jensen, Rasmus Lund; Heiselberg, Per

    2012-01-01

    Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated façade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was ...

  16. Straw Combustion in a Grate Furnace

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    1998-01-01

    Fixed-bed combustion of straw has been conducted in a 15 cm diameter and 137 cm long cylindrical reactor. Air, which could be preheated, was introduced through the bottom plate. The straw was ignited at the top with a radiation heater. After ignition, when a self-sustaining reaction front...

  17. Effect of Pre-heating on Microtensile Bond Strength of Composite Resin to Dentin.

    Directory of Open Access Journals (Sweden)

    Abdolrahim Davari

    2014-10-01

    Full Text Available Direct composite resin restorations are widely used and the impact of different storage temperatures on composites is not well understood. The purpose of this study was to evaluate the microtensile bond strength of composite to dentin after different pre-curing temperatures.Occlusal surfaces of 44 human molars were ground with diamond burs under water coolant and polished with 600 grit silicon carbide papers to obtain flat dentin surfaces. The dentin was etched with 37% phosphoric acid and bonded with Adper Single Bond 2 according to the manufacturer's instructions. The specimens were randomly divided into two groups (n=22 according to the composite resin applied: FiltekP60 and Filtek Z250. Each group included three subgroups of composite resin pre-curing temperatures (4°C, 23°C and 37°C. Composite resins were applied to the dentin surfaces in a plastic mold (8mm in diameter and 4mm in length incrementally and cured. Twenty-two composite-to-dentin hour-glass sticks with one mm(2 cross-sectional area per group were prepared. Microtensile bond strength measurements were made using a universal testing machine at a crosshead speed of one mm/min. For statistical analysis, t-test, one-way and two-way ANOVA were used. The level of significance was set at P<0.05.Filtek P60 pre-heated at 37ºC had significantly higher microtensile bond strength than Filtek Z250 under the same condition. The microtensile bond strengths were not significantly different at 4ºC, 23ºC and 37ºC subgroups of each composite resin group.Filtek P60 and Filtek Z250 did not have significantly different microtensile bond strengths at 4ºC and 23ºC but Filtek P60 had significantly higher microtensile bond strength at 37 ºC. Composite and temperature interactions had significant effects on the bond strength.

  18. The effect of pre-heating and pre-irradiation with gamma rays on thermal annealing in bis [n-benzoil-n-phenyl hydroxilaminate] copper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1988-10-01

    The main purpose of this work was to make a contribution to the study of the chemical effects of the (n,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gamma-rays on the retention and thermal annealing of bis-[N-benzoil-N-phenlhydroxilaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-Point, elemental analysis, infra-red and vesible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis and radiolysis on the retention. It seems that heat gamma-radiation can produce deffects which will lower the susceptibility of the compound to thermal annealing. On the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing aasuming the capture of free electrons and also the existence of holes. (author) [pt

  19. The effect of pre-heating and pre-irradiation with gamma-rays on thermal annealing in-bis-[n-benzoil-n-(o) tolylhydroxylaminate] cooper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1990-02-01

    The main purpose of this work was to make a contribution on the study of the chemical effects of the (N,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gama-rays on the retention and thermal annealing of bis [N-benzoyl-N-(o)tolylhydroxylaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-point, elemental analysis, infra-red and visible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis on the retention. It seems that heat and gamma-radiaition can produce deffects which will lower the susceptibility of the compound to thermal annealling. On the basis on the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing assuming the capture of free electrons and also the existence of holes. (author) [pt

  20. Increasing energy efficiency by in-situ oxygen measurement in combustion gas and optimized fuel-air-ratio control; Effizienzsteigerung durch in-situ Sauerstoffmessung im Verbrennungsgas

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Yvonne [Marathon Sensors Inc., West Chester, OH (United States); Winter, Karl-Michael [PROCESS-ELECTRONIC GmbH, Heiningen (Germany)

    2012-04-15

    High energy costs as well as the necessity to minimize exhaust emissions require a most efficient usage of fossil primary energy resources. In heat treating but also in power generation natural gas is mostly used. Efficient burner systems and preheating combustion air using recuperators or regenerators minimize exhaust losses to a high extent. Another well known but seldom used optimization method controls the excess oxygen percentage in the exhaust gas. Already partially in use in households and state-of-the-art in the combustion control of car engines this technique is still not widely used in industrial sized systems. For closed burners there are few sensor options available that can be integrated into the burner. This article presents a variety of measuring and control systems that have been tailored to this particular task, able to increase the efficiency of both, existing older installations and new burner systems. (orig.)

  1. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  2. Effects of N{sub 2} gas on preheated laminar LPG jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, D.P.; Kumar, P. [Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-15

    This paper presents an experimental investigation of the inert gas effect on flame length, NO{sub x} and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO{sub x} emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N{sub 2} for fuel-diluted stream. In contrast, SFLF remains almost constant when N{sub 2} is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO{sub x} emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO{sub x} emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO{sub x} emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO{sub x} through Zeldovich mechanism. (author)

  3. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    Science.gov (United States)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  4. Results from study of potential early commercial MHD power plants and from recent ETF design work

    Science.gov (United States)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-06-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  5. High pressure MHD coal combustors investigation, phase 2

    Science.gov (United States)

    Iwata, H.; Hamberg, R.

    1981-05-01

    A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.

  6. Impact of preheating on the behavior of Listeria monocytogenes in a broth that mimics Camembert cheese composition.

    Science.gov (United States)

    Helloin, E; Bouttefroy, A; Gay, M; Phan Thanh, L

    2003-02-01

    The effect of preheating on the survival of L. monocytogenes in Richard's broth, which mimics the composition of Camembert cheese composition, was examined. Experiments were carried out to reproduce contamination of cheese with environmental heat-stressed cells of L. monocytogenes surviving hot-cleaning procedures. Cells in mid-log phase were heated for 30 min at 56 degrees C before being inoculated into Richard's broth. The pHs and temperatures of Richard's broth were chosen to recreate the conditions of curd dripping (pH 5, 25 degrees C), of the beginning of cheese ripening (pH 5, 12 degrees C), and of the beginning (pH 5, 4 degrees C) and the end (pH 7, 4 degrees C) of cheese storage. Immediately after heat treatment, the viability loss was especially high for strain 306715, which exhibited only 0.6% +/- 0.2% survival, compared with 22% +/- 8.7% for strain EGD. The percentages of the surviving heated cells that were injured were 93% +/- 8% for strain 306715 and 98% +/- 3% for strain EGD. The destruction of the surviving L. monocytogenes cells was accelerated when they encountered the pH and temperature conditions of Camembert cheese during manufacturing, ripening, and cold storage (pH 5 at 25, 12, and 4 degrees C, respectively). The multiplication of the surviving heated cells was retarded under favorable growth conditions similar to those of storage by the distributor and the consumer (pH 7 at 4 and 12 degrees C, respectively).

  7. Plasma-spraying synthesis of high-performance photocatalytic TiO2 coatings

    International Nuclear Information System (INIS)

    Takahashi, Yasuo; Maeda, Masakatsu; Ohmori, Akira; Shibata, Yoshitaka; Miyano, Yasuyuki; Murai, Kensuke

    2014-01-01

    Anatase (A-) TiO 2 is a photocatalytic material that can decompose air-pollutants, acetaldehyde, bacteria, and so on. In this study, three kinds of powder (A-TiO 2 without HAp, TiO 2 + 10mass%HAp, and TiO 2 +30mass%HAp, where HAp is hydroxyapatite and PBS is polybutylene succinate) were plasma sprayed on biodegradable PBS substrates. HAp powder was mixed with A-TiO 2 powder by spray granulation in order to facilitate adsorption of acetaldehyde and bacteria. The crystal structure was almost completely maintained during the plasma spray process. HAp enhanced the decomposition of acetaldehyde and bacteria by promoting adsorption. A 10mass% HAp content was the most effective for decomposing acetaldehyde when plasma preheating of the PBS was not carried out before the plasma spraying. The plasma preheating of PBS increased the yield rate of the spray process and facilitated the decomposition of acetaldehyde by A-TiO 2 coatings without HAp. HAp addition improved photocatalytic sterilization when plasma preheating of the PBS was performed

  8. Solar project description for Moulder Corporation single family residence, Greenwood, Indiana

    Science.gov (United States)

    1980-07-01

    The system is designed to provide solar energy for space heating and domestic hot water heating. Solar energy is used for space heating the home and preheating domestic hot water (DHW). The solar energy system has an array of flat plate collectors with a gross area of 704 square feet. The array faces 5.5 degrees west of south at an angle of 45 degrees to the horizontal. Air is the transfer medium that delivers solar energy from the collector array to storage, space heating and hot water loads. Solar energy is stored underground in 945 cubic foot bin containing 81,000 pounds of crushed rock. The bin has 8 inch concrete block walls and the insulation on the exterior is sprayed urethane. Preheated city water is stored in an 80 gallon preheat tank, which is inside the storage bin and is supplied, on demand, to a conventional 52 gallon DHW tank. When solar energy is insufficient to satisfy the space heating load, a conventional electric furnace provides the auxiliary energy for space heating.

  9. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    OpenAIRE

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is d...

  10. TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR OUT-OF-TANK DESTRUCTION OF TETRAPHENYLBORATE VIA WET AIR OXIDATION TECHNOLOGY: PHASE I - BENCH SCALE TESTS

    International Nuclear Information System (INIS)

    Adu-Wusu, K

    2006-01-01

    waste stream, and the air/liquid mixture is preheated to the required reactor inlet temperature. The reactor provides sufficient retention time to allow the oxidation to approach the desired level of organic decomposition. Typical reaction time is about 30-120 minutes. Heat exchangers are routinely employed to recover energy contained in the reactor effluent to preheat the waste feed/air entering the reactor. Auxiliary energy, usually steam, is necessary for startup and can provide trim heat if required. Since the oxidation reactions are exothermic, sufficient energy may be released in the reactor to allow the WAO system to operate without any additional heat input. After cooling, the oxidized reactor effluent passes through a pressure control valve where the pressure is reduced. A separator downstream of the pressure control valve allows the depressurized and cooled vapor to separate from the liquid. Typical industrial WAO applications have a feed flow rate of 1 to 220 gallons per minute (gpm) per train, with a chemical oxygen demand (COD) from 10,000 to 150,000 mg/L (higher CODs with dilution). Note that catalysts, such as homogeneous copper and iron, their heterogeneous counterparts, or precious metals can be used to enhance the effectiveness (i.e., to lower temperature, pressure, and residence time as well as increase oxidation efficiencies) of the WAO reaction if deemed necessary

  11. 21 CFR 172.886 - Petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register... it is very hygroscopic and will react with some metal containers in the presence of air. Phosphoric... high enough to keep the wax melted. (Note: In preheating the sulfoxide-acid mixture, remove the stopper...

  12. Underground gasification in Britain

    Energy Technology Data Exchange (ETDEWEB)

    1952-08-29

    A report of the discussion held on the paper Underground Gasification in Britain, by C.A. Masterman (Iron and Coal Trades Rev., Vol. 165, Aug. 22, 1952, pp. 413-422). The water question, preheating the air, controlling the gas, using the product, choosing the site, thickness of seam and faulted areas are discussed.

  13. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, A. [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, J.G.; Bonnet, U. [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2007-09-15

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub x}. (orig.)

  14. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, Alexander [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, Joachim G.; Bonnet, Uwe [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2009-07-01

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub X}. (orig.)

  15. Factors influencing pollutant gas emissions of VOC recuperative incinerators-Large-scale parametric study

    International Nuclear Information System (INIS)

    Salvador, S.; Commandre, J.-M.; Kara, Y.

    2006-01-01

    This work establishes quantitative links between the operation parameters-plus one geometrical parameter-and the gas pollutant emissions of a recuperative incinerator (RI) of volatile organic compounds (VOCs). Using experimental design methodology, and based on a large number of experiments carried out on a half-industrial-scale pilot unit, mathematical expressions are established to calculate each of the pollutant emissions from the value of all the operation and design parameters. The gas emissions concerned are total hydrocarbons, and CO and NO x emissions, while the control parameters are the flow rate of the treated air flow, the concentration of VOCs in the air flow, the preheating temperature of the flow, and the temperature at the exit of the combustion chamber. One design parameter-the aperture of the diaphragms-is also considered. We show that the constraining emissions are only that of CO and NO x . Polynomials to predict them with a high accuracy are established. The air preheating temperature has an effect on the natural gas consumption, but not on CO and NO x emissions. There is an optimal value for the aperture of the diaphragms, and this value is quantitatively established. If the concentration of VOCs in the air flow is high, CO and NO x emissions both decrease and a high rate of efficiency in VOC destruction is attained. This demonstrates that a pre-concentration of VOCs in the air flow prior to treatment by RI is recommended. (author)

  16. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kommoshvili, K [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Cuperman, S [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Bruma, C [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel)

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  17. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Kommoshvili, K; Cuperman, S; Bruma, C

    2003-01-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects

  18. Influence of process parameters on the cavitation resistance of arc thermally sprayed cobalt stainless steel; Influencia dos parametros de processo na resistencia a cavitacao de uma liga inoxidavel com cobalto aspergido a arco

    Energy Technology Data Exchange (ETDEWEB)

    Pukasiewicz, A. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Capra, A.R.; Chandelier, J. da L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], e-mail: anderson.geraldo@lactec.org.br; Paredes, R.S.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    In this work the influence of the arc thermal spraying process on the microstructure, oxide volumetric fraction, porosity and cavitation resistance was studied. The characterization was performed by optical and electrical microscopy, microhardness and ultrasonic cavitation test, ASTM G32-96 in AS895HY cobalt stainless steel. The increase in air pressure, 280 to 410 kPa, modified the oxide fraction from 17,2 +- 3,6% to 10,9 +-1,8%, in the samples without pre-heating treatment. With 120 deg C pre-heating treatment the oxide fraction increase from 24,1 +- 2,8% to 12,8 +- 1,9% when the air pressure was modified from 280 to 550 kPa. The mass loss in vibration-induced cavitation were 1,55 and 1,42 mg/h for 410 kPa AS895HY samples, with and without pre heating treatment, and 2,12 mg/h for 280 kPa samples without pre heating treatment. The results showed that the process parameters modified the microstructure and the cavitation resistance of the arc thermal spraying coatings. (author)

  19. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  20. A REVIEW OF MILD COMBUSTION AND OPEN FURNACE DESIGN CONSIDERATION

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2012-12-01

    Full Text Available Combustion is still very important to generate energy. Moderate or Intense Low-oxygen Dilution (MILD combustion is one of the best new technologies for clean and efficient combustion. MILD combustion has been proven to be a promising combustion technology in industrial applications with decreased energy consumption due to the uniformity of its temperature distribution. It is clean compared to traditional combustion due to producing low NOx and CO emissions. This article provides a review and discussion of recent research and developments in MILD. The issue and applications are summarized, with some suggestions presented on the upgrading and application of MILD in the future. Currently MILD combustion has been successfully applied in closed furnaces. The preheating of supply air is no longer required since the recirculation inside the enclosed furnace already self-preheats the supply air and self-dilutes the oxygen in the combustion chamber. The possibility of using open furnace MILD combustion will be reviewed. The design consideration for open furnace with exhaust gas re-circulation (EGR was discussed.

  1. Steam generator auxiliary systems

    International Nuclear Information System (INIS)

    Heinz, A.

    1982-01-01

    The author deals with damage and defect types obtaining in auxiliary systems of power plants. These concern water/steam auxiliary systems (feed-water tank, injection-control valves, slide valves) and air/fluegas auxiliary systems (blowers, air preheaters, etc.). Operating errors and associated damage are not dealt with; by contrast, weak spots are pointed out which result from planning and design. Damage types and events are collected in statistics in order to facilitate damage evaluation for arriving at improved design solutions. (HAG) [de

  2. Parametric study of prospective early commercial OCMHD power plants /PSPEC/

    Science.gov (United States)

    Marston, C. H.; Bender, D. J.; Hnat, J. G.; Dellinger, T. C.

    1980-06-01

    The paper presents a parametric study conducted to obtain the performance, economics, natural resource requirements, and environmental impact of moderate technology MHD/steam power plants that do not require development of direct-fired high-temperature air heaters. The study was divided into three base cases, each with a reference case and parametric variations. The case using recuperative air preheat in the range of 1000 F to 1300 F, combined with O2 enrichment to 42% by volume has been selected for conceptual design.

  3. Process and apparatus for emissions reduction from waste incineration

    International Nuclear Information System (INIS)

    Khinkis, M.J.; Abbasi, H.A.; Lisauskas, R.A.; Itse, D.C.

    1991-01-01

    This paper describes a process for waste combustion. It comprises: introducing the waste into a drying zone within a combustion chamber; supplying air to the drying zone for preheating, drying, and partially combusting the waste; advancing the waste to a combustion zone within the combustion chamber; supplying air to the combustion zone for further advancing the waste to a burnout zone with the combustion chamber; supplying air to the burnout zone for final burnout of organics in the waste; and injecting fuel and recirculated glue gases into the combustion chamber above the waste to create a reducing secondary combustion zone

  4. Solar radon reduction at six homes in northeast Iowa

    International Nuclear Information System (INIS)

    Rhoads, H.E.; Hoekje, P.L.

    1995-01-01

    Growing concern about radon lung cancer risks, carbon monoxide poisoning, and the sick building syndrome have increased demand for improved indoor air quality. Through solar pre-heating of ventilation air, the Solar Radon Reduction System (SRRS) provides energy benefits with lower installation costs than conventional air-to-air heat exchangers and sub-slab suction approaches. Indoor air quality is improved through dilution, combustion appliance make-up air, pressurization, and reduced radon infiltration through induced-draft solar air collectors drawing supply air from outdoors. Installed at six homes in Waterloo and Cedar Falls, Iowa, the SRRS was found to significantly reduce radon concentrations in all houses with energy benefits and improved overall indoor comfort. Up to 73% reductions from closed house levels as high as 20.9 pCi/L were achieved

  5. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  6. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Science.gov (United States)

    Kommoshvili, K.; Cuperman, S.; Bruma, C.

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfvèn waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvènic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxilliary energy source for the succesful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  7. Development of a tube receiver for a solar-hybrid microturbine system

    OpenAIRE

    Amsbeck, Lars; Buck, Reiner; Heller, Peter; Jedamski, Jens; Uhlig, Ralf

    2008-01-01

    Solar-hybrid microturbine systems with cogeneration offer new possibilities for the generation of electricity and heat or air conditioning. The solar receiver is an important component of such a system. For a prototype system demo project a tube receiver for a 100kWe microturbine system is currently under development. The receiver is designed for air preheating up to 800°C at a pressure of 4.5 barabs. The challenge of the design is to find the right compromise between high efficiency, low pre...

  8. The combined toroidicity, ellipticity and triangularity effects on the energy deposition of Alfven modes in pre-heated, low aspect ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel); Bruma, C. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel) and College of Judea and Samaria, 44837 Ariel (Israel)]. E-mail: edycb@post.tau.ac.il; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel); College of Judea and Samaria, 44837 Ariel (Israel)

    2007-03-05

    The combined plasma non-uniformity effects on the energy deposition of Alfven waves launched by an external antenna in pre-heated spherical tokamaks are investigated. The following relevant physical processes are here possible: (a) the emergence of gaps in the shear Alfven continuum spectrum and the generation of discrete global Alfven eigenmodes with frequencies inside the gaps; (b) multi-wave interactions, interactions of gaps of the same kind (e.g., toroidicity induced) and of different kinds (toroidicity, ellipticity and triangularity induced) as well as of secondary order gaps arising when a pair of modes is coupled to one or more modes through other coupling parameters; (c) basic wave-plasma interactions as propagation, reflection, mode-conversion, tunneling and deposition. Thus, we solved numerically the full 2D wave equations for the vector and scalar potentials, using a quite general two-fluid resistive tensor-operator, without any geometrical limitations. The results obtained indicate the existence of antenna-launched wave characteristics for which the power is most efficiently coupled in outer regions of plasmas, which is of special interest for low aspect ratio tokamaks, e.g., for the generation of non-inductive current drive as well as for turbulence suppression and transport barriers formation.

  9. Development of rapid mixing fuel nozzle for premixed combustion

    International Nuclear Information System (INIS)

    Katsuki, Masashi; Chung, Jin Do; Kim, Jang Woo; Hwang, Seung Min; Kim, Seung Mo; Ahn, Chul Ju

    2009-01-01

    Combustion in high-preheat and low oxygen concentration atmosphere is one of the attractive measures to reduce nitric oxide emission as well as greenhouse gases from combustion devices, and it is expected to be a key technology for the industrial applications in heating devices and furnaces. Before proceeding to the practical applications, we need to elucidate combustion characteristics of non-premixed and premixed flames in high-preheat and low oxygen concentration conditions from scientific point of view. For the purpose, we have developed a special mixing nozzle to create a homogeneous mixture of fuel and air by rapid mixing, and applied this rapidmixing nozzle to a Bunsen-type burner to observe combustion characteristics of the rapid-mixture. As a result, the combustion of rapid-mixture exhibited the same flame structure and combustion characteristics as the perfectly prepared premixed flame, even though the mixing time of the rapid-mixing nozzle was extremely short as a few milliseconds. Therefore, the rapid-mixing nozzle in this paper can be used to create preheated premixed flames as far as the mixing time is shorter than the ignition delay time of the fuel

  10. Fiscal 1996 project on the modeling for effective energy consumption in developing countries under a consignment from NEDO. Recent on the results of the demonstrative study on scrap preheater of electric furnace in the iron making process (for public); 1996 nendo hatten tojokoku energy shohi koritsuka model jigyo Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Seitetsu katei ni okeru denkiro no genryo yonetsu sochi ni kakawaru jissho kenkyu seika hokokusho (kokaiyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Indonesia is the biggest iron steel producing country in the ASEAN countries. Most of the production is produced by the electric furnace method in which iron steel scrap is used as a material. However, an energy saving measure in this method, the electric furnace scrap preheater using flue gas, has not yet been spread on a full scale. This R and D is aimed at developing jointly with Indonesia an electric furnace scrap preheater for medium/small size electric furnaces which are adoptable to the present iron making situation in Indonesia and installing it to the electric furnace of the iron making plant in Indonesia for a demonstrative study on energy saving, etc. Spread/expansion of the electric furnace scrap preheater which is an excellent energy saving system targeted expansion of energy saving technology not only of Indonesia, but of ASEAN countries and Japan. In this fiscal year, remodeling of part of the system was made by change of flue gas flow for increasing the energy saving effect, and at the same time, a research study was made of a scrap reheater effective as a total system. Moreover, the paper investigated technical data/information in Japan and overseas. 3 figs., 9 tabs.

  11. Experimental data and boundary conditions for a Double - Skin Facade building in preheating mode

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Jensen, Rasmus Lund

    Frequent discussions of double skin façade energy performance have started a dialogue about the methods, models and tools for simulation of double façade systems and reliability of their results. Their reliability will increase with empirical validation of the software. Detailed experimental work......’. This covers such problem areas as measurements of naturally induced air flow, measurements of air temperature under direct solar radiation exposure, etc. Finally, in order to create a solid foundation for software validation, the uncertainty and limitations in the experimental results are discussed. In part...

  12. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  13. Dependence of the fast waves-plasma interactions in pre-heated spherical tokamaks on the antenna location and poloidal extension

    International Nuclear Information System (INIS)

    Komoshvili, K.; Bruma, C.; Cuperman, S.

    2004-01-01

    Full Text:In the magnetically confined fusion devices, externally launched e.m. waves are used, e.g., for heating, non-inductive current drive and turbulent transport suppression barriers. In view of the complexity of these processes, it is desirable to assist the planning of the actual experiments by reliable theoretical (computational) studies. This work aims to (i) assess the effect of antenna position and extension on the fast waves-plasma interactions in pre-heated spherical tokamaks and consequently, (ii) to further the physical understanding as well as to determine optimal conditions in order to achieve the imposed goals. Thus, using as a study case the spherical tokamak START, we considered the following antenna positions and extensions: (a) low field side location and i T ±π/4 poloidal extension; (b) above and below middle-plane locations (two separate sections) and extending (each) π/2; (c) (hypothetical) circular, 2π-extension. We solved the full wave equations in order to consistently determine the global e.m. field for Alfvinic modes in inhomogeneous, non-uniformly magnetized, resistive, small aspect ratio tokamak plasma in the presence of externally launched fast waves. The global approach consists of simultaneous treatment of the plasma-vacuum-external RF source-vacuum-metal wall configuration with the appropriate consideration of wave propagation, transmission, absorption and mode conversion; in this, no simplifying approximations or small parameter extension are used. Illustrative results of these investigations will be presented and discussed

  14. Thermal performance trials on the habitability of private bushfire shelters: part 2.

    Science.gov (United States)

    Taylor, Nigel A S; Haberley, Benjamin J

    2015-08-01

    In the preceding communication, an investigation was described in which the thermal specifications for the design of private bushfire shelters were evaluated. Since those trials were undertaken with the thermal characteristics of the air clamped, survival uncertainty persisted if the internal ambient conditions were progressively changing, as would occur within an air-tight shelter. Therefore, two further investigations were performed. In the first, changes in the physical properties of air within an air-tight shelter simulator (1.2 m(3)), initially equilibrated to 43.7 °C and 42.3 % relative humidity, were studied when pre-heated, well-hydrated males were sealed inside (N = 16; 60 min; experimental series 2). Air temperature and humidity moved sigmoidally to 40.5 °C (standard deviation (SD), 0.5) and 90.1 % (SD, 2.1). Oxygen and carbon dioxide fractional concentrations changed reciprocally, with respective terminal averages of 16.7 % (SD, 0.8) and 3.94 % (SD, 0.72). Deep-body temperature rose beyond the tenth minute to a terminal mean of 39.3 °C (SD, 0.2). In the third experimental series, these air temperature and humidity changes were reproduced in trials commencing at two different thermal states (40 °C and 70 % relative humidity; 45 °C and 50 % relative humidity). Sixteen pre-heated and slightly dehydrated men and women were investigated. In neither condition did the auditory canal temperature of any individual change by more than 2 °C or exceed 40 °C. It may be concluded, within the limits of these experiments, that the recommended thermal and dimensional specifications for bushfire shelters can provide tenable conditions for healthy, young adults.

  15. 寒冷地における地下エアトンネルによる住熱環境改善に関する研究 : (その1.小規模試験家屋における夏季の涼房性能評価)

    OpenAIRE

    三木, 康臣; 三治, 広明; MIKI, Yasutomi; SANJI, Hiroaki

    1998-01-01

      A passive summer cooling and winter preheating technique which utilizes underground soil temperature, which stays respectively about 8℃ in summer and 10℃ in Winter, at a depth of 5 meters in Hokkaido. The final goal of this study is to supply basic data for the design of underground air tunnels, in cold region.  This paper describes the cooling performance of an underground air tunnel connected to a test house in Kitami. The test house contained two rooms, one of which was equipped with an ...

  16. Statistical analysis of thermal efficiency in industrial furnaces in Japan and determination of CO2 reduction amount realized by improving the efficiency; Nippon no kogyoro ni okeru netsukoritsu no tokeiteki kaiseki to sono kaizen ni yoru CO2 sakugenryo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Iwabayashi, T.; Matsuhashi, T.; Ishitani, H. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Tanabe, K. [The Energy Conservation Center Japan, Tokyo (Japan); Tanaka, R. [The Japan Industrial Furnace Manufacturers Association, Tokyo (Japan); Takashima, T.

    1997-01-30

    Analyses and evaluations were given on heating furnaces and heat treatment furnaces used in the Japanese steel and iron industry to calculate amounts of energy and CO2 that could be reduced by introducing a new furnace. The analyses have derived factors affecting thermal efficiency of the heating furnaces by using regression analysis. Discussions were given on a high-temperature air combustion system and a stored heat combustion system as new furnace technologies. As a result, it was disclosed that the current fuel consumption could be reduced to about 40% to 80% only by performing air pre-heating ideally and suppressing heat loss from furnace walls. This concept is sufficiently payable in terms of economy. It was also revealed that fuel consumption could be reduced to about 12% to 36% and CO2 discharge could be reduced in proportion with reduction in the fuel consumption, if ideal preheating can be carried out on materials to be heated. Furthermore, a result was obtained that the present thermal efficiency of 26.86% in nonferrous industries such as for copper and aluminum could be increased up to 53.37%. 10 refs., 19 figs., 1 tab.

  17. Advanced regenerative heat recovery system

    Science.gov (United States)

    Prasad, A.; Jasti, J. K.

    1982-02-01

    A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.

  18. Nanoporous TiO_2 electrode grown by laser ablation of titanium in air at atmospheric pressure and room temperature

    International Nuclear Information System (INIS)

    Białous, Anna; Gazda, Maria; Grochowska, Katarzyna; Atanasov, Petar; Dikovska, Anna; Nedyalkov, Nikolay; Reszczyńska, Joanna; Zaleska-Medynska, Adriana; Śliwiński, Gerard

    2016-01-01

    Recently, fabrication of the nanoporous TiO_2 photoelectrode on metal foils by means of sputtering of the Ti film on preheated metal substrate followed by the TiO_2 deposition (doctor blade technique) and sintering represents the frequently applied technique. This is despite the relatively complicated procedure and number of parameters to be controlled in order to fabricate films of required properties. In this work an approach is applied and discussed in which the nanoporous TiO_2 electrode is fabricated under conditions similar to pulsed laser deposition but with the deposit formed directly on the ablated target at atmospheric pressure and room temperature. The titanium dioxide thin film is grown by ablation of the Ti foil with the nanosecond UV laser (266 nm) at fluence up to 1.5 J/cm"2. The rutile–anatase phase transformation takes place during this one-step process and no thermal pre-and post-treatment of the deposit is needed. In samples produced in air, the presence of mixed phases of the non-stoichiometric anatase (> 70%), rutile and negligible amount of TiN is consistently confirmed by the X-ray diffraction, energy-dispersive X-ray and Raman spectra. For applications of the reported films as electrode material in the third generation photovoltaic cells, the use of industrial lasers could significantly improve the process efficiency. - Highlights: • TiO_2 films via laser ablation of Ti in air under standard temperature and pressure conditions • Nanoporous crystalline structure from one-step process • Anatase content > 70% in the mixed phase film

  19. Field testing of a ceramic heat exchanger for heat recovery application

    Science.gov (United States)

    Sohal, M. S.

    1988-06-01

    AiResearch Company, Torrance, California, developed a 5 MMBtu/hr ceramic-metallic hybrid High Temperature Burner-Duct-Recuperator (HTBDR) system to recover energy from hot (up to 2500 F), dirty, and corrosive glue gas streams and preheat combustion air up to 2000 F. To reduce the cost and size of the ceramic recuperator, ceramic tubes with internal cruciform baffles were developed. The HTBDR system was tested on a 20 MMBtu/hr rotary forging furnace for about 2000 hours. To facilitate tube replacements, final design configuration uses horizontally mounted tubes. A maximum air preheat temperature of about 1916 F was achieved with a flue gas temperature of 2122 F. This represents fuel savings of about 30 to 50 percent (depending upon the amount of excess air) compared with an unrecuperated furnace. The overall design and operation of the recuperator proved to be successful up to the time of material failure. X ray diffraction of some failed components indicated that there was some residual Silicon in the interior regions and complete nitriding did not occur during the fabrication process. Degradation of failed components was probably caused by oxidation of residual silicon and by the stresses caused due to different coefficient of thermal expansion of various compounds during thermal cycling. A combination of severe and numerous thermal cycling coupled with incomplete nitriding was the most likely cause of material failure.

  20. Thermal performance of a meso-scale liquid-fuel combustor

    International Nuclear Information System (INIS)

    Vijayan, V.; Gupta, A.K.

    2011-01-01

    Research highlights: → Demonstrated successful combustion of liquid fuel-air mixtures in a novel meso-scale combustor. → Flame quenching was eliminated using heat recirculation in a swiss roll type combustor that also extended the flammability limits. → Liquid fuel was rapidly vaporized with the use of hot narrow channel walls that eliminated the need of a fuel atomizer. → Maximum power density of the combustor was estimated to be about 8.5 GW/m3 and heat load in the range of 50-280W. → Overall efficiency of the combustor was estimated in the range of 12 to 20%. - Abstract: Combustion in small scale devices poses significant challenges due to the quenching of reactions from wall heat losses as well as the significantly reduced time available for mixing and combustion. In the case of liquid fuels there are additional challenges related to atomization, vaporization and mixing with the oxidant in the very short time-scale liquid-fuel combustor. The liquid fuel employed here is methanol with air as the oxidizer. The combustor was designed based on the heat recirculating concept wherein the incoming reactants are preheated by the combustion products through heat exchange occurring via combustor walls. The combustor was fabricated from Zirconium phosphate, a ceramic with very low thermal conductivity (0.8 W m -1 K -1 ). The combustor had rectangular shaped double spiral geometry with combustion chamber in the center of the spiral formed by inlet and exhaust channels. Methanol and air were introduced immediately upstream at inlet of the combustor. The preheated walls of the inlet channel also act as a pre-vaporizer for liquid fuel which vaporizes the liquid fuel and then mixes with air prior to the fuel-air mixture reaching the combustion chamber. Rapid pre-vaporization of the liquid fuel by the hot narrow channel walls eliminated the necessity for a fuel atomizer. Self-sustained combustion of methanol-air was achieved in a chamber volume as small as 32.6 mm 3

  1. Experiments on MHD Generation with ETL Mark II

    Energy Technology Data Exchange (ETDEWEB)

    Mori, F.; Fushimi, K.; Ikeda, S. [Electrotechnical Laboratory, Ministry of International Trade and Industry, Tokyo (Japan)

    1968-11-15

    The experimental results of the ETL Mark II combustion-driven Faraday-type MHD generator are described. The cross-sectional area of the generator duct is 9 x 11 cm{sup 2} at the inlet and 9 x 25 cm{sup 2} at the outlet. The insulating wall of the duct is made of magnesia and the electrode of carbon. There are 30 electrode pairs. The length of the duct is 120 cm and the width of an electrode is 3 cm. The combustion chamber is of cylindrical shape, and from the bottom of the chamber the fuel, the seeding material and the oxidizer are injected. The fuel is diesel oil and the seeding material potassium hydroxide dissolved in methyl alcohol. The oxidizer is oxygen, but air or oxygen-enriched air can be used. In the latter case, the air is pre-heated up to about 1700 Degree-Sign K by a pebble heater containing alumina pebbles to about 7 tons in weight. The heater, which incorporates a propane burner, supplies the pre-heated air to the combustion chamber at a pressure of 5 atm(g) and at a rate of 2.6 kg/s for a period of 5 minutes. The maximum temperature of the air is 1700 Degree-Sign K at the outlet of the heater and the temperature falls by 20 Degree-Sign K after 5 minutes. If pre-heated air (or oxygen-enriched air) is used as the oxidizer, only the methyl alcohol containing the dissolved potassium hydroxide is used as the fuel. The electromagnet, which has an iron core of about 80 tons weight, can generate a maximum flux density of 3.4 T with an air gap of 16 cm. The exciting ampere-turns of the copper coil are then 1.4 x 10{sup 6} AT. The experimental procedure with the generator is as follows. The combustion chamber and the generator duct are heated to about 1300 Degree-Sign K by the combustion products of propane and air, and then the electromagnet is excited and the fuel, oxidizer and seeding material are injected. The load.resistances of each of the 30 electrode pairs are varied and the output voltages and the currents of every second electrode pair are measured

  2. ACCOUNTING FOR NONUNIFORMITY OF WATER CONSUMPTION IN THE EXHAUST AIR HEAT RECLAMATION SYSTEMS FOR HOT WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Samarin Oleg Dmitrievich

    2017-03-01

    Full Text Available This article is devoted to assessment of the influence of variation of daily hot water consumption on the predicted energy effect by using heat recovery of exhaust air in typical exhaust ventilation systems of the most commonly used flat buildings during their switch to the mechanical induction for the pre-heating of water for hot water supply. It outlines the general principle of the organization of this method of energy saving and presents the basic equations of heat transfer in the heat exchanger. The article proposes a simplified method of accounting for changes in the heat transfer coefficient of air-to-water heat exchanger with fluctuations of water demand using existing dependencies for this coefficient from the rate flow of heating and heated fluid through the device. It presents observations to identify the parameters of the real changes of water consumption during the day with the main quantitative characteristics of normally distributed random variables. Calculation of thermal efficiency of the heat exchange equipment using dimensionless parameters through the number of heat transfer under the optimal opposing scheme of fluid motion is completed under conditions of variable water flow rate for the type residential building of the П3-1/16 series using the Monte Carlo method for numerical modeling of stochastic processes. The estimation of the influence of fluctuation of the current water consumption on the instantaneous thermal efficiency factor of the heat exchanger and the total energy consumption of the building is given, and it is shown that the error of said calculation using average daily parameters is within the margin of usual engineering calculation.

  3. System design package for SIMS prototype system 4, solar heating and domestic hot water

    Science.gov (United States)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  4. Synthesis and characterization of a ferrous compound material obtained by combustion of ferroboron and ferrotitanium mixtures

    International Nuclear Information System (INIS)

    Bejar, M.A; Fuenzalida, J.L

    2008-01-01

    A ferrous compound material was synthesized in this work, by the air auto-combustion of mixtures of powdered ferroboron and ferrotitanium, compacted under pressures of 79 and 93 MPa and preheated to a temperature of about 1000 o C. The synthesized compounds were characterized by XRD analysis, and macro and micro-hardness tests. The formation of titanium diboride was found in all the synthesized test pieces (au)

  5. Available exhaust gas power in different configurations in a pellet stove plant

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Patino, D.; Collazo, J.; Moran, J.C.; Porteiro, J. [Vigo University, E.T.S. Ingenieros Industriales, Lagoas-Marcosende, s/n, 36200 Vigo (Spain)

    2009-12-15

    With a view to finding the best configuration for a small cogeneration system based on the pellet combustion process, exergetic analysis was applied to a small pellet stove. The evaluation focuses on fume exergetic content for power generation purposes. Preheated air, secondary air, fume recirculation and basis configurations were studied. Global exergetic calculation was developed at these configurations based on experimental correlations of energy and emissions. The influences of the pellet feeding rate, excess air, secondary air and fume recirculation were studied. The results for multiple configurations are discussed and the best one is presented. Results show that CO emissions have a major influence on fume exergetic content, although if emissions diminish only a slight thermomechanical exergetic efficiency increase is expected. (author)

  6. Nanoporous TiO{sub 2} electrode grown by laser ablation of titanium in air at atmospheric pressure and room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Białous, Anna [Polish Academy of Sciences, The Szewalski Institute, Photophysics Dept., 14 Fiszera St, 80-231 Gdańsk (Poland); Gazda, Maria [Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, 11/12 Narutowicza St, 80-233 Gdańsk (Poland); Grochowska, Katarzyna [Polish Academy of Sciences, The Szewalski Institute, Photophysics Dept., 14 Fiszera St, 80-231 Gdańsk (Poland); Atanasov, Petar; Dikovska, Anna; Nedyalkov, Nikolay [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Shouse 72, Sofia 1784 (Bulgaria); Reszczyńska, Joanna; Zaleska-Medynska, Adriana [University of Gdańsk, Faculty of Chemistry, 63 W. Stwosza St, 80-308 Gdańsk (Poland); Śliwiński, Gerard, E-mail: gerards@imp.gda.pl [Polish Academy of Sciences, The Szewalski Institute, Photophysics Dept., 14 Fiszera St, 80-231 Gdańsk (Poland)

    2016-02-29

    Recently, fabrication of the nanoporous TiO{sub 2} photoelectrode on metal foils by means of sputtering of the Ti film on preheated metal substrate followed by the TiO{sub 2} deposition (doctor blade technique) and sintering represents the frequently applied technique. This is despite the relatively complicated procedure and number of parameters to be controlled in order to fabricate films of required properties. In this work an approach is applied and discussed in which the nanoporous TiO{sub 2} electrode is fabricated under conditions similar to pulsed laser deposition but with the deposit formed directly on the ablated target at atmospheric pressure and room temperature. The titanium dioxide thin film is grown by ablation of the Ti foil with the nanosecond UV laser (266 nm) at fluence up to 1.5 J/cm{sup 2}. The rutile–anatase phase transformation takes place during this one-step process and no thermal pre-and post-treatment of the deposit is needed. In samples produced in air, the presence of mixed phases of the non-stoichiometric anatase (> 70%), rutile and negligible amount of TiN is consistently confirmed by the X-ray diffraction, energy-dispersive X-ray and Raman spectra. For applications of the reported films as electrode material in the third generation photovoltaic cells, the use of industrial lasers could significantly improve the process efficiency. - Highlights: • TiO{sub 2} films via laser ablation of Ti in air under standard temperature and pressure conditions • Nanoporous crystalline structure from one-step process • Anatase content > 70% in the mixed phase film.

  7. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  8. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    Science.gov (United States)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  9. The Solar Dynamic Buffer Zone (SDBZ) curtain wall: Validation and design of a solar air collector curtain wall

    Science.gov (United States)

    Richman, Russell Corey

    Given the increases in both the environmental and economic costs of energy, there is a need to design and building more sustainable and low-energy building systems now. Curtain wall assemblies show great promise---the spandrel panels within them can be natural solar collectors. By using a Solar Dynamic Buffer Zone (SDBZ) in the spandrel cavity, solar energy can be efficiently gathered using the movement of air. There is a need for a numerical model capable of predicting performance of an SDBZ Curtain Wall system. This research designed, constructed and quantified a prototype SDBZ curtain wall system through by experimental testing in a laboratory environment. The laboratory experiments focussed on three main variables: air flow through the system, incoming radiation and collector surface type. Results from the experimental testing were used to validate a one-dimensional numerical model of the prototype. Results from this research show a SDBZ curtain wall system as an effective means of reducing building heating energy consumption through the preheating of incoming exterior ventilation air during the heating season in cold climates. The numerical model showed good correlation with experimental results at higher operating flows and at lower flows when using an apparent velocity at the heat transfer boundary layer. A seasonal simulation for Toronto, ON predicted energy savings of 205 kWh/m2 with an average seasonal efficiency of 28%. This is considered in the upper range when compared to other solar air collectors. Given the lack of published literature for similar systems, this research acts to introduce a simple, innovative approach to collect solar energy that would otherwise be lost to the exterior using already existing components within a curtain wall. Specifically, the research has provided: results from experiments and simulation, a first generation numerical model, aspects of design and construction of the SDBZ curtain wall and specific directions for further

  10. Research report for fiscal 1998. Basic research for promoting joint implementation of energy use rationalization in Chinese steel industry (examination of introduction of scrap preheating system for electric furnaces); 1998 nendo chosa hokokusho. Chugoku tekkogyo ni okeru energy no shiyo gorika (denkiro scrap yonetsu system donyu kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Investigations are conducted on a project of introducing a scrap preheating system based on the central insertion movable shaft design into China's electric furnaces for the sake of energy saving and global warming gas reduction. Of the electric furnaces numbering approximately 3400 now in operation in China, most are small and antiquated, and are extremely low in energy efficiency when in operation. The percentage of electricity supplied by coal-fired facilities is high, and this causes the CO2 reduction problem. Investigations are conducted into four steel mills operating electric furnaces, and examinations are made on the applicability of a preheating system, which is the ultimate batch system developed by Nippon Steel Corporation. Studies are conducted for Wuyang Iron and Steel Co., Ltd., Tianjin Steel Pipe Co., Ltd., Budong Iron and Steel Co., Ltd., and Shanghai Five Steel Co., Ltd., and it is found that greenhouse gas will be reduced by 31,000 tons, 21,000 tons, 13,000 tons, and 11,000-tons at the said mills, respectively. It is learned that the cost to be invested will be retrieved in approximately 2.5 years, 2.8 years, 7.7 years, and 8.0 years, respectively. It is concluded that Shanghai Budong Iron and Steel (Group) Co., Ltd., is the best candidate to be equipped with the above-said system. (NEDO)

  11. Steam generation at Rihand STPP Stage 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    The steam generation plant at Rihand in India has two 500 MW boilers. The boilers are of the balanced draught, single cell, radiant furnace type, and are controlled automatically. Cochran Thermax shell type auxillary steam boilers are used for preheating air to the main boilers and for heating fuel oil during storage and pumping. Electrostatic precipitators and ash handling plants are provided to keep dust and ash within limits. 2 figs.

  12. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a...

  13. New perspectives for advanced automobile diesel engines

    Science.gov (United States)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  14. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    This brief examines the development of the first Danish Air Force Air Operations Doctrine, which was officially commissioned in October 1997 and remained in effect until 2010. The development of a Danish air power doctrine was heavily influenced by the work of Colonel John Warden (USAF), both...... through his book ”The Air Campaign” and his subsequent planning of the air campaign against Iraq in 1990-1991. Warden’s ideas came to Denmark and the Danish Air Force by way of Danish Air Force students attending the United States Air Force Air University in Alabama, USA. Back in Denmark, graduates from...... the Air University inspired a small number of passionate airmen, who then wrote the Danish Air Operations Doctrine. The process was supported by the Air Force Tactical Command, which found that the work dovetailed perfectly with the transformation process that the Danish Air Force was in the midst...

  15. Report on research achievement in relation with developing fundamental combustion control technologies in fiscal 1998. Research and development of high-performance industrial furnaces; 1998 nendo nensho seigyo kiban gijutsu no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is intended to be made on fundamental combustion control technologies applicable to high-performance industrial furnaces that can reduce energy consumption and respond to environment preservation requirements. With an intention to achieve reduction in combustion exhaust gases such as carbon dioxide and nitrogen oxides, fundamental studies will be made on factors to decide flame shapes as represented by high-temperature combustion and flame shape control by utilizing microgravity environment, and researches will be made on combustion systems. Devices required for the experiments were fabricated to evaluate critical combustion characteristics of flames in furnaces including industrial furnaces, analyze and evaluate flame control parameters, and study low-pollution combustion technologies. Experimental methods acquired by 1997 were used for the experiments under the microgravity environment. Evaluation experiments were performed on flame shape control technologies and flame radiation characteristics, and basic experiments on the low-pollution combustion technologies. With these experiments, elucidation of the combustion mechanisms was launched by analyzing and evaluating the acquired data. A flame experimenting device for high-temperature preheated air completed by fiscal 1997 was used to acquire such combustion characteristics data as NOx discharge characteristics when the high-temperature preheated air is used. Based on the result thereof, verification was carried out on simulation models. (NEDO)

  16. Start-up emissions from residential down-draught wood log boilers

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, E. (Luleaa Univ. of Technology (Sweden). Energy Technology Centre in Piteaa), Email: esbjorn.pettersson@ltu.se

    2009-07-01

    Start-up emissions can be substantial and even dominating in real use. There are few published investigations regarding the relative importance of different parameters on the start-up emissions. It has though recently been stated that for down-draught boilers, best results are achieved if the wood charge is ignited fairly close to the secondary chamber. The objective of the experimental work was to evaluate the effect of different fuel and design parameters on the start-up emissions, using experimental design which enables a direct comparison between different parameters, using three levels of preheating of secondary air, electric preheating of primary air, different moisture and size of the start wood as well as different amounts of birch bark, which was used to spread the fire during the start. The boiler did not use a bypass damper and the full fuel charge was added before igniting the start wood through an ignition door situated slightly above the grate. The only significant results for the four parameters were that smaller and drier start wood gave lower start-up emissions. Extra amount of birch bark gave the same result. The most important parameters are the fuel parameters, which mean that the result is generally applicable. (orig.)

  17. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  18. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  19. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  20. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    Science.gov (United States)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  1. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  2. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235...

  3. Descriptions and diagrams of the primary and annulus ventilation systems of the double-shell tank farms as of January 1988

    International Nuclear Information System (INIS)

    Blackman, A.E.; Waters, E.D.

    1994-01-01

    This document is a compilation of information describing the ventilation systems of the Double-Shell Tank farms (214-AN, -AP, -AW, -AW, -AY, -AZ, and -SY). A general description of the primary tank and annulus ventilation systems is given along with specific information on the high efficiency particulate air (HEPA) filters, condensers, preheaters, exhaust fans, and piping. This information is considered to be current as of January 1988. 38 refs, 20 figs, 30 tabs

  4. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  5. Development of a NO/x/-free combustion system

    Science.gov (United States)

    Sadakata, M.; Furusawa, T.; Kunii, D.; Imagawa, M.; Nawada, M.

    1980-04-01

    The development of a NO(x)-free combustion-heating system realizing both pollution control and energy savings is described. An experiment was carried out by using a small model plant. The system consists of a combustion furnace and a new-type multifunctional heat exchanger. The heat exchanger is a rotary continuous type designed for soot collection and for catalytic combustion of CO and H2 as well as for preheating combustion air.

  6. METHANE de-NOX for Utility PC Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  7. Numerical modeling of combustion of low-calorific-producer-gas from Mangium wood within a late mixing porous burner (LMPB

    Directory of Open Access Journals (Sweden)

    Kanokkarn Jirakulsomchok

    2017-08-01

    Full Text Available This article presents a numerical study of combustion of low-calorific-producer-gas from Mangium wood within a late mixing porous burner (LMPB. The LMPB consists of four main components, i.e., the fuel preheating porous (FP, the porous combustor (PC, the air jacket, and the mixing chamber. Interestingly, this LMPB was able to highly preheated and it still maintained high safety in operation. A single-step global reaction, steady state approach and a one-dimensional model were considered. The necessary information for burner characteristics, i.e., temperature profile, flame location and maximum temperature were also presented. The results indicated that stable combustion of a low-calorific-producer-gas within LMPB was possible achieved. Increasing equivalence ratio resulted in increasing in the flame temperature. Meanwhile, increasing the firing rate caused slightly decrease in flame temperature. The flame moved to downstream zone of the PC when the firing rate increased. Finally, it was found that the equivalence ratio did not affect the flame location.

  8. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    International Nuclear Information System (INIS)

    Oliver, J.; Paterson, P.; Flavell, T.; Biddle, G.

    1996-01-01

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH 4 BF 4 . At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH 4 BF 4 atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig

  9. Fiscal 1998 joint promotion basic research report. Energy saving project for Achinsk refinery in Russia; 1998 nendo kyodo jisshi nado suishin kiso chosa. Roshia Achinsuku seiyujo shoene project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For prevention of global warming by greenhouse effect gas, study was made on energy saving measures for Achinsk refinery in Russia. Achinsk refinery is a relatively new plant put into operation in 1983, however, because of no various equipment for use combustion heat effectively, its average thermal efficiency is as low as 60%-70%, resulting in fuel consumption more than necessary one. Based on the study result, the following remodeling designs were made: Improvement of a heat exchange efficiency by relocation of heat exchangers to reduce fuel consumption of a heating furnace as much as possible, conversion of an existing heating furnace based on an old design concept to an advanced one, installation of a waste heat recovery system including a preheating convection unit and air preheater, reinforcement of heating furnace wall insulator, installation of an optimum control system for furnace operation, and improvement of a fuel supply system efficiency. This design showed possible reduction of heating furnace load, and possible furnace thermal efficiency of 90%. (NEDO)

  10. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  11. Experiments to study the erosive effect of oxide casting streams on structures

    International Nuclear Information System (INIS)

    Stuka, B.; Knauss, H.; Kammerer, B.; Perinic, D.

    1992-04-01

    The experiments performed under an activity of the Nuclear Safety Project (PSF) make a contribution to the study of the erosive effect of oxide casting streams on structures. As aluminothermically generated oxide casting stream, 20 mm in diameter, was applied from 1.0 m dropping height to 40 mm thick horizontal stainless steel plates in free air atmosphere. The test parameters were different temperatures of preheating of the plates (900 and 1200deg C). By means of thermocouples offset in depth in the plates it was possible to record and represent the temperature distribution in the plate correlated with time. Regarding the direct erosive effect of an oxide casting stream as a function of the temperature of plate preheating it appeared that a high initial temperature of the stainless steel plate (1200deg C) causes an increased erosion area at the surface only, but does not exert a macroscopically visible influence on erosion depth. (orig.) [de

  12. Design and testing of a heat pipe gas combustion system for the STM4-120 Stirling engine

    Science.gov (United States)

    Khalili, K.; Godett, T. M.; Meijer, R. J.; Verhey, R. P.

    Evaporators of a novel geometry, designed to have a more compact size yet the same output as larger, conventional heat pipes, have been fabricated and tested. A technique was developed to calculate capillary pressure required inside the heat pipe. Several quarter- and full-scale evaporators were designed and successfully tested. The burner, film-cooled combustion chamber, and preheater were designed and tested separately. A complete heat pipe gas combustion system (HPGC) was tested, showing an efficiency of 89 percent was measured at 20 kWth. A film-cooled combustion chamber was tested with flame temperatures of 2200 C and wall temperatures below 1000 C using preheated air for film cooling. Also, a full-scale HPGC was tested at an excess of 95 kWth, showing efficiency in the range of 85 to 90 percent under steady-state conditions. Results of transient and startup tests, carried out to evaluate the performance of the heat pipe, all also reported.

  13. [Risk Factors for Oxaliplatin-Induced Phlebitis and Venous Pain, and Evaluation of the Preventive Effect of Preheating with a Hot Compress for Administration of Oxaliplatin].

    Science.gov (United States)

    Nakauchi, Kana; Kawazoe, Hitoshi; Miyajima, Risa; Waizumi, Chieko; Rokkaku, Yuki; Tsuneoka, Kikue; Higuchi, Noriko; Fujiwara, Mitsuko; Kojima, Yoh; Yakushijin, Yoshihiro

    2015-11-01

    Venous pain induced by oxaliplatin(L-OHP)is a clinical issue related to adherence to the Cape OX regimen. To prevent LOHP- induced venous pain, we provided nursing care to outpatients who were administered a preheated L -OHP diluted solution using a hot compress. We retrospectively evaluated the risk factors for colorectal cancer patients who had L -OHP induced phlebitis and venous pain. Furthermore, the preventive effect of nursing care was compared between inpatients and outpatients from January 2010 to March 2012. At the L-OHP administration site, any symptoms were defined as phlebitis, whereas pain was defined as venous pain. A total of 132 treatment courses among 31 patients were evaluated. Multivariate logistic regression analysis revealed that both phlebitis and venous pain were significantly more common in female patients (adjusted odds ratio, 2.357; 95%CI: 1.053-5.418; and adjusted odds ratio, 5.754; 95%CI: 2.119-18.567, respectively). The prevalence of phlebitis and venous pain did not differ between inpatients and outpatients (phlebitis, 61.3% vs 67.7%; venous pain, 29.0%vs 19.4%). These results suggest that administration of L-OHP via a central venous route should be considered in female patients.

  14. A study on experiment and numerical simulation of heat exchanger in heating furnace

    Directory of Open Access Journals (Sweden)

    Z. C. Lv

    2018-01-01

    Full Text Available In this paper, air preheater is used the research object and its heat transfer law is studied by experiment and numerical simulation. The experimental data showed that with the increases of inlet air velocity, the comprehensive heat transfer coefficient and heat transfer efficiency increase, but the temperature efficiency decreases and the resistance loss on the air side increases. The numerical simulation results showed that the larger the diameter of the tube, the better the heat transfer effect. When horizontal spacing in the range of 290 - 305 mm and longitudinal spacing is 70 - 90 mm, the heat transfer effect is best. The optimized heat exchanger structure is that diameter is 60 mm, horizontal spacing is 300 mm, longitudinal spacing is 90 mm. As the inlet air flow rate increases, the heat transfer efficiency increases, but the temperature efficiency decreases and the resistance loss on the air side increases.

  15. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  16. Control and prevention of ice formation and accretion on heat exchangers for ventilation systems

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza

    2015-01-01

    In cold climates, the application of mechanical ventilation systems with heat recovery like are airto-air exchangers is used for reducing energy consumption for heating buildings by transferring heat exhausted air to supply air. However, increase efficiency of heat exchanger results in lower...... exhaust air temperatures and Ice formation on heat exchanger fins, which can cause problem and is not favourable. Therefore, prevention and control of ice formation on heat exchangers is necessary. The existing methods are divided into two different methods: active and passive ice control methods....... The active methods are e.g. bypass, recirculation, preheating. The passive methods relate to the surface characteristics of the heat exchanger fins as they have effect on ice formation in initial phase. All these methods have varying levels of success, cost, and effectiveness, which are depending on the heat...

  17. Kajian Analitik Perencanaan Pintu Air Pembangkit Listrik Tenaga Air

    OpenAIRE

    Pradoto, Pradoto

    1993-01-01

    Pada pintu air pembangkit listrik tenaga air umumnya dipasang pengauat-penguat (girder). Tujuannya agar pintu air kuat dalam menahan tekanan air. Tekanan air yang diderita oleh pintu air cukup besar karena dipasang pada kedalaman + 50 meter di bawah permukaan air. Permasalahan yang timbul adalah menentukan posisi atau letak girder pada pintu air.

  18. Estimation of air quality by air pollution indices

    International Nuclear Information System (INIS)

    Liblik, Valdo; Kundel, Helmut

    1999-01-01

    A novel system for estimating the quality of atmospheric air in the over-ground air layer with the help of air pollution indices was developed. The method is based on a comparison of measured or calculated maximum short-term concentrations and average annual concentrations of pollutants with maximum permissible concentrations (with regard to human beings and vegetation). Special air quality estimation scales for residential areas and natural systems are presented. On the basis of the concentration of the substance under study zones of very high, high, rather high, moderate, low and very low air pollution were distinguished in the over-ground layer of the atmosphere. These are projected to land surface for landscape zonation. The application of the system of indices is demonstrated in the analysis of air quality for the towns of Kohtla-Jarve, Johvi and Kivioli (in 1997-1998). A comparative analysis of the air pollution zones distinguished on the basis of emissions and data from bio monitoring yielded satisfactory results. The system of air pollution indices developed enables to process the results of air monitoring in case of pollution fields of complicated composition so that the result for estimating the quality of ambient air in a residential area is easily understood by inhabitants and interpretable with the help of a special scale; analyse temporal changes in the quality of the air in towns, villages and other residential areas and use the results as basis for developing measures for reducing the pollution of ambient air; carry out zonation of large territories on the basis of air pollution levels (spatial air pollution zones are projected on the ground surface) and estimate air quality in places where air monitoring is lacking to forecast the possible effect of air pollution on natural systems (author)

  19. Air ejector augmented compressed air energy storage system

    Science.gov (United States)

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  20. Combustion of Drops and Sprays of Heavy Fuel Oils and Their Emulsions.

    Science.gov (United States)

    1980-12-01

    Variation of the Flame Length of Drop with Time (Pure No. 4 Oil) ...... ..................... .... 154 15. Variation of the Flame Length of Drop with Time...No. 4 Oil-Water Emulsion, W = 0.08) ............. .... 155 16. Variation of the Flame Length of Drop with Time (No. 4 Oil-Water Emulsion, W = 0.15...detailed study of the effects of preheating the fuel, atomizing air-flow rate, and fuel flow 10 rate on flame properties such as flame length , radiation

  1. State of the art of flue gas desulphurisation in power plants; Stand der Technik bei Rauchgasreinigungsanlagen in Grosskraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Heiting, Bernd [VGB PowerTech e.V., Essen (Germany)

    2011-07-01

    Published measured data from modern power plants erected in the 80s show little emission concentrations of heavy metal and fine dust particles. Very low emission concentrations are also expected for new power plants, which are in the planning or erection phase, due to the flue gas cleaning stages DENOX, flue gas cooling in air pre-heater, ESP and FGD scrubber. Mercury components are also effectively removed through the combination high-dust SCR plant and FGD absorber. (orig.)

  2. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  3. Enhancing indoor air quality -The air filter advantage.

    Science.gov (United States)

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  4. Air Consumption Analysis of Air-Jet Weaving

    Directory of Open Access Journals (Sweden)

    RAJ KUMAR KHIANI

    2016-07-01

    Full Text Available In Textile industry, production is mostly key concern for Industry owner. This always has attracted researchers and machines manufacturers to make new developments in process and machines. Air-jet is one of the leading and successful highest productive weaving machines. However, it is now well established that due to add of charges of compressed air, manufacturing cost of air-jet weaving machine is higher as compared with rapier and projectile weaving machines. This is why countries having energy issues do not prefer air-jet weaving machines comparing projectile weaving machines. In this regard, several researchers and machine manufacturers have continuously been working to improve the efficiency of air-jet weft insertion. However, industry practice is as important as design made by researchers. The aim of this research is to investigate the air consumption of air-jet weaving on industrial scale practice. In this study, five weaving machine of same manufacturer and model were selected. It was observed that despite of manufacturing same quality of fabric, air consumption was varying almost in all weaving machines. Conventionally, mill workers adopt hit and trial practice in weaving industry including airpressure setting which leads to variation of nozzle pressure. Main reason of disparity of air consumption in air-jet weaving machines may be variation of distance from compressor to weaving machines, number of joints, un-necessary valve opening and pipes leakages cause an increase of compressed air consumption.

  5. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  6. Measurement of the thermal function of a multifunctional solar cell and wall; Maaling af den termiske funktion af en multifunktionel solcellegavl

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.

    2002-05-01

    A 75 m{sup 2} multifunctional PV-gable has been erected on a building at Viktoriagade 10B close to the centre of Copenhagen. The PV-gable serves several purposes except for producing electricity to the grid There is an air gap between the PV-panels and the existing wall. This air gap acts as a combination of a bufferezone and solar air collector. The air gap further cools the backside of the PV-panels in order to increase the performance of the PV panels. The bufferzone decreases the heat loss through the gable. Thermostat controlled fresh air intakes are located at each floor of the 5 story building in order to let in buoyancy driven preheated fresh air to the building. The PV-gable further preheats the fresh air to two mechanical ventilation systems: a fresh air intake system on the third floor and a balanced ventilation system with heat recovery on the fourth floor. The present report deals only with the thermal performance of the PV-gable. Based on measurements on the multifunctional PV-gable and simulations with a simple computer model developed based on the measurements the following conclusions have been obtained. 1) the efficiency of the PV-gable as solar air collector is at least as could be expected. 2) the top of the PV-gable has the same insulating effect as traditional additional insulation with 100 mm mineral wool while the bottom of the PV-gable is half as good. 3) the efficiency of the heat exchanger on the fourth floor is as high as expected: at identical volume flow rates on each side of the heat exchanger the efficiency is between 75 and 83 %. In the actual case where the flow rate of exhaust air is higher than the flow rate of fresh air the efficiency was found to be 70 %. 4) based on simulations the thermal performance of the PV-gable is estimated to lay between the savings of traditional additional insulation of 100 mm mineral wool and four times the savings of traditional additional insulation depending on the chosen setpoints and volume flow

  7. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  8. Air Research

    Science.gov (United States)

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  9. Energy efficiency opportunities in the production process of cast iron foundries: An experience in Italy

    International Nuclear Information System (INIS)

    Lazzarin, Renato M.; Noro, Marco

    2015-01-01

    Foundry sector is one of the most energy intensive in industry. Energy audits performed in 5 Italian cast iron foundries allowed to identify energy utilization in the various processes that from the melting of the iron arrive at the finishing of the casting. Main equipment was surveyed, evaluating the influence on the overall energy consumption, producing a detailed analysis of energy use per department and energy performance indexes. A separate study was carried out for foundries with induction furnaces and cold or hot blast cupolas. Possibilities of heat recovery was identified particularly in combustion air preheating, but also for building heating or to power direct cycles to produce electricity. Better insulation and new insulating materials can improve the efficiency and the quality of the processes. Suggestions are supplied in the various foundry departments for energy saving. Possible energy saving actions on the service plants will be dealt with in a separate paper. - Highlights: • The Authors performed energy audits in 5 Italian cast iron foundries. • Main equipment was surveyed, evaluating the influence on the overall energy consumption. • An analysis of energy use per department and energy performance indexes was performed. • Possibilities of heat recovery were identified in combustion air preheating and for building heating. • Better and new insulating materials were analyzed to improve the efficiency and process quality.

  10. Fiscal 1999 report on result of the model project for waste heat recovery in hot blast stove; 1999 nendo netsufuro hainetsu kaishu model jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purpose of curtailing energy consumption of the steel industry, a heavy energy consuming industry in China, a model project was carried out for waste heat recovery in a hot blast stove, with the fiscal 1999 results reported. In the process of this project, a heat exchanger for recovering heat is installed in the exhaust gas flue of a hot blast stove in ironworks, with sensible heat recovered through a heating medium. The heat exchanger for recovering heat and the preheating heat exchanger, which was installed in the main pipe for blast furnace gas and for combustion air, were connected by pressure piping, with the blast furnace gas and the combustion air preheated. In addition, a heating medium circulating pump for transporting the heating medium is installed, as are an expansion tank for absorbing expansion/contraction due to change in temperature, a heating medium storage tank for accepting the entire heating medium in the system for the maintenance of the equipment, and heating medium feeding pump, for example. This year, on the basis of the 'Agreement Annex', basic designs and detailed designs were performed for each equipment in the waste heat recovering equipment for the hot blast stove. Further, procurement and manufacturing were implemented for various component parts and devices of the waste heat recovering equipment. (NEDO)

  11. Air-cooled, hydrogen-air fuel cell

    Science.gov (United States)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  12. Solar project description for Zien Mechanical Contractors-I single family residence, Milwaukee, Wisconsin

    Science.gov (United States)

    Beers, D.

    1980-02-01

    The Zien Mechanical site is a single family residence located in Milwaukee, Wisconsin. The home has two separate solar energy systems: an air system for space heating and cooling; a liquid system to preheat the potable hot water. The space heating and cooling system design and operation modes are described. The space heating system is designed to apply approximately 44 percent of the space heating requirements for the 1388 square foot residence. Engineering drawings are provided and the performance evaluation instrumentation is described.

  13. Design for an MHD power plant as a prime mover for a Naval Vessel

    International Nuclear Information System (INIS)

    Paluszek, M.A.

    1981-01-01

    A Magnetohydrodynamic Power Plant, designed to be the prime mover for a Naval Vessel, is presented. The system is an open cycle, fossil fueled, subsonic MHD Faraday generator with directly fired air preheaters. A superconducting electric transmission drives the propellers and a standard naval steam plant is used as a bottoming cycle. The increased overall efficiency achievable with this plant allows a lighter, smaller volume ship to accommodate the same payload and reduces the overall fuel cost of the vessel

  14. An experimental evaluation on air purification performance of Clean-Air Heat Pump (CAHP) air cleaner

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Sun, Yuexia

    2018-01-01

    was 96.8%, which indicated that the most of gaseous pollutants were not accumulated in the CAHP. The regeneration temperature for the wheel could affect the air purification performance of CAHP. At 70 °C of regeneration temperature, the air-cleaning efficiency reached 96.7%. Up to 70% of the outdoor air......The escalation of energy consumption in buildings and heightened concerns about acceptable indoor air quality stimulate interest in the usage of air cleaner as an adjunct for indoor environmental conditioning. A regenerative desiccant wheel integrated into a ventilation system termed Clean-Air Heat...... Pump (CAHP) can improve the air quality during the process of dehumidification without using additional energy. An experimental study in a field lab was performed to investigate the air cleaning performance of CAHP. Photoacoustic gas analyzer-INNOVA was used to characterize chemical removal of indoor...

  15. AirData

    Data.gov (United States)

    U.S. Environmental Protection Agency — The AirData site provides access to yearly summaries of United States air pollution data, taken from EPA's air pollution databases. AirData has information about...

  16. Can a Clean-Air Heat Pump (CAHP) maintain air purification capability when using polluted air for regeneration?

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei

    2018-01-01

    Clean Air Heat Pump (CAHP) was one type of rotary desiccant cooling system which combined a silica gel rotor with a heat pump to achieve air cleaning, dehumidifying and cooling in buildings. Using exhaust air from the conditioned room for regeneration of the silica gel rotor might have an advantage...... on reducing the regeneration air temperature and further improving the energy performance of the CAHP. However, the exhaust air carried a lot of indoor air pollutants. Whether using exhaust air for the regeneration of the silica gel rotor had an impact on the air cleaning performance of the CAHP...... was experimentally studied. The results showed that using the air contained acetone or toluene for regeneration reduced the pollutants removal capability of CAHP with a reduction of approx. 10% in air cleaning efficiency. The energy performance of the CAHP when using exhaust air for regeneration was also evaluated...

  17. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  18. Performance evaluation and optimization of fluidized bed boiler in ethanol plant using irreversibility analysis

    Directory of Open Access Journals (Sweden)

    Nugroho Agung Pambudi

    2017-09-01

    Full Text Available This research aims to evaluate the performance of a fluidized bed boiler in an ethanol production plant through exergy and irreversibility analysis. The study also includes the optimization of the pre-heater and the deaerator in order to improve the system efficiency. Operational data from the ethanol production plant was collected between 2015 and early 2016. The total exergy derived from the fuel was determined to be 7783 kJ/s, while the exergy efficiency of the system was found to be 26.19%, with 2214 kJ/s used in steam production, while 71.55% was lost to component irreversibility and waste heat from the pre-heater. The exergy efficiencies of individual components of the system such as the boiler, deaerator, and pre-heater were found to be 25.82%, 40.13%, and 2.617%, respectively, with the pre-heater having the lowest efficiency. Thus, the pre-heater has the highest potential to significantly improve the efficiency of the boiler system. The optimization of the pre-heater shows that a rise in temperature in the outlet of the pre-heater positively affects the exergy efficiency of the deaerator.

  19. Reduced energy reqirement for air conditioning by using air diffusion with air flow from floor to ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Dittes, W; Mangelsdorf, R; Detzer, R; Jungbaeck, E; Fitzner, K; Radtke, W; Soethout, F

    1982-02-01

    The condition of the air in the occupied zone in airconditioned rooms is influenced by the mixing of supply air with room air. When supplying air from the ceiling there is a mixing all over the room, when supplying from the floor or from desks there is a mixing region only in the lower area. Above this their is warm air from which the return air is drawn. For air supply from below the cooling load can be decreased. In combination with the possible enthalpy difference between room air and supply air this decrease of the cooling load influences the necessary air rate. The interdependence of various air conditioning systems and various air temperatures is shown with a computer program. The load factor for various air distribution system at various cooling loads have been measured in a room of (8 x 5)m/sup 2/ x 3m. Experiments in a smaller model room (scale 1:3) showed how the heat was transported from the mixing region to the stratification region. The theoretically gained influence of the supply air jets of the height of the mixing region and on the load rate could be verified by the experiments. For the design of the fresh air rate, experience has been gained by measurements with tracegas (N/sub 2/O) in a third room. In comparing calculations the annual energy consumption has been computed for a building assuming various air conditioning systems and typical operation data. From experience with the existing systems the conclusions have been drawn how air distribution from floor to ceiling can be installed and operated.

  20. Air Pollution Monitoring | Air Quality Planning & Standards ...

    Science.gov (United States)

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  1. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    Science.gov (United States)

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The

  2. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, J; Paterson, P; Flavell, T [Royal Melbourne Inst. of Tech., VIC (Australia); Biddle, G [Alcoa Rolled Products (Australia)

    1997-12-31

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH{sub 4}BF{sub 4}. At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH{sub 4}BF{sub 4} atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig.

  3. Characteristics of a 30 Km plasma torch

    International Nuclear Information System (INIS)

    Busnardo Neto, J.; Rodrigues, V.A.; Boeckelmann, H.K.; Sakanaka, P.H.

    1987-01-01

    Plasma torches are important for countries with a high hydroelectric energy supply as is the case of Brazil. Indeed a 1.5 million dollar program is in its early stages at COSIPA with a view of substitution of fossil fuels in Brazilian steel mills. The first step in this program is the development of a 1.5 MW torch to preheat steel ladles (120 tons of molten metal). At UNICAMP a 30 kW torch for heating air using scaling law techniques was built. The current, voltage and efficiency were measured over a wide range of parameters and the results yield the expected VαI -0.3 law. This torch was used to preheat a foundry ladle (100 kg of metal). The final desired temperatures (300-400 0 C externally, 1300 0 C internally) were obtained in thirty minutes. Higher temperatures can be obtained with less power of an insulating material is used. The results were confirmed with a computer simulation program which integrates in time the heat conduction equations. (author) [pt

  4. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, J.; Paterson, P.; Flavell, T. [Royal Melbourne Inst. of Tech., VIC (Australia); Biddle, G. [Alcoa Rolled Products (Australia)

    1996-12-31

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH{sub 4}BF{sub 4}. At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH{sub 4}BF{sub 4} atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig.

  5. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    Science.gov (United States)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  6. Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP)✩

    Science.gov (United States)

    Linteris, Gregory Thomas; Babushok, Valeri Ivan; Pagliaro, John Leonard; Burgess, Donald Raymond; Manion, Jeffrey Alan; Takahashi, Fumiaki; Katta, Viswanath Reddy; Baker, Patrick Thomas

    2018-01-01

    Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C3H2F3Br (2-BTP, C3H2F3Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C3H2F3Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C3H2F3Br vs. CF3Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C3H2F3Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions. PMID:29628525

  7. Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP).

    Science.gov (United States)

    Linteris, Gregory Thomas; Babushok, Valeri Ivan; Pagliaro, John Leonard; Burgess, Donald Raymond; Manion, Jeffrey Alan; Takahashi, Fumiaki; Katta, Viswanath Reddy; Baker, Patrick Thomas

    2016-05-01

    Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C 3 H 2 F 3 Br (2-BTP, C 3 H 2 F 3 Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C 3 H 2 F 3 Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C 3 H 2 F 3 Br vs. CF 3 Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C 3 H 2 F 3 Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions.

  8. Modeling the integration of thermoelectrics in anode exhaust combustors for waste heat recovery in fuel cell systems

    Science.gov (United States)

    Maghdouri Moghaddam, Anita

    Recently developed small-scale hydrocarbon-fueled fuel cell systems for portable power under 1 kW have overall system efficiencies typically no higher than 30-35%. This study explores the possibility of using of thermoelectric waste heat recovery in anode exhaust combustors to improve the fuel cell system efficiencies by as much as 4-5% points and further to reduce required battery power during system start-up. Two models were used to explore this. The first model simulated an integrated SOFC system with a simplified catalytic combustor model with TEs integrated between the combustor and air preheating channels for waste heat recovery. This model provided the basis for assessing how much additional power can achieve during SOFC operation as a function of fuel cell operating conditions. Results for the SOFC system indicate that while the TEs may recover as much as 4% of the total fuel energy into the system, their benefit is reduced in part because they reduce the waste heat transferred back to the incoming air stream and thereby lower the SOFC operating temperatures and operating efficiencies. A second model transient model of a TE-integrated catalytic combustor explored the performance of the TEs during transient start-up of the combustor. This model incorporated more detailed catalytic combustion chemistry and enhanced cooling air fin heat transfer to show the dynamic heating of the integrated combustor. This detailed model provided a basis for exploring combustor designs and showed the importance of adequate reactant preheating when burning exhaust from a reformer during start-up for the TEs to produce significant power to reduce the size of system batteries for start-up.

  9. Physical and mathematical modelling of gas-fired glass melting furnaces with regard to NO-formation

    International Nuclear Information System (INIS)

    May, F.; Stuchlik, O.; Kremer, H.

    1999-01-01

    The increasing demand in quality, efficiency, energy conservation and the environmental issues drive the operators of high temperature processes to optimize their furnaces. Especially the glass manufacturing industry with their high working temperatures from about 1850 K to more than 1950 K and high air preheating temperatures of above 1480 K will produce high NOx-concentrations in the flue gas if no primary measures are taken. Considering the three different paths for NO-formation it is obvious that increased thermal NO is responsible for higher emissions. The German environmental regulations on air ''TA Luft'' requires a maximum value of 500 mg/mN3 in the flue gas for most of the combustion processes but for glass melting furnaces a temporary regulation of 1200 mg/mN3 and further on to 800 mg/mN3 is valid. Due to economical reasons the level of secondary measures is to be minimized thus the main objective of research is to reduce the NOx-emissions via primary measures. The design of the furnace is very important due to its strong influence on the distribution of velocity and species. That consequently affects the temperature field and the heat transfer to the load and further on the emissions. For the understanding of the processes within these furnaces numerical simulations, which are successfully validated with experiments, can give valuable indications to optimize furnace design for the reduction of NOx-emissions. The glass melting furnace modelled here is a regenerative horseshoe furnace fired with natural gas. Combustion air is preheated within the regenerator onto a level of temperature of 1650 K. (author)

  10. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  11. A combined system comprising a biomass gasifier and a Stirling engine. Design and optimisation for continuous operation; Eine Anlagenkombination aus Biomassevergaser und Stirlingmotor. Anlagendesign und Auslegung fuer den Dauerbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Huelscher, Manfred [Qalovis Farmer Automatic Energy GmbH, Laer (Germany)

    2010-07-01

    Conventional wood gasifiers consist of a gasifier, gas filter, and internal combustion engine. The contribution presents a novel system comprising a gasifier, burner, and Stirling engine. To enhance the electric efficiency, the burner is operated with air preheated via reculperation. The Stirling characteristic is known, and the gasification/combustion system can be calculated and designed on the basis of the Stirling data. The dust problem of the Stirling heat exchanger is solved by an automatic filter system, so that low-maintenance long-term operation becomes possible.

  12. Current progress in the design and setup of a SOFC/GT hybrid power plant

    OpenAIRE

    Schnegelberger, Christian; Henke, Moritz; Tomberg, Marius; Heddrich, Marc; Friedrich, K. Andreas

    2017-01-01

    The German Aerospace Center (DLR) is setting up a hybrid power plant with 30 kW electrical power output. It consists of a SOFC and a micro gas turbine (MGT). The hybrid power plant can reach electrical system efficiencies greater than 60 % throughout a wide operating range. Due to the SOFC’s high operation temperature and incomplete fuel utilisation, the exhaust gas will always contain usable energy. The MGT will use this energy to provide compressed and preheated air for the SOFC and ge...

  13. Metal-air batteries with high energy density: Li-air versus Zn-air

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Soo; Sun, Tai Kim; Cao, Ruiguo; Choi, Nam-Soon; Lee, Kyu Tae; Cho, Jaephil [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of); Liu, Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2011-01-01

    In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal-air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li-air and Zn-air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li-air and Zn-air batteries, with the aim of providing a better understanding of the new electrochemical systems. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Nitrogen fluorescence in air for observing extensive air showers

    CERN Document Server

    Keilhauer, B; Fraga, M; Matthews, J; Sakaki, N; Tameda, Y; Tsunesada, Y; Ulrich, A

    2012-01-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of \\emph{Air Fluorescence Workshops} commenced in 2002. At the 8$^{\\rm{th}}$ Air Fluoresc...

  15. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    Science.gov (United States)

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  16. AIRS-only Product on Giovanni for Exploring Up-to-date AIRS Observation and Comparing with AIRS+AMSU Product

    Science.gov (United States)

    Ding, F.; Hearty, T. J., III; Theobald, M.; Vollmer, B.; Wei, J.

    2017-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been the home of processing, archiving, and distribution services for the Atmospheric Infrared Sounder (AIRS) mission since its launch in 2002 for the global observations of the atmospheric state. Giovanni, a web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases, from version 6 AIRS product are available on Giovanni. The AIRS is an instrument suite comprised of a hyperspectral infrared instrument AIRS and two multichannel microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB). As the HSB ceased operation in very early stage of AIRS mission, the AIRS project operates two parallel retrieval algorithms: one using both IR and MW measurements (AIRS+AMSU) and the other using only IR measurements (AIRS-only) for the most time of the mission. The AIRS+AMSU product is better and the variables on Giovanni are from it. However, the generation of AIRS+AMSU product has been suspended since the AMSU instrument anomaly occurred in late 2016. To continue exploring up-to-date AIRS observations, the same set of variables from the AIRS-only product are added on Giovanni by the GES DSIC. This will also support the comparison of AIRS-only with AIRS+AMSU retrievals. In the presentation, we will demonstrate the visualization of AIRS-only product and the plots/statistics of comparison with AIRS+AMSU product using Giovanni.

  17. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    Science.gov (United States)

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  19. Pure Air`s Bailly scrubber: A four-year retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Manavi, G.B.; Vymazal, D.C. [Pure Air, Allentown, PA (United States); Sarkus, T.A. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A project company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.

  20. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Science.gov (United States)

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  1. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  2. High speed rails. Fatigue behaviour

    International Nuclear Information System (INIS)

    Duart, J. M.; Pero-Sanz, J. A.; Verdeja, J. I.

    2005-01-01

    In recent years, passenger train speed and freight train load have increased to enhance efficiency of rail road transportation. These trends have increased the severity of rail service conditions, calling for rails with greater wear resistance, strength and fatigue behaviour. In the United Stated and Europe, track site weld rails are made entirely by aluminothermic process. This work describes the results of experimental study conducted on bending fatigue strength of plain rails and aluminothermic welded rails with preheating procedures (oxipropane and air-induced propane) approved by railways authorities. Compliance with the required fatigue strength shall be ascertained by 4 point pulsating bending test in accordance with European standards by aluminothermic welding in rails. The locati method, based in the empirical Miner's law about the cumulative damage on a fatigue tested material, allows, once known the Wohler curve of the welding process in use to settle the fatigue tensile limit at 50% with only one test. The values obtained at 2.10''6 cycles for plain rails (S f =353 MPa), oxipropane preheated aluminothermic weld rails (S f =225 MPa), and propane-air induced aluminothermic weld rails (S f =210 MPa) are very similar to those resulting from test method stated in the European Standard. From our point of view and due to its ease, speediness and savings, this is the most suitable test to check the quality and compare the aluminothermic processes in use. (Author) 15 refs

  3. Dish/stirling hybrid-receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  4. Strength of smoke-free air laws and indoor air quality.

    Science.gov (United States)

    Lee, Kiyoung; Hahn, Ellen J; Robertson, Heather E; Lee, Seongjik; Vogel, Suzann L; Travers, Mark J

    2009-04-01

    Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 mum aerodynamic diameter or smaller (PM(2.5)) were obtained. When comprehensive smoke-free air laws were implemented, indoor PM(2.5) concentrations decreased significantly from 161 to 20 microg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM(2.5) concentrations were 304 microg/m3 before the law, 338 microg/m3 after the partial law, and 9 microg/m3 after the comprehensive law. The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM(2.5) levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke.

  5. Air Abrasion

    Science.gov (United States)

    ... Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air ... will perform any procedures that use air-abrasion technology. Ask your dentist if he or she uses ...

  6. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  7. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    Science.gov (United States)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  8. Industrial burner and process efficiency program

    Science.gov (United States)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  9. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic, stage 2.3. Conceptual proposal for technological solution for application of the oxyfuel method. Revision 0

    International Nuclear Information System (INIS)

    Dlouhy, Tomas

    2010-12-01

    Technological solution for application of the oxyfuel method at a typical power unit was proposed and optimised. Based on comparison of options, wet recirculation taken downstream of the electrostatic fly ash separator was selected. Suppressing false air suction into the facility to the minimum is imperative. The selected type design of the oxyfuel technology was integrated into the typical thermal design of the power unit in order to assess the effects on its efficiency. Calculations suggest that the variant with a boiler modified to accommodate the oxyfuel technology may attain a higher efficiency than the unit based on combustion with air. The thermal design was optimised, i.e. the flue gases which were too hot were cooled and the heat was fed to the feedwater preheater

  10. Assessment of the energy performance of the solar space system attached to the CE – INCERC Bucharest experimental house – experimental validation

    Directory of Open Access Journals (Sweden)

    Dan CONSTANTINESCU

    2010-01-01

    Full Text Available The INCERC Bucharest experimental house is equipped on the Southern façade with a ventilated solar space. The solar space ensures the ventilation of the entire building at a constant rate of 0.60 exchanges / h during the cold season, by inletting the pre-heated space in the greenhouse space. In the hot season the system ensures the building reversible ventilation by providing the fresh air rate by air suction in the building Northern zone, a consequence of the natural draught effect ensured by the solar space. This report presents the experiments performed in the season 2008-2009 and the experimental validation of the mathematical model used in assessing the solar space energy performance in the heating season.

  11. System design package for SIMS Prototype System 4, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air type solar energy collection techniques. The system consists of a modular designed prepackaged solar unit containing solar collctors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with inforation sufficient to assemble a similar system. The prepackage solar unit has been installed at the Mississippi Power and Light Company, Training Facilities, Clinton, Mississippi.

  12. The urban air; L'air de la ville

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This paper presents the abstracts of conferences proposed during the meeting on the urban air, organized by the French Meteorological Society in november 2002. These conferences dealt with the air quality monitoring, the public health impacts, the air pollution in function of the meteorological effects, the pollutants, the main factors of the air quality and the models of the meteorology. (A.L.B.)

  13. Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting

    Science.gov (United States)

    Lee, Hyoung-Jun; Thomas, Brian G.; Kim, Seon-Hyo

    2016-04-01

    The slide-gate plates in a cassette assembly control the steel flow through the tundish nozzle, and may experience through-thickness cracks, caused by thermal expansion and/or mechanical constraint, leading to air aspiration and safety concerns. Different mechanisms for common and rare crack formation are investigated with the aid of a three-dimensional finite-element model of thermal mechanical behavior of the slide-gate plate assembly during bolt pretensioning, preheating, tundish filling, casting, and cooling stages. The model was validated with previous plant temperature measurements of a ladle plate during preheating and casting, and then applied to a typical tundish-nozzle slide-gate assembly. The formation mechanisms of different types of cracks in the slide-gate plates are investigated using the model and evaluated with actual slide-gate plates at POSCO. Common through-thickness radial cracks, found in every plate, are caused during casting by high tensile stress on the outside surfaces of the plates, due to internal thermal expansion. In the upper plate, these cracks may also arise during preheating or tundish filling. Excessive bolt tightening, combined with thermal expansion during casting may cause rare radial cracks in the upper and lower plates. Rare radial and transverse cracks in middle plate appear to be caused during tundish filling by impingement of molten steel on the middle of the middle plate that generates tensile stress in the surrounding refractory. The mechanical properties of the refractory, the bolt tightening conditions, and the cassette/plate design are all important to service life.

  14. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  15. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  16. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  17. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  18. Air pollution and the school air environment

    OpenAIRE

    Fsadni, Peter; Montefort, Stephen

    2015-01-01

    There is growing concern about the association of school indoor air quality (SIAQ) with asthma, rhinitis, and rhinoconjunctivitis. Students and school staff deserve the highest standards of school air quality to ensure a safe and productive environment for our children’s education. Existing studies highlight the presence of several air pollutants present within school classrooms that have a direct association with poor health and poor student performance. Very little data exist ab...

  19. Passive cooling in modern nuclear reactors

    International Nuclear Information System (INIS)

    Rouai, N. M.

    1998-01-01

    This paper presents some recent experimental results performed with the aim of understanding the mechanism of passive cooling. The AP 600 passive containment cooling system is simulated by an electrically heated vertical pipe, which is cooled by a naturally induced air flow and by a water film descending under gravity. The results demonstrate that although the presence of the water film improved the heat transfer significantly, the mode of heat transfer was very dependent on the experimental parameters. Preheating the water improved both film stability and overall cooling performance

  20. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  1. Mechanistic modelling of a cathode-supported solid oxide fuel cell. Paper no. IGEC-1-103

    International Nuclear Information System (INIS)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M.D.; Fowler, M.W.; Douglas, P.L.; Entchev, E.

    2005-01-01

    A model for a cathode-supported tubular solid oxide fuel cell operating with humidified H 2 has been developed. Momentum-, mass-, energy- and charge-transport equations coupled with electrochemical reactions (H 2 oxidation and O 2 reduction) are considered in the model. The model also takes into account the radiative heat transfer between the cell and air-preheating tube. The model is validated against published experimental data ands shows a good agreement. The distributions of temperature, current density, reversible cell voltage, overpotential and species mole fractions within the cell are discussed in detail. (author)

  2. Experimental data and boundary conditions for a Double - Skin Facade building in transparent insulation mode

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Jensen, Rasmus Lund

    was carried out in a full scale test facility ‘The Cube’, in order to compile three sets of high quality experimental data for validation purposes. The data sets are available for preheating mode, external air curtain mode and transparent insulation mode. The objective of this article is to provide the reader...... with all information about the experimental data and measurements, necessary to complete an independent empirical validation of any simulation tool. The article includes detailed information about the experimental apparatus, experimental principles and experimental full-scale test facility ‘The Cube...

  3. Industrial applications of Tenova FlexyTech flame-less low NOx burners

    International Nuclear Information System (INIS)

    Fantuzzi, M.; Ballarino, L.

    2008-01-01

    Environmental emissions constraints have led manufacturers to improve their low NO x recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NO x emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O 2 with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  4. Advances in Understanding Air Pollution and Cardiovascular Diseases: The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

    Science.gov (United States)

    Kaufman, Joel D.; Spalt, Elizabeth W.; Curl, Cynthia L.; Hajat, Anjum; Jones, Miranda R.; Kim, Sun-Young; Vedal, Sverre; Szpiro, Adam A.; Gassett, Amanda; Sheppard, Lianne; Daviglus, Martha L.; Adar, Sara D.

    2016-01-01

    The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) leveraged the platform of the MESA cohort into a prospective longitudinal study of relationships between air pollution and cardiovascular health. MESA Air researchers developed fine-scale, state-of-the-art air pollution exposure models for the MESA Air communities, creating individual exposure estimates for each participant. These models combine cohort-specific exposure monitoring, existing monitoring systems, and an extensive database of geographic and meteorological information. Together with extensive phenotyping in MESA—and adding participants and health measurements to the cohort—MESA Air investigated environmental exposures on a wide range of outcomes. Advances by the MESA Air team included not only a new approach to exposure modeling but also biostatistical advances in addressing exposure measurement error and temporal confounding. The MESA Air study advanced our understanding of the impact of air pollutants on cardiovascular disease and provided a research platform for advances in environmental epidemiology. PMID:27741981

  5. Air Baltic: Estonian Air on nurka surutud / Teele Tammeorg

    Index Scriptorium Estoniae

    Tammeorg, Teele

    2010-01-01

    Air Balticu asepresidendi Janis Vanagsi hinnangul on Estonian Air aastaid jätnud tähelepanuta oma peamised turismiturud ning on praegu halvas seisus. Air Baltic on endiselt huvitatud Estonian Airi ostust. Majandus- ja kommunikatsiooniminister Juhan Partsi seisukoht

  6. Mechanical ventilation with heat recovery in arctic climate

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    Mechanical ventilations systems with highly effective heat recovery units in arctic climate have problems with condensing water from the extracted humid indoor air. If the condensing water freezes to ice in the heat recovery unit, the airflow rate will quickly diminish due to the increasing...... pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......-energy house in Sisimiut, which is capable of continuously defrosting itself. The disadvantage of the unit is that it is quite big compared with other units. In this paper the new heat recovery unit is described and laboratory measurements are presented showing that the unit is capable of continuously...

  7. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    Science.gov (United States)

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  8. Air leakage control in chief tunnel of uranium mines using air screen

    International Nuclear Information System (INIS)

    Xiao Gengsheng

    1987-01-01

    In this paper the results of air leakage control are described using air screen in the chief tunnels of some uranium mines. The air leakage decreases by 79-91% after using air screen. On the basis of mathematical treatment, the formulas for calculating the air resistance efficiency of air screen are presented

  9. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  10. Analysis of air safety in the European system of air traffic

    Directory of Open Access Journals (Sweden)

    О.Є. Луппо

    2008-04-01

    Full Text Available  Article describes air traffic safety provision requirements in the Air Traffic Management system of Europe. Consideration of air traffic variation which affecting the air traffic management operations have been reviewed.

  11. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries

    Science.gov (United States)

    Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang

    2018-01-01

    Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418

  12. Hazardous Air Pollutants

    Science.gov (United States)

    ... Search Main menu Environmental Topics Air Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, ... regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases . About Hazardous Air Pollutants ...

  13. Fiscal 1996 report on the results of the study under a consignment from NEDO of environmental friendly type metal base-materials recycling utilization basic technology and element/overall process. For public; 1996 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko kyodo kenkyu itaku. Kankyo chowagata kinzokukei sozai kaisei riyo kiban gijutsu no kenkyu: yoso sogo process kenkyu seika hokokusho (kokaiyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A study of `the next generation new iron steel making process` was conducted in which impurity elements in scrap are removed and recycled into high quality steel making materials, and at the same time total emissions are reduced during the process from scrap melting to steel making. The paper reported the fiscal 1996 results. In the study of the scrap recycling process, conducted were a study of the total system to remove impurities in the high temperature preheating furnace, a large scale experiment of de-coaling combined type de-coppering/de-tinning under reduced pressure of iron melting, a study of recycling technology of dust to the scrap melting furnace, etc. In the study on preheating/melting technology, a study of the scrap melting furnace of high-productivity/low-energy vertical type, a study of the scrap preheating method using the packed bed type preheating furnace, a study on the flue gas control at the time of preheating/melting, a study of the fast assessment method for organic compounds in flue gas, etc. In the evaluation of the total system, a study of preheating/melting/environmental systems using experimental plants. 20 refs., 23 figs., 10 tabs.

  14. Air Leakage Rates in Typical Air Barrier Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atchley, Jerald Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Childs, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    Estimates for 2010 indicate that infiltration in residential buildings was responsible for 2.85 quads of energy (DOE 2014), which is about 3% of the total energy consumed in the US. One of the mechanisms being implemented to reduce this energy penalty is the use of air barriers as part of the building envelope. These technologies decrease airflow through major leakage sites such as oriented strand board (OSB) joints, and gaps around penetrations (e.g., windows, doors, pipes, electrical outlets) as indicated by Hun et al. (2014). However, most air barrier materials do not properly address leakage spots such as wall-to-roof joints and wall-to-foundation joints because these are difficult to seal, and because air barrier manufacturers usually do not provide adequate instructions for these locations. The present study focuses on characterizing typical air leakage sites in wall assemblies with air barrier materials.

  15. The results of air treatment process modeling at the location of the air curtain in the air suppliers and ventilation shafts

    Directory of Open Access Journals (Sweden)

    Nikolaev Aleksandr

    2017-01-01

    Full Text Available In the existing shaft air heater installations (AHI, that heat the air for air suppliers in cold seasons, a heater channel is used. Some parts of the air from the heater go to the channel, other parts are sucked through a pithead by the general shaft pressure drawdown formed by the main ventilation installation (MVI. When this happens, a mix of two air flows leads to a shaft heat regime violation that can break pressurization of intertubular sealers. The problem of energy saving while airing underground mining enterprises is also very important. The proposed solution of both tasks due to the application of an air curtain is described in the article. In cold seasons the air treatment process should be used and it is offered to place an air curtain in the air suppliers shaft above the place of interface of the calorifer channel to a trunk in order to avoid an infiltration (suction of air through the pithead. It’s recommended to use an air curtain in a ventilation shaft because it reduces external air leaks thereby improving energy efficiency of the MVI work. During the mathematical modeling of ventilation and air preparation process (in SolidWorks Flowsimulation software package it was found out that the use of the air curtain in the air supply shaft can increase the efficiency of the AHI, and reduce the electricity consumption for ventilation in the ventilation shaft.

  16. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  17. Experimental analysis of indoor air quality improvement achieved by using a Clean-Air Heat Pump (CAHP) air-cleaner in a ventilation system

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Nie, Jinzhe

    2017-01-01

    This study investigated the air purification effect of a Clean-Air Heat Pump (CAHP) air-cleaner which combined a silica gel rotor with a heat pump to achieve air cleaning, heating and ventilation in buildings. The experiments were conducted in a field laboratory and compared a low outdoor air...... supply rate with CAHP air purification of recirculated air with three different outdoor air supply rates without recirculation or air cleaning. Sensory assessments of perceived air quality and chemical measurements of TVOC concentration were used to evaluate the air-cleaning performance of the CAHP....... The results of the experiment showed that the operation of the CAHP significantly improved the perceived air quality in a room polluted by both human bio-effluents and building materials. At the outdoor airflow rate of 2 L/s per person, the indoor air quality with CAHP was equivalent to what was achieved...

  18. KERENTANAN KAWASAN TEPI AIR TERHADAP KENAIKAN PERMUKAAN AIR LAUT Kasus Kawasan Tepi Air Kota Surabaya

    Directory of Open Access Journals (Sweden)

    Iwan Suprijanto

    2003-01-01

    Full Text Available Even though global warming are still debates whether it will or not be happened, the changes on climate will influence activities of human. Regarding global warming issue, one of the impact that is very interesting to be investigated is sea level rise. Sea level rise is predicted has very big impact since, in general, in coastal areas locate a lot of important activities for such city or country. On the context of Indonesian locality, most of big cities such as Jakarta, Surabaya, Semarang, Makasar, etc. are located on the coastal area. Since a lot of important activities located on those cities, in general, sea level rise will influence the development processes of those cities. On the basis of the observation gathering in Surabaya City, the impact of sea level rise will influence not only the development of coastal area but also development of Surabaya City in general. The influence is because the area accommodates activities which are very important in city development both for present and future. The activities are port, industrial estate and location for new housing. Abstract in Bahasa Indonesia : Terlepas dari ketidakpastian mengenai terjadi atau tidaknya pemanasan global, setiap perubahan iklim di bumi akan memberikan dampak terhadap kelangsungan hidup manusia. Salah satu kajian yang saat ini banyak dilakukan berkaitan dengan isu pemanasan global adalah mengenai kenaikan permukaan air laut. Pengkajian mengenai kenaikan permukaan air laut tersebut penting mengingat dampak yang akan ditimbulkannya dan dengan kenyataan secara umum kawasan tepi air memegang peranan penting dalam perkembangan suatu kota ataupun negara. Hal ditandai dengan banyaknya aktivitas yang berlokasi di kawasan tepi air. Kondisi geografis Indonesia dengan duapertiga bagian wilayahnya adalah perairan, menjadikan Indonesia memiliki garis pantai terpanjang di dunia. Hal tersebut menjadikan pula beberapa bagian wilayah di Indonesia merupakan kawasan pesisir atau tepi air

  19. MICROBIOLOGICAL CHARACTERISTICS OF THE AIR BLOWN BY WARM AIR HAND DRYERS

    Directory of Open Access Journals (Sweden)

    Recai OÐUR; Omer Faruk TEKBAS; Osman HANCI; Umut OZCAN

    2005-02-01

    Full Text Available The aim of the study was to determine the microbiological characteristics of air blown from warm air hand dryers, and to compare findings with the microbiological characteristics of indoor air in which the dryer settled. Air samples was taken from different public places (shopping centers, restaurants and hospitals and investigated for total viable counts, coagulase negative Staphylococcus, E. Coli, Staphylococcus aureus and enteric pathogens. There were differences between sampling indoor places for some of the microorganisms, but all of the air samples taken from dryers contained more microorganisms than indoor air, and the differences between hand dryers and indoor air were statistically significant (p<0.05 except for enteric pathogens. As a result it could be said that warm air hand dryers could be microbiological contamination sources in restrooms or the other places that they are used. [TAF Prev Med Bull 2005; 4(1.000: 1-7

  20. Indoor air humidity, air quality, and health - An overview.

    Science.gov (United States)

    Wolkoff, Peder

    2018-04-01

    There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception "dry air" in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter "dry air" (or "wet/humid air") is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture

  1. Air conditioner

    International Nuclear Information System (INIS)

    Sato, Masaaki

    1993-01-01

    The present invention provides an air conditioner which can prevent an undesirable effects on a human body due to radon daughter nuclides in a closed space. That is, the concentration of the radon daughter nuclides in the air in the closed space is continuously measured. A necessary amount of ventilation air is determined based on the measured concentration to generate control signals. External air is introduced into the closed space by the generated control signals. With such procedures, necessary amount of external air is taken from the atmospheric air which can be regarded to have the radon daughter nuclide concentration substantially at zero, thereby enabling to reduce the concentration of the radon daughter nuclides in the closed space. As a result, undesired effects on the human body due to the radon daughter nuclides staying in the closed space can be prevented. According to simulation, the radon daughter nuclides are rapidly decreased only by ventilation only for three times or so in one hour. Accordingly, ventilation is extremely effective and convenient means as a countermeasure for the radon daughter nuclides. (I.S.)

  2. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector

    International Nuclear Information System (INIS)

    Lamnatou, Chr.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N.

    2012-01-01

    Highlights: ► We evaluate an evacuated-tube solar air collector and use it to develop a novel dryer. ► Apple, carrot and apricot thin-layer drying experiments are conducted. ► Best overall fitting among several available thin-layer drying models is pursued. ► Thermodynamic analysis yields optimal collector area, energy utilization/exergy loss. ► The proposed dryer has a capacity for drying larger quantities of products. -- Abstract: The present work presents a thermodynamic performance analysis of a solar dryer with an evacuated-tube collector. Drying experiments for apples, carrots and apricots were conducted, after a preliminary stage of the investigation which included measurements for the determination of the collector efficiency. These results showed that the warm outlet air of the collector attains temperature levels suitable for drying of agricultural products without the need of preheating. Thus, the present collector was used as the heat source for a drying chamber in the frame of the development of a novel, convective, indirect solar dryer; given the fact that in the literature there are only a few studies about this type of collectors in conjunction with solar drying applications. Thin-layer drying models were fitted to the experimental drying curves, including the recent model of Diamante et al. which showed good correlation coefficients for all the tested products. Drying parameters such as moisture ratio and drying rates were calculated. Furthermore, an energetic/exergetic analysis of the dryer was also conducted and performance coefficients such as pick-up and exergy efficiencies, energy utilization ratio, exergy losses were determined for several configurations such as single and double-trays and several drying air velocities. On the other hand, an optimal collector surface area study was conducted, based on laws for minimum entropy generation. Design parameters such as optimum collector area were determined based on the minimum entropy

  3. Ensuring clean air: Developing a clean air strategy for British Columbia

    International Nuclear Information System (INIS)

    1992-04-01

    In 1992, a clean air strategy will be developed to incorporate views of British Columbians on ways to meet goals related to air quality. A discussion paper is presented to provide information to those interested in participation in developing this strategy. The paper gives information on air quality issues important to the province, including local air quality, urban smog, ozone layer depletion, and global climate change. The views and concerns expressed by stakeholders who attended the Clean Air Conference in 1991 are summarized. The process used to develop the clean air strategy is outlined and some outcomes to be anticipated from the strategy are suggested, including policies and priorities for action to ensure clean air. Air pollutants of concern are total reduced sulfur, mainly from pulp mills and gas processing plants; smoke from wood burning; sulfur dioxide from pulp mills and gas plants; hydrogen fluoride from aluminum smelting; ground-level ozone in urban areas; and acid rain. Elements of a clean air strategy include a smoke management policy, management strategies for greenhouse gases and ozone smog, ozone layer protection measures, regional air quality management plans, and long-term planning efforts in energy use, transportation modes, community design, and land use. 12 refs., 14 figs., 2 tabs

  4. Air Land Sea Bulletin

    Science.gov (United States)

    2014-11-01

    Unidentified Royal Air Force Regiment forward air controllers from the Air Land Integration Cell , Based at Royal Air Force Honington, Suffolk (United...heavy as an actual weapon.4 Ideally, this practice imbued a soldier with more energy and stamina during real combat, given the feel of the genuine but...through tactical forces, to individual training. Unidentified Royal Air Force Regiment forward air controllers from the Air Land Integration Cell , Based

  5. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, B.; Wang, Xiaoshuai; Zhang, Guoqiang

    Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...... to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on farm animals in warm conditions includes several thermal indices which incorporate the effect of air velocities. But, surprisingly none of them predicts a decreased influence of air velocity when the air temperature approaches the animal body temperature. This study reviewed published investigations...

  6. A Breath of Fresh Air: Addressing Indoor Air Quality

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  7. Modeling random combustion of lycopodium particles and gas

    Directory of Open Access Journals (Sweden)

    M Bidabadi

    2016-06-01

    Full Text Available The random modeling combustion of lycopodium particles has been researched by many authors. In this paper, we extend this model and we also generate a different method by analyzing the effect of random distributed sources of combustible mixture. The flame structure is assumed to consist of a preheat-vaporization zone, a reaction zone and finally a post flame zone. We divide the preheat zone to different parts. We assumed that there is different distribution of particles in sections which are really random. Meanwhile, it is presumed that the fuel particles vaporize first to yield gaseous fuel. In other words, most of the fuel particles are vaporized at the end of the preheat zone. It is assumed that the Zel’dovich number is large; therefore, the reaction term in preheat zone is negligible. In this work, the effect of random distribution of particles in the preheat zone on combustion characteristics such as burning velocity, flame temperature for different particle radius is obtained.

  8. 14 CFR 399.86 - Payments for non-air transportation services for air cargo.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payments for non-air transportation... Enforcement § 399.86 Payments for non-air transportation services for air cargo. The Board considers that... air carriers for non-air transportation preparation of air cargo shipments are for services ancillary...

  9. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate...

  10. Air conditioning systems to clean radioactive air

    International Nuclear Information System (INIS)

    Ganz, G.

    1987-01-01

    The author reports a study by the Institutes fuer Klimatechnik and Umweltschutz Giessen that shows that air conditioning systems not only make the atmosphere more comfortable, they also extract dust particles. This cleaning action is also valid for radioactively contaminated air. (G.T.H./Auth.)

  11. Dynamic study of steam generation from low-grade waste heat in a zeolite–water adsorption heat pump

    International Nuclear Information System (INIS)

    Xue, Bing; Meng, Xiangrui; Wei, Xinli; Nakaso, Koichi; Fukai, Jun

    2015-01-01

    A novel zeolite–water adsorption heat pump system based on a direct-contact heat exchange method to generate steam from low-grade waste gas and water has been proposed and examined experimentally. Superheated steam (200 °C, 0.1 MPa) is generated from hot water (70–80 °C) and dry air (100–130 °C). A dynamic model for steam generation process is developed to describe local mass and heat transfer. This model features a three-phase calculation and a moving water–gas interface. The calculations are carried out in the zeolite–water and zeolite–gas regions. Model outputs are compared with experimental results for validation. The thermal response inside the reactor and mass of steam generated is well predicted. Numerical results show that preheat process with low-temperature steam is an effective method to achieve local equilibrium quickly, thus generation process is enhanced by prolonging the time and increasing mass of the generated steam. Besides, high-pressure steam generation up to 0.5 MPa is possible from the validated dynamic model. Future work could be emphasized on enhancing high-pressure steam generation with preheat process or mass recovery operation

  12. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Kawabe, Ken-ichi; Uchiyama, Yoshio; Konno, Masanobu; Suzuki, Kunihiko; Kimura, Tadahiro.

    1991-01-01

    A main steam bypass line is disposed to a main steam line of an air extractor for directly sending diluting steams to an exhaust gas line disposed upstream of a preheater not by way of the extractor. Then, a hydrogen flowmeter is disposed to a hydrogen injection line of a hydrogen supply device for measuring the amount of hydrogen to be injected. Further, a control means is disposed to the main steam bypass line for controlling the injection of the diluting steams based on a signal from the hydrogen flowmeter. With such a constitution, the amount of the hydrogen gas supplied from the hydrogen supply device is detected by the hydrogen flowmeter. The control means disposed to the main steam bypass line or the control means disposed directly to the main steam line injects the diluting steams to the exhaust gas line based on the signal from the hydrogen flowmeter. This can reduce the hydrogen concentration in the exhaust gas upstream of the pre-heater to less than an explosive limit, to enable a countermeasure for preventing hydrogen explosion upon hydrogen injection. (T.M.)

  13. Test facility for auxiliary cooling system (ACS) of fast breeder reactor for Power Reactor and Nuclear Fuel Development Corporation (PNC)

    International Nuclear Information System (INIS)

    1983-01-01

    In preparation of constructing ''Monju'', a prototype fast breeder reactor, PNC has been pushing forward its research and development projects and the ACS was constructed under these projects. The auxiliary cooling system is an important engineered safety feature, and is used for safe removal of heat from the reactor at the shutdown. The ACS serves as a means of testing and assessing the auxiliary cooling system for the ''Monju'' and is designed and manufactured to have one fifth capacity of the Monju. The air heat exchanger and the ACS system was designed to withstand higher temperature range of the conventional design code (MITI-501), and finned tubes were applied for effective heat removal. Preheating system was designed to heat up the whole system over 200 0 C within 20 hours to prevent sodium from freezing. Basic performance of ACS was verified satisfactorily by a series of performance tests, such as start up test, flow rate measurement and preheating test before delivery. The experience from designing and construction of ACS and data obtained by these tests will be very instructive for designing and construction of the ''Monju''. (author)

  14. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  15. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  16. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  17. CALCULATION OF AIR ION REGIME IN THE CASE OF ARTIFICIAL AIR IONIZATION

    Directory of Open Access Journals (Sweden)

    BILIAIEV M. M.

    2015-10-01

    Full Text Available Purpose. One of the major tasks in the field of labor protection is providing of the necessary qualitative composition of air in the working areas of office and industrial spaces. In order to maintain the necessary air ion level in the air space premises, the artificial ionization of air is used often in the premises. At present in Ukraine analytical model are used for the calculation of air ion regime in premises, influencing on the formation process of air ions concentration field. An alternative solution is the use of CFD models, developing including the air jets aerodynamics in the premise, the presence of furniture, equipment, transfer of ions under an electric field, and other physical factors, determining intensity and shape of air ions concentration field in the premise. Methodology. Influence of air flow was taken into account in the development of CFD models for calculation of air ion regime in the apartment, caused by operation of ventilation, diffusion, electric field impact, as well as the interaction of different polarity ions with each other, and their interaction with dust particles. The proposed model of calculation of air ion regime in premises based on the use of aerodynamics, electrostatics and mass transfer levels. This model allows operatively to calculate air ions concentration field with the influence of the walls, floor, ceiling and obstacles on the process of air ions dispersion, the specific location of different polarity ions emission and their interaction in the premise and work areas in conditions of artificial air ionization. Results. The calculated data were obtained and on their base could be estimated the concentration of air ion anywhere in the premise with artificial air ionization. Ions concentration field, being calculated using this CFD model, as concentration field isolines is presented. Originality. The results of the air ion regime calculation in the premise are presented, based on numerical 2D CFD model

  18. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

    DEFF Research Database (Denmark)

    Lodi, C.; Bacher, Peder; Cipriano, J.

    2012-01-01

    reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement......This paper deals with grey-box modelling of the energy transfer of a double skin Building Integrated Photovoltaic (BIPV) system. Grey-box models are based on a combination of prior physical knowledge and statistics, which enable identification of the unknown parameters in the system and accurate...

  19. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  20. Ceramic finned-plate recuperator for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.; Strumpf, H.; Kotchick, D.

    1985-01-01

    High-level recuperation of high-temperature industrial furnaces offers an economically effective means for improving both process and fuel utilization. A ceramic recuperator capable of operating in fuel gas temperatures of up to 1350/sup 0/C and providing a combustion air preheat temperature of 1100/sup 0/C can provide in excess of 50 percent savings in fuel comsumption over an unrecuperated furnace. This recuperator consists of an array of cast ceramic finned plates. The fin geometries are such that when the plates are stacked together, they form the heat transfer flow passages for both the flue gas and combustion air streams. A reference design for industrial recuperator system was created. The current development efforts conducted on this recuperator concept, as well as plans for future activities, are described.